Stacking-Sequence Optimization for Buckling of Laminated Plates by Integer Programming

Raphael T. Haftka
Joanne L. Walsh

NASA-TM-104033

January, 1991

National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia 23665-5225
Stacking-Sequence Optimization for Buckling of Laminated Plates by Integer Programming

by

Raphael T. Haftka
Virginia Polytechnic Institute and State University
Blacksburg, Virginia

and

Joanne L. Walsh
NASA Langley Research Center
Hampton, Virginia

Abstract

Integer-programming formulations for the design of symmetric and balanced laminated plates under biaxial compression are presented. Both maximization of buckling load for given total thickness, and the minimization of total thickness subject to a buckling constraint are formulated. The design variables that define the stacking sequence of the laminate are zero-one integers. It is shown that the formulation results in a linear optimization problem that can be solved on readily available software. This is in contrast to the continuous case, where the design variables are the thicknesses of layers with specified ply orientations, and the optimization problem is nonlinear. Constraints on the stacking sequence such as a limit on the number of contiguous plies of the same orientation and limits on in-plane stiffnesses are easily accommodated. Examples are presented for graphite-epoxy plates under uniaxial and biaxial compression using a commercial software package based on the branch-and-bound algorithm.

Introduction

The design of laminated plates for maximum buckling load has drawn much attention in recent years (e.g., [1]-[7]). Typically the design variables are either the ply orientations of the layers or the thicknesses of layers assumed to have a given ply orientation. However, in many practical applications the ply orientations that may be used are limited to 0-deg, 90-deg and ±45-deg, and the thicknesses of the layers are limited to integer multiples of the lamina thickness. This means that the basic design problem is to determine the stacking sequence of the composite laminate—a problem which calls for integer programming techniques.

Integer programming techniques are often quite costly, and for this reason there have been several attempts to use ad-hoc techniques in applications to structural optimization (e.g., [8], [9]). However, the laminate design problem (when classical lamination theory is used) is simple enough to permit the use of standard integer programming techniques. Thus Mesquita and Kamat [10] and Olsen and Vanderplaats [11] have applied the popular branch and bound technique to the optimization of composite laminates with thickness and ply orientation design variables subject to frequency or strength constraints. In Reference 10 the method was applied directly to the nonlinear problem, while in Reference 11 the nonlinear problem was solved as a sequence of linearized problems. A similar approach was used by John and Ramakrishnan [12] for the design of trusses using a discrete set of sections.

The objective of the present work is to show that the stacking sequence design of a laminated plate for buckling can be formulated as a linear problem by using ply-orientation-identity design variables. Thus, widely available software for the solution of linear integer programming problems can be used. Both the maximization of buckling load for specified total thickness and the dual problem of minimizing total thickness for specified loading are studied.

Analysis and Optimization Formulation

A simply supported laminated plate under biaxial compression is shown in Figure 1. The loads per unit length in the x and y directions are \(\lambda N_x \) and \(\lambda N_y \), respectively, with \(\lambda \) being an amplitude parameter. The laminate is assumed to be symmetric and composed of 0-deg, 90-deg and ±45-deg plies. Each ply has a constant thickness \(t \). For most of the examples in this paper, the laminate is also assumed to be balanced (i.e., the number of 45-deg plies is equal to the number of -45-deg plies). The laminate is composed of \(N_p \) plies with a total thickness of \(h = N_p t \). However, because in some situations we will not know the number of plies (this will be de-
terminated by the optimization process) the number of plies is assumed to be smaller than an upper limit \(N \). The laminate buckles when the load amplitude reaches a critical value \(\lambda_{cr} \) given as

\[
\lambda_{cr}(m,n)/\pi^2 = \frac{D_{11} \left(\frac{m}{2} \right)^4 + 2(D_{12} + 2D_{66}) \left(\frac{m}{2} \right)^2 + D_{22} \left(\frac{n}{2} \right)^4}{(m)^2 N_x + (n)^2 N_y}
\]

where \(m \) and \(n \) are the number of half waves in the \(x \) and \(y \) directions, respectively, selected so as to minimize \(\lambda_{cr} \). In the present study the minimization over \(m \) and \(n \) is performed by checking for all values of \(m \) between 1 and \(n \).

The laminate buckles when the load amplitude reaches a critical value \(\lambda_{cr} \) given as

\[
\frac{D_{11} \left(\frac{m}{2} \right)^4 + 2(D_{12} + 2D_{66}) \left(\frac{m}{2} \right)^2 + D_{22} \left(\frac{n}{2} \right)^4}{(m)^2 N_x + (n)^2 N_y} = \frac{D_{11} \left(\frac{m}{2} \right)^4 + 2(D_{12} + 2D_{66}) \left(\frac{m}{2} \right)^2 + D_{22} \left(\frac{n}{2} \right)^4}{(m)^2 N_x + (n)^2 N_y}
\]

where \(m \) and \(n \) are the number of half waves in the \(x \) and \(y \) directions, respectively, selected so as to minimize \(\lambda_{cr} \). In the present study the minimization over \(m \) and \(n \) is performed by checking for all values of \(m \) between 1 and \(n \).

The flexural stiffnesses \(D_{11}, D_{12}, D_{22} \) and \(D_{66} \) can be expressed in terms of three integrals, \(V_0, V_1 \), and \(V_3 \), and five material invariants \(U_i, i = 1, \ldots, 5 \), which depend on the stacking sequence [13] as

\[
D_{11} = U_1 V_0 + U_2 V_1 + U_3 V_3
\]

\[
D_{12} = U_4 V_0 - U_3 V_3
\]

\[
D_{22} = U_4 V_0 - U_3 V_3
\]

\[
D_{66} = U_6 V_0 - U_3 V_3
\]

where \(V_0, V_1 \) and \(V_3 \) are given as

\[
V_0 = \int_{-h/2}^{h/2} z^2 dz = \frac{1}{3} \sum_{k=1}^{N} p_k (z_k^3 - z_{k-1}^3)
\]

\[
V_1 = \int_{-h/2}^{h/2} z^2 \cos 2\theta dz = \frac{1}{3} \sum_{k=1}^{N} p_k \cos 2\theta_k (z_k^3 - z_{k-1}^3)
\]

\[
V_3 = \int_{-h/2}^{h/2} z^2 \cos 4\theta dz = \frac{1}{3} \sum_{k=1}^{N} p_k \cos 4\theta_k (z_k^3 - z_{k-1}^3)
\]

where \(h \) is the total thickness of the laminate, \(z \) is the distance from the plane of symmetry (see Figure 1), \(\theta \) is the ply orientation angle, and \(p_k \) is a variable which is equal to one if the \(k \)th ply is occupied and is equal to zero if the ply is empty. Constraints are applied during the optimization to ensure that \(p_k \) can be zero only for the outermost plies. The material invariants are

\[
U_1 = \frac{1}{8} (3Q_{11} + 3Q_{22} + 2Q_{12} + 4Q_{66})
\]

\[
U_2 = \frac{1}{2} (Q_{11} - Q_{22})
\]

\[
U_3 = \frac{1}{8} (Q_{11} + Q_{22} - 2Q_{12} - 4Q_{66})
\]

\[
U_4 = \frac{1}{8} (Q_{11} + Q_{22} + 6Q_{12} - 4Q_{66})
\]

\[
U_5 = \frac{1}{8} (Q_{11} + Q_{22} - 2Q_{12} + 4Q_{66})
\]

where

\[
Q_{11} = \frac{E_1}{1 - \nu_{12} \nu_{12}}, \quad Q_{12} = \frac{E_2}{1 - \nu_{12} \nu_{12}},
\]

\[
Q_{12} = \frac{\nu_{12} E_2}{1 - \nu_{12} \nu_{12}}, \quad Q_{12} = \frac{\nu_{12} E_1}{1 - \nu_{12} \nu_{12}},
\]

and \(Q_{66} = G_{12} \).

It is convenient to work in terms of nondimensional loads \(n_x, n_y \), flexural stiffnesses \(d_{ij} \), integrals \(v_0, v_1 \), and \(v_3 \), and material constants \(u_i \) defined as

\[
n_x = 1.5 \frac{N_x a^2}{\pi^2 E_1 t_5}, \quad n_y = 1.5 \frac{N_y a^2}{\pi^2 E_1 t_5}, \quad d_{ij} = 1.5 \frac{D_{ij}}{E_1 t_5},
\]

\[
i, j = 1, 2, 6
\]

\[
v_i = 1.5 \frac{V_i}{t_5}, \quad i = 0, 1, 3 \quad u_i = \frac{U_i}{E_1} \quad i = 1, 2, 4, 5
\]

Then \(\lambda_{cr} \) is given as

\[
\lambda_{cr}(m,n) = \frac{d_{11} m^4 + 2(d_{12} + 2d_{66}) m^2 n^2 (a/b)^2 + d_{22} n^4 (a/b)^4}{m^2 n_x + n^2 (a/b)^2 n_y}
\]

The nondimensional flexural stiffnesses are given as

\[
d_{11} = u_1 v_0 + u_2 v_1 + u_3 v_3
\]

\[
d_{12} = u_1 v_0 - u_2 v_1 + u_3 v_3
\]

\[
d_{12} = u_4 v_0 - u_3 v_3
\]

\[
d_{66} = u_6 v_0 - u_3 v_3
\]

Because the laminate is symmetric only the plies below the plane of symmetry need to be defined. The ply stacking sequence is defined in terms of four sets of ply-orientation-identity variables \(o_i, n_i, f_i^p \) and \(f_i^m \), \(i = 1, \ldots, N/2 \) that are zero-one integer variables. The variable \(o_i, n_i, f_i^p \) or \(f_i^m \) is equal to one if there is a 0-deg, 90-deg, 45-deg or -45-deg ply, respectively, in the \(i \)th layer. Unlike conventional practice, it is more convenient here to number the plies so that the first one (\(i = 1 \)) is nearest the plane of symmetry of the laminate, and the last one is on the outside (\(i = N/2 \)). The stacking-sequence variables are used to express the nondimensional integrals \(v_0, v_1 \) and \(v_3 \) as

\[
v_0 = \sum_{k=1}^{N/2} p_k (z_k^3 - z_{k-1}^3)
\]

\[
v_3 = \sum_{k=1}^{N/2} (k^3 - (k - 1)^3)(o_k + n_k + f_k^p + f_k^m)
\]
\[v_1 = \sum_{k=1}^{N/2} p_k \cos 2\theta_k \left(\frac{2k}{l} \right)^3 - \left(\frac{2k-1}{l} \right)^3 \]
(11b)

\[v_2 = \sum_{k=1}^{N/2} (k^3 - (k-1)^3)(o_k - n_k) \]
(11c)

where \(f_p \) and \(f_m \) do not appear in the expression for \(v_1 \) since the cosine of 90 degrees is equal to zero. Two optimization problems are formulated. The first is the optimization of a laminate with a fixed thickness for maximum buckling load, and the second is the optimization of a laminate with a given buckling load for minimum thickness. For the first optimization problem the lowest (over values of \(m \) and \(n \)) buckling load \(\lambda^* \) is maximized. The objective \(\lambda^* \) is not a smooth function of the design variables, and the standard device for removing this problem is to add \(\lambda^* \) as a design variable and require it to be less than or equal to each \(\lambda_{cr}(m, n) \). Thus, the optimization problem is formulated as

\[
\text{find } \lambda^*, \quad o_i, \quad n_i, \quad f_p^i, \quad f_m^i \\
i = 1, \ldots, N/2
\]

\[\text{to maximize } \lambda^* \]

\[\text{such that } \lambda^* \leq \lambda_{cr}(m, n), \]

\[m = 1, \ldots, m_f, \quad n = 1, \ldots, n_f \]
(12)

\[o_i + n_i + f_p^i + f_m^i = 1 \]

\[i = 1, \ldots, N/2 \]

\[\text{and } \sum_{i=1}^{N/2} f_p^i - f_m^i = 0 \]

where the last constraint ensures that if there are empty plies they are on the outside.

In general, the solution to the optimization problem (13) is not unique. For example, the non-integer solution could require 8.1 plies. The design from (13) will have 10 plies (\(N \) must be even because of symmetry), and it will have a substantial margin, that is \(\lambda_{cr} \) will be significantly larger than 1. Any weaker 10-ply design, that is one that has a \(\lambda_{cr} \) closer to 1, is also a legitimate solution of (13) in that it satisfies all the constraints and has the same value of the objective function. In the present work, to achieve a unique solution, it is assumed that the best design is the minimum thickness plate that has also the largest possible buckling margin of all plates of the same thickness. To achieve this goal the objective function of (13) was modified by subtracting \(\epsilon \lambda_{cr} \) from it, where \(\epsilon \) is a small number (0.001 for the results presented in the next section).

Another reason for a nonunique solution is that in terms of the calculation of the flexural stiffnesses of Eq. (2)
the smallest effect on 0-deg laminate was not possible, the optimizer placed two 90-deg plies so as to minimize their combined contribution to \(V_0 \), Eq. (3). This selection was done by modifying manually the optimum design.

In some cases it may be desirable to impose constraints on the stiffness of the plate. In the present study a limit on the in-plane stiffness in the \(x \) direction \(A_{11} \) was considered as an example of such constraints. A constraint requiring \(A_{11} \) to have a minimum value of \(A_{11}^0 \) can be written as

\[A_{11}/A_{11}^0 - 1 \geq 0 \quad (14) \]

As shown in the Appendix, this constraint can be expressed as a linear function of the ply identity design variables in a manner similar to the buckling constraint (in Eqs. (9)-(11)).

Results

Results were obtained for graphite-epoxy laminates (\(E_1 = 18.5 \times 10^6 \text{psi}, E_2 = 1.89 \times 10^6 \text{psi}, G_{12} = 0.93 \times 10^6 \text{psi}, \nu_{12} = 0.3, t = 0.005 \text{ in.} \)). The computations were performed with the LINDO program [14] which employs the branch-and-bound algorithm. First uniaxial loading was applied, and the buckling load was maximized for various plate aspect ratios \((a/b)\) for laminates with 16 plies. It is known (e.g., [15]) that for low aspect ratios the optimum ply angle is 0-deg, while for \(a/b \) larger than about 0.7 the optimum ply orientation is close to \(\pm 45\)-deg. This can also be expected from Eq. (9) since for \(a/b \) larger than 0.7, \(d_{66} \) is the most important stiffness coefficient. A check was performed to see whether there was a transition region where the optimum stacking sequence would include both 0-deg and \(\pm 45\)-deg plies. It was found that if such a transition region exists it is extremely narrow, in that even changes in the fourth significant digit of the aspect ratio were not fine enough to locate it. When the number of plies \((N)\) was not divisible by four, so that a balanced \(\pm 45\)-deg laminate was not possible, the optimizer placed two 0-deg plies near the plane of symmetry of the laminate, as expected (because these less efficient plies have the smallest effect on \(d_{66} \) there).

Next the biaxial loading case was solved, and the results are presented in Figure 2. It is known (e.g., [15]) that for aspect ratios less than 1.5 the optimum ply orientation is the same as for the uniaxial case, and for aspect ratios greater than 1.5, the value of the optimum ply angle increases rapidly as \(N_y/N_x \) increases, and that for large \(N_y/N_x \), the optimum ply angle is 90 degrees. Therefore, the case of biaxial loading for a laminated plate with an aspect ratio of 2 was selected. The reference axial load \(N_x \) was fixed at 1 lb/in. (so that \(\lambda_{cr} \) is equal to the critical value of \(N_x \)), and the reference transverse load was increased from 0.1 to 3.0 lb/in. The plate was specified to have 16 plies. For this choice, the value of \(\lambda_{cr} \) is equal to the value of \(N_x \) at buckling. Two transition regions were found: one for \(N_y/N_x \) between 0.125 and 0.15 and the other for \(N_y/N_x \) between 2.4 and 2.45. The first region marked the transition from all \(\pm 45\)-deg plies to a combination of 90-deg and \(\pm 45\)-deg plies. The second region marked the transition from a combination of 90-deg and \(\pm 45\)-deg plies to all 90-deg plies. As the ratio \(N_y/N_x \), increased to 0.15 first two 90-deg plies were added, then four 90-deg plies \((N_y/N_x=0.25)\), then six 90-deg plies \((N_y/N_x=1)\), and finally all 90-deg plies \((N_y/N_x=2.45)\). As the transverse load \(N_y \) became larger than the axial load \(N_x \), the \(\pm 45\)-deg plies moved closer to the plane of symmetry until only 90-deg plies were present. This behavior is expected because when \(N_x \) dominates, the plate behaves like a plate of aspect ratio of 0.5 under uniaxial load, and for that case the optimum angle is in the direction of the loading.

When the number of contiguous plies in the same direction is large, composite laminates are known to experience matrix cracking. Therefore, it is desirable to limit the number of such contiguous plies. To demonstrate that such constraints can be easily added to the present formulation we imposed this constraint on the design obtained for \(N_y/N_x = 2 \) which had 5 contiguous 90-deg plies. This was implemented by adding the constraint

\[n_4 + n_5 + n_6 + n_7 + n_8 \leq 4 \quad (14) \]

The designs with and without this constraint are compared in Figure 3. It is seen that the penalty for limiting the number of contiguous plies is quite small.

The case of \(N_y/N_x = 2 \) was used also for the purpose of checking on other aspects of the optimization. The first was the effect of the balanced laminate requirement. When this requirement was removed, the optimization selected a design with three 45-deg and five 90-deg plies. However, the buckling load changed by less than one hundredth of one percent. A second aspect was the effect of requiring that the design variables be integers. Noninteger design variables describe hybrid plies. For example, \(o_1 = 0.5, n_1 = 0.5 \) means that the first ply has properties which are the average of the elastic properties of zero and ninety degree material. When the requirement that the ply-identity variables be integers was removed the solution included
two hybrid plies. For \(i = 1 \) the ply was 70 percent 45-deg and 30 percent 90-deg, and for \(i = 4 \) the ply was 70 percent -45-deg and 30 percent 90-deg, with the remaining plies being 90-deg. The effect on the buckling load was again quite small—less than five hundredths of one percent.

Another aspect of the optimization checked for this case was the effect of introducing a minimum stiffness requirement. The optimum laminate for this case, being dominated by 90-deg plies, has only 16 percent of the axial stiffness \(A_{11} \) of an all 0-deg laminate. A requirement that \(A_{11} \) is at least 50 percent of the unidirectional laminate was added, with and without the requirement of no more than four contiguous plies. The results are compared to the original design in Figure 4. It is seen that the stiffness requirement is satisfied by putting 0-deg plies near the plane of symmetry where they have only a minimal effect on the bending stiffnesses, and hence on the buckling load. The reduction in the buckling load is about 8 percent. This time effect of adding the requirements of no more than 4 contiguous plies had a nontrivial effect (7 percent reduction) on the buckling load.

Next we solved the minimum thickness problem for a laminate with the same dimension. The axial load, \(N_z \), was fixed at 30 lb/in., and the transverse load \(N_y \) was varied from zero to 75 lb/in. The results are summarized in Figure 5. For \(N_y = 0 \) we have a 10-ply laminate which is dominated by \(\pm 45 \)-deg plies, with two 0-deg plies near the plane of symmetry. As \(N_y \) is increased, the number of plies increases, and the laminate becomes dominated by 90-deg plies. However, the requirement of a balanced laminate tends to disturb the progression toward increasing number of 90-deg plies. For example, with loads that result in 12-ply laminates we can have either 4 or 8 \(\pm 45 \)-deg plies, and the optimizer chooses 4, because 8 would leave only four 90-deg plies. However, when we increase the load so that we require 14-ply laminates, the number of \(\pm 45 \)-deg plies jumps from 4 to 8, because we can have now six 90-deg plies.

Concluding Remarks

The problem of stacking sequence design of composite laminates for minimum thickness subject to a buckling constraint or maximum buckling load for a given thickness was addressed. It was shown that the use of ply-orientation-identity design variables results in a linear formulation of the problem unlike the use of more traditional ply-thickness design variables which lead to nonlinear formulation. The linear integer-programming formulation was solved using a commercially available program based on the branch-and-bound algorithm. It was also shown that the formulation can accommodate constraints on stiffnesses as well as constraints on the maximum number of contiguous plies of same angle. Results were presented for both uniaxial and biaxial loadings.

Acknowledgement

The work of the first author was supported in part by NASA grant NAG-1-168.

References

Appendix—In-Plane Stiffness Constraint

This appendix shows how a limit on the in-plane stiffness A_{11} can be formulated as a linear function of the ply-orientation-identity design variables. Limits on other stiffness components can be formulated in a similar way.

The in-plane stiffness A_{11} is given as

$$A_{11} = U_1 V_{0A} + U_2 V_{1A} + U_3 V_{3A}$$ \hspace{1cm} (A1)

where

$$V_{0A} = \int_{-h/2}^{h/2} dz = 2 \sum_{k=1}^{N} p_k$$ \hspace{1cm} (A2)

$$V_{1A} = \int_{-h/2}^{h/2} \cos 2\theta dz = 2 \sum_{k=1}^{N} p_k \cos 2\theta_k$$ \hspace{1cm} (A3)

and

$$V_{3A} = \int_{-h/2}^{h/2} \cos 4\theta = 2 \sum_{k=1}^{N} p_k \cos 4\theta_k$$ \hspace{1cm} (A4)

We define nondimensional stiffness and integrals as

$$a_{11} = A_{11}/E_1 t, \quad v_{iA} = V_{iA}/t \quad i = 0, 1, 3$$ \hspace{1cm} (A5)

where a_{11} can be expressed as

$$a_{11} = u_1 v_{0A} + u_2 v_{1A} + u_3 v_{3A}$$ \hspace{1cm} (A6)

and the nondimensional integrals can be expressed in terms of the ply-identity design variables as

$$v_{0A} = 2 \sum_{k=1}^{N/2} (o_k + n_k + f_k^p + f_k^m)$$

$$v_{1A} = 2 \sum_{k=1}^{N/2} (o_k - n_k)$$ \hspace{1cm} (A7)

$$v_{3A} = 2 \sum_{k=1}^{N/2} (o_k + n_k - f_k^p - f_k^m)$$

In the example used in the Results section the lower limit on A_{11} is a specified fraction f of the corresponding stiffness of an n-ply all 0° laminate. For such a laminate $v_{0A} = v_{1A} = v_{3A} = N$, so that the constraint of Eq. (14) becomes

$$\frac{a_{11}}{N(u_1 + u_2 + u_3)} - f \geq 0$$ \hspace{1cm} (A8)
Geometry and loading

Ply geometry

Figure 1. Laminated plate geometry and loading.

Figure 2. Maximum buckling load results for graphite-epoxy plate (16 plies, a=20 in, b=10 in, Nx=1 lb/in).

Figure 2. Concluded.
Without constraint	With constraint
(90°, 45°, -45°, 90°) | (90°, 45°, 90°, -45°)
λ_{cr} = 36.84 | λ_{cr} = 36.59

Ny = 0.0 lb/in | Ny = 7.5 lb/in
(45°, -45°, 90°) | (45°, 90°)
λ_{cr} = 1.41 | λ_{cr} = 1.03

Ny = 15 lb/in | Ny = 22.5 lb/in
(45°, 90°, 45°, 0°) | (90°, 45°, 90°, -45°)
λ_{cr} = 1.32 | λ_{cr} = 1.05

Ny = 30 lb/in | Ny = 45 lb/in
(90°, 45°, -45°, 45°) | (90°, 45°, -45°, 90°)
λ_{cr} = 1.39 | λ_{cr} = 1.02

Ny = 60 lb/in | Ny = 75 lb/in
(90°, 45°, -45°, 90°) | (90°, 45°, -45°, 90°)
λ_{cr} = 1.22 | λ_{cr} = 1.02

Key
- 45°
- 45°
- 90°
- 0°

Figure 3. Effect of constraint of no more than four contiguous plies in same direction on design for Ny/Nx=2.

Figure 4. Effect of stiffness requirement on laminate design for Ny/Nx=2, Ny=2.0.

Figure 5. Minimum thickness results for graphite-epoxy plate (a=20 in, b=10 in, Nx=30 lb/in).
Integer-programming formulations for the design of symmetric and balanced laminated plates under biaxial compression are presented. Both maximization of buckling load for given total thickness, and the minimization of total thickness subject to a buckling constraint are formulated. The design variables that define the stacking sequence of the laminate are zero-one integers. It is shown that the formulation results in a linear optimization problem that can be solved on readily available software. This is in contrast to the continuous case, where the design variables are the thicknesses of layers with specified ply orientations, and the optimization problem is nonlinear. Constraints on the stacking sequence such as a limit on the number of contiguous plies of the same orientation and limits on in-plane stiffnesses are easily accommodated. Examples are presented for graphite-epoxy plates under uniaxial and biaxial compression using a commercial software package based on the branch-and-bound algorithm.