
G E N E R A T I O N A N D U S E OF U N S T R U C T U R E D G R I D S FOR
T U R B O M A C H I N E R Y CALCULATIONS

Dana R. Lindquist
Michael B. Giles

Massachusetts Institute of Technology
Cambridge, MA 02139

h.' __I
A B S T R A C T

This paper presents a wavefront mesh generator for two dimensional triangular meshes as well as a brief description
of the solution method used with these meshes. The interest is in creating meshes for solving the equations of fluid
mechanics in complex turbomachinery problems, although the mesh generator and flow solver may be used for a larger
variety of applications. The focus is on the flexibility and power of the mesli generation method for triangulating
extremely complex geometries and in changing the geometry to create a new mesh. Two turbomachinery applications
are presented which take advantage of this method: tlie analysis of pylon/strut and pylon/OGV interaction in tlie
bypass of a turbofan.

M E S H G E N E R A T O R

In recent years the use of unstructured triangular meshes in computational fluid dynamics has grown in popularity.
The main reason for going to triangular cells is the ability to compute the flowfield around coinplex geometries since
in these cases it is easier t o create a triangular mesh than a quadrilateral mesh, if a quadrilateral mesh can even be
created. The first question that one encounters when deciding to work with triangles is how to create the mesh. This
paper presents a mesh generator which was originally based on the worlc of Lo [I] and extended by Peraire et a1 [2,3].
The method works by advancing a front through tlie donlain to be triangulated, creating points as they are needed.
The result is a very powerful and flexible mesh generator.

The computational domain is specified as a number of closed objects inside an outer boundary. Each of these curves
are defined as piecewise cubic splines based on a set of points given by tlie user. These boundaries are divided into
segments which represent a node distribution on the boundary and compose the initial front. This front then moves
into the domain to be triangulated, creating triangles as it goes. A new triangle is made up of two nodes on the front
and either a newly created node or another node on the front. The front moves inward until it totally collapses in on
itself. An example of the process is shown in Figure 1 where the wave front is denoted by the darker line.

For t>he mesh generator to determine the size of the triangles throughput the region, a desired mesh size nlust be
given for each point in the triangulated region. Here this is done by creating a background mesh of large triangles with
mesli parameters given a t the nodes. A general point in the region will lie inside a background mesh triangle, and the
local mesh parameters are found by a linear interpolation of the values at the background nodes.

Some less desirable triangles can be created by tlie process, for example where the front finally collapses, therefore
the final mesh is smoothed. The smoothing of the final grid is done in two steps. First, the triangulation is made
to conform to the rules for a Delaunay mesh. This is done by examining all sets of two adjacent triangles. The face
between the triangles is rotated if the current face location is on the longer diagonal as slio\vn in Figure 2. Next the
nodes are displaced slightly so the mesh is relaxed. The new location of a node is given by

where i is the node to be smoothed and the sum is over the n nodes surrounding node i. A value of w = 0.3 is used for
the relaxation factor. The combination of these two steps in smoothing the grid is quite effective in eliminating any
undesirable cells as can be seen in Figure 1.

before smoothing after smoothing

Figure 1: Mesh at various stages in the advancing front method.

Figure 2: Mesh smoothing to create Delaunay triangulation.

The focus of the discussion here will be on the flexibility and power in generating grids for extren~ely conlplex
geometries with very little user time required in the definition of the problem. Interested readers are referred to the
papers by Peraire et a1 [2,3] for a discussion on the exact algorithm for front advancement. It would suffice to say
that the 2D mesh generator consists of over 3000 lines of code of which most involve conditional statements. The only
part of the code which will vectorize is a few lines involving a search. Peraire et a1 [4] have successfully extended this
method to three dimensions. The biggest difficulty from a user interface point of view in three diinensions is setting
up a background mesh size distribution. Instead of using a baclcground mesh, some other rnetl~od ~vhich defines the
distribution on the boundaries and smooths it through the region could be used.

To illustrate the ease of creating a mesh, the specifics involved in creating the mesh in Figure 1 will be shown as an
example. As previously stated, the outer boundary of the domain and the objects inside the dolllain are specified by
the user as a set of point which define a closed curve. Two other files are required, one which describes the orientation
of the objects and another which describes the background mesh.

Objects:

Here, two objects are used: a square which is defined from z = -1, 1 and y = -1, 1, and a circle with center at
the origin and radius 1. The points defining these objects are in files 0BJECT.SQUARE and 0BJECT.CIRCLE
respectively.

The object files contain additional information about the type of boundary condition to be applied to segments
of the boundary. The boundary condition could correspond to at1 inlet, outlet, solid wall or a set of periodic
surfaces.

Orientation:
The file FGRID.SQUARE is shown below along with the geometry for the problem. This file describes the
orientation of the objects in the domain. The several lines of the file are:

Line 1: title for the mesh
Line 2: name of the object file which in this case is 0BJECT.SQUARE
Line 3: tells whether the mesh will be created inside or outside the object where a positive nunll~er

means the mesh is inside
Line 4: four real values which give the factor by which the data is scaled, the angle by which the

data is rotated about the origin in the data, and the amount in the z and y directions by nrhich
the data is translated

Last 3 lines: the same kind of information given above about the data in file OBJECT.CIRC1,E

circle inside a square
0BJECT.SQUAR.E
1
1. 0. 0. 0.
0BJECT.CIRCLE
- 1
0.3 0. -.3 .2

I t is clear that objects can be easily rotated, scaled and placed anywhere in the domain. This means it is easy t o
change the location of an object or drop another object into the domain.

Background:

The information about the background mesh for this case is given in file BACI<.SQUARE which is shown below.
This file has information giving the node locations and the mesh parameters a t the nodes as well as the way the
nodes are connected to create a mesh. The several lines of the file are:

Line 1: number of nodes in the background mesh which in this case it 5
Next 5 lines: each node is given a consecutive numbers from the top of the list and has three real

values which give the x and y locations of the nodes and the desired standard length of the cell
Line 7: number of cells in the background mesh which in this case is 4
Next 4 lines: each line contains the three node numbers listed counter-clockwise wllich make up the

background cells

The current version of the code requires the user to set up the background mesh by hand. This turns out to be a
little tedious when a complicated mesh size distribution is desired. In the future an interactive method of creating
the background mesh will be created where the user can place and move points using a mouse and connect these
points again using a mouse.

A few other examples of meshes created using this method are shown in Figures 3 and 4. In Figure 3 a very u~lusual
mesh was created. The point which should be most emphasized in connection with this example is that once the object

files were created for the letters C, F and Dl it was a simple matter to get the mesh. In Figure 4 a more standard mesh
was created about a T7 turbine blade. The background mesh is shown to illustrate how course a background mesh can
be to get a realistic cell size distribution. I t can be seen that resolution is obtained around the leading edge where it
is needed, but the cells are coarser in the rest of the region.

Figure 3: Mesh around an unusual configuration.

FLOW SOLVER

The calculations were performed using UNSFLO [5], a Ni-type, Lax-Wendroff, Euler program which has the capa-
bility of computing on an unstructured triangular or quadrilateral mesh, or a mesh consisting of a mix of these cell
types. The algorithm is fairly straight forward, but the numerical sn~oothing used has been found to have a large
effect on the accuracy of the solution. The dissipative operator wllich we call llumerical smoothing is composed of two
parts, a fourth difference operator throughout the flowfield and another operator which is required to capture shocks
and other discontinuities. Due t o its importance to the accuracy of the solution, the fourth difference operator will be
discussed here.

To compute the fourth difference operator, a second difference of a second difference is found. These operators are
not necessarily the same, and in UNSFLO they are not. The first is a relatively simple operator which gives a non-zero
second difference for a linear function on an irregular mesh. The second operator is more complex, but results in a zero
second difference for a linear function. By examining the effect of the second difference operator on a linear function
the accuracy of the operator is tested, since for second order or higher accuracy the contribution must be zero.

A typical cell is shown in Figure 5 with corresponding nodes labeled 1, 2 and 3. The operators will be described
in terms of a contribution from the cell to one of the nodes. The total contribution to a node comes from all the cells
surrounding the node.

The low-accuracy second difference operator is not dependent on the location of the nodes surrounding the node
for which the second difference is computed, but merely on the function values at these nodes. For a triangular mesh
the contribution from cell A to the second difference at node 1 is

where S is the variable for which the second difference is computed. This second difference is coilservative siilce the
total contribution of each cell to its nodes is zero.

The high-accuracy second difference operator consists of finding the first derivative for each cell and then combining
the derivatives on the cells surrounding a node to form a second difference. Unlike the low-accuracy second difference
operator, this operator is dependent on the mesh geometry. Referring to Figure 5 the first derivative with respect to
x is found for cell A

Figure 4: Mesh around T7 turbine blade and background mesh. The mesh contains 1127 cells and 652
nodes.

Figure 5: Triangular cell

and similarly for the derivative with respect to y. A similar process is performed to create a second difference. The
integration is taken around all the triangles which surround the node for which the second difference is computed,
using the derivative values calculated at the cells. To get a second difference instead of a second derivative, there is no
division by the area of the integrated region. The contribution to tlle second difference at node 1 from cell A is

This second difference operator is conservative since again the total contribution of each cell is zero, but unlilie the
previous operator i t is second order accurate.

On all boundaries, solid wall or farfield, boundary conditions must be implemented for the second difference oper-
ators. For the low-accuracy operator the contribution to a node on the boundary is simply the ~ont~rihution from the
cells surrounding that node which are inside the domain as given in Equation (2). The high-accuracy operator illvolves
a line integral in Equation (4) which must be closed when considering a node on the boundary. To do this the integral
is continued along the boundary faces on either side of the node in question using the value of (S,) and (Sy) froin tlle
cell directly inside the boundary.

Clearly, to get the fourth difference operator either of these second difference operators could be used. Two methods
were examined by Lindquist [6,7]. The first method is to use the low-accuracy second difference twice by operating
first on the state vector and then operating on this second difference. This fourth difference is conservative, but is
second order accurate only on a uniform mesh since the second difference operator used is only second order accurate
on a uniform mesh. The second method is to compute a second difference of the state vector using the high-accuracy
method and operate on this second difference with the low-accuracy second difference. This operator is second order
accurate since the first opera.tor is second order accurate a.nd conservative since the second operator is conservative.

The second method is more expensive than the first, but the effect per iteration is an increase of only 5-10% wl~ich is
a small increase for the gain in accuracy. The fourth difference is multiplied by a coefficient, between 0.0001 and 0.01,
to control the amount of smoothing which is added to the scheme.

A modification to the high accuracy second difference operator was made by Holmes and Connell [8] which is
particularly useful in creating a more accurate operator when the aspect ratio of the cells is high. This modification
adds a weighting factor the the operator which is based on the geometry of the mesh.

APPLICATIONS

There are applications in turbomachinery where a standard grid generator is useless. In particular, two problenls
arise: the grid generator assumes a particular geometry configuration or grid clustering is desired in a specific locality.
Two cases will be discussed here which involve both these situations. The problem is the analysis of pylon/strut and
pylon/OGV interaction in the bypass of a turbofan. The configuration is clearly complex and high grid resolution is
only required around the struts or OGVs, particularly in tlle leading edge region. In both cases UNSFLO, the solver
described in the previous section, was used.

The first application is a pylon/strut interaction. The geometry for this case is similar to that published in
Reference [9]. Figure 6 shows the computational domain, which represents the complete bypass annulus unwrapped
into a two-dimesnional domain. At the center is the top pylon, and at the top and bottom of the domain are the
two surfaces of the bottom pylon plus a section of periodic boundary. The eight struts all have a NACA 0012 profile
and are inclined a t angles of - lo0 , 0°, 7O, 20°, -20°, -7O, 0°, lo0 , listed from top to bottom. The specification of
this geometry required just three files, one describing the outer boundary (the two pylons plus the inflow, outflow and
periodic boundaries), one describing a NACA 0012 airfoil of unit chord, and one describing how the full gemoetry is
composed from these two files by the appropriate scaling, rotations and translations. To change tlle inclination of any
of the struts requires only a minor change to the last file. Figure 6 also shows the background mesh which is used t o
control the mesh spacing, as well as the initial grid points on the boundaries. The final mesh shown in Figure 6 has
cells which are three times the size used in the computation since the final mesh spacing is quite small, but the blowup
if the blade nearest the pylon is of the actual mesh. For obvious reasons, the mesh spacing has been controlled so that
the grid is very fine around the struts, particularly their leading edges, and is fairly coarse around the pylons. Overall,
this case uses approximately 120,000 cells and 60,000 nodes.

The high stagger angles of the struts was chosen to generate lift such that the lift-related potential field of the
struts would approximately cancel the blockage-related potential field of the pylons, and hence reduce the unsteady
upstream interaction with the fan. The flow calculation, with the inflow being at zero incidence and A& =0.386 reveals
a problem with this approach. Because of the high lift, each of the two struts which are most inclined has a strong
normal shock with a peak Mach number of 1.8 just behind the leading edge as sho~vn in Figures 7, 8 and 9. The loss
at this shock is so large that the accompanying vorticity leads to an inviscid separation near the trailing edge wl~icll
is shown in Figure 10. The strong shock loss in this case suggests that it is a better idea to design the struts to be
non-lifting, and instead tailor the OGV's, which are just upstream of the struts but are not included in this calculation,
to prevent the potential field of the pylons from interacting with the fan.

The second application is a pylon/OGV interaction. The proper geometry in this case has 28 OGV's around the
annulus but t o reduce the computational cost the calculation was performed with 14 OGV's, maintaining the size and
position of the OGV's and the pylon, and therefore doubling the relative blockage effect of the pylon. There are two
reasons for presenting this case. The first is that it is another complicated example of unstructured grid generation
with good control over grid spacing which varies by over two orders of magnitude. The second reason is that the
results of the flow calculation exhibit a self-excited propagating flow instability which greatly resselnbles rotating stall.
Rotating stall has previously been calculated in two dimensions by a coupled vortex-boundary layer method [lo] and
by a Navier-Stokes calculation [ll] . In the former case a propagating stall cell with large blockage was calculated,
whereas in the latter case the blockage was not very severe and could almost be described as an unsteady boundary
layer separation rather than a propagating stall. These two computations used five blade passages, which clearly
places some restrictions on the stall cell character due to the periodicity constraints. In comparison t o these other two
calculations, the present calculation is believed to be the first solving the Euler equations which predicts a large stall
cell blockage, and uses sufficiently many blade passages that the effect of the periodicity assumption is believed to be
minimal.

The flow calculation was begun in a steady-state mode in which the Euler equations are time-marched using local

timesteps. This did not converge to a steady-state, but produced results that looked very much lilie a single rotating
stall cell. The computation was then switched into a time-accurate unsteady mode with a constant timestep, and
continued until it settled into a periodic solution in which there were two very similar 'stall cells', approximately three
blade passages in size. Figure 12 shows contour plots of entropy at four different instants. It clearly shows the high
entropy of the 'stalled' fluid and the downward propagation of the 'stall cell'. Figure 13 sho~vs an enlarged view of the
'stall cell' with velocity vectors a t each grid point.

Although it must be emphasised that this is an inviscid calculation, the basic unsteady propagation mecllanism is
very similar to that of a two-dimensional stall cell [12]. As the stall cell approaches a particular vane, the blockage due
to the reduced mass flow through the stalled passage causes an increase in the flow incidence on the new vane. This
increased incidence leads to a strong normal shock, and the vorticity this produces leads to an inviscid separation. As
the incidence increases, the shock strengthens and both the shock a,nd the separation point move forward towards the
leading edge until i t develops into a leading edge separation with a free shear layer. The transfer of momentum across
the shear layer due to numerical smoothing causes the separated fluid to grow into a strong passage. This is the part of
the cycle which is probably most incorrectly modelled by the Euler equations; in reality, tlle retarding viscous force at
the blade surface would prevent the growth of such a strong vortex. In the computation the passage vortex grows until
i t blocks most of the passage. At this time, the passage is near the rear of the rotating stall cell. The blockage due t o
the other stalled passages now reduces the incidence and supresses the leading edge separation. The flow reattaches at
the leading edge and then progressively drives the passge vortex downstream, and the passage returns ultimately to
its unstalled state. The ratio of the stall propagation speed to the nlean inflow axial velocity is approsinlately 0.3, a
value which is within the range of experimental data for stall propagation.

CONCLUSIONS

The wavefront method of mesh generation has been found to be extremely powerful. It provides a straightforward
method of defining the geometry of the computational domain and the ability to easily modify that geometry. The
variation of cell size can be specified and changed to fit the current problem. Most of the complexity of the mesh
generator is in the code which lets the user concentrate on the current application. Only two dimensional problems are
described here, but the method has been successfully extended to three dimensions by Peraire et a1 141. In complicated
cases the majority of the user time spent in grid generation is in the specification of tlle background nlesll controlling
the grid spacing. I t is thought that in three dimensions this may become a problem which deserves attention.

The two applications which are presented demonstrate the ability to analyze complex geometries. The mesh
generator and the flow solver for these problems were the same as ~vould be used for a single blade problem. This
greatly reduces the need for several flow solvers or grid generation codes. The flowfield solutions provide useful insights
into the design of bypass struts and the calculation of rotating stall.

REFERENCES

[I] S. H. Lo, "A New Mesh Generation Scheme for Arbitrary Planar Domains," Ii~tenlafzonal Journal for hrumerical
Methods in Engineering Vol. 21, pp. 1403-1426, 1985.

[2] J . Peraire, M. Vahdati, I<. Morgan and 0 . C. Zienkiewicz, "Adaptive Remeshing for Con~pressible Flow Compu-
tations," Journal of Computational Physics, Vol. 72, No. 2, October 1987.

[3] J . Peraire, J . Peiro, K. Morgan and 0 . C. Zienkiewicz, "Finite Element R/lesh Generation and Adaptive Procedures
for CFD," GAMNIISMAI Conference on Automated and Adaptive Riles11 Generation, October 1-2, 1987.

[4] J . Peraire, J . Peiro, L Formaggia, I<. Morgan, 0 . C. Zienkiewicz, "Finite Element Euler Conlputations in Three
Dimensions," AIAA 26th Aerospace Sciences Meetzng, AIAA-87-0032, January 1988.

[5] M. B. Giles, "UNSFLO: A Numerical Method For Unsteady Inviscid Flow In Turbomachinery," Technical Report
#195, MIT Gas Turbine Laboratory, October 1988.

[6] D.R. Lindquist, "A Comparison of Numerical Schemes on Triangular and Quadrilateral Rileshes," ShlI thesis,
Massachusetts Institute of Technology, May 1988.

[7] D. R. Lindquist and M. B. Giles, "A Comparison of Numerical Schemes on Triangular and Quadrilateral Rleshes,"
llth International Conference on Numerical Rtethods in Fluid Dynamics, June 1988.

[8] D. G. Holmes and S. D. Connell, "Solution of the 2D Navier-Stolies Equations on Unstructured Adaptive Grids,"
Proceedings of ihe AIAA gth Cornputatzonal Fluzd Dy~lamfcs Conference, AIAA Paper 89-1932, June 1989.

[9] H. Kodama and S. Nagano, "Potential Pressure Field by Stator/Downstrearn Slrut Interactio~l," Jou7.1~~1 oJ Tur-
bomachiney, Vol 111, pp. 197-203, April 1989.

[lo] P. R. Spalart, "Simulation of Rotating Stall by the Vortex Method," Journal of Propulsion, Vol. 1, No. 3, pp.
235-241, May-June 1985.

[l l] F. Davoudzadeh, N.-S. Liu, S. J . Shamroth and S. J . Thoren, "A Navier-Stokes Study of Rotating Stall in
Compressor Cascades," AIAA/ASME/SAE/ASEE 24th Joint Propulsion Coiiference, AIAA Paper 88-3265, July
1988.

[12] F. E. Marble, "Propagation of Stall in a Compressor Blade Row," Journal of the Aeronautical Sciences, Vol. 22,
1955.

Figure 6: Pylon/strut - Background mesh and the conlplete mesh with three times the actual nlesll cell size and a
blowup around one of the blades from the actual mesh.

- - - - - - -

Figure 7: Pylon/strut - Mach number contours with a blowup around the strut nearest the large pylon.

OMINAL PAGE IS
QF POOR QUALITY

Y
hi-

Figure 8: Pylon/strut - Mach number contours and computational grid of blowups around the strut nearest
the large pylon.

ORIGINAL PAGE IS
OF POOR QUALITY

X

Figure 9: Pylon/strut - Mach number distribution on the pylons and struts.

Figure 10: Pylon/strut - Mach number contours and flow vectors showing separation around the trailing
edge of the strut nearest the large pylon.

ORIGINAL PAGE IS
OF POOR QUALITY

Figure 12: Pylon/OGV - Entropy contours at four different stages in a cycle.

ORIGINAL PAGE fS
OF POOR wnLrrY

Figure 13: Pylon/OGV - Blowup of entropy contours with flow vectors from Figure 12.

ORIGINAL PAGE IS
OF POOR QUALlW

