N91-21957

Al GERM: A Logic Programming Front End

for GERM
Safaa H. Hashim

AiGerm: A Logic Programming Front End for Germ
Safaa H. Hashim

MCC/STP
Microelectronics and Computer Technology Corporation
Software Technology Program
3500 West balcones Center Drive,
Austin, TX 78759-6509
INTERNET: hashim@mcc.com

Introduction

AiGerm (Artificially Intelligent Graphical Entity Relation Modeler) is a relational database
query and programming language front end for MCC/STP’s Germ (Graphical Entity Relational
Modeling) system. Currently, three versions of AiGerm are in use: Quintus Prolog, BIMprolog,
and LDL (MCC'’s Logical Data Language). AiGerm is intended as an add-on component of the
Germ system to be used for navigating very large networks of information, harnessing Prolog
or LDL’s relational database query capabilities. It can also function as an expert system shell
for prototyping knowledge-based systems. AiGerm provides an interface between the program-
ming language and Germ.

When a user starts up AiGerm, the system builds a knowledge base of the currently loaded
Germ folio. The knowledge base is a collection of node, link, and aggregate facts. Selecting from
the set of commands built in to the AiGerm interface, the user can query the database and run
programs that select, create, delete, inspect, and aggregate the nodes and links appearing in
the Germ browser.

Aigerm is currently used in MCC/STP’s DESIRE system to extract information on the design
of code for software systems. Members of the research staff are experimenting with AiGerm in
building IBIS-based reasoning and decision support systems for software design and engineer-
ing. Rockwell International, an MCC/STP shareholder, is using AiGerm in a simultaneous en-
gineering project.

What is Germ?

Germ (Graphical Entity Relational Modeler) is a graphically-oriented tool for browsing and ed-
iting databases. What distinguishes Germ is its conceptual approach in abstracting the ele-
ments of a database. Germ uses a few abstractions that we can easily comprehend, remember,
and use to create, understand, retrieve, and manipulate database objects. There are two sets
of such concepts: basic concepts (also known as object concepts) and interface concepts.

Germ applications are based on an underlying schema file that defines Germ objects and their
behavior. The basic object types of the Germ schema are: nodes, links, collections, and aggre-
gates. An application based on a given Germ schema is called a folio; many folios can be based
on the same schema. The schema contains the declarations for most of the object concepts in
Germ. Embedded in the schema object concepts are properties such as shape, color, attribute
types, and so on. Together, the object concepts in a given schema file represent a method for
modelling a certain problem, understanding it, and solving it.

Germ's “interface concepts” include a set of window objects: a graphical browser, global view,
index window, control panel, inspection window, and editing window, see Figure 1. These c_>b-
jects allow the user to interact with the system to add, delete, update, and retrieve information

represented graphically as nodes and links and to query the database.

The graphic browser

The index browser

R TR RSN - fetaena) K druse &AL o

IRvietrstpimshin g r tal 1us

WIEMRL T LT b i e

The control Panel

Voo HRA ol

The edit and/or inspection windows

Figure 1: The Germ User Interface

Germ Applications

In its current form, Germ is a generalization of gIBIS. In gIBIS (Conklin & Begeman, 1988),
the network of entities represents the argumentation process for understanding and solving a
problem using the IBIS methodology. IBIS (Issue Based Information Systems) was introduced
by Horst Rittel in the late sixties and early seventies (Rittel & Webber, 1969; Kunz & Rittel,
1970). We have reimplemented gIBIS in Germ just by using a special schema file representa-
tion of the IBIS method. The graphic browser in Figure 1 shows a gIBIS network implemented

using a Germ schema file for gIBIS.

Using Germ, researchers and system designers (working individually or in groups) can model
systems derived from any method, not just IBIS. In the case of gIBIS, we can have different
versions of the gIBIS system that are based on different versions of the gIBIS schema file, each
version representing variations in implementing the IBIS method.

Germ can represent both a given model of a method and the database of information on which
the method is based. The method can be a design, a problem understanding method, or a prob-
lem solving method. Germ will probably be used mostly for building a database representing a
problem solving method (problem solving presupposes problem-understanding, and design
methods are a special subset of problem solving methods).

Germ is so generalized that it could be considered as a graphical tool that uses geometrical

shapes and text to present documents and designs. This is why Some STPer’s think of Germ as
a “GEometrical Relation Modeler”. Germ contains a set of on-line tutorials on Germ usage that
were developed using Germ itself. In this case, Germ was used as hypertext-document writing
tool (Garrison, Marks and Creemer, 1989). In this article we consider Germ as a modeling tool.

Why AiGerm

Germ has its own query mechanism, which is inflexible for a number of reasons, the two most
important ones being:

. Its keyword search combined with regular expression pattern string matching allows
only simple queries, like those shown in the preceding section. More importantly, the
expressive power of these simple queries is very limited, such that the following simple
query is not possible:

Find the issue with the word “interface” as part of its contents and at least one position
responding to it.
In Prolog, on the other hand, this query would be easily expressed in a single
query(goal):
l ?- issue(I),contents(I,C),substring_of(“interface”,C),
responds_to(P,I).

Of course, for a practical and real design or an engineering application we would need
more complex queries. This requirement, which can be easily met using Prolog, is
known as the problem of “structure search” in hypertext (Halasz and Conklin, 1989).

+ In addition to richer expressive power in a query mechanism, we need an inference en-
gine, which is a must in the design and engineering tasks of today. The current version
of Germ provides no inference engine. With even such a simple one as that in Prolog,
we can transform Germ into a powerful knowledge engineering system.

AiGerm is designed to address these two deficiencies in the current query mechanism in Germ.
This is why we currently define AiGerm in the following way:

AiGerm = Germ + Logic Programming

A Review of AiGerm

To use AiGerm, the user must have Germ running on a local or a remote machine. Before start-
ing AiGerm, the user must start up Germ and load the desired (hypertext network) folio into
the Germ browser. Then, in a shell window, the user would give the command:

AiGerm <HOSTNAME>

where HOSTNAME is the name of a remote workstation. If no HOSTNAME is given, AiGerm inter-
faces to the Germ system running on the local workstation. Before actually starting the Prolog
process, AiGem builds a Prolog knowledge base file, see Figure 2.

e AN AARANS NP NPE AP A RADIAND.

siLosding currant Gers folio

(: d H : = b

Buinius Prolog Release 2.4.2 R

P e A e AR Wy Fulal e - ~ Doy MNYEE v, R & v o -
Cilopyrignt (0} 18388, Quintuz Computer Syotem K &1) rights i

NN DR PPN AR 10 N A i AL 55 5 P .2 MRS 2,

tegy Corporstion

AU AL A s e m d 4m M N A s s Ak e AL MR AR ey L6 SAk NAK At e ek MK Am m M S Sl e VA e e AL AR A . e A

oy
i]
e !
fe}
&
s
{3
B
—~4
b
sl
o3
wed.
o0
1
£
o3
=
D]
]
~ H
>t ;
Ing :
3] H
4 :
I ———————,

Pla Steset, Mountain View, Califernia (418) SES-7700 g

2N

- [oonsulting /tmp/orobarm, hashin,]

i [pr cGern, hashin consulted 91,600 sec 1,509,148 bytes]

Figure 2: AiGerm: invokinJ&Prolog in a shell window and interfacing it to Germ.

In this knowledge base, for each hypertext entity—i.e. node, link, and aggregate—AiGerm as-
serts a fact (a prolog clause). Once the knowledge base file is complete, the Prolog process is
started and is directed to consult the knowledge base file. When this knowledge base is loaded

into Prolog, nodes, links, and aggregates are represented as Prolog facts, also known as base-
relations. The abstract forms of these facts are:

node(Eid, [ATTR, ATTR, ...]).
Link(Eid, [EID,EID], [ATTR, ATTR, ...}).
agg(Eid, [EID,EID, ...],[ATTR, ATTR, ...l).

As

EID = the compound term “eid(INTEGER)”
ATTR = the compound term “attr(TYPE,VALUE)”

where TYPE and VALUE are :

TYPE = label:;author;date;sid,subject;keywords;and so on,
VALUE = STRING; INTEGER

Following are examples of a node, a link, and an aggregate, each represented as a fact:

node (eid(293), [attr(type,”"issue”),
attr(sid,l),
attr(date,”Jun 8 10:14 .1989”7),
attr (author, "Kemp”),
attr(label,"Timing”),
attr(resolved, "yes”),
attr(contents,”How are timings from multiple trays handled?”),
attr(x,70), attr(y,36)1).

link(eid(3l4),[eid(294),eid(293)],[attr(type,”responds-to”),
attr(sid,-1).,
attr(date,”Jun B 10:17 1989"),
attr(author, "Klempay”)]).

aggr(eid(293),[eid(293),eid(295),eid(294)],[attr(type,”AGi')]).

Using Prolog to Query Germ Networks

We can query a Germ network directly by issuing goals at the top-level system prompt (17?-).
For example, to retrieve nodes one at a time we give the goal:

| ?- node(X,List).
and Prolog will return the first instance of node that matches this goal, namely:

X = eid(7),

List = [attr(type,”issue”), attr(sid, 43), attr(date, "May 26 18:23 1989”"),
attr(author,”hashim”), attr(label, "theory”), attr(’Resolution-due-
date’,”Jan 1 1990”), attr(‘Contents’, "AJAJWhat kind of IBIS-theory are we
after?AJ”)])

Retrieving node and link facts is useful but not very interesting. The advantage of Prolog que-
ries over the standard (static) Germ query system becomes apparent when we start giving Pro-
log sequences of connected subgoals. For example, we can use Germ to model the IBIS method
in a way similar to that of the gIBIS system. We would then have a structured hypertext net-
work of issues, positions, and arguments for capturing, say, a group problem-solving or a de-
sign meeting session. For real world applications, an IBIS network could have hundreds of
nodes and links representing the different issues, positions, and arguments and their relation-
ships. Navigating such large networks is quite difficult if it is done manually. On the other
hand, in AiGerm we can use Prolog to query the network for certain nodes and links. For ex-
ample, we can give this query:

| ?- node(X,List), member (attr(type, “issue”),List).

meaning that we want to retrieve only nodes that are issues. Moreover, we want to highlight
the issue nodes on the browser canvas while retrieving them. To do that we can write this com-
pound goal:

| ?- node(X,List), member (attr(type,issue),List), hl_eid(X).

hl_eidis anadd-on (built-in) predicate for interfacing Prolog to Germ. A more interesting goal
is to retr.eve a more structured set of nodes; for example, to verify that our design discussion
satisfies this minimal argumentation subnetwork condition: our IBIS network must have at
least one issue with at least one position responding to it, and there must be at least two argu-
ments, one supporting the position and the other objecting to it.

A graph representation of such a subnetwork is shown in Figure 3. Here is the Prolog query for
such a structure:

| ?- node(X,XNodeAttList),
member(attr(type,"issue”),XNodeAttList),
link(L1,{Y,X],LinkAttListl),
member (attr(type, "responds-to”),LinkattListl),
node (Y, YNodeAttList),
member (attr{type, "position”),YNodeAttList),
link(L2,[Z,Y],LinkAttList2),
(member(attr(type, "supports”),LinkAttList2);
member (attr(type, "cbjects-to”),LinkAttList2)),
node (2, ZNodeAttList),
member (attr(type, "argument”), ZNodeAttList),
hl _eids(([X,L1,Y,L2,2])).

The last subgoal, namely the predicate h1_eids, takes a list of entity EIDs and highlights (se-
lects) them. Suppose we have a compound goal—that is, a goal made of a sequence of sub-
goals—that we might need to fire later or use as a subgoal in yet another compound goal. It is
worthwhile in such a case to capture a query into a rule (a program) that stands for an execut-
able definition of an “abstraction.” This brings us to the subject of abstracting new concepts
from existing ones in hypertext networks.

responds-to

X =

objects-to

Figure 3: A graph representing a minimal IBIS argumentation subnetwork.

Deriving New Abstraction from Existing Germ Networks and Other Abstractions

Enhancing Germ’s hypermedia query and navigation capabilities is not the only advantage of
using the logic programming interface in AiGerm. Another advantage is the ability to define
new abstractions from the existing pool of base relations and other previously defined abstrac-
tions. We say “new abstractions” because Germ itself, through our schema file definition, al-
lows us to have an initial (built-in) set of abstractions on top of the basic node, link, collection,

and aggregate primitives. For example, using a schema file to represent the IBIS method, we

usually have abstractions for issues, positions, arguments, and their relationships defined in

terms of nodes and links. The knowledge base that AiGerm builds for a Germ network is basi-
cally made up of node, link, and aggregate facts. From these facts we can easily define the first
level of abstractions as follows:

/* AARARARRTRARAANST KRR RN AN issue I S 2 2ER2R22Z22ZX2E2 X2 R a2 2 R 2 t/
/* flow-pattern: (i), (o) */
issue(EID): -

node (EID,ATTlist),

member (attr (type,issue) ATTlist).

/% Ekxrxkxxxnkwkaxxaxx position S22 2323222222222 22 22 2 B U4
/* flow-pattern: (i), (o) */
position(EID): -

node (EID,ATTlist),

member (attr (type,position), ATTlist).

/* I'YTEXXZZEEEEERASA RS2] argllment P A2 ZZ2XX22222 X2 2 22 2 2 B &4 */
/* flow-pattern: (i) (o) */
argument (EID): -

node (EID,ATTlist),

member (attr (type,position) ,ATTlist).
For the relationships (links) between issue, positions, and arguments, we can define the re-
sponds-to, supports, and objects-to relationships in a similar way. For example, here is a defi-
nition of the active relationship responds-to between a position and an issue that is supported
by Germ:
JE RRARERERARRKRARIARR responds_tOoX¥rsxarazasastsn */
responds_to(P,I):-

link(_,[P,I],ATTlist),
member (attr (type, responds-to),ATTlist).

What is not supported by Germ is a passive version of responds_to, which
we can easily define in Prolog as responded-to-by:
/% *xxkxxkkxxrsnerir responded_to_by WREKRRKRKKRR * /
responded_to_by(I,P):-

responds_to(P,I).
Similarly, we can define objects-to, objected-to-by, supports, and supported-by link types.In es-
sence, we can explicate the methodology implicit in a Germ schema file by using such rules.
Moreover, we can extend the schema definition in a more flexible way than directly editing and
changing the schema file itself. Thus, we can define special modified views of the schema (and
thus the methodology represented by the schema) without imposing on other people using the
same schema. This ability to modify the representation in such an interactive and dynamic way
is a basic aspect of AiGerm.

The abstractions discussed here are just one level above the entity-relation model
representation. We can have abstractions that are made up of other abstractions, which
themselves are made up of other abstractions, and so on. An example of a system-model using
such a multi-level abstracting technique is the following representation of an IBIS-network:

% Each IBIS issue must have at least two lines of arg. SL and OL
ibis(I, [SL,OL|REST])):-

issue(I), .
sup_argLINE(I,SL), % supporting line of argumentation
obj_argLINE(I,OL). % objecting line of argumentation

ibisl(I,REST).

ibisl(I, [LINE|REST]):- % it can have other argumentation lines
AargLINE(I,LINE),
ibiSl(I,REST).

ibisl(_,[1).

This definition of an IBIS subnetwork requires that an issue have at least two lines of argu-
mentation, a supporting line and an objecting line. But supporting and objecting lines of argu-
mentation are just special kinds of the argLINE abstraction:

argLINE(I,LINE):-

sup_argLINE(I,LINE). % a supporting line of argumentation
argLINE(I,LINE): -

obj_argLINE(I,LINE). % an objecting line of argumentation
argLINE(I,LINE): -

cha_argLINE(I,LINE). % a challenging line of argumentation

For the three special lines of argumentation we can have the following definitions:

sup_argLINE(I,[P,A|REST)):-
issue(I),position(P,I),responds_to(P,I),supports(A,P),
argSEQUENCE([A|Rest]).

obj_argLINE(I, [P,A|REST)):-
issue(I),position(P),responds_to(P,I),objects_to(A,P),
argSEQUENCE([A|REST]).

cha_argLINE(I, [I1|REST]):-
issue(I), issue(Il), suggested by(Il,I),
AargSEQUENCE([I1|REST]).

To complete our sequence of abstractions, we need to define argSEQUENCE, which stands for a
sequence of argumentation moves:

argSEQUENCE([A,A1|REST]):-
supports(Al,A),argSEQUENCE([A1l|REST)).
argSEQUENCE([A,Al|REST]):-
objects_to(Al,A),argSEQUENCE([A1l|REST]).
argSEQUENCE([A,I|REST]):-
suggested_by(I,A),argLINE(I,REST).
argSEQUENCE(([_]).

We believe that such high-level abstractions make navigating Germ networks much easier
than navigation with just the basic nodes and links. Also, it makes more sense to talk about
related abstractions, such as “a position responding to an issue,” than just talking about inde-
pendent unit abstractions, such as issues, positions, and arguments. For example, issues, po-
sitions, and arguments are elements of a discussion or a discourse. Related abstractions form
representation structures which we could use to express complex theories and methods. The
“ibis” predicate is such a structure that we can use to model the IBIS-based system design pro-
cess. As a result, we expect that prototypes of system (both software and hardware) engineer-
ing applications can be built more efficiently and rapidly using AiGerm’s combination of visual
modeling in Germ and abstraction-based representation in logic programming. The next sec-
tion reports on a number of AiGerm-based applications in software engineering and engineer-
ing system design.

AiGerm Applications

While we are still in the early stages of experimenting with AiGerm, we feel that it in addition
to its use as a relational database query-based hypermedia system, AiGerm could be equally

viewed as a general and cost effective tool for prototyping Al-based hypermedia systems. It is
this prototyping ability of AiGerm for which we anticipate multiple applications. Currently we
are exploring:

1. Reasoning with Issue-Based Design Rationale Networks
2. Analyzing the Structure of Programs
3. The Intelligent Documentation Experiment

Also, researchers at the Space Systems Division of Rockwell International are currently
using AiGerm in developing research prototypes for:

1. QFD Expert System Research
Simultaneous Engineering Environment
Design Reuse project

Design Decision Support prototypes
Knowledge Capture

Requirement’s Analysis (NASP)

Payload Mfg. Cost Analysis and Design
8. CAD/CAM Expert system Technology

To illustrate how AiGerm can be used for prototype development, we present two examples in
the sections that follow: the “reasoning with IBIS” example and Rockwell’s “QFD expert sys-
tem” example.”

i

EXAMPLE 1: Reasoning with Issue-Based Design Rationale Networks

Although logic programming is based on formal logic, we believe it can also be used for explor-
ing other modes of reasoning, both formal and informal. We have identified four non-mutually-
exclusive reasoning methods that we can apply to the IBIS method:

1. aformal reasoning method which builds upon the theory of formal logic and axiomatic
(analytic) theory of science

2. an informal reasoning method that builds upon psychology and cognition (J. H.
Newman, in Reese, 1980)

an informal reasoning method that is based on the theory of informal logic (Blair, 1980)

a formal reasoning based on and justified by the theory of dialectical logic, also known
as dialogic (Kamlah & Lorenzen, 1984)

Our current work involves formal reasoning of both the first and fourth kind and informal rea-
soning of the third kind. This paper addresses only the first kind of reasoning—i.e., reasoning
in the traditional sense of formal reasoning, and deductive inference in particular. The basis of
formal reasoning is logical inference. Inference in general can be deductive, inductive, or ab-
ductive. Formal reasoning can be both exact and inexact. Thus, there are exact and inexact
rules of logical inference. Here, we consider only exact reasoning. For a formal inexact reason-
ing approach we have in mind the theory of Fuzzy sets and Fuzzy logic, which deals with inex-
act or approximate reasoning (Zadeh, 1965, 1979, 1983, and 1985).

In general, IBIS participants raise issues, take positions from the issues, and advance argu-
ments supporting or objecting to the positions. The problem is resolved when the root issue and
all other related (major) issues are resolved. Resolving issues involves evaluating (supporting
and objecting) arguments to help us find, and thus select, the most supported and the least ob-
Jjected-to positions. What we have just said amounts to a decision-procedure that we can include
in an IBIS- based decision support system (DSS). One way to represent such a decision proce-
dure is to use the relational algebraic operation of quotient, ,which we can easily represent in
Prolog.

If we have two entities A and B with a respective arity of j and k, expressed as j > X, then
the quotient, denoted as A%%B is a relation with the set of (j-k)-tuples t such that:
ASAB = A<1,2,...j-k> -- ((A<1,2,...j3-k>) ** B -- A)<1,2,.. .j-k>

The double dash (--) and the double asterisk (**) represent set difference and cartesian product,
respectively. To understand “quotient” without the effort of unfolding this complex formula
let’s use an example. If we have the following relations A and B:

A B

al |a2 | a3 | a4 bl | b2
r s t v t v

r s w X wo|x

S t w X

w v t v

w v |w |[x

r s vl [w

these relations are given in Prolog as the following set of facts:

a(r,s,t,v).
a(r,s,w,x).
a(s,t,w,x).
a(w,v,t,v).
a(w,v,w,x).
a(r,s,v,w).
b(t,v).

B(w,x).

Then, the quotient expressed in Prolog (a modified version of the one in Li, 1984) is the relation:

quotient(Al,A2):-
group([Al,A2]),a(Al,A2,_,_),[Al,A2]),
setof ([ABl,AB2},a(Al,A2,ABl1,AB2]},Set2), /* built-in */
setof ({AB1l,AB2],b(ABl1,AB2),Setl),
subset (Setl, Set2).

Li defines group asa “partitioning relation which conceptually rearranges the relation into
groups such that in any one group all tuples have the same value for the grouped attribute.”
Thus we can write the following definition:

:- dynamic ffound/1.

group(N,G,N): -
call(G),
only(N).

only(N) :-
\+(ffound(N)),
asserta(ffound(N)).

subset is defined as follows:

subset([HlT],S):-
member(H, 8),
subset (T, S).

subset([1,_).

Now, if we try the “quotient” goal, Prolog’s response would be:
| ?- quotient(X,Y).

10

O
?-

—O e N
it
£

Put in a relational form, the result is the relation as%b with two tuples:

a%shb

abl ab2
r S
w \'

To resolve issues in IBIS, we first need the following relations: responds_to(P,I),
objects_to(A,P), supports(A,P), accepted(A), and rejected(A). We have already discussed how to
abstract the first three relations in the section on abstractions. Here are the definitions for
“accepted” and “rejected”:

accepted(Aeid): -

node (Aeid,AttrList),

member (attr(acceptance-status,accepted) AttrList).
rejected(Aeid): -

node (Aeid,AttrList),

member (attr(acceptance-status,rejected), AttrList).

We also define the quotient relations supports%%accepted, supports%%rejected,
objects_to%%accepted, objects_to%%rejected in the following form:

/* positions supported by accepted arguments */
su_quotient_ac(P):-
retractall(ffound(_)).,
group([P],supports(A,P), [P]),
setof ([A],supports(A,P), Set2),
setof ([A],accepted(A),Setl),
subset(Setl,Set2).
/* positions supported by rejected arguments */
su_quotient_re(P):-
retractall (ffound(_)),
group({P),supports(A,P), [P]),
setof([A],supports(A,P),Set2),
setof([A],rejected(A),Setl),
subset (Setl, Set2).
/* positions objected-to by accepted arguments */
ob_quotient_ac(P):-
retractall(ffound(_)),
group({P],objects_to(A,P), (P]),
setof ([A]l,objects_to(A,P),Set2),
setof ([A],accepted(A),Setl),
subset (Setl, Set2).
/* positions objected-to by rejected arguments */
ob_quotient_re(P):-
retractall(ffound(_)),
group((P],objects_to(A,P),[P]),
setof ({A] ,objects_to(A,P),Setl),
setof ([A],rejected(d), Setl),
subset(Setl, Set2).

Now we can use these definitions as constraints on selecting a position. A definition that cap-

11

tures such constrained decision making is the following:
selected(P): -
su_quotient_ac(P),
\+(su_quotient_re(P)), /* \+ is Quintus-prolog’s "not" #*/
\+(ob_quotient_ac(P)),
ob_quotient_re(P).

This definition is stated in English as follows:

A position P could be (possibly) selected IF

it has accepted supporting arguments AND

none of its supporting arguments are rejected AND

none of the arguments objecting to it was accepted AND
it has rejected arguments objecting to it.

To try out this definition, we give the following goal:

| ?- selected(P).

P = pl;

no

| 2-

We can take this definition one step further by considering the possible (or near) resolution of
an issue if that issue has at least one selected position:

resolved(I):-

responds_to(P,I),

selected(P).
The above-mentioned decision procedure is only part of an IBIS-based expert system prototype
for systems design and analysis. Another part of the system is the IBIS-etiquette adviser
shown in Figure 3.

EXAMPLE 2: An Expert System for Implementing the QFD Methods

The simultaneous engineering research project at Rockwell International (an MCC sharehold-
er) is an effort to develop tools for supporting the integrated product development process. Si-
multaneous engineering (SE) is also known as concurrent engineering or integrated product
development. The goal of SE is to model a product development process that results in higher
quality and lower cost and that requires shorter time to market than traditional product devel-
opment systems.

In SE, the different (independent or related) processes of planning, design, manufacturing,
testing, and in-service are considered in parallel. The traditional (non-simultaneous) systems
engineering approach tackles the different sub-processes sequentially. In many ways, the se-
quential engineering process has been found to be the main reason for the increase in engineer-
ing change orders, the increase in design cycle time, the high manufacturing costs, the increase
in scrap and rework situations, and the unnecessary complexity and bad quality of the final
product.

The task of SE is to automate the management of planning-to-production processes, taking into
consideration the concurrences and cross-functionality of the different processes. Thus, it deals
with more than one or two categories or fields of knowledge and expertise. This implies that
SE needs more than one method, technology. or instrument to achieve a particular end. These
methods or technologies can be alternative, complementary, or independent. In general, we be-
lieve that any SE system should allow us to coordinate the competing, or complementing, or
interacting methodologies or subsystems.

Quality Functional Deployment (QFD), also known as the House of Quality method, is an ap-
proach developed by the Japanese to help coordinate the integrated product development pro-

12

cess fs'ee Haus_er, 1988 and Eureka, 1988). The QFD method seeks to diffuse customer-desired
qualities (gttnbutes) into a product through the design, specification, parts deployment, pro-
cess planning, and production planning stages.

Lol e ——————————————
n1-8. 18 |
| Save) Name: ner-d621.ibisi

E
highlighted node

IBIS ADVISOR

A AOVICE IS:
/E The issue (with eid 3838) has no positions. A question is an issue
Interplay only if it has at least two positions responding to it.
prioritys
standard

:r1tgvs€undard
=
2-
2-
.
2-
7.
-
?7- a_display.

W

Figure 3: The “IBIS-etiquette adviser” part of the IBIS-expert system shell.

Thus, QFD could serve as a general (and integral) structuring and coordinating part of the SE
process. Traditionally, QFD is implemented using linked houses, see Figure 4, with each house
being a matrix for relating qualities that convey the customer’s voice through to manufactur-
ing. In our case, we want to automate the house-building process and provide decision support
for resolving the customer-needs satisfaction issues. One way to look at QFD is to view itas a
problem solving process involving a group of participants with different backgrounds—i.e. cus-
tomers, designers, manufacturing engineers, marketing people, managers, and so on—en-
gaged in a series of discussions trying to resolve different issues. Once we accept such a view,
we are tempted to use the IBIS method to represent the QFD-group interactions.

Using AiGerm, we wrote an IBIS-based QFD expert system to help automate the construction
of QFD houses. For example, in the case of the first house, the system would elicit needs from

customers and help in deriving the engineering characteristics required in the design specifi-
cations. Figure 5 shows the network generated in cooperation between the customer and the

QFD-expert rules of the system.

13

Engineering
characteristics

Customer
attributes

esign Speciﬁcations\
ouse
Parts

Characteristics

Parts Specifications

House ‘
Key Process
Operations

Engineering

charactenstics

Parts
haracteristics

Process Specifications
House Production

Requirements

Production

S ifications

Key Process

Operations

ouse

Figure 4: Transforming customer needs and desires from design to manufacturing.

14

Figure 5: The Germ network automatically generated by the QFD expert system.

Conclusion

AiGerm is MCC’s Germ with a logic programming front end. It treats a Germ network as a
knowledge base made up of node, link, and aggregate base relations. Users of AiGerm can use
Prolog, or MCC’s LDL either to navigate Germ networks through queries or to develop proto-
types of knowledge-based hypermedia systems. For both applications, we have found that ab-
stractions are the necessary building blocks for any serious use of the system. Currently,
AiGerm is used in two major applications, MCC'’s software design information recovery tool
(DESIRE), and Rockwell International’s Simultaneous Engineering research project. In con-
clusion we believe that AiGerm is a cost effective tool for developing and testing systems design
prototypes.

15

Acknowledgments

The author would like to thank Frank Wrabel and the Simultaneous Engineering research
team for their many insightful observations during conversations about the research being
done at the Space Systems Division of Rockwell International. The author also wishes to thank
Noreen Garrison, of STP, for her valuable help in editing the paper.

References

(Blair, 1980] Blair, J. A. and R. H. Johnson. “Informal Logic: The First International Symposium.”
Inverness, California: Edgepress, 1980.

[Biggerstaff, 1988] Biggerstaff, T. J. “Design Recovery for Maintenance and Reuse.” MCC Technical
Report, STP-378-88, November, 1988.

[Bratko, 1986] Bratko, I. PROLOG Progremming for Artificial Intelligence. Wokingham, England:
Addison-Wesley, 1986.

(Clocksin, 1981] Clocksin, W. and C. S. Mellish. Programming in PROLOG. Berlin: Springer Verlag.

[Conklin, 1988] Conklin, J. and M. L. Begeman (1988). “gIBIS: A Hypertext Tool for Exploratory
Policy Discussion.” ACM Transactions on Office Information Systems, 6 (October 1988), pp.
303-331.

[Consens, 1989] Consens, M. P. and A. O. Mendelzon. “Expressing Structural Hypertext Queries in
GraphLog.” Hypertext ‘89 Proceedings, November 5-8, 1989, Pittsburgh, Pennsylvania, pp.269-
292.

[Eureka, 1988] Eureka, William E. and N. E. Ryan. “The Customer Driven Company: Managerial
Perspectives on QFD.” Deaborn, Michigan: ASI Press, 1988.

[(Halasz, 1989] Halasz F. and J. Conklin. “Issues in the Design and Application of Hypermedia
Systems.” SIGCHI 89, 1989.

[Hashim, 1990a] Hashim, S. H. “MicroIBIS: A Micro Issue Based Information System.” In: Exploring
Hypertext Programming: Writing Knowledge Representation and Problem Solving Programs,
Part II1.” Blue Ridge Summit, PA: Windcrest Books, imprint of TAB BOOKS, 1990.

(Hashim, 1990b] Hashim, S. H. “WHAT: Writing with a Hypertext-based Argumentative Tool.” MCC/
STP Technical report, No. STP-270-90, 1990.

[(Hashim, 1990c] Hashim, S. H. and Mahesh Zurale. “AiGerm: An Intelligent Graphical Entity
relational Modeler.” MCC/STP Technical Report, No. STP-096-90, 1990.

[Hauser, 1988] Hauser, J. R. “The House of Quality.” Harvard Business Review, May-June, 1988.

[Kamlah, 1984] Kamlah, W. and P. Lorenzen. Logical Propaedeutic: Pre-School of Reasonable
Discourse. Lanham, MD: University Press of America, Inc., 1984.

[(Kunz, 1970] Kunz, W. / Rittel, H. W.J. “Issues as Elements of Information Systems.” Institute for
Urban and Regional Development, University of California, Berkeley, No.131, 1970; also:
Institut fuer Grundlagen der Planung, Universiteat Stuttgart S-78-2.

[Li, 1984] Li D. A Prolog Database System. England: Research Studies Press, 1984.

[Reese, 1980] Reese, W.L. Dictionary of Philosophy and Religion, Eastern and Western Thought.
Atlantic Highlands, N.J.: Humanties Press Inc, 1980.

16

[Rittel, 1980] Rittel, H. W. J. “APIS - A Concept for an Argumentative Planning Information System.”
Institute of Urban and Regional Development, University of California, Berkeley, Working
Paper 324, 1980. Also Institut fuer Grundlagen der Planung, Universiteat Stuttgart S-80-2.

[Zadeh, 1980] Zadeh, L. A.. “Inference in Fuzzy Logic.” Proceedings of the International Symposium
on Multiple-Valued Logic, Northwestern University (1980), pp. 124-131.

{Zadeh, 1979] Zadeh, L. A.. “A Theory of Approximate Reasoning.* Machine Intelligence, ed. D.
Michie, American Elsevier, 1979, pp.149-194 .

[Zadeh, 1965] Zadeh, L. A. “Fuzzy Sets.” Information and Control, 8 (1965), pp.338-353.

17

