
N91-21957

Ai GERM: A Logic Programming Front End
for GERM

Safaa H. Hashim

AiGerm: A Logic Programming Front End for Germ

Safaa H. Hashim

MCC/STP

Microelectronics and Computer Technology Corporation

Software Technology Program

3500 West balcones Center Drive,

Austin, TX 78759-6509
INTERNET: hashim@mcc.com

Introduction

AiGerm (Artificially Intelligent Graphical Entity Relation Modeler) is a relational database
query and programming language front end for MCC/STP's Germ (Graphical Entity Relational
Modeling) system. Currently, three versions of AiGerm are in use: Quintus Prolog, BYMprolog,
and LDL (MCC's Logical Data Language). AiGerm is intended as an add-on component of the
Germ system to be used for navigating very large networks of information, harnessing Prolog
or LDL's relational database query capabilities. It can also function as an expert system shell
for prototyping knowledge-based systems. AiGerm provides an interface between the program-
ming language and Germ.

When a user starts up AiGerm, the system builds a knowledge base of the currently loaded
Germ folio. The knowledge base is a collection of node, link, and aggregate facts. Selecting from
the set of commands built in to the AiGerm interface, the user can query the database and run
programs that select, create, delete, inspect, and aggregate the nodes and links appearing in
the Germ browser.

Aigerm is currently used in MCC/STP's DESIRE system to extract information on the design
of code for software systems. Members of the research staffare experimenting with AiGerm in
building IBIS-based reasoning and decision support systems for software design and engineer-
ing. Rockwell International, an MCC/STP shareholder, is using AiGerm in a simultaneous en-
gineering project.

What is Germ?

Germ (Graphical Entity Relational Modeler) is a graphically-oriented tool for browsing and ed-
iting databases. What distinguishes Germ is its conceptual approach in abstracting the ele-
ments of a database. Germ uses a few abstractions that we can easily comprehend, remember,
and use to create, understand, retrieve, and manipulate database objects. There are two sets

of such concepts: basic concepts (also known as object concepts) and interface concepts.

Germ applications are based on an underlying schema file that defines Germ objects and their
behavior. The basic object types of the Germ schema are: nodes, links, collections, and aggre-
gates. An application based on a given Germ schema is called a folio; many folios can be based
on the same schema. The schema contains the declarations for most of the object concepts in
Germ. Embedded in the schema object concepts are properties such as shape, color, attribute
types, and so on. Together, the object concepts in a given schema file represent a method for

modelling a certain problem, understanding it, and solving it.

Germ's "interface concepts" include a set of window objects: a graphical browser, global view,
index window, control panel, inspection window, and editing window, see Figure 1. These ob-
jects allow the user to interact with the system to add, delete, update, and retrieve information

represented graphically as nodes and links and to query the database.

The graphic The index The control Panel

The edit and/or inspection windows

Figure 1: The Germ User Interface

Germ Applications

In its current form, Germ is a generalization of gIBIS. In gIBIS (Conklin & Begeman, 1988),
the network of entities represents the argumentation process for understanding and solving a
problem using the IBIS methodology. IBIS (Issue Based Information Systems) was introduced
by Horst Rittel in the late sixties and early seventies (Rittel & Webber, 1969; Kunz & Rittel,
1970). We have reimplemented gIBIS in Germ just by using a special schema file representa-
tion of the IBIS method. The graphic browser in Figure i shows a gIBIS network implemented

using a Germ schema file for gIBIS.

Using Germ, researchers and system designers (working individually or in groups) can model
systems derived from any method, not just IBIS. In the case of gIBIS, we can have different
versions of the gIBIS system that are based on different versions of the gIBIS schema file, each
version representing variations in implementing the IBIS method.

Germ can represent both a given model of a method and the database of information on which
the method is based. The method can be a design, a problem understanding method, or a prob-
lem sotving method. Germ will probably be used mostly for building a database representing a
problem solving method (problem solving presupposes problem-understanding, and design
methods are a special subset of problem solving methods).

Germ is so generalized that it could be considered as a graphical tool that uses geometrical
shapes and text to present documents and designs. This is why Some STPer's think of Germ as
a "GEometrical Relation Modeler". Germ contains a set of on-line tutorials on Germ usage that
were developed using Germ itself. In this case, Germ was used as hypertext-document writing
tool (Garrison, Marks and Creemer, 1989). In this article we consider Germ as a modeling tool.

Why AiGerm

Germ has its own query mechanism, which is inflex/ble for a number of reasons, the two most
important ones being:

• Its keyword search combined with regular expression pattern string matching allows
only simple queries, like those shown in the preceding section. More importantly, the
expressive power of these simple queries is very limited, such that the following simple

query is not possible:

Find the issue with the word "interface _ as part of its contents and at least one position

responding to it.

In Prolog, on the other hand, this query would be easily expressed in a single

query(goal):

I?- issue(I),contents(l,C),substring of("interface",C),
responds to(P,I) .

Of course,fora practicaland realdesignor an engineeringapplicationwe would need

more complex queries.This requirement,which can be easilymet using Prolog,is

known as the problem of"structuresearch"inhypertext(Halaszand Conklin,1989).

• In additiontoricherexpressivepower ina query mechanism, we need an inferenceen-

gine,which isa must inthe designand engineeringtasksoftoday.The currentversion

ofGerm providesno inferenceengine.With even such a simpleone as thatin Prolog,

we can transform Germ intoa powerfulknowledge engineeringsystem.

AiGerm isdesignedtoaddressthesetwo deficienciesinthecurrentquery mechanism inGerm.

This iswhy we currentlydefineAiGerm in the followingway:

AiGerm = Germ + LogicProgramming

A Review of AiGerm

To use AiGerm, the user must have Germ running on a local or a remote machine. Before start-

ing AiGerm, the user must start up Germ and load the desired (hypertext network) folio into
the Germ browser. Then, in a shell window, the user would give the command:

AiGerm <HOSTNAME>

where HOSTN_F. isthe name ofa remote workstation. Ifno HOSTN_ isgiven, AiGerm inter-

faces to the Germ system running on the local workstation. Before actually starting the Prolog
process,AiGerm builds a Prolog knowledge base file,see Figure 2.

Figure 2: AiGem: invokinq Proloq in a shell window and interfacing it to Germ.

In this knowledge base, for each hypertext entity--i.e, node, link, and aggregate--AiGerrn ae-

serts a fact (a prolog clause). Once the knowledge base file is complete, the Prolog process ie

started and is directed to consult the knowledge base file. When this knowledge base is loaded

4

intoProlog,nodes,links,and aggregatosarerepresentedas Prologfacts,alsoknown as base-
relations.The abstract_rms ofthese_c_ are:

node(Eid,[ATTR, ATTR, ...]).

Link(Eid, [EID,EID],[ATTR, ATTR]).

agg(Eid,[EID,EID],[ATTR, ATTR]).

As

EID = the compound term #eid(INTEGER)"

ATTR = the compound term #attr(TYPE,VALUE)"

where TYPE and VALUE are:

TYPE = label;author;date;sid,subject;keywords;and so on,

VALUE ffiSTRING;INTEGER

Followingare examples ofa node,a link,and an aggregate,each representedas a _:

node(eid(293),[attr(type,"issue"),

attr(sid,l),

attr(date,"Jun 8 i0:14 1989"),

attr(author,"Kemp"),

attr(label,"Timing'),

attr(resolved,"yesn),

attr(contents,"How are timings from multiple trays handled?"),

attr(x,70), attr(y,36)]).

link(eid(314),[eid(294),eid(293)],[attr(type,"responds-to"),

attr(sid,-l),

attr(date,"Jun 8 10:17 1989"),

attr(author,"Klempay")]).

aggr(eid(293),[eid(293),eid(295),eid(294)],[attr(type,"AGi")])-

Using Prolog to Query Germ Networks

We can query a Germ network directly by issuing goals at the tep-level system prompt (I?-).
For example, to retrieve nodes one at a time we give the goal:

I ?- node(X,List).

and Prolog will return the first instance of node that matches this goal, namely:

X ffi eid(7) ,
List - [attr(type, "issue r) , attr(sid, 43), attr(date, "May 26 18:23 1989"),

attr (author, "hashim"), attr (label, "theory"), attr (iResolution- due-

date' ,"Jan 1 1990"), attr('Contents'ln^JAJWhat kind of IBIS-theory are we

after?AJ")]

Retrievingnode and linkfactsisusefulbut not very interesting.The advantage ofPrologque-
riesoverthe standard(static)Germ query system becomes apparent when we startgivingPro-

logsequences ofconnectedsubgoals.For example,we can use Germ tomodel the IBIS method

ina way similartothatofthe gIBIS system.We would then have a structuredhypertextnet-

work ofissues,positions,and arguments forcapturing,say,a group problem-solvingora de-

signmeeting session.For realworld applications,an IBIS network couldhave hundreds of
nodes and links representing the different issues, positions, and arguments and their relation-

ships. Navigating such large networks is quite difficult if it is done manually. On the other
hand, in AiGerm we can use Prolog to query the network for certain nodes and links. For ex-

ample, we can give this query:

I ?- node(X,List), member(attr(type,nissuen),List).

meaning that we want to retrieve only nodes that are issues. Moreover, we want to highlight
the issue nodes on the browser canvas while retrieving them. To do that we can write this com-
pound goal:

I ?- node(X,List), member(attr(type,issue),List), hl eid(X).

hl_eid isan add-on(built-in)predicateforinterfacingPrologtoGerm. A more interestinggoal
istore_neve a more structuredsetofnodes;forexample, toverifythatour designdiscussion
satisfiesthisminimal argumentation subnetwork condition:our IBIS network must have at

leastone issuewith at leastone positionrespondingtoit,and theremust be atleasttwo argu-
ments, one supportingthe positionand the otherobjectingto it.

A graph representationofsuch a subnetwork isshown inFigure3.Here isthePrologquery for
such a structure:

I ?- node(X,XNodeAttList),

member (attr (type, nissue"), XNodeAttList),

link(Ll, [Y,X],LinkAttListl),

member (attr (type, n responds -to") ,Lin_AttListl),

node (Y, YNodeAttList),

member (attr (type, "position"), YNodeAttList) ,
link(L2, [Z,Y] ,LinkAttList2),

(member (attr (type, nsupports"), LinkAttList2) ;

member (attr (type, "objects -to"), LinkAttList2)),
node (Z, ZNodeAttList) ,

member (attr (type, "argument"), ZNodeAttList),

hl_eids ([X, LI,Y,L2, Z]).

The lastsubgoal,namely the predicatehl_eids, takes a listofentityEIDs and highlights(se-

lects)them. Suppose we have a compound goal--thatis,a goalmade ofa sequence ofsub-

goals--thatwe might need tofirelateror use as a subgoalinyetanother compound goal.Itis
worthwhile insuch a casetocapturea query intoarule(aprogram) thatstandsforan execut-

abledefinitionofan "abstraction."Thisbringsus tothe subjectofabstractingnew concepts
from existingones in hypertextnetworks.

_ responds-to

Figure 3: A graph representing a minimal IBIS argumentation subnetwork.

Deriving New Abstraction from Existing Germ Networks and Other Abstractions

Enhancing Germ's hypermedia query and navigation capabilities is not the only advantage of
using the logic programming interface in AiGerm. Another advantage is the ability to define
new abstractions from the existing pool of base relations and other previously defined abstrac-
tions. We say "new abstractions" because Germ itself, through our schema file definition, al-
lows us to have an initial (built-in) set of abstractions on top of the basic node, link, collection,

6

and aggregate primitives. For example, using a schema fileto represent the IBIS method, we

usually have abstractions for issues, positions, arguments, and their relationships defined in

terms of nodes and links. The knowledge base that AiGerm builds for a Germ network is basi-

cally made up of node, link, and aggregate facts. From these facts we can easily define the first

level of abstractions as follows:

/* ********************* issue **************************

/* flow-pattern: (i), (o) */

issue(EID):-

node(EID,ATTlist),

member(attr(type,issue),ATTlist).

*/

/* ******************* position *************************

/* flow-pattern: (i), (o) */

position(EID):-

node(EID,ATTlist),

member(attr(type,position),ATTlist).

*/

/* ******************* argument ************************* */

/* flow-pattern: (i) (o) */

argument(EID):-
node(EID,ATTlist),

member(attr(type/position),ATTlist).

For the relationships (links) between issue, positions, and arguments, we can define the re-

sponds-to, supports, and objec_-_ relationships in a similar way. For example, here is a defi-

nition of the active relationship responds-to between a position and an issue that is supported

by Germ:

/* ******************* responds to**************** */

responds_to(P,I):-

link(_,[P,I],ATTlist),

member(attr(type, responds-to),ATTlist).

What is not supported by Germ is a passive version of responds_to, which

we can easily define in Prolog as responded-to-by:

/* **************** responded to by *********** */

responded to by(I,P):-

responds_to (P, I) .

Similarly, we can define objects-to, objected-to.by, supports, and supported-by link types.ln es-

sence, we can explicate the methodology implicit in a Germ schema fileby using such rules.

Moreover, we can extend the schema definition in a more flexible way than directly editing and

changing the schema fileitself.Thus, we can define special modified views of the schema (and

thus the methodology represented by the schema) without imposing on other people using the

same schema. This ability to modify the representation in such an interactive and dynamic way

is a basic aspect of AiGerm.

The abstractions discussed here are just one level above the entity-relation model

representation. We can have abstractions that are made up of other abstractions, which

themselves are made up of other abstractions, and so on. An example of a system-model using

such a multi-level abstracting technique is the following representation of an IBIS-network:

% Each IBIS issue must

ibis(I,[SL,OLIREST]):-

issue(I),

sup_argLINE(I,SL),

obj_argLINE(I,OL).
ibisl(I,REST).

have at least two lines of arg. SL and OL

% supporting line of argu_nentation

% objecting line of argumentation

7

ibisl(I, [LINEIREST]):- % it can have other argumentation lines
argLINE(I, LINE) ,
ibisI(I,REST).

ibisl(_, []) .

This definitionofan IBIS subnetwork requiresthatan issuehave at leasttwo linesofargu-

mentation,a supportinglineand an objectingline.But supportingand objectinglinesofargu-
mentation arejustspecialkindsofthe argLINS abstraction:

argLINE (I, LINE) :-

sup_argLINE(I,LINE). % a supporting line of argumentation
argLINE(I,LINE):-

obj_argLINE(I,LINE). % an objecting line of argumentation

argLINE (I, LINE) :-

cha_argLINE(I,LINE) . % a challenging line of argumentation

For the threespeciallinesofargumentation we can have the followingdefinitions:

sup_argLINE(I, [P,A IREST]):-

issue(I) ,position(P,I),responds_to(P,I) ,supports(A,P),

argSEOUENCE ([AI Rest]) .

obj_argLINE(I, [P,A IREST]) :-

issue (I) ,position(P), responds_to(P, I) ,objects_to(A, P) ,
argSEQUENCE ([A IREST]).

cha_argLINE(I, [IIIREST]) :-

issue(I), issueIIl), suggested by(Ii,I),
argSEQUENCE([Ii |REST]) .

To complete our sequence ofabstractions,we need todefineargSEQUENCE, which standsfora
sequence ofargumentation moves:

argSEQUENCE ([A,AI IREST]) :-

supports (A1,A), argSEQUENCE([A1 1REST]).

argSEQUENCE([A,AIIREST]) :-

objects_to(Ai,A), argSEQUENCE([AII REST]).

argSEQUENCE ([A, I IREST]) :-

suggested_by(I,A) ,argLINE(I, REST) .

argSEQUENCE ([_]).

We believe that such high-level abstractions make navigating Germ networks much easier
than navigation with just the basic nodes and links. Also, it makes more sense to talk about

related abstractions, such as "a position responding to an issue," than just talking about inde-
pendent unit abstractions, such as issues, positions, and arguments. For example, issues, po-
sitions, and arguments are elements of a discussion or a discourse. Related abstractions form

representation structures which we could use to express complex theories and methods. The
"ibis" predicate is such a structure that we can use to model the IBIS-based system design pro-
cess. As a result, we expect that prototypes of system (both soitware and hardware) engineer-
ing applications can be built more efficiently and rapidly using AlGerm's combination of visual
modeling in Germ and abstraction-based representation in logic programming. The next sec-
tion reports on a number of AiGerm-based applications in software engineering and engineer-
ing system design.

AiGerm Applications

While we are still in the early stages of experimenting with AiGerm, we feel that it in addition
to its use as a relational database query-based hypermedia system, AlGerm could be equally
viewed as a general and cost effective tool for prototyping AI-based hypermedia systems. It is
this prototyping ability of AiGerm for which we anticipate multiple applications. Currently we
are exploring:.

I. Reasoning with Issue-BasedDesign RationaleNetworks

2. Analyzing the StructureofPrograms

3. The IntelligentDocumentation Experiment

Also,researchersatthe Space Systems Division ofRockwell International are currently

using AiGerm indevelopingresearchprototypesfor:

1. QFD Expert System Research

2. Simultaneous EngineeringEnvironment

3. Design Reuse project

4. Design DecisionSupport prototypes

5. Knowledge Capture

6. Requirement's Analysis(NASP)

7. Payload Mfg. CostAnalysisand Design

8. CAD/CAM Expert system Technology

To illustratehow AiGerm can be used forprototypedevelopment,we presenttwo examples in

the sectionsthatfollow:the "reasoningwith IBIS" example and Rockwell's"QFD expertsys-
tem _example._

EXAMPLE I: Reasoning with Issue.Based Design Rationale Networks

Although logic programming is based on formal logic, we believe it can also be used for explor-
ing other modes of reasoning, both formal and informal. We have identified four non-mutually-
exclusive reasoning methods that we can apply to the IBIS method:

1. a formalreasoningmethod which buildsupon the theoryofformallogicand axiomatic

(analytic)theoryofscience

2. an informalreasoningmethod thatbuildsupon psychologyand cognition(J.H.
Newman, inReese,1980)

3. an informalreasoningmethod thatisbased on thetheoryofinformallogic(Blair,1980)

4. a formalreasoningbased on and justifiedby the theoryofdialecticallogic,alsoknown

as dialogic(Kamlah & Lorenzen, 1984)

Our currentwork involvesformalreasoningofboth thefirstand fourthkind and informalrea-

soningofthe thirdkind.This paper addressesonlythe firstkind ofreasoning--i.e.,reasoning

inthetraditionalsenseofformalreasoning,and deductiveinferenceinparticular.The basisof

formalreasoningislogicalinference.Inferencein generalcan be deductive,inductive,or ab-

ductive.Formal reasoningcan be bothexactand inexact.Thus, there are exactand inexact

rulesoflogicalinference.Here, we consideronlyexactreasoning.For a formalinexactreason-

ing approach we have inmind the theoryofFuzzy setsand Fuzzy logic,which dealswith inex-

actor approximate reasoning(Zadeh,1965, 1979,1983,and 1985).

In general,IBIS participantsraiseissues,take positionsfrom the issues,and advance argu-

ments supportingorobjectingtothepositions.The problem isresolvedwhen therootissueand

allotherrelated(major)issuesare resolved.Resolvingissuesinvolvesevaluating(supporting

and objecting) arguments to help us find, and thus select, the most supported and the least ob-
jected.topositions. What we have just said amounts to a decision-procedure that we can include
in an IBIS- based decision support system (DSS). One way to represent such a decision proce-

dure is to use the relational algebraic operation of quotients/which we can easily represent in
Prolog.

If we have two entities A and B with a respective arity ofj and k, expressed as j > k, then

the quotient, denoted as AltS is a relation with the set of(j-k)-tuples t such that:

A%%B " A<I,2 j-k> -- ((A<l,2,...j-k>) ** B -- A)<I,2 j-k>

The double dash (--)and the double asterisk (**) represent set difference and cartesian product,

respectively. To understand "quotient" without the effort of unfolding this complex formula

let'suse an example. If we have the following relations A and B:

A

al a2 a3 a4

r s t V

r s w x

S t W _X

w v t 'V

w v w x

r s vl w

B

bl b2

t v

w x

these relations are _ven in Prolog as the Allowing set of fac_:

a(r,s,t,v)

a(r,s,w,x)

a(s,t,w,x)

a(w,v,t,v)

a(w,v,w,x)

a(r,s,v,w)

b(t,v).

b(w,x).

Then, the quo_ent expressed in Prolog (a modified vermon of the one in Li, 1984) is the relation:

quotient(AI,A2):-

group([AI,A2],a(Ai,A2,_,_), [AI,A2]),

setof([ABI,AB2],a(AI,A2,ABI,AB2],Set2), /* built-in */

setof([ABi,AB2],b(ABi,AB2),Setl),

subset(Setl,Set2).

Li defines group as a "partitmning rela_on which conceptual_ rea_ar_es the rela_on in_

groups such that in any one group all tuples have the same value for the grouped a_nbute."

Thus we can write the Allowing definition:

:- dynamic ffound/1.

group(N,G,N):-

call(G),

only(N).

only(N) .-

\+(ffound(N)),

asserta(ffound(N)).

subset is defined as follows:

subset([HIT],S):-

member(H,S),

subset(T,S).

subset([],_).

Now, _we try the "quotienC goal, Prolo_s response would be:

I ?- quotient(x,Y).

10

X = r

Y = s;

X = w

Y = v;

no

I ?-

Put in a relational form, the result is the relation a%%b with two tuples:

a%%b

abl ab2

r S
w V

To resolveissuesinIBIS,we firstneed the followingrelations:responds_to(P,I),

objects_to(A,P),supports(A,P),accepted(A),and rejected(A).We have alreadydiscussedhow to
abstractthe firstthreerelationsin the sectionon abstractions.Here are the definitionsfor

"accepted" and "rejected":

accepted (Aeid) :-

node (Aeid, AttrList),

member (attr (acceptance - status, accepted) ,AttrList) .

rejected (Aeid) :-
node (Aeid, AttrList),

member (attr (acceptance- status, rejected) ,AttrList) .

We also define the quotient relations 8upports%%accepted, supports%%rejected,
objects_to%%accepted, objects_to%%rejected in the following form:

accepted arguments *//* positions supported by

su_quotient_ac(P):-
retractall(ffound(_))

group([P],supports(A,

setof([A],supports(A,

setof([A],accepted(A)

subset(Setl,Set2).

/* positions supported by

su_quotient_re(P):-

retractall(ffound(_)),

group([P],supports(A,P),[P]),

setof([A],supports(A,P),Set2),

setof([A],rejected(A),Setl),

subset(Serf,Set2).

/* positions objected-to by accepted arguments */

!

P),[P]),

P),Set2),

,Setl),

rejected arguments */

ob_quotient_ac(P):-
retractall(ffound(_)),

group([P],objects_to(A,P),[P]),

setof([Al,objects to(A,P),Set2),

setof([A],accepted(A),Setl),

subset(Setl,Set2).

/* positions objected-to by rejected arguments */

ob_quotient_re(P):-

retractall(ffound(_)),

group([P],objects_to(A,P),[P]),

setof([A],objects_to(A,P),Set2),

setof([A],rejected(A),Setl),

subset(Setl,Set2).

Now we canusethese definitions asconstrain_ on selectinga position. A definition thatca_

11

tures such constrained decision making isthe following:

selected (P) : -

su_quotient ac(P),

\+(su_quotient_re(P)), /* \+ is Ouintus-prolog's "not" */

\+(ob_quotient ac(P)),

ob quotient re(P) .

This definition is stated in English as follows:

A position P could be (possibly) selected IF

it has accepted supporting arguments AND

none of its supporting arguments are rejected AND

none of the arguments objecting to it was accepted AND

it has rejected arguments objecting to it.

To try out thisdefinition,we give the following goal:

I ?- selected(P).

P - pl;
no

f ?-

We can take this definitionone step further by considering the possible (or near) resolution of

an issue ifthat issue has at least one selected position:

resolved(I) :-

responds to(P,I),
selected (P) .

The above-mentioned decision procedure isonly part ofan IBIS-based expert system prototype

for systems design and analysis.Another part of the system isthe IBIS-etiquette adviser

shown in Figure 3.

EXAMPLE 2: An Expert System for Implementing the QFD Methods

The simultaneous engineering research project at Rockwell International (an MCC sharehold-

er) is an effort to develop tools for supporting the integrated product development process. Si-

multaneous engineering (SE) is also known as concurrent engineering or integrated product

development. The goal of SE is to model a product development process that results in higher
quality and lower cost and that requires shorter time to market than traditional product devel-

opment systems.

In SE, the different (independent or related) processes of planning, design, manufacturing,

testing, and in-service are considered in parallel. The traditional (non-simultaneous) systems

engineering approach tackles the differentsub-processes sequentially.In many ways, the se-

quential engineering process has been found tobe the main reason forthe increase in engineer-

ing change orders,the increase in design cycletime, the high manufacturing costs,the increase

in scrap and rework situations,and the unnecessary complexity and bad quality of the final

product.

The task ofSE istoautomate the management ofplanning-to-production processes, taking into

consideration the concurrences and cross-functionality of the different processes. Thus, it deals
with more than one or two categories or fields of knowledge and expertise. This implies that

SE needs more than one method, technology, or instrument to achieve a particular end. These

methods or technologies can be alternative, complementary, or independent. In general, we be-

lieve that any SE system should allow us to coordinate the competing, or complementing, or

interacting methodologies or subsystems.

Quality Functional Deployment (QFD), also known as the House of Quality method, is an ap-

proach developed by the Japanese to help coordinate the integrated product development pro-

12

tess (see Hauser, 1988 and Eureka, 1988). The QFD method seeks to diffuse customer-desired

qualities (attributes) into a product through the design, specification, parts deployment, pro-
cess planning, and production planning stages.

highlighted node

I

IB l I

C NEXT) C END)

u!

Figure 3: The "IBIS-etiquette adviser" part of the IBIS-expert system shell.

Thus, QFD could serveas a general (and integral) structuring and coordinating part of the SE
process. Traditionally, QFD is implemented using linked houses, see Figure 4, with each houee
being a matrix for relating qualities that convey the customer's voice through to manufactur-
ing. In our case, we want to automate the house-building process and provide decision support
for resolving the customer-needs satisfaction issues. One way to look at QFD is to view it as a
problem solving process involving a group of participants with different backgrounds--i.e, cus-
tomers, designers, manufacturing engineers, marketing people, managers, and so on---en-
gaged in a series of discussions trying to resolve different issues. Once we accept such a view,
we are tempted to use the IBIS method to represent the QFD-group interactions.

Using AiGerm, we wrote an IBIS-based QFD expert system to help automate the construction
of QFD houses. For example, in the case of the first house, the system would elicit needs from
customers and help in deriving the engineering characteristics required in the design specifi-
cations. Figure 5 shows the network generated in cooperation between the customer and the
QFD-expert rules of the system.

13

i Engineering Icharacteristics

II '
esignSpecifications_ouse Parts

Characteristics

HousePartsSpecifications q_

.s

Key Proeen
Operations

Process Specifications_

House _k

Production "_

SoH_u_ficati°ns _
t_

Production
Requirements

Figure 4: Transforming customer needs and desires from design to manufacturing.

14

b_

CN7 13

CN9 tiill

Yes

Figure 5: The Germ network automatically generated by the QFD expert system.

Conclusion

AiGerm is MCC's Germ with a logic programming front end. It treats a Germ network as a
knowledge base made up of node, link, and aggregate base relations. Users of AiGerm can use
Prolog, or MCC's LDL either to navigate Germ networks through queries or to develop proto-
types of knowledge-based hypermedia systems. For both applications, we have found that ab-
stractions are the necessary building blocks for any serious use of the system. Currently,
AiGerm is used in two major applications, MCC's software design information recovery tool
(DESIRE), and Rockwell International's Simultaneous Engineering research project. In con-
clusion we believe that AiGerm is a cost effective tool for developing and testing systems design

prototypes.

15

Acknowledgments

The author would like to thank Frank Wrabel and the Simultaneous Engineering research
team for their many insightful observations during conversations about the research being
done at the Space Systems Division of Rockwell International. The author also wishes to thank
Noreen Garrison, of STP, for her valuable help in editing the paper.

References

[Blair, 1980] Blair, J. A. and R. H. Johnson. "Informal Logic: The First International Symposium."
Inverness, California: Edgepress, 1980.

[Biggerstaff, 1988] Biggerstaff, T. J. "Design Recovery for Maintenance and Reuse." MCC Technical
Report, STP-378-88, November, 1988.

[Bratko, 1986] Bratko, I. PROLOG Programming for Artificial Intelligence. Wokingham, England:
Addison-Wesley, 1986.

[Clocksin, 1981] Clocksin, W. and C. S. Mellish. Programming in PROLOG. Berlin: Springer Verlag.

[Conklin, 1988] Conklin, J. and M. L. Begeman (1988). "gIBIS: A Hypertext Tool for Exploratory
Policy Discussion. _ ACM Transactions on Office Information Systems, 6 (October 1988), pp.
303-331.

[Consens, 1989] Consens, M. P.and A. O. Mendehon. "ExpressingStructuralHypertext Queriesin

GraphLog." Hypertext'89Proceedings,November 5-8,1989,Pittsburgh,Pennsylvania,pp.269-
292.

[Eureka, 19881 Eureka, William E. and N. E. Ryan. "q'he Customer Driven Company: Managerial
Perspectives on QFD." Deaborn, Michigan: ASI Press, 1988.

[Halasz, 1989] Halasz F. and J. Conklin. "Issues in the Design and Application of Hypermedia
Systems." SIGCHI 89, 1989.

[Hashim, 1990a] Hashim, S. H. "MicroIBIS:A Micro Issue Based Information System." In: Exploring
Hypertext Programming: Writing Knowledge Representation and Problem Solving Programs,
Part IIII Blue Ridge Summit, PA: Windcrest Books, imprint of TAB BOOKS, 1990.

[Hashim, 1990b] Hashim, S. H. THAT: Writing with a Hypertext-based Argumentative Tool."MCC/
STP Technical report, No. STP-270-90, 1990.

[Hashim, 1990c] Hashim, S. H. and Mahesh Zurale. "AiGerm: An Intelligent Graphical Entity
relational Modeler." MCC/STP Technical Report, No. STP-096-90, 1990.

[Hauser, 1988] Hauser, J. R. "The House of Quality." Harvard Business Review, May-June, 1988.

[Kamlah, 1984] Kamlah, W. and P. Lorenzen. Logical Propaedeutic: Pre.School of Reasonable
Discourse. Lanham, MD: University Press of America, Inc., 1984.

[Kunz, 1970] Kunz, W. / Rittel, H. W.J. "Issues as Elements of Information Systems. _ Institute for
Urban and Regional Development, University of California, Berkeley, No. 131, 1970; also:
Institut fuer Grundlagen der Planung, Universiteat Stuttgart S-78-2.

[Li,1984] Li D.A PrologDatabase System. England: Research StudiesPress,1984.

[Reese, 1980] Reese, W.L. Dictionary of Philosophy and Religion, Eastern and Western Thought.
Atlantic Highlands, N.J.: Humanties Press Inc, 1980.

16

[Rittel, 1980] Rittel, H. W. J. _APIS -A Concept for an Argumentative Planning Information System. _
Institute of Urban and Regional Development, University of California, Berkeley, Working
Paper 324, 1980. Also Institut fuer Grundlagen der Planung, Universiteat Stuttgart S-80-2.

[Zadeh, 1980] Zadeh, L. A.. "Inference in Fuzzy Logic." Proceedings of the International Symposium
on Multiple-Valued Logic, Northwestern University (1980), pp. 124-131.

[Zadeh, 1979] Zadeh, L. A.. "A Theory of Approximate Reasoning. NMachine Intelligence, ed. D.

Michie, American Elsevier, 1979, pp. 149-194.

[Zadeh, 1965] Zadeh, L. A. "Fuzzy Sets. _ Information and Control, 8 (1965), pp.338-353.

17

