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ABSTRACT 

A new method for enhancing convergence rate of iterative algorithms for the numerical integration of 

systems of partial differential equations has been developed. It is termed the Distributed Minimal 

Residual (DMR) method and it is based on general Krylov subspace methods. The DMR method 

differs from the Krylov subspace methods by the fact that the iterative acceleration factors are different 

from equation to equation in the system. At the same time, the DMR method can be viewed as an 

incomplete Newton iteration method. The DMR method has been applied to Euler equations of 

gasdynamics and incompressible Navier-Stokes equations. All numerical test cases were obtained 

using either explicit four stage Runge-Kutta or Euler implicit time integration. The formulation for the 

DMR method is general in nature and can be applied to explicit and implicit iterative algorithms for 

arbitrary systems of partial differential equations. 

INTRODUCTION 

After linearization caused by the discretization, the systems of governing equations associated with , 

say, fluid flows are recast into the following linear system of algebraic equations 

where X is the vector of unknowns and A is an NxN matrix which depends on the discretized scheme, 

and is assumed to be non-singluar. The matrix A is usually sparse and as N becomes larger, it is not 

economical to solve the system of equations directly. Instead, iterative methods are usually utilized. 

The Conjugate Gradient (CG) method and the Conjugate Residual (CR) method, are widely used for 

approximating the solution of the system (Huynh, ref. 1; Faddeev and Faddeeva, ref. 2). Both 

methods give the exact solution in at most N steps in the absence of round-off errors. However, the 



CG method and the CR method require the matrix A to be symmetPic, positive definite. A large number 

of generalizations of these methods applicable to systems with a non-symmetric matrix have been made. 

The success of the generalization of the CG and CR methods is reflected in the introduction of a series 

of algorithms capable of treating non-symmetric problems (0 IN by Vinsome, ref. 3; ORTHDIR 

and ORTHRES by Young and Jea, ref. 4; GMRES by Saad and Schultz, ref. 5; Wigton et al., ref. 6). 

The Minimal Residual method (Hafez, ref. 7) and the Generalized Nonlinear Minimal Residual method 

(Huang and Dulikravich, ref. 8) can be thought of as generalizations of the conjugate residual method. 

In this paper, a new method of enhancing convergence rate of iterative algorithms for systems of partial 

differential equations is developed. The method is entitled Distributed Minimal Residual (DMR) 

method (Lee et al., ref. 9-14) and it is related to a general Krylov subspace method from which it 

differs in two aspects. First, the DMR method attempts to improve on a straight application of a Krylov 

subspace method by using a separate sequence of acceleration factors for each equation in the system. 

In application of the DMR method to Euler equations of inviscid gasdynatnics, for example, the 

acceleration factors for continuity equation differ from those for two momentum equations and for 

energy equation. This approach requires fewer consecutive solutions to be stored. Effectively, the 

DMR method periodically preconditions the system. Second, the DMR method does not involve the 

orthogonalization procedure which most of Krylov subspace methods utilize to reduce the number of 

numerical operations. The DMR method uses corrections from only two or three consecutive solutions 

for a successful application. 

The prime objective of this paper is to develop the theory of the DMR method and to examine the 

effectiveness of the DMR method by applying it to different systems of partial differential equations: 

Euler equations of inviscid gasdynamics and incompressible flow Navier-Stokes equations. Runge- 

Kutta time stepping method and Euler implicit method were used as two basic iterative algorithms. 

DISTRIBUTED MINIMAL RESIDUAL (DMR) METHOD 

Let us consider a system of partial differential equations that are integrated iteratively so that their 

residual vector at iteration level t is given by 

where Et, Ft, Gt are the generalized flux vectors (at iteration level t) that act in the directions x, y, z, 

respectively. The future residual at iteration level t+l is given by 



Assume that each component of the solution vector at iteration level t+l is extrapolated from the 

corresponding previous M consecutive iteration levels. Then, we can say that 

Here, the subscripts 1, 2, 3, ..., L designate the particular component of the solution vector Q, that is, 

the particular equation in the system. The superscripts 1, 2, 3, ..., M designate the particular iteration 

level counting backward from the present iteration level, t. Thus, the superscript 1 means the first 

previous iteration level. The superscript 2 means the second previous iteration level, etc. This can be 

expressed in a more compact form as 

where 

Here, a ' s  are the acceleration (weighting) factors to be calculated, A's are the iterative corrections 

computed with the original non-accelerated scheme, M denotes the total number of consecutive time 

steps from which the corrections are combined. 



t+l  
Using Taylor series expansion in time for R and mncating the terns that are higher than second 

or=der= in At, Eq. 3 becomes qproximately 

The global domain residual can be defined as 

R ~ = c R ~ ~ R ~  
D 

where denotes summation over the computational domain D, and the superscript T represents 
D 

transpose of a vector. In order to minimize the future global residual, R'", the a ' s  are determined 

from the following conditions 

From Eq. 8 this leads to 

where 

a a aom RtT &At. + -B . + *. - -c D [a, ay Ida: 
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and Ijp, is the Kronecker delta. However, from Eq. 6 we have that 



dW 
Noticing that- is not a function of CO, it follows that 

am; 

Let 

Then Eq. 13 becomes 

For simplicity, let 

and 

Then, the system of algebraic equations (Eq. 15) can be written as 



representing the system of LxM linear algebraic equations for the LxM optimum acceleration factors o .  

For example, if we are periodically to combine corrections from M = 2 consecutive time steps to 

extrapolate the solution and to solve a system of L = 4 partial differential equations, we need to solve 
simultaneously LxM = 8 algebraic equations for 8 values of 0. 

Notice that when the convergence is achieved, the b's become zero (Eq. 17), thus making the o's zero. 

In other words, the accuracy of the fully converged solution will not be affected by using the DMR 
method. Furthermore, if the matrix ci: is positive definite, it can be shown easily that the w's 

minimize the global residual, R~", at iteration level t+l. Using a different sequence of acceleration 

factors for each partial differential equation in the original system is equivalent to using a different time 

step for each equation or selectively preconditioning the system. The DMR method, therefore, can be 

understood as the combination of a preconditioning method and a Krylov subspace method. Also, we 

can think of the DMR method as an incomplete Newton iteration. This point can be illustrated by the 

following fact. When the acceleration factors vary not only from equation to equation, but also from 

grid point to grid point, and when we use just one solution in the DMR formulation, it can be shown 

that the DMR method is equivalent to the Newton iterations. 

APPLICATION OF THE DMR METHOD 
TO EULER EQUATIONS OF GASDYNAMICS 

The introduction of the successful numerical algorithms such as the Euler implicit method and the 

explicit Runge-Kutta time stepping method made it relatively inexpensive to perform the numerical 



integration of the systems of partial dzferential equations governing compressible flows. Most of such 

algorithms, however, suffer from slow conyergence at low Mach numbers. The reasons for this are the 

rapidly increased stiffness and the singular behavior of the original system of compressible flow 

equations at low Mach numbers. The singular behavior of the system near Mach number zero can be 

removed by eliminating the singularity of the system by a perturbation technique (Briley, ref. 15; Choi, 

ref. 16). The stiffness of the system at low Mach numbers can be reduced by preconditioning the 

system (Turkel, ref. 17; Choi, ref. 16). The DMR method is used to alleviate the difficulty associated 

with the increased stiffness of the Euler equations for low Mach number compressible flows. 

Euler Equations for Compressible flows 

The Euler equations for a two-dimensional unsteady inviscid flow expressed in a generalized non- 
orthogonal curvilinear coordinates (5, q )  without body forces or heat transfer, can be written in a vector 

form as 

where 

The subscripts x and y represent first (partial) derivatives with respect to x and y, respectively. Here, p 

is the density, p is the thermodynamic pressure, e is the total energy per unit volume, while u, and v are 

the Cartesian velocity components along x and y axis, respectively. J is the Jacobian determinant, 

a(5Jl) 
~ (x ,Y) '  

while U and V are the contravariant velocity vector components defined as 



Numerical Algorithm 

The artificial dissipation suggested by Steger and Kutler (ref. 18) was used in the form 

where V4 is the biharrnonic differential operator in 5, q coordinates and E is a parameter. The residual 
A 

vector R of Euler equations for compressible flow including the artificial dissipation is 

After discretization, the governing equations become a set of ordinary differential equations, which can 

be integrated by the Runge-Kutta time stepping method (Jameson et al., ref. 18). 

where ak are the coefficients for each of the K stages of the Runge-Kutta scheme required to advance 

the solution from the time level t to the time level t+l. For example, ak = 114, 113, 112 and 1 for the 

four stage Runge-Kutta scheme. 

The time steps for each direction are estimated (MacCormack and Baldwin, ref. 19) from 

At5 = 
CFL At,, = 

CFL 
2 112 

IUl + c(s:+ 5,) 2 112 
IVI + ch:+ 11,) 

where c is the local speed of sound and CFL is the Courant-Friedrichs-Lewy number. The maximum 

time step is given as 

At5 At,, 
At = AtS + Atq 



The implicit characteristic boundary procedure of Chakravarthy (ref. 20) was used, though the scheme 

itszlf is explicit. Entropy per unit mass (s = ~/p? ,  total enthalpy per unit mass, h = (e+p)lp, and flow 

angle (tan(a) = v/u) are specified at the inflow boundary. For a subsonic downstream outflow 
2 2112  

boundary (6 = constant), the equation corresponding to the negative eigenvalue, U - c(S,+ Cy) , is 

substituted with a constant back pressure, pb. For a solid wall boundary (q = constant), the equation 
2 2112 

corresponding to the positive eigenvalue, V + c(q,+ q,) , is substituted with a tangency boundary 

condition, V = 0. 

Upon applying the DMR method to the system of Euler equation of gasdynamics, Eq. 14, becomes 

where and are the Jacobian matrices in the transformed coordinates 

Results for Compressible Euler Equations 

A two-dimensional flow analysis code has been developed in FORTRAN according to the previous 

theory for Euler equations of gasdynamics using finite differencing. All computational results were 

obtained on CRAY-YMP at NAS facility using automatic vectorization. 

The test case for the code was flow around a circular cylinder. The outer boundary of the computational 
domain was located at 20 times the radius of the cylinder. A 66x32 cell computational grid was used in 

this test case. The computations were performed with and without the DMR method in conjunction with 

the four stage Runge-Kutta (RK) scheme. The convergence histories are plotted in terms of the number 

of iterations and in terms of the CPU time (Fig. 1). The maximum allowable CFL number (CFL = 2.8) 

was used in both accelerated and non-accelerated computations. The free stream Mach number was 

chosen to be 0.05 which is practically an incompressible flow. The DMR method saves over 60 % of 

total CPU time in this critical flow test case. The surface pressure coefficient (Fig. 2) matches well with 

the incompressible potential flow solution. 
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Figure 1 Convergence histories for the inviscid flow around a circular cylinder with M, = 0.05 

Theta 

Figure 2 Wall pressure coefficient distribution for the inviscid flow around a circular cylinder: 
numerical with M, = 0.05 (solid line); analytical with M, = 0 (dotted line) 

APPLICATION OF THE DMR METHOD 

TO INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 

The main difficulty associated with the incompressible flow computations is caused by the absence 

of a time derivative term in the continuity equation. One of the methods for solving the incompressible 



Navier-Stokes equations was originated by Ghorin (ref. 21). In this concept, an artificially time 

is added to the continuity equation with a user specified control dependent derivative term ------- at 

parameter p. The artificial time derivative diminishes as the solution converges to its steady state. The 

added tern forces the system to be of a mixed parabolic-hyperbolic type, which allows the use of time 

marching techniques. Later, Choi and Merkle (ref. 2 3 ,  and Kwak et al. (ref. 23) used an Alternating 

Direction Implicit (ADI) method in conjunction with the &cia1 compressibility method. 

Incompressible Flow Navier-Stokes Equations 

The two-dimensional Navier-Stokes equations in a general non-orthogonal curvilinear coordinates E,, q 

are given as 

The solution vector and the flux vectors in the transformed coordinates are given as 

where p is the pressure. Notice that the artificial compressibility has been added in the continuity 

equation. The physical viscous terms in the general coordinates are given by 

where gij is the contravariant matrix tensor 

gij = vxtivx; 

Here, xfi means 6 or q depending on the index i 

1 S = @ag(O9l91) 

where Re is the Reynolds number. 



The Navier-Stokes equations are ed parablic/hyperbolic partial differential equations. According to 

the eigenvalue analysis of the hyperblic part of the equations, the Jacobiarr matrices in the rransfomed 

coordinates have real eigenvalues 

where the matrix K is defined as 

Here, kl and k2 are either 5, and cy or q, and qy depending on the direction to be considered, and k = 

klu + k2v. The eigenvalues of the matrix K are given by 

where the equivalent speed of sound, c, is given as 

Notice that one of the eigenvalues is negative. This means that the incompressible flow is equivalently 

"subsonic" in the sense of different signs of the eigenvalues and that c will influence stiffness of the 

system. Thus, the direction of characteristics should be considered when applying boundary 

conditions. 



Numerical Methods 

The residual vector including the fourth order artificial dissipation (Eq. 23) is defined as 

After spatial derivative terms were discretized, the governing equations were integrated either by the 

explicit Runge-Kutta time-stepping aIgorithm (Eq. 25) or by an Euler implicit method with approximate 

factorization (Beam and Warming, ref. 24). To reduce the computational effort, the artificial dissipation 

and the viscous part of the residua1 are calculated only once every global time level and kept unchanged 

during the four stages of the Runge-Kutta scheme. This does not deteriorate the stability of the time 

stepping algorithm. 

The Euler impIicit scheme with factorization for the incompressible Navier-Stokes equations results in 

Time Step Limitations and Boundary Conditions 

The allowable time increments of the explicit scheme are severely restricted by the stability limit, while 

for an implicit scheme the time step restrictions are caused by the factorization errors. The time step is 

determined by considering the hyperbolic part of the system and the parabolic part of the system 

separately and by combining these time steps as suggested by MacCormack and Baldwin (ref. 19). The 

system becomes hyperbolic when viscosity is neglected. Then, the stability bound of the resulting 

system is determined by the CFL (Courant-Friedrichs-Lewy) number. The maximum allowable time 

steps for each of the coordinate directions are defined as 

CFL 
= IUl + c, 

CFL 
= IVI + C,, 

so that the combined maximum time step for the hyperbolic part of the system is defined by 



When the convective part of the acceleration is neglected, the system becomes of parabolic type. The 
stability of the parabolic type system is dictated by the non-dimensional number o (von Neumann 

number). For each generalized coordinate direction, the maximum time steps are defined by 

and the combined maximum time step for the parabolic part is given by 

The total maximum time step is estimated conservatively as 

For the explicit Runge-Kutta method, Eq. 46 was used to estimate the maximum time step. However, 

for the Euler implicit method, only CFL limitation was used to compute the time step, that is 

It was assumed that the flow is inviscid at the inlet and exit planes causing the system of equations to 

become hyperbolic in time near the inlet and exit. As stated earlier, the incompressible Navier-S tokes 

equations have one negative eigenvalue, and the rest of the eigenvalues are positive. Thus, one 

equation should be considered with two boundary conditions at the inlet. At the exit, two equations 

with one boundary condition must be applied. At the inlet, u and v velocity vector components were 

specified, while the back pressure p was specified at the exit. The flow was assumed to be locally one- 

dimensional at the inlet and exit boundaries in order to transform locally the equation into the 

characteristic form. At the solid wall, the velocity vector components, u and v, were set to zero, and 
3~ - the surface pressure was extrapolated from the grid points next to the wall from the condition that - 

0. 



Residual Smoothing 

One of the successful attempts to accelerate the convergence of the Runge-Kutta scheme is Implicit 

Residual Smoothing (IRS) introduced by Jameson and Baker (ref. 25). With this method, it is possible 

to use much higher values of CFL,. The residual is smoothed through the following equation 

where 62  designates the central difference operator for a respective second derivative, and 8 is the 

smoothing coefficient. Thus, when using the IRS we have to solve two scalar tri-diagonal matrices. 

Since their coefficients are constants, the tri-diagonal matrices are decomposed into upper and lower bi- 

diagonal matrices so that at every application of the IRS only forward and backward substitutions are 

needed to get the smoothed residual. 

The application of the DMR method to incompressible Navier-Stokes equations differs from the 

formulation for its application to the Euler equations of gasdynamics only by the following term 

Computational Results for Navier-Stokes Equations 

A steady, laminar, viscous flow normal to a solid wall (Hiemenz flow) was the first test case. Reason 

for this choice of the test case is that the analytic solution for the Hiemenz flow is known (Panton, ref. 

26). The accuracy of the codes (the explicit Runge-Kutta method and the Euler implicit method) can be 

verified by comparing the computed solution with the analytic solution. 

The flow corresponding to the Reynolds number 400 based on the free stream velocity and a body 
dimension, R,, of the wall was computed with and without the DMR method in conjunction with 

explicit and implicit codes. The computational grid consisted of 60x29 cells, and the dimensions of the 

computational domain were H = R, and L = 2R,. In the case of an explicit Runge-Kutta (RK) method, 

the maximum allowable CFL number of 2.8 was used and the von Neumann number was o = 0.4. A 

small amount of the fourth order artificial dissipation was added to get a smooth solution (E  = 0.05). 

Using numerical experimentation it was found that the fastest convergence is obtained with the artificial 



compressibility coefficient P .= 2, and that the DMR method should be applied every 10 iterations by 

combining 3 consecutive solutions. 
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Figure 3 Distributions of wall surface velocity gradient for Hiemenz flow 
(RK: solid line; analytic solution: circles) 
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Figure 4 Convergence histories of the RK method for Hiemenz flow with Re = 400 

du 
The computed distribution of the wall surface velocity gradient, -, was compared with that of the 

3~ 
analytic solution (Fig. 3), showing an excellent agreement. Figure 4 shows that the residual was 



reduced 12 orders of magnitude in 5000 iterations without the Dh4R method, while the same reduction 

in residual could be achieved in 2000 iterations with the DMR method indicating 60 % reduction in 

CPU time. The implicit residual smoothing was also implemented with and without the DMR method. 

The basic IRK method gives the slowest convergence, the IRS gives faster convergence than the basic 

RK method, while the DMR method gave the second best convergence. The most rapid convergence in 

terms of the number of iterations was achieved by combining the implicit residual smoothing and the 

DMR method. However, the Dh4R method alone offered maximum time savings (over 55%). 
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Figure 5 Distributions of wall surface velocity gradient for Hiemenz flow 

(Euler implicit: solid line; analytic solution: circles) 



The implicit code was also exercised for the test of the Eemenz flow with the same conditions as in the 

test case for the explicit code (Re = 400). The computed surface velocity gradient distribution was 

compared with the analytic solution (Fig. 5). Good agreement can be observed. CFL number of 10 
was used in this computation. Also, the fourth order artificial dissipation with E = 0.25 was added. 

The optimal value of the artificial compressibility coefficient P was found by numerical experiments to 

be J3 = 5. The DMR method was found to give the fastest convergence when applied to the implicit 

Euler scheme every 5 iterations by combining 5 consecutive solutions. Figure 6 shows that the DMR 

method offers approximately 60% reduction in CPU time indicating that the DMR method can be 

successfully applied to implicit methods. 
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Figure 7 Convergence histories for viscous flow around a circular cylinder with Re = 20 (RK) 

The last test case was a laminar flow around a circular cylinder. The highly clustered grid of 66x44 

cells was used. Flow with Reynolds numbers of 20 was computed with the RK method and the Euler 
implicit method. The CFL and von Neumann numbers were CFL = 2.8 and o =0.4, respectively, for 

the RK method, and CFL = 10 was used for the Euler implicit method. The DMR method was applied 

every 30 iterations for the RK method, while every 10 iterations for the Euler implicit method. For 

both methods, two consecutive solutions were used with the DMR method, though these combinations 

of the number of solutions and the frequency of the DMR application are not optimal. The artificial 
compressibility coefficient was P = 1 for both methods. The convergence histories of the RK method 

and the Euler implicit method with and without the DMR method are presented in Figures 7 and 8. The 

DMR method offers more savings with the Euler implicit method (30%) than with the RK method 

(10%). The wall pressure distributions and the wall vorticity distributions were compared with the 

computational results of Choi (1989) in Figures 9 and 10 showing reasonable agreement. 
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Figure 8 Convergence histories for viscous flow around a circular cylinder with Re = 20 

(Euler implicit) 
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Figure 9 Wall pressure coefficient distributions and vorticity distributions for flow 

around a circular cylinder at Re = 20 (RK) 
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Figure 10 Wall pressure coefficient distributions and vorticity distributions for flow 

around a circular cylinder at Re = 40 (Euler implicit) 

CONCLUSIONS 

The DMR method was found capable of reducing the computation time by 20-80% depending on 

the test case. When directly compared with an implicit residual smoothing, the DMR method performed 

consistently better and more reliably. 
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