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ABSTRACT 

A two-equation turbulence model has been extended to be applicable for compressible flows. A com- 
pressibility correction based on modelling the dilatational terms in the Reynolds stress equations has been 
included in the model. The model is used in conjunction with the SPARK code for the computation of high- 
speed mixing layers. The observed trend of decreasing growth rate with increasing convective Mach number 
in compressible mixing layers is well predicted by the model. The predictions agree well with experimental 
data and the results from a compressible Reynolds stress model. The present model appears to be well suited 
for the study of compressible free shear flows. Preliminary results obtained for reacting mixing layers have 
also been included. 

NOMENCLATURE 

bi body force of species i 
Cr,C2,Cp turbulence model constants 
CP specific heat at constant pressure 

'pi c, for d t h  species 
Di j binary diffusion coefficient 
DT thermal diffusion coefficient 
E total internal energy 
fi mass fraction of species i 
W source vector 
H total enthalpy 
h static enthalpy 
hi enthalpy of species i 
h: reference enthalpy of species i 
k turbulent kinetic energy 
Mi molecular weight of species i 
Mt Turbulent Mach number 
n s  number of chemical species 
Pr ,Pr t  laminar and turbulent Prandtl numbers 
P pressure 
a heat flux vector 
R0 universal gas constant 



Sc,Sct laminx and turbulent Schmidt numbers 
T temperature 
t time 
At time step 
BT dependent variable vector 
c velocity vector 
fi diffusion velocity vector of species & 
wi species production rate of species k 
Xi mole fraction of species k 
x streamwie coordinate 

8s' jth coordinate 
Y transverse coordinate 
a compressibility correction coefficient 
7 ratio of specific heats 
si j Kronecker delta 
c dissipation rate 
60 compressible dissipation rate 
R thermal conductivity 
X second viscosity coefficient 
P laminar viscosity 
Pt turbulent viscosity 
v kinematic viscosity 
P density 
uk, a, turbulence model constants 
Ti j stress tensor 
@j %ux vector in j*h direction 
Subscripts 
Q high speed stream 
b low speed stream 
t turbulent quantity 

INTRODUCTION 

In recent years, the development of an airbreathing hypersonic vehicle has received considerable attention. 
This is a complex task and requires innovative research in many technical areas such as aerodynamics, 
propulsion, structures and materials. Development of viable propulsion systems for such a vehicle is being 
pursued at numerous research institutions around the country. One such program is being carried out at 
the NASA Langley Research Center in which a highly integrated, hydrogen-fueled supersonic combustion 
ramjet (scramjet) engine is envisioned to be a viable propulsion system for hypervelocity vehicles [1,2]. Due 
to the complex nature of such a task, numerous research programs have been initiated. One of these research 
efforts is concerned with understanding the details of the complex %ow field inside the engine and evaluating 
its main features for a range of %ow conditions. The work reported here is concerned with this effort in 
which computational analysis of the scramjet %ow field is carried out. 

The flow field in the scramjet combustor is highly complex. It is governed by the Navier-Stokes equations 
coupled with a system of equations describing the chemical reactions that occur. The %ow is expected 
to be turbulent in most part of the combustor. This requires that the analysis be capable of addressing 
compressible turbulent reacting flows. The interaction between turbulence and chemical reactions is an 
important issue in the analysis. The presence of turbulence in any %ow complicates accurate analysis of 
the %ow due to the wide range of length and time scales. Exact solution of complex flows, such aa that 
in a scramjet combustor, is impossible at present because of these turbulence scales. Hence some form of 
simplified treatment of the turbulence is mandatory in such problems and turbulence models are used in 



thfs regasd. Establkhing turbulence modek that we suitable for Bows such as that of the scramjet fs very 
difficult since the effects of turbulence on the Bow as a whole and on the chemical reactions in pasticular are 
not well understood, The model should be accurate enough in predicting the physics of the problem without 
increasing the complexity of the solution procedure any more than is necessary. 

A variety of turbulence modeh, which have been used for many different flow configurations, exist today. 
These models range from the simplest mixing-length or zero-equation models to the most general Reynolds 
stress closures. Also, other means of analyzing turbulent flows, such as large eddy simulation, are being 
developed. A useful review of the field was conducted by Nallasamy [3]. One class of models that is widely 
used in turbulence computations today is the two-equation model. In this model, a differential equation for 
the mean turbulent kinetic energy and another for some form of the length scale of turbulence are solved 
along with the averaged forms of the Navier-Stokes equations. These two-equation models have been used 
with some degree of success for many engineering problems. They are relatively easy to implement in a 
given solution procedure and are computationally economic in comparison with the more general Reynolds 
stress models. These models do have their limitations and their applicability to any flow problem must be 
validated before using them. One of the major restrictions of most of the turbulence models in use today is 
that they have been developed for incompressible flows. Adhoc modifications to account for compressibility 
have been made to some of these models. A discussion on this subject is given by Yang et al. [4]. A fully 
compressible turbulence model of the two-equation and higher order does not exist because the averaged 
equations for compressible flows are not easily amenable to modelling using any of the known techniques. 
However, good progress has been made in this area by many researchers and it is hoped that turbulence 
models applicable to compressible flows should soon be available. In the present analysis, a two-equation 
model of turbulence has been used with a compressibility correction derived from the Reynolds stress closure 
model of Sarkar et al. [5]. The two turbulence variables are the turbulent kinetic energy and its dissipation 
rate. The governing equations are Favre averaged [6] thus including the effects of mean density variations. 
At present, the model does not include the turbulence-chemical reactions interactions and all the model 
constants of the incompressible model [7] are retained. 

The two-equation model is tested on a spatially developing, primarily supersonic, chemically reacting 
plane mixing layer. A major portion of the chemical reactions in the scarmjet combustor occur in mixing 
layers and all the complexities introduced by fluid mechanics, combustion chemistry and the interaction 
between them are retained by the reacting mixing layer. A detailed discussion on this topic is given by 
Drummond et al. [I]. Mixing layers have been studied extensively over the years. Some of the earlier work 
in this area is found in reference [8], which resulted after the conference on free shear flows held a t  NASA 
Langley Research Center in 1972, and in reference [9], in which the density effects on subsonic mixing layers 
have been discussed. Reference [lo] gives a good picture of recent developments in the area of turbulent 
shear flows of which the mixing layer is a subset. However, as with many other compressible flows, reliable 
experimental data in the area of reacting mixing layers is limited. Availability of reliable experimental data 
for the purpose of validation is crucial in the development of turbulence models and the lack of this data is 
one of the reasons why models applicable to reacting flows are not common today. 

In the present work, the two-equation model is applied to the high-speed plane mixing layer problem over 
a wide range of flow conditions without and with chemical reaction. The nonreacting cases are computed for 
air-air systems. Hydrogen-air combustion models are used for the reacting flows. Single-step and multiple- 
step reaction systems are used here. The two gas streams that form the mixing layer are supersonic whereas 
the convective Mach number [Ill of the layer varies from subsonic to supersonic values. The computer 
code SPARK, developed at the NASA Langley Research Center [12], has been used. It solves the governing 
equations using a fourth order compact scheme. The mean flow variables such as velocity, internal energy, 
the two turbulence variables and the concentrations of various species such as hydrogen, oxygen, nitrogen 
etc., are computed. Representative results are presented and pertinent flow features are discussed. The 
predictions have been compared with those of a Reynolds stress closure [13,14] and also with available 
experimental data [ll,l%,l6,17]. Major flow characteristics such aa the growth rate of the mixing layer, 
mean velocities, turbulent kinetic energy etc., are used for comparisons. 



GOVERNING EQUATIONS 

The Navier-Stokes equations along with equations for enei-gy axd species contkiuity which govern flows 
with multiple species undergoing chemical reaction have been used [18]. These governing equations are 

Momenburn 

where 

with repeated indices indicating summation. 
Energy 

The total energy(kinetic + internal) is chosen as the dependent variable in the energy equation, given as 

where, neglecting radiation heat transfer, 

Species Continuity 

a(pfi) 
at + 0 . (plffi) = tiri - V . (pfiE) 

Also, 

with repeated indices indicating summation in the kinetic energy term. 

rT 

The diffusion velocities are found by solving 



Note that 3' there are n s  chemical species, then i = 1,2, ..., ( n s  - 1) and ( n s  - 1) equations must be solved 
for the species f i e  The final species mass fraction fna can then be found by conservation of mass shce 
c;:l fdi = 1. 

The procedures for evaluating quantities such as the specific heats, equilibrium constant for the chemical 
reactions, etc., are described in reference [I]. Also, details regarding the chemistry models, thermodynamic 
models and the diffusion models are found in reference [I]. 

Averaged Governing Equations 

Density-weighted averaging (also known as Favre-averaging (61) is used to derive the equations which 
describe the fully turbulent flow from the above set of equations. The dependent variables, except density 
and pressure, are written in the form, 

4 = ? + 4 "  (11) 

where the Favre-mean 3 is defined as 

In this equation, the overbax indicates conventional time-averaging. Density and pressure are split in the 
conventional sense as, 

p = P + p l  and p = j T + p l  (I3) 

The following relations exist in this form of time-averaging: 

The averaged continuity and momentum equations are 

The total energy E can be written in terms of the total enthalpy(H) as 

P  E = H - -  
P  

Rewriting the energy equation (4) using the above and time-averaging, 

In the above equations the body forces contribution has been omitted. Also, Qj represents the averaged 
heat flux term (equation (5)). The species continuity equation (6) is averaged similarly to get, 



In this equation, the term t& contains correlations which have not been included in the present model. 

The equations for the two turbulence variables, turbulent khetic energy (k) and the enerw dissipation 
rate (€1, are derived by suitably manipulating the momentum and continuity equations (equations (2) and 
(I)) and utili~ing equations (11) - (14). Defining k: and E %B 

Ou!' Ou!' 

€ = P V B s j  B s j  
P 

the equation for the turbulent kinetic energy can be written as 

apk aplcq aG auy -ap - + -  = rij- - uy- 
au:' - pu:'u:' - 

at 
+ pr- ax ax j  axi ax i  

Substituting for rij and rearranging terms, 
N 

apk a p k q  - au, auy auy a - - + -  = rt r! ___ - p"i u~ ax j  - - -( ~ u ? u : ' u ~  SJJ'U: 6ij) at axj ax, ax, a x j  

where 8 is a set of molecular diffusion-like terms which can be neglected in high Reynolds number flows [4]. 
The first term on the right hand side of equation (23) is the energy production term, the second one is the 
dissipation term (21), the third and fourth terms represent diffusion of the turbulent energy and the next 
two terms represent the effect of compressibility. 

The equation for the dissipation rate ( E )  can be derived in a similar manner. It is not included here 
because it is quite long and the current model uses a simplified form of this equation. However, the modelled 
form of this equation, which has been used in the computations, will be included later in this report. 

Modelled Equations 

The k-e model achieves closure of the equations governing the turbulent flows by invoking the Boussinesq 
approximation which relates the turbulent stresses (Reynolds stresses) to the mean strain rate. Thus, the 
Reynolds stress tensor is written as, 

where pt is the turbulentleddy viscosity defined in terms of some characteristic length and velocity scales. 
Here the length is taken to the turbulent length scale, k q / ~ ,  and the velocity scale is assumed to be k f  
leading to the following expression for pt. 

The correlations between the fluctuating velocity and the scalar fluctuations are modelled in a similar 
manner using a mean gradient hypothesis and a typical model is, 



where a+ is a coefficient which, normally, is a constant. For 4 = f i ,  a+ = Sct, and for the static enthalpy, 
(4 = h),  cT,$ = Prt. 

Using the above, the averaged governing equations can be modified using models for the unknown corre- 
lations thus deriving a closed set of equations which can be solved. In this section, these modelled equations 
will be given. The mean continuity equation (16) does not require any further modelling. The momen- 
tum equation (16) has two terms (last two on the right hand side) that require modeling. The modelled 
momentum equation is, 

The correlation pu[i'HM in the thermodynamic energy equation (18) is split into its components here as 

The modelled energy equation then is, 

where uk is a coefficient that appears in the turbulent kinetic energy equation. The intermediate steps that 
lead to equation (29) are straight forward and hence are not included here. The modelled species continuity 
equation is 

Modelling of the turbulence terms in the equations is a major area of research by itself. Details of the 
modelling of the various terms are beyond the scope of this paper. Here the models used, along with the 
relevant references, will be given. The production term is exact in its form and does not need modelling. 
Modelling of the diffusion terms in the turbulent kinetic energy equation has been a well studied area and 
the model employed here is one of the most widely used [19]. The terms identified in the previous section 
as the compressibility terms are included in the present analysis since the flows considered are compressible. 
Recently, there has been a considerable amount of activity in the area of modelling these compressibility 
effects for various turbulence models. A short account of some of these modelling efforts can be found 
in reference [4]. Strahle [20] proposed a global compressibility correction for the turbulent kinetic energy 
equation. Recently, Sarkar et al. [5] proposed a model for the compressible dissipation in terms of the 
dissipation rate of turbulent kinetic energy and the local turbulent Mach number. This has been used in 
the present analysis as the model for the two compressibility terms in the turbulent kinetic energy equation. 
The compressible dissipation model is 

Here Mt is the local turbulent Mach number defined as M: = 2k/a2 where a is the local speed of sound and 
the model constant a! = 1.0. The modelled turbulent kinetic energy equation is [7] 

Modelling of the exact equation for the dissipation rate is extremely difficult, even for incompressible 
Bows, due to the lack of understanding of the various complex correlation terms that are present. There have 



been attempts at including some form of compressibility effects in the E-equation [4] but no viable model 
has emerged eo far. Hence, the incompressible form of the €-equation is used in the present analysis [7]. The 
modelled form of this equation is 

where Pk is the production term in the turbulent kinetic energy equation (first term on the right hand side 
of (32). This term can be written as 

The model constants used in the analysis are C,=0.09, C1=1.44, C2=1.92, uk=1.0, u,=1.3, Pr=0.72, 
Prt=l.O, Sc=0.22 and Sct=l.O. 

Solution of the Governing Equations 

Once the governing equations and required modeling are in hand, the equations are discretized and 
integrated in space and time towards steady state solutions. The governing equations are written in vector 
form as follows. 

where U is the vector of dependent variables, aj are flux vectors containing convective and diffusive terms 
(repeated indices indicate summation), and W are source terms containing production/dissipation terms in 
the equations. The temporally discrete form of equation (35) can then be written as 

where n is the old time level and n + 1 is the new time level. The flux terms are written at the old time 
level because the equations are advanced in real time at the smallest fluid time scale. The source terms in 
the k- and €-equations are decoupled by suitable manipulation of the ratio ~ / k  in the present analysis. For 
example, in the k-equation, the dissipation term is written as, 

The term elk is treated as a known quantity taking its value from the previous time step in the solutions. A 
similar treatment of the source term is done for the €-equation also. These nonlinear turbulence source terms 
are treated in a pointwise-implicit manner while solving the turbulence equations. The k- and €-equations 
are written in the form, 

a ~  n a m  (1- -) (un+l - U ) = - At [A - 
aU ax, wnl 

The jacobian can take different forms depending upon how the source terms are written. In the present T* computations, t is jacobian has the following terms: 



where 

As an option, the chemical source term is also written implicitly (211 to alleviate the problem of stiffness 
in the governing equations when chemistry time scales become small as compared to fluid time scales early 
in a calculation or when the system approaches chemical equilibrium. The governing equations are written 
in two-dimensional cartesian form for the solutions. It must be pointed out here that even though turbulence 
is three-dimensional in nature, the contribution of the fluctuating velocity in the third dimension has not 
been incorporated in the calculations. The discretized equations are solved by means of the elliptic solver 
SPARK [12]. A fourth-order compact scheme is used in the solution procedure. Details of the code and the 
solution procedure can be found in 1121. 

RESULTS AND DISCUSSION 

A two-dimensional, high-speed mixing layer is considered in this study. A schematic of this flow problem 
is given in figure 1. The two streams coming off the splitter plate are supersonic. However, the convective 
Mach number [ll] of the mixing layer ranges from subsonic to supersonic values. The two streams are 
air for the nonreacting cases whereas the higher-speed stream is comprised of a hydrogen-nitrogen mixture 
(10% H2 and 90% Nz) for the reacting mixing layer cases. The inlet mean velocity is assumed to have a 
hyperbolic tangent profile, thus imitating the flow that exists downstream of the splitter plate edge. Ease 
of computations prompted this choice of initial profile for the mean velocity. The initial distributions of the 
turbulent kinetic energy and its dissipation rate are chosen to be compatible with what is observed in such 
a flow problem. A constant turbulence intensity level is used in the free stream for arriving at the initial 
distribution of turbulent kinetic energy and the dissipation rate distribution is deduced from the k-field 
using a length scale parameter. These initial distributions are shown in figure 2. The temperature and 
pressure are assumed to be initially uniform for both the streams. The free stream turbulence intensity 
proved to be a sensitive parameter, especially for the supersonic convective Mach number cases. A constant 
value of the free stream turbulence intensity (with respect to the mean velocity) has been maintained in all 
the calculations. Hydrogen-oxygen reaction systems are considered in the reacting flow calculations since 
this solution procedure is to be applied to scramjet combustor flow studies. One-step (one reaction, four 
species) and multiple-step (eighteen reactions and nine species) reactions have been considered. Different 
sets of computations were done based on the convective Mach number of the mixing layer. Here, for a given 
free stream temperature and pressure, the slower speed stream had the same velocity in all the calculations 
changing only the speed of the faster stream in order to arrive at the required convective Mach number. 

In this section, representative results of the calculations are presented. Comparison with available exper- 
imental data is done in a limited sense. Also, the solutions are compared with the Reynolds stress closure 
predictions carried out at NASA Langley (13,141. Typical predictions of the mean velocity, temperature and 
turbulent kinetic energy for a convective Mach number of 1.5 are given in figure 3. The free stream Mach 
numbers of the two streams are 3.2 and 6.2. These figures show the development of the mixing layer in the 
axial direction and the corresponding changes in the flow variables. A slight shifting of the layer towards 
the lower speed stream is seen here. The mean temperature increases, from its free stream value, inside the 
mixing layer. A similar variation is observed in the turbulent kinetic energy distribution. Figure 4 shows the 
width of the mixing layer (vorticicity thickness) as a function of the streamwise distance. Two values of the 



convective Mach number have been considered. The growth of the layer k linear a.fber the inital development 
of the Bow and in this linear region, similarity in the mean Bow charxteristics can be expected. This is seen 
in figure 5 where the mean velocity and turbulent kinetic energy profiles are plotted in similarity variable 
coordinates. Here y, represents the location where the two streams have a common boundary initially. 

The major d m  of the present work k to extend the widely used incompressible two-equation turbulence 
model for compressible flows. As mentioned earlier, a compressible correction has been incorporated in 
the turbulence model used here. The predicted growth rates of the mixing layer with and without the 
compressibility correction model are plotted in figure 6. For comparison, the results using a global correction 
model [20] are also included. Here C6 is defined as, 

and Cg, is its value for incompressible flow (assumed to be at a convective Mach number of 0.1 here). The 
effect of compressibility on mixing layer is to reduce the growth rate of the layer with increasing convective 
Mach number. This trend is seen in the figure. For the cases without the compressibility correction and 
those with the global correction the growth rate seems to reach a constant value after a convective Mach 
number of about 0.5. However, the effects of compressibility are expected to be more pronounced beyond this 
point leading one to believe that the calculations without the above correction do not address the important 
problem of compressibility well. As seen in the figure, the effect of compressibility is well predicted by 
including the compressibility correction. This has been verified by comparing the predicted growth rate with 
available experimental data, as shown in figure 7. The growth rates predicted by means of the Reynolds 
stress closure[l3] are also shown in this figure. As with any turbulent flow case, the experimental data here 
show a wide scatter [11,15,16,17]. This raises the question of whether the convective Mach number is the 
sole basis for comparison between the wide range of mixing layer data available in the literature. Setting 
aside this question for the moment, the figure shows that the trend of reduced growth rate with increasing 
convective Mach number is predicted very well by the k-E model. The comparison between these predictions 
and the Langley experimental data is excellent in the supersonic range of the convective Mach number. 

One of the important aspects of a two-equation model is that it is well suited for application in engineering 
flow problems from the point of view of ease of adaptability, computational economy etc. However, the model 
has been found to be lacking in certain flow cases where the Reynolds stress closure may be appropriate. 
So, one of the main steps in the present analysis has been to compare the k-E predictions with the Reynolds 
stress closure predictions in order to evaluate its applicability to  the flow problem considered. This is done 
in figure 8. Figure 8a compares the predicted mean axial velocity profiles at representative locations and 
figures 8b and 8c compare the turbulent kinetic energy and dissipation rate profiles, respectively. The 
comparisons show that the k-E predictions agree very well with those of the Reynolds stress model [14] and 
hence for high-speed mixing layer flows applications the two-equation model seems to be suitable. However, 
it must be reiterated that this conclusion does not necessarily carry over to all compressible flow problems. 

Coming back to the question of whether the convective Mach number should be the sole basis for com- 
paring similar mixing layers, calculations were done with different free stream temperatures and velocities. 
Some of the results are shown in figure 9. In this figure, the free stream pressure is the same (1 atm) for 
cases 1 to 4 and it is increased by a factor of 2.1 for case 5. The results indicate some dependency of the 
growth rate on the free stream temperature. The figure also shows the equivalence between two sets of data 
(cases 1&5 and cases 2&4) thus provoking the above question. The quantity Rg,  given by 

is found to be nearly identical between cases 1 and 5 and between cases 2 and 4 for a given convective Mach 
number. The streams that form the mixing layer are both air in these cases. This leads to the speculation 
that in order to have equivalence between two mixing layers, the parameter & must also be considered 
which is a Reynolds number like parameter for mixing layer. 



As mentioned earlier, the computations were sensitive to the initial distributions of the turbulence field. 
However, the free stream turbulence level does not affect the predicted characteristics of the mking layer 
significantly, The compressibility correctien term is dependent upon the local turbubnt Mach number iu4 

defined in equation(31). The magnitude of this term reaches a maximum value approximately equal to one- 
third the dksipation rate (€) inside the mixing layer. This indicates that the two-equation model without 
any correction for the effects of compressibility will be grossly in error in predicting compressible flows. 

Figures 10 - 12 show the results obtained for a reacting turbulent mixing layer using the model described 
in this paper. Hydrogen-oxygen reaction is modelled by means of a 18-reaction steps, 9-species system 
in these calculations. The free stream velocities, pressure and temperature are identical between the two 
cases. The free stream temperature is 2000 K and the pressure is 1 atm. Comparison between reacting 
and nonreacting cases are shown in figures 10 and 11. Figure 10 shows the width of the mixing layer for 
a supersonic convective Mach number. Figures 11 are the mean temperature, axial velocity and turbulent 
kinetic energy distributions. Examination of these figures indicates that the temperature distribution is 
altered, as expected, due to the heat release during the chemical reactions. The temperature reaches a peak 
value of about 2510 K inside the mixing layer. However, the mean dynamic and turbulence fields do not 
change. The width of the shear layer remains almost constant. Figure 12 shows the distributions of the 
primary species in the flow. Mass concentrations of hydrogen, oxygen and water vapor are shown. The 
extent of the reaction zone can be seen clearly here. 

CONCLUDING REMARKS 

A two-equation turbulence model (k - 6) has been modified to be suitable for addressing compressible 
flows. A compressibility correction model based on modelliig the dilatational terms in the Reynolds stress 
equations has been used. A two-dimensional high-speed mixing layer is studied using the model. Comparisons 
of the predictions with available experimental data and the predictions of a compressible Reynolds stress 
closure indicate that the model is well suited for the study of such flows. The decrease in the growth rate of 
the mixing layer with increasing convective Mach number is well predicted by the model. A parameter which 
may be useful to establish the equivalence of mixing layers has been identified. Representative solutions of 
reacting high-speed mixing layers also have been given. This two-equation model is being developed for 
application to reacting, compressible flows. 
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Fig. 1 Mixing Layer (schematic) 

Fig.2 Initial Profiles 
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Fig.3 Predicted Flow Field of Mixing l ayer  

42 2 



Fig.4 Mixing Layer Thickness 

a) Mean axial velocity b) Turbulent kinetic energy 

Fig.5 Mixing Layer Simllarliy Profiles 
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Fig.9 Effect  of  Temperature on Growth Rate 
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Fig.10 Ef fect  of Rsucllons on Mixing Layer Growth 
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Fig. 12 Species Mass Fractions 




