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ABSTRACT 

A fully explicit two-dimensional flow solver, based on a four-stage Runge-Kutta scheme, has been 

developed and utilized to predict two-dimensional viscous flow through turbomachinery cascades for 

which experimental data is available. The formulation is applied to the density averaged Navier-Stokes 

equations. Several features of the technique improve the ability of the code to predict high Reynolds 

number flows on highly stretched grids. These include a low Reynolds number compressible form of 
the k-E turbulence model, anisotropic scaling of artificial dissipation terms and locally varying timestep 

evaluation based on hyperbolic and parabolic stability considerations. Comparisons between 

computation and experiment are presented for both a supersonic and a low-subsonic compressor 

cascade. These results indicate that the code is capable of predicting steady two-dimensional viscous 

cascade flows over a wide range of Mach numbers in reasonable computation times. 

NOMENCLATURE 

Symbols Used 
speed of sound 

chord length 

specific heat at constant pressure 
skin friction coefficient 

pressure coefficient 

internd energy per unit mass 



t o ~ l  energy per unit mass (I- e -r- V2/2) 

flux vectors 

contravariant velocity componenrs 

jacobian of curvilinear transformation 

turbulent kinetic energy 

turbulence length scale 

blade normal and tangential coordinates 
static pressure 

Prandtl number 

cartesian components of heat transfer rate vector 

primary transport variable vector 

residual vector 

source term vector 

pitch length 

static temperature 
turbulence intensity 

cartesian velocity components 

magnitude of total velocity 

cartesian coordinates 
exponent in artificial dissipation scaling function 

incidence and deviation angles 
Kronecka delta 

655559 6,,,, central differencing operators 
displacement and momentum thickness 

specific heat ratio 

local timestep 
isotropic turbulent kinetic energy dissipation rate 

artificial dissipation constants 
molecular and turbulent viscosities 

pressure monitoring parameter for d i c i a l  dissipation 
curvilinear coordinates 

density 

artificial dissipation weighting functions 
cartesian components of stress tensor 

total pressure loss coefficient 



Superscripts and Subscripts Used 

c convective 

i, j grid indices in streamwise and pitchwise directions respectively 
1 laminar 

m cascade mean value (average of inlet and outlet quantities) 

o stagnation 

t turbulent 

v viscous 

w wall 
0 cascade pitchwise direction 
00 inlet freestream 
A 

quantity scaled by metric Jacobian 
I fluctuating quantity in time averaging 
II fluctuating quantity in density averaging 
" 

density averaged quantity 
- 

time averaged quantity 

INTRODUCTION 

Computation of viscous Rows by numerically solving the Navier-Stokes equations has become 

increasingly feasible due in most part to the ever increasing speed and memory of digital computers. 

State of the art CFD codes available today are capable of calculating steady 3-D viscous flows about 

entire vehicles, and even unsteady viscous flows in 3-D turbomachinery stages. However, despite the 

rapid advance towards exploiting the power of computers now available, some serious limitations of 

these codes have yet to be adequately resolved. Surely the most profound of these limitations is the lack 

of accurate, general turbulence models. Secondary to this, but of much concern, is the role of artificial 

dissipation in Navier-Stokes calculations. 

Explicit schemes, such as the Runge-Kutta methods first applied to the solution of the Euler equations 

by Jameson, Schmidt and Twkell offer several appealing characteristics in application to fluid flow 

computations. Such schemes are easily vectorizable, amenable to convergence acceleration techniques, 



and can be extended to unsteady flow computations in a straighrfomard manner. However, because of 

the stiffness associated with the explicit treatment of mnsporl equaeions which conlain large source 

tems, incorporation of higher order rurbulence Elodels, which c o n ~ n  such source tems, has not Been 

popular in explicit flow solvers. 

Often, algebraic eddy viscosity models are used to approximate the apparent stresses in explicit codes. 

These models have little computational overhead and do not adversely affect the stability of the scheme. 

Though very useful in computing attached or slightly separated boundary layer flows, such models have 

well recognized drawbacks in the computation of complex flows where multiple length scales exist and 
where the transport of turbulent length scales is important. Though the k-E turbulence model also has 

major deficiencies [see Speziale2, Lakshminarayana3 for example], it does provide the transport of 

length scale which is computed based on local fluid and turbulence properties. The model has been 

shown to provide better predictions than algebraic models for 2-D flow with adverse pressure gradient 

[Kirtley and ~akshminarayana~] and for 2-D shock-boundary layer flow on curved surfaces [Degrez and 

VanDrommeS]. It therefore seemed worthwhile' to try to use it to provide an improved engineering 

approximation to the complex cascade flowfields investigated herein. 

Implicit flow solvers have been used for well over a decade to compute compressible turbulent flows 
using various forms of the k-E turbulence model. However, there have been only a few attempts to 

incorporate the model into an explicit solution procedure. In these cases, the stiffness problems 
associated with explicit treatment of the k-E model have been circumvented by incorporating serni- 

implicit treatment of the source terms [Liu6], implementation of an algebraic inner layer model coupled to 
a high Reynolds number form of the k-E model in the outer layer [Liu6], or by using wall functions to 

model, rather than to resolve, the near wall region where source terms and gkd aspect ratio can be large 

[Grasso and Speziale7, ~ l i a s s o n ~ ,  Holmes and Connellg]. 

The use of higher order turbulence models, and the precise control of levels of artificial dissipation, can 

improve the accuracy of high Reynolds number flow computations about complex configurations. The 

main thrust of this investigation is the incorporation of a low Reynolds number compressible form of the 
k-E turbulence model into a purely explicit scheme, and the application of the technique to flows across a 

wide range of Mach numbers. In addition to this, some recently published improvements in controlling 

artificial dissipation levels in the computation of viscous flows on highly stretchd grids are tested and 

incorporated. Two complex cascade flows are computed, for supersonic and low subsonic freestream 

conditions. For the supersonic cascade, isentropic blade Mach number, shock-bun- layer smcmre 

and wake loss profiles are compared with experimentally measured values. hessure dis~but ion and 

boundary layer profiles of velocity and turhlent kinetic energy are compared with data for the subsonic 



cascade. The results ltre shown to be quite g o d  within the accuracy of the mrbulence m d e l  and 

exp"unkr?en+ta data used. 

GOVERNING EQUATIONS AND TURBULENCE MODEL 

In the present development, the density weighted averaging attributed to Favrelo is used. This 

decomposition has advantages in flow computations with variable density [see Jonesll]. Specifically, 

the averaged governing equations are of simpler form and the physical interpretation of terms in the 

equations is clearer than when conventional time averaging is used. Reynolds (time) averaging, defined 

for a scalar, @, as 

is used for pressure, density, molecular stress tensor and molecular heat flux vector. Favre (density) 
averaging, defined for scalar, @, as 

is used for velocity components, internal energy, turbulent kinetic energy and turbulent energy 

dissipation rate. 

The resulting density averaged two-dimensional Navier-Stokes equations can be written in conservative 

form in generalized body fitted coordinates as : 

where 



The metric terms based on a standard coordinate transformation (x,y) --> ( 5 , ~ )  are given by 

The Jacobian, J, at each gridpoint is equal to l/(average area of adjacent cells). The contravariant 

velocity components are given by 

Incorporating an eddy viscosity formulation, the effective mess tensor and the effective heat flux vector 

are given in cartesian coordinates by : 



In the derivation of Equations 4 and 7, it has been assumed that the time averaged molecular stress 

tensor and the molecular heat flux vector are equivalent to their density averaged values. This 

approximation should be a good one since, compared to turbulent diffusion, molecular diffusion is only 

significant near solid boundaries, where local Mach number and hence density fluctuations are small. 

The apparent heat flux vector has been modelled by incorporating the gradient diffusion hypothesis. The 
laminar Prandtl number, Prl, is set to 0.72 for air. The turbulent Prandtl number, Pr,, is set to the 

standard value of 0.90. 

In the present work, the density averaged k-E equations are numerically decoupled from the density 

averaged mean flow equations. Specifically, at each iteration, the four mean flow equations are updated 

using "frozen" values of eddy viscosity and turbulent kinetic energy from the previous iteration. 
Likewise, the coupled k-E equations are then updated using the "frozen" mean flow quantities just 

computed. 

Low Reynolds number forms of the compressible k-E equations can be written in the same form as 

Equation 3 where the scaled variable vectors become : 

+ -  vn .v ipqv,  . v q q  J ,  3; 
J [ I  [ v  v v'ig 

a t  i ) ,  



where the production term P is given in cartesian coordinates as 

The mass averaged turbulent kinetic energy and isotropic component of turbulent kinetic energy 

dissipation rate are defined as 

The eddy viscosity is obtained from 

The particular form of low Reynolds number model used in the code was originally devised by Chien 

for incompressible flow12. Compressible forms have been given by Coakley13 and more recently by 

Nicholsl4. For this model, the constants and functions in Equations 8 through 11 are given by 



Following Hobsonls, the blade normal coordinate, n, in Equations 12, is replaced by absolute distance 

from leading and trailing edge, upstream and downstream of the passage respectively. 

The transport variable, E, used in this model is the isotropic component of the dissipation rate, though 

the E equation is derived for the total dissipation rate. As discussed by Jones16, at high local Reynolds 

numbers, the anisotropic component of dissipation is negligible, so the model remains valid in these 

regions. Near a solid wall, however, the anisotropic dissipation component is not negligible, and the 
isotropic component, E, goes to zero. The term, D, accounts for the non-zero value of total dissipation 

near the wall, so that the model also remains valid near solid walls and retains the convenience of 

specifying the E = 0 boundary condition there. . 

It should be noted, that although the k-E equations have been cast in compressible form, the modelling 

assumptions invoked here are essentially those for incompressible flow. Specifically, terms in the 

unmodelled k and E equations which contain density fluctuation terms, p', are neglected. Also, 

pressure diffusion terms are neglected. 

No thin layer approximations are made in either the mean flow or turbulence transport equations. 

NUMERICAL SOLUTION 

Discretization 

The H-grid flow solver used in the present studies incorporates a standard 4-stage Runge-Kutta scheme 

as first applied to Euler calculations by Jameson, Schmidt and Turkell, 



Here, the residual, g, is defined according to 

The scheme is fourth order accurate in time. Second order accurate central differences are used to 

discretize the derivatives in Equation 14. Viscous and source terms are evaluated prior to the first stage, 

convective terms are computed at every stage. The stability region for the scheme is shown in Figure 1. 

4.0 

A 

1. Stability region for standard 4-stage scheme. 

The curve in Figure 1 represents the contour Ig(z)l = 1.0, where z is the complex fourier symbol of a 

discretized scalar convection-diffusion equation at a particular wavenumber, and g is the amplification 

factor arising from a 1-D scalar VonNeumann linear stability analysis of the given scheme applied to 

this discretized equation. 



$he Wferencing molecule used to discretize the flux vectors in computational space is shown in Figure 

2. Flux vectors, ^E and F, are computed at mid-points between nodes. For viscous fluxes, this scheme 

incorporates information fiom all nine points in the differencing molecule. This approach requires three 

times the storage for meaic terms than if viscous fluxes were computed on the grid vertices themselves 

(13 point molecule). However, the truncation error associated with discretizing the viscous fluxes on a 
uniform cartesian mesh using a thirteen point scheme is O(4Ax2) + 0(4Ay2) as compared to O(Ax2) + 
O(Ay2) for the nine point molecule, consistent with the truncation error of the convective fluxes. It is 

also easier to apply periodic and wall-function boundary conditions with the more compact differencing 

molecule. 

2. Computational molecule and index convention for the present scheme. Flux vectors 

computed at midpoints (marked x) between vemces. 

To accelerate the solution to steady state, locally varying timesteps are computed based on a linear 

stability analysis of the discretized Navier-Stokes equations. The resulting timestep specification is 

given as : 

173 



Here, IMAG and REAL are input parameters corresponding to operational CFX and VonNeumann 

numbers chosen to ensure stability (see Figure 1). A similar expression is given by Martinelli 17. The 

first term in the brackets in Equation 15 arises from the convection operators, the latter term corresponds 

to physical viscous terms. Note that for the present uncoupled approach, the turbulent kinetic energy 

does not appear in the stablility expressions. 

For large Reynolds number flows, the H-grids used must be highly stretched in the pitchwise direction, 
in order to adequately resolve near-wall gradients; Consequently, the metric terms, qx, qy in Equation 

15 can become very large near the J = 1 and J = NJ boundaries. Also, when using a two equation 
turbulence model, as in the present study, the eddy viscosity, p,, can be very large near the J = 1 and 

J = NJ boundaries, upstream and downstream of the blades, where wall damping effects are negligible 

This combination of large eddy viscosity and grid metrics causes the viscous stability term to dominate 

in these regions, and it has been found that it is crucial to include the influence of these terms in 

determining a stable local timestep. For the supersonic and subsonic cascade test cases computed herein, 
At, < At, for 40.0% and 7.5 % of the grid points at convergence, respectively. 

Even for the computation of steady, one-dimensional, inviscid flows, the use of highly stretched grids 

gives rise to significantly reduced convergence rates in explicit schemes. This affect arises due to 

characteristic propagation speed in the streamwise direction. In two dimensions an analagous situation 

arises when the computational mesh is clustaed in one curvilinear coordinate direction to resolve regions 

where flowfield gradients are large. Specifically, the maximum local stable timestep in regions where m the mesh is highly clustered in the q direction, is inversely proportional to the metric term, Vq ' Vq , 

which can be very large. It is the nature of this inviscid effect which often allows one to use a local 

timestep based solely on hviscid considerations, for viscous flow computations. 

The k and E equations each contain non-linear production and destruction source terms which can be 

very large near solid boundaries. According to linear stability theory, such terns can allso severely 

reduce convergence rates if a purely explicit scheme is used to discretize the equations. It was found that 



by incorporating a coqosi te  viscous-inviscid tirnestep specificafion, the smbility restpiceioms on the k-E 

solution are not much more severe rl?m the resb;ictions on the mean flew quations discussed abve.  In 

fact, it was possible to compute high Reynolds number flows with this turbulence model using a purely 
explicit treatment in seasonable computation times. A local timestep for the k-E equations of 

approximately 114 of the stable mean flow timestep was satisfactory for the cascade flows computed 

herein. Converged solutions were thereby obtained in computation times approximately twice those of 

solutions using an algebraic eddy viscosity model. This is illustrated for turbulent flat plate flow 

computations presented in the Results section. 

Artificial Dissipation 

Central difference schemes applied to hyperbolic equations that do not contain any inherent dissipation 

require the addition of artificial dissipation, to damp high wave number disturbances. These 

disturbances can be introduced into linear problems through inconsistent boundary condition treatment 

or machine roundoff error. In non-linear problems, such disturbances can be introduced through 

aliasing of sub-grid scale non-linear disturbances, to lower, resolvable wave numbers. Even for viscous 

flow calculations, artificial dissipation must be introduced into the scheme because the physical viscous 

terms are only effective in damping frequencies at higher wave numbers than can be resolved on 

practical grids. 

In the present w&, artificial dissipation is added to the discretized mean flow equations as 

Here, D(Q) represents a mixed 2nd and 4th order nonconservative artificial dissipation operator similar 

to that devised by Jameson, Schmidt and Turkell. 

The fourth order operators are included to damp high wave number errors and the second order 

operators are included to improve shock capturing. 



As pointed out by IPullim1*, d f i c i a l  dissipation terns should operate on physical values of the 

flowfield variables and as such must h appropriately scaled 5y the metric Jacobian. Artificial 

dissipation terms must also be scaled by the local timestep to ensure that the steady state solution is 

independent of the timestep. In addition to the above consistency requirements on the dissipation 

scaling, levels of dissipation should always be reduced to levels adequate to stabilize a scheme without 

altering the accuracy of the solution. For the computation of viscous flows on highly stretched grids, 

this latter requirement is a sensitive matter. 

For high Reynolds number flows, very highly stretched grids must be used to resolve body normal 
gradients in near wall regions. If the artificial dissipation terms in both the 6 and q directions are scaled 

by the local timestep, on grids which are highly stretched in the q direction, excessive dissipation is 

introduced in the 6 direction. This effect is discussed by Caughey and Turkellg and Swanson and 

Turke120. This excessive dissipation may reduce accuracy and convergence rates in viscous flow 

computations. A recently devised eigenvalue scaling of the artificial dissipation terms, due to 

Martinelli17 alleviates this problem. Since the present technique is primarily used to compute viscous 

flows on highly stretched grids, anisotropic dissipation scaling factors similar to those used by Martinelli 
are incorporated. S25, S2,,, Sq, S4,, in Equation 17 are defined 

Here, AtCS, AtCtl, are timesteps corresponding to unit CFL limit for the inviscid one-dimensional 

problem in each direction, 

The choice of unit CFL scaling in the numerator of Equation 19 ensures that the steady state solution will 
be independent of the operational CFL limit used to compute local timesteps. If a = 1, Equation 18 

reduces to standard isotropic scaling. As mentioned above, this introduces excessive dissipation in the { 
direction in regions where the grid is stretched in the q direction. If a = 0, the scaling becomes purely 

anisotropic. If the grid is very highly stretched in the q direction, such scaling may not provide enough 

dissipation in the 5 direction, resulting in reduced convergence rates. For intermediate values of a 



between 112 and 213, Martinelli17, Swanson and Turkel20 and Radespiel and Swanson" have shown 

good convergence rates for Euler and Nairier-Stokes calculatiofis on highly clustered grids. 

Another scaling issue is important in the computation of viscous flows. All of the mean flow equations 

with the exception of the continuity equation contain physical dissipation terms. Also, near solid 

boundaries, physical dissipation terms in the energy equation are quite small, in the absence of heat 

transfer effects. However, near solid boundaries, the viscous fluxes in the momentum are quite large 

and are themselves adequate to provide smoothing. In these same regions, second and fourth 

derivatives of the transport variables can be quite large leading to large values of artificial dissipation 

there. This well recognized phenomenon [see Davis, Ni and Carter22 and Swanson and Turkel 20 for 

instance] gives rise to very large nonphysical values of total dissipation in the near wall region. Often 

some sort of geometric decay function is used to control the levels of artificial dissipation in these 

regions to reduce the magnitude of numerical to physical smoothing to acceptable levels. In the present 

work, the scaling functions in Equation 18 are multiplied by a normalized square of the local velocity, 
V2/V2,, for the momentum equations. 

Following Jameson, Schmidt and Turkell, the non-linear weighting functions in Equation 18 are 

determined from 

where the monitoring parameters v, are normalized second derivatives of pressure, 

and 2 114, ~q z 1/64. Expressions similar to Equations 20 and 21 are used in the q direction. When 

shocks are not anticipated in the flowfield, K2 is set equal to zero so that the artificial dissipation added 

to the mean flow is fourth order only. 

To examine the effects of the scalings given, two numerical experiments were conducted. The subsonic 

cascade described below was used as a numerical test bed. The reader is referred to the next section for 

specifics on this flow configuration. 



The first experiment attempted to isolate the influence of eigenvalue scaling on accuracy and 
convergence. The test case was run for five thousand iterations using the following values of a in 

Equation 18 : a .= 1 (standard isotropic scaling), a - 0 (purely anisotropic scaling) and a = 213 

te 3, the convergence histories for the ems me plotted. 

# Iterations 

Figure 3. Convergence histories for various eigenvalue scalings. 

Scaling the dissipation anisotropically does provide an improved convergence rate for this case as 

expected. In addition, purely anisotropic scaling provides somewhat superior convergence rate than the 
weighted scaling (a = 213). This suggests that, for this case, such scaling does not reduce dissipation in 

the 6 direction to the point of destabilizing the solution. The influence of these scalings on accuracy was 

found to be negligible. 



The second expePirnent sought to detect the influence of spurious dissipation levels in near wall , 
boundaries, and to see how the proposed velocity scaling affects solution convergence and accuracy. 

W e n  the ratio of artificial to physical dissipation terms in Equation 16 were compared, it was found that 

for this test case, at convergence, artificial dissipation levels were as high as ten times the physical 

dissipation terms at the first several grid points adjacent to the wall! By incorporating the velocity 

scaling exactly as proposed above, it was possible to reduce the artificial to physical dissipation ratio to 

less than .O1 in the near wall region, except in the immediate vicinity of the leading and trailing edges. 

The convergence rates compared very closely, but as shown in Figure 4, the converged solutions 

showed some discrepancy. 

Figwe 4. Comparison of predicted skin friction coefficient, along the suction surface of the test 

cascade, with and without velocity scaling of the artificial dissipation. 

It is clear from this figure that unnecessary levels of artificial dissipation in boundary layers can affect 

solution accuracy in practical application. 



Both eigenvalue scaling (with a = 2/3) and Imal velwity scaling were used in all coqutations that 

follow. 

It is worth noting, that the dissipation scaling considerations addressed here are especially important 

when a multigrid acceleration scheme is used. Careful tuning of artificial dissipation levels is crucial 

when performing explicit multigrid calculations on highly stretched grids. This is because inadequate or 

excessive dissipation can diminish the high wave number damping properties of the driving scheme 

thereby rendering multigrid acceleration less effective23. 

Lack of adequate grid resolution in the 5 direction just upstream and downstream of the blade edges, 

causes the wall damping function, fp, in Equation 12 to be effective only over two to four grid points in 

this direction. This gives rise to very large streamwise gradients in k and E at the leading and trailing 

edges, which in turn leads to slowly growing oscillations in these variables. It was found necessary to 

smooth these oscillations by incorporating small amounts of second order artificial dissipation in the k 
and E equations in a manner consistent with Equations 16 and 17, with S2! = S2q E 0.002, SY = SdS 

= 0.0. 

Boundary and Initial Conditions 

Along blade surfaces the no-slip condition is imposed upon the velocities, pressure is extrapolated from 

adjacent grid points, and density is computed based on specified wall temperature or heat transfer rate. 

At the inlet, total pressure and total temperature are specified. For subsonic inflow, either inlet flow 
angle or pitchwise velocity are specified, and the R- characteristic is extrapolated along q = constant grid 

lines from the interior of the computational domain. At subsonic outflow boundaries, static pressure is 
specified and velocity components and entropy are extrapolated along q = constant grid lines. Along 

periodic boundaries, cyclic information is used when discretizing derivatives in the q direction. 

Constant values of k and E are imposed at the inflow boundary based on specified freestream turbulence 

intensity and length scale, 



Typically , the freestream. length scale is set between .001 and .O1 times the pitch of the blade passage. 
At the outflow boundary, values of k and E are extrapolated along q =I constant grid lines from the 

interior of the computational domain. Turbulent kinetic energy and isotropic dissipation rate are set to 

zero along solid boundaries, as discussed in the turbulence model section. 

The flowfield is initialized using standard quasi-1D analysis to provide uniform initial velocity profiles 
along each 5 = constant grid line. This gives rise to huge production terms in the k-E equations, and can 

cause solutions to become rapidly unstable. This problem is alleviated by running the code in laminar 

mode for a couple hundred iterations to develop a slight boundary layer, thereby reducing the size of 

these terms. 

RESULTS AND DISCUSSION 

Computational Considerations 

The code has been validated for laminar and turbulent flat plate boundary layer flows, where nearly exact 

agreement with theory and experiment were obtained. In addition, it has been applied to laminar flow 

about a circular arc bump in a channel, as well as to turbulent flow about a similar configuration with a 

heated wall using an algebraic eddy viscosity model. These two model problems had been computed by 

Chirna and Johnsonz and Davis, Ni and Carter22 respectively. The present method yielded nearly exact 

agreement with these two sets of results. Implicit residual smoothing is available to accelerate the 

convergence to steady state of the mean flow. However, successful implementation of implicit 

smoothing for the turbululence transport equations has not been realized. For consistency, then, 

residual smoothing was not used in obtaining any of the proceeding results. 

For turbulent flow calculations, the highly vectorized code executes at 2.8 x CPU seconds / 
(gridpoint * iteration) on the Cray Y-MP 8/32 at the Pittsburgh Supercomputer Center. When an 

algebraic eddy viscosity model is used, the execution rate is 1.7 x CPU seconds / (gridpoint * 
iteration). Since the same near wall resolution is needed for these two models, similar grids must be 

used. Experience with the code has shown that mean density residual converges slightly more slowly 
when using the k-E model, so the total overhead associated with using the higher order model is less 

than a factor of 2.0. 



To iuus~ate  the above considerations, convergence histories are presented here for the prdiction of 

developing turbulent flow over a flat plate. Both the alge'maic eddy viscosity model due to Baldwin and 

Lomax25 and the present two-equation model were used. 

Both cases converged very slowly due to the extremely high aspect ratio of the grid (1.2 x 104 at the 

trailing edge of the plate). The convergence history for the computations is shown in Figure 5. It took 

approximately IOU00 iterations for both calculations to converge to within engineering accuracy (taken to 

be a 4.5 order of magnitude drop in the RMS density residual). Note that the convergence rates are 

similar. This illustrates that it is primarily "inviscid" stablity constraints, and not the stiffness associated 

with large source terms in the turbulence transport equations, which give rise to the slower convergence 

rates which occur when explicit schemes are used to compute turbulent flows on highly stretched 

meshes. 

5000 

# Iterations 

Figure 5. anvergence history for turbulent flat plate boundary layer calculations (solid line = Baldwin 

and Lomax, dashed line = k-E). 



DFVLR PAV-1.5 Supersonic Compressor Cascade 

The first cascade to be investigated is the PAV-1.5 supersonic compressor cascade tested at DFVLR by 

Schreiber26. This pre-compression blade was designed especially to investigate shock-boundary layer 

interaction with separation. At the test freestream Mach number, a standoff leading edge shock forms, 

which gives rise to a separated shock-boundary layer interaction aft of mid chord on the suction surface 

of the adjacent passage. Though the measured absolute inlet Mach number was supersonic, the blade 

row stagger angle was high so the axial component of the inlet velocity was subsonic. This gives rise to 

the "unique incidence" condition wherein there exists a fixed relationship between inlet Mach number 

and inlet flow angle, Beyond a critical Mach number this condition exists and inlet conditions become 

independent of back pressure. This phenomena as well as the complex wave interaction field within the 

passage and shock-boundary-layer interaction provide a challenging test case for both numerical scheme 

and turbulence model. 

The computed case was experimentally tested in air at an inlet Mach number of 1.53 and a maximum 

attainable static pressure ratio of 2.13. The measured axial velocity density ratio of 1.02 indicates that 

the flow was close to two-dimensional. The Reynolds number based on chord was 2.7 x 106. The inlet 

turbulence intensity was measured using a Laser-two-focus (L2F) velocimeter to be no more than 1 %, 

which is the value used in the computations. As mentioned above, the inlet Mach number is supersonic, 

but axial velocity at the inlet to the computational domain is subsonic allowing left running characteristics 

to propagate out of the inlet plane. For this reason, subsonic inlet boundary conditions were specified : 
po = 101325 N/m2, To = 300 K, Vow= 379.5 rn/s2. At the subsonic exit plane the backpressure, p, = 

56500 N/m2, was specified corresponding to the experimentally measured pressure ratio of the cascade, 
p2/p1 = 2.13. 

The 129 x 100 computational mesh used was generated using S o r e n ~ o n ' s ~ ~  GRAPE code, modified by 

G ~ r s k i ~ ~  to generate H-grids, and is shown in Figure 6. The blade normal grid spacing at the wall 

was prescribed as .000011 chord. This yielded values of y+ 5 1 at grid points adjacent to the walls. 

Except in the immediate vicinity of the leading and trailing edges, the suction and pressure surface 

boundary layers had at least 9 grid points with values of y+ 5 20. 



Figure 6. 129 x 100 computational grid for the PAV- 1.5 cascade. 

For clarity, only every other grid line is shown in both 5 and q bections. , 



The convergence history for this computation is shown in Figure 7. It took approxi~ssately 6500 

iterations for this calculation to converge within engineering accuracy as measured by the invariance of 

total number of supersonic gridpoints in the field. This corresponded to approximately 39 minutes of 

CPU time on the Pittsburgh Cray. It was not possible to "cold start" the initialized flowfield at the 

specified pressure ratio, as the code became rapidly unstable when this was attempted. Rather, the back 

pressure had to be increased in a stepwise fashion with iteration (notice "jumps" in convergence at 

iteration 500, 1000,2000), until the experimentally imposed pressure ratio could be specified at iteration 

2000. It is felt that the "unhealthy" convergence history is due in part to the highly clustered grid and 

also to the nearly choked operating condition. 

I NSUP 

## Iterations 

Figure 7. Convergence history for PAV-1.5 cascade computation. 

# Supersonic 

Points 



In Figure 8, a hand rendering of the shock wave pattern deduced from L2F measurements has been 

reproduced from Reference 28, alongside the computed shock wave pattern presented as divergence of 

velocity contours, and Mach number contours. 

Figure 8. Shock wave pattern for PAV - 1.5 cascade. a) Divergence of velocity contours (-300 to 

-4800 by -500 [s-I]). b) Mach number contours (0.9 to 1.5 by .15). In each diagram, the top two 

passages show computed contours. The bottom passage is the shock wave pattern deduced from flow 

visualization and L2F measurements, reproduced from S~hreiber~~.  Stations labelled A-D correspond to 
.25, S O ,  .75 and .90 chord. 



The key feames of the flowfield are evident in this &agam, including the Bow, larnda and passage 

shocks. In both expe~rrtent and conlputation, the b w  shock is seen to impiirge on the suction surface 

boundary layer of the adjacent passage. This gives rise to a lambda shock structure, a rapid thickening 

and separation of the boundary layer, and a Mach reflection which impinges on the pressure surface of 

the same passage. The high pressure ratio operating condition of this test case gives rise to a normal 

passage shock which impinges upstream of midchord on the pressure surface. This feature is also 

evident in both experiment and computation. The computation also shows some evidence of an oblique 

trailing edge shock, typical of supersonic compressor cascades at high operating pressure ratios. 

In Figure 9, the predicted isentropic blade surface Mach number is plotted against the experimental 

values. 

Figure 9. knoopic blade surface Mach numbers for PAV-1.5 cascade computation. Calculated (solid 

line) and experimental values (symbols). 



The calculation and experiment show fairly gwd agreement. The features labelled A, B and C in Figure 

9 correspond to local compression regions where the bow shock impinges on the suction sudace, the 

Mach reflection impinges on the pressure surface and the passage shock impinges on the pressure 

surface. 

In Figure 10, the computed total pressure ratio is compared with traverse probe measurements at an axial 

location 0.09 chord downstream of the cascade exit plane. 

pressure surface suction surface 

I 

-n/t 
Figure 10. Total pressure ratio profile 0.09 chord downstream of trailing edge for PAV-1.5 cascade 

computation. Calculated (solid line) and experimental values (symbols). 

The wake profile and loss distribution is reasonably well predicted, with the losses associated with the 

lambda shock system underpredicted. The wake centerline total pressure ratio is predicted reasonably 

well considering the difficulty in measurement at this location. It is noted that the results presented are 

not fully grid independent. Modifications in the pitchwise grid clustering near midpassage gave rise to 



as much as a 2% chord difference in the impingement location of the bow shock on the suction surface 

and a 5% chord difference in the location of the passage shock. The loss distribution zft cf the blade 

was hardly affected, but the blade surface Mach number distributions varied noticably. 

In Figure 11, computed velocity and turbulence intensity profiles at four locations on the suction and 

pressure surfaces are presented. 

Figure 11. Local velocity and turbulence intensity profiles at four chord locations along the suction 

(a and c) and pressure (b and d) surfaces for the PAV-1.5 cascade computation. The hash marks 

correspond to the estimated boundary layer thicknesses reported by Schreiber2(j. Refer to Figure 7 for 

the chord locations corresponding to A-D. 



Along the suction surface, the predict4 boundary layer is seen to remain quite thin for this high 

Reynolds number flow, thickening to about .O1 chord at midchord. At .75 chord the boundary layer 

has separated due to the bow shwk impinging at .67 chord, and the boundary layer thickness is seen to 

have rapidly increased to approximately .03 chord. At .90 chord, the separated boundary layer has 

grown to .05 chord. The turbulence intensity profile behaves in a manner consistent with a boundary 

layer separation. Namely, aft of the onset of separation the turbulent kinetic energy boundary layer 

thickens rapidly and the peak in intensity appears well away from the blade surface. Careful 

examination of Figure 11 (c) also shows that the turbulence intensity has been amplified well outside of 

the boundary layer. This amplification is presumably due to the influence of the shock on the normal 

stress components of the production term in the turbulent kinetic energy equation. 

The predicted boundary layers along the pressure surface are seen to remain quite thin along the entire 

blade. The influence of the passage shock at .40 chord is seen to thicken the boundary layer at .50 

chord, but the flow reattaches and the boundary layer thickness remains approximately .02 chord from 

.75 to .90 chord. Similar e n d s  are noticed in the local turbulence intensity profiles, with the typical 

peak away from the blade just aft of separation, returning very close to the wall some distance after 

reattachment. 

The blade normal coordinate in Figure 1 1 is measured along grid lines which veer from perpendicular to 

the blade sufficiently far from the surface. The "kinks" in the velocity profiles at station B on the 

pressure and suction surfaces are caused by these curved grid lines intersecting the passage and bow 

shocks respectively. 

Predicted and measured performance parameters for this cascade, operating at the given conditions are 

presented in Table 1. 

S ~ h r e i b e r ~ ~ ,  provided measured loss coefficients at maximum attainable cascade pressure ratio for a 

number of operating inlet Mach numbers. For comparison, the code was run at two additional operating 

points within the envelope of the experimental tests. Figure 12 shows computed total pressure loss 

coefficients at all three operating points computed, along with the envelope of experimental loss 

coefficients. Computed values lie within the envelope of experimental values. It is noted, that Schreiber 

attributes the scatter in measured loss coefficient to variations in experimental axial velocity density ratio. 



Figure 12. Total pressure loss coefficients at several cascade operating points, experiment26 and 

computation (solid symbols). 

ARL-Double Circular Arc Subsonic Compressor Cascade 

The second cascade flow to be computed is the Applied Research Laboratory (ARL) double circular arc 

cascade tested at Penn State by Zierke and Deutch29. The computed case was tested at a negative 

incidence of 1.5 degrees. The working fluid was air at standard atmosphere with an inlet velocity of 

32.9 d s  (inlet Mach number = 0.1). The Reynolds number based on chord was 5.0 x lo5. Inlet 

turbulence intensity was measured at 1.8 %. The measured axial velocity ratio was measured to be 

between 0.97 and 1.03, indicating that the flow was close to two-dimensional. 



It is noted that the present solution method, which incoqorates a compressible fornulation of the 

Navier-Stokes equations is not well suited to this low Mach number flow. 

The 129 x 85 computational mesh used was generated using the GRAPE, code, and is shown in Figure 

13. 

Figure 13. 129 x 85 Computational grid for the A m  DCA cascade. 



Cpid spacing in the blade n o m d  direction was set to . 23 chord on the blade surfaces. This yielded 

vdues of y+ 5 1 at gkd points adjacent to the walls. Except in the ediate vicinity of the leading and 

trailing sdges, the suclion and pressure surface b u n d w  layers had at least 11 grid points with values of 

y+ 2 20. 

It was only possible to obtain a steady solution when a coarse "preliminary" grid was used for this case. 

These coarse grid calculations overpredicted skin friction along the entire length of the suction surface, 

so the flow remain attached and a steady state solution was achieved. The more refined grid adequately 

resolved both inner layer and core flow regions yielding more accurate skin friction and boundary layer 

profiles. However, because both calculation and experiment show regions of mean flow reversal near 

the trailing edge, it was not possible to obtain a steady solution. The convergence history for this 

computation is shown in Figure 14. It took approximately 7000 iterations for this calculation to acquire 

a 4.5 order of magnitude drop in the RMS density residual. This corresponds to approximately 36 

minutes of CPU time on the Cray Y-MP. However as shown in Figure 14, the residual changes begin 

to increase and then level off. This is attributed to periodic shedding of vorticity from the aft portion of 

the suction surface. 

0.0 

# Iterations 

Figure 14. anvergence history for ABL DCA cascade computation. 



Despite the lack of a steady state solution, the flow along the blade remained relatively unchanged after 

7000 iterations except for quasi-periodic shifts in the boundary layer velocity and turbulence intensity 

profiles. The measured flaw also showed a small region of mean backnow near the trailing edge of the 

blade29, and for that reason was also probably somewhat unsteady. In Figure 15, comparison is made 

between computed blade surface pressure coefficient and measured values. Agreement is good along 

both blade surfaces. 

Figure 15. Pressure coefficient for ARL DCA cascade computation. Calculated (solid line) and 

experimental values (symbols). 



The oscillations in the pressure dis~butions near the leading and miling edges in Figure 15 are caused 

by the velocity scaling of the artificial dissipation. 'The H-grid used gives rise to highly skewed regions 

near the relatively blunt leading and trailing edges of this configuration, causing the velocity scaling 

presented "as is" to give rise to these oscillations. Though the cascade flow is not significantly affected 

by this effect, it may be worth investigating improved scaling. 

In Figure 16 the predicted boundary layer profiles at three chordwise locations on the suction surface are 

plotted with those measured by laser doppler velocimeter. Agreement is excellent at 20 % chord and 

50% chord and reasonable at 90 % chord. 

Figure 16. Boundary layer profiles at three chord locations along the suction surface for the ARL DCA 

cascade computation. Calculated (solid line) and experimentdl values (symbols). 



Local turbulence intensity profiles are presented for three chordwise locations on the suction sudace in 

Figure 17. As above, agreement between calculation and experiment is good at the first two stations, 

and reasonable in the aft portion of the blade. 

Figure 17. Local turbulence intensity profiles at three chord locations along the suction surface for the 

ARL DCA cascade computation. Calculated (solid line) and experimental values (symbols). 

Predicted and measured performance parameters for this cascade are also presented in Table 1. 



Table 1. Comparison of Cascade Flow Parameters for Computed Cases 

(Lift per unit span)% 
CL = 

a lift coefficient computed from .5pmv2rn 

Po- - Po 
a =  Po- - Po 

b a= 
pressure loss coefficients computed from .5pmV2- for ARL PO- - P- for PAV. 

CONCLUSIONS 

A Navier-Stokes procedure has been developed and applied to a supersonic and a low subsonic 
compressor cascade. A compressible low Reynolds number form of the k-e turbulence model was 

used. It was found in this study that : 

1) A fully explicit treatment of the turbulence transport equations is possible. The computational 
overhead associated with this treatment is reasonable. 

2) It is crucial to incorporate local timestep constraints based on stability analysis of the full viscous 
mean flow equations if the k-E model is used for an H-grid cascade configuration. 

3) The highly stretched grids needed to resolve near-wall physics w m t  eigenvalue and local velocity 

scaling of artificial dissipation terms to improve accuracy and convergence rates. 



4) Flowfield predictions were found to be good for a supersonic cascade and fair for a low subsonic 

cascade. 

5) Overall cascade performance parameters were well predicted for the supersonic cascade but not well 

predicted for the low subsonic cascade, due to flowfield unsteadiness and turbulence model 

shortcomings. 

Currently, several improvements and extensions to the technique are under way, including incorporation 

of multigridding, turbulence model corrections to account for streamline curvature and pressure strain, 

point implicit treatment of source terms in the turbulence transport equations, improved vectorization of 

the code and extension to three dimensions. 
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