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NASA Langley Research Center, Hampton, Virginia 23665

ABSTRACT

A methodology for model-independent controller
design for controlling large angular motion of multi-body
dynamic systems is outlined. The controlled system may
consist of rigid and flexible components that undergo
large rigid body motion and small elastic deformations.
Control forces/torques are applied to drive the system, and
at the same time suppress the vibrations due to flexibility
of the components. The proposed controller consists of
passive second-order systems which may be designed with
little knowledge of the system parameters, even if the
controlled system is non-linear. Under rather general
assumptions, the passive design assures that the closed
loop system has guaranteed stability properties. Unlike
positive real controller design, stabilization can be
accomplished without direct velocity feedback. In addition,
the second-order passive design allows dynamic feedback
controllers with considerable freedom to tune for desired
system response, and to avoid actuator saturation. After
developing the basic mathematical formulation of the
design methodology, simulation results are presented to
illustrate the proposed approach applied to a flexible six-
degree-of-freedom manipulator.

INTRODUCTION

In this paper, a controller design methodology is outlined
for non-linear dynamic systems based on simulating the
force/torque histories that would be applied by a chosen
virtual system of masses, springs and dashpots. In a
companion paper by Juang and Phan I, the corresponding
theory for linear dynamic systems is presented. Here,
nonlinear problems are addressed by generalizing the
standard Liapunov stability theory to allow less restrictive
conditions on the Liapunov function. A major advantage
of the control approach is its ability to guarantee stability
of the controlled system with very little knowledge of the
system being controlled. It has the advantages of positive
real controller design methods, but in addition it allows
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use of more realistic choices for sensors. It allows
dynamic controllers, and it easily handles a nonlinear
environment. A secondary advantage is the physical
intuition available to help guide the control system
design. Both regulator (or vibration suppression)
problems, and end-point control (or slewing) problems
can be treated. The approach taken here exploits the

work-energy rate principle in designing controllers as
suggested by Oh, Vadali and Junkins '_.

The controller design methods developed here rely on the
guaranteed energy dissipation produced by a virtual mass-
spring-dashpot system for their stability properties. In the
large flexible spacecraft shape control problem, Canavin 3
was one of the first proponents of collocated velocity
sensors and force actuators with pure velocity feedback.
Such a control approach has the same guaranteed stability
properties as the proposed design method, but the
proposed method is more general, and does not necessarily
require velocity feedback. Hyperstability, and positive real
controller design methods are other closely related bodies
of knowledge, Popo v4"5. A positive real dynamic system
is one which can be realized by purely passive electrical
elements, Newcomb 6. Benhabib, Iwens, and Jackson 7
were the first to suggest applying such concepts from
network theory for shape control of large flexible
spacecraft. Flashner 8 considers applications to robotics.
The design of linear quadratic regulator controllers that are
constrained to be positive real is studied in Sevaston and
Longman. 9

The proposed approach is much more general than typical
positive real controller design. For shape control of large
flexible sp_ecraft, positive real theory requires the use of
collocated velocity sensors and force actuators (or angular
rate sensors and torque actuators). The requirement of
velocity sensors is very restrictive in hardware
implementation. Here the same type of stability
robustness properties are obtained as in positive real
theory, but the use of position, acceleration, and velocity
sensors is allowed, either alone or in combinations.
Collocation of sensors and actuators is still required. The
controller design problem is formulated in terms of a
virtual mechanical system which supplies considerable
intuition to guide the control system design step.

This paper starts with a brief review of passive controller
design for linear systems as developed in Ref. 1. The
basic results for the linear case are then generalized to the



non-linear case. Insight into the passive control laws is
given in the section entitled Physical Interpretation. A
generic configuration similar to the Shuttle's Remote
Manipulator System (RMS) is used as an example to
illustrate the proposed controller design approach.

BASIC RESULTS FOR LINEAR SYSTEMS

The virtual spring-mass-damper approach to passive
controller design is first described for linear dynamic
systems as in Ref. 1. Extension of the theory to general
non-linear multiple body dynamic systems is then made.

A general non-gyroscopic linear dynamic system can be
represented as a system of second-order constant
coefficient ordinary differential equations

M._ + D._+Kx = Bu (I)

y = II,,_ + II_]c+ lidX O)

where x is an n x 1 coordinate vector, and M, D, and K
are the symmetric mass, damping and stiffness matrices,

respectively. The n xp influence matrix B describes the

actuator force distributions for the p x 1 control force
vector u (or generalized force). Typically, matrix M is
positive definite whereas D and K are positive definite or
positive semi-definite. In the absence of rigid-body
motion, K is positive definite. Equation (2) is a

measurement equation having y as the m x 1

measurement vector, tla, Hv, and li d are the m x n

acceleration, velocity, and displacement influence
matrices, respectively.

Assume that the controller to be designed has a set of
second-order dynamic equations and measurement
equations similar to the system equations in (1) and (2)
above

Mcxc + Dc:cc + Kcxc =Bcuc (3)

yc = ito.'xc + it._ Jc + !t_ x. (4)

Here x c is the controller state vector of dimension nc, and

Mc, Dc, and K c are thought of as the controller mass,

damping, and stiffness matrices, respectively. These
matrices are chosen to be symmetric and positive definite
to make the controller equations asymptotically stable.

The n c X m influence matrix Bc describes the force

distributions for the m x 1 input force vector Uc. Equation

(4) is the controller measurement equation having Yc as

the measurement vector of length p, H ac the p x nc

acceleration influence matrix, Hvc the p x nc velocity

influence matrix and Hdc the p x nc displacement

influence matrix. The quantities Mo Dc, Ko Bc, llac,

lldo and Hvc are the design parameters for the controller.

Let the dynamic system in (1) and (2) be connected to the
controller system in (3) and (4) in such a way that the

output of the controller is the input to the dynamic

system, and the output of the dynamic system is the input
to the controller, i.e.,

u = yc = Hac xc + H,c Xc + H_ xc (5)

uc=y=Ho_c + H_x + Hax (6)

The overall closed-loop system then becomes

where
M,x, + D,]ct+ K,xt= 0 (7)

-B, lto M_ J -B_11,

-B_lla K_ J xc

-BH_] ,

Dc J

If the system parameters, M, D, K, tt a, ti d , and llv are

known, then the controller parameters, M o D o K o tlac ,

tldc, and Hvc can be designed such that the closed-loop
system matrices, M t, Dt, and K t are symmetric and

positive definite. This makes the closed-loop system, Eq.
(7), asymptotically stable. However, it is of interest to
design controllers that are insensitive to the system
parameters. In the following development, this is indeed
possible provided a certain modification to the control
equation is made, and a certain condition on the actuator
and sensor placement is satisfied. First, note the

similarity in structures in the closed-loop system matrices
M t, D t, and K t. This means that the basic design

procedure for the controller parameters that ap_ar in each
of the matrices above is the same. In particular, the case
for designing the parameters in the stiffness matrix K t is

illustrated here. Let the actuators be located in such a way
that the control influence matrix of the system equation,
B, can be expressed by

Br = QbHa (8)

then if the control influence matrix of the control

equation, Bo is designed such that

T
Qb lta_ = Bcr _))

for any given matrix ttdc, then the resulting closed-loop

stiffness matrix Kt is symmetric. To derive the conditions

that would make K t positive definite, it is adequate to

consider the special case where Ha = Hac = Hv = ttvc = O.
Furthermore, let the input force in (5) be modified as

u = yc - Gy = Ha_ x_ - GHax (10)

where G is a gain matrix to be determined. Also, let

Bc=KcB-_ or Bc=K;IBt (11)

and the gain matrix G be
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a=n K (12)

then it can be shown that the closed-loop stiffness matrix
in this case becomes

g,=[ K+. hc, Km
L -Kc "Bcnd

-HdBcKc

K.

(13)

which, in addition to being symmetric, is positive definite
if the system stiffness matrix K is at least positive semi-
definite. The design procedure for the other controller
parameters in the closed-loop system mass and damping
matrices are similar.

GENERALIZATIONS TO MULTIPLE BODY
DYNAMIC SYSTEMS

The basic results for linear systems can be generalized to
the non-linear case. This section outlines the overall
methodology for extension to non-linear systems. A
detailed development of all the possibilities involved is
deferred to a later paper. Certain assumptions are made in
the course of the development here which must be
satisfied by the physical system being controlled. Various
possible controller structures are considered for different
types of sensor feedback, and then a Liapunov like
approach is taken to address the stability question. First
consider multiple rigid body systems. The case of
multiple flexible body systems is discussed later. Also,
mechanical systems are considered which have no external
forces applied, such as robots in space.

Velocity Feedback

We start by considering controllers that use velocity
feedback only. Since no position measurements are made,
no attempt is made to control position. Such controllers
are important by themselves for vibration suppression,
and are also important here as one building block in more
general controller designs discussed below. Let T be the
total kinetic energy of a mechanical system (linear or
nonlinear) with p control actuators at p physical locations

which are described by p generalized coordinates x,a, i =
1, 2..... p. These generalized coordinates and their
derivatives are measurable quantities such as
displacements, velocities, accelerations or their angular
equivalents. If the mechanical system is holonomic and
scleronomic (no explicit time dependence), a basic result
of analytical mechanics relates the time derivative of the

total kinetic energy, I", and the applied forces as2

dT = urk° (14)
dt

where u = (ul u2 ... up) r is the control vector with

ui (i = 1, 2..... p) representing the generalized control

force associated with the generalized coordinate x,_, and

x,, =(x,! x,2 ... x,_,)r is a generalized coordinate

vector. The physical force or torque for each actuator is a
function of these generalized forces through kinematic
relations. Equation (14) is referred to as the work-energy
rate principle prensented in Ref. 2. It indicates that the
rate of change of total kinetic energy is equal to the rate of
change of work produced by applied forces.

Consider T as a Liapunov function

L = L(x.,i.,Lx) = (15)

where X" denotes a vector of additional generalized
coordinates which need not be measurable. It is assumed
that there are no generalized forces generated by the
controller for these extra coordinates. The time derivative

of the Liapunov function, L, becomes

L=dL= dT=urk° (16)
dt dt

Let the generalized control vector u be chosen such that

u = -Dko (17)

Then it follows that

dL .T • (18)
= -X a Ox a

dt

which is negative semi-definite in ._o,X space when D in

Eq. (18) is chosen as positive definite. Since the
Liapunov function L is positive definite in the variables

k°,x, and its time rate of change L is only positive
semi-definite in the same set of variables, some caution
must be exercised with regard to a conclusion concerning
the asymptotic stability of the overall system. If it is
assumed that the mechanical structure of the system is

such that _° = 0 implies x - 0, then it is not possible to

have L identically zero, and yet have the kinetic energy L
fail to vanish identically. This assumption is satisfied

provided that the manifold of the (.i°,x) space on which

the time rate of change of the Liapunov function vanishes
identically,

dL= _._,TDj:° = 0 (19)
dt

does not contain any arc of a trajectory, and in this case
one can conclude that the trivial solution

i,=O, _=0 (20)

is asymptotically stable. It is possible, however, to
allow the trajectories to cross the manifold, as long as
they do not remain in it except when at the origin. The
time rate of change of the Liapunov function considered in



this case is only negative semi-definite, but the fact that
no physical trajectory arcs lie in the manifold insures that

over any finite time interval energy is dissipated. For our
control problem, the assumption has the physical
implication that it is not possible to have some
coordinates still in motion without disturbing any of the
controlled coordinates. In practice, this condition may be
accomplished by having a sufficient number of sensors
collocated with the actuators at proper locations.

Displacement Feedback

Consider displacement feedback in order to control
position, or alternatively to suppress vibrational motion

as in the above section but without velocity
measurements being available. Choose the Liapunov
function

L = L(x,._,.x,._,._._) (21)
where

L = T + _-_c Mc-_c

(22)

where x_ = (x,! x,2 --- x_e) r is the displacement

vector corresponding to a control (virtual) mass matrix

M e, and M,, K_, and Kq are arbitrary positive definite

matrices to be determined latex. The time derivative of the

Liapunov function, L, becomes

dt

(23)

Let u be chosen such that

u =-K_l(x o -x_) (24)

This is a model-independent feedback law which involves

only the measurable generalized coordinate vector xo of

the system and the computable displacement x c from a

controller to be determined later. The positive definite

matrix K_, and the displacement vector x, are determined

to make L negative semi-definite. Substitution of Eq.
(24) into Eq. (23) yields

=-(x,- x,)TK, + [M:o
dt

+(_,- _c) T K, (x° - ,,_ )+ x[K_, xc

(25)

Let the quantity in the square bracket be

M¢£, - K_, (x, - x, ) + Kcax, = -Dfi:, (26)

Of

M,J,+O,x,+(r,t+r_)xc=rcx. (27)

The right hand side of Eq. (27) involves only the

mcastwable generalized coordinate vector x. which in turn

determines the quantities x_, -_c by computation.

Equation (27) is a linear dynamic system represented by

the controller mass matrix Me, damping matrix D_ and

stiffness matrix (Kc, +Ka) which are all positive

definite. The genera_zed control vector u is generated by
simulating the force histories that would be applied by the
chosen virtual (controller) mass-spring-dashpot system
described by Eq. (27). Its physical interpretation will be
shown later. Combination of Eqs. (25) and (26) yields

• T •= -x c Oex _ (28)

which is negative semi-definite in the variables

xo,ko,x_,£_,x,x. The objective of the control is to
obtain

lira x°(t) = lira x_(t) = 0 (29)

This can he accomplished provided the Liapunov function

considered in Eq. (22) approaches zero asymptotically.

Since L is only negative semi-definite in the variables

Xo,ko,x,,._,_,_, in general it is possible to have /:,

vanish, yet the Liapunov function L itself does not.

Assuming that the system is configured such that it is not
possible to have some coordinates still in motion without

disturbing any of the controlled coordinates, i.e., ko ---0

implies _ -=0, then in the limit L must approach zero as
t tends to infinity. This can be seen by considering the

case where _, - 0. Note that .t, -=0 implies ko -=0.

Therefore, the first two terms in the Liapunov function,
Eq. (22), vanish. Furthermore, in the absence of external

forces other than control forces, assume that k_ E 0

implies x_--0, which from Eq. (27) yields xo n0

provided K,, is invertible. This makes the last two

terms in the Liapunov function vanish as well.

Computation of the quantity x c requires measurement of

the vector x° as shown in Eq. (27). Therefore, when

velocity sensors are not available, so that the control law

cannot depend on measuring ka as in the previous

section, it is still possible to make L negative semi-
definite using the feedback law given in Eq. (24), and
accomplish Vibration suppression The positive definite

matrices Me, D,, K_ and K_ are arbitrary and can be

chosen to meet performance requirements.
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Displacement and Acceleration Feedback

Feedback laws using acceleration measurements can be
derived similarly. This is an important case for vibration
suppression in structures since acceleration measurements
are much more easily made than velocity measurements.
Consider a Liapunov function of the form

1 T

1
+7(x, + xc)1`K,(xo + Xc)

(30)

The time derivative of L then becomes

dt

(31)

Let the control input be chosen such that

u = -Mc(J_ a + Ycc )- Kea (x a + x c) (32)

then the time rate of change of the Liapunov function
becomes

aL=_(i, +i_)1M̀oi.- (x.+x_)1K̀o,_.
dt

+(_, + 7" xr t¢_c

+(_.+_)1`x_.(xo+xo)

: _[Mo(_.+_c)+gxoA +Cxo,(x, +x_)
A

-(x.+x_)_xo/,.+]_,_._x_,(x.+x_)
i=1

(33)

If the quantity in the square bracket in the above equation
is set to be

Of

(34)

M:c+_:o+(Ko,+K_)xo---M:.-K_x.(35)
where D, is an arbitrary positive definite matrix, then Eq.

(33) becomes

dL -1` • (36)
= -xc Dcxc

dt

which is negative semi-definite in the variables

x,_,k,,xc,._,,_,'_. Note that even in the absence of

velocity measurements, the feedback control law given in
Eq. (32) which is based on acceleration and displacement

measurements is sufficient to make L negative semi-

definite. Again, assuming that ka -=0 implies _ _ 0, it

can be concluded that L approaches zero as t tends to
infinity. The line of argument follows closely the
previous development in the case of displacement feedback
and hence is omitted.

Displacement, Velocity, and Acceleration
Feedback

The general case of displacement, velocity, and

acceleration feedback can be easily derived by considering
a Liapunov function of the form

where

L=T+L I +L 2 (37)

1.T

L 1 = -_ XcdMcdXcd

1 7.
+½(_.- _c,:Xo_(_.- x_,)+7x_.xc,_xo_

L_=i(x.

1 7, +2(x,, + xc, ) gcaa(x,, + x,,,)+ _ XcaKc_ Xca 1"

The control law is then of the form

, =-o_. - _:,_(x,- x,,)- M,.(_.+_o.)

-K,,_ (xo + x_,,)

where the vectors X _d and X c,, are determined from

(38)

(39)

The coefficient matrices as well as K_4 and K_, a in Eq.

(39) are all required to be positive definite. The time rate
of change of the Liapunov function then becomes

[_= _ yr_aDJa _ j_TdOcd_c d _ Xc*,r OcaXca. (40)

which is negative semi-definite. The proof of stability
parallels the previous case.

Generalization to Multiple Flexible Body
Systems with Viscous Friction

Including flexibility into the bodies of the system,

introduces a potential energy of deformation. In many
cases such as robots with controllers at each joint, this
potential energy is special in the sense that it does not
alter the equilibrium position of the system including the
virtual controller. Since the potential energy function does
not change the equilibrium position, or introduce new
equilibria, there is no need to solve for the equilibrium

before studying stability. To include such a potential

5



energy in the analysis, one simply notes that the time rate
of change of the kinetic energy in Eq. (14) becomes the
time rate of change of the total energy 2 so that

-_(T V) -2Fd + (4)uT_a+ l

where Fa is the quadratic Rayleigh's dissipation function

included here to handle any viscous damping in the
system. All the theory developed above applies again.
One simply replaces the kinetic energy T by the total

mechanical energy E = T + Vof the system in the related
expressions.

PHYSICAL INTERPRETATION

Insight into the control laws developed can be gained
through the following physical interpretation in terms of
mechanical analogs. It is these analogs that motivated the
mathematical formulations above. For simplicity,
consider only the single input and single output case.

The matrices Me, De, Kc reduce to scalar quantities and

are denoted by the lower case letters m_, dc , kc.

Velocity Feedback

The controller is given by Eq. (17). The control force
applied is equivalent to the force transmitted to the system
at the actuator location by a dashpot with a damping
coefficient d. This is shown in Fig. 1.

d

x_

Figure 1: Velocity Feedback

If X, is an angular displacement, then the control law

corresponds to an angular dashpoL

Displacement Feedback

The control law is given in Eq. (24). Examination of
Eqs. (24) and (27) shows that the control force is
equivalent to that provided by a mass-spring-dashpot
system at the actuator location. This is shown in Fig. 2.

mc d,

x_ xc

Figure 2: Displacement Feedback

In this case, the quantity Xo is the measured inertial

position of the system at the actuator location, whereas

the quantity x_ is defined as the inertial position of the

virtual mass m_. The springs are considered as ideal

springs, and their unstretched lengths can be considered to
be zero. The corresponding block diagram for this case is
given in Fig. 3.

Displacement and Acceleration Feedback

The control law is given in Eqs. (32) and (35).
Examination of the controller equations verifies that the
control force is equivalent to a mass-spring-dashpot
system at the actuator location, with one important
distinguishing feature. The position of the controller

(virtual) mass xc shown in Fig. 4 is now defined relative

to the measured inertial position x° of the system at the

actuator location whereas in the displacement feedback

0 + + lVmCH  ',rIC I x'(s)

SYSTEM _-_--..1_

Figure 3: Displacement Feedback Controller
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case above, it is defined as an inertial position. The free
lengths of the springs are taken as zero. The
corresponding block diagram for this case is given in Fig.
5.

kc! me

F-_ _
y._ xc

Figure 4: Displacement and Acceleration
Feedback

Displacement, Velocity, and Acceleration
Feedback

The control law is given in Eq. (38). The equivalent
mass-spring-dashpot diagram for this case is given in Fig.
6 and the block diagram for this controller is given in
Fig. 7.

A
v

x_

m,_ d_

x,a

n
kcat mm

d_
x_

Figure 6: Displacement, Velocity, and
Acceleration Feedback

arcs + k, t

m,s 2 + d_s + (k_, + k_, ) H MECHANICALLY.(s)SYSTEM /

.L(s)

0 +

Figure 5: Displacement and Acceleration Feedback Controller

+ + + +

+

MECHANICAL

SYSTEM

x,(s)

Figure 7: Displacement, Velocity, and Acceleration Feedback Controller
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REMARKS

Remark 1: Certain simplifications of the controllers

developed here are worth noting. In both the displacement
feedback, and displat_ment and acceleration feedback cases,
the inclusion of the spring characterized by its coefficient

ka is necessary for position control, but not vital for

vibration suppression. This special feature allows one to
design robust vibration suppression controllers with

accelerometer feedback. In particular, setting k_ = 0 in

the displacement and acceleration feedback law, Eq.(32),
results in a feedback law that is based on acceleration

measurements alone. The corresponding diagram for this
case is given in the Fig. 8.

k¢l

x_ x¢

Figure 8: Acceleration Feedback

Remark 2: In the absence of direct velocity
measurements, it is possible to mimic direct velocity
feedback by displacement measurements alone. Consider

the case of displacement feedback as shown in Fig. 2. By

letting k_a = 0, and choosing kct to be large, and m c to

be small, the behavior of the resulting mass-spring-
dashpot system approximates that of a single dashpot.
This is equivalent to putting a controller zero near the
origin but not at the origin.

Remark 3: It is also possible to approximate direct
velocity feedback from displacement and acceleration

measurements. Refer to Fig. 4. If kq, mc are chosen to

be smalll and kca to be large, then the behavior of the

resultant mass-spring-dashpot system approximates that
of a single dashpot. In the absence of displacement

measurement (kq = 0), the same effect can be achieved by

choosing k_t to be small, but mc to be large.

Remark 4: To implement the controller in Fig. 2 or 4,
it is necessary to select the correct initial conditions for

the controller coordinate x c to be used. There is a subtle

difference between the vibration suppression problem and
the end-point control problem by this approach, even
though they may be viewed as the same conceptually.
For vibration suppression, the controller consists of
second-order dynamic systems whose equilibrium position
of the controller mass is consistent with the desired

equilibrium configuration of the structure. Assuming that
the structure is initially at rest, the initial condition for

the controller coordinate is then x c = ./c = 0. For end-

point positioning control, however, the initial conditions
for the controller coordinate must be chosen such that in

the desired final configuration of the manipulator, the
virtual spring and dashpot are in their equilibrium and

unstretched position. In the end-point control problem,
the induced vibrations are also suppressed by this
controller design.

Remark 5: When the controllers are interpreted in
physical terms, recall that for the case of displacement
feedback, the position vector of the controller (virtual)

mass xc in the Liapunov function, Eq. (22), is defined

with respect to an inertial reference. However, for
displacement and acceleration feedback, Eq. (30), it is
defined relative to the actuator location. When the control

mass location is expressed as an inertial position, the
Liapunov function in the second case becomes identical to
that in the first case. The difference is in the formulation

of the control law. By expressing it in terms of the
relative position of the controller mass, the scheme can be
implemented by acceleration measurements without the
need for velocity measurements.

NUMERICAL EXAMPLES

The robot system, shown in Fig. 9, consists of six one

degree-of-freedom joints, namely, shoulder pitch, yaw,
elbow pitch, wrist yaw, pitch and roll. This robot model

has the same kinematic relationships and mass properties
as the Shuttle's Remote Manipulator System (RMS).
The shoulder and elbow joints are connected by a 6.4
meter long lightweight carbon composite boom. This is
designated the upper arm boom. The lower ann boom,

connecting the elbow joint to the wrist joints, is
approximately 7 meters long. The shoulder and elbow

joints provide three translational degrees of freedom, and
the wrist joints provide three additional rotational degrees
of freedom of the end effector. Mass properties of each of
the components of the robot system are given in Table 1.

A simple maneuver to move the end effector from its
current position to a new position is simulated. Initially,
the robot system is in the position shown in Fig. 9, and
the position vector of the end effector is (15.3162,
0.3048, 0.0) given in terms of its x, y, z components.
The desired new position of the end effector relative to the
robot base is (10.3162, 5.3048, 5.0). Assume that all the

wrist joints are locked during the maneuvering, and
control torques are only applied to each movable joint,
i.e., the shoulder yaw, pitch, and elbow pitch joints.

Since the system is driven by torques at the joints, the
required change in each joint angle is pre-calculated to be
-0.45131 rad, -0.3111 rad, and 1.2106 rad for the shoulder

yaw, pitch, and elbow pitch joints, respectively. In this
case, a second-order virtual rotational spring-mass damper
system is located at each joint to be controlled. The

controller system then has virtual moments of inertia



instead of virtual masses, torsional springs and dashpots
instead of linear springs and dashpots. The initial
conditions of the control system are chosen such that in
the final desired configuration of the manipulator, the
virtual springs assume their free-length forms.

In the simulations, the wrist links are modeled as rigid

bodies since they are fairly short relative to the lengths of
both arms. The upper and lower arms are modeled as
flexible bodies. The geometric and material properties of
the flexible arms are given in Table 2. Only the first three
cantilever modes are used to represent the flexibility of the
links. Three different controllers, distinguished by the
measured signals, are used to illustrate the use of the

controller design methods in this paper.

Case I:Displacementand velocityfeedback

Case I uses angular displacements and velocities of joints
for feedback. The controllers for each joint are rotational

versions of the diagram in Fig. 6 with the bottom
connection associated with acceleration removed. The

parameters of the controller are given in Table 3. No
attempt has been made to optimize the parameters chosen.
Figures 10-12 show time histories of the end effector
locations in both flexible and rigid-body simulations. The
results show that the vibration is actively suppressed.

Figure 13 shows the time history of the dominant first
mode of the lower arm during this maneuver.

Case 2: Displacement feedback

One advantage of the virtual system controller design
approach developed here is that velocity feedback is not
required for vibration control or stability robusmess. The

stability robustness however, need not guarantee good
damping rates. To attempt to produce responses like those
in Case 1, but this time using displacement measurement
feedback alone, the order of the controller is increased to

emulate velocity feedback. This is done by replacing the
velocity feedback portion of Case 1 with a rotational
virtual system corresponding to Fig. 2, and using a large

kc, and a small mc. The control structure can again be

viewed by comparing to Fig. 6. The bottom acceleration
feedback connection is removed as before, and in place of

the middle velocity connection, we substitute a repeat of
the top connection, but with a different choice of

parameters. Theoretically, when both the kcl and mc of

the middle connection go to their limits, the control

system in Case 2 is equivalent to the control system in
Case 1. Numerically, the values of these constants are
constrained by the introduction of high frequencies and
real-time numerical integration difficulties.

In the simulation, the value of kq of the second virtual

system is taken to be 100 times stiffer than the kcl of the

first virtual system. Figure 14 shows the simulation

results with two different values of mc for the second

virtual system, and shows that this approach will require
rather extreme mass and stiffness values for good damping

performance.

Case 3: Displacement and displacement-acceleration

feedback

Another way to emulate the velocity signal is by using
displacement-acceleration feedback. By replacing the
velocity feedback in Case 1 with the displacement-

acceleration feedback of Fig. 4 and using large k_ and

small m_ in this virtual system, the controller works

similarly to the controller used in Case 1. It can be
viewed as a rotational version of Fig. 6 with the center

velocity connection removed. Theoretically, when the ka

and mc of the acceleration connection go to their limits,

the control system in Case 3 is equivalent to the control
system in Case 1. The controller in Case 3 is numerically
better conditioned than that in Case 2, since the velocity

signal is obtained in the limit through integration of
acceleration rather than differentiation of displacement.

In the simulation, the value of kq of the second virtual

system is taken to be 100 times stiffer than the kq of the

first virtual system. The results obtained are identical to
within plotting accuracy, to the results obtained in Case
1, and are therefore not shown here. Since acceleration
feedback is often more realistic than velocity feedback,
this example shows that the control design of Case 3 can
be important in practical applications.

So far, the controller parameters have not been optimized.
To get some understanding of how the parameters of the

virtual system affect performance, several cases are

simulated with adjusted me, k_,, and dc of the first

virtual control system in Case 3. Each of the parameters
is changed to ten times larger and ten times smaller than
its original value. Figure 15 shows the angular
displacement of the elbow pitch joint, for different values

of k_2. Faster response can be achieved by using a larger

spring constant k_,, as the results revealed. Figure 16

gives results obtained when varying the control mass me.

In this particular example, the smaller the controller
mass, the better the response. Figure 17 presents the

results of varying the control damping constant d,. Note

that the use of a large damping constant may result in

slow system response.

CONCLUSIONS

In this paper, a general control design methodology has
been outlined for large angle position control and

vibration suppression in multiple flexible-body dynamic

systems. The method guarantees stability of the

9



controlled system, whether linear or non-linear. The
approach is model-independent in the sense that
knowledge of the system dynamics is not required in the
design process. Hence, it is robust with respect to
parameter variations. Unlike positive real controller
design which allows velocity measurements only, the
current development can use velocity, position, and
acceleration measurements or any combination, and still
guarantees stability of the closed loop system. In addition
it allows use of dynamic feedback controllers with
additional opportunity for tuning to obtain good system
performance. One special ease of the methodology
demonstrates how one can obtain the desirable properties
of velocity feedback using acceleration feedback, which is
often easier to instrument in practice. The design has
intuitive appeal in terms of its physical interpretation that
aids the control design process.
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Table 1 Mass Properties of the Robot System

h_ n/he

Base

Lower Arm

Upper Ann
Wrist (Pi|ch)

Wrist (Yaw)
Wfisl (Roll).
Shoulder Joint
Ellmw Joint

Mass(kA)
32.11

26.50141

33.3819
8.46,15

45.97

45.2d
106.(Xl

61.00

Ixx (kg-m2)

11.1446

0.1351 xlO "1

0.2458 xlO "i
8.921164

4.01109
1.90354
0.0
0.0

97.43457

126.9785
4.0 I'316

4.67751
'2.8277

0.0
0.0

lzz(kg:m2_

14.1681

97.4481

127.0031
4.0_g7
4.6111)22

3.111657
0.0

0.0

hy (kg-m z)
(I.79511 xlO-

0.2945

.0.52954
0.0

.0.7321 xlO -_
0.0
0.0
0.0

hz (kg-m z)

0.1925 xl0"

0.0

0.0
0.0

0.1464 xlO -_

0.0
0.0
0.0

lyz (kg-m L)
.0.366 xlO "1

0.0

0.0
0.0

-(I.2928 x 10 "3
0.0
0.0
0.0

Table 2 Gcometrics of the Robot Systcm ,and Material

Properties of Flexible Links

NIiin0

Upi_r Arm:
Section I 0.7239

E (Nlm 2', O (Nlm 21 A (m 2) p(kglm 3)

Section2 5.00311 1.58x lO I I

Section3 0.3302

0.3522

.... 7.0612
Scction 4

Lower Arm:
SEction I (1.3522

SEction 2

SECtion 3

5.7404

1.0033
0.3O48
0.,I.'f72
0.7620
0.6604

Wrisl, i'ilch) -
Wfi._t,XaW)
Wr_st, Roll)

1.20 xlO Ii 4.615 xlO I0
3.9115 x I0 I'u

1.20x10 Ii 4.615x10 I0

1.20x1011 4.615x1010

1.3687x10 -3

11=i2 (m 4'

1.116113xlO-:,4540.0

1.9662x10-3 2504.11 2.6605x10 "3

i.3687x10 -3

1.3687x10 -3

1.20xlOii 4.61.Sx10 IU 7.441x10 -4

J (m 4)

2.3313xi0 -._

3.3206x 10-3

4540.0 1.111116x10"3 1.6477x10 "3

45,10.0 1_11186x!0 "5 1.6477x !0 3

45,10.0

1.55x1011 4.074a1010 1.308x10 "3

1.20x10 ii 4.615x10 iO 3.390x10 _

I.O080xlO "b

1.81119x10 -5

4.5920x10 "6

3164.7

4540.0

1.7410x10-3
3.6382xlO-3

6.4050x10-6

Table 3 Parameters of Virtual Systems for d_e Robot Maneuvering
Control with Velocity and Displacement Feedback

Joint Name me kcl kc I +kc2 dc d

ShouMer Yaw 0.25639x105 1011169.0 2000000.00 225419.0 274581.00

-Shouhlcf Pitch 025639x10 _ 1011169.0 '2000000.00 225419:0 , 2745111.00

Elbow I'iich 0.65 I57xllYl 256970.00 500(X)O.O0 57286.00 42714.0(1
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