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ABSTRACT

An aeroelastic analysis is developed which has general application to all

types of axial-flow turbomachinery blades. The approach is based on lin-

ear modal analysis, where the blade's dynamic response is represented

as a linear combination of contributions from each of its in-vacuum free

vibrational modes. A compressible linearized unsteady potential theory

is used to model the flow over the oscillating blades. The two-

dimensional unsteady flow is evaluated along several stacked

axisymmetric strips along the span of the airfoil. The unsteady pressures

at the blade surface are integrated to result in the generalized force acting

on the blade due to simple harmonic motions. The unsteady aerodynamic

forces are coupled to the blade normal modes in the frequency domain

using modal analysis. An iterative eigenvalue problem is solved to de-

termine the stability of the blade when the unsteady aerodynamic forces

are included in the analysis. The approach is demonstrated by applying

it to a high-energy subsonic turbine blade from a rocket engine

turbopump power turbine. The results indicate that this turbine could

undergo flutter in an edgewise mode of vibration.
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CHAPTER I - INTRODUCTION

1.1 Introduction

The development of propulsion system technology during the last forty

years has encountered and overcome many technological barriers. Se-

veral problems associated with advanced high temperature materials,

turbine cooling, and fuels and combustion were resolved with the end re-

sult of significantly higher component efficiencies and reduced fuel con-

sumption. For gas turbine powerplants, these advances led to lighter

overall designs and higher power densities compared to earlier designs.

The accomplishments of lighter designs for the turbomachinery compo-

nents also led to some drawbacks due to the reduced margins on the de-

sign factor-of-safety.

Fan and compressor designs during this period placed primary emphasis

on higher aerodynamic Ioadings, and lighter blade weight to increase the

gross power without sacrificing fuel efficiency. This trend led to increas-

ingly frequent problems resulting from aerodynamic and structural inter-

actions. A particularly serious problem was due to aeroelastic instability,

flutter, which began to occur more often.

because the technical consensus at

- ]. -

This was a surprising problem

the time considered that
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turbomachinery blading had sufficiently high

avoid aeroelastic problems.

stiffness and strength to

Aeroelasticity is a science concerned with the mutual interactions among

the structural (inertial and elastic) and aerodynamic characteristics of a

structure immersed in a flowing fluid. Under certain conditions, when a

vibrating structure begins to extract energy from the flowing fluid the

structure will experience self-excited vibration. This self-excited vibration

is a dynamically unstable condition, and is referred to as flutter. Up to

1960, the most common use of aeroelasticity theory was focused On the

analysis of aircraft structures. Static aeroelasticity associated with wing

divergence and dynamic aeroelasticity and flutter control were areas of

active research for structures subjected to external flow, such as aircraft

structures.

The aeroelastic problems which began to occur for systems under internal

flow, i.e. turbomachinery, resulted from a combination of (a) lighter and

higher stressed blade designs operating at (b) higher fluid velocities rel-

ative to fixed wing external aircraft structures. Successful solution of the

aeroelastic problems in turbomachinery required more robust mechanical

designs like the incorporation of part-span and tip shrouds and the use

of lacing wires and intentionally introduced friction damping. Unfortu-
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nately, these mechanical modifications resulted in an increase in compo-

nent weight in addition to a degradation in the aerodynamic performance

of the machine.

Designers of modern

disciplinary effects must

turbomachinery designs.

propulsion systems have discovered that multi-

be considered in order to achieve reliable

The interaction of the distinct physical proc-

esses of fluid dynamics, structural dynamics and thermodynamics of the

entire engine system is becoming more important. The traditional method

of designing for aerodynamic performance, independently of the struc-

tural dynamics of the system is no longer a viable approach.

The application of aeroelasticity theory to propulsion systems has enjoyed

considerable attention during the time period from 1960 to the present.

Advances in methods for computational fluid dynamics (CFD) and finite

element analysis methods have greatly expanded the applications of

aeroelastic theory. Current methods for predicting aeroelastic stability

(flutter) rely upon a variety of unsteady aerodynamic models, from simple

flat-plate representations of the blade up to complicated CFD analyses.
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A thorough review of turbomachinery aeroelasticity requires an under-

standing of the physical mechanisms which dominate this type of prob-

lem. There are basically two physical processes which interact with one

another within an aeroelastic system. These processes are (a) the un-

steady aerodynamic behavior and (b) the structural dynamic behavior of

the turbomachinery blading. The unsteady aerodynamic problem is con-

cerned with estimating the aerodynamic response of a blade which is

undergoing a periodic oscillation. This problem is complicated due to the

fact that there is a transfer of energy between the blade and the flowing

fluid. The structural dynamics of turbomachinery blading requires the

study of the dynamic response of the blade under both free and forced

vibration conditions. Aeroelasticity is an investigation of these combined

aerodynamic and structural dynamic effects.

The review of previous work within the field of turbomachinery

aeroelasticity is presented in the following order. A survey of the occur-

rence of aeroelastic problems, most notably self-excited vibrations or

flutter, for various types of turbomachinery including aircraft engine fans,

compressors and turbines is presented. This is followed by an examina-

tion of some of the fluid dynamic models which have been proposed to
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solve the unsteady aerodynamic problem of oscillating airfoils under se-

veral different flow regimes. Finally, a review of aeroelastic models which

have been applied to turbomachinery analyses over the past thirty years

is included.

1.21 Turbomachinery Aeroelastic Problems

Reports of aeroelastic instability, or flutter, occurring in actual

turbomachinery such as aircraft engines or power generation turbines are

relatively rare. This is not unexpected, because the design and develop-

ment of high-energy gas turbines represents a very expensive undertak-

ing, often requiring millions of dollars and many years of design work

prior to customer acceptance or certification. Some instabilities are re-

ported in the literature, either as a result of catastrophic failures, or de-

velopment delays in highly visible aerospace projects. Gas turbine

manufacturers are often quick to publish results when such problems

come into common knowledge in order to prove that a redesign will per-

form successfully.

Carter and Kilpatrick [1] were one of the first to publish an investigation

of the aeroelastic response of a multi-stage compressor operating under

part-speed conditions. Their experiments were conducted on the



-6-

compressors of power generation turbines to determine the vibratory

stresses on the stator vanes during stall flutter and rotating stall condi-

tions. The results from their experiments led to the introduction of some

modified design correlations based on reduced frequency and incidence

angle limits for high-speed compressors.

Jeffers and Meece [2] present a diagnosis of a fan stall flutter occurrence

for the Pratt & Whitney F100 turbofan engine which was discovered during

engine development testing. Stall flutter was found to occur for the first-

stage fan at high Mach numbers under off-design conditions near the

surge threshold of the engine. The fan was designed using the standard

empirical correlation rules employed for all of Pratt & Whitney's engine

designs up until that year. A full structural redesign of the fan including

airfoil thickening and the modification of the part-span shroud was re-

quired to overcome the flutter problem. The authors expressed the need

for a more reliable subsonic flutter prediction system to augment the ex-

isting empirical database which at that time was the standard technique

used for aeroelastic design.

An outline of the aeroelastic design system used by General Electric was

described in the work of Cardinale, Bankhead and McKay f3]. This paper

presents a general overview of the empirical design system which had
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been verified over several years of engine testing and in-service opera-

tion of aircraft gas turbine engines. A detailed discussion of

turbomachinery mechanical and aerodynamic design, including the ex-

perimental identification of aeroelastic problems is also included. A

strong conclusion from this paper is that the inherent complexities of

turbomachinery, due to variations in operating conditions and flight en-

velopes, require the application of conservative design rules based on

thousands of hours of existing engine test experience.

Aeroelastic problems are not solely limited to aircraft gas turbine engines.

However, these engines are more prone to these problems because of the

stringent thrust/weight requirements of propulsion systems relative to

other types of gas turbines. A flutter problem encountered within the last

stage turbine of a Westinghouse industrial combustion turbine was docu-

mented by Scalzo, Allen, and Antos [4]. The problem was found to occur

within the last stage turbine under operating conditions where the inlet

air density was high relative to normal operation. High-cycle fatigue

cracking was caused by a self-excited vibration in the first bending mode

of the blade. A rotor-based telemetry system was used to quantify the

vibratory stress levels under hostile high temperature operating condi-

tions [5]. The turbine blade was redesigned to stiffen the base of the

blade and to increase the natural frequency of the blade, thus giving more
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acceptable margin for flutter. Large amplitude dynamic response due to

buffeting was also reported for the blades which did not flutter, although

the large response is probably attributable to extremely low aerodynamic

damping for those blades.

The impact of higher energy costs during the 1970's led to the develop-

ment of high-efficiency aircraft propulsion systems, most notably the ad-

vanced turboprop or propfan engine. This engine concept replaced the

standard fan of the modern turbofan with a high bypass ratio propeller-

like fan, hence the name propfan. The NASA Lewis Research Center

(LeRC) development and testing of propfan concepts during the early

1980's. An unexpected flutter instability occurred for the propfan denoted

SR-5 and it is reported in Mehmed, Kaza, Lubomski and Kielb [6]. This

propfan was made up of highly swept and twisted flexible blades which

experienced classical subsonic coupled bending-torsion flutter. Different

numbers of blades were tested on the rotor and the effect of the increased

aerodynamic coupling due to higher blade numbers led to a stronger de-

stabilization of the rotor.

The occurrence of classical flutter in the SR-5 propfan led to an effort to

develop more accurate aeroelastic analysis for propfan design. A propfan

test model was designed by NASA LeRC intentionally to encounter flutter
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in the wind tunnel. This propfan designated SR3C-X2(Mehmed and Kaza

[7]) was a composite blade designed using a specific ply layup to result

in natural frequencies and mode shapes which would lead to flutter of the

blade under test conditions. Their work verified the accuracy of the

aeroelastic analysis methods by demonstrating that a blade could be de-

signed which would flutter at a specific operating condition.

1.22 Unsteady Aerodynamic Models

The underlying physics of an aeroelastic problem requires that the fluid

pressure response due to the blade vibration be determined: The devel-

opment of unsteady aerodynamic models for the motion-dependent be-

havior of cascades can be classified in a variety of ways. The most

common distinction is made for blades where the influence of airfoil

shapes can or cannot be neglected. A further complication to the analysis

is that the unsteady aerodynamic behavior is

equations depending upon if the flow is

subsonic/supersonic (transonic), or fully supersonic.

governed by separate

subsonic, mixed

The following dis-

cussion of unsteady aerodynamic models attempts to cover some of the

efforts within each of the flow regimes which modern turbomachinery op-

erates in.
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One of the first investigations of the inviscid, incompressible unsteady

aerodynamics of cascades of blades was reported by Whitehead [8,9].

His technique was to solve for the unsteady vorticity distribution along flat

plates which were undergoing rigid translational and rotational harmonic

oscillations. The airfoil vibration was applied as a boundary condition by

modifying the velocity upwash along the airfoil surface. The first paper [8]

was limited to flows over flat plates which caused no steady flow de-

flection, a truly unloaded flat plate representation of the blades. His later

work [9] extended the analysis to account for the steady aerodynamic

loading in the boundary condition gradient terms. The agreement of the

unsteady aerodynamic results was much better with experimental data

when the steady loading was included in the unsteady analysis.

This finding implied that the effect of steady aerodynamic loading was

important for the unsteady aerodynamics of airfoils, even when modeled

using simplified, flat plates in incompressible flows. Atassi and Akai [10]

developed an approach for incompressible flows over airfoils having

thickness and camber operating within a nonuniform steady flowfield.

They discovered that airfoil shape and steady aerodynamic loading had

a very strong influence over the unsteady aerodynamic response of os-

cillating cascades.
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Requirements to reduce the noise problem associated with aircraft engine

fans and compressors presented the need to address compressible flows,

and the acoustic properties of turbomachinery operating within such

flows. A development for the unsteady subsonic flow within cascades of

oscillating flat plates has been reported by Smith [11]. This work was

primarily concerned with quantifying the acoustical properties of the cas-

cade by placing special emphasis on the identification of "acoustic reso-

nance" phenomena for the cascade. The occurrence of acoustic waves

greatly complicated the compressible unsteady flow problem when com-

pared to the incompressible flows.

Namba [12] advanced a similar technique for application to subsonic cas-

cades of flat plates operating under steady aerodynamic loading due to

flow incidence. This work concluded that as for the incompressible case,

the effect of steady aerodynamic loading had a considerable influence

over the unsteady blade forces. Ni [13] presented a complete unsteady

aerodynamic analysis for unloaded flat plates for application to both sub-

sonic and supersonic flows. A thorough discussion of the identification

of the acoustical characteristics of oscillating airfoils within these flow re-

gimes was presented.
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The development of higher tip speed fans and compressors during the

1970's opened up a unique flow regime for unsteady aerodynamic re-

search. Operation of turbomachinery at supersonic blade tip rotational

speeds and subsonic flight speeds results in a special flow problem

termed "supersonic flow with subsonic leading-edge". This flow condition

develops when leading edge Mach waves form but do not pass into the

cascade because the axial flow velocity remains subsonic. A trailing edge

Mach wave also forms and it impinges upon the adjacent blades in the

cascade. Considerable effort was devoted to this supersonic flow prob-

lem because supersonic torsional flutter was becoming more frequent in

the new high-speed designs.

Verdon [14] developed a velocity potential method for solving the super-

sonic flow with subsonic leading-edge problem for a cascade consisting

of a finite number of oscillating airfoils. The method incorporated an an-

alytical solution for the potential upstream of the cascade leading edge

line matched to a finite-difference solution within the cascade region and

the wake region of the cascade. The Laplace transform solution of

Kurosaka [15] allowed analysis for infinite cascades of blades, which pre-

sented considerable improvement in computational time over Verdon's

approach. This formulation resulted in closed-form analytical solutions
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for the blade unsteady forces which could be solved quickly on the com-

puter, although the technique was limited to low reduced frequencies.

Verdon and McCune [16] presented an approach based on a Laplace

transform solution which had application to the full range of reduced fre-

quencies. A similar solution using a the Wiener-Hopf technique was de-

scribed in the work of Adamczyk and Goldstein [17]. This method results

in a full analytical solution for the unsteady flow problem. Adamczyk and

Goldstein's model is popular and widely used in the turbomachinery field.

Miles [18] initiated the unsteady aerodynamic work for flows which had

supersonic axial flow over the leading edge of the blade in 1956. Lane

[19] presented a similar analysis which evaluated the integral equations

and accounted for the Mach wave reflections in the blade-row. Interest in

supersonic transport in the late 1980's led to renewed interest in the

analysis of supersonic axial flow. Ramsey and Kielb [20] developed an

algorithm for solving the formulations of Miles and Lane efficiently on a

computer.

Most of the methods discussed to this point have considered the cascade

to consist of flat plates, or cascades where the steady flow was fully un-

coupled from the unsteady flow. Ni and Sisto [21] presented an approach
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which solved the unsteady Euler equations for a cascade of blades using

a time-marching integration method. The work was limited to flat plate

airfoils undergoing harmonic motions, but the method was one of the first

to solve the unsteady Euler equations using a finite-difference solution.

A key feature of the method was that the mean steady-state flow was fully

coupled to the unsteady flow in the cascade. A disadvantage of the ap-

proach was that the time integration resulted in long computer running

times.

Another time integration solution for the unsteady Euler equations was

presented by Huff and Reddy [22]. They employed a deforming grid

method for solving the unsteady Euler equations for cascades of super-

sonic fan blades modeled using a finite-difference strategy. They pre-

sented results for a flat plate cascade and compared the solution using

the unsteady Euler equations and a small-disturbance supersonic theory

which showed excellent agreement. Results were also included for a

highly cambered supersonic fan blade undergoing torsional oscillation.

Disadvantages of this method were excessively long computer running

times and a limitation which required multiple computational grids for

small interblade phase angles.
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Verdon and Caspar [23] developed a solution method for the unsteady

potential equation by linearizing the unsteady flow about a nonuniform

steady flowfield. The thickness and camber of the airfoils in the cascade

was accomodated by solving the unsteady potential as being a small dis-

turbance about the nonuniform steady potential field. The nonlinear

steady full potential flow was coupled to the harmonic unsteady potential

caused by blade vibration. Results showed the effect of airfoil shape and

flow incidence with comparison to flat plate analysis. An advantage of this

method was that a direct matrix solution for the unsteady potential was

obtained compared to iterative solutions commonly used in CFD applica-

tions. The direct solution scheme results in reduced computational time.

The transonic unsteady flow problem was investigated by Verdon and

Caspar [24] in 1984. The linearized unsteady potential flow theory was

used to model flows containing weak cascade shocks. The shocks were

assumed to undergo small-amplitude harmonic motion during airfoil os-

cillation. The unsteady flow was assumed to be a first-order harmonic

perturbation of the nonlinear steady flow field. Shock fitting was used to

model the unsteady shock motion. Whitehead [25] presented a solution

for the linearized unsteady potential equation which was similar to the

method of Verdon although his approach utilized a finite element solution

scheme. This technique also used a shock-capturing method for the
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steady flow, although the results compare very well with those of Refer-

ence [24].

1.23 Aeroelastic Analysis Models

System energy models were commonly used to predict flutter inception in

turbomachinery prior to 1970. The unsteady aerodynamic loads were

modeled using isolated airfoil thin-wing theories which were developed

for aircraft aeroelastic analysis. These isolated airfoil theories were often

applied at the 3/4 span location of the blade, and an assessment of the

work that the aerodynamic loads performed could be determined by con-

sidering the unsteady aerodynamic forces and the blade mode shape.

Stability was determined based on whether the work of the fluid on the

blade was either positive (unstable) or negative (stable). An example of

this type of model is described by Carta [26]. His work was principally

concerned with studying the effect of blade-disk-shroud structural dy-

namic coupling, although the isolated airfoil theory was incorporated to

simulate blade-to-blade aerodynamic coupling.

A need for higher pressure ratios and increased thrust in the 1970's re-

sulted in turbomachinery having higher tip speeds. Aeroelastic modeling

utilizing the new unsteady aerodynamic models for turbomachinery more
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accurately estimated the onset of flutter. Snyder and Commerford [27]

used an energy method which applied the supersonic/subsonic leading

edge model of Verdon [14] to predict flutter of high-speed fan flutter. In

addition, they also performed an experiment in a linear cascade of seven

oscillating blades to measure when flutter would occur for ranges in Mach

number and frequency. The agreement between the supersonic unsteady

aerodynamic model and the measured flutter conditions was very good.

It was noted that the cascade effects of the adjacent blades caused the

system to be less stable than the isolated airfoil theory predicted, and

they concluded that cascade unsteady aerodynamic theory must be used

for the unique unsteady flows of turbomachinery.

A description of the flutter prediction model used by Pratt & Whitney Air-

craft in 1975 is outlined in the work of Mikolajczak, et. al. [28]. This work

discovered that the empirical correlations and design rules formerly used

were inadequate for flutter analysis of high-speed flows. The aeroelastic

model was an energy model where the sum Of the calculated aerodynamic

and structural damping was used as a measure of stability. The model

incorporated unsteady aerodynamic theories of Whitehead [8], Smith [11],

and Verdon [14] for estimation of unsteady aerodynamic forces in the

incompressible, subsonic, and supersonic flow regimes. This work em-
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phasized the importance of accurate blade vibrational analysis, blade-disk

structural coupling, and unsteady aerodynamic forces in flutter analysis.

The aeroelastic models up to 1980 were primarily based on energy meth-

ods, where the blades were assumed to vibrate in a single degree-of-

freedom or in a single vibrational mode. A new trend in flutter analysis

was to include multiple degrees-of-freedom for the blade and to investi-

gate the effect of coupling on blade flutter. Bendiksen and Friedmann [29]

presented an aeroelastic model which incorporated two degrees-of-

freedom (DOF) for the blade. This approach utilized the incompressible

cascade theory of Whitehead [8]. A lumped parameter model of a "typical

section" along the span of the blade was used which had one bending and

one torsional degree-of-freedom. The results imply that bending-torsion

coupling can have a pronounced effect on cascade flutter, and that accu-

rate aeroelastic analysis must account for multiple degrees-of-freedom.

The lumped parameter two DOF model became the most commonly used

approach for aeroelastic analyses during the 1980's, and serves as the

workhorse of modern turbomachinery flutter analysis. The combination

of the unsteady aerodynamic theories of Smith [11], Adamcyzk and

Goldstein [17], and Ramsey and Kielb [20] combined with the coupled

bending-torsion two DOF blade description has resulted in flutter predic-
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tion models which are relevant for all of the flow regimes of modern

turbomachinery.

All of the aeroelastic models discussed assume that each blade within a

rotor is identical, having exactly the same natural frequencies and mode

shapes. This system is termed a "tuned" system. Research to determine

the aeroelastic behavior of systems which have small statistical variations

in dynamic properties of the adjacent blades on the rotor has begun.

Such a rotor is referred to as "mistuned" because the dynamic behavior

of the rotor is no longer uniform from blade-to-blade. A study of mistuned

systems ([30] to [33]) has concluded that the tuned system represents the

most unstable configuration for a rotor. Mistuning has a stabilizing effect

on the flutter stability of rotors, primarily due to a break-up of the cyclicity

of the rotor. This was an important conclusion because the analysis of

mistuned rotors was computationally expensive, and knowledge that the

tuned analysis is conservative simplifies the turbomachinery designer's

task.

The occurrence of flutter in the SR-5 advanced propfan indicated that a

flutter problem existed which could not be predicted using the available

aeroelastic analysis methods. The propfan was a thin, swept, flexible

propeller blade which experienced large-amplitude self-excited vibration
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during performance testing at NASA LeRC [6]. The complicated

vibrational behavior of the blade could not be properly predicted using a

simple typical section two DOF aeroelastic model.

Nonlinear large-displacement beam structural dynamic models were in-

troduced in order to incorporate the three-dimensional properties of the

blade. Kaza and Kielb [34], [35] developed an analysis which modeled

the blades as cantilevered beams having varying properties along the

span. The model also accounted for the effects of centrifugal stiffening of

the beam. The unsteady aerodynamic forces were evaluated at several

radial positions along the span of the beam and the forces were numer-

ically integrated along the span to arrive at an unsteady aerodynamic

generalized force. The unsteady aerodynamic models used were those

of Smith [11] for subsonic flows and Adamczyk and Goldstein [17] for

supersonic flows.

The beam models of the propfans resulted in better analytical prediction

of the experimental flutter conditions. But the wind tunnel propfan models

underwent complicated coupled vibrational modes, which could not be

fully simulated using the beam representation. The finite element method

was chosen to model the propfan blades so that the simulation of the

flexible blade dynamics could be accomplished more accurately.
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Turnberg [36] first applied the finite element method to the analysis of

propfan flutter in 1983. He used modal analysis to base the aeroelastic

response on the in-vacuum free vibration modes of the blade. The sub-

sonic theory of Smith [11] was used to determine the unsteady aerodyna-

mic forces acting at several "strips" along the span of the blade. The

comparison with experimental results was very good. A disadvantage of

the method was that the aerodynamic model assumed that the flow on

each strip was two-dimensional, even though experimental flow visual-

ization found that large spanwise flows occurred for the propfan blades.

An extension of the finite element based modal aeroelastic analysis was

developed by Kaza, et. al. [37] by incorporating a three-dimensional un-

steady aerodynamic theory. The aerodynamic model used a lifting sur-

face theory to model the blade using oscillating doublets which were

placed on panels along the three-dimensional surface of the blade. This

approach showed excellent agreement with the wind tunnel experiments

for flutter prediction over a wide range of speeds. The primary limitation

of the lifting surface aerodynamic model was that the airfoil was modeled

as a zero-thickness camber line with zero flow incidence.
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The purpose of this work is to present the development and application

of an aeroelastic stability analysis which is suitable for all types of axial-

flow turbomachinery. A review of the related previous work has discov-

ered most of the aeroelastic analyses developed to date have been

restricted to two degree-of-freedom lumped parameter models or flat

plate small-disturbance unsteady aerodynamic models which disregard

the effects of steady aerodynamic loading. The unsteady aerodynamic

models which account for steady aerodynamic loading often require con-

siderable computer running times which prevent their use within pro-

duclion aeroelastic codes. Based on the results of the literature review,

the present work was begun with the objectives to:

Develop an aeroelastic stability analysis suitable for general axial-flow

turbomachinery blade designs having varying degrees of airfoil

camber and thickness and operating in compressible flows.

Utilize two-dimensional steady full potential and linearized unsteady

potential flow theory to calculate the motion-dependent aerodynamic

loads acting on the blade during vibration.
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Account for three-dimensional aeroelastic effects by calculating the

unsteady aerodynamic loads on two-dimensional strips which are

stacked along the span of the blade from airfoil hub to tip.

Use modal analysis to couple the in-vacuum natural vibrational modes

of the blade to the motion-dependent unsteady aerodynamic loads

within the frequency domain.

Demonstrate capability by applying method to a high-energy subsonic

turbine rotor blade which is suspected to experience aeroelastic

problems.

The implementation of this analytical formulation was performed at NASA

LeRC in support of their turbomachinery aeroelasticity research. NASA

LeRC is developing an aeroelastic analysis for turbomachinery called the

Forced REsponse Prediction System (FREPS) which is applicable to flutter

and forced response prediction for fans, compressors, and turbine blades.



CHAPTER2 ANALYTICAL DEVELOPMENT

2.1 Aerodynamic Analysis

The fluid flow within the turbomachinery blading is modeled along stacked

two-dimensional streamsurface "strips" over the blade from the airfoil hub

to tip. This model is a simplification of the three-dimensional flows which

occur in turbomachinery blades. However, it is fair to assume that the

streamsurfaces for a high hub/tip ratio turbomachine are almost two-

dimensional, except close to the hub and the tip of the blade where sec-

ondary flows dominate.

The linearized potential theory of Verdon and Caspar [24] is used to

model the unsteady flow within the blades. This linearized potential ap-

proach assumes that the unsteady flow resulting from airfoil oscillation is

a small perturbation of the nonlinear steady-state (or "mean") flow. It is

assumed that the primary influence of blade thickness and camber on the

unsteady flow is due to the motion of the airfoil through the nonuniform

steady flowfield. The steady full potential flowfield is evaluated prior to

solution of the unsteady potential flow in order to account for the coupling

of the steady and Unsteady flows. A brief description of the governing

equations and solution for both the steady full potential flow and the

- 24 -
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linearized unsteady potential flow follows. A detailed review of the steady

and unsteady aerodynamic formulation used may be found in Verdon [38].

2.11 Steady Full Potential Flow

The steady compressible flow along a two-dimensional surface is calcu-

lated using the full potential method of Caspar, et. al. [39], A finite-area

technique is utilized to solve the continuity equation for a single blade

passage. For compressible, inviscid, isentropic, and irrotational steady

flow of a perfect gas, the continuity equation can be solved uniquely for

the steady flow.

v.(pv) = 0 (1)

In terms of the velocity potential, equation 1 yields the steady full potential

equation (equation 2).

V-(pV(l)) = 0 (2)

The flow variables ,o and V are nondimensionalized by their values at the

inlet of the passage denoted as state 1. This nondimensionalized
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equation, along with the steady Bernoulli equation and the ideal

equation of state results in an expression for the local density.

gas

1

2 (3)

The inlet Mach number at state 1 is M1 and the specific heat ratio of the

gas is "V. The steady potential flow within the cascade may be solved us-

ing the continuity equation of eq (2) and the local density description of

eq (3). The solution is also solved for weak shock waves for which the

flow is assumed to remain isentropic and irrotational. The steady flow

analysis incorporates an artificial viscosity scheme in supersonic regions

to stabilize the calculations (by Caspar [40]).

Figure 1 includes a figure showing a two-dimensional representation of

the cascade with the inlet and exit flow velocity vectors indicated. A dia-

gram of the cascade geometry, including the stagger angle, airfoil-chord,

cascade gap and the leading and trailing edges is included on figure 2.

The regions where the boundary conditions for the full potential equation

are applied are shown on the blade-to-blade cascade of figure 3.

The boundary conditions for the mean potential flow require the airfoil

surface flow tangency condition (equation 4).
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V_.n = 0 along the airfoil surface (4)

An additional boundary condition is applied at the periodic boundaries

as

V (_)lower periodic = V(_)upper periodic (5)

which states that the flow is continuous across the periodic boundaries.

The boundary condition at the upstream boundary 1 requires specification

of the inlet Mach number M, and the inlet flow angle _1.

The airfoil is assumed to have a sharp trailing edge, such that the Kutta

condition may be satisfied. The addition of a wedged trailing edge also

simulates the viscous interaction of the upper and lower surface flows

which meet at a blunt trailing edge. This Kutta condition allows the

downstream flow angle /_2 to be prescribed as the bisector of the blade

trailing edge metal angle. The overall mass conservation can then be

solved for the downstream exit Mach number M2.

The finite-area solution of equation (2) requires the use of a spatial mesh

to discretize the flow passage. The approach of Reference [40] uses two

spatial meshes for the mean flow solution. An H-type of computational

mesh is used to capture the overall flow details of the passage. A C-type
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of computational mesh is also used to resolve the finer flow details

around the leading edge (LE) stagnation point and around shocks. Ex-

amples of these types of meshes are shown on figure 4. The mass con-

servation equation is applied to the cells of the finite-area mesh for the

solution of equation (2). A successive line over-relaxation scheme is used

to iteratively solve the nonlinear steady potential equation.

2.12 Linearized Unsteady Potential Flow

The unsteady flow, i.e. that flow caused by airfoil oscillation, is calculated

using the linearized potential approach of Verdon and Caspar [24]. The

unsteady flow is modeled as a small-amplitude potential perturbation

from the steady potential flow. The unsteady potential is a scalar repre-

sentation of the velocity which requires that the unsteady flow remain

irrotational and isentropic. The airfoils in the cascade are assumed to

vibrate with small-amplitude harmonic motion and a constant phase angle

between adjacent blades.

These assumptions permit the unsteady equations of motion for the flow

to be reduced to a single partial differential equation which is solved for

the harmonic unsteady potential. The unsteady potential equation is

shown in nonconservative form in equation 6.
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D2_)

Dt 2
1 V_).V(V(1))2 + V_).V(V(I).V_))= a2V2_) (6)_+-_-

In this equation (t) is the steady velocity potential and 4) is the unsteady

velocity potential. The unsteady substantial derivative operator is

D0 ko 0 + Vq_-(). Derivation of equation (6) from the unsteady Euler
Dt

equations is shown in Appendix A.

The boundary conditions for the unsteady potential problem require

specification of conditions along the upstream and downstream, vibrating

airfoil surfaces, and the cascade periodic boundaries (figure 5). The sur-

face flow tangency condition requires

bounded by the moving airfoil surfaces.

any general deformation mode, as indicated in figure 6.

boundary condition along the airfoil is

that the unsteady flow remain

The airfoil surface may undergo

The surface

v, -- - (7.V)V(l)]-n (7)
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where n is a unit vector normal to the airfoil surface, r is the airfoil dis-

placement vector, V, is the velocity tangent to the airfoil surface, and -_ is

the unit vector tangent to the airfoil surface.

The first term of equation (7) defines the velocity of the airfoil normal to

its surface during oscillation. The second term represents the rotation of

the airfoil through the steady potential field. The last term extrapolates

the surface boundary conditions along the surface of the oscillating airfoil

to the mean location of the airfoil in the steady reference frame.

Expressing the surface boundary conditions of the oscillating airfoil at the

steady airfoil location permits solution on a stationary, nondeforming

computational grid. A Taylor series expansion of the moving airfoil lo-

cation relative to the steady airfoil location is applied to extrapolate the

boundary conditions to the steady airfoil surfaces. First-order (linear)

terms are retained in this series expansion (Reference [38]) which results

in the last term of equation (7).

Substitution of the harmonic time dependence into equation (7) results in

the surface boundary condition of equation (8).

[J(o7+ (va).;)(7.v)7 - (T.V)Va,].E (8)
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The periodic boundary condition for the unsteady potential is prescribed

as a constant phase angle difference in time for the adjacent blade in the

cascade. Since the airfoil is assumed to undergo harmonic motion, the

solution for flow passages adjacent to the computational passage simply

vary by a constant harmonic "interblade phase angle" _ (see figure 5).

The adjacent blade's harmonic motion in terms of the interblade phase

angle is given by equation (9).

/j+l ei_°t = _ ei(Cot+or) (9)

The j represents the blade number on the rotor. All of the flow variables

are assumed to vary between adjacent flow passages by this interblade

phase angle relationship. The upstream and downstream boundary con-

ditions are determined from analytical expressions for the far-field poten-

tial fluctuations due to blade oscillation.

The equation for the unsteady potential is solved using a weighted ]east-

squares finite difference discretization. Differencing weights are deter-

mined from the coefficient terms of equation (6). The blade passage is

discretized using the same type of global and local computational meshes

as described for the steady potential computation (figure 4). Solution for
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the unsteady potential is obtained by a direct matrix solution of equation

(6).

The unsteady pressure/:; is found from the unsteady expansion

/; =/_ + (r.V)# (10)

where/_ represents the harmonic pressure and the second term repres-

ents the first-order Taylor series expansion for the pressure variation due

to the airfoil motion through the steady potential and pressure fields.

The harmonic pressure is calculated from the unsteady potential as

P=--P Dt

- ÷ (11)

The unsteady forces and moments acting on the airfoil are determined by

integrating the harmonic pressure of equation (10) over the airfoil surface.

The unsteady flow problem described in this section is determined for a

prescribed set of steady flow and unsteady flow parameters. The steady

flow parameters for a particular airfoil geometry and working fluid are (a)
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the inlet Mach number MI and (b) the inlet flow angle _1, where the exit

Mach number and angle are determined from the trailing edge Kutta

condition. The unsteady flow parameters are (a) the blade displacement

vector r', (b) the interblade phase angle (7, and (c) the vibrational reduced

ceb
frequency k - V"

The nondimensional reduced frequency k is a measure of the unstead-

iness of the flow. In general, the reduced frequency can be viewed as the

ratio of the time a fluid particle takes to pass over the surface of the blade,

b
i.e. proportional to --_-, compared to the time it takes to complete one cycle

1
of blade vibration ---_-. Thus, when the reduced frequency is low, i.e. less

than or equal to 0.5, the flow is varying in approximately the same fashion

as the excitation. This situation can lead to large unsteady aerodynamic

forces. Likewise when the reduced frequency becomes high, i.e. larger

than 0.5, the excitation is much higher than the fluid particle velocity and

the flow has little time to react to the excitation. Flows at higher reduced

frequencies usually result in relatively low unsteady aerodynamic forces.

2.2 Structural Dynamic Analysis

Dynamic analysis of blades of general shape is most efficiently accom-

plished using the finite element method (FEM). The FEM permits a
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straightforward method for estimating the dynamics of blades having

complex geometries and being made of advanced anisotropic materials.

The dynamic equations of motion for the finite element representation of

the blade are shown below

[M]{6} + [C]{u} + [-K]{u} = {FA(t)} + {FM(t)} (12)

where the n global degrees-of-freedom (DOF) displacements are {u}. The

structure mass, damping, and stiffness are represented by the matrices

[M],EC], and [K], respectively. The forcing terms on the right-hand

side of equation (12) represent the external forces due to aerodynamic

{FA(t)} and mechanical {FM(t)} sources.

The undamped homogeneous form of equation (12), i.e. neglecting forcing

terms and damping, represents the free vibration problem of the blade.

Solution of the free vibration problem requires the solution of the real

eigenvalue problem

_2[M]{u-}. : [K]{_-} (13)

which results in the set of n eigenvalues con and eigenvectors {q_n}. These

eigenvalues represent the undamped natural frequencies for the blade

and the undamped natural modes, or mode shapes.
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The dynamic motion of the blade, in the presence of forcing functions and

damping, is assumed to be represented as a linear combination of con-

tributions from each of a reduced set of the free-vibration natural modes.

This modal expansion using m modes for the n DOF system assumes that

the dynamic displacements can be written as

{u(t)} = E(l)]{q(t)} (14)

where [_] is the n x m modal matrix having the undamped eigenvectors

{_n} arranged columnwise. The vector {q(t)} is the time-dependent modal

coordinate vector. The modal coordinates represent a measure of each

of the natural vibrational mode's contribution to the dynamic displace-

ments. The choice of which m modes to retain for the dynamic analysis

depends upon the nature of the expected forcing function. The contrib-

ution of modes having high natural frequencies relative to the forcing fre-

quency will be low. In general, only those modes having frequencies

close to the expected forcing frequency or vibrating frequency need to be

retained.

Substitution of equation (14) into the original dynamic equations of motion

equation (12), and premultiplying by the transpose of the modal matrix
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[(:I:)] T, transforms the dynamic equation from

space. The modal equation of motion becomes

physical space to modal

T
_PMG.]{q} + [CG]{q} + [KG3{q } = [-_)] ({FA(t)} + {Fa(t)} ) (15)

where this equation represents m equations, so that the dynamic problem

has been reduced from a system of n equations.

The following definitions are used for the transformed matrices

["M6J: [_)]T[M][-(I)]

[CG] : [e]T[c][e] •

_r'K6,] : [_)]T[K][(I)]

(16)

These matrices are known as the generalized mass, generalized damping,

and generalized stiffness matrices and they are of size m x m. The gen-

eralized mass EMG_] and generalized stiffness ['Ko.] matrices are diagonal

due to the orlhogonality of the eigenvectors to the physical mass I-M] and

stiffness [_K] matrices.

It is difficult to accurately determine the generalized damping matrix

[CG] because of the complicated nature of damping in turbomachines.

Damping for a blade is strongly dependent upon material damping,

damping in connections, such as contact stresses in turbine blade roots,
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and structural interfaces such as shroud gaps. These types of con-

nections are often a nonlinear function of displacements, and a consider-

able amount of research has been devoted to damping models with little

definite success.

A common assumption for modeling generalized damping is to assume

equivalent modal damping, which is similar to single DOF damping, ap-

plied to each individual vibrational mode of the structure. The concept

of modal damping results in the following diagonal generalized damping

matrix

[_CG] = [2_'_nJ (17)

where the modal damping ratios _ corresponding to each individual mode

are along the diagonal.

The force expression on the right-hand side of equation (15) is referred to

as the generalized force vector {Q(t)} and it is defined in equation (15).

T
{o(t)} -- ({FA(t)}+ {FM(t)}) (18)

Using the definitions
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T
{QA(t)} = rd)] {FA(t)}

T
{OM(t)} = [_] {fM(t)}

(19)

simplifies the total generalized force as the sum of the aerodynamic gen-

eralized forces {QA(t)} and the mechanical generalized forces {QM(t)}

The final form of the modal equations of motion, using the above defi-

nitions, becomes

_r'MGJ{# } + _CG_]{(_ } + _'KG3{q } = {Q(t)} (2o)

which represents the m modal equations for the system. Note that this

equation, with the assumption of modal damping, represents a system of

m uncoupled, second-order ordinary differential equations. This is a sig-

nificant simplification from the system of n fully coupled equations as

given by equation (12). The loss of accuracy due to the modal truncation

can be reduced by including more modal coordinates, and basis mode

shapes, within the analysis.

2.3 Aeroelastic Model

The rotor for the present study is assumed to vibrate as a "tuned" rotor,

where every blade on the disk has the same natural frequencies and
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mode shapes. This assumption is obviously inaccurate, because every

blade will have small differences due to the manufacturing process, in-

stallation effects, etc. But a tuned rotor always results in the most con-

servative estimate of flutter, as was discussed in section 1.23, and

additionally significantly simplifies the computational effort for aeroelastic

analysis.

The tuned rotor implies that the rotor blades have equal amplitudes of

motions while having a constant phase lag between adjacent blades. This

assumption results in a travelling wave which passes along the periphery

of the rotor with a certain frequency and wavelength which corresponds

to the constant interblade phase angle _. A tuned rotor may vibrate with

any of N possible interblade phase angles where N is the number of

blades on the rotor.

The interblade phase angles are limited to the discrete values

2, U- 1)
e/= N (21)

forj = 1 to N. The vibration of the rotor in the or/h interblade phase angle

refers to thejth travelling wave of the rotor.
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Incipient flutter is a linear problem since the vibration up until it becomes

unstable is small-amplitude and occurs at a definite individual frequency.

Flutter prediction is concerned with identifying the conditions where the

vibrations just begin to go unstable.

Since the vibrations occur at a single frequency, the modal coordinate

vector can be assumed to vary harmonically in time. This is represented

as

{q(t)} = {_}e j_t (22)

where the vibrational frequency, i.e. the flutter frequency _or, is assumed

to be close to a natural frequency of the blade. Such an assumption im-

plies that the dynamic displacements of the aeroelastic system {u(t)} are

harmonic, and consist of a linear combination of harmonic vibrations of

each undamped mode which corresponds to the modal coordinates {_}.

The unsteady aerodynamic forces on the blade are applied to the blade

as the external aerodynamic forces {FA(t)}. When the mechanical forces

are neglected, the generalized forces reduce to only the aerodynamic

generalized forces (equation 23).

T

{Q(t)} = [(D] {FA(t)} (23)
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The external aerodynamic forces may be classified as either (a) motion-

dependent-aerodynamic forces or (b) motion-independent aerodynamic

forces. The motion-dependent forces are caused by the response of the

fluid to the underlying blade motion. The pressure response of the fluid

lags the motion of the blade, so that the motion-dependent forces are re-

presented as complex having in-phase (real) and out-of-phase (imaginary)

parts. The motion-independent forces result from aerodynamic

excitations such as incoming pressure waves or velocity wakes, and these

forces are primarily of importance in determining the forced response of

aeroelastic systems. For linear flutter analysis, they play no role in the

prediction of stability and will be neglected.

The motion-dependent unsteady aerodynamic forces are modeled as

complex nodal loads which act at the finite element physical DOF. Since

linear unsteady aerodynamic theory was assumed the full unsteady forces

can be represented as a summation of the forces caused by motion at

each of the natural modes of vibration of the blade. This assumption is

similar to the expansion of the physical DOF using modal analysis.

Following this assumption, the motion-dependent unsteady aerodynamic

forces are modeled as

{FA(t)} = o_f2r_R ]{q(t)} (24)
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with [R_ being the n x m unsteady aerodynamic modal forces having

each individual force vector {R} arranged columnwise, as in the modal

vector r_]. The force vector {R}j is the unsteady aerodynamic forces

acting at each blade DOF due to vibration of the blade in thej th mode. The

coefficient _or2 results because of the scaling of the unsteady pressures by

the inlet steady dynamic pressure term -_VI 2.

The modal unsteady forces are strongly dependent upon the assumed

flutter frequency _or, interblade phase angle _, inlet Mach number M1 and

the rotor speed. The calculation of the modal aerodynamic forces {R}j is

accomplished in the following procedure:

1. Interpolate the blade mode shape {_}i from the finite element model

to the unsteady computational mesh.

2. Solve the linearized unsteady potential equation using the mode

shape {q_}j as the airfoil displacement vector r'.

3. Calculate the resulting unsteady pressure/_ along the airfoil surface.

4. Integrate the surface unsteady pressure/_ along the airfoil surface to

result in unsteady concentrated forces {R}j which act at the finite ele-

ment nodal DOF.
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The resulting force vector due to the jt_ airfoil mode shape, is the modal

unsteady force vector {R}j

Substitution of the motion-dependent force expression of equation (24)

into the generalized force of equation (23) results in the following

2 T
{Q(t)} =_f [-_] [R]{q(t)}

or

{Q(t)} = cof2[A ]{q(t)}

and the modal aerodynamic matrix is

I-A] -- [(b]T[R]

(25)

(26)

which is of size m x m.

A physical interpretation of [A] is that the A,j element represents the

aerodynamic generalized force in the i th mode caused by motion of the

blade in thejr_ vibrational mode. This matrix is in general nonsymmetric,

and has complex elements which-include the magnitude and phase of the

generalized unsteady aerodynamic forces. The matrix also requires har-

monic time variation because the unsteady aerodynamic model used is

only applicable for harmonic blade motions.
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Definition of the modal aerodynamic matrix permits substitution of eqs

(25) and (26) into the equation of motion equation (20) to result in

_'MG]{#} + _r'cGJ{q}+ _r'KGJ{q} =ojf2rA]{q}. (27)

The harmonic motion assumption could now be applied to reduce this

system to an eigenvalue problem. Unfortunately, the presence of damp-

ing in this equation prevents a straightforward eigensolution of the modal

equations because they are in quadratic form. Eigenvalues of a damped

system occur in complex conjugate pairs, resulting in 2m eigenvalues,

whereas the modal equation (27) contains only m equations.

A state vector transformation is used to express equation (27) in state

space, which results in a system of 2m equations for the 2m eigenvalues.

This transformation (Reference [41]) involves defining the auxiliary vari-

ables

(28)

which results in the state space representation of the system of equations

[M*]{_:} = [K*]{_} (29)
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with the modified partitioned matrices defined as

I [0] (['MG.]+ [A(cot)])]([MG] + [A(co;)]) ['CGJ ]

(30)

The state-space variables {_} are assumed to have harmonic variation in

time, as

{_} = {_}e "_t (31)

so that the transformed modal equation of equation (29) becomes the fol-

lowing aeroelastic eigenvalue problem

2[M'-I{_} = [K']{_} (32)

which is a 2m x 2m complex eigenvalue problem.

The set of complex eigenvalues from the solution of equation (32) are ex-

pressed as
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). =/1 + vi (33)

where the real part (/_) of the eigenvalues represents a measure of the

system damping, both mechanical and aerodynamic, and the imaginary

part (v) of the eigenvalues represents the damped natural frequency of the

system.

The "2m" eigenvalues are used to assess the stability of the system for the

vibration at the frequency (or. The stability of the system is governed by

the real part of the eigenvalues. When the real part # is greater than or

equal to zero, the system will be unstable, with the vibration amplitude

growing exponentially in time. Flutter is said to occur when /_ = O, a

neutrally stable condition, or when /1 > O, an unconditionally unstable

condition.

The eigenvalue problem represented by equation (32) requires an itera-

rive solution because of the dependence of the modal aerodynamic matrix

upon the assumed frequency cot. Solution of this problem, for a specific

rotor speed and Mach number, requires calculation of the modal aero-

dynamic matrix and damped eigenvalues for an assumed frequency (or.

The calculated eigenvalue of interest from equation (32) must have the

frequency portion v equal to the assumed flutter frequency (or because of
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the restrictions of the unsteady aerodynamic theory. If the calculated

eigenvalues are not equal to the assumed flutter frequency, the new as-

sumed flutter frequency is set to the calculated damped natural frequency

coi= v. The modal aerodynamic matrix is recalculated and the

eigensolution continued in this fashion until convergence is achieved.



CHAPTER3 - APPLICATION OF METHOD

3.1 Computer Program

An outline of the computer implementation of the aeroelastic model from

Chapter 2 is diagrammed in figure 7. The procedure involves reading in

the blade geometric information, i.e. finite element model, and also read-

ing the free-vibration eigenvalues and eigenvectors. The free-vibration

analysis is performed using either the MSC/NASTRAN or the MARC

general-purpose finite element packages. The aeroelastic strip definitions

are input after the blade geometry and modal information. Each strip is

defined by specifying a locus of finite element nodal points along the

airfoil surface. For each strip the inlet velocity triangle for the flow is

specified. Additionally, the aeroelastic parameters (flutter frequency _o_,

interblade phase angles _) are input.

Along each strip, the computational grids are generated for the calcu-

lation of the steady and unsteady potential flows. The method currently

uses two different sets of grids for the steady and the unsteady flow

problems. The steady flow solution for each strip is calculated and stored

in database files on the computer. Similar information is initialized for the

unsteady flow on each strip and stored in the database files.

- 48 -
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FREPS begins the aeroelastic analysis by initializing the supplied data-

base files which contain the steady potential solution and the computa-

tional grid information. The

using the procedure outlined

mode shapes are determined

modal aerodynamic matrix is calculated

in figure 8. The airfoil two-dimensional

from the finite element eigenvectors for

each strip. The mode shapes are interpolated from the finite element ref-

erence frame onto the unsteady aerodynamic computational grid. The

unsteady flow due to the enforced airfoil mode shape is solved along each

strip by the method of section 2.12.

Numerical integration of the unsteady pressures along the airfoil surface

is used to calculate the modal unsteady aerodynamic force vector {R}j

due to the jr, natural mode. The jth column of the modal aerodynamic

matrix [AJ is evaluated in a loop over all the modes as A,j = {q_}r,{R}i.

This procedure is followed for all of the blade natural modes to completely

determine the [A] matrix.

3.2 SSME HPOTP Turbine Description

The method outlined above was used for the aeroelastic stability analysis

of the Space Shuttle Main Engine (SSME) turbopump power turbine. The
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SSME is a hydrogen-fueled liquid rocket engine which generates 512,000

Ibf of thrust at full power. Each rocket engine is fed by four turbopumps,

two high pressure and two low pressure booster pumps. The high pres-

sure turbopumps are driven by axial-flow gas turbines which are powered

by hydrogen-rich steam generated in individual preburners.

The High Pressure Fuel TurboPump (HPFTP) supplies the liquid hydrogen

propellant to the main combustion chamber. The power turbine for the

HPFTP generates 75,000 horsepower at a rotor speed of 36,000 RPM.

Each turbine blade of this rotor transmits over 700 horsepower. The High

Pressure Oxidizer TurboPump (HPOTP) supplies the oxidizer to the com-

bustion chamber. The HPOTP gas turbine generates 30,000 horsepower

at 28,000 RPM with each blade transferring approximately 300 horse-

power.

Both the HPFTP and the smaller HPOTP operate in a severe environment

at pressures of up to 5000 psi and temperatures close to 1600 deg F.

Turbine blade cracking has been a continual problem for both of the high

pressure turbopumps. A material replacement of single-crystal alloys for

the HPFTP has effectively reduced the blade cracking problem.
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A cross-sectional view of the HPOTPturbopump is provided on figure 9

which shows the pump impellers, shaft, gas turbine, preburner, and the

turbine blade coolant jet ring. The first stage turbine blade has experi-

enced frequent cracking in the shank region of the blade. The cracking is

believed to be due to a resonant excitation of the second vibrational mode

of the blade with cooling jets which direct a steam mixture to the blade

shanks. There are 19 equally spaced cooling jets distributed circumfer-

entially at a radius on the shank just above the top fir-tree attachment

lobe. The blade dimensions are approximately 1.4 in. (3.56 cm) tall, tip

chord of 0.66 in. (1.68 cm) and an airfoil span of 0.5 in. (1.27cm) with a tip

diameter of 10.8 in. (27.43 cm).

The HPOTP first stage turbine has blade-to-blade friction dampers in-

stalled to provide additional mechanical damping to keep vibrational am-

plitudes low. The original friction dampers were a one-piece design which

did not provide sufficient damping to prevent fatigue cracking early in the

development program. A redesign of the dampers in 1985 to a led to a

reduction in cracking and longer service life, but the desired design life

of 55 launches has yet to be realized.

NASA LeRC's involvement in the SSME HPOTP blade cracking problem

was to assist in identifying methods for determining the level of mechan-
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ical and aerodynamic damping which exist on the HPOTPturbine blade

and to estimate the vibratory stress levels caused by the cooling jet and

the blade-row aerodynamic interaction forcing functions. The aerodyna-

mic damping for these blades is essentially due to the motion-dependent

unsteady aerodynamic response of the fluid as the blade undergoes vari-

ous modes of vibration. This report presents the aeroelastic stability

analysis for the HPOTP turbine blade, including estimates of the level of

aerodynamic damping, and a determination of the stability of the motion.

3.3 Aeroelastic Model

The aeroelastic model for the HPOTP first stage turbine blade consists of

(a) the finite element model of the blade and (b) the aerodynamic strip

definitions along the airfoil of the blade. The finite element model used

for this work was provided by the the SSME contractor, Rocketdyne Divi-

sion of Rockwell International Corp. The original finite element model was

from the ANSYS general-purpose finite element program, and the model

was converted into MSC/NASTRAN form for analysis at NASA LeRC.

The finite element model is three-dimensional, consisting of 10,014 nodal

points and 7758 solid hexahedron elements as shown on figure 10. The

turbine blade has extensions for the blade-to-blade friction dampers Io-
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cated on the sides of the blade, between the top firtree lobe and the blade

platform. This blade has a hollow core, to reduce the blade mass and

thermal inertia and a tip seal to prevent spanwise flows over the tip of the

blade.

Six aeroelastic strips, which represent approximate streamsurfaces, are

defined along the span of the airfoil, from the blade platform to the tip

shroud. These strips coincide with sections of the finite element model

which have constant radii for the nodal points. The strips are indicated

on figure 11, and a table of the cascade properties for each of the strips

is included as Table I.

A plot showing the airfoil cross-section of the HPOTPturbine is included

on figure 12, along with a table of airfoil coodinates. This turbine blade

has blunt, rounded leading and trailing edges. The maximum airfoil

thickness is approximately 30 percent of the airfoil chord length. The

turbine turns the relative flow into the blade through up to 130 degrees.
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The MSC/NASTRAN finite element program was used to calculate the in-

vacuum blade natural frequencies and modes. Springs were applied at

the eight load bearing surfaces of the fir-tree lobes to simulate disk flexi-

bility. The spring constants for these springs were determined by match-

ing the first three calculated natural frequencies with those measured by

Rocketdyne during high-speed rotating rig dynamic testing.

The effect of rotational speed was incorporated within the analysis by

adding centrifugal loading and a temperature variation along the span of

the blade. The temperature distribution for several operating speeds was

estimated based upon flow path gas temperature measurements obtained

during actual engine operation. The thermal variation of the blade mate-

rial properties, for the directionally solidified alloy MAR-M-246, was

modeled using a tabular description of the orthotropic material constants

versus temperature.

The natural frequencies were calculated by performing a geometric non-

linear static analysis (MSC/NASTRAN solution sequence 64) to simulate

blade rotation and thermal loading. The differential stiffness matrix from

the static solution was stored in a database file. The normal modes anal-
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ysis (MSC/NASTRAN solution sequence 63) was performed by including

the differential stiffness matrix within the linear global stiffness matrix.

This method of accounting for the effect of centrifugal and other combined

Ioadings on the normal modes of rotating structures is described by

Lawrence, el. al. [42].

The first four natural frequencies of the blade were calculated at pump

rotational speeds of 0, 19,500 and 28,000 RPM, speeds representative of

typical power levels for an actual shuttle launch. A Campbell diagram is

included as figure 13 which shows the variation of the natural frequencies

with increasing pump speed. This blade shows only a very weak de-

pendence of frequencies on the rotational speed. The effect of rotational

speed on the frequency is due to centrifugal stiffening of the blade and

thermal softening caused by increased temperature gradients. This

blade, as is the case for most turbines, indicates that the thermal soften-

ing effect outweighs the stiffening effect which results in lower frequencies

for higher rotational speeds.

The mode shapes from the analysis were normalized to give a unit gen-

eralized mass for each mode. Mode shapes orfhogonalized in this man-

ner are referred to as normal modes. Table II shows the calculated

natural frequencies for the three rotor speeds.
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Plots showing the deformed blade mode shapes for these natural fre-

quencies at 28,000 RPM are shown on figures 14 and 15. These modes

can be classified using common plate theory modes as modes (1) first

bending, (2) first edgewise, (3) first torsion and (4) second bending. The

occurrence of the edgewise mode as the second weakest mode is unusual

for turbomachinery.

Plots of the mode shapes for strip no. 1, the strip closest to the blade tip

are also shown on figure 16 as cross-sections through the blade airfoil

section. These plots indicate that the first three modes are essentially

rigid bending modes, with no appreciable chordwise bending of the

airfoil. The fourth mode does display considerable bending of the airfoil

section. These mode shapes displayed for this strip are the airfoil dis-

placement descriptions which are enforced for each strip during the un-

steady aerodynamic analysis.

3.5 Aerodynamic Results

The aerodynamic analysis for this blade was conducted for the 109%

Rated Power Level (RPL) of the turbopump. This power level corresponds

to a rotor speed of approximately 28,000 RPM. The SSME operates at this
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power level for approximately 90% of the flight time, so the aeroelastic

analysis is only presented for this rotor speed.

The velocity triangles along the span of the blade were constructed based

on information supplied by Rocketdyne. The turbine operates within a

fully subsonic flow regime where the velocities represent a blade tip Mach

number of 0.24 with a relative inlet Mach number of around 0.30. The

working fluid is hydrogen-rich superheated steam, and it was assumed to

obey the perfect gas law having a ratio of specific heats of _ = 1.366. Ve-

locity triangles for strip no. 1 showing the inlet and exit flows is included

on figure 17. The superheated steam mixture has a sonic velocity at the

turbine inlet of approximately a=5600 ft/sec and the inlet total pressure

is P1 = 4600 psi.

The aeroelastic model for this turbine used the six strips indicated on

figure 11, with the cascade properties used for each strip tabulated in ta-

ble I. The steady potential flowfield was calculated for the strips sepa-

rately and the computational grids and solutions stored in database files

for use during the unsteady flow analysis. The computational grids used

for the steady flow analysis consisted of a 78 x 25 mesh for the blade-to-

blade global H-grid. A 70 x 11 C-grid was used for the local analysis grid,

as described in section 2.11.
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3.51 Steady Aerodynamic Results

Contour plots showing the steady Mach number variation within the flow

field for strips no. 1 and 3 are included as figures 18 and 19. The plots

show the large expansion of the flow and acceleration around the suction

surface of the blade, near the LE. The two plots are presented with the

same contour level ranges, and very little variation in the steady flow field

is seen between these two strips.

Figure 20 shows the Mach number distributions along the surface of the

airfoil. The figure includes the results for all six strips along the span of

the airfoil. The large steady aerodynamic loading is evident for this tur-

bine with the largest flow expansion near the leading edge of the suction

surface. A similar figure indicating the airfoil steady surface pressure

normalized by the inlet total pressure PT, is on figure 21. The surface

pressures imply that the largest steady aerodynamic loading along the

airfoil is in the outer 40 percent region of the airfoil near the tip.

Inspection of the steady aerodynamic results in figures 20 and 21 shows

that this turbine provides very little expansion and low increases in Mach
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number from upstream to downstream, especially in comparison to air-

craft gas turbines. The reason for this is that the dynamic pressure en-

tering the blade is very high, approximately 480 psi at the tip. In addition,

the inlet total pressure is close to 4600 psi, so that the static pressure

nondimensionalized by total pressure can be misleading. The pressure

difference across the airfoil can be up to 300 psi near the blade tip. These

high pressures are a result of the superheated steam mixture having a

high density and the high kinematic fluid velocities.

3.52 Unsteady Aerodynamic Results

The unsteady potential flows were calculated using the airfoil mode

shapes from the finite element normal modes applied along each strip of

the blade. At each strip, the flow reduced frequency parameter k was

calculated based on the inlet relative flow velocity, strip airfoil chord

length c and the assumed flutter frequency _of. The interpolated airfoil

mode shape was used to prescribe the direction of airfoil oscillation as

discussed in section 3.1. The unsteady aerodynamic program was used

to determine the unsteady potential solution and unsteady harmonic

pressures caused by the prescribed aeroelastic conditions.
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The harmonic unsteady pressures resulting from blade motion do not re-

spond in-phase with the blade oscillation. The phase lag or lead of the

pressure is an important parameter which governs the stability of the

blade. Unsteady pressure is represented as a complex quantity, with the

real part representing the pressure which is in-phase and the imaginary

part representing the pressure which is 90 degrees out-of-phase with the

blade motion.

The unsteady pressure distribution (real part) due to motion in the second

mode, the edgewise mode, is shown along the blade span on figure 22.

The ordinate is plotted as the unsteady pressure coefficient (_p multiplied

by the square root of the generalized mass for the mode. The in-phase

pressure response varies strongly along the airfoil span, with the largest

pressure gradients within about 30 percent of the leading edge. Note that

the pressures are somewhat irregular, especially near the leading edge.

This might be due to the discrete description of the airfoil shape. This

apparent dependence upon airfoil description is a common problem

among both steady potential and unsteady potential flow CFD analysis.

The pressure distribution (imaginary part) for the same edgewise mode

of motion is included in figure 23. The variation of the out-of-phase pres-

sures, from the airfoil hub to the tip, obeys the same characteristics as the
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real pressures, although these pressures are much smoother. A large

change in the shape of the pressure distribution is seen between the last

two strips along the blade span.

For a single mode of motion, the stability of the unsteady flow can be de-

termined by inspecting the ratio of the real to the imaginary pressures at

a particular location on the airfoil. If the pressures lag the blade motion,

the motion is stable, if the pressures lead the motion it could become un-

stable. For systems which exhibit coupling between modes, this simple

rule can no longer be used solely for determination of stability. An aero-

dynamic work parameter (Verdon [38]) is used to determine the unsteady

aerodynamic energy transfer for arbitrary modes of airfoil motion. The

aerodynamic work per cycle represents a measure of the aerodynamic

work provided by the fluid during one complete cycle of airfoil motion. A

condition when the aerodynamic work per cycle is negative implies that

the airfoil is performing work on the fluid. Conversely, a positive

work/cycle signifies that the fluid is doing work on the airfoil, which can

lead to an instability of the airfoil oscillation.

Figure 24 shows the local work/cycle along the airfoil surface for the

edgewise vibrational mode of the HPOTP. The work/cycle is unstable

along almost the full chord length of the blade for all strips except the one
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located at 58 percent of the airfoil span. These results would imply that

the HPOTP turbine may be unstable in this edgewise mode of motion due

to the motion-dependent response of the blade.

3.6 Aeroelastic Results

Calculations of the damped eigenvalues for the HPOTP first stage turbine

were performed by solving the aeroelastic eigenvalue problem of

equation (32). Four normal modes were retained within the modal analy-

sis and the flutter analysis was performed when the assumed flutter fre-

quency corresponded to the first three in-vacuum natural frequencies.

The rotor was assumed to be tuned, and half of the total interblade phase

angle modes were analyzed to reduce the computational time. The cal-

culations were performed on the NASA LeRC Cray X-MP and Y-MP com-

puter systems. The unsteady aerodynamic calculation, for a single strip

and one interblade phase angle required approximately 12 CPU sec. The

flutter analysis, for all strips at one interblade phase angle and one as-

sumed frequency required 210 CPU secs.

The first stability analyses were performed when the effect of mechanical

damping due to the friction dampers was neglected. Flutter was assumed

to occur at frequencies close to each of the first three natural frequencies.
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The eigenvalue problem of equation (32) was solved assuming four basis

normal modes, whereas the system equations were of size 4 x 4. Each of

the interblade phase angle modes was solved individually, so that the 4

x 4 system was solved 39 times for vibration at an assumed frequency.

The solution was accomplished by assuming a flutter frequency cot,and

the modal unsteady aerodynamic matrix was calculated followed by the

eigensolution for the 4 eigenvalues. The aerodynamic damping for this

turbine blade was extremely low, such that the damped natural frequency

was nearly equal to the assumed frequency, therefore only one iteration

was required for the flutter search.

The calculations showed that the HPOTP blade was aeroelastically stable

for all interblade phase angles when the vibration occurred at frequencies

close to the first and third natural frequencies. An inspection of the cal-

culated modal eigenvectors showed that the aeroelastic modes were al-

most purely single-mode vibrations. The coupling due to the aerodynamic

matrix [_A_] was not strong enough to cause any appreciable coupling in

the modal space eigenvectors.

The aeroelastic eigenvalues _. are plotted as a function of the interblade

phase angle _ in figure 25. This root locus is for the case when the vi-

bration was at the first natural frequency, _r = 4748 Hz and the numbers
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on this plot identify the different interblade phase angle modes for the

rotor. Note that the eigenvalues are normalized by the assumed flutter

frequency. Therefore the abscissa for this plot represents the system

damping ratio and the ordinate represents the damped frequency ratio.

The aerodynamic damping ratio for vibration at this mode varies from

= 0.16 percent of critical damping for _ = 350.77° up to _"= 0.40 percent

for _ = 161.54°. The results for vibration at the third normal mode re-

sulted in lower damping ratios, although the rotor was stable for all phase

angles (figure 26).

Calculations when the vibration was assumed to occur at the second

normal mode, the edgewise mode, showed that the rotor was unstable for

almost all the interblade phase angles considered. The root locus plot for

this edgewise motion of the blade is included in figure 27. These results

indicate that it is possible for this blade to undergo flutter in an edgewise

mode of vibration when mechanical damping from the friction dampers is

neglected. The only stable modes are for interblade phase angles in the

range from 332.31 deg to 346.15 deg. This instability is surprising be-

cause the occurrence of flutter in an edgewise mode of vibration is rather

uncommon. A combination of the high blade camber, large steady aero-

dynamic loading and flow expansion, and the edgewise mode of vibration

appear to lead to this form of instability. This instability would not be
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identified by the methods cited in the literature review because of the use

of the simplified aerodynamic and blade dynamic models.

The potential for the HPOTPblades to experience flutter in this mode ap-

pears to explain the occurrence of blade shank cracking noticed during

the SSME development program. In the early 1980's, blade-to-blade fric-

tion dampers were installed within the HPOTP rotor to attempt to damp

out the unidentifiable vibrations. Continual high-cycle fatigue (HCF)

cracking determined that a more efficient friction damper design was re-

quired. A new two-piece damper was incorporated in the HPOTPdesign

which reduced the cracking problem significantly.

The mechanical damping provided by a blade-to-blade friction damper

can be anywhere between 0.5 to 2.5 percent of critical damping (refs [43]

and [44]). Measurements of the damper performance at Rocketdyne in a

rotating dynamic test rig showed that the two-piece damper delivers al-

most 1 percent of critical damping when the blades are stimulated in the

edgewise vibrational mode.

The stability calculations for the edgewise mode of vibration were contin-

ued when the effect of the friction dampers was included. This entailed

adding modal damping of _"= 0.01 for the edgewise mode of the blade.
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The modal damping ratios for the three other modes were assumed to be

zero. The eigensolution was performed for the 39 interblade phase angle

modes and the resulting root locus is shown in figure 28. It is observed

that including the effect of modal damping essentially translates the root

locus to the left (more stable) and slightly lowers the root locus (lower

frequency). These results indicate that the HPOTP rotor is fully stable

when the effect of the turbine blade friction dampers is included. The in-

creased positive mechanical damping completely overwhelms the unsta-

ble negative aerodynamic damping, resulting in the rotor becoming stable

for all interblade phase angle modes.

This result agrees with the history of the SSME HPOTP rotor, where early

in the development program, blade cracking could have been due to ei-

ther (a) flutter or (b) large forced response due to very low aerodynamic

damping. When additional mechanical damping was introduced by using

a more effective friction damper, the blade cracking problem was re-

duced, a result in agreement with the analytical results presented here.



CHAPTER4 - CONCLUSIONAND RECOMMENDATIONS

4.1 Conclusion

A modal aeroelastic analysis has been developed which has application

to turbomachinery of general shape and over a range of flow regimes.

The quasi-three-dimensional model combines the three-dimensional finite

element modal results for the blade with stacked two-dimensional

axisymmetric streamsurfaces along the span of the airfoil section of the

blade. The steady flowfield along each strip was evaluated by solving for

the nonlinear full potential flow using a finite-area solution method.

The unsteady flowfield due to airfoil oscillation was determined using a

linearized unsteady potential flow model. The unsteady pressures were

integrated along the airfoil surface for each strip to result in modal un-

steady aerodynamic forces. A modal expansion of the unsteady forces

was used to determine the aerodynamic matrix which couples the modes

in modal space. An iterative complex eigenvalue problem was expressed

in state-vector form to include the effect of modal damping.
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This modal aeroelastic approach was applied to the flutter analysis of a

high-energy turbine blade from a rocket engine oxidizer turbopump.

Specific results of this analysis were:

The natural frequencies for the turbine blade calculated using

MSC/NASTRAN agreed very well with measurements reported by

Rocketdyne. The modes occurred in the following order; (1) first

bending, (2) first edgewise, (3) first torsion and (4) second bending.

Steady-state aerodynamic results indicated that this turbine is sub-

jected to high steady gas loading, with pressure differences across

the airfoil of up to 300 psi. The axial pressure drop through the

blade-row from upstream to downstream was much smaller.

Unsteady aerodynamic results showed that the vibration of the blade

at a single uncoupled mode, the first edgewise mode, would be un-

stable because the fluid supplies energy to the oscillation which re-

sults in a positive work of the fluid on the blade.

Modal flutter calculations determined that the tuned rotor was stable

for vibration of the rotor at either the first or the third natural fre-

quency, for all of the tuned interblade phase angle modes of the rotor.
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Results from the flutter computation for vibration at the second natural

frequency indicated that flutter would occur for almost all of the

interblade phase angle modes of the rotor. This result agrees with the

high-cycle fatigue cracking problem encountered during SSME devel-

opment in the early 1980's.

The addition of mechanical damping to simulate the blade friction

dampers resulted in a stabilization of the self-excited vibration at the

second natural frequency.

4.2 Recommendations

Further expansion of this model could include emphasis on the develop-

ment of advanced unsteady aerodynamic models. In particular, models

based on linearizations of rotational flows, i.e. linearized Euler solution,

with emphasis on three-dimensional geometries is planned. The addition

of a three-dimensional aerodynamic model will simplify the logistical

problems associated with the aeroelastic strips and the modal aerodyna-

mic force computation. The advantage of a linearization of the unsteady

Euler equations is that unsteady flows containing shocks and rotational

flows can be analyzed where the potential equation is no longer valid. In
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addition, the computational cost of the linearized Euler solution is not

prohibitive, although it is significantly larger than for the linearized po-

tential solution.

two-dimensional

Crawley [45].

An example of an unsteady linearized Euler solution for

turbomachinery flows was presented by Hall and

An effort is currently underway to analyze rotors which have small differ-

ences in natural frequencies of the blades within the rotor, the so-called

mistuned aeroelastic model. The mistuned rotor model is a more practi-

cal representation of real-world turbomachinery since it takes into account

the statistical differences in properties around the rotor. The occurrence

of localized modes, where only a few blades respond with large ampli-

tudes, can be captured using mistuning analyses. Blade failures typically

occur with only a few blades cracking or fracturing, where these blades

are referred to as "rogue" blade failures. A mistuned rotor analysis can

provide better prediction of which blades may fail on a rotor due to flutter

or forced response problems.

Finally, a more accurate representation of the friction-damper model, in-

corporating the micro-slip and macro-slip analyses could prove useful.

The present method of accounting for friction-damping as equivalent

modal damping is only a global representation of the effect of friction
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dampers. Recent work has focused on applying nonlinear friction models

using either lumped parameter or finite element and component mode

models of blade elements. Some examples of the lumped parameter

blade models using nonlinear friction damper elements are cited in Ref-

erences [44] and [46].
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APPENDIX A

DERIVATION OF LINEARIZED UNSTEADY POTENTIAL EQUATION

The governing field equations for the flow of an inviscid, compressible

fluid are described by the equations of mass, momentum, and energy

conservation. These equations form the mathematical basis for de-

scription of the kinematic and thermodynamic modeling of fluid dynamics.

The emphasis of the current work is to study the two dimensional, un-

steady flow of an inviscid, compressible fluid. The equation set describing

this flow is obtained by reducing the governing equations obtained from

first principles.

The governing equations for the unsteady, compressible, inviscid flow of

a fluid are equations (A.1) to (A.3).

8p
--+ V.(pV) = 0 (A.1)
c3t

c3V - _ 1 Vp (A.2)a--i-+ v.vv = - 7

ah +-V.Vh- c3p
a_ c3t + V.Vp (A.3)
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These equations are in conservation form and are general for a homoge-

neous fluid which is flowing without viscous dissipation, no heat addition,

and no body forces.

The assumption that the fluid flows reversibly, and is thus isentropic, al-

lows use of the perfect gas relationship which relates the local pressure

to the density change as

P

p_ = Constant (A.4)

The velocity potential is introduced by prescribing that the fluid flow is

irrotational. This irrotationality condition is represented as

v × = 0 (A.5)

which permits defining the scalar velocity potential as

V = V_ (A.6)

The equations (A.1-A.6) defined above represent the basis framework re-

quired for the development of the steady-state and the unsteady potential

equations utilized within this work.
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UNSTEADYBERNOULLI-KELVINTHEOREM

A relationship which defines the dependence of the fluid properties with

the kinematic state is now required. This formulation is obtained from the

momentum equation of equation (A.2).

a_Zv+ _.v_ = - Z vp
Ot P

The following vector identity is useful for the reduction of this equation.

v(_._)- _ x (v x _)(_.v)_ = T (A.7)

Introduction of the irrotationality condition equation (A.5) and the velocity

potential definition equation (A.6) reduces the above vector relationship

to

1
(_:v)_ = _ v(v4,.v4_) (A.8)

Substitution of the above equation into the momentum equation (A.2), re-

sults in

__ ½ -1a (V_b) + V(V_b-V_b) = -- Vp
(3t P

(A.9)
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Vd)t+v((V(D'V_) ] 12 + -p--Vp = o (A.10)

Now, recalling from the calculus, since

,v : ifv)T -7 (A111)

substituting equation (A.11) results in the following integral equation

2 +V V--p- =0 (A.12)

V_bt+ 2 + V-fi-
=0

and integrating gives

(v_.v_) f P
_, + /2 + oV --fi- = G(t) (A.13)

This equation is known as the Bernoulli-Kelvin equation and it applies

along a streamline in the fluid.
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UNSTEADY FULL POTENTIAL EQUATION

The unsteady potential equation is derived by expansion and simplifi-

cation of the mass conservation equation indicated in equation (A.1). This

equation is reproduced below for completeness.

0p
a-/- + v.(,ov) = o (A.1)

The divergence term of this equation may be expanded and the equation

rearranged to result in

1 ap

P _t-- + v.F +-h-- =0 (A.14)

The first term of this equation may be written as the product of two partial

derivatives using the chain rule

1 ap 1 ap ap

P at P ap at
(A.15)

and assuming the fluid behaves as a perfect gas, under isentropic condi-

tions, the sonic velocity becomes

= _ s= constant

(A.16)
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such that equation (A.15) now becomes

1 _P 1 _P

P 6_t pa 2 _?t
(A.17)

(?p
A relationship for _ is determined through the use of the Bernoulli-

Kelvin Theorem of equation (A.13). Differentiating equation (A.13) with

respect to time results in

a
_,, + _fi-( v_,.v_ v_2 ) + -_t-tj"-h-=° (,a._8)

where the derivative of the time constant G(t) has arbitrarily been set to

zero. The last term of equation (A.18) can be written as

(') ['V p 1 (_P
c?t J P - P c?t (A.19)

and so rearranging equation (A.18) and substituting equation (A.19) gives

_]t -- P d_tt+ _ 2

and substituting equation (A.20) into equation (A.17) results in the follow-

ing relation for the first term in equation (A.14)
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1 cqp

P #t

1

a2 (4>it + VqS"V_bt)
(A.21)

The second term from equation (A.14) is simply the Laplacian of the po-

tential

V-V = V24) (A.22)

The last term of equation (A.14) can be written as

V.Vp

P

vqs.Vp
2

pa

- 2 T
a

and solving equation (A.12)for V_f--_--)

(A.22) gives

(A.23)

and sustituting into equation

V.Vpp _ VqS-Va2(_t + VqS-V_b2 ) (A.24)

At this point, each of the individual terms from the continuity equation of

equation (A.14) have been expanded. These terms of equation (A.21),

(A.22), (A.24) are substituted back into equation (A.14).

1 a 2
dptt + 2 VqS.V_) t + -_- V_.V(VqS.V_)) = V2_ (A.25)
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This equation is known as the unsteady full potential equation. It contains

only terms of the scalar velocity potential _ and the local fluid sonic ve-

locity a.

An expression for the sonic velocity can be obtained from the Bernoulli-

Kelvin equation developed previously. Along a streamline, from a point

at far upstream infinity where the flow is fully steady, the Bernoulli

equation (A.13) becomes

tEv2oo 1 .V_a2 = a_ 2 + (7 - 1 2 _t - -_- (V_ (A.26)

So the above equations (A.25) and (A.26) completely describe the un-

steady potential flow for a compressiblel inviscid fluid.

LINEARIZED POTENTIAL EQUATIONS

The time varying potential is assumed to be a series expansion in time of

harmonic terms as shown below

_(x,y,t) = (l)(x,y) + _(x,y)e i_°' + O(_ 2) (A.27)

where _ is of the order of the small perturbations r, and (_(x,y). This as-

sumption results in a zeroth-order term which represents the steady-state

i,



potential

_h(x,y,)
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(t)(x,y), and a first-order harmonic unsteady potential

The terms of higher than first order in _, i.e. higher than e_'°t,

are truncated from the expansion. This expansion can now be substituted

into the unsteady full potential equation (A.25).

The following expressions will be useful for this development.

obtained by applying the expansion of equation (A.27).

They are

dptt = -- (x)2_

=

V2_ = V20 + V2_

--(va,?+ + 2 V@.V_

(A.28)

The above relations can be used to expand the unsteady full potential

equation to result in an equation which contains terms of both O(0) and

order O(_). These terms are grouped according to their order into two

equations.

The equation consisting of terms of order O(0) is known as the steady full

potential equation as shown below.

VO.V(VO.VO) = a2V20
2

(A.29)
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The same equation can be obtained by dropping the time-dependent

terms from the unsteady full potential equation of equation (A.25).

An equivalent equation for the terms of order O(s) is shown below

v_,.v(vo)_+ va,.v(v®.v_))- _ + 2;o_v®.v_+

+ v_,.v(va,.v_)--a_V_
(A.30)

This equation represents the linearized unsteady potential equation,

where the potential ¢(x,y) is assumed to be harmonic in time.

The substantial derivative operator for the potential having harmonic time

dependence becomes

Ot

+2;_v®.v_,+ v®.v(v®.v_,)
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The substitution of the above substantial derivative operators into the un-

steady potential equation (A.30) simplifies to

Dt 2
v_.v(v®)_+ v_.v(v®.v_))_+-_- = a2V2_) (A.31)

This equation represents the linearized unsteady potential flow where the

unsteady potential _ is assumed to be harmonic in time and of small am-

plitude.
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Exit Flow Velocity

V2

Inlet Flow Angle

Inlet Flow Velocity

Figure 1. Cascade representation of rotor inlet and exit flows
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Figure 2. Cascade and airfoil geometry and nomenclature
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Figure 3. Steady solution blade-to-blade passage and boundary

conditions
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Figure 4. Steady flow computational meshes,(a) global mesh,
(b) local mesh
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Figure 5. Unsteady solution cascade boundary conditions
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X

Airfoil Surface
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Figure 6. Oscillating airfoil displacement vector r" definition
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Figure 7. FREPS program aeroelastic stability logic flowchart
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Figure 8. Modal aerodynamic matrix [-A_] logic flowchart
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x

10,014 Node Points

7758 Brick Elements

Figure 10. SSME HPOTPturbine blade finite element model



- lO0 -

.c
v

i

d :
Z

e-
0

._

°_

e-
°_

"0

,L

°l

ffl

0

e-

t

U_



- I01-

0

• ddddoddddddddddoddddoddd6ddddddddd

E

o_oooNoooooodddooo6oddoNdoooooooooooo_

r-

r_
00

t-
O

°_

r_
°_

_3

O

"O

r_

r-
°_

Z3

c_

L_

L_



- 102 -

SSME High Pressure Oxidizer Turbopump Campbel/ Diagram

First Stage Turbine B/ade
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Figure 13. Calculated natural frequencies versus rotational speed
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Figure 17. Turbine blade fluid velocity diagram at strip no. 1
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Turbine blade Surfac e Mach number distributions
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Figure 21. Turbine blade surface static pressure distributions
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Figure 22. Turbine blade unsteady surface pressure distributions
(real part) due to motion in second mode (edgewise)
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Figure 23. Turbine blade unsteady surface pressure distributions
(imaginary part) due to motion in second mode (edgewise)
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Figure 24. Turbine blade unsteady aerodynamic work per cycle
distribution due to motion in second mode (edgewise)



- I14-

8

e-1

n

o

tl]

u_

[]

[]

I I I I

_r anle^UaO!3 ;o Ued _eu!OeWl

t_

[]

[]

[]

[]
[] 8

8
m
t_

e-

LU

t_
O.

c_

c_

d

0

>

0

0

0
0

L

0 t-

r

v

__ 0

O_
_ m
T _

• t"-

U-



- 115-

¢0

c,J

[]

m;

E_

N o

D

'_ X7

EJ

[]

D

, 1

ooO8

EJ

D J-

D _

_5

D

7r

A I , 1

d o

enleAUe6!3;0IJecl/ueu!6eWl

I

GO

0

[]

o,

0

o
t-

O

D-

o

o

o
9

c_

"0
.c::

,'- "5
.o_

u_ E

0

.o

"0 t-

= E

0 c-

_.__

_- E
F-
o_
_ Z

°_
U-



- 116-

[]
[]

;eJ
-E

IT]

anleAUa6!:l _o ]Jecl_Jeu!6euJI

_5

o

S ._.

"N

_2

o
0

t-

O o

ag
v

I--- t-
O8

T _

b:

u_



- 117-

ET

[]

o_

[]

[]

[]

[]

FJ

E3 0 I_ []

o

i I I 1 I I

i_ _

[]

E3_

[]

[]

anleAua6!3 ;o _ed _eu!OeLUl

9

9

9

9

ILl

0

0

°_

0

_E
_- "0
0 --

0
o Eo

0 O
9,.-

"0 ...-..

t"- I¢1

-,-_

._. "_
e'_ 0
_E

"0
EL e--
_" 0
0 o

.-,i

°_

ii



IW A
Nallon_ Aeronautics and

Admlnlstt_Ion

1. Repod No.

NASA CR - 187089

Report Documentation Page

2. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle

A Modal Aeroelastic Analysis Scheme for Turbomachinery Blading

7. Author(s)

T,._dtt E. Smith

g Performing Organization Name and Address

Sverdrup Technology, Inc.
Lt.v, is Re,arch Center Group

2001 Aerospace Parkway
Brook Park, Ohio 44142

12. Sponsoring Agency Name and Address

Nati,,ttal Aeronautics and Space Administration
I_a.wis Research Center

Cleveland, Ohio 44135 - 3191

15. Supplementary Notes

5. Report Date

March 1991

6. Performing Organization Code

8. Pedorming Organization Report No

None (E - 608 I)

10. Work Unit No.

505 - 63 - 1B

11 Contract or Grant No.

NAS3-25266

13. Type of Report and Period Covered

Contractor Report
Final

i14. Sponsoring Agency Code

Project Manager, George L. Stefko, Structures Division, NASA Lewis Research Center. This report was submitted as a
thesis in partial fulfillment of the requirements for the degree Master of Science in Mechanical Engineering to Case

Western Reserve University, Cleveland, Ohio in January 1991.

16. Abstract

An aeroelastie analysis is developed which has general application to all types of axial-flow turbomachinery blades.

The approach is based on linear modal analysis, where the blade's dynamic response is represented as a linear
combination of contributions from each of its in-vacuum free vibrational modes. A compressible linearized
unsteady potential theory is used to model the flow over the oscillating blades. The two-dimensional unsteady flow

is evaluated along several stacked axisymmetric strips along the span of the airfoil. The unsteady pressures at the

blade surface are integrated to result in the generalized force acting on the blade due to simple harmonic motions.
The tmsteady aerodynamic forces are coupled to the blade normal modes in the frequency domain using modal

analysis. An iterative eigenvalue problem is solved to determine the stability of the blade when the unsteady

aerodynamic forces are included in the analysis. The approach is demonstrated by applying it to a high-energy
subsonic turbine blade from a rocket engine turbopump power turbine. The results indicate that this turbine could

undergo flutter in an edgewise mode of vibration.

17. Key Words (Suggested by Author(s))

Flutter; Turbomachinery; Aeroelasticity;

Turbomachinery blades; Rotor blades
(turbomachinery); Liquid propellant

18. Distribution Statement

Unclassified - Unlimited

Subject Category 07

tg. Secudty Classi|. (of the report)

Unclassified

20 Security Classif. (of this page) 21. No. of pages 22. Price*

Unclassified 131 A07

NASAFORM16215OCT86 *For sale bythe NationalTechnicalInformationService,Springfield,Virginia 22161





National Aeronautics and

Space Administration

Lewis Research Center
Cleveland. Ohio 44135

OIIlOIJ _uBtn_m

P_ta,_/br WNme UW 8300

FOURTH CLASS MAIL

ADDRESS CORRECTION REQUESTED

IIIIII

Postage anti Fees Paid

National Aeror,autscs and

Space Administration

NASA-451


