
Recen t U p d a t e of t h e R P L U S ~ B / ~ D Codes

Y-L Peter Tsai
Sverdrup Technology, Inc.

NASA Lewis Research Center Group
Cleveland, Ohio 44135

Abs t rac t

The development of the RPLUS2D/3D codes is summarized. These codes utilize LU algorithms
to solve chemical non-equilibrium flows in a body-fitted coordinate system. Recent improvements
include vectorization method, blocking algorithm for geometric flexibility, out-of-core storage for
large-size problems, and an LU-SW/UP combination for CPU-time efficiency and solution quality.

I. In t roduc t ion

The technology for hypersonic vehicles has been developed for decades. Back in the sixties, the
Air Force and NASA conducted the research on scramjet engines which were proposed for the Aero-
Space Plane [I]. This was the p r e l~de of the recent NASP (National Aero-Space Plane) program.
Due to lack of powerful computers, early hypersonic scientists relied heavily on experiments. Analysis
had to be done on a simplified basis. In the seventies, research on hypersonic planes and scramjet
engines became dormant for more than a decade because of the Apollo and Shuttle missions. Recent
hypersonic research in the eighties revived in a dramatically different environment in which the
capability of computers had grown exponentially since their invention. The methodology in solving
flow problems has also advanced significantly, thanks to the research of numerous mathematicians
and fluid dynamicists. Three-dimensional, Reynolds-average Navier-Stokes simulations have thus
been made feasible. As a result, CFD (Computational Fluid Dynamics) becomes a popular and
promising tool for flow-prediction.

As a participant of the NASP program, NASA LewisResearchCenter supported the development
of the RPLUS2D13D codes. This task is motivated by the need to numerically predict chemical non-
equilibrium flows for the NASP program. Chemical reaction is an important factor for NASP-related
flows. For the scramjet combustor, combustion is undoubtedly the vital issue. In the expansion
nozzle, recombination of atoms and radicals generated upstream of the nozzle, and possibly some
continuous combustion may account for a significant percentage of the thrust. At the NASP surface
and inlet where the hypersonic airstream and solid body come in contact, and across the shock waves
where the flow speed drastically changes, air-dissociation or even ionization may play important roles.
The assumption of chemical-equilibrium may be considered to simplify the problems. However,
the chemical-equilibrium assumption may result in poor prediction, thus its application is quite
limited. For instance, in an Hz/air combustor, the chemical-equilibrium assumption produces an
excessive amount of water vapor, which in turn over-predicts the performance of the combustor.
The RPLUS2D/3D codes therefore incorporate chemical non-equilibrium models.

The size of the systems of equations for non-equilibrium chemistry imposes difficulties in ob-
taining the flow solution. The governing equations include the basic flow equations (continuity,
Navier-Stokes, and energy equations) in addition to a number of species transport equations. It is
not uncommon for a chemistry model to consider more than ten species, which require the same
number of species equations. Multi-dimensional solution of such systems is a major task. It was not
until recent advances of computer capability that three-dimensional simulation of chenlically non-
equilibrium flows has become feasible. Nevertheless, the efficiency of the numerical scheme remains

a vital issue.

One of the important features of the RPLUS2D/3D codes is the use of LU algorithms to march
in time. In the past, both explicit and implicit algorithms for time-integration have been used for
calculating chemical non-equilibrium flows. Among explicit algorithms, the MacCormack [2-51 and
Runge-Kutta schemes [4,6] are most notable. The SPARK code [2] developed a t NASA Langley
center adopts the MacCormack scheme, and more recently, attempted a higher order MacCormack
scheme with some success [3]. Shuen and Liou [6] utilized a two-stage Runge-Kutta in conjunction
with spatially upwind-differenced method. To alleviate the restrictive limitation on time-step due
to stiff source terms, Bussing and Murman [4] proposed implicit treatment for the source terms in
these explicit methods. A number of other researchers prefer marching in time implicitly. Candler
and MacCormack [7] implemented an implicit Gauss-Siedel line-relaxation technique for ionized
flows. Molvik and Merkle [8-91 utilized a three-dimensional AF (Approximate-Factorization) in the
inner iteration of a dual time-step procedure specifically for time-accurate calculation. Walters,
et al. [lo] included in their GASP (General Aerodynamic Simulation Program) code what they
called AF/relaxation and LU/relaxation algorithms. Lee and Deiwert 1111 extended the implicit
flux-vector splitting algorithm of F3D [12] to include non-equilibrium chemistry. In general, implicit
time-marching provides more temporal damping than explicit time-marching, and potentially gives
better overall efficiency. However, implicit methods must be implemented with caution. The stability
characteristics of some approximate factorizations depend strongly on the number of dimensions.
An example is the celebrated AD1 scheme [13] which has a rather restrictive CFL limit in three
dimensions, due to the approximate-factorization error of the order At3. The LU algorithms used
by the RPLUS codes are two-factored, regardless of the number of dimensions. The convergence
characteristics are therefore similar in one, two, or three dimensions.

The LU algorithm originally adopted by the RPLUS code is the so-called LU-SSOR (Symmetric
Successive Over-Relaxation) or LU-SGS (Symmetric Gauss-Siedel) proposed by Yoon and Jameson
[14-151. This scheme was implemented by Shuen and Yoon [16] in the RPLUS2D code, and later
extended to RPLUS3D by Yu, Tsai, and Shuen [17]. The implicit operator of the LU-SSOR is
constructed by upwind differencing the specially formulated split flux Jacobians. For non-reacting
flows, the resulting implicit operator avoids the need for matrix inversion, and is particularly suitable
for solving large systems of equations. Even for reacting flows where source terms are treated
implicitly, the requirement for matrix inversion is kept a t a minimum. Recently, Tsai and Hsieh
[18] modified the split flux Jacobians based on a similarity transformation to construct the so-called
LU-SW (Steger-Warming). Along with the LU-SW, the right-hand-side calculation was modified
from the original central-differencing to the upwind-differencing with Van Leer's flux-vector splitting.
The LU-SW does require block-matrix inversion; however, the LU-SW/UP (Upwind-differencing)
combination provides much stronger temporal damping. Tsai and Hsieh showed the LU-SW/UP
can be more efficient in terms of CPU time than the original LU-SSOR/CD (Central-Differencing)
in two dimensions. Since both LU algorithms remain two-factored in any number of dimensions,
similar improvement can be expected in three dimensions.

This paper gives an updated summary of the RPLUS development. Besides the algorithm,
improvements are made on the capability and flexibility in real application. Most notable improve-
ments are the use of a blocking algorithm and the use of out-of-core storage. The blocking algorithm
tremendously broadens the geometry to which the RPLUS codes can be applied. Difficulty in grid
generation is also alleviated by the blocking capability. For large scale problems where the required
memory storage exceeds the resources available, out-of-core storage is a necessary compromise. This
has recently been made available for the RPLUS codes. These new features are addressed in detail.

11. Governing Equat ions

The governing equations solved by the RPLUS codes are the compressible, Reynolds-averaged
Navier-Stokes equations and species transport equations. For completeness, the three-dimensional

equations are formulated. Written in a strong conservative form, the governing equations can be
expressed as follows:

a + - (G - G,) = H
at (1)

Here x, y, and z are Cartesian coordinates, Q is the dependent variable, El F, and G are the
convective flux vectors:

PU

pu2 + P

Q =

F = [p ! ~ p) , PV W G = [pw" ii p]
v(pe + P) w(pe + P I

P ~ Y ; PWU,

E,, F,, and G, are the viscous flux vectors:

and H is the source vector:

The specific total energy, e, shear stress components, and heat flux components are given as

r y y = 2 p - - - p -+ -+ - ;; : (it ;; 2)
T z z = 2p- - - p - + - + - az 3 ax a y az

In the preceding expressions, p i s the density, u, v , and w are the Cartesian velocity components,
p is the pressure, and e is the specific total energy. The subscript i identifies each species, and 1% is
the total number of species. For i th species, Y;., e i , hi, and wi are its mass fraction, specific internal
energy, enthalpy, and production rate, respectively. The enthalpy of species i is obtained by an
integration of Cp versus temperature:

where Cpi is the constant pressure specific heat which is expressed as a fourth order polynomial of
temperature:

Cpi = Cpio + CpilT + Cpi2T2 + C p ; 3 ~ 3 + cpi4T4

The internal energy of species i can be obtained from hi using the ideal gas assumption which is
valid for high temperature:

e; = hi - RiT (I1)

where R, is the gas constant for species i. The diffusion velocity components, G;, G ; , and 6; are
calculated by Fick's law [23]:

au,
Y;C; = -D;,--- (12.a) ax

and

where

is the effective binary diffusivity of species i in the gas mixture, and Xi is the mole fraction of species
i. Diffusive properties such as viscosity and thermal conductivity are considered as polynomials of
temperature, and the diffusive properties of the mixture are calculated based on Wilke's mixing rule
[24,25]. The binary mass diffusivities are calculated using Chapman-Enskog theory in conjunction
with Lennard-Jones intermolecular potential functions. 1251

The numerical solution of Eq. (1) is performed in a general, body-fitted coordinate system,
(t, q, C). Coordinate transformation of Eq. (1) gives

where

in which h is the cell volume.

111. Recen t Advances

The RPLUSZD code was completed in 1987 and extended to RPLUSJD in 1988. During this
period of time, the codes remained research-oriented and modification was constantly made for
different problems. They were hardly user-friendly due to the lack of user interfaces. From 1989 to
present, a series of improvements have been made to render the RPLUS codes user-oriented. Parallel
to these efforts, new algorithms for improving efficiency and solution quality were also explored. The
details are addressed below.

Program Vectorization

Before a code can be vectorized, the programmer first identifies the operations for which parallel
processing is possible. Once this is done, vectorization usually can be achieved with proficiency in
programming. In cases when parallel processing is not possible, special hardware is required to
accomplish vectorization. The implicit operator of the LU scheme has a recursive property. In the

LU scheme, the A& of the point (i, j , L) requires updated AQ at points (i - 1, j, k), (i, j - 1, k) ,
and (i, j , k - 1) in the Lower sweep, and updated values a t (i + 1, j, k), (i , j + 1, k) , and (i , j, k -i; 1)
in the Upper sweep. At first glance, parallel processing seems to be out of the question. However,
the solutions of the points in a plane normal to the sweeping direction are independent and can be
parallel-processed. In other words, the points on the planes represented by the equation, i + j ; k =
constant can be parallel-processed. The schematic of these planes is shown in Fig. 1.

T h e vectorization of the program is done by reorganizing the indices of the grid points
for parallel-processing planes. Before the main iteration begins, mappings between the three-
dimensional index, (i, j, k), and two sets of two-dimensional indices, (ipoint, iplane), are generated
for the Lower and Upper sweeps. The index ipoint identifies the points in a parallel-processing
plane, and iplane identifies the planes. These mappings are stored as sets of integer arrays which
can be invoked by the Lower and Upper sweeps. On CRAY computers, the mapping arrays can
be used directly in DO-loops to achieve efficient vectorization. The strategy described does have
short-comings. The rather short vector-length near the upper and lower corners makes vectorization
somewhat incomplete. Nevertheless, these inefficient vector-processing regions do not constitute a
significant efficiency-reduction on the CRAY for two reasons. Firstly, the vector length grows rapidly
away from the corners. (The vector length is approximately proportional to square of the distance
between the plane and the corner.) Secondly, CRAY's maximum computation speed can almost
be reached with a rather short vector-length (e. g., 100). In fact, the CPU time for the implicit
operator is reduced by a factor of nearly 10 simply by the described strategy.

The vectorization of the right-hand-side is relatively straightforward. In principle, three-
dimensional vectorization is_ possible for the RHS. However, our experience on CRAY shows very
little difference among one-, two-, and three-dimensional vectorization due to its architecture. The
program is therefore vectorized in one dimension for better readability of the codes.

Blocking Logic

In order to enhance the capability of the RPLUS codes in handling complex geometries and
flows, a blocking algorithm is implemented. The need for blocking is obvious when structured grids
are used. Many geometries encountered in practical application, e. g. the nose-tatail of the NASP,
cannot be represented with a single-block grid. In association with the blocking algorithm, a set
of flexible boundary conditions is installed, allowing specifying well-posed boundary conditions a t
grid-cell level. The boundary conditions currently installed include supersonic inflows and outflows,
subsonic inflow, no-slip and tangency, freestreams, and interior boundaries (interfaces of blocks).

Blocking the grid does impose difficulty in using the LU algorithm. With the requirement
for vectorization, the coding logic can be exceedingly complex. Currently the RPLUS codes use a
simplified method in which the LU sweeps are performed independently for each block rather than
performed for the whole grid. Figure 2 shows the schematic of this method for a two-dimensional,
blocked grid. Notice that a t the block interfaces, the boundary conditions for the LU sweeps are
the same as any other bounda~ies. The instability this simplified method may incur is no more
than what other boundaries can produce. Actual calculations also confirm that there is no apparent
stability problem or deterioration of convergence speed on the interfaces.

The block-RPLUS codes have found many applications since their completion. One example is
the study of combustion and mixing phenomenon of the dump combustor in a scramjet engine [19].
The geometry and flow configuration are shown in Fig. 3.a and 3.b. for H2/air dump combustors
with parallel and transverse injectors. The rearward facing step is a common gimmick for enhancing
mixing. Grid generation for such geometry can be a major task if only one block is allowed to be
used. With two blocks, on the other hand, the grid generation becomes exceedingly simple.

The hydrogen mass fraction and temperature distribution for both cases are shown in Fig. 4
and Fig. 5, respectively. The grid sizes are 41,000 points for the transverse-injection case and
23,700 points for the parallel-injection case. The chemistry model used is a 9-species, 18-step H2/air
reaction model by Brabbs [20]. Each case takes approximately 20 to 30 hours of CPU time on a
CRAY-2. Figures 4.a and 4.b show the hydrogen mass fraction for transverse- and parallel-injection

cases. Comparing the downstream hydrogen mass fraction shows that the transverse-injection case
provides a more complete combustion. This is due to a longer flow residence time and a better mixing
mechanism of the transverse jet. The bending of the transverse jet results in a secondary flow which
provides an excellent mixing mechanism. The secondary flow can be visualized in Fig. 4.a in which
the transverse jet develops into a so-called kidney shape. The advantage of using the parallel jet is the
smaller pressure loss as opposed to the transverse jet. The corresponding temperature distributions
are shown in Figs. 5.a and 5.b. In both cases the recirculation zones generated by the steps have low
subsonic speed and high temperature. The temperature distributions show that the mixing pattern
in the parallel injection is somewhat different from that in the transverse injection. In the parallel
injection case, the jets tend to recirculate sideways into the corner, while the transverse injection
tends to mix the jets with the upstream air.

Out-of-Core Storage

While there is a growing demand for large-scale, three-dimensional computations, sufficient
resources for core memory may not always be available. An alternative for such a dilemma is the
use of secondary storage. Recently the possibiIity of utilizing secondary storage for the RPLUS3D
code has been assessed. An experimental RPLUS version that requires a much smaller core memory
has been developed. This version has been tested for a typically large grid of 360,000 (100 x 60 x 60)
points. It requires only 5.7 Megawords for solving a nine-species chemical system, as opposed to 50
Megawords for the original version. For the secondary storage, the SSD (Solid-state Storage Device)
currently available to CRAY-XMP and YMP appears to be the best candidate. Although using
magnetic disks is also possible, the waiting time for the mechanical movement may result in a long
lapse time for a small amount of CPU time.

The idea of out-of-core storage is stocking the major portion of data while operating on a minor
portion of the data. For a three-dimensional problem at least two strategies can be considered. The
first strategy is dividing the three-dimensional domain into much smaller subdomains. The data for
each subdomain are stored in the secondary storage ordered on direct-access records. Operations
are then done for one subdomain at a time, and updated data are written to the proper records
when the operations are finished. The second strategy is storing the data based on two-dimensional
planes. At any given time, data for a number of planes may be required to appear on the stage.
The updated data are stored back to the designated records after required operations are done. The
I/O efficiency of a strategy depends not only on the frequency of accessing but also on the manner
that the data are stored. For direct-access storage, longer records give more efficient access. If
both strategies give identical results, the first strategy seems to be more attractive since it gives the
freedom of controlling the record-length. For implicit schemes, however, the first strategy requires
using explicit boundary conditions on the interfaces of the subdomains. The RPLUS3D therefore
chooses the second strategy.

The programming logic currently used by the RPLUSSD for storing the two-dimensional planes
is by no means the most efficient one. Due to vectorization considerations, the planes whose data
are stored in records are of constant-I, -J, -K for RHS calculation and of constant-I+J+K for LHS.
In each iteration, the data files have to be reorganized four times to ensure efficient retrieve. This
demands a tremendous amount of 110. A more efficient way is to vectorize the RHS calculation for
constant-I+J+K planes, the same as for the LHS calculation. This can avoid the need to reorganize
the data files. The experimental version of RPLUS3D is currently modified to adopt this strategy.

LU-SW and Upwind-differencing

The RPLUS codes are originally designed to use LU-SSOR/CD. The efficiency and solution
quality of this algorithm have recently been re-assessed, and other possible algorithms have been
explored [6,18]. Among them, the LU-SW/UP has been identified as a promising algorithm. This
algorithm has been added to the RPLUSZD.

The finite-difference equations for the LU-SSOR and LU-SW have the same generic form. In

two dimensions, both can be expressed by

= AtRHS

The two LU algorithms have different ways in constructing the split flux-Jacobians. For LU-SSOR,
the split flux Jacobians are defined as

where 7~ and 7. are greater than the spectral radii of the associated flux Jacobians :

Y-il > max(l~ . 1)
For the LU-SW, the split flux Jacobians are defined as

in which A:, etc., are the diagonal eigenvalue matrices, and M ~ , etc., are the right eigenmatrices.
In the LU-SSOR, the flux Jacobians are split in such a fashion that the block-matrix inversion is

avoided. The eigenvalues of the resulting split flux-Jacobians are inconsistent with the characteristic
speeds of the flow. Because of this inconsistency, relatively slow convergence is usually observed using
this scheme. The LU-SW, on the other hand, requires block-matrix inversion and each iteration is
more expensive. However, because the LU-SW scheme uses split Jacobians whose eigenvalues are
consistent with the characteristic speeds of the flow, it is apt to give a convergence rate faster than
the LU-SSOR in terms of number of iterations.

The efficiency of the LU-SSOR and LU-SW schemes are strongly affected by the method of
the right-hand-side discretization, which can be central or upwind. The flux-vector splitting by
Van Leer [21] is selected for upwind-differencing. Higher order accuracy is achieved by the MUSCL
procedure [22]. The two LU schemes and two methods for right-hand-side discretization result in
four combinations, namely, LU-SSOR/CD, LU-SSOR/UP, LU-SW/CD, and LU-SW/UP. Among
these combinations, the LU-SW/CD can be shown to be unstable by a stability analysis [18]. The
efficiency of the other three combinations is tested by three cases : (1) 15' ramp, (2) 20' ramp with
expansion, and (3) jet in crossflow.

Figures 6.a) 7.a) and 8.a show the geometry and flow conditions for the three test cases. In
cases 1 and 2, a premixed Hz/air flow passes through a ramp. Chemical reaction is activated by

the high temperature induced by oblique shocks, boundary layers, and their interaction. Case 3
simulates the combustion process in a hydrogen combustor. In all three cases, the optimum CFL
number is infinity for the LU-SSOR and approximately 1.5 for the LU-SW. The flows are assumed
to be laminar. Figures 6.b, 7.b, and 8.b. show the corresponding convergence histories. The CPU
seconds required by each scheme for reducing the residual by one order are tabulated in Table. 1.
It clearly shows that the LU-SW/UP scheme is the most efficient among the three.

Table 1. CPU Seconds for Reducing Residual by One Order.

LU-SSOR/CD
LU-SSOR/UP

LU-SW/UP

Other Improvements

The most updated versions of the RPLUS codes are designed to cope with a variety of flows.
They are able to compute perfect-gas or real-gas, single-species or muItipIe-species, inviscid or vis-
cous, non-reacting or reacting flows. All these options can be used conveniently without modifying
the codes. For chemistry models, a 9-species, 18-step Hz/air combustion model is stored internally
as one of the default options. Suitable chemistry models will be installed in the future. Any other
chemistry models can be defined through an input file. In addition to the Ha/air combustion model,
real-gas properties such as the specific heats, viscosity and thermal conductivity of a number of
species are also stored internally for convenient usage. All these features make the RPLUS codes
extremely flexible and useful.

Case 1
675
477
225

IV. Conclusion

Continuous effort a t NASA Lewis has improved the RPLUS codes significantly. The updated
RPLUS codes have included a number of new features for practical application. To handle complex
geometry and simplify grid generation, a blocking logic is incorporated. Out-of-core storage shows
potential in calculating large size problems with limited core-memory. The LU-SW/UP algorithm
improves the overall efficiency as well as solution quality. These improvements not only make the
RPLUS codes more ready for use, but also impose an impact on their future development. Future
work includes advance turbulence modelling such as the k - 6 modelling and PDF (Probability
Density Function) modelling. For geometry flexibility, an algorithm for multiple, mismatched grid
with global conservation law will be explored.

Case 2

1908
1620

Acknowledgement

Case 3
1500

900

This work was supported by NASA Lewis Research Center under contract NAS3-25266. The
computer time is provided by the Numerical Aerodynamic Simulation Program (NAS). The support
is gratefully acknowledged.

References

1. Rubert, K. F., "Aero-Space Plane," Joint Meeting of the Bumblebee Aerodynamic Composite
Design and Propulsion Panels, Silver Spring, Maryland, November 15-16, 1961.

2. Drummond, J. P., Rogers, R. C., and Hussainni, M. Y., "A Detailed Numerical Model of

a Supersonic Reacting Mixing Layer," AIAA paper 86-1427, AIAAj.ASME/SAE/ASEE ?2nd
Joint Propulsion Conference, 1986.

3. Uenishi, K., Rogers, R.C., and Northam, G.B., "Three Dimensional Computations of Trans-
verse Hydrogen Jet Combustion in a Supersonic Airstream," AIAA Paper 87-0089, AIAA 25th
Aerospace Sciences Meeting, Jan. 12-15, 1987, Reno, Nevada.

4. Bussing, T.R.A, and Murman, E.M., "A Finite Volume for the Calculation of Compressible
Chemically Reacting Flows," AIAA Paper 85-0331, AIAA 23th Aerospace Sciences Meeting,
Jan. 14-17, 1985, Reno, Nevada.

5. Carpenter, M. H., "Three-Dimensional Computations of Cross-Flow Injection and Combustion
in a Supersonic Flow," AIAA Paper 89-1870, AIAA 20th Fluid Dynamics, Plasma Dynamics
and Lasers Conference, Buffalo, NY, June 12-14, 1989.

6. Shuen, J.-S., Liou, M.-S., "Flux Splitting Algorithms for Two-Dimensional Viscous Flows with
Finite-Rate Chemistry," AIAA Paper 89-0388, AIAA 27th Aerospace Sciences Meeting, Jan.
9-12, 1989, Reno, Nevada.

7. Candler, G. V., and MacCormack, R. W., "The Computation of Hypersonic Ionized Flows in
Chemical and Thermal Non-Equilibrium," AIAA Paper 88-0511, AIAA 26th Aerospace Sciences
Meeting, Jan. 11-14, 1988, Reno, Nevada.

8. Molvik, G. A., and Merkle, C. L., "A Set of Strongly Coupled, Upwind Algorithms for Comput-
ing Flows in Chemical Non-Equilibrium," AIAA Paper 89-0199, AIAA 27th Aerospace Sciences
Meeting, Jan. 9-12, 1989, Reno, Nevada.

9. Molvik, G. A., "Computation of Viscous Blast Wave Solutions with an Upwind, Finite-Volume
Method," AIAA Paper 87-1290, June 1987.

10. Walters, R. W., Cinnella, P., Slack, D. C., and Halt, D., "Characteristic-Based Algorithms
for Flows in Thermo-Chemical Non-Squilibrium," AIAA Paper 90-0393, AIAA 28th Aerospace
Sciences Meeting, Jan. 8-11, 1990, Reno, Nevada.

11. Lee, S.-H., and Deiwert, G. S., "Calculation of Non-equilibrium Hydrogen-Air Reactions with
Implicit Flux Vector Splitting Method," AIAA Paper 89-1700, AIAA 24th Thermophysics Con-
ference, June 12-14, 1989, Buffalo, NY.

12. Ying, S. X., "Three-Dimensional Implicit Approximately Factored Schemes for the Equations
of Gasdynarnics," Ph. D. Thesis, Stanford University, Jun. 1986.

13. Pulliam, T. H., and Steger, J . L., "Implicit Finite-Difference Simulations of Three Dimensional
Compressible Flow," AIAA Journal, Vol. 18, 1980, pp. 159.

14. Yoon, S., and Jameson, A., "An LU-SSOR Scheme for the Euler and Navier-Stokes Equations,"
AIAA Paper 87-0600, Jan., 1987.

15. Jameson, A., and Yoon, S., "Lower-Upper Implicit Schemes with Multiple Grids for the Euler
Equations," AIAA Journal, Vol. 25, No. 7, July 1987, pp. 929-935.

16. Shuen, J . S. and Yoon, S., "Numerical Study of Chemically Reacting Flows Using an LU
Scheme," AIAA paper 88-0436, Jan., 1988.

17. Yu, S-TI Tsai, Y-L P., and Shuen, J-S, 'LThree-Dimensional Calculation of Supersonic Reacting
Flows Using an LU Scheme," AIAA paper 89-0391, 27th Aerospace Sciences Meeting, Jan. 9-12,
1989, Reno, Nevada.

18. Tsai, Y.-L. P., and Hsieh, K.-C., "Comparative Study of Computational Efficiency of Two LU
Schemes for Non-Equilibrium Reacting Flows," AIAA paper 90-0396, 28th Aerospace Sciences
Meeting, Jan. 8-11, 1990, Reno, Nevada.

19. Tsai, Y-L P., Yu, S-TI "Further Development of the RPLUS3D Code," Paper 8, 7th National
Aero-Space Plane Symposium, Cleveland, Ohio, Oct. 23-27, 1989.

20. Brabbs, T. A., personal cornmuxlication.

21. Van Leer, B., "Flux-Vector Splitting for the Euler Equations," Lecture Notes in Physics, Vol.
170, 1982, pp. 507-512.

22. Van Leer, B., "Towards the Ultimate Conservative Difference Scheme V. A Second-Order Sequel
to Gudonov's Method," J. Comput. Phys., vol. 32, 1979, pp. 101-136.

23. Kuo, K. K., (1986). Principles of Combustion, p. 165. John Wiley & Sons, Inc., New York.

24. Wilke, C. R., "A Viscosity Equation for Gas Mixture," J. Chem. Phys., Vol. 18, No. 4, Apr.
1950, p. 517.

25. Reid, R. C., Prausnitz, J. M., and Sherwood, T. K., (1977), The Properties of Gases and
Liquids, 3rd Ed., McGraw-Hill, New York.

i + j + k = constant L =0.16 m 3
H =W =0.04 m
1 1

1 i 9 j ? k +
. H2=W2=0.06 m

D. =0.005m

i , j + l , k I e t

i , j , k
i + l , j , k Fig. 3.a Geometry and Flow Conditions for Dump

Combustor with Transverse Injection.
Lower-Sweep Upper-Sweep

Fig. 1 Schematic of Program Vectorization.

Flow

Flow

Block 1

Block 2

Block 3

Fig. 2 Schematic of LU Sweeps in a Multi-Block
Grid.

Fig. 3.b Geometry and Flow Conditions for Dump
Combustor with Parallel Injection.

CONTO%JR LEVELS
0 . 0 0 0 0 0
0 . 1 0 0 0 0
0 . 2 0 0 0 0
0 . 3 0 0 0 0
0 . 4 0 0 0 0

GRID 1

GRID 2

Fig. 4.a Hydrogen Mass Fraction for Dump Combustor with Transverse Injection.

CONTOUR LEVELS
0 . 0 0 0 0 0
0 . 1 0 0 0 0

Fig. 4.b Hydrogen Mass Fraction for Dump Combustor with Parallel Injection.

CONTOUR LEVELS
700.0000
1000.000

7x36~36 GRID 1

43x60~60 GRlD 2

Fig. 5.a Temperature Distribution for Dump Combustor with Transverse Yx Injection.

GRlD 1

GRlD 2

premixed H / A i r
9 = 1.0 -
p = 1 a t m 5
T = 900 K - N

M = 4
-C

-3.0

LU-SSOR/&.D.
- t . 6 CFL = 10

I \ \, 0.9 secliter.

LU-SSORIBP
CFL = 10

-9.0
0.954 secliter.

Fig. 6.a Geometry and Flow Conditions of 15"
Ramp.

O - O r NO. OF ITERATIONS

Fig. 7.b Convergence Rate for 20° Ramp with ex-
pansion.

--
I 15 cm

0.9 secliter. A ~ I -
H - 4 -
p - I at.
T - 1001L1L

1 - 1.0 j: -
T - 600 K
p - 4 acm

Ht
slot w i d t h - 0 . 3 em

!-----J
0.954 s e c l i t e r Fig. 8.a Geometry and Flow Conditions of Jet in

Crossflow.
0.0 -

-13.6 -
-1 .5 -

-16.0

NO. OF ITERATIONS

Fig. 6.b Convergence Rate for 15' Ramp.

p r e m i x e d H,/Air
0 - 0.2 - -
p - l arm
T - 900 K .,
W - 4 1.8 secliter.

-13.6 -

NO. OF ITERATIONS

Fig. 7.a Geometry and Flow Conditions of 20"
Ramp with expansion. Fig. 8.b Convergence Rate for Jet in Crossflow.

