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ABSTRACT 

A new class of methods for obtaining level sets t o  generate unstructured grids is presented. The 
consecutive grid levels a r e  computed using t h e  distance function, which corresponds t o  solving 
t h e  Hamilton-Jacobi equations representing the equations of motion of fronts propagating with 
curvature-dependent speed. The relationship between the  distance function and t h e  governing 
equations will be discussed a s  well a s  its application t o  generating grids. Multiply connected 
domains and complex geometries a r e  handled naturally, with a straightforward generalization t o  
several  space dimensions. The grid points for the unstructured grid a r e  obtained simultaneously 
with t h e  grid levels. The search involved in checking for overlapping triangles is minimized by 
triangulating the  ent i re  domain one level a t  a time. 

INTRODUCTION 

A paper on fronts propagating with curvature-dependent speed by Osher and Sethian 
(Ref. 6 )  has motivated us t o  research the  possibility of applying the  theory of propagating f ronts  
t o  grid generation. While this theory has a potential t o  be used for generating structured grids, 
powerful and well-tested methods already exist t o  tackle tha t  problem. However, generating 
the  appropriate unstructured mesh for use with finite element or finite difference methods is 
still  a difficult s tep  given the  f a c t  tha t  the  success of the  method depends largely on a cor rec t  
discretization of the  domain. Several ideas and practical algorithms have been proposed in t h e  
past (Ref. 2-5,7); however, this techniuqe is radically different from all  of them in several  ways. 

The idea underlying the  grid generation procedure presented comes from t h e  relationship 
between grid levels and fronts propagating with curvature-dependent speed. The front a t  the  
next t i m e  level corresponds t o  the  next grid level and satisfies al l  t h e  requirements generally 
imposed on a well-generated grid. The equation of motion for a front propagating with 
curvature-dependent speed is an initial-value Hamilton-Jacobi equation with a right-hand side 
t h a t  depends on curvature effects. The surface is viewed as  a level s e t  of the solution t o  this 
equation which, a s  i t  evolves in time, yields a different level s e t  and thus, t h e  next grid level. 

While this method will work with any consistent initialization of t h e  Hamilton-Jacobi vari- 
able, by carefully choosing t h e  initial condition, the  equation may not have t o  be solved. As will 
be shown later ,  setting the  Hamilton-Jacobi variable t o  a function of the  distance from a point 
in the  computational domain t o  the  initial surface, (i,e., geometry), results in a solution t o  t h e  
equation with no diffusion term. That is, the  level se t  corresponding t o  a particular value is 
used a s  a grid level and, by repeatedly using a contour-plotter-like search algorithm, a l l  the  grid 
levels a r e  readily obtained. 

To accurately match prescribed outer boundaries of the  domain, they a r e  t r ea ted  t h e  same 
way a s  t h e  geometry: they will be represented by another front tha t  also moves, but inward. 
The strategy for triangulation is based on a "level-by-level" principle which assumes t h a t  al l  
curves obtained from t h e  contour plotter a r e  closed curves (loops). 



I. EQUATIONS OF MOTION 

Some theore t ica l  resul ts  will now be presented in ant icipat ion of our l a t e r  discussion of t h e  
a c t u a l  grid genera t ion  scheme.  Given a simple, closed, smooth initial cu rve  y(0) in R2 (Ref.  6), 
l e t  y(t), t E [O,m) be a one-parameter  family of curves representing t h e  grid levels. The  y(t) 
cu rves  a r e  gene ra t ed  by propagatin t h e  initial curve normal t o  itself wi th  speed  F = F(K), 
where  K is t h e  curvature.  Le t  X(s,t 7 = (x(s,t), y(s,t)) be  t h e  position vec tor  t h a t  pa rame t r i ze s  
y(t) by s, 0 s s < S, X(0,t) = X(S,t). By convention, t he  interior is on t h e  l e f t  in t h e  d i rec t ion  of 
increasing s, resulting in a counter-clockwise orientat ion of y. The  equations of motion c a n  now 
be  w r i t t e n  as: 

wi th  t h e  ini t ial  condition X(s,O) = y(0), s€[O,S] given. The formula fo r  t h e  cu rva tu re  i s  

With t = f(x,y), K becomes  

As  shown in Ref .  6, t h e  function f sa t i s f ies  

if t h e  c u r v e  y s t ays  smooth and nonintersecting. 

Using these  fac ts ,  t he  system (1.1) c a n  now be transformed into a second order  Hamilton- 
J acob i  equation.  L e t  +(x,y,t) be  a Lipschitz continuous function such t h a t  +(x,y,O) > 1 inside t h e  
closed cu rve  y, +(x,y,O) < 1 outside y, and +(x,y,O) = 1 on y. We may then  wr i t e  

which, using Eq. (1.3) implies 



In general, t h e  curve could propagate inward or outward, but keeping grid generation in mind, 
choose the  direction of propagation t o  be  outward, thus obtaining 

2 2 1 1 2  
with H(v+) = -(I$ + 4 ) , which is now a Hamilton-Jacobi equation in 4 where x Y 

A f t e r  solving for 4 in t ime,  t h e  position of the propagating curve a t  t ime  t can  be obtained by 
looking for  t h e  locations where +(x,y,t) = I. By appropriately choosing t h e  speed function F, the  
smoothness of the  successive curves can be controlled a s  well. 

2. INITIAL CONDITIONS 

One simple and, a s  it will turn out, very useful choice for initializing 4 is 

where d(X; y) is  the  distance from point X = (x,y) t o  the curve y,  and t h e  "t" sign is chosen fo r  
points inside t h e  curve  ~ ( 0 )  and the  It-" sign is chosen for the  points outside t h e  curve. Thus, 4 
will b e  exact ly  one for points lying on ~ ( 0 ) .  We shall t e rm the  initialization (2.1) a s  t h e  distance 
function. 

Proposition: The level curve of the distance function a t  a level do is  precisely t h e  level 
curve of a solution 4 t o  Eq. (1.4) with F(K) = C tha t  corresponds t o  4 = 1. 

Proof: F(K) = C, a constant  speed function, implies tha t  every point on t h e  initial curve  is  
moving normal t o  itself with the  same speed; hence, all of them cover a n  equal distance 6 in 
t i m e  T. Thus, every point on t h e  new curve Y(T) will be 6 away from the  original cu rve  v(0), 
where 

4(xo,yo,0) = 1 fo r  ~ ( 0 )  = {(xo,yo)), 

and 

4(xl,y ,,TI = 1 fo r  Y(T) = {(xl,y 

y ( ~ )  would therefore  correspond t o  one level curve of t h e  distance function, i.e., 

This completes  the  proof. 



Applying this result t o  grid level generation for unstructured mesh where t h e  speed 
function F is constant, we note tha t  no t ime integration of Eq. (1.4) is needed. Using the  
distance function, the  grid levels a re  instantly obtained by simply specifying a s e t  of values and 
then searching for t h e  locations where the  grid function (our Hamilton-Jacobi variable + 
initialized by Eq. (2.1)) is equal t o  those values. 

3. MESH GENERATION ALGORITHM 

Using the above preliminary analysis, we have developed an algorithm tha t  generates  the  
nodes and triangulates between them one level a t  a t ime, also providing for arbi t rary  clustering 
of the  triangles by modifying t h e  distance function described in the  previous section. 

3.1 Grid Function 

Because of t h e  necessity of a grid function, the  f irst  s t e p  is t o  se t  up the  computational domain 
which is a rectangular domain covering t h e  ent i re  region t o  be triangulated. This region will 
then be discretized as a cartesian grid, with equal spacing in both the  x and y directions. Since 
this is merely a n  intermediate step, we keep this overlaid grid a s  simple and coarse  a s  possible. 
Typically, the  grid spacing will be greater or equal t o  the  minimum side required for t h e  
unstructured elements t o  be generated. 

To each  point of this computational grid, we assign a grid function initialized a s  prescribed by 
Eq. (2.1). The spacing of t h e  computational grid should be fine enough t o  resolve t h e  sharp 
corners and t h e  interior openings of the  inner and outer boundaries. The boundaries a r e  
prescribed by t h e  user in t h e  form of patches, where t h e  program has the  built-in capability of 
point redistribution within each patch. The nodes of t h e  interior boundaries a r e  entered in 
counter-clockwise order, while t h e  nodes of the  exterior boundary are  entered in clockwise 
order. All the  curves representing t h e  boundaries a r e  assumed t o  be closed loops, with the  
possibility of several inner loops, corresponding t o  multiply connected domains (Fig. 1). For our 
example of Fig. 1, a contour plot of the  grid function over the  region of interest  is i l lustrated in 
Fig. 2. 

3.2 Generation of Interior Nodes 

For each grid level, using a contour-plotter-like algorithm, we search for t h e  locations in t h e  
computational domain, where t h e  grid function matches a prescribed value. This value will 
obviously be less than one, and will depend on the nodal density and current  grid level. I t  is 
important tha t  the  contour algorithm follows the contour levels in a continuous fashion, thus 
yielding closed curves. Simultaneously with following these contour curves, t h e  nodes a r e  
generated as well by simply recording the  coordinates of equally (or nonequally for varying 
nodal densities) spaced points along t h e  curves. Once two complete adjacent contour levels a r e  
obtained with t h e  corresponding points, no more points a r e  generated, until t h e  triangulation of 
this s e t  of "ribbons" is complete (Figs. 3 and 4). This inherent topological s t ructure  of t h e  nodes 
is a main advantage of t h e  method, since i t  greatly reduces the  search t ime  necessary t o  form 
the  best triangles. 



Fig. 1 

Boundary of t h e  domain t o  be 
triangulated. 

Fig. 3 

Triangulation in progress in the  
f irst  subregion: between the initial 
curves and t h e  first  level set. 

Fig. 2 

Contour level curves of t h e  grid 
function between 0 and 1 

Fig. 4 

Triangulation in progress in the  
second subregion: between the  f i rs t  
and second level sets. 



3.3 Forming Triangular Elements 

Once two  adjacent contour levels a re  known, the  triangulation in the  region enclosed by them is 
relatively straightforward. The algorithm that  connects the  nodes t o  form triangular e lements  
has t h e  following major steps: 

1. Choose an initial "base" AB by connecting two  adjacent nodes A and B on one of t h e  
contour loops t h a t  corresponds t o  a higher contour level, 

2. For each triangle t o  be formed do: 
2a. Using t h e  current  base AB a s  t h e  base of t h e  triangle, choose t h e  third vertex C 

such t h a t  t h e  resulting triangle will, in some sense, be optimal. The cri terion 
used will be elaborated later. 

2b. Update the  array tha t  contains the  sides, with information about the  newly 
created triangle, a s  well a s  t h e  array tha t  contains the  elements (triangles). 

2c. Choose a new base AB from one of t h e  two newly created sides AC or BC of t h e  
latest  element, and if t h e  other side does not belong t o  a contour loop, enqueue 
i t  for la ter  use. If no more sides a r e  available as  eligible bases, stop. 
Otherwise go back t o  s t ep  2a. 

Criterion for  determining ver tex C: 

The base AB is a directed vector, and the  third vertex C will only be chosen from points t o  i t s  
right. All those nodes tha t  belong t o  t h e  contour loops enclosing our current region of in teres t  
a r e  considered. After analyzing t h e  cri teria proposed by Cavendish (Ref. 2) and Lo (Ref. 3), we 
found t h a t  those a r e  unnecessarily complicated and t ime consuming. Given t h e  special sett ing 
of our formulation, t h e  following choice of node C guarantees optimal triangulation (Fig. 5): 

choose C so tha t  the  norm m a x ( l ~ C 1 ,  IBcI) is minimized over al l  C tha t  lie t o  t h e  right of 
AB. 

,BEST CHOICE OF C 

Fig. 5 Criterion for choosing the  "bestw third vertex C for triangle ABC. 

Once t h e  "best" C is selected, we must ensure tha t  it indeed yields a triangle t h a t  will not  
overlap any other existing triangles. In practice, this is done by checking if any of t h e  existing 
sides would partly or  entirely lie within triangle ABC. If  this happens, this choice of C is 



marked and thrown away, and the  same criterion is used t o  select  a new C from t h e  remaining 
available nodes. Once again, the f a c t  tha t  only a relatively small number of nodes a r e  
considered in t h e  checking routine greatly reduces the  computational t ime required in t h e  
search. 

Note t h a t  this triangulation scheme is indeed a "greedy algorithm" in tha t  i t  looks only one s t e p  
ahead and only t r ies  t o  c rea te  the  best next triangle without weighing t h e  impact of this choice 
on later  choices. However, because connecting t h e  nodes is very much a local process, t h e r e  
a r e  typically only two or  three  good choices a t  each step, hence they cannot result in radically 
different triangulations. In fact ,  because of the  regular spacing of the  nodes lying on contour 
loops, only about I% of t h e  best C's ge t  eliminated due t o  overlapping. 

Once the  current  region of interest  is triangulated, t h e  program obtains the  next s e t  of nodes 
(step 3.3 above) which, in turn, will define the  next region of interest. Steps 3.2 and 3.3 follow 
each other  until t h e  whole domain is covered. During the  above triangulation process, informa- 
tion about neighboring elements and connected nodes is being stored a s  well, which could be 
useful input t o  some flow solvers. The ent i re  triangulated domain is shown in Fig. 6. 

Fig. 6 The entire triangulated region before smoothing. 

3.4 Smoothing 

Once t h e  whole domain is triangulated, t o  further regularize the  elements, we apply a very 
simple and effect ive  smoothing algorithm (suggested by Cavendish in Ref. 2). This process 
consists of replacing the  coordinates of each node by the  average of the  coordinates of those  
surrounding nodes tha t  i t  is connected t o  by a side. That is, each node is replaced by t h e  
centroid of t h e  surrounding polygon. Since this algorithm follows the  order in which t h e  nodes 
were  generated, at each step, the most updated coordinates a r e  used. To acce le ra te  
convergence, we suggest tha t  at  each smoothing cycle the order is reversed, hence, propagating 
the  smoothing in the  opposite direction. Generally, two smoothing cycles result in tr iangles 
sufficiently close t o  a satisfactory se t  of nodes. The final, smoothed triangulated domain a f t e r  
two smoothing steps is shown in Fig. 7. 



Fig. 7 Triangulated region a f te r  two cycles of smoothing. 

4. CLUSTERING OF NODES NEAR BOUNDARY CURVES 

T o  achieve varying nodal densities within the  computational domain, we use t h e  grid 
function described earlier. Modifying t h e  formula used in Eq. (2.11, the  grid function will not  be 
a function linearly decreasing with t h e  distance from the boundary curves, instead, an average 
of decreasing exponential functions of distances from each boundary curve. The boundaries a r e  
en te red  a s  patches, and each patch has a clustering factor ci associated with it. The grid 
function at  each point will then be divided by a weighted average of al l  t h e  cits. That is: 

where n i E Ciwjk  
i =l a = j k  n 

'jk i =l 

and 

Here  n is the  to ta l  number of patches, +.k is t h e  grid function a t  grid point (j,k), yi(0) is t h e  
notation used for t h e  ith patch representi& t h e  geometry or outer boundary, and b is a scalin 
factor  dependent on t h e  dimensions of t h e  whole domain. I t  is c lear  from Eqs. (4.2) and (4.3 5 
t h a t  the  scaling used in Eq. (4.1) is very heavily dependent on geometry patches close t o  the  
point (j,k), while t h e  influence of every other patch is relatively small and it diminishes 



exponentially as t h e  distance t o  tha t  patch increases. Averages must be taken t o  ensure a 
smooth grid function so t h e  contour algorithm will work. Figure 8 illustrates our initial example 
with the  ra t io  of t h e  largest and smallest cells being LO ( that  is, rnax ( c i ) /  min ( c i )  = 10) 

l < i  <n k i l n  
before smoothing, while t h e  e f fec t  of s m ~ o t h i n g  (af ter  two cycles) is shown in Fig. 9. 

Fig. 8 Fig. 9 

Clustered triangular mesh around the  Clustered mesh of Fig. 8 a f t e r  two  
two inner circles before smoothing. cycles of smoothing. 

3. THE GENERAL PROGRAM 

A flow char t  containing the  main building blocks of the  program is now presented t o  
i l lustrate t h e  logic of the  algorithm. 

I. Input t h e  geometry and outer  boundary data,  and clustering parameters  for the  
patches. 

2. Redistribute points along geometry and outer boundary loops according t o  required 
clustering. 

3. Initialize grid function over computational domain 
4. Until the  whole domain is covered, do: 

4a. Find contour level for next grid function value; simultaneously generate nodes 
on t h e  obtained loops. 

4b. Connect nodes in subregion enclosed by two se t s  of contour loops. 

5. Do twice: 

5a. Smooth t h e  entire region. 



6 .  FURTHER EXAMPLES 

The example  used thus f a r  is relat ively simple; t o  i l lus t ra te  how this  me thod  t ack le s  very  
complex, mult i -connected geometries ,  several  examples of d i f fe rent  cha rac t e r i s t i c s  follow. 

Figure 10 shows t h e  word "GRID" with equally spaced mesh around it. The  s a m e  g e o m e t r y  
is used in Fig. 1 1, where  we  have  a c lus tered  mesh instead, with t h e  r a t io  of t h e  l a rges t  and  
smal les t  e l e m e n t s  being 10. Note  t h e  exponentially decaying influence of t h e  c lus ter ing  f a c t o r  
assoc ia ted  with e a c h  geometry  segment  as t h e  distance t o  t hem increases throughout  t h e  
domain. 

Fig. 10 Fig. 1 I 

Smoothed,  equally spaced  mesh around t h e  Smoothed, c lus tered  mesh around t h e  
word "GRID". word "GRID". 

Figure 12 shows a grid for  t h e  "bomb-bay" problem, where heavy cluster ing is requi red  in 
t h e  cav i ty  a r e a  and nea r  t h e  wall, while a qui te  course  grid i s  suff icient  as t h e  f a r  f ield i s  
approached. Figure 13 shows a blowup of t h e  cavi ty  area.  

7. CONCLUSIONS 

A new, two-dimensional unstructured grid genera tor  has been  developed using t h e  d i s t ance  
function t o  obta in  t h e  interior nodes for  a prescribed, possibly mult iconnected domain,  where  
t h e  nodal densi ty c a n  vary throughout t h e  domain. The  algori thm e l iminates  t h e  need  t o  break  
up t h e  domain in to  severa l  subdomains and tr iangulate e a c h  of those  subdomains separa te ly .  
Dense cluster ing of nodes is made  possible with t h e  densi ty of t h e  nodes varying smoothly.  

The  na tura l  quest ion arises a s  t o  whether  this  method could have a n  extens ion  t o  t h r e e  
dimensions. The  preliminary analysis given at t h e  beginning of this  paper convinces  us t h a t  t h e  
theory  of  cu rves  moving with curvature-dependent speed c a n  b e  easily general ized t o  su r f aces  



Fig. 1 2  

Clus tered  mesh in t h e  cavi ty  a r e a  of t h e  
bomb-bay problem. 

Fig. 13  

Close-up of t h e  bomb-bay mesh of 
Fig. 12. 

in a n  n-dimensional space.  Similarly, t he  proposition proved ear l ie r  a l so  holds for  any  n- 
dimensional space;  hence,  t h e  distance function c a n  be  used in t h e  same  way in t h r e e  dimen- 
sions. Even obtaining t h e  isosurfaces (which correspond t o  contour curves  in t w o  dimensions), 
representing t h e  d i f f e ren t  grid levels, is relat ively s traightforward.  However, t o  pick up the  
nodes on t h e s e  isosurfaces according t o  a prescribed distribution function is t h e  s a m e  problem 
as surface-gridding, which c a n  b e  a complicated and time-consuming problem by itself.  Once  
t h e  nodes a r e  known, forming the  te t rahedra l  e lements  would b e  a process s imilar  t o  t h a t  of 
t r iangulat ion described above, with search  done on a level-by-level basis again. The  s a m e  
concep t s  would apply in t h r e e  dimensions, with f aces  replacing sides, and in tersec t ion  of planar  
sect ions replacing intersect ion of line segments.  The  cr i te r ion  for  choosing t h e  bes t  
t e t r ahedron  could be  applied in i ts  present  form a s  well; we simply choose t h e  fou r th  point of a 
t e t r ahedron  t o  minimize t h e  maximum of t he  t h r e e  edges t o  be  crea ted .  The t h r e e  d in~ens iona l  
background grid, however, which has t o  resolve t h e  smal les t  e lement ,  may have  t o  b e  qui te  
dense,  thus  c rea t ing  a new, and perhaps unsurpassable bott leneck.  Further  resul ts  for  extending 
t h e  method t o  t h r e e  dimensions will be repor ted  in fu tu re  work. 
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