
GNSTRUCTUREG GRID GENEMTION USING THE GISTAPCE FUNCTION

Barna L. Bihari and Sukumar R. Chakravarthy , # ,

Rockwell International Science Center it, "r" '* i
ix-

1 --- Thousand Oaks, California

ABSTRACT

A new class of methods for obtaining level sets t o generate unstructured grids is presented. The
consecutive grid levels a r e computed using t h e distance function, which corresponds t o solving
t h e Hamilton-Jacobi equations representing the equations of motion of fronts propagating with
curvature-dependent speed. The relationship between the distance function and t h e governing
equations will be discussed a s well a s its application t o generating grids. Multiply connected
domains and complex geometries a r e handled naturally, with a straightforward generalization t o
several space dimensions. The grid points for the unstructured grid a r e obtained simultaneously
with t h e grid levels. The search involved in checking for overlapping triangles is minimized by
triangulating the ent i re domain one level a t a time.

INTRODUCTION

A paper on fronts propagating with curvature-dependent speed by Osher and Sethian
(Ref. 6) has motivated us t o research the possibility of applying the theory of propagating f ronts
t o grid generation. While this theory has a potential t o be used for generating structured grids,
powerful and well-tested methods already exist t o tackle tha t problem. However, generating
the appropriate unstructured mesh for use with finite element or finite difference methods is
still a difficult s tep given the f a c t tha t the success of the method depends largely on a cor rec t
discretization of the domain. Several ideas and practical algorithms have been proposed in t h e
past (Ref. 2-5,7); however, this techniuqe is radically different from all of them in several ways.

The idea underlying the grid generation procedure presented comes from t h e relationship
between grid levels and fronts propagating with curvature-dependent speed. The front a t the
next t i m e level corresponds t o the next grid level and satisfies al l t h e requirements generally
imposed on a well-generated grid. The equation of motion for a front propagating with
curvature-dependent speed is an initial-value Hamilton-Jacobi equation with a right-hand side
t h a t depends on curvature effects. The surface is viewed as a level s e t of the solution t o this
equation which, a s i t evolves in time, yields a different level s e t and thus, t h e next grid level.

While this method will work with any consistent initialization of t h e Hamilton-Jacobi vari-
able, by carefully choosing t h e initial condition, the equation may not have t o be solved. As will
be shown later , setting the Hamilton-Jacobi variable t o a function of the distance from a point
in the computational domain t o the initial surface, (i,e., geometry), results in a solution t o t h e
equation with no diffusion term. That is, the level se t corresponding t o a particular value is
used a s a grid level and, by repeatedly using a contour-plotter-like search algorithm, a l l the grid
levels a r e readily obtained.

To accurately match prescribed outer boundaries of the domain, they a r e t r ea ted t h e same
way a s t h e geometry: they will be represented by another front tha t also moves, but inward.
The strategy for triangulation is based on a "level-by-level" principle which assumes t h a t al l
curves obtained from t h e contour plotter a r e closed curves (loops).

I. EQUATIONS OF MOTION

Some theore t ica l resul ts will now be presented in ant icipat ion of our l a t e r discussion of t h e
a c t u a l grid genera t ion scheme. Given a simple, closed, smooth initial cu rve y(0) in R2 (Ref. 6),
l e t y(t), t E [O,m) be a one-parameter family of curves representing t h e grid levels. The y(t)
cu rves a r e gene ra t ed by propagatin t h e initial curve normal t o itself wi th speed F = F(K),
where K is t h e curvature. Le t X(s,t 7 = (x(s,t), y(s,t)) be t h e position vec tor t h a t pa rame t r i ze s
y(t) by s, 0 s s < S, X(0,t) = X(S,t). By convention, t he interior is on t h e l e f t in t h e d i rec t ion of
increasing s, resulting in a counter-clockwise orientat ion of y. The equations of motion c a n now
be w r i t t e n as:

wi th t h e ini t ial condition X(s,O) = y(0), s€[O,S] given. The formula fo r t h e cu rva tu re i s

With t = f(x,y), K becomes

As shown in Ref . 6, t h e function f sa t i s f ies

if t h e c u r v e y s t ays smooth and nonintersecting.

Using these fac ts , t he system (1.1) c a n now be transformed into a second order Hamilton-
J acob i equation. L e t +(x,y,t) be a Lipschitz continuous function such t h a t +(x,y,O) > 1 inside t h e
closed cu rve y, +(x,y,O) < 1 outside y, and +(x,y,O) = 1 on y. We may then wr i t e

which, using Eq. (1.3) implies

In general, t h e curve could propagate inward or outward, but keeping grid generation in mind,
choose the direction of propagation t o be outward, thus obtaining

2 2 1 1 2
with H(v+) = -(I$ + 4) , which is now a Hamilton-Jacobi equation in 4 where x Y

A f t e r solving for 4 in t ime, t h e position of the propagating curve a t t ime t can be obtained by
looking for t h e locations where +(x,y,t) = I. By appropriately choosing t h e speed function F, the
smoothness of the successive curves can be controlled a s well.

2. INITIAL CONDITIONS

One simple and, a s it will turn out, very useful choice for initializing 4 is

where d(X; y) is the distance from point X = (x,y) t o the curve y, and t h e "t" sign is chosen fo r
points inside t h e curve ~ (0) and the It-" sign is chosen for the points outside t h e curve. Thus, 4
will b e exact ly one for points lying on ~ (0) . We shall t e rm the initialization (2.1) a s t h e distance
function.

Proposition: The level curve of the distance function a t a level do is precisely t h e level
curve of a solution 4 t o Eq. (1.4) with F(K) = C tha t corresponds t o 4 = 1.

Proof: F(K) = C, a constant speed function, implies tha t every point on t h e initial curve is
moving normal t o itself with the same speed; hence, all of them cover a n equal distance 6 in
t i m e T. Thus, every point on t h e new curve Y(T) will be 6 away from the original cu rve v(0),
where

4(xo,yo,0) = 1 fo r ~ (0) = {(xo,yo)),

and

4(xl,y ,,TI = 1 fo r Y(T) = {(xl,y

y (~) would therefore correspond t o one level curve of t h e distance function, i.e.,

This completes the proof.

Applying this result t o grid level generation for unstructured mesh where t h e speed
function F is constant, we note tha t no t ime integration of Eq. (1.4) is needed. Using the
distance function, the grid levels a re instantly obtained by simply specifying a s e t of values and
then searching for t h e locations where the grid function (our Hamilton-Jacobi variable +
initialized by Eq. (2.1)) is equal t o those values.

3. MESH GENERATION ALGORITHM

Using the above preliminary analysis, we have developed an algorithm tha t generates the
nodes and triangulates between them one level a t a t ime, also providing for arbi t rary clustering
of the triangles by modifying t h e distance function described in the previous section.

3.1 Grid Function

Because of t h e necessity of a grid function, the f irst s t e p is t o se t up the computational domain
which is a rectangular domain covering t h e ent i re region t o be triangulated. This region will
then be discretized as a cartesian grid, with equal spacing in both the x and y directions. Since
this is merely a n intermediate step, we keep this overlaid grid a s simple and coarse a s possible.
Typically, the grid spacing will be greater or equal t o the minimum side required for t h e
unstructured elements t o be generated.

To each point of this computational grid, we assign a grid function initialized a s prescribed by
Eq. (2.1). The spacing of t h e computational grid should be fine enough t o resolve t h e sharp
corners and t h e interior openings of the inner and outer boundaries. The boundaries a r e
prescribed by t h e user in t h e form of patches, where t h e program has the built-in capability of
point redistribution within each patch. The nodes of t h e interior boundaries a r e entered in
counter-clockwise order, while t h e nodes of the exterior boundary are entered in clockwise
order. All the curves representing t h e boundaries a r e assumed t o be closed loops, with the
possibility of several inner loops, corresponding t o multiply connected domains (Fig. 1). For our
example of Fig. 1, a contour plot of the grid function over the region of interest is i l lustrated in
Fig. 2.

3.2 Generation of Interior Nodes

For each grid level, using a contour-plotter-like algorithm, we search for t h e locations in t h e
computational domain, where t h e grid function matches a prescribed value. This value will
obviously be less than one, and will depend on the nodal density and current grid level. I t is
important tha t the contour algorithm follows the contour levels in a continuous fashion, thus
yielding closed curves. Simultaneously with following these contour curves, t h e nodes a r e
generated as well by simply recording the coordinates of equally (or nonequally for varying
nodal densities) spaced points along t h e curves. Once two complete adjacent contour levels a r e
obtained with t h e corresponding points, no more points a r e generated, until t h e triangulation of
this s e t of "ribbons" is complete (Figs. 3 and 4). This inherent topological s t ructure of t h e nodes
is a main advantage of t h e method, since i t greatly reduces the search t ime necessary t o form
the best triangles.

Fig. 1

Boundary of t h e domain t o be
triangulated.

Fig. 3

Triangulation in progress in the
f irst subregion: between the initial
curves and t h e first level set.

Fig. 2

Contour level curves of t h e grid
function between 0 and 1

Fig. 4

Triangulation in progress in the
second subregion: between the f i rs t
and second level sets.

3.3 Forming Triangular Elements

Once two adjacent contour levels a re known, the triangulation in the region enclosed by them is
relatively straightforward. The algorithm that connects the nodes t o form triangular e lements
has t h e following major steps:

1. Choose an initial "base" AB by connecting two adjacent nodes A and B on one of t h e
contour loops t h a t corresponds t o a higher contour level,

2. For each triangle t o be formed do:
2a. Using t h e current base AB a s t h e base of t h e triangle, choose t h e third vertex C

such t h a t t h e resulting triangle will, in some sense, be optimal. The cri terion
used will be elaborated later.

2b. Update the array tha t contains the sides, with information about the newly
created triangle, a s well a s t h e array tha t contains the elements (triangles).

2c. Choose a new base AB from one of t h e two newly created sides AC or BC of t h e
latest element, and if t h e other side does not belong t o a contour loop, enqueue
i t for la ter use. If no more sides a r e available as eligible bases, stop.
Otherwise go back t o s t ep 2a.

Criterion for determining ver tex C:

The base AB is a directed vector, and the third vertex C will only be chosen from points t o i t s
right. All those nodes tha t belong t o t h e contour loops enclosing our current region of in teres t
a r e considered. After analyzing t h e cri teria proposed by Cavendish (Ref. 2) and Lo (Ref. 3), we
found t h a t those a r e unnecessarily complicated and t ime consuming. Given t h e special sett ing
of our formulation, t h e following choice of node C guarantees optimal triangulation (Fig. 5):

choose C so tha t the norm m a x (l ~ C 1 , IBcI) is minimized over al l C tha t lie t o t h e right of
AB.

,BEST CHOICE OF C

Fig. 5 Criterion for choosing the "bestw third vertex C for triangle ABC.

Once t h e "best" C is selected, we must ensure tha t it indeed yields a triangle t h a t will not
overlap any other existing triangles. In practice, this is done by checking if any of t h e existing
sides would partly or entirely lie within triangle ABC. If this happens, this choice of C is

marked and thrown away, and the same criterion is used t o select a new C from t h e remaining
available nodes. Once again, the f a c t tha t only a relatively small number of nodes a r e
considered in t h e checking routine greatly reduces the computational t ime required in t h e
search.

Note t h a t this triangulation scheme is indeed a "greedy algorithm" in tha t i t looks only one s t e p
ahead and only t r ies t o c rea te the best next triangle without weighing t h e impact of this choice
on later choices. However, because connecting t h e nodes is very much a local process, t h e r e
a r e typically only two or three good choices a t each step, hence they cannot result in radically
different triangulations. In fact , because of the regular spacing of the nodes lying on contour
loops, only about I% of t h e best C's ge t eliminated due t o overlapping.

Once the current region of interest is triangulated, t h e program obtains the next s e t of nodes
(step 3.3 above) which, in turn, will define the next region of interest. Steps 3.2 and 3.3 follow
each other until t h e whole domain is covered. During the above triangulation process, informa-
tion about neighboring elements and connected nodes is being stored a s well, which could be
useful input t o some flow solvers. The ent i re triangulated domain is shown in Fig. 6.

Fig. 6 The entire triangulated region before smoothing.

3.4 Smoothing

Once t h e whole domain is triangulated, t o further regularize the elements, we apply a very
simple and effect ive smoothing algorithm (suggested by Cavendish in Ref. 2). This process
consists of replacing the coordinates of each node by the average of the coordinates of those
surrounding nodes tha t i t is connected t o by a side. That is, each node is replaced by t h e
centroid of t h e surrounding polygon. Since this algorithm follows the order in which t h e nodes
were generated, at each step, the most updated coordinates a r e used. To acce le ra te
convergence, we suggest tha t at each smoothing cycle the order is reversed, hence, propagating
the smoothing in the opposite direction. Generally, two smoothing cycles result in tr iangles
sufficiently close t o a satisfactory se t of nodes. The final, smoothed triangulated domain a f t e r
two smoothing steps is shown in Fig. 7.

Fig. 7 Triangulated region a f te r two cycles of smoothing.

4. CLUSTERING OF NODES NEAR BOUNDARY CURVES

T o achieve varying nodal densities within the computational domain, we use t h e grid
function described earlier. Modifying t h e formula used in Eq. (2.11, the grid function will not be
a function linearly decreasing with t h e distance from the boundary curves, instead, an average
of decreasing exponential functions of distances from each boundary curve. The boundaries a r e
en te red a s patches, and each patch has a clustering factor ci associated with it. The grid
function at each point will then be divided by a weighted average of al l t h e cits. That is:

where n i E Ciwjk
i =l a = j k n

'jk i =l

and

Here n is the to ta l number of patches, +.k is t h e grid function a t grid point (j,k), yi(0) is t h e
notation used for t h e ith patch representi& t h e geometry or outer boundary, and b is a scalin
factor dependent on t h e dimensions of t h e whole domain. I t is c lear from Eqs. (4.2) and (4.3 5
t h a t the scaling used in Eq. (4.1) is very heavily dependent on geometry patches close t o the
point (j,k), while t h e influence of every other patch is relatively small and it diminishes

exponentially as t h e distance t o tha t patch increases. Averages must be taken t o ensure a
smooth grid function so t h e contour algorithm will work. Figure 8 illustrates our initial example
with the ra t io of t h e largest and smallest cells being LO (that is, rnax (c i) / min (c i) = 10)

l < i <n k i l n
before smoothing, while t h e e f fec t of s m ~ o t h i n g (af ter two cycles) is shown in Fig. 9.

Fig. 8 Fig. 9

Clustered triangular mesh around the Clustered mesh of Fig. 8 a f t e r two
two inner circles before smoothing. cycles of smoothing.

3. THE GENERAL PROGRAM

A flow char t containing the main building blocks of the program is now presented t o
i l lustrate t h e logic of the algorithm.

I. Input t h e geometry and outer boundary data, and clustering parameters for the
patches.

2. Redistribute points along geometry and outer boundary loops according t o required
clustering.

3. Initialize grid function over computational domain
4. Until the whole domain is covered, do:

4a. Find contour level for next grid function value; simultaneously generate nodes
on t h e obtained loops.

4b. Connect nodes in subregion enclosed by two se t s of contour loops.

5. Do twice:

5a. Smooth t h e entire region.

6 . FURTHER EXAMPLES

The example used thus f a r is relat ively simple; t o i l lus t ra te how this me thod t ack le s very
complex, mult i -connected geometries , several examples of d i f fe rent cha rac t e r i s t i c s follow.

Figure 10 shows t h e word "GRID" with equally spaced mesh around it. The s a m e g e o m e t r y
is used in Fig. 1 1, where we have a c lus tered mesh instead, with t h e r a t io of t h e l a rges t and
smal les t e l e m e n t s being 10. Note t h e exponentially decaying influence of t h e c lus ter ing f a c t o r
assoc ia ted with e a c h geometry segment as t h e distance t o t hem increases throughout t h e
domain.

Fig. 10 Fig. 1 I

Smoothed, equally spaced mesh around t h e Smoothed, c lus tered mesh around t h e
word "GRID". word "GRID".

Figure 12 shows a grid for t h e "bomb-bay" problem, where heavy cluster ing is requi red in
t h e cav i ty a r e a and nea r t h e wall, while a qui te course grid i s suff icient as t h e f a r f ield i s
approached. Figure 13 shows a blowup of t h e cavi ty area.

7. CONCLUSIONS

A new, two-dimensional unstructured grid genera tor has been developed using t h e d i s t ance
function t o obta in t h e interior nodes for a prescribed, possibly mult iconnected domain, where
t h e nodal densi ty c a n vary throughout t h e domain. The algori thm e l iminates t h e need t o break
up t h e domain in to severa l subdomains and tr iangulate e a c h of those subdomains separa te ly .
Dense cluster ing of nodes is made possible with t h e densi ty of t h e nodes varying smoothly.

The na tura l quest ion arises a s t o whether this method could have a n extens ion t o t h r e e
dimensions. The preliminary analysis given at t h e beginning of this paper convinces us t h a t t h e
theory of cu rves moving with curvature-dependent speed c a n b e easily general ized t o su r f aces

Fig. 1 2

Clus tered mesh in t h e cavi ty a r e a of t h e
bomb-bay problem.

Fig. 13

Close-up of t h e bomb-bay mesh of
Fig. 12.

in a n n-dimensional space. Similarly, t he proposition proved ear l ie r a l so holds for any n-
dimensional space; hence, t h e distance function c a n be used in t h e same way in t h r e e dimen-
sions. Even obtaining t h e isosurfaces (which correspond t o contour curves in t w o dimensions),
representing t h e d i f f e ren t grid levels, is relat ively s traightforward. However, t o pick up the
nodes on t h e s e isosurfaces according t o a prescribed distribution function is t h e s a m e problem
as surface-gridding, which c a n b e a complicated and time-consuming problem by itself. Once
t h e nodes a r e known, forming the te t rahedra l e lements would b e a process s imilar t o t h a t of
t r iangulat ion described above, with search done on a level-by-level basis again. The s a m e
concep t s would apply in t h r e e dimensions, with f aces replacing sides, and in tersec t ion of planar
sect ions replacing intersect ion of line segments. The cr i te r ion for choosing t h e bes t
t e t r ahedron could be applied in i ts present form a s well; we simply choose t h e fou r th point of a
t e t r ahedron t o minimize t h e maximum of t he t h r e e edges t o be crea ted . The t h r e e d in~ens iona l
background grid, however, which has t o resolve t h e smal les t e lement , may have t o b e qui te
dense, thus c rea t ing a new, and perhaps unsurpassable bott leneck. Further resul ts for extending
t h e method t o t h r e e dimensions will be repor ted in fu tu re work.

ACKNOWLEDGEMENTS

We would like t o thank Stanley Osher, Kuo-Yen Szerna and Chung-Lung C h e n fo r their
cons t ruc t ive comment s and help in writing this paper.

REFERENCES

I. Barles, G., "Remarks on a Flame Propagation Model," Inst i tut d e Reche rche e n
Informatique et Automatique (INRIA), Sophia Antipolis, France , Repor t No. 464, 1985.

2. Cavendish, J.C., "Automatic Triangulation of Arbitrary Planar Domains for t h e Fin i te
Element Method," Internat ional Journal for Numerical Methods in Engineering, Vol. 8, 679-
696 (1974).

3. Lo S.H., "A New Mesh Generat ion Scheme for Arbitrary Planar Domains," Internat ional
Journal for Numerical Methods in Engineering, Vol. 21, 1403-1426 (1983).

4. Lohner, R., "Some Useful Da ta S t ruc tures for t he Generat ion of Unst ruc tured Grids,"
Communicat ions in Applied Numerical Methods, Vol. 4, No. 1, 123-135 (1988).

5. Lohner, R. and Parikh, P., "Generation of Three-Dimensional Unstructured Grids by the
Advancing-Front Method,'' International Journal for Numerical Methods in Fluids, Vol. 8,
NO. 10, 1135-1149 (1988).

6 . Osher, S. and Sethian, J.A., "Fronts Propagating with Curvature-Dependent Speed:
Algorithms Based on Hamilton-Jacobi Formulations," Journal of Computational Physics,
Vol. 79, No. 1, November 1988.

7. Yerry, M.A. and Shephard, M.S., "Automatic Three-Dimensional Mesh Generation by the
Modified-Octree Technique," International Journal for Numerical Methods in Engineering,
Vol. 20, 1965-1990 (1984).

