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ABSTRACT

A new class of methods for obtaining level sets to generate unstructured grids is presented. The
consecutive grid levels are computed using the distance function, which corresponds to solving
the Hamilton-Jacobi equations representing the equations of motion of fronts propagating with
curvature-dependent speed. The relationship between the distance function and the governing
equations will be discussed as well as its application to generating grids. Multiply connected
domains and complex geometries are handled naturally, with a straightforward generalization to
several space dimensions. The grid points for the unstructured grid are obtained simultaneously
with the grid levels. The search involved in checking for overlapping triangles is minimized by
triangulating the entire domain one level at a time,

INTRODUCTION

A paper on fronts propagating with curvature-dependent speed by Osher and Sethian
(Ref. 6) has motivated us to research the possibility of applying the theory of propagating fronts
to grid generation. While this theory has a potential to be used for generating structured grids,
powerful and well-tested methods already exist to tackle that problem. However, generating
the appropriate unstructured mesh for use with finite element or finite difference methods is
still a difficult step given the fact that the success of the method depends largely on a correct
discretization of the domain. Several ideas and practical algorithms have been proposed in the
past (Ref. 2-5,7); however, this techniuge is radically different from all of them in several ways.

The idea underlying the grid generation procedure presented comes from the relationship
between grid levels and fronts propagating with curvature-dependent speed. The front at the
next time level corresponds to the next grid level and satisfies all the requirements generally
imposed on a well-generated grid. The equation of motion for a front propagating with
curvature-dependent speed is an initial-value Hamilton-Jacobi equation with a right-hand side
that depends on curvature effects. The surface is viewed as a level set of the solution to this
equation which, as it evolves in time, yields a different level set and thus, the next grid level.

While this method will work with any consistent initialization of the Hamilton-Jacobi vari-
able, by carefully choosing the initial condition, the equation may not have to be solved. As will
be shown later, setting the Hamilton-Jacobi variable to a function of the distance from a point
in the computational domain to the initial surface, (i.e., geometry), results in a solution to the
equation with no diffusion term. That is, the level set corresponding to a particular value is
used as a grid level and, by repeatedly using a contour-plotter-like search algorithm, all the grid
levels are readily obtained.

To accurately match prescribed outer boundaries of the domain, they are treated the same
way as the geometry: they will be represented by another front that also moves, but inward.
The strategy for triangulation is based on a "level-by-level" principle which assumes that all
curves obtained from the contour plotter are closed curves (loops).
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1. EQUATIONS OF MOTION

Some theoretical results will now be presented in anticipation of our later discussion of the
actual grid generation scheme. Given a simple, closed, smooth initial curve y(0) in [R2 (Ref. 6),
let ¥(t), t€ [0,=) be a one-parameter family of curves representing the grid levels. The y(t)
curves are generated by propagating the initial curve normal to itself with speed F = F(K),
where K is the curvature. Let X(s,t) = (x(s,1), y(s,t)) be the position vector that parametrizes
¥(t) by s, 0 <5 <S, X(0,t) = X(S,t). By convention, the interior is on the left in the direction of
increasing s, resulting in a counter-clockwise orientation of y. The equations of motion can now
be written as:

F(K) i
X =
t 2 7. 1/2
(xc + v )
(1.1)
XS
Y = -F(K) — 2. 1/2
(xg *+Y¢) /
with the initial condition X(s,0) = y(0), s€[0,S] given. The formula for the curvature is
szssxs ~ *ss¥s (1.2)
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With t = f(x,y), K becomes
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£ - 2f Ff +f f
K = XX Y Xy X'y vy X
7, f2)3/2
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As shown in Ref. 6, the function f satisfies
2 2 2
Fil(f + f,) = 1 (1.3)

if the curve y stays smooth and nonintersecting.

Using these facts, the system (l.1) can now be transformed into a second order Hamilton-
Jacobi equation. Let ¢(x,y,t) be a Lipschitz continuous function such that ¢(x,y,0) > 1 inside the
closed curve v, #(x,y,0) < 1 outside y, and ¢(x,y,0) = | on y. We may then write

¢
£ =X
X d>t
foa oy
y o

which, using Eq. (1.3) implies
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F2 2 B
(o, + 0y) = oy

In general, the curve could propagate inward or outward, but keeping grid generation in mind,
choose the direction of propagation to be outward, thus obtaining

oy + F(KYH(v¢) =0 (1.4)
. 2 2 1/2 . . . . . .
with H(v¢) = —(¢x + ¢y) » which is now a Hamilton-Jacobi equation in ¢ where
2 2 " 2
(o txdy T oty byt
- T 2 N 2.3/2
(o + 0y)

After solving for ¢ in time, the position of the propagating curve at time t can be obtained by
looking for the locations where ¢(x,y,t) = l. By appropriately choosing the speed function F, the
smoothness of the successive curves can be controlled as well.

2. INITIAL CONDITIONS

One simple and, as it will turn out, very useful choice for initializing ¢ is
6 (x,y,0) = 1 % d((x,y)s v(0)) (2.1)

where d(X; y) is the distance from point X = (x,y) to the curve vy, and the "+" sign is chosen for
points inside the curve y(0) and the "-" sign is chosen for the points outside the curve. Thus, ¢
will be exactly one for points lying on y(0). We shall term the initialization (2.1) as the distance
function.

Proposition: The level curve of the distance function at a level d

is precisely the level
curve of a solution ¢ to Eq. (1.4) with F(K) = C that corresponds to ¢ = 1.

o)

Proof: F(K) = C, a constant speed function, implies that every point on the initial curve is
moving normal to itself with the same speed; hence, all of them cover an equal distance ¢ in
time t. Thus, every point on the new curve y(1) will be § away from the original curve y(0),
where

#(xq,Y 050) = 1 for v(0) = {(xq,y o)},

and
o(x 1,y 1,1) = L for y() = {(x1,y )}

y(1) would therefore correspond to one level curve of the distance function, i.e.,
o(x1,y1,0) = 1 - 8sgnC.

This completes the proof.




Applying this result to grid level generation for unstructured mesh where the speed
function F is constant, we note that no time integration of Eq. (l.4) is needed. Using the
distance function, the grid levels are instantly obtained by simply specifying a set of values and
then searching for the locations where the grid function (our Hamilton-Jacobi variable ¢
initialized by Eq. (2.1)) is equal to those values.

3. MESH GENERATION ALGORITHM

Using the above preliminary analysis, we have developed an algorithm that generates the
nodes and triangulates between them one level at a time, also providing for arbitrary clustering
of the triangles by modifying the distance function described in the previous section.

3.1 Grid Function

Because of the necessity of a grid function, the first step is to set up the computational domain
which is a rectangular domain covering the entire region to be triangulated. This region will
then be discretized as a cartesian grid, with equal spacing in both the x and y directions. Since
this is merely an intermediate step, we keep this overlaid grid as simple and coarse as possible,
Typically, the grid spacing will be greater or equal to the minimum side required for the
unstructured elements to be generated.

To each point of this computational grid, we assign a grid function initialized as prescribed by
Eq. (2.1). The spacing of the computational grid should be fine enough to resolve the sharp
corners and the interior openings of the inner and outer boundaries. The boundaries are
prescribed by the user in the form of patches, where the program has the built-in capability of
point redistribution within each patch. The nodes of the interior boundaries are entered in
counter-clockwise order, while the nodes of the exterior boundary are entered in clockwise
order. All the curves representing the boundaries are assumed to be closed loops, with the
possibility of several inner loops, corresponding to multiply connected domains (Fig. 1). For our
example of Fig. |, a contour plot of the grid function over the region of interest is illustrated in
Fig. 2. '

3.2 Generation of Interior Nodes

For each grid level, using a contour-plotter-like algorithm, we search for the locations in the
computational domain, where the grid function matches a prescribed value. This value will
obviously be less than one, and will depend on the nodal density and current grid level. It is
important that the contour algorithm follows the contour levels in a continuous fashion, thus
yielding closed curves. Simultaneously with following these contour curves, the nodes are
generated as well by simply recording the coordinates of equally (or nonequally for varying
nodal densities) spaced points along the curves. Once two complete adjacent contour levels are
obtained with the corresponding points, no more points are generated, until the triangulation of
this set of "ribbons" is complete (Figs. 3 and 4). This inherent topological structure of the nodes
is a main advantage of the method, since it greatly reduces the search time necessary to form
the best triangles.
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Fig.

Boundary of the domain to be
triangulated.

§C61779

Fig. 2

Contour level curves of the grid
function between 0 and 1

§C61778
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Fig. 3

Triangulation in progress in the
first subregion: between the initial
curves and the first level set.
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Fig. 4

Triangulation in progress in the
second subregion: between the first
and second level sets.




3.3 Forming Triangular Elements

Once two adjacent contour levels are known, the triangulation in the region enclosed by them is
relatively straightforward. The algorithm that connects the nodes to form triangular elements
has the following major steps:

lI.  Choose an initial "base"” AB by connecting two adjacent nodes A and B on one of the
contour loops that corresponds to a higher contour level.
2. For each triangle to be formed do:
2a. Using the current base AB as the base of the triangle, choose the third vertex C
such that the resulting triangle will, in some sense, be optimal. The criterion
used will be elaborated later.
2b. Update the array that contains the sides, with information about the newly
created triangle, as well as the array that contains the elements (triangles).
2c.  Choose a new base AB from one of the two newly created sides AC or BC of the
latest element, and if the other side does not belong to a contour loop, enqueue
it for later use. If no more sides are available as eligible bases, stop.
Otherwise go back to step 2a.

Criterion for determining vertex C:

The base AB is a directed vector, and the third vertex C will only be chosen from points to its
right. All those nodes that belong to the contour loops enclosing our current region of interest
are considered. After analyzing the criteria proposed by Cavendish (Ref. 2) and Lo (Ref. 3), we
found that those are unnecessarily complicated and time consuming. Given the special setting
of our formulation, the following choice of node C guarantees optimal triangulation (Fig. 5):

choose C so that the norm max(]JAC|, [BC|) is minimized over all C that lie to the right of
AB.

§C-0013-C

BEST CHOICE OF C

Fig. 5 Criterion for choosing the "best" third vertex C for triangle ABC,
Once the "best" C is selected, we must ensure that it indeed yields a triangle that will not

overlap any other existing triangles. In practice, this is done by checking if any of the existing
sides would partly or entirely lie within triangle ABC. If this happens, this choice of C is
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marked and thrown away, and the same criterion is used to select a new C from the remaining
available nodes. Once again, the fact that only a relatively small number of nodes are
considered in the checking routine greatly reduces the computational time required in the
search.

Note that this triangulation scheme is indeed a "greedy algorithm" in that it looks only one step
ahead and only tries to create the best next triangle without weighing the impact of this choice
on later choices. However, because connecting the nodes is very much a local process, there
are typically only two or three good choices at each step, hence they cannot result in radically
different triangulations. In fact, because of the regular spacing of the nodes lying on contour
loops, only about 1% of the best C's get eliminated due to overlapping.

Once the current region of interest is triangulated, the program obtains the next set of nodes
(step 3.3 above) which, in turn, will define the next region of interest. Steps 3.2 and 3.3 follow
each other until the whole domain is covered. During the above triangulation process, informa-
tion about neighboring elements and connected nodes is being stored as well, which could be
useful input to some flow solvers. The entire triangulated domain is shown in Fig. 6.
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Fig. 6 The entire triangulated region before smoothing.

3.4 Smoothing

Once the whole domain is triangulated, to further regularize the elements, we apply a very
simple and effective smoothing algorithm (suggested by Cavendish in Ref. 2). This process
consists of replacing the coordinates of each node by the average of the coordinates of those
surrounding nodes that it is connected to by a side. That is, each node is replaced by the
centroid of the surrounding polygon. Since this algorithm follows the order in which the nodes
were generated, at each step, the most updated coordinates are used. To accelerate
convergence, we suggest that at each smoothing cycle the order is reversed, hence, propagating
the smoothing in the opposite direction. Generally, two smoothing cycles result in triangles
sufficiently close to a satisfactory set of nodes. The final, smoothed triangulated domain after
two smoothing steps is shown in Fig. 7.
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Fig. 7 Triangulated region after two cycles of smoothing.

4. CLUSTERING OF NODES NEAR BOUNDARY CURVES

To achieve varying nodal densities within the computational domain, we use the grid
function described earlier. Modifying the formula used in Eq. (2.1), the grid function will not be
a function linearly decreasing with the distance from the boundary curves, instead, an average
of decreasing exponential functions of distances from each boundary curve. The boundaries are
entered as patches, and each patch has a clustering factor c; associated with it. The grid
function at each point will then be divided by a weighted average of all the ¢;'s. That is:

v = 1 d(06y)35 v(0))/ay, -
where n 5
iy ik
ajk i | (4.2)
it "k
and 0))e°b
Wi = x93 545 (0) “?

Here n is the total number of patches, ¢; is the grid function at grid point (j,k), v;(0) is the
notation used for the ith patch representir{g the geometry or outer boundary, and b is a scalin
factor dependent on the dimensions of the whole domain. It is clear from Egs. (4.2) and (4.3
that the scaling used in Eq. (4.1) is very heavily dependent on geometry patches close to the
point (j,k), while the influence of every other patch is relatively small and it diminishes
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exponentially as the distance to that patch increases. Averages must be taken to ensure a

smooth grid function so the contour algorithm will work. Figure 8 illustrates our initial example

with the ratio of the largest and smallest cells being 10 (that is, max (c;)/ min (c,) = 10)
l<isn ' 1<izn

before smoothing, while the effect of smoothing (after two cycles) is shown in Fig. 9.

5C51784
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Fig. 8 Fig. 9
Clustered triangular mesh around the Clustered mesh of Fig. 8 after two
two inner circles before smoothing. cycles of smoothing.

5. THE GENERAL PROGRAM

A flow chart containing the main building blocks of the program is now presented to
illustrate the logic of the algorithm.

1. Input the geometry and outer boundary data, and clustering parameters for the
patches.

2. Redistribute points along geometry and outer boundary loops according to required
clustering.

3. Initialize grid function over computational domain

4, Until the whole domain is covered, do:
4a. Find contour level for next grid function value; simultaneously generate nodes
on the obtained loops.
4b. Connect nodes in subregion enclosed by two sets of contour loops.

5. Do twice:

5a. Smooth the entire region.
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6. FURTHER EXAMPLES

The example used thus far is relatively simple; to illustrate how this method tackles very
complex, multi-connected geometries, several examples of different characteristics follow.

Figure 10 shows the word "GRID" with equally spaced mesh around it. The same geometry
is used in Fig. 11, where we have a clustered mesh instead, with the ratio of the largest and
smallest elements being 10. Note the exponentially decaying influence of the clustering factor
associated with each geometry segment as the distance to them increases throughout the
domain.
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Fig. 10 Fig. 11

Smoothed, equally spaced mesh around the Smoothed, clustered mesh around the
word "GRID". word "GRID",

Figure 12 shows a grid for the "bomb-bay" problem, where heavy clustering is required in
the cavity area and near the wall, while a quite course grid is sufficient as the far field is
approached. Figure 13 shows a blowup of the cavity area.

7. CONCLUSIONS

A new, two-dimensional unstructured grid generator has been developed using the distance
function to obtain the interior nodes for a prescribed, possibly multiconnected domain, where
the nodal density can vary throughout the domain. The algorithm eliminates the need to break
up the domain into several subdomains and triangulate each of those subdomains separately.
Dense clustering of nodes is made possible with the density of the nodes varying smoothly.

The natural question arises as to whether this method could have an extension to three

dimensions. The preliminary analysis given at the beginning of this paper convinces us that the
theory of curves moving with curvature-dependent speed can be easily generalized to surfaces
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Fig. 12 Fig. 13

Clustered mesh in the cavity area of the Close-up of the bomb-bay mesh of
bomb-bay problem. Fig. 12,

in an n-dimensional space. Similarly, the proposition proved earlier also holds for any n-
dimensional space; hence, the distance function can be used in the same way in three dimen-
sions. Even obtaining the isosurfaces (which correspond to contour curves in two dimensions),
representing the different grid levels, is relatively straightforward. However, to pick up the
nodes on these isosurfaces according to a prescribed distribution function is the same problem
as surface-gridding, which can be a complicated and time-consuming problem by itself. Once
the nodes are known, forming the tetrahedral elements would be a process similar to that of
triangulation described above, with search done on a level-by-level basis again. The same
concepts would apply in three dimensions, with faces replacing sides, and intersection of planar
sections replacing intersection of line segments. The criterion for choosing the best
tetrahedron could be applied in its present form as well; we simply choose the fourth point of a
tetrahedron to minimize the maximum of the three edges to be created. The three dimensional
background grid, however, which has to resolve the smallest element, may have to be quite
dense, thus creating a new, and perhaps unsurpassable bottleneck. Further results for extending
the method to three dimensions will be reported in future work.
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