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PASSIVE DYNAMIC CONTROLLERS
FOR NON-LINEAR MECHANICAL SYSTEMS

Jer-Nan Juang,* Shih-Chin Wu,* Minh Phan,** and Richard W. Longman*+
NASA Langley Research Center, Hampton, Virginia 23665

ABSTRACT

A mecthodology for modcl-independent controller
design for controlling large angular motion of multi-body
dynamic systems is outlined. The controlled system may
consist of rigid and flexible components that undergo
large rigid body motion and small elastic deformations.
Control forces/torques are applied to drive the system, and
at the same time suppress the vibrations due to flexibility
of the components. The proposcd controller consists of
passive second-order systems which may be designed with
little knowledge of the system parameters, even il the
controlled system is non-linear. Under rather gencral
assumptions, the passive design assures that the closed
loop system has guaranteed stability properties. Unlike
positive real controller design, stabilization can be
accomplished without direct velocity feedback. In addition,
the second-order passive design allows dynamic feedback
controllers with considerable frecdom to tune for desired
system response, and to avoid actuator saturation. After
developing the basic mathematical formulation of the
design methodology, simulation results are presented to
illustrate the proposed approach applied to a flexible six-
degree-of-freedom manipulator,

INTRODUCTION

In this paper, a controller design methodology is outlined
for non-linear dynamic systems based on simulating the
force/torque histories that would be applied by a chosen
virtual system of masses, springs and dashpots. In a
‘companion paper by Juang and Phan!, the corresponding
theory for linear dynamic systems is presented.  Here,
nonlincar problems are addresscd by generalizing the
standard Liapunov stability theory to allow less restrictive
conditions on the Liapunov function. A major advantage
of the control approach is its ability to guarantee stability
of the controlled system with very little knowledge of the
system being controlled. It has the advantages of positive
real controller design methods, but in addition it allows
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use of more realistic choices for sensors. It allows
dynamic controllers, and it easily handles a nonlinear
environment. A secondary advantage is the physical
intuition available to help guide the control system
design. Both regulator (or vibration suppression)
problems, and end-point control (or slewing) problems
can be treated. The approach taken here exploits the
work-energy ratc principle in dcsigning controllers as

suggested by Oh, Vadali and Junkins<,

The controller design mcthods developed here rely on the
guaranteed cnergy dissipation produced by a virtual mass-
spring-dashpot system for their stability properties. In the
large flexible spacecraft shape control problem, Canavin3
was one of the first proponents of collocated velocity
sensors and force actuators with pure velocity feedback.
Such a control approach has the same guaranteed stability
properties as the proposed design method, but the
proposed method is more general, and does not necessarily
require velocity feedback. Hyperstability, and positive real
controller design methods are other closely related bodies
of knowledge, Popov4'5. A positive real dynamic system
is one which can be realized by purely passive electrical
clements, Newcomb®. Benhabib, Iwens, and Jackson’
were the first to suggest applying such concepts from
network theory for shape control of large flexible
spacecraft. Flashner8 considers applications to robotics.
The design of linear quadratic regulator controllers that are
constrained to be positive real is studied in Sevaston and

Longman.9

The proposed approach is much more general than typical
positive rcal controller design. For shape control of large
flexible spacecraft, positive real theory requires the use of
collocated velocity sensors and force actuators (or angular
rate sensors and torque actuators). The requirement of
velocity sensors is very restrictive in hardware
implementation. Here the same type of stability
robustness properties are obtained as in positive real
theory, but the use of position, acceleration, and velocity
sensors is allowed, either alone or in combinations.
Collocation of sensors and actuators is still required. The
controller design problem is formulated in terms of a
virtual mechanical system which supplies considerable
intuition to guide the control system design step.

This paper starts with a bricf review of passive controller
design for lincar systems as developed in Ref. 1. The
basic results for the linear case are then generalized to the



non-linear case. Insight into the passive control laws is
given in the section entitled Physical Interpretation. A
generic configuration similar to the Shuttle's Remote
Manipulator System (RMS) is used as an example to
illustrate the proposed controller design approach.

BASIC RESULTS FOR LINEAR SYSTEMS

The virtual spring-mass-damper approach to passive
controller design is first described for linear dynamic
systems as in Ref. 1. Extension of the theory to general
non-linear multiple body dynamic systems is then made.

A general non-gyroscopic linear dynamic system can be
represented as a system of second-order constant
cocfTicient ordinary differential equations

M5 + Dx +Kx = Bu m
y=Hok+ Hyx + Hax o))

where x is an n X 1 coordinate vector, and M, D, and K
arc the symmetric mass, damping and stiffness matrices,
respectively. The n x p influence matrix B describes the
actuator force distributions for the p x I control force
vector u (or generalized force). Typically, matrix M is
positive definite whereas D and K arc positive definite or
positive semi-definite. In the absence of rigid-body
motion, K is positive dcfinite. Equation (2) is a
measurement equation having y as the m x [
mcasurement vector, Hg, Hy, and Hg arc the m X n
acccleration, velocity, and displacement influence
matrices, respectively.

Assume that the controller 1o be designed has a set of
second-order dynamic equations and measurement
cquations similar to the system equations in (1) and (2)
above

Mc}c"'Dcic"" KcXc=Bcuc (3)

Vo= HacXe + Hoc xc + Hue X C))

Here x, is the controller state vector of dimension n., and
M, D¢, and K are thought of as the controller mass,
damping, and stiffncss matrices, respectively. These
matrices arc chosen to be symmetric and positive definite
to make the controller cquations asymptotically stable.
The ne X m influence matrix B describes the force
distributions for the m X I input force vector u¢. Equation
(4) is the controller measurement equation having y, as
the mecasurcment vector of length p, Hg the p X ng
acceleration influence matrix, Hy the p X ne velocity
influence matrix and Hg, the p x no displacement
influence matrix. The quantities M¢, D¢, K¢, B¢, Hgc,
Hy., and Hy are the design parameters for the controller.
Let the dynamic system in (1) and (2) be connected to the
controller system in (3) and (4) in such a way that the
output of the controller is the input to the dynamic

system, and the output of the dynamic system is the input
to the controller, i.c.,

u=yc=Hm55c+ chic"'Hdcxc )
uc=y=Hox + Hyx + Hix ©)

The overall closed-loop system then becomes

Mx + Dixi+ Kixe= 0 )
where
M,=[ M -BH,:],D‘=[ D -BH.C],
-B.lla M, -B.H, D,

K.=[ K -BH&]J‘:[x]
By K. bz

If the system paramcters, M, D, K, Hg, Hq , and I, are
known, then the controller parameters, M, D¢, K¢, Hge
Hdc , and Hyc can be designed such that the closed-loop
system matrices, M, Dy, and K; are symmetric and
positive definite. This makes the closed-loop system, Eq.
(7). asymptotically stable. However, it is of interest to
design controllers that are insensitive 1o the system
parameters. In the following development, this is indeed
possible provided a certain modification to the control
cquation is made, and a certain condition on the actuator
and sensor placement is satisfied. First, note the
similarity in structures in the closed-loop system matrices
My, Dy, and K. This means that the basic design
procedure for the controller parameters that appear in each
of the matrices above is the same. In particular, the case
for designing the paramcters in the stiffness matrix K| is
illustrated here. Let the actuators be located in such a way
that the control influcnce matrix of the system equation,
B, can be expressed by

B = QwH4 ®)

then if the control influence matrix of the control
equation, B, is designed such that

Qi Ha =BI ©

for any given matrix Hg., then the resulting closed-loop
stiffness matrix K; is symmetric. To derive the conditions
that would make K positive definite, it is adequate to
consider the special case where Hg = Hge = Hy=Hyc = 0.
Furthermore, let the input force in (5) be modified as
U=y -Gy=Hax.- GHax (10)
where G is a gain matrix to be determined. Also, let
B.=K.B: or B.=K;'B. (1

and the gain matrix G be



G =HuB. (12)

then it can be shown that the closed-loop stiffness matrix
in this case becomes

=T, = =T
K‘= K+ HdB_c_Kch’Id ‘HdBcKc ] (13)
‘KchHd KC

which, in addition to being symmetric, is positive definite
if the system stiffness matrix X is at least positive semi-
definite. The design procedure for the other controller
parameters in the closed-loop system mass and damping
matrices are similar.

GENERALIZATIONS TO MULTIPLE BODY
DYNAMIC SYSTEMS

The basic results for lincar systcms can be generalized to
the non-linear case. This section outlines the overall
methodology for cxtension to non-linear systems. A
detailed development of all the possibilities involved is
deferred to a later paper. Certain assumptions are made in
the course of the development here which must be
satisficd by the physical system being controlled. Various
possible controller structures are considered for different
types of sensor feedback, and then a Liapunov like
approach is taken to address the stability question. First
consider multiple rigid body systems. The case of
multiple flexible body systems is discussed later. Also,
mechanical systems are considered which have no external
forces applied, such as robots in space.

Velocity Feedback

We start by considering controllers that use velocity
fecdback only. Since no position measurements are made,
no attempt is made to control position. Such controllers
arc important by themselves for vibration suppression,
and are also important here as one building block in more
general controller designs discussed below. Let T be the
total kinctic energy of a mechanical system (lincar or
nonlincar) with p control actuators at p physical locations

which arc described by p generalized coordinates Xai, i =
1, 2, ..., p. These generalized coordinates and their
dcrivatives are measurable quantities such as
displacements, velocitics, accelerations or their angular
cquivalents. If the mechanical system is holonomic and
scleronomic (no explicit time dependence), a basic result
of analytical mechanics relates the time derivative of the

total kinetic cnergy, T, and the applicd forces as?

L (14)
dt

T .
where u=(u, Uy e u,,) is the control vector with
w, (i=1, 2, ..., p) representing the generalized control
force associated with the generalized coordinate x,;, and

T . . .
X, =(Jc,,l Xa2 x,,,,) is a gencralized coordinale

vector. The physical force or torque for each actuator is a
function of these generalized forces through kinematic
relations. Equation (14) is referred to as the work-energy
rate principle prensented in Ref. 2. It indicates that the
rate of change of total kinetic energy is equal to the rate of
change of work produced by applied forces.

Consider T as a Liapunov function

L=L(x,,%,.%, %)= T(x,, %, %,X) (15)

where ¥ denotes a vector of additional generalized
coordinates which need not be measurable. It is assumed
that there are no generalized forces generated by the
controller for thesc extra coordinates. The time derivative

of thc Liapunov function, L, becomes

L= 1, (16)

Let the gencralized control vector u be chosen such that

u=-Dx, an
Then it follows that

dL T s

—=-x,Dx (18)
d‘ a a

which is negative semi-definite in %,,X space when D in

Eq. (18) is chosen as positive definite. Since the
Liapunov function L is positive definite in the variables

i,,%, and its time ratc of change L is only positive

semi-definite in the same set of variables, some caution .
must be exercised with regard to a conclusion concerning
the asymptotic stability of the overall system. If it is
assumed that the mechanical structure of the system is

such that %, =0 implies X = 0, then it is not possible to

have L identically zero, and yet have the kinetic energy L
fail to vanish identically. This assumption is satisfied

provided that the manifold of the (%,,%) space on which

the time rate of change of the Liapunov function vanishes
identically,

L _ipi,=0 (19)
dt

does not contain any arc of a trajectory, and in this case

one can conclude that the triviat solution

: £=0 20)

is asymptotically stable. It is possible, however, to
allow the trajectorics to cross the manifold, as long as
they do not remain in it except when at the origin. The
time rate of change of the Liapunov function considered in

i,=0,



this case is only negative semi-definite, but the fact that
no physical trajectory arcs lic in the manifold insures that
over any finite time interval encrgy is dissipated. For our
control problem, the assumption has the physical
implication that it is not possible to have some
coordinates still in motion without disturbing any of the
controllcd coordinates. In practice, this condition may be
accomplished by having a sufficient number of sensors
collocated with the actuators at proper locations.

Displacement Feedback

Consider displacement feedback in order to control
position, or altemnatively to suppress vibrational motion
as in the above section but without velocity
measurements being available. Choose the Liapunov
function

L=L(x,,%,.x,,%,,%,%) 2n

where

L= T+%5ccTMcic +%(x, —x,_.)."l('cl (1, —xc)+%-chKczxc

(22)

where x, = (xc, X X, )T is the displacement

vector corresponding to a control (virtual) mass matrix

M, and M, K. and K ¢, are arbitrary positive definitc

matrices to be determined later, The time derivative of the
Liapunov function, L, becomes

—=uTx, +xIM_%, +(x, —xc)TKcl (x4 —Ic)-l-xZ.Kchc

di
(23)
Let u be chosen such that

u =—Kc‘(x,, -x) (24)
This is a model-independent feedback law which involves
only the measurable generalized coordinate vector x, of

the system and the computable displacement x, from a
controller to be determined later. The positive definite

matrix K and the displacement vector x, are determined

to make L negative semi-definite. Substitution of Eq.
(24) into Eq. (23) yields
a _
dt

+(ia - x.c )TKq (xa - xc)+ iZKczxc

T . . T -

—(x, - x.) K X, +% M3,
- T v .1' ’ Ty .T
=k M3, — i K. (x,—x. )+ k. K x,

—_-icT[Mcic-Kq(x,—xc)+l(qxc] 25)

Let the quantity in the square bracket be

Mcic - Kcl (xa - X ) + Kc,xc = _Dcic (26)

M. +D.i +(K, + K, )x. =K, x, @7
The right hand side of Eq. (27) involves only the
mcasurable generalized coordinate vector x, which in tum
detcrmines the quantitics x,, x, by computation.
Equation (27) is a lincar dynamic system represenicd by
the controller mass matrix M, damping matrix D, and

stiffness matrix (Xc,*’Kc,) which are all positive

definitc. The generalized control vector u is generated by
simulating the force histories that would be applied by the
chosen virtual (controller) mass-spring-dashpot system
described by Eq. (27). Its physical interpretation will be
shown later. Combination of Eqs. (25) and (26) yields

L=-iTD x, (28)

which is negative semi-definite in the variables
X,.%,.%,,%,,X,X. The objective of the control is to

obtain
lim x,(¢) = lim x_(¢£)=0 (29
{—co {300

This can be accomplished provided the Liapunov function
considered in Eq. (22) approaches zero asymptotically.

Since L is only negative semi-definite in the variables
X4, %,.%,,%.,X,X, in general it is possible to have L
vanish, yet the Liapunov function L itself does not.

Assuming that the system is configured such that it is not
possible to have some coordinates still in motion without

disturbing any of the controlled coordinates, ie., X, =0

implics X = 0, then in the limit L must approach zero as
L tends to infinity. This can be scen by considering the

case where . =0. Note that %, =0 implies x,=0.

Thercfore, the first two terms in the Liapunov function,
Eq. (22), vanish. Furthermore, in the absence of external

forces other than control forces, assume that x, =0
implics x, =0, which from Eq. (27) yields x,=0
provided K_ is invertible. This makes the last two
terms in the Liapunov function vanish as well.

Computation of the quantity x, requires measurement of
the vector x, as shown in Eq. (27). Therefore, when
velocity sensors arc not available, so that the control law
cannot depend on measuring x, as in the previous

section, it is still possible to make L negative semi-
definite using the feedback law given in Eq. (24), and

accomplish vibration suppression The positive definite

matrices M, D,, K, and K are arbitrary and can be
chosen to meet performance requirements.



Displacement and Acceleration Feedback

Feedback laws using acceleration measurements can be
derived similarly. This is an important case for vibration
suppression in structures since acceleration measurements
are much more easily made than velocily measurements.
Consider a Liapunov function of the form

L=T+ %(5:, +1,) M (%, + ic)+%chquc

+%():‘l +x¢)TKc:(xa+xc) (30)
The time derivative of L then becomes
% T+ (i + ) M, (R, + 5,)+ 57K, %,
+(ia+ic)TKc2(x,+xc) Gh
Let the control input be chosen such that
u=-M,(%,+%)- K, (x,+x) (32)

then the time rate of change of the Liapunov function
becomes

% o (E, +5) M i, — (20 + x.) Koo

kg + 5 ) Mo+ %)+ xIK &,
+(ia+j:c)TKc2(x, +x,)
=xIM, (%, + J'Ec)+chinc +x.7K, (x, +x,)
R
~(x, +xc)TKCZJ'c, + 2"‘:’(@(% +x,)

i=l

—_-icT[quc+Mc(5c',+ic)+l(62(xa+xc)] (33)

If the quantity in the square bracket in the above equation
is set 1o be

Kclxc+Mc(Jt'a+5E,)+ I('Q(Jc,,wLJcc)=—Dcic 34)

M3, +D,i, +(K, + K, . =-ME,~K,x, (35)

where D, is an arbitrary positive definite matrix, then Eq.
(33) becomes

dl. 1. .

o -iID, %, (36)

which is negative semi-dcfinite in the variables

X, %, X..%,,%,X. Note that even in the absence of

velocity measurements, the feedback control law given in
Eq. (32) which is based on acccleration and displacement

mecasurements is sufficient to make L negative semi-
definite. Again, assuming that x, =0 implies X= 0, it
can be concluded that L approaches zero as t tends to
infinity. The line of argument follows closely the
previous development in the case of displacement feedback
and hence is omitted.

Displacement, Velocity, and Acceleration
Feedback

The gencral case of displacement, velocity, and
acceleration feedback can be easily derived by considering
a Liapunov function of the form

L=T+L,+L, 37
where
1.7 .
L,==x_,M
1 2xcd cdXcd

1 1
+ E(xa — Xed )T ch, (xa - xcd)+ ExLch,xcd

1,. . . .
L2 =5(xa +xca)TMca(xa +xca)

1 1
+ —2-ch,ch:“ + —2-(x, + xc,,)TKm2 (%0 +x.4)

The control law is then of the form

u=-Dx, - ch, (xa —xcd)_Mca(ia + 'x'ca)
-Kcaz (xa +xca) (38)

where the vectors X, and X, are determincd from

Mcdicd +Dcdx'cd +(ch| + KCdg )xcd =_ch|xa (39)

Mcaica + Dcaica +(ch + Kca, )xca = _Mcaia - Kcn,xa

The cocfficient matrices as well as K4, and K, in Eq.

(39) are all required to be positive definite. The time rate
of change of the Liapunov function then becomes

L=-iIDk, - 11D g% .4 — %13Deca¥ca (40)

which is negative semi-definite. The proof of stability
parallels the previous case.

Generalization to Multiple Flexible Body
Systems with Viscous Friction

Including flexibility into the bodies of the system,
introduces a potential energy of deformation. In many
cases such as robots with controllers at each joint, this
potential encrgy is special in the sense that it does not
alter the cquilibrium position of the system including the
virtual controller. Since the potential energy function does
not change the equilibrium position, or introduce new
equilibria, there is no need to solve for the equilibrium
before studying stability. To include such a potential



energy in the analysis, one simply notes that the time rate
of change of the kinetic energy in Eq. (14) becomes the

time rate of change of the total energy 2 50 that
%(n V)=-2F, +u", (41)

where F, is the quadratic Raylcigh's dissipation function
included here to handle any viscous damping in the
system. All the theory developed above applies again.
One simply replaces the kinetic energy T by the total
mechanical energy E =T + Vof the system in the related
expressions.

PHYSICAL INTERPRETATION

Insight into the control laws developed can be gained
through the following physical interpretation in terms of
mechanical analogs. It is these analogs that motivated the
mathematical formulations above. For simplicity,
consider only the single input and single output casc.

The matrices M, D,, K, reduce (o scalar quantitics and
are denoted by the lower case letters m,, d,, k..

Velocity Feedback

The controller is given by Eq. (17). The control force
applied is equivalent to the force transmitted to the sysiem
at the actuator location by a dashpot with a damping
cocfficient d. This is shown in Fig. 1.

7
M

Figure 1: Velocity Feedback

If x, is an angular displacement, then the control law
corresponds to an angular dashpot.

+ k MECHANICAL

Displacement Feedback

The control law is given in Eq. (24). Examination of
Egs. (24) and (27) shows that the control force is
equivalent to that provided by a mass-spring-dashpot
system at the actuator location. This is shown in Fig. 2.

m. d.
k., m /4
L
ST Fwwn—E

-
Xa Xe

Figure 2: Displacement Feedback

In this case, the quantity x, is the measured inertial
position of the system at the actuator location, whereas
the quantity x, is defined as the inertial position of the

virtnal mass m,. The springs are considered as ideal

springs, and their unstreiched lengths can be considered to
be zcro. The corresponding block diagram for this case is
given in Fig. 3.

Displacement and Acceleration Feedback

The control law is given in Eqgs. (32) and (35).
Examination of the controller equations verifies that the
control force is equivalent to a mass-spring-dashpot
system at the actuator location, with one important
distinguishing feature. The position of the controller

(virtual) mass x, shown in Fig. 4 is now defined rclative

1o the measured inertial position x, of the system at the
actuator location whereas in the displacement feedback

Xa(5)

SYSTEM

k!-'l, -

mes: +dos+ (ko + k)

Figure 3: Displacement Feedback Controller



case above, it is defined as an incrtial position. The free
lengths of the springs are taken as zero. The
corresponding block diagram for this case is given in Fig.
5.

ke, i
—WWW—
i ke,
> d. >
Xa X

Figure 4: Displacement and Acceleration
Feedback

Displacement, Velocity, and Acceleration
Feedback
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Figure 6: Displacement, Velocity, and

Acceleration Feedback
The control law is given in Eq. (38). The equivalent cceleration Feedbac
mass-spring-dashpot diagram for this case is given in Fig.
6 and the block diagram for this controller is given in
Fig. 7.
U k ._.: d:stk, MECHANICAL| * (s)>
_i I - m.s” +d.s+ (k., +k,) SYSTEM
Xa(s)
me
Figure 5: Displacement and Acceleration Feedback Controller
0 4 o + + P + MECHANICAL | %)
'_i + A '_T P K _ SYSTEM
Xa(5)
k d‘
> et | Xa(5)
MuS” + Aot S+ (Kea, +Kkat, )
kem, 1 s + das + (e + koay)

Figure 7: Displacement, Velocity, and Acceleration Feedback Controller
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REMARKS

Remark I: Certain simplifications of the controllers
developed here are worth noting. In both the displacement
fecdback, and displacement and acceleration feedback cases,
the inclusion of the spring characlerized by its coefficient

Icc2 is necessary for position control, but not vital for

vibration suppression. This special feature allows one to
design robust vibration suppression controllers with

acceleromelter feedback. In particular, setting k, =0 in

the displacement and acceleration feedback law, Eq.(32),
results in a feedback law that is based on acceleration
mcasurements alone. The corresponding diagram for this
case is given in the Fig. 8.

ke,
—AWWWA\—
— T
1
o d. —
Xa X

Figure 8: Acceleration Feedback

Remark 2: In the absence of direct velocity
measurements, it is possible to mimic direct velocity
feedback by displacement measurements alone. Consider
the case of displacement fcedback as shown in Fig. 2. By

letting k., =0, and choosing k., 1o be large, and m_ to

be small, the behavior of the resulting mass-spring-
dashpot sysiem approximates that of a single dashpot.
This is equivalent to putting a controller zero near the
origin but not at the origin.

Remark 3: It is also possible to approximate direct
velocity feedback from displacement and acceleration

measurements. Refer to Fig. 4. If k., m, are choscn to

be small, and &, to be large, then the behavior of the

rcsultant mass-spring-dashpot system approximates that
of a single dashpot. In the absence of displacement

mcasurement (k& =0), the same effect can be achieved by

choosing & to be small, but m_ to be large.

Remark 4: To implement the controller in Fig. 2 or 4,
it is necessary to select the correct initial conditions for
the controlicr coordinate x, to be used. There is a subtle
differcnce between the vibration suppression problem and
the end-point control problem by this approach, cven
though they may be viewed as thc same conceptually.
For vibration suppression, the controller consists of
sccond-order dynamic systems whose equilibrium position
of the controller mass is consistent with the desired

- equilibrium configuration of the structure. Assuming that

the structure is initially at rest, the initial condition for

the controller coordinate is then x, =X, =0. For end-
point positioning control, however, the initial conditions
for the controller coordinate must be chosen such that in
the desired final configuration of the manipulator, the
virtual spring and dashpot are in their equilibrium and
unstreiched position. In the end-point control problem,
the induced vibrations are also suppressed by this
controller design.

Remark 5: When the controllers are interpreted in
physical terms, recall that for the case of displacement
feedback, the position vector of the controller (virtual)
mass x, in the Liapunov function, Eq. (22), is defined
with respect to an inertial reference. However, for
displacement and acceleration feedback, Eq. (30), it is
defined relative to the actuator location. When the control
mass location is expressed as an inertial position, the
Liapunov function in the second case becomes identical 1o
that in the first case. The difference is in the formulation
of the control law. By expressing it in terms of the
relative position of the controller mass, the scheme can be
implemented by acceleration measurements without the
need for velocity measurements.

NUMERICAL EXAMPLES

The robot system, shown in Fig. 9, consists of six one
degree-of-freedom joints, namely, shoulder pitch, yaw,
elbow pitch, wrist yaw, pitch and roll, This robot model
has the same kincmatic relationships and mass properties
as the Shuttle’s Remote Manipulator System (RMS).
The shoulder and elbow joints are connected by a 6.4
meter long lightweight carbon composite boom. This is
designated the upper arm boom. The lower arm boom,
connccting the elbow joint to the wrist joints, is
approximately 7 meters long. The shoulder and elbow
Joints provide three translational degrees of freedom, and
the wrist joints provide three additional rotational degrees
of freedom of the end effector. Mass properties of each of
the components of the robot systcm are given in Table 1.

A simple maneuver to move the end effector from its
current position (o a new position is simulated. Initially,
the robot system is in the position shown in Fig. 9, and
the position vector of the end effector is (15.3162,
0.3048, 0.0) given in terms of its x, y, z components.
The desired new position of the end effector relative to the
robot base is (10.3162, 5.3048, 5.0). Assume that all the
wrist joints arc locked during the maneuvering, and
control torques arc only applied to each movable joint,
i.e., the shoulder yaw, pitch, and elbow pitch joints.
Since the sysiem is driven by torques at the joints, the
required change in each joint angle is pre-calculated to be
-0.45131 rad, -0.3111 rad, and 1.2106 rad for the shoulder
yaw, pitch, and elbow pitch joints, respectively. In this
casc, a sccond-order virtual rotational spring-mass damper
system is located at cach joint to be controlled. The
controller sysiem then has virtual moments of inertia




instcad of virtual masscs, torsional springs and dashpots
instcad of linear springs and dashpots. The initial
conditions of the control system arc chosen such that in
the final desired configuration of the manipulator, the
virtual springs assume their free-length forms.

In the simulations, the wrist links are modeled as rigid
bodies since they are fairly short relative to the lengths of
both arms. The upper and lower arms are modeled as
flexible bodies. The geometric and material properties of
the flexible arms are given in Table 2. Only the first three
cantilever modes are used to represent the flexibility of the
links. Three different controllers, distinguished by the
measured signals, are used to illustrate the use of the
controller design methods in this paper.

Case 1: Displacement and velocity feedback

Case 1 uses angular displacements and velocities of joints
for feedback. The controllers for each joint are rotational
versions of the diagram in Fig. 6 with the bottom
connection associated with acccleration removed. The
parameters of the controller are given in Table 3. No
attlempt has been made to optimize the parameters chosen.
Figures 10-12 show time histories of the end effector
locations in both flexible and rigid-body simulations. The
results show that the vibration is actively suppressed.
Figure 13 shows the time history of the dominant first
mode of the lower arm during this maneuver.

Case 2: Displacement feedback

One advantage of the virtual system controller design
approach developed here is that velocity feedback is not
required for vibration control or stability robustness. The
stability robustness however, nced not guarantee good
damping rates. To attempt to produce responses like those
in Case 1, but this time using displacement measurcment
feedback alone, the order of the controller is increased to
emulate velocity feedback. This is done by replacing the
velocity feedback portion of Case 1 with a rotational
virtual system corresponding to Fig. 2, and using a large

k. and a small m,. The control structure can again be

viewed by comparing to Fig. 6. The bottom acceleration
fecdback connection is removed as before, and in place of
the middle velocity conncction, we substitute a repeat of
the top conncction, but with a different choice of

parameters. Theorctically, when both the k. and m, of

the middic connection go to their limits, the control
system in Case 2 is equivalent to the control sysicm in
Case 1. Numcrically, the values of these constants are
constraincd by the introduction of high frequencies and
rcal-time numerical integration difficulties.

In the simulation, the value of kq of the second virtual

system is taken to be 100 times stiffer than the k_ of the
first virtual system. Figure 14 shows the simulation
results with two different valucs of m, for the second

virtual systcm, and shows that this approach will require
rather extreme mass and stiffness values for good damping
performance.

Case 3: Displacement and displacement-acceleration

Jeedback

Another way to emulate the velocity signal is by using
displacement-acceleration feedback. By replacing the
velocity feedback in Case 1 with the displacement-

acceleration feedback of Fig. 4 and using large k. and

small m_ in this virtual system, the controller works

similarly to the controller used in Case 1. It can be
viewed as a rotational version of Fig. 6 with the center

velocity connection removed. Theoretically, when the &,

and m_ of the accelcration connection go to their limits,
the control system in Case 3 is equivalent to the control
system in Case 1, The controller in Case 3 is numerically
better conditioned than that in Case 2, since the velocity
signal is obtained in the limit through integration of
acccleration rather than differentiation of displacement.

In the simulation, the valuc of Ich of the second virtual

system is taken to be 100 times stiffer than the &, of the

first virtual sysiem. The results obtained are identical to
within plotting accuracy, to the results obtained in Case
1, and are therefore not shown here. Since acceleration
fecdback is often more realistic than velocity feedback,
this example shows that the control design of Case 3 can
be important in practical applications.

So far, the controller parameters have not been optimized.
To get some understanding of how the parameters of the
virtual system affect performance, several cases are

simulated with adjusted m,, k., and d, of the first

virtual control system in Case 3. Each of the parameters
is changed to ten times larger and ten times smaller than
its original value. Figure 15 shows the angular
displacement of the elbow pitch joint, for different values

of k,, . Faster response can be achieved by using a larger
spring constant k. , as the results revealed. Figure 16

gives results obtained when varying the control mass m,
In this particular example, the smaller the controller
mass, the better the response. Figure 17 presents the
results of varying the control damping constant d,. Note
that the use of a large damping constant may result in
slow sysiem response,

CONCLUSIONS

In this paper, a general control design methodology has
been outlined for large angle position control and
vibration suppression in multiple flexible-body dynamic
systems. The mcthod guarantees stability of the



controlled system, whether linear or non-linear. The
approach is model-independent in the sense that
knowledge of the system dynamics is not required in the
design process. Hence, it is robust with respect to
parameter variations. Unlike positive real controller
design which allows velocity measurements only, the
current development can use velocity, position, and
acceleration measurements or any combination, and still
guarantees stability of the closed loop system. In addition
it allows use of dynamic feedback controllers with
additional opportunity for tuning to obtain good system
performance. One special case of the methodology
demonstrates how one can obtain the desirable properties
of velocity feedback using acceleration feedback, which is
often easier to instrument in practice. The design has
_intuitive appeal in terms of its physical interpretation that
aids the control design process.
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Table 1 Mass Properties of the Robot System

Name Mnss (kg) | Ixx (kg-md) | lyy (kg-m2)[ bzz (kg-m?) [ Iry (kg-m?) | Ixz (kg-m2) | lyz (kg-m?)
Dase 3201 11.1446 595196 14.1681 0.7958 x10-1 0.1925 x10-Y -0.366 x10-}
Lower Arm 26.50141 [ 0.1351 x10-1] 97.43457 97.4481 0.2945 0.0 0.0
Upper Ann 333819 | 0.2458 x10-1| 126.9785 127.003) | -0.52954 0.0 0.0
st (Pich) 4615 R92T164 4.01316 4.0267 00 0.0 0.0
Wrist (Yaw) 45.97 4.0809 4.67751 4.68022 |-0.7321 210-4 0.1464 210-2].0.2928 x10-3
Weist (Roll) a5 T.30334 THLTT JATG57 0.0 0.0 0.0
Thoulder Joint]  106.00 0.0 0.0 0.0 0.0 0.0 0.0
Thow Joim oI 0.0 LG 0.0 0.0 0.0 0.0
Table 2 Geometrics of the Robot System and Material
Properties of Flexible Links
Namao Leagih (m)[ E (Nlmzi a (Nlmzi A (m2)l P (kgIm])l =12 (m"] J (M)
Upper Arm: 0.3751
Scction 1] 0.7239 1.20 x1011] 4.615 x1010] 1.3687x10-3| 4540.0 1.8683x10-9] 2.3313x10-9
Scction 2]  5.0038 1.58 1071} 3.985 x101U} 1.9662x10-7| 25048 2.6605x10-5] 5.3206x10-0
Scction 3| 0.3302 1.20 x10V1] 4.615 x1010] 1.3687x10-J | 4540.0 1.1886x10-9] 1.6477x10-2
Sceton 4| 0352 1.20 x 1011} 4.615 x101U] 1.3687x10-3 | 4540.0 1.1886x10-7] 1.6477x10-2
_ower Arm: T0612
Section 1] 03522 1.20 x10TY 4.615 x10TU] 7.441x104 | 4540.0 1.0080x10-J [ 1.7410x10-2
Section 2|  5.7404 1.55 xt01Y] 4.074 101V} 1.308x10-3 | 3164.7 1.B189x10-9 | 3 .6I82x10-)
Section 3] 1.0032 1.20 21017] 4.615 11010 3.390x104 | 4540.0 4.5920210-5 | 6.4050210-5
Nnse 0.3048
Wrist (Puch) 04572
Wrist (Vaw) 0.7620
Wrist (Rull) 0.66001

Table 3 Parameters of Virtual Systems for the Robot Mancuvering
Control with Velocity and Displacement Feedback

ot Name me Xc) kciake2 de d

Shoulder Yaw| 0.25639x10°] 1011169.0 | 2000000.00| 225419.0 | 274581.00
Shonlder Pitch] 0.25639x10°| 1011169.0 | 2000000.00f 225419.0 | 274581.00
Elbow Pitch | 0.65157x10%] 256970.00 | 500000.00 | 57286.00 | 42714.00
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Figure 9: A Six-Degree-of-Freedom Robot
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of the End Effector, Case 1
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