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CHAPTER 1

INTRODUCTION

Among today’s flow-solvers for the Euler and Navier-Stokes equations, many
are based on upwind differencing. Prominent in use are Godunov-type schemes
[1], in which the upwind bias is achieved by using the solution to the Riemann
problem defined at each cell face. Riemann’s initial-value problem, which is a
mathematical representation of the shock-tube problem [2], is well-understood and
easy to model. A membrane separating a gas at two different states is ruptured,
and shock, contact, and expansion waves are emitted when the two states interact.
In a Godunov-type scheme this event is supposed to happen at any cell face and

any time level.

The Riemann problem can be solved exactly with an iterative method, as
Godunov [3] did, or approximately, as Roe [4] did, leading to the concept of
the “approximate Riemann solver.” In Roe’s method the Euler equations are
linearized about an average state and then solved exactly. Eigenvectors of the
averaged flux Jacobian, which represent different types of waves, are allowed to
propagate with speeds equal to their corresponding eigenvalues. These waves

describe the difference in states across each cell face.

The “upwind” direction for each wave is clear in one-dimensional flow: it is
either forward or backward, according to the sign of each eigenvalue. In two or

three dimensions the direction of wave propagation is not so straightforward: the

1
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waves can travel in infinitely many directions. In most current multidimensional
upwind flow-solvers, however, the upwinding direction is taken normal to the
cell faces. Thus the schemes are strongly coupled to the grid on which they are
implemented. Consequently, high resolution of flowfield discontinuities such as
shock or shear waves can be achieved only when the discontinuities are aligned
with grid lines. The Riemann solver interprets such waves incorrectly when they
lie oblique to the grid; this improper interpretation can lead to smearing in the

numerical solution.

In recent years, in an attempt to improve the accuracy of flow solutions, a
number of researchers have developed multidimensional upwind methods where
information is obtained from or propagated in directions other than the grid con-
travariant directions. Initial investigations focused on upwind finite-difference
schemes for advection-dominated flows, e.g. Raithby [5], Hassan et al. [6], and
Lillington [7]. In these schemes, attempts were made to convect information in the
streamwise direction, independent of the grid orientation. Jameson [8,9] developed
a rotated difference scheme for the transonic potential equation. The equation is
written in a system of coordinates aligned with and normal to the local streamwise
direction. When the local flowfield is supersonic, grid-aligned derivatives that are
used to form derivatives in the streamwise direction are upwind-differenced, while

all other derivatives are centrally-differenced.

Moretti [10], and later Verhoff and O’Neil [11], developed nonconservative
characteristic-based schemes for the Euler equations. These schemes define Rie-
mann variables, and employ grid-decoupled computational stencils determined
from the directions of the characteristics. The multidimensional Euler equations
reduce to a set of ordinary differential equations, coupled only through the source
terms due to entropy variation, which are typically small. Each ordinary differen-

tial equation describes the propagation of an individual wave along its characteris-



tic. Because the schemes are nonconservative, conservation errors are introduced
when shock waves are present in the solution. These errors can be eliminated by

applying a shock correction after each iteration.

Goorjian [12] extended the method of Jameson for use with the Euler and
Navier-Stokes equations. This method was later improved by Obayashi and Goor-
jian [13]. In the latter method, grid-aligned input states are used to solve Riemann
problems in both the local streamwise and normal directions. In the normal di-

rection the Riemann problem involves two acoustic waves only.

Colella [14] designed a predictor-corrector algorithm for systems of hyperbolic
conservation laws in which the left and right states at each grid face are modified
by waves traveling parallel to the interface. A standard grid-aligned Riemann
solver is then used to obtain the flux across the face. This is still a direction-split
approach, in which an oblique wave would be represented by two grid-aligned
waves. A similar multidimensional method was developed independently by van

Leer [15].

Davis [16] developed a finite-volume method for the Euler equations in which
the difference formula and computational stencil vary with angle of assumed wave
propagation. The angle at each cell face is determined by the velocity-difference
direction, which is normal to a hypothetical steady shock wave that exists between
the given states bordering the cell face. Derivatives in the grid-aligned frame
are written in terms of derivatives in the rotated frame. Fluxes normal to the
assumed frame are calculated using flux-vector splitting. The flux function along
the assumed shock is a central-difference flux with an arbitrary parameter that
insures stability. Davis’ method locates steady shock waves very accurately, but

is unable to locate steady contact discontinuities.

Roe [17] designed a multidimensional method based on the decomposition of



local gradients. The number and type of waves present is chosen, then angles,
strengths, and speeds are determined from the local data. One model uses four
acoustic waves with orientation ninety degrees apart, one entropy wave with ar-
bitrary orientation, and a shear wave represented by a uniform vorticity. Initial
efforts to implement this model have been made by Kroner (18] and Struijs et al.
[19].

Hirsch and Lacor [20] decouple the numerical solution from the grid-direction
by seeking an approximate diagonalization of the Euler equations. The equations
are written in terms of entropy, a component of velocity, and two acoustic-like
variables. In general, the Euler equations are not diagonalizable because the two
Jacobian matrices (in two dimensions) are not simultaneously diagonalizable. In
(20}, however, the similarity transformation is based on derivatives of the solution,
allowing more freedom. Still, a source term may arise, which can be minimized.
Two physical directions play a crucial role in the definition of flow variables and
characteristic directions. One is aligned with the local pressure gradient, and the
second is related to the strain-rate tensor. In practice these two directions are
frozen to improve convergence. A variation of Raithby’s [5] streamline-upwinding
scheme is used to interpolate the flowfield variables, since standard grid-direction

interpolation was found to produce no advantage over grid-aligned methods.

Powell and van Leer [21] and Powell [22] implemented a cell-vertex scheme
for quadrilateral grids consisting of two basic steps: a residual calculation and a
residual distribution. In the first step the residual is calculated based on a flux
integral, and in the second step the residual is sent in a weighted manner only
to the nodes that define the “downwind” face. The convection directions and
corresponding characteristic quantities chosen are the same as those derived by
Hirsch and Lacor [20]. These directions can be frozen to help the convergence of

the scheme. A similar cell-vertex scheme was instituted by Giles et al. [23]. This
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method differs from Powell’s primarily in that the computations are performed on
triangular grids using a trapezoidal rule integration for the residual calculation,
and the local flow direction (rather than characteristic directions) is used to define

the “downwind” face.

Levy et al. [24] developed a method which expands upon the work of Davis
[16]. A dominant-direction angle is chosen, either in the direction of the local
pressure gradient or the flow velocity, and two sets of left and right states are
obtained at each cell face via interpolation from the surrounding flowfield data.
One of these sets of left and right states is aligned with the dominant-direction,
while the other set is aligned normal to the first. Then, two Riemann-type solvers
are used to obtain fluxes in the rotated frame. The components of these fluxes in

the grid direction are added to obtain the flux at the face.

Parpia and Michalek [25] independently derived a grid-independent upwind
finite-volume method for the Euler equations very similar to the method proposed
in this thesis. Left and right states at an interface are still interpolated along grid
lines, but a multidimensional four-wave pattern made up of two acoustics, a shear,
and an entropy wave is assumed to describe the difference in states. The strengths
of these waves are chosen such that the sum of the jumps in the flow properties

across the waves is minimized.

Finally, Dadone and Grossman [26] developed a rotated upwind scheme for
the Fuler equations in which flux-difference splitting is applied along two orthog-
onal directions for each cell face. The directions are determined from the pressure
gradient, and the left and right states are selected from appropriately chosen cells

near to the face where the flux is being computed.

One of the common features of many of the upwind methods described above

is that information needed at special points because of physical considerations
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must be interpolated from surrounding data points. Since this adds an extra level
of complexity to any method, particularly for non-Cartesian meshes, it was decided
early in the development of the present scheme to only use information obtained
by interpolation along grid lines as the input to the approximate Riemann solver.
It would then be the job of the solver to make “intelligent” use out of information
gleaned from these left and right states. This constraint puts some limits on the
ability of the solver to recognize what is going on in the flowfield, but the resulting

simplicity and low expense of the method seem to outweigh its drawbacks.

The current method uses five waves to describe the difference in states at a
grid face. Four of these are acoustic, shear, and entropy waves which act in the
velocity-difference direction (the same dominant-direction chosen by Davis [16]),
while the fifth is a shear wave that propagates at a right angle to the other four
(also used by Parpia and Michalek [25]). This fifth wave allows the method to
capture oblique steady shear waves sharply. The propagation directions can be
frozen to improve convergence. The method also makes use of the linearizations of
the Euler equations due to Roe [4] in order to maintain as simple and inexpensive

a scheme as possible.

This thesis is organized as follows. Chapter 2 briefly describes the two-
dimensional Euler and Navier-Stokes equations in Cartesian and generalized co-
ordinates, as well as the traveling wave form of the Euler equations. The spatial
and temporal discretization for both explicit and implicit time-marching schemes
are described in Chapter 3. Chapter 4 outlines the grid-aligned flux function of
Roe [4], while Chapter 5 details the derivation of the 5-wave grid-independent
flux function. Chapters 6 and 7 contain stability and monotonicity analyses of
the 5-wave model, respectively. Two-dimensional results are provided in Chapter
8. The extension to three dimensions is made in Chapter 9, with corresponding

results given in Chapter 10. Finally, Chapter 11 gives conclusions.



CHAPTER 2

GOVERNING EQUATIONS
2.1 Two-Dimensional Navier-Stokes Equations

The two-dimensional Navier-Stokes equations in Cartesian coordinates can

be written in conservation form as

Qfg+§_§+aé_ai‘v+aév
8t 0z 08y 0% o5’

(2.1)

where the ~ indicates dimensional variables. The conserved variables are U =
AT
[ﬁ,ﬁﬁ,ﬁﬁ, ﬁE] , where p is the density, u and 7 are the components of velocity in

the z and ¥ directions, and E is the specific total energy. The inviscid flux vectors

are )
. p
T .
F = 5o G=|_.5 vl (2.2)
puH pvH
where the specific total enthalpy H = E + $/p. The viscous fluxes are
0 0
F, = T G, = 712 , (2.3)
T '-Tn'aff
Vit + k5% Vifaj + k55
where
) ovi v\ | 10V
Ti=p\ ——+—= + A—=—16;;. 2.4
i (ax,- BXi> 9%y (24)
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In equations (2.3) and (2.4), summation convention is implied and V, =1,V =1,

X, =%, and X, = §.
The ideal-gas equation-of-state closes the set of equations:

(2.5)

u +

5=(r-15 (B~ T2

s can be nondimensionalized as follows. First the Prandtl

The above equation
number, Reynolds number, and freestream Mach number are defined by

pro B g Pelet gy e (2.6)
k Hoo @oo

where oo =

length, specific to the proble

/@2, + 9%, is the freestream velocity and Z is some characteristic

m considered. Then each of the variables is nondi-

mensionalized via:

foe ; v ;
L R R N (2.7)
14 Poo Qoo Hoo
) X; p E
Az—_—- X{'——-—..— P = _,p_z E=_—2—' (28)
l"oo E pOOa’oo a’oo
Assuming a calorically perfect gas, T is replaced by the expression
(2.9)

~2

- a
y
(7-1)%,

and @ is nondimensionalized by Goo-
After substitution, the nondimensional Navier-Stokes equations can be writ-

ten
U OF 0G oF, 0Gy
ov = - 2.
5w Tt oy - B T oy (2.10)
where
P
_ | e
u=|" (2.11)



. #
+p puv
F=|" G= 2.12
o 0?4 p (2.12)
puH pvH
0 0
F, = ™o G, = 12 . (2.13)
T21 T22
Vimi; — @ Virej — Q2
The nondimensional shear-stress and heat-flux terms are given by
M ov;  oV; Vi
i = A—0b;; 2.14
T = Re {“(ax,-“LaX,-)“L 83X, (2.14)
Mop  0(a?)

Q= “RePr(y 1) 0X; (2.15)

Again V; = u, V, = v, X, =z,and X; =y. The equation-of-state is

p=(7—1)p(E—u2;v2).‘ (2.16)

The Navier-Stokes equations can also be written in generalized curvilinear

coordinates, where the coordinate directions are defined by

€= E(ma y)
(2.17)

n = n(z,y)-
Using the chain rule, the derivatives in curvilinear coordinates are written in terms

of the derivatives in Cartesian coordinates:

£]- [ u][E] =

The determinant of the 2 x 2 matrix in (2.18) is defined as the inverse of the metric
Jacobian J:

I = 2gyy — Tyye- (2.19)

Inverting (2.18), one can obtain the following equations for the metric terms:

€z = Jyny Ey:_']:cn
(2.20)

e = —JY¢ ny = Jo¢.
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The nondimensional Navier-Stokes equations (2.10) can be written in terms of the

curvilinear coordinates:

ou d 0
a0 o (6.F +£,G) + o (n:F +nyG) =
a

0
B_é (Esz + fva) + _a';, (ﬂsz + T]va) .

Multiplying (2.21) by J !, applying the chain rule, and combining and cancelling

(2.21)

terms, the two-dimensional Navier-Stokes equations in curvilinear coordinates and

conservation form become:

puU* 8F* 8G* OF,  8G}

y 2.22
50 "o T on o€ on (2.22)
where
p
1| pu
U*r=-— 2.23
J | pv : (2.23)
pE
pu’ pv*
.1 | purut+é&zp . 1| pv'u+nep
F*=— . G =-— 2.24
J | putv+&yp J | pr*v +myp (2.24)
pu*H pv*H
[ 0
1 .11 + &2
F: == v 2.25
M § fz‘]'zl + €y T2 _ ( )
\_Ez(Vj‘rl,- — Q1) + &(Vim; — Q2)
i 0
1 NzT11 + NyT12
G*r == 2.26
v J NzT21 + My T22 _ ( )
| 72 (Vimj — Q1) + 1y (Vimej — Q2)
u* = €u+ €y
(2.27)

v* = U+ nyv.

The terms u* and v* are the contravariant velocity components, and V7 and V;
represent u and v, respectively. 7;; and Q; are still given by (2.14) and (2.15), but

now

(2.28)
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Therefore, the shear stress and heat flux terms are

r = B2 (0 4 2p)(Eeue + ) + Mo Fm)} (229
s = SR (A 4 2p)(Eyve ) + Mg Frena)} (230)
o = a1 = B g by + v+ 7e09) (231)

& = - oy (e + (e} (2:32)

@2 =~ gprity (lee +m(a)n}- (2:33)

The ideal gas equation of state is still given by (2.16).

In the Navier-Stokes equations, Stokes’ hypothesis, A + (2/3)p = 0, is used
for bulk viscosity. Also, v is taken as 1.4 and Pr is taken as 0.72. Sutherland’s

law for molecular viscosity,

- P 3/2 s -
H oo T C
_E_(L ° 2.34

is employed, with T = 460°R and ¢ = Sutherland’s constant = 198.6°R.

2.2 Traveling-Wave Form of the Euler Equations

Many numerical methods for the Euler equations, including those discussed
in Chapters 4 and 5, are based upon the knowledge that certain types of waves
are emitted when two fluid parcels at different states interact. The directions
and strengths of these waves define the way in which information is propagated
through the domain.

In the upwind-differencing method, care is taken that numerical information is

propagated similarly. It is therefore instructive to look at traveling-wave solutions
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to the Euler equations. Upwind-differencing also applies to the convective and
pressure terms of the Navier-Stokes equations. The viscous terms of the Navier-
Stokes equations are always centrally-differenced.

The Euler equations are the same as the Navier-Stokes equations (2.1), (2.10),
or (2.22), except that the viscous terms Fy and G, (or F% and GJ) are taken as
zero. Starting with equation (2.10), the nondimensional Euler equations in two

dimensions are written as

ou OF 0G

— +—+—==0 2.35

ot "oz oy (2.33)
where U is given by (2.11) and F and G are given by (2.12). These equations can

also be written in quasilinear form:

oW oW oW
Y +A 52 +B By =0, (2.36)

where W is the vector of primitive variables, W = [p,u,'v,p]T, and A and B are

the matrices

»w p 0 O
{0 w 0 1/p

A=y o 4 o (2.37)

0 pa? 0 u

v 0 p 0

0 v O 0
B=|o 0 v 1/p (2.38)

0 0 pa? v

Traveling-wave solutions to (2.36) are of the form
W(z,y,t) = W(zcosb + ysinf — At), (2.39)

where 8 is the angle that defines the direction of wave propagation. Insertion of

(2.39) into (2.36) results in the eigenvalue problem

(Acosf + Bsind)§W = AW, (2.40)
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where §W is the amplitude of the traveling wave. The four eigenvalues and

corresponding right eigenvectors yielded by (2.40) are:
A1 = ucosf + vsinf + a

Xy = ucosf + vsind — a

(2.41)
A3 = ucosf + vsinf
Ay = ucosf + vsiné
[ a a T
P, = 1,—cos€,—sin0,a2}
e e
a a T
P, = |1, ——cosd, ——sind,a’
2 L Pcos , psm ,a] (2.42)
T
P; = 0 ——s1n9 c050 0]
p P

P, = [1,0,0,0]

These eigenvectors represent: (1) an acoustic disturbance that propagates with
speed );, (2) an acoustic disturbance that propagates with speed Az, (3) a shear
wave, and (4) an entropy wave. The latter two waves travel with speed As = Aq4,
the projection of the fluid velocity in the direction of wave propagation. Together
the four eigenvectors form the matrix P.

The characteristic variables for the quasilinear form of the Euler equations

can be computed from

SW* =P 16W, (2.43)
where 0 pcosf psiné 1
E2a. ] g2qn9 2‘11'2
_ 0 _ [o1] _ 31 ==
Pl= | e o (2.44)
1 0 (R
This gives

% {Z + (c050£5u + smeﬁﬁv)}
i { 22 — (cosfL6u + sm9£5v)} . (2.45)
P—sm05u + 2cosbBév

6p—z
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Rewriting the Euler equations in terms of the characteristic variables yields

GW* L OW* W'
= +PTIAP— - + PTBP = = 0. (2.46)

In general, A and B do not commute, so a single § that simultaneously diag-
onalizes both matrices cannot be found. This is indicative of the fact that in
multidimensional flow the waves propagate in infinitely many directions. As nu-
merical schemes are limited to modeling the flow with a finite number of waves, the
choice of wave type and direction of propagation is not trivial. The more “physi-
cally relevant” the wave types and directions of propagation are, the more likely
the model will be able to resolve a wide variety of flow features accurately. As
will be discussed in Chapter 4, grid-aligned wave models choose the grid-normal
direction as the direction of wave propagation. The gﬁa-independent model de-
rived in Chapter 5 allows waves to travel in directions dictated by the physics of

the local flowfield.



CHAPTER 3

SPATIAL AND TEMPORAL DISCRETIZATION
3.1 Finite Volume Formulation

The Navier-Stokes equations are cast in finite-volume form, which is a dis-
cretization of the integral form of the equations. Equation (2.22) is integrated

over a computational cell of area A:

/AQE:dA+ // {(F* —F)e +(G" - —-GJ)q} =0. (3.1)

The second integral is converted to a line integral over the boundary S of the cell

using Gauss’ Theorem,

ou* . . . . B
,//A gt AT ]{s{(F — F})dn — (G* — Gy)dé} = 0. (3.2)

The first integral can be interpreted as the rate of change of the vector of averaged
conserved quantities (2.23) within each cell. The factor 1/J can be taken outside
of the time derivative when the computational grid is fixed with respect to time.
The line integral is discretized over the four faces of each cell; in the present
formulation it is assumed that each cell is a quadrilateral. The final result is the

finite-volume form of the Navier-Stokes equations:

19U, ;
2000 (6;F* +6,G")ij + (6Fy +6,GL)isg
ES,',J',

15
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where the right-hand side residual term S is made up of an inviscid and a viscous

part: S = S; + Sy, and
{66( )i = (irri — (izsyj
{85()}ii = (e — (i1

(3.4)

The terms (F*);41/2,; and (G*); j1/2 represent the inviscid fluxes normal to the
cell faces. These fluxes are evaluated at the cell faces through the use of a fluz
function, which is the primary concern of the present study. A grid-aligned flux
function is discussed in Chapter 4, and a grid-independent flux function is derived
and discussed in Chapter 5. The second parenthetical expression in (3.3) consists

of viscous fluxes at the cell faces, which are determined via central differencing.

The following relationships exist between the Jacohian J, the metric deriva-

tives, and the cell areas and cell face lengths in the finite-volume formulation:
1/J = Cell area A

¢:/(JAsg) = i component (i = z or y) of unit normal to {=constant cell face

of length Asg

n:/(J Asy) = i component (i = z or y) of unit normal to n=constant cell face

of length As,,.

Using these relations, it is sometimes convenient to write (3.3) in a different form:

U, ; 1 [ =
T = -—A Z ‘I>¢Ast - Z(Qv)lAst (35)
¢ W =1 =1 i,j
Pdq
_ | peeu+ pcosly 3
pqgv + psind, (3.6)
pegH

0

Qv — ‘rucosﬂg + lesinﬂg , (3.7)

T21c080, + Ta2sinfy

(Vim; — Ql)cosﬂg + (Vjrej — Qz)sinﬁg
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where 8, is the angle that the outward-pointing cell face normal makes with the

z-axis, and gg is the outward velocity normal to the cell face, given by
gg = ucosfy + vsinfy. (3.8)

Furthermore, ®,;As, is the inviscid normal flux at cell face £, evaluated through
the use of a flux function. The term (®y)¢As; is the viscous normal flux at cell

face £, evaluated using central differencing.
3.2 Explicit Time-Marching

The solution for the vector of averaged conserved variables can be advanced
explicitly in time using an m-stage time-stepping schern‘e. Using the definition of
S from (3.3), the scheme is:

U = UM + g, JAtS™
U® = UM + g JAtsY)
(3.9)
Um0 = g™ 4, JALS™Y
gt = U™ 4 JALS™Y,
where the superscript n denotes the current time level and n + 1 denotes the next
time level. The superscripts 1,2,...,m — 1 denote intermediate time levels or
stages. The coefficients 71, 72, .., Tm-1 ar€ chosen to give desirable damping

and stability properties for the scheme. When m = 1 the scheme reduces to the

one-step forward-Euler time-stepping scheme

Ut = U 4 Jas™. (3.10)
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3.3 Implicit Time-Marching

The solution can also be advanced implicitly in time. Starting with (3.3), the
left-hand side is discretized to first-order in time and the right-hand side terms
are taken at time level n + 1:

lAtU(")_
J At

_(6:F* + §,G*)™ D) 1 (6,F7 + 6,G3) "D, 3.11
¢ n 3 n

where A, U™ = U(n+t1) — U, The right-hand side terms are linearized about

time level n:

pr(att) _ g 4 IE A g
ou 3.12
(n+1) — g*(n) 6GAU() (342)
G* n *(n n
T oU
riee) = 1)+ { T2+ ) ) AU
(3.13)
ileh 0G?
Gt = g™ +{ =GR "(n)} A, UM,

Notice that in (3.13) the viscous matrix Jacobian terms are split in two parts: a
matrix with derivatives that are a function of £ only and a matrix with derivatives

a function of 7 only.

The spatial cross-derivative terms 8¢[Fzlu(n) and §;[GJlu(£) are treated
explicitly, lagged in time, while §¢[FJ Ju(€) and 6,[G3]u(n) as well as the inviscid

matrix Jacobian terms are treated implicitly. Equation (3.11) becomes:

I oF _ OF, 8G* _9Gy (n)
[JAt 5 (aU (5)> <6U 5U ("))]A‘U

- (5*‘(1’“ ~F) +8(G - G1)) (3.14)

BF* oG},
(5e 5 + 55 (e))AtU“'-”
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The equations are approximately factored and solved for A, U™ in two sweeps
I OF* OF;, .
[JAt + (EI'J_ ~ B0 (5))]A‘U =T
I 0G* 0G}
[JAt ”"( 50 ~ 8U (’7)>

where the term A,U’ is an intermediate result. The conserved variables then are

(3.15)

I
Uu® = —A, U
B JAt

updated at the cell centers using
ytrt) = U™ 4 A, UM, (3.16)

The implicit spatial derivatives of the convective and pressure terms are spatially
first-order accurate, resulting in block tridiagonal inversions for each sweep. For
example, the left-hand side of the first sweep in (3.15) is a block banded matrix

with the following structure for the ith row:

[0, -AL (AL — ALy +T/(JA),A7,,0 ] (3.17)

i+'§’ g o

where Ain/z represents the portion of (6F*/6U — OFz /8U(¢£)) at cell face i + 3
contributed from the left (the ith cell), and A | /2 represents the portion con-
tributed from the right (the (i + 1)st cell). Each of these terms can be divided

into inviscid and viscous parts:

+ +
+ = .
A"+‘§ - (A')Hg + (A")Hg

Ay = (A (A

2

(3.18)

Since the viscous terms are centrally differenced, the viscous J acobians are given

<?91:§’ (6)),'
(6;5’ (5))&1'

by

(3.19)

N
<
N’
- -
T
I
I
(SRR R
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However, using the flux functions discussed in Chapters 4 and 5, it is very diffi-
cult and computationally tedious to obtain exact expressions for the inviscid flux

Jacobians. Instead the following approximations are used:
+ 1) (8F oF*
A < =
( ),H z{(au)ﬁ\av H%}
- 1f(oF* oF*
A; =0 | === - .
( )i+-} 2{(6U>‘+1 '6U i+-§}

The second terms within the braces are Roe-averaged terms at the interfaces,

(3.20)

equal to
ok~
ou

= ftl[x‘ﬁ-l, (3.21)

where R and A are defined in Chapter 4, along with the Roe-averaged (hatted)

variables.

The left-hand side of the second sweep of (3.15) is of similar form to (3.17).
However, the A’s are replaced by B’s, which are functions of derivatives of G*

and G*. The approximate inviscid Jacobians for the second sweep are given by
+ 1] [/8G* 8G*
(B‘)-x 5{(6U) +‘6U }
7*3 i ith
_ 1 aG* 6@'
SO
( ‘)j+1:h 2{ ou j+1 ou i+i

The appropriateness of using (3.20) and (3.22) for the left-hand side inviscid Ja-

(3.22)

cobians when the grid-independent model is employed on the right-hand side is

discussed within the context of stability in Chapter 6.



CHAPTER 4

GRID-ALIGNED FLUX FUNCTION

Most flux computations have two distinct stages: a projection stage and an
evolution stage. In the projection stage of a finite-volume scheme, left and right
states are obtained at interfaces via interpolation along grid lines from surrounding
cell-center values. For first-order spatial differencing, the state variables (normally
the primitive variables) are extrapolated to a cell face k + -;- (where k represents

the grid index i or j of a structured 2-D grid) using

Wi =W,
(4.1)
Wgr = Wiy
For higher-order spatial differencing,
1
Wi =W+ (1~ £)A_ +(1+&)A4]k
1 (4.2)
Wr = Wi — 21~ )AL + (1 + &)A_]k41,
where
(Af)e = Wi — Wy
(4.3)

(A_)y = Wi —W;_,.
When & = —1, (4.2) gives second-order fully upwind spatial differencing, while
x = 1/3 gives third-order upwind-biased differencing. Limiting of higher-order
terms can be employed at this stage of the grid-aligned flux function in order to
eliminate numerically-induced oscillations near regions of high gradient such as

shock waves.

21
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In the evolution stage of the flux computation, the flux at the interface is
computed as a function of the left and right states obtained from (4.1) or (4.2).
As discussed in the introduction, in a Godunov-type solver this stage numerically
models the physical process defined by the one-dimensional Riemann problem.
This process is illustrated in figure 4.1. At time zero, a membrane separating the
left and right states ruptures, and a shock wave, a contact discontinuity, and an
expansion fan propagate into either side, with strengths and velocities depending
upon the initial conditions. The flux at the interface can be determined when

these strengths and velocities are known.

The grid-aligned solver of Roe [4] is an approximate Riemann solver, in which
the Euler equations are linearized about an average state and solved exactly. When
used in a two-dimensional scheme the eigenvectors of th'e matrix in the linearized
system of equations, representing acoustic, shear, and entropy waves, are assumed

to propagate in a direction normal to the grid interface.

The grid-aligned flux function of Roe, representing the inviscid flux & (3.6) in
the two-dimensional Euler equations or Navier-Stokes equations, is given below.
The flux at a face is computed using any one of the following three equations (all

three are equivalent):

P =Py + Zj‘kﬂkﬁk
A<o
=8> MULR
R Z kdtkilk (44)
A>0
ez (A &
$ = (§L+§’R)——2-Zl/\k|QkRk.

1
2 k=1

The last equation can be interpreted as a central difference term plus a dissipation
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term. The eigenvectors are given by

R, = [1,4 + acosfy,d + &singg,ff + agyg

1,4 — acosby, v — asinfy, H — a
T
0, —asmey, acosfy, arg]

=
= |
R, = [1, 1113 (@2 +9%))"

]T

A]T

(4.5)

for the equations written in conserved-variable form. These eigenvectors corre-

spond to the eigenvectors Py given by (2.42) for the equations written in primitive-

variable form, and represent, respectively, +acoustic, —acoustic, shear, and en-

tropy waves. The kth wave of this system has a strength 1), evaluated as the kth

component of the vector €

Q- % (Ap - p&Aqg)
1
a

where A(-) = (\)r — (-)z and

gy = ucosfy + vsinf,

ry = —usinfy + vcosfy.
The wavespeeds are
Ai=¢gg+a
Ay = ‘jg —a
Az = ¢
A4 = ég-

The Roe-averaged values (denoted by hats) are defined as

p=+/PLPR

i =upw+ug(l — w)
9 =vw +vg(l —w)
ﬂ:HLw+HR(1—w)

a=\ﬂ7—1) {ff—%(ﬁ”ﬁz)],

(4.6)

(4.7)

(4.8)

(4.9)
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where w = /pL/(\/PL + +/PR)- The values gy and 7y in (4.5) and (4.8) are given

by (4.7) with Roe-averaged values 4 and ¥ replacing u and v.

The wavestrengths ; given in (4.6) result from satisfying the equation

O, Ri. (4.10)

] -

AU =Upg - Ug =

k=1
In other words, the sum of the eigenvectors times their corresponding strengths
describes the difference in states across an interface. A geometric interpretation
of this will be given below. Since the R, are eigenvectors of the matrix 8$/0U,

the additional equality
4 »~ A
A% =g — &L =) MiLRe (4.11)
k=1

s also satisfied. It can be seen from (4.4) that if all of the wavespeeds are positive
in the grid-normal direction, the flux computed at the interface will be the flux
from the left, ®y. Conversely, if all the wavespeeds are negative, the flux will be

computed as ®r. In both cases this amounts to the upwind choice for ®.

The grid-aligned model can be interpreted in a geometric sense by looking at
the effects of the acoustic and shear waves in (Au, Av, Ap)-space. (The entropy
wave only causes a change in the density, so it is not representable in this space.)
Grid-aligned acoustic waves cause a change in velocity in the grid-normal direction,

along with a proportional change in the pressure and density according to the

relations:
) bp bu §v bp
+acoustic : — = = — = —
pa acosf,  asinf, P (4.12)
i 5p du dv 5p '
—acoustic : — = = —— = —
pa acosfy asinfy P

These expresions can be derived easily from the acoustic wave eigenvectors P; and
P, in (2.42) with 8 taken as ;. Figure 4.2(a) depicts the assumed propagation

direction of the + and — acoustic waves at an arbitrary grid interface, the normal
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expansion | contact

grid-normal
i

Figure 4.1: The Riemann Problem

|

—acoustic

+acoustic

—acoustic

A S

Bv
+acoustic
Au
a) Direction of Propagation b) Effect in (Au, Av, Ap)-Space

Figure 4.2: Grid-Aligned Acoustic Waves
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of which makes an angle 8, with the z-axis, while figure 4.2(b) shows the effect of
each of the waves in (Au, Av, Ap)-space. The change in density Ap is not pictured.
In this second figure, the state at a given point in space changes by an amount
(Au, Av, Ap) as drawn by the heavy solid lines when a + or — acoustic wave
passes. The length of the lines in state space are representative of the strengths

of the waves.

The shear wave also propagates in the grid-normal direction, as shown 1n
figure 4.3(a). However, shear waves cause a change in velocity normal to the
direction in which they propagate, with no change in the pressure or density; this

is dictated by the relation:

bu v

asinf, acosfy

shear : -

(4.13)

This expression can be derived from P in (2.42). Hence the velocity change across
a shear wave is in the direction shown in figure 4.3(b) in (Au, Av, Ap)-space, where
again the length of the line in this space is proportional to the strength of the

wave.

Given a left state L and a right state R at an interface, the grid-aligned
flux function of Roe interprets the difference with a combination of +acoustic,
—acoustic, shear, and entropy waves such that (4.10) is satisfied. An example
is drawn in figure 4.4. L, the representation of the state to the left of the cell
face, is placed at the origin, and the right state R is located at (Au,Av,Ap),
as determined by the differences between L and R. All waves propagate in the
f,4-direction, represented by the vertical plane in the figure. The effects of the two
acoustic waves and the shear wave are shown in the figure as heavy solid lines (the
entropy wave is not represented). The acoustic waves cause a change in velocity
in the 6,-direction along with proportional changes in pressure, while the shear

wave causes a change in velocity normal to 6. Since this is a linearized model,
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b) Effect in (Au, Av, Ap)-Space

a) Direction of Propagation

Figure 4.3: Grid-Aligned Shear Wave

\ Ap

Figure 4.4: Grid-Aligned Wave Decomposition
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the order in which the waves are taken is immaterial, and there is no difference

between shock-type and expansion-type acoustic waves.

A steady shock wave that is aligned with a mesh interface is interpreted
correctly by this model, as depicted in figure 4.5(a): the difference between the
states L and R is described essentially by a single acoustic wave. However, the
grid-aligned method smears a shock wave that lies oblique to the mesh. The
difference in states in this case cannot be described by a single acoustic wave
since the velocity-difference vector VR - VL is not in the 6y-direction. Hence the
model must introduce both a shear wave as well as an acoustic wave of the opposite
family to account for the discrepancy in AV. These extra waves, depicted in figure
4.5(b), add dissipation which smears the numerical solution. The cone delineated
by the dashed lines in figure 4.5(b) is defined by the effects of all acoustic waves
of a given strength and arbitrary orientation, with one endstate at L. It is referred

to in Chapter 5 as the “acoustic cone.”

The grid-aligned flux function can also misinterpret a pure shear wave that
lies oblique to a grid face. This situation is illustrated in figures 4.6(a) and (b).
In figure 4.6(a) left and right states are indicated on a (Awu,Av,Ap)-diagram.
There is no pressure difference between L and R, and the velocity-difference vector
VR - V‘L is at some angle other than 90° to the 8,-direction (it would be normal
to the 8,-direction for the case of a shear wave aligned with the grid face, and
the wave model would intepret the difference with a single shear wave of the type
shown in figure 4.3(b)). The grid-aligned scheme now includes two acoustic waves
in its interpretation of the difference in states. These waves add dissipation which
smears the numerical solution. Additionally, if the wavespeeds associated with
each of these acoustic waves are of opposite sign, then the scheme computes a
flux at the interface with a pressure that is different from the correct pressure by

an amount Ap, as shown in figure 4.6(b). In this figure, a time history of the
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b) Oblique to Grid

Figure 4.5: Grid-Aligned Wave Model Interpretation of a Single Shock
Wave
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b) Wave Directions for Subsonic Flow

Figure 4.6: Grid-Aligned Wave Model Interpretation of an Oblique Shear
Wave
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wave locations is drawn in relation to the grid-normal direction. The flux at the
interface is computed as either the left flux plus the change across left-running
waves or, equivalently, the right flux minus the change across the right-running
waves. In either case it can be seen that the incorrect pressure is given at the

interface.



CHAPTER 5

GRID-INDEPENDENT FLUX FUNCTION

The motivation behind the development of the present grid-independent ap-
proximate Riemann solver is the desire to be able to recognize and appropriately
model both shock and shear waves regardless of their orientation with respect to

the grid. The method for accomplishing this goal is described in this chapter.

The projection stage of the flux computation is identical to that of the grid-
aligned method described in Chapter 4. In other words, primitive variables are
interpolated along grid lines using either (4.1) or (4.2). This stage is different
from that of many of the grid-independent methods under development by other
researchers, which assign values to faces via interpolation in some grid-independent
direction. However, since this latter type of interpolation can be very complicated
and costly, it was decided early in the development of the current scheme only to

use grid-aligned interpolation.

It is then the job of the flux function to make use of this information in an
intelligent fashion during the evolution stage of the flux computation. This is

accomplished in the following way:

(1) A primary direction of wave propagation is chosen that is more repre-
sentative of the physics of the local flowfield than the direction defined by the
grid.

(2) The difference in L and R states is represented with a combination of

32
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acoustic, shear, and entropy waves.

(3) A flux is formed in the grid-normal direction from the information prop-
agating in the physically-relevant grid-independent direction.

The next three sections of this chapter will describe in detail the methods

chosen to satisfy each of these three aspects.
5.1 Wave Propagation Direction

The primary wave propagation direction used at each interface is the velocity-

Av
—_ -1 e
64 = tan ( u) , . (5.1)

defined from — ¥ to 7. This represents the angle that the velocity-difference vector,

difference direction

AI_;, makes with the z-axis, as shown in figure 5.1 for two arbitrary states Vi and
VR. The 4-direction is chosen because in this frame the velocity components v,
and U normal to 84 are equal, as depicted in figure 5.2. Therefore the differences
between the two states can be interpreted either as a compression normal to 84 or a
shear aligned with 84. In figure 5.3(a), the former interpretation is illustrated. The
velocity components tangential to the shock are equal (only the normal component
is affected by the shock). Also, the shock wave could be propagating with some
velocity @ig in the 84-direction. The value of s is zero for a steady shock wave.
A shear-wave interpretation of the difference in velocities is illustrated in figure
5.3(b). Here, the shear wave propagates with velocity oy = ¥g in the (64 + 5)-
direction. This propagation velocity is zero for a steady shear wave.

Other choices for the dominant wave-propagation direction, as used by other
researchers (e.g. [24]) for grid-independent models include the pressure-gradient

direction and the flow direction. The first of these is not used in the present
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Vn VL

Figure 5.1: Velocity-Difference Vector

Figure 5.2: Components of VL and VR in the 84-Frame
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b) Shear

Interpretations of Velocity Difference
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investigation because its calculation requires data from surrounding cell centers,
and not just the left and right states interpolated along grid lines. The flow
direction is not used because it is not normal to a shock that lies oblique to the
flow. Hence the resolution is not as crisp as with the use of the velocity-difference

direction.
5.2 Wave Decomposition

Since there are two interpretations (figures 5.3(a) and (b)) of a velocity dif-
ference in terms of a dominant wave, it necessary that the method be able to
model both types of waves as well as have some way of determining which is a
better description of the true situation. The present m;ethod models both types
by describing the difference in states by a combination of two acoustic waves and
an entropy wave propagating in the 4-direction, and an additional shear wave
propagating in the (84 + 7 )-direction. This shear wave causes a change in velocity
parallel to 84 with no change in pressure, thus allowing for sharp capturing of
oblique shear waves of the type depicted in figure 5.3(b). The propagation and
effect of this (84 + %) shear wave is shown in figures 5.4(a) and (b). The propa-
gation and effect of the 4+ and —fa acoustic waves is shown in figures 5.5(a) and

(b) for comparison.

The representation in primitive-variable form of the (64 + Z) shear wave is

P, in (2.42) with 8 = 64 + Z:

0 0
—2sin (od + I) —2cosby
P x/2)shear = P 2 = e . 5.2
(Batm/2)sh %cos (04 + 12"-) —;s&n@d (5-2)

The two acoustic waves and the entropy wave are represented by P,, P;,and P,

in (2.42), with 8 = 6.



37

\(04 + ¥)shear

Av
' e R
; 1 04 /—\
[] : ”
' J ’1~0- (84 + 5 )shear
"9 Au g
119
a) Direction of Propagation b) Effect in (Au, Av, Ap)-Space
Figure 5.4: (64 + §) Shear Wave
-
’ |
|
—a |
_ . +acoustic T |
acoustic +acoustic |
| Av
~ - - I
=~
Au
/7
a) Direction of Propagation b) Effect in (Au, Av, Ap)-Space
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The strengths of the four waves must satisfy

4
AW =) (LPy, (5.3)
k=1
or, equivalently,
4
AU = z Q:Re, (5.4)
k=1

where the R, represent the waves for the conserved-variable form of the equations:

R, = (1,4 + dcosfa,d + asinfy, H +add] "

R, = [1,1}, — dcosly, v — asinfy, H- &éd]T
) (5.5)
R; = [0, —éacosfg, —asinfq, —&éd]T

The hatted variables are still Roe-averaged variables defined by (4.9), and da =
iicosfy + ©sinfy. Unlike in the grid-aligned method described in Chapter 4, there
is not a unique combination of these four waves that satisfies (5.4). Although the

entropy wave always has a strength of
(a®Ap — Ap), (5.6)

(the same as €l in (4.6) for the grid-aligned model), there is some freedom in
picking the strengths of the other three waves. This reflects, as mentioned earlier,
that there are two types of dominant waves, represented by figures 5.3(a) and
5.3(b), that could describe the difference in states. The model must choose which
type is more likely to be representative of the true situation, and allow that type

of wave to dominate in the numerical representation.
Two methods that allow the model to choose the “correct” wave type are
described here. Both are a function of the pressure difference across the interface:

if a large pressure difference exists, it is more likely that an acoustic wave is
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primarily responsible for the difference in states. Similarly, a small difference in

pressure indicates that a shear wave more likely is the primary wave.

The first method is termed the minimum-pathlength model, and is imple-
mented by choosing the combination of waves such that the pathlength in (A,
Av, Ap)-space is minimized. This minimum-pathlength model is accomplished by
using either two acoustic waves and an entropy wave or one acoustic, a (84 + )
shear, and an entropy wave. (Recall that the entropy wave is not representable
in (Au, Av, Ap)-space.) The choice depends on the location in phase space of the
right state R relative to the cone defined by all acoustic waves emanating from
L. By definition, R lies in the 84-plane. If R resides inside the “acoustic cone,”
as is the case with R, in figure 5.6, then two acoustic waves describe the shortest
path. If R resides outside the cone, as represented by R, in the figure, then one

acoustic and a (84 + T) shear wave describe the shortest path. The mathematical

conditions for R inside or outside the acoustic cone are:
Inside : (Ap)? > [pa(Aucosby + Awvsindy))? (5.7)

Outside : (Ap)? < [pa(Aucosfy + Avsindy)]>. (5.8)

The minimum-pathlength model always uses three waves out of a choice of four

possible wave types to describe the difference in states.

A second strategy is to choose the strengths of the acoustic and shear waves
such that the path is in some sense closest to the straight line connecting L and R
in phase space. More specifically, the area between the waves (;caken in a certain
order) and the direct path L-R is minimized. This minimum-area model is due
to Parpia [27]. A geometric representation is given in figure 5.7, where again the
entropy wave, although present, is not pictured. If R lies inside the acoustic cone,
like R; in the figure, then the path that minimizes the area (shaded region) is

accomplished by two acoustic waves. If R lies outside the cone, as represented by
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acoustic cone

d

(64 + §) shear

Au

Figure 5.6: Minimum-Pathlength Model Wave Decomposition (Entropy
Wave Not Pictured)
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+684 acoustic
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Minimum-Area Model Wave Decomposition (Entropy Wave
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Figure 5.7:
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R;, then some combination of two acoustic waves and a (84 + 5 ) shear wave gives
the minimum area. The exact expression will be given in the next section and is
derived in Appendix A. The minimum-area model uses either three or four waves

to describe the difference in states at each interface.

Numerical experiments show that both these models can produce nonlinear
feedback that results in oscillatory flowfields. Small changes in the computed
values of 8 feed back into the solution, producing further changes in 4. An
example of this is given in figures 5.8(a) and (b). This is an Euler computation
of supersonic flow over an airfoil, to be discussed in greater detail in Chapter 8.
Figure 5.8(a) shows pressure contours over the airfoil using the grid-independent
model 500 iterations after a restart from a converged solution with the grid-aligned
scheme. Velocity vectors showing the g,-directions on the {-faces for the last
iteration are given in figure 5.8(b). These directions are very oscillatory, causing
the unrealistic behavior seen in the first figure. In spite of the wild oscillations in

the flowfield, this solution converges.

An easy way to inhibit this feedback is to freeze the computed values of 84
at each face at some point in the computation, calling these 6',. The four wave
vectors in (5.5) remain the same, only with ', replacing 84. Since the state R
does not necessarily lie in the 8}-plane, at least one additional wave is needed to
describe the differences between the left and right states at each face. A shear
wave propagating in the 8!,-direction produces a change in velocity normal to 6,

and can therefore be used as the additional wave. It is represented by

Rs = [0, —asind, dcosby, a(—1isindy + fzcosGQ)]T . (5.9)

A sketch of this wave is included along with the other four waves using the
minimum-area model in a (Au, Av, Ap)-space diagram in figure 5.9. When the

projection of the right state onto the 8';-plane lies within the acoustic cone, then
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a) Pressure Contours

b) 64-Directions

Figure 5.8: Inviscid Computation of Supersonic Flow Over an Airfoil
With 84 Computed Each Iteration
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Figure 5.9: 5-Wave Model Wave Decomposition (Entropy Wave Not Pic-

tured)
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- L.

b) 6,-Directions

Figure 5.10: Inviscid Computation of Supersonic Flow Over an Airfoil

With 6} Frozen
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the waves are chosen as shown in the figure for right state Ry with projection onto
the 8',-plane R}. The second case, for which the projection of the right state lies
outside the acoustic cone, is shown for right state Ry with projection onto the
g -plane Rj; the wave decomposition in the 8-plane follows the minimum-area

rule.

The same airfoil computation is shown in figures 5.10(a) and (b), where the
8, angles are now computed during the first iteration of restart from a converged
grid-aligned solution, then frozen for the remainder of the computation. Results

are now relatively free from oscillations.

It should be noted at this point that a first-order interpolation procedure is
used to obtain the left and right velocity values employed in equation (5.1) for 64
even when the overall computation is second-order accﬁrate. This is done since
first-order interpolation yields smoother variations in 84 throughout the compu-
tational domain, giving generally better solution quality. As a consequence, in a
second-order computation the left and right states L and R obtained via second-
order interpolation do not necessarily lie in the 64-plane, and the fifth shear wave
R described here is necessary even when the wave propagation directions are not

frozen.

5.3 Flux Formulation

5.3.1 Standard Formula

The combination of the four waves from (5.5) (with 64 taken as ;) plus
the 8!, shear wave (5.9) results in a 5-wave model, which generates a family of

flux formulas with a free parameter 8. This family includes both the minimum-
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pathlength and minimum-area models discussed above. The flux per unit face-

length normal to each grid face is calculated using
1 1 A
® =2 (2Lt ®r)—; ;Mnkm, (5.10)

where the five waves are given by
R, = [1,4 + dcosbl, o + asindly, H + agh] "
n al ]T

R, = [1,4 — acos8), v — asinfy, H — agy

Ry = [0, —acosdl, —asinbly, —ady] " (5.11)

]T
These represent, respectively: +6 acoustic, —8; acoustic, (6, + %) shear, 8

entropy, and 6} shear waves. Also,

gy = ticosb + bsinby

(5.12)
7, = —ising); + dcosfy.
The wavestrengths are defined as
28+ ﬁ-z% (Aucosf}; + Avsinéy)
A -2%% - ﬂ'z% (Aucosf; + Avsinfy)
Q= | (8-1)2(Aucosb) + Avsindy) | - (5.13)

& (@ae- o)
£ (—Ausing}; + Avcosfy)

The minimum-pathlength model is obtained when 3 is taken as

Ap/(pa)
Aucosb; + Avsinf)

A = min [ ,1] : (5.14)

In this case, the 5-wave model uses only four waves at a time since either the

(8}, + %) shear wavestrength or one of the acoustic wavestrengths is identically

zero. The minimum-area model results when

{ Ap/(pa) }2 ,1] , (5.15)

Aucosb; + Avsind),

B = min
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and the 5-wave model uses all five waves when R lies outside the acoustic cone,
and four waves when R lies inside the acoustic cone (the (6, + I) shear strength
is zero). These two expressions are derived in Appendix A. In practice, a small
number € (= 1 x 107%) is added to the denominators in (5.14) and (5.15) to avoid
division by zero in regions of null gradient. Also, 8 is generally limited to be no
less than 0.05, and is frozen along with g, as an aid to convergence.

Numerical experiments indicate that both the minimum-pathlength and the
minimum-area models give very similar results, although the minimum-area model
tends to be slightly more dissipative for a wider range of test cases. Hence,
it exhibits less oscillatory behavior and usually converges slightly faster. The
minimum-area model is used for all the computations in Chapters 8 and 10.

The wavespeed associated with each of the waves in (5.11) is the component
of the average flowspeed in the direction of wave propagation, plus or minus the
average speed of sound for the acoustic waves. Since the flux (5.10) is in the
grid-normal direction, however, it is necessary to take the components of these

wavespeeds in the 8,-direction. They are:
A = (§y + @)cos(6y — )
Sz = (8 — &)cos(8} — 0,)
Js = Fg{—sin(6; — 65)} (5.16)
Ay = Gycos(8; — 6,)
X5 = Gycos(8; — 0,)-
Notice that this 5-wave model reduces to the grid-aligned approximate Riemann

solver when 0, = 8, and 8 =1 (i.e. the (6, + %) shear-strength vanishes).
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5.3.2 Rotated Riemann Solver

Since the 5-wave model’s wave vectors R; = ﬁ.k(ﬁé) are not the eigenvectors
of the matrix B@/BU unless 6, = 6y and 8 = 1, it is generally not possible to
satisfy equation (4.11), i.e.,

5
A® =&p - 8L # D MRe (5.17)
k=1

Some question naturally arises, then, as to the appropriateness of equation (5.10)

for determining the flux. A general form for the flux function is

P =6 P+ Z ikﬂkﬁ.k +(1 —6) dR — Z ikﬂkﬁ.k ’ (518)
Au<o >0

with (0 < § < 1). This expression reduces to formula (5.10) for § = 0.5, but
gives different results for & using different § since the expressions in brackets are
not equal in value. This is in contrast to the grid-aligned wave model described
in Chapter 4, for which (5.18) would give identical ® for all é, as a result of the
validity of equation (4.11).

For example, if all X’s at a particular grid face are positive and § = 1, the
flux formula yields @1, the flux of the state on the “left” of the face. In the
grid-aligned method this would be the correct answer. If the waves are traveling
obliquely to the grid direction, however, this is not the answer produced by the
standard formula (5.10). It may be argued that equation (5.10) is the correct
formula because of its symmetry — it favors neither input state since it corresponds
with § = 0.5 in (5.18) — but this is not always entirely clear. Hence it is difficult
to say what value of §, if any, is appropriate in (5.18) for the grid-independent

model.

In order to gain further insight, it is instructive to look at a slightly different

formulation of the model. In this method, as before, the first step is to determine
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84 via equation (5.1), and the second step is to use the five waves (5.11) to describe
the difference in states. The third step, the determination of the flux normal to
the cell face, is performed in a different manner, however. The strengths and
orientations of the five waves are used to define four new states, as shown in figure
5.11, which lie to the left and right of the face in the 6} and (6 + 7 )-directions.
Two Roe-type approximate Riemann solvers are then used, one in each direction
(8!, and 6} + %), and the resulting fluxes are combined to give a flux on the grid

face via:

® = §9:‘cos(0; —8y) — §9;+,/2sin(0& —8,) (5.19)

This method is hereinafter referred to as the state-determined model.

The state-determined model is similar to that of Lévy [24] and Dadone and
Grossman [26). However, they use information from the surrounding flowfield to
obtain the four states; the present method uses only the left and right states L
and R, and applies the information in the acoustic, shear, and entropy waves to

determine local gradients.

The four states Ur', Ur', Ur", and Ugr" of figure 5.11 are determined as
follows. First, assume that cos(f —8,) > 0 and sin(§ —6,) > 0. Results are similar
for other cases. Second, assume for simplicity that 8g is not frozen, i.e. 6 = ba,
and that the difference in states is described by the minimum-pathlength model.
Although the left and right states are interpolated to be at the same location on
either side of a cell face, an arbitrary finite distance is assumed to separate them
as shown in the figure. The states UL’ and Ugr' are found on the wave fronts
through L and R of the 8; waves, while Uy" and Ug" lie on the fronts through
L and R of the (8 + %) wave. These fronts form a rectangle; the states are
assumed to be in the midpoints of the rectangle’s sides. Furthermore, the waves

that describe the difference in states are assumed to bridge this difference in a
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linear fashion. Thus, the 83 waves have half of their full effect on UL" and Ur",

and the (84 + ) wave has half of its effect on Uy’ and Ug'.

If equation (5.7) is true, then the difference in states is described by two
acoustic waves and an entropy wave, all acting in the 64-direction. Hence UL =

Uy, Ugr' = Ug, and

UL” = UR" =TUyg + Qkﬁ.k. (5.20)

k=1,2,4

o | -

Alternatively, if equation (5.8) is true, then one acoustic and an entropy wave
in the §4-direction and a shear wave in the (64 + F)-direction are used. In this

case, the formulas are:

1~ -
UL' =Ur + §Q3R3 ‘ (521)
n - " o~ 1.
Ur' =Up + Qiorz2Rior2 + QR4 + EﬂsRs (5.22)
Uy =Ur + > (QI or2Rior2 + Q4R4) + QsRas (5.23)
" 1 A o A D
Ur =UL+ 3 (91 orzRiorz Q4R4> . (5.24)

The subscripts (1 or 2) indicate that the acoustic wave Ry or Ry is used, depending
upon which minimizes the pathlength in (Au, Av, Ap)-space. Roe-averaged values
are determined once at each face from states L and R, then used in each of the

Riemann-solvers.

The state-determined model is naturally fairly expensive, requiring about six
times as much CPU time as the grid-aligned method to compute the fluxes at the
faces. It can be shown that the flux based on this state-determined model is not
the same as the flux (5.18), regardless of the value of §. However, it has been
determined numerically that the difference between the two methods is always a
minimum in the mass flux when § = 0.5. Also, if the jump between the left and

right states is relatively small, then the difference between the two methods in the
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Figure 5.11: Graphical Representation of State-Determined Model
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other three equations is also usually a minimum near § = 0.5. For example, figure
5.12(a) shows the absolute value of the difference between the fluxes determined
by the two methods as a function of §, where the left-state primitive variables
(p,u,v,p) are (1,2,3,4), and the right-state variables are (2,3,4,10). 8, is taken
as 0°. These particular states have a relatively large pressure difference, so two
acoustics and an entropy wave are used to describe the difference in states. A
second example is given for left and right states of (1,1,1,1) and (1,2,1,1) with 6,
taken as 45° in figure 5.12(b). In this case, the difference in states is only in the
velocity, and one acoustic, one shear, and one entropy wave are used to model the

difference.

Hence, equation (5.18) with § = 0.5 is, in a sense, “best” for this particular
form of the flux function in that it generally yields a flux w./ery close to that given by
the state-determined model. In fact, in practice the flowfields produced by the two
methods are often virtually identical. Results in the remainder of the paper are
therefore obtained solely with the standard formula for the 5-wave model (5.10)
(which is the same as (5.18) with § = 0.5), since its expense is significantly lower

than that of the state-determined model.

5.4 Recovering the Grid-Aligned Scheme

One unresolved issue facing the 5-wave model is the fact that the model does
not reduce to the standard grid-aligned model when 8}, = 8, if 3 # 1. In other
words, if the (6 + £) shear wave has any strength other than zero, the standard
grid-aligned flux is not obtained when the waves are assumed to travel in the
grid-normal direction. Intuitively, it seems that this flux should be obtained. For

example, if all wave speeds are positive and act in the §,-direction, then it seems
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desirable that the grid-aligned upwind flux €1, should be computed as the flux
at the interface. But unless 3 = 1 (along with 9, = 8,), the inequality in (5.17)

holds and the flux function (5.10) does not yield &y, as a result.

Also, it is difficult to imagine a steady-state circumstance when 6!, = 6, and
a (6, + ) shear wave exists between the states. As an example, two pictures
are drawn in figure 5.13 of neighboring cells with a velocity-difference direction
that coincides with the grid-normal direction. In figure 5.13(a) a relatively large
pressure difference exists between the states, and a 6} acoustic wave is presumed
by the model to describe the difference. In figure 5.13(b), no pressure difference
exists, and the model describes the difference with a (8';+ 3 ) shear wave. However,
this shear wave is aligned such that it passes exactly through each cell center.
Even if these are assumed to lie infinitely close to eithe.r side of the wave, this is
an unlikely situation. This interpretation also is obviously inconsistent with the
notion that the data in each cell represent cell averages, for with this shear-wave

orientation the averages in the left and right cell should be identical.

Unfortunately, it is not clear how to recover the grid-aligned method auto-
matically when 8, = 8,, while still retaining the capability of resolving oblique
shear waves. Two different methods which have been attempted to resolve this
issue are described in this section. The first method involves making 8 a function
of the difference 8, — §;. When 8, = 8, the grid-aligned scheme must be recov-

ered, so § must be made equal to 1.0. This can be enforced by choosing a new (3*

as

8" = B+ 1(1 — 8) {cos 26 — 80)] + 1}, (5.25)

where 3 is computed using (5.14) or (5.15). The resulting 8*, used in place of B8
in (5.13), varies smoothly between 8 and 1.0, depending on the difference between

6!, and 6,.
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6!, acoustic

(8, + §) shear
WW\MWW

b) No Pressure Difference

Figure 5.13: Example of 5-Wave Model Interpretation of Difference in
States When 6} = 6,
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There are two significant problems with this method. First of all, resolution
of pure oblique shear waves is reduced since 3* is near zero only within a narrow
range of angles (8, — 8,). Hence most pure shear waves are now interpreted using
some acoustic waves as well, resultinig in added dissipation and smearing of the
numerical solution. The second problem arises in certain circumstances, and most
notably in the case of the computation of flow over an airfoil. Around the airfoil’s
leading edge the grid-normal angles of a structured-grid vary rapidly through
about 180°. Since the §'-directions do not vary as much (see figure 5.10(b)),
the B* values resulting from (5.25) generally vary rapidly between B and 1.0.
This oscillatory behavior of 8* can cause unrealistic results with “kinks” and/or
oscillations in contours of flowfield variables near the leading edge.

Example solutions using 8 and 3* are given in ﬁgurés 5.14(a) and (b). Shown
are pressure contours resulting from an Euler computation over a NACA 0012 air-
foil at M = 0.3, a@ = 1°, on a 65 x 25 C-mesh. Figure 5.14(a) shows contours using
B (without equation (5.25)). Results are fairly smooth, except for irregularities
due to grid coarseness. Results using 8*, shown in figure 5.14(b), shows two re-
gions of local maximum pressure at the nose and large “kinks” in the contours in
front of the nose. One effect of this irregular behavior is the nonconvergence of

lift to the correct value as the grid is refined.

Several variations in equation (5.25) have also been attempted, including
the use of functions which very rapidly transition from 8* = 1 to 8* = 3 near
|6, — 8,| = 0 and +, and remain flat at B over much of the 8!, — 8, range. This
allows for sharper resolution of most oblique shear waves, but the second problem

relating to airfoil flow remains.

The second attempted method for recovering the grid-aligned scheme when

", = 6, involves replacing the (6;+ 7 ) shear wave with +6Y acoustic, —8] acoustic,

and 6} shear waves. The 6 angle is a function of 8; and ;: it is set equal to
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(4

a) Using 3

b) Using 8*

Figure 5.14: Pressure Contours Near Leading Edge of NACA 0012 Airfoil,
M = 0.3, a = 1°, 5-Wave Model
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9, when 6}, = 8,, and is smoothly transitioned to 8} = 03 + T otherwise. Hence,
when 6, = 6, the grid-aligned scheme is recovered, and when 0 = 8, + 5 the
5.wave model is recovered. One way to accomplish the transition is to use the

relation

" ;,+min(2;o;—og|,g). (5.26)

The strengths of the three new waves which replace the (8; + 7) shear wave are

- 1-08p
Qyglac = T%(Aucos% + Avsing!,)(cos8)jcoshy + sinfsinfy
Q—G"ac = "Q-Q—B"a.c (527)

The corresponding components of the wavespeeds in the grid-normal direction are
Atolac = (dicos8 + dsinfy + a)cos(8] — 6,)
A_gac = (icosby + Dsinf — a)cos(8y — b,) (5.28)
Agshear = (icos8lj + vsind}))cos(8; — 8,).
Aside from the obvious drawback that this model requires a total of seven waves
rather than five, it also (just as the method based on 3*) gives very unrealistic
results near the leading edge of airfoils. By far the best solutions in general are

still obtained using the original 5-wave model, in spite of the fact that it does not

recover the grid-aligned method.



CHAPTER 6

STABILITY ANALYSIS

The stability analyses of both explicit and implicit time-marching schemes
with the 5-wave model for the Euler equations are discussed in this chapter. Be-
cause of the complexity of the Navier-Stokes equations, it is much more difficult
to obtain expressions for its stability. However, it has been found empirically that
the stability condition for the Navier-Stokes equations for flows with relatively
high cell Reynolds numbers is usually only slightly more restrictive than the CFL

condition for the Euler equations [28].

6.1 Explicit Time-Marching

Writing the equations in the finite-volume form (3.5) with viscous terms ig-
nored, the stability analysis requires the eigenvalues of the Fourier transform of

the right-hand side of

U At
Atgt— —-z- ZE@gAS[

(6.1)
= JALtS;.
The right-hand side can be expanded using the 4 and j indices corresponding to

the ¢ and 7 directions of a structured grid:

ou At
At_a—t_ = —_A._ ((QAs)i-}-%'j - (QAs)i—%,j + (@AS)i,j+% - (@AS);’,J'_J’.) . (62)

59
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The normal flux & per unit face-length at each of the faces is obtained with the

flux function described in Chapter 5:

5
1 1 o A A
§k+1 = —{(QL)IH-‘ + (QR)k+1} - "{ Z l’\mIQmRm}
2 2 2 2 2 me1 k+1,' (63)
1 1 -
= 5{(‘1’L)k+§ + (‘I’R)k+§} -3 D . {(UR)k+-} - (UL)k+§}v

where k represents the index 4 or j. The following operator symbols are introduced:
Biy1() = e — Ok
&) = (rar = (-1

When equation (6.3) is inserted into (6.2) at the four faces, terms such as Ag;1/2®

(6.4)

and 5 ® can arise (depending on the spatial order of accuracy). These terms are

linearized using
0%
Ak-}-%é = (E—ﬁ) Ak‘l'J,‘U

R (6.5)

ou

and all #&/6U and If)l terms are also linearized about the cell center using Roe-
averaged values (e.g. |f)|k+1/2 = |f)|k_1/2 = |D|). It is further assumed that all

cells are square with face length As. Linearized, equation (6.2) becomes

8u
At— = -LU, (6.6)

where, for first-order spatial differencing
At (1,0%8, v\
— 22 ) (2= (el
L A3{2(3U(09 ))6'
s oG
—§iD(9§ N(Dips —Aig)

5 (G e)E

(6.7)
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For second-order fully one-sided spatial differencing:

At (1,88 . 1 3~ 1
_ At 92 AinY ([ _LiA. S=_ L.,
As{ (ang )>( g Ry 3% 2A"‘3)

2
e, 1 3 3 1
~5D(65)] (—5%2 T I T §Af—s)
R (6.8)
1,08 1 53— 1
ol el 4 €)) _= 2% _ Z
3 (aU(og ))( Ajrg + 30 2A"‘3>
1,4 1 3 3 1
—EID(H(J))‘ (—EAH-% + EAH_J’. — §AJ_1 + EA’—%)}

The Hgi) and ng) are the directions normal to the grid faces in the i and j directions,
respectively. In the present analysis, 9_,(,i) is prescribed, and Ogj) is taken as Ogi) +
/2.
For completeness, the matrix 8& /U is given here: 8% /0U =

B (cz)g o R (cy)g R 0

Udq (6229(2_7)’”‘99 R (cy)y“—(cz)y(:)’”ﬁl)” (€z)g(7-1)
(cy)g®—10dq (cz)gv—(fy)g('Y—l)u (Cy)g(2f7)”+99 (ey)g(v—1) |

)ﬁg Caz Cuas 749

(6.9)

where Cy2 = (cz)g(YE—9) — (y—1)igg and Cus = (¢y)g(YE—9) — (y—1)34y. Also,

S 1.2 2
v=3 (@ +9%) (6.10)
g = (cz)gtt + (cy)g?-

The terms (cz )y and (cy), Tepresent the components of the grid-face unit normal
in the z and y coordinate directions, respectively. In other words, (cz)g = cosby
and (cy)y = sinfy.

|D| is the matrix that satisfies

(f)( au=Y%" ’:\,,‘ Q.Ry, (6.11)
k

where the summation is over all the waves. For the 5-wave model, the elements
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of |D| are given by:

D i = ‘5\4’ (Ry)j + ¢&1 — &21 — €ad
D =—(r- 1)dé; + &2
2 (6.12)
D| =-(v- 1)0é: + &3
73
[ ia = (7 - 1),

where

6 =5z { %] (Ras + [Ba] (Ra; — 2[Ad] (Ro)s}
£ =-2%cos9:1{ | (Ry); - ‘:\2\ (ﬁz),-} 4B - L cost! ]iaj (Rs);

~ Zsind} 3] (Rs); (6.13)
6 =L sindl {|As] (Ro); - 3] (B } + B singy 3o (Ra);

1 A N
+ Ecosﬂé |A5< (Rs);
and (R.); represents the jth element of the vector R, as defined in (5.11). The N's
are defined in (5.16). It should be noted that for the grid-aligned model described

in Chapter 4, the |D| matrix which satisfies (6.11) can be written as
. 0d
b

whereas this is not true for the 5-wave model, since its R are not the eigenvectors

- ﬁw R, (6.14)

ou

(grid—aligned)

of the 8&/0U matrix.

In order to obtain the Fourier transform of the right-hand side of (6.6), the
Fourier symbols for the difference operators are inserted into the equation. These

symbols are:
o __iagtR) i¢(®)
J(Ak+%) =e —e

%(Ak-}—%) — eiC(k) _1
S(Ay_y;) =1~ e—i¢t (6.15)
S(Ax_z) = g i¢™ _ gmize™

(\\9(5) _ e,'c(“) _ e_ic(k),
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where k represents the index ¢ or j, and ¢ and ¢ are the wavelengths of
the perturbations in the i and j directions, respectively. For first-order spatial

differencing (L defined by (6.7)), the Fourier transform of the right-hand side of

(6.6) is:
$(~L) = —————o | D) (1 — cos¢?
=t {w(e§°)+w<o§”)}“ (7)1 = coxt )+
i(g_z(ogi)))sinc(mr ‘f)(ggi))‘ (1 — cos¢)+ (6.16)

0® ,,(; :
A ZZ (0D sine (D)
l(BU(gg )) sing ]’
where the variable v is the CFL number, defined as

v = {w(ﬂgi)) + w(ogﬂ)} -2—:, (6.17)

for square cells with face length As. Here, w(ﬂgi)) and [u(ﬂ_,(,j)) are the maximum
wave speeds |§| + & in each of the grid directions. $(—L) is a complex-valued 4 x 4

matrix.

For stability, the locus of the eigenvalues of the Fourier transform, often called
the “Fourier footprint,” must lie inside the stability boundary of the time-marching
scheme. In general, the Fourier footprint of the 5-wave model is a function of v,
the Mach number M = vu2 + v2/a, the flow angle & = tan~}(v/u), 8, 8, and 05,‘),
as well as the perturbation wavelengths ¢ and ¢, Since the Fourier footprint
is a function of so many variables, it is difficult to perform a thorough numerical
analysis. However, an extensive number of variations in the independent variables
have been tested. In each case ¢(¥) and ¢() are both cycled through 17 values from
— 7 to 7 inclusive, and four eigenvalues are obtained at each of the 289 conditions.
Based on the results obtained the following trends are noted:

(1) The relative magnitudes of the eigenvalues are strongly dependent on the
Mach number. In general, increasing M increases the magnitudes, but at larger

and larger M an asymptotic limit is reached.
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(2) Many of the modes of the Fourier footprint can have eigenvalues that lie

on the imaginary axis. In particular, this occurs when « and 6} differ by 90°.

From this analysis, it is clear that the explicit forward-Euler time stepping
scheme would be unstable for many of the modes, since the stability boundary for
forward-Euler is a unit circle centered at (—1,0) and does not include any part of
the imaginary axis except the origin. However, 2-stage or higher schemes can be

designed that satisfy this requirement. For example, the 4-stage scheme

U =y 4 nJAtS;(")

U® = u™ 3 Lias®
3 (6.18)
U® =u™ 4 -z-JAtSi(Z)

yrt)) = gl 4 JAtS;(s)

has a stability region including a finite part of the imaginary axis whenever 7 <
0.6756. Its amplification factor is given by P(z) =1+ z+ 322 + 323 + $nz*. The
stability boundary is defined by |P(z)| = 1.

An attempt was made to devise a “worst case” Fourier footprint for this
scheme by choosing independent variables that yield the largest eigenvalue extent
in the Real-Imaginary plane. Of all the combinations of variables tested, the one
that gave the largest footprint was: M = 100, a« = 90°, 8 = 0, 05,") = 0°, and
8, = 22.5°. Given this footprint, an 7 of about 0.15 is “optimum” for the 4-stage
scheme in the sense that it allows for the largest v for stability. A plot of the
Fourier footprint at its maximum v = 1.75, along with the corresponding time
stepping stability boundary using = 0.15 is shown in figure 6.1. This exercise
was also performed for 2, 3, and 5-stage schemes. Although not shown, for these
cases the maximum CFL numbers for stability turn out to be » = 0.7, 1.2, and
1.9, respectively. Hence increasing the number of stages yields increasing benefit

in stability, but the difference in maximum allowable CFL number between 4 and
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Figure 6.1:  Stability Boundary of 4-Stage Time-Marching Scheme, and
«Worst-Case” Fourier Footprint of First-Order Spatial-Dif-
ferencing Scheme for v = 1.75
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Figure 6.2: Stability Boundary of 4-Stage Time-Marching Scheme, and
«Worst-Case” Fourier Footprint of Second-Order Spatial-
Differencing Scheme for v = 0.87
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5 stages is small relative to the extra work involved in computing the extra stage.
Therefore, in the present paper the 4-stage scheme is used for all explicit Euler
computations. Note that since the Fourier footprint is highly dependent on Mach
number, the maximum allowable v is actually higher than 1.75 for M lower than
100. For example, at M = 3 the maximum CFL number is about 2.2, while at M

— 1it is about 2.5, according to this linearized stability analysis.

For second-order spatial differencing (L defined by (6.8)), the Fourier trans-
form of the right-hand side of (6.6) is:

S(—L) = — v 5060 (—2c0s¢® + Leosae® + 5
S(-L) = {w(Ggi)) N w(0§j))} “D(Og ) ( 2cos(CY + 2cos2C + 2)+
i(%(ﬂgi))) (2sin(j(*) - %sin%(i)) + \ﬁ(ﬂgj))( (——2cosc(j)+ (6.19)

-;-cos2c(j) + -g-) + i(-g%(ﬂ_(qj))) (2sinC(j) - -;-sin2c(j))] .

A “worst-case” Fourier footprint is again accomplished using the same vari-
ables as for first order, only this time the maximum v turns out to be 0.87 for
the 4-stage scheme with 7 = 0.15. A plot of the Fourier footprint along with the
stability boundary is given in figure 6.2. Again, at lower M the maximum CFL
number is less restrictive. For M = 3 the maximum v is about 1.3, while at M =

1 it is about 1.5.
6.2 Implicit Time-Marching

Ignoring the viscous terms, the implicit factored equation (3.15) can be writ-

[1 + J A6 (‘?’;} )] [I+JAt5,, (%%)] AUM 6:20)

= —JAL(6;F* + 6,G").

ten as
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Recall that the left-hand side Jacobian derivatives are written with first-order ac-
curacy, resulting in block tridiagonals for each coordinate-direction sweep. Split-
ting the Jacobian derivatives into + and — parts and expanding the right-hand
side, (6.20) becomes

[+ JAYS] AF +6F A7) [T+ JAs; Bf + 67B])] A, UM

(6.21)
= —JAt(Fyy ; —Fiy i+ Gijes— G 1)
where the first-order operators are defined as: 87 (+) = (-)e+1 — (*)rx and 87 (1) =

()¢ — (-)k—1, and k represents the index i or j. Approximate inviscid Jacobians
are currently employed on the left-hand side for Aii and Bii, as defined in (3.20)

and (3.22).

The right-hand side of (6.21) is identical to the right-hand side of the explicit
form (6.2), since #As on {-faces equals F*, #As on n-faces equals G*, and
J = 1/A. Hence, after linearizing the right-hand side as described in the last

section, (6.21) can be written:
MA, U™ = LU, (6.22)
where L is given by (6.7) or (6.8) and
M = [1+ JAY(S7 Af + 67 A7) [T+ JAL(S; BY +6/B7)]. (6.23)

The Fourier symbols for the first-order difference operators in (6.23) are

(67) = ™ —1
. (6.24)
(6 )=1- e,
Linearizing the A; and B; terms on the left-hand side of (6.22) about the cell

center using Roe-averaged values, then taking the Fourier transform of the whole

equation, the following expression for the amplification matrix g results:

{S(M)} (g - 1) = 3(-L), (6.25)
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where S(—L) is given by (6.16) for first-order right-hand side spatial accuracy or

(6.19) for second-order, and (M) is the Fourier transform of M, given by

0%, .
L || 5T st

I - -
{ ) + w60
(92 00 sinc®] L v 0% inl(1—

(28 )] |+ {1+ -z o0 @l 629

cos¢(P) + i(g%(ﬁgj))) sinC(")} }

Equation (6.25) can be rearranged to give the generalized eigenvalue problem:
[S(M) + $(-L)] £ = g[S(M)] 2, (6.27)

where g is any of the complex eigenvalues, and [S(M) + §(—L)) and [$(M))] are
complex 4 x 4 matrices.

The stability characteristics of the implicit equation are determined by cy-
cling through 17 of each of the frequencies ¢® and ¢ from 0 to 27 inclusive.
(The combinations when both ¢(¥ and ¢(9) equal either 0 or 27 are excluded since
they yield eigenvalues of 1.0 automatically for a consistent scheme.) The gen-
eralized eigenvalue problem is solved using a subroutine from the International
Mathematics and Statistics Library (IMSL). The maximum eigenvalue, the aver-
age eigenvalue, and the smoothing factor are determined as a function of the CFL
number v. The maximum eigenvalue serves as an indication of stability: its value
must remain at or below 1.0 for stability. The smoothing factor is the maximum
eigenvalue when max(C('.),C(")) lies between m/2 and 37/2. It corresponds to the
damping of high frequencies, and serves as an indication of the possible effective-
ness of a multigrid method if it was applied to the scheme. The average eigenvalue
simply gives a measure of the mean of all the eigenvalues over the whole frequency

range.
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Again, the stability is a function of a large number of independent variables,
including the parameters v, M, o, 8, 6}, and 9},"), so a thorough numerical analysis
is difficult. For first-order spatial accuracy, the “worst case” parameters of all the
variations tested were determined to be: M = 100, a = 90°, 8, = 22.5°, 8, = 0°,
and 8 = 0 (although B = 1 gives a similar result here). As can be seen in
figure 6.3 in a plot of the eigenvalue parameters as a function of CFL number,
the maximum v insuring stability is 2.5. For the different conditions of M=100,
o =45°, 6, = 45°, 6, = 0°,and 8 =0, the scheme is stable only up to v = 0.05,
the lowest limit found, as shown in figure 6.4(a). However, at these conditions the
stability is a strong function of 3. When 3 = 0.05, the maximum v for stability
increases to 2.5, as shown in figure 6.4(b). Higher 8 give even larger maximum
allowable CFL numbers for these particular parameters. As was mentioned in
Chapter 5, § is limited to be greater than 0.05 as an aid to convergence, as
determined empirically for solutions using explicit time-marching. Now it is clear
that this limiting is necessary from the standpoint of stability for implicit-time

marching as well.

All other variations in parameters that were tested give stability limits that
are either equally or less restrictive than those of figures 6.3 and 6.4. Hence, with
(3 limited to be greater than 0.05, the CFL limit for the first-order implicit scheme
is about 2.5. As was true for explicit-time marching, the stability limit derived
here for M=100 is somewhat overrestrictive for flows at lower Mach numbers. In
practice, at reasonably low Mach numbers (less than about 3 or so) the stability
limit appears to be about v = 4.

When second-order spatial differencing on the right-hand side is employed,
the CFL limit for stability is more restrictive. Figure 6.5 shows the stability plot
for M = 100, @ = 90°, 8, = 22.5°, §, = 0°, and B = 0 (although 8 = 1 gives

a similar result here). The maximum v = 1.4 for stability for this case. For the



70

1.8 .
o—— maximum
- e-—-qaverage
' 4 e — smoothing factor
g1OM’
N
R
~
~
6 ®
\&\
%— _ o — g — 88— —0 — 98
2 . 1 P I L 1 N
0 1 2 3 4 S
1 4

Figure 6.3: Eigenvalues as Function of CFL Number for Implicit Scheme,
First-Order, M = 100, a = 90°, 8, = 22.5°, 8, =0°, 3 =10



g

o
T
[ J
L 2
b
4
@
L

s

O#———.—=‘- — o o~ O
N
| N
.}
~

71

80
o—— maximum
- e —-qgverage
o — smoothing factor

h\
6 \&\“—0——&-——0——&-——4——0
2 ) ] n I ! | N | . N
v
a) ,B=0
—— maximum
- e-—-qQverage
o — smoothing factor

~

6 t\‘e“o——a——o—-—e—--—d——-n
2 1 ] L | ] | . 1 , 1
v
b) B =0.05

Figure 6.4:
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First-Order, M = 100, o = 45°, 6, = 45°, 8, = 0°
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conditions M=100, a = 45°, 6!, = 45°, 6, = 0°, and @ = 0, the scheme is stable
only up to the lowest limit of v = 0.01, as shown in figure 6.6(a). When 3 is
limited to be greater than 0.05, then the stability limit for this case increases to
about 0.3, as shown in figure 6.6(b). Hence, since other combinations of variables
tested give similar or better stability limits, the maximum v for stability for the
second-order implicit scheme is about 0.3. Again, at lower Mach numbers this
stability restriction can be relaxed somewhat. In practice, at Mach numbers less

than about 3 the stability limit is about v = 2.

Naturally the question arises as to whether some left-hand side approximate
Jacobians other than (3.20) and (3.22) can be devised to give better stability
properties for the implicitly-advanced 5-wave model. It turns out that if the

approximate Jacobians are taken as:

(6.28)

(6.29)

where |D| is defined in (6.11), then the Fourier transform of the linearized left-

hand side operator is given by

(M) = ID(6)|(1 - cos¢t)+

{I T + w69} |
0%, AN . G v -
(50t )sind )] } ' {H {w(65) + w(65)} D= (650

cos¢9) + i(g—g(ﬂgj))) sinC(j)] }
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Numerical analysis of the resulting generalized eigenvalue problem shows this
method to be unconditionally stable for first-order spatially accurate computa-
tions. This linearized analytical result is confirmed in practice as well. First-order
results have been seen to be stable at CFL numbers as high as 1000, although the

optimum v for convergence generally occurs between about 5 and 10.

Unfortunately, use of (6.28) and (6.29) in conjunction with a second-order
right-hand side for the 5-wave model proves in practice to be even less stable than
when the grid-aligned Jacobians (3.20) and (3.22) are used. An example of a
stability analysis is shown in figure 6.7 for the same conditions as figure 6.5, only
now the Fourier transform of the left-hand side (6.30) is used in place of (6.26).
The maximum v for stability is only 0.6, compared with 1.4 for the grid-aligned

approximate left-hand side.

In order to attempt to improve the stability properties of the 5-wave model
for second-order accurate computations using the approximately-factored implicit
scheme, the method is reformulated using second-order left-hand side spatial ac-
curacy. This makes it necessary to solve a block-pentadiagonal system rather than
tridiagonals during each sweep. The procedure outlined by Barth [29] is followed
to determine an appropriate form for the approximate left-hand side Jacobians
for second-order accuracy. The end result is given here for the ith row of the

block-banded matrix for the first sweep in solving the Euler equations:

[. .., 0,(N1):,(N2)i, ((N3)i + I/(JAt)),(Na)i, (Ns)i,0,.. } , (6.31)

with
o= (55)+PE o (6.32)
o=-[(5) +3PEd],,, + /o) wn]  ©39
(Ns)i = % Ul‘)(eg‘))lm/2 +[D(es) ,-_1/2] (6.34)
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OF* 3ln, Lim
= — 2| D(85" — 2D
(N4)1 [( au )i+1 4 D(eg )li+1/2 1 \D(eg ) i—1/2] (6.35)

o 2[(5),. 0, )

A similar form results for the second sweep. A stability analysis is carried out

(6.36)

using
M = [I+ JAYOT A + 87 A7) [T+ JAL; Bf + 8/ B[)]. (6.37)
The 6,::: are defined to be the following second-order difference operators:

8 () = "g(')k +2(-)k+1 — %(')Hz

3 . (6.38)
9, (1) = 5(');: —2()k-1 + 5(')1:—2,

where k represents the index i or j. The Fourier symbols of these operators are:

. 1 .
S(07) = -3 + 20— Loac
3 o L (6.39)
3(0;) =73 - 2e 7 + 5e-*2< :

The Fourier transform of M, with terms linearized about the cell-center using

Roe-averaged values, becomes:

3 v » 1 i 1 i
SM) = {I * {w(ﬂgi)) + w(ggj))} ['D(Gg ))‘ (_2‘:05(( ) 4 ECOSZC( )4
%) + i(%(g?) )) (2sinc(i) _ %Sinzc(i)):‘ } N {I+
1 3 (6.40)
{w(ggf)) + w(egj))} [|D(6§J))l (_ZCOSC(J) + §C052C(J) + -2-)+

0%, . N1 .

2= ({9 03— Zgin2c(d)

1 ( 50 (65 )) (251n< 5 sin2( )} } .

This linearized analysis shows the block pentadiagonal approximate-factorization

method to be unconditionally stable in conjunction with a second-order spatially

accurate right-hand side. In practice, however, the method is found to be stable
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only up to CFL numbers of about 100 or so. This disagreement between theory
and practice arises as a result of the highly nonlinear nature of the 5-wave model.
The stability analysis is only a linearized approximation. Although the practical
maximum allowable CFL number of 100 represents a dramatic improvement over
the value of 2 that results when the grid-aligned left-hand side is employed, the
optimum rate of convergence for steady-state calculations is still obtained for

relatively low CFL numbers between about » = 2 and v = 6.

Example convergence plots are shown in figure 6.8 for second-order spatially
accurate computations of an inviscid shock reflection off a flat plate (Mo = 2.9)
using the 5-wave model. When the grid-independent approximate J acobians (pen-
tadiagonal LHS) are employed, CFL numbers up to about 100 can be used, but
the optimum rate of convergence is obtained at a CFL number of v = 3 for this
case. Results with v = 2 are also shown for direct comparison with the result
using the grid-aligned left-hand side Jacobians (tridiagonal LHS). Due to the in-
consistency inherent in the use of grid-aligned left-hand side linearizations with
the grid-independent right-hand side, the rate of convergence of the latter method
tapers off as the solution approaches steady-state. However, both methods reduce

the L,-norm of the residual to 10~% in about the same number of iterations.

In summary, the stability properties of the 5-wave model, advanced implicitly
in time using an approximate-factorization algorithm, can be improved dramati-
cally through the proper choice of approximate Jacobians. However, for simplicity
and consistency all implicit computations in the present study employ the grid-
aligned approximate Jacobians described in Chapter 3. Although the correspond-
ing maximum CFL numbers are more restrictive, they are usually high enough
for most problems to allow for an acceptable rate of convergence. On the other
hand, if the 5-wave model was to be used for higher Mach number flows where the

stability restrictions using the grid-aligned left-hand side are more severe, or in
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time-accurate computations where each mesh cell is advanced at a constant time
step, it would probably be necessary to employ the grid-independent left-hand side
terms in order to be able to advance the implicit solution at a reasonable rate.
For second-order computations, this would entail the use of a block pentadiagonal

solver.



CHAPTER 7

MONOTONICITY ANALYSIS

The method for analyzing the monotonicity of the two-dimensional Euler
equations is derived from considerations of the scalar convection equation u; +
au, = 0. The results of the Euler equations analysis are considered to be valid for
the Navier-Stokes equations as well, since the viscous terms add dissipation which
tends to mitigate numerical oscillations that may occur near regions of strongly

varying gradients.
7.1 Scalar Wave Equation

The one-dimensional scalar convection equation is written in finite-volume
form, with forward-Euler time stepping (i is a given cell bordered by (i — 1) to
the left and (i + 1) to the right):

W = u{™ — —i—ti(fﬁg — fi—1)- (7.1)
Here fi11/2 and f;_i/2 are the fluxes on the (¢ + 1/2) and (¢ — 1/2) cell faces,
respectively, and Az is the distance between the gridpoints. Consider now a com-

(n+1) only depends on u(-n), uy) , and w}. Godunov
i i i+1 -1

putational stencil in which u
[3] showed that one way to insure that spurious oscillations do not develop is to
require that variations in u in each cell in the computational stencil causes a vari-

ation in the same direction in cell i. In other words, if u;_; increases, then u;

80
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should also increase, or at worst remain unchanged. A similar requirement holds

for changes in the (i + 1)st cell. These requirements can be written

ESany HulntD)
u,(n) >0 and u’(n) > (7.2)
Ouit: Ou;

or, since fi,/, is identical to f(uit1,ui) and f;_y/p is identical to fluiyuiz1),

Ofira 0fi_1
<L i >0. .
Farey = 0 and s 2 0 (7.3)

A third restriction is auﬁ"“’/auﬁ") > 0, but this merely limits the time step.

As an example of the usefulness of this analysis, consider first-order upwind

differencing, which is already known to be monotone:

1 1
fixr = 5“(“i+1 + u;) — §|G|(ui+1 - u;)
(7.4)
1 1 :
i3 = 5o(wi +uina) - glal(u - Uio1)-
Here, Ofiy1/2/0uiv1 = %(a — |a]), which is non-positive, and 8f;_1/2/0ui-1 =
3(a + |al), which is non-negative. Hence first-order upwind differencing satisfies

(7.3), as expected. A counter-example is central-differencing, which is already

known not to be monotone:
(7.5)

Here, it is seen that (7.3) can never be satisfied except for the degenerate case of

a = 0, since both 0f;y1/2/0u;4+1 and Ofi—1/2/0ui—1 = %a.
7.2 Euler Equations

The ideas from the last section extend in a straightforward manner to the
one-dimensional Euler equations. These can be diagonalized yielding three non-

linearly coupled convection equations, each which describes the convection of a
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“characteristic variable.” Satisfying requirement (7.2) for each of these variables

then implies monotonicity for the numerical scheme.

Extension of this analysis technique for use with the two-dimensional Euler
equations is not as simple because the equations are not diagonalizable in general,
as discussed in Chapter 2. However, the influence of variations in the conserved
variables can be decoupled locally, as described below. First, the two-dimensional
Euler equations are written in finite-volume form with forward-Euler time step-
ping, and it is assumed for simplicity that the mesh is made up of square cells

with face length As:

Ul — ol - _i_z (Brgs— Biogs+ Bijrs — ;.3), (16)
U are the conserved variables and ® are the fluxes per unit face-length on the cell
faces, given by (5.10). It is assumed that the computational stencil is made up of
only (i,7), (i + 1,5), (G — 1,4), (4,5 + 1), and (4,5 — 1), so that in one time step
U, ; is only a function of its initial value and the values in the four immediate
neighboring cells. Thus this analysis only applies to a spatially first-order accurate

scheme.

Now, instead of one equation, there are four coupled equations, and the quan-
tity BUE";H)/BUS:)I'J-, for example, is not a single variable but a 4 x 4 matrix.
The matrices 8U{H) /UL, where k = (i + 1,5), (i — 1,3), (8,5 + 1), (45 — 1),
are termed the “influence matrices.” The four eigenvalues of each influence ma-
trix represent the change of certain characteristic variables at (i,7) caused by
the change in those same four variables in the corresponding neighboring cell.
Since the equations describe the convection of these characteristic variables, non-
negativity of the eigenvalues of each influence matrix implies monotonicity for the

corresponding set of characteristic variables. Note, however, that the characteris-

tic variables associated with the cells (i = 1,7) are not the same as those for cells
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(1,7 £ 1), except for the entropy; therefore it is not clear what the combined effect
of these monotonicity properties is. Nonetheless, this approach is utilized to help

define a limiting procedure for reducing oscillations in two-dimensional solutions.

The conditions equivalent to (7.2) for the two-dimensional Euler equations

are

guinty
e.v. (ﬁ) >0 k‘—"(i+1)j)a(i_l’j)’(i3j+1)7(iaj—1) (77)
k

or, equivalently,
e.v. (———1:1"—1) <0 e.v. (—t—dﬁ) <0
Ui, 9Us 541

BQ."_%,J' > 0 3@,-,]-_% > 0
e.v. an_l’j) - e.v. an’j—l = U,

where e.v.(-) represents “the eigenvalues of (-)”. If the grid-normal angle b, is

(7.8)

varied over the full range of possible angles, then satisfying all four inequalities
in (7.8) is redundant. Satisfying the two inequalities on opposing faces (say the
(i+1/2,7) face and the (i—1/2,j) face) is then sufficient to insure this monotonicity
property.

In order to proceed with the monotonicity analysis for the 5-wave grid-

independent model, (5.10) is written in slightly different form:

1 1, .- - N

$.,.1.==(Bip,; +2i;)—={[R]|[AT 6, —6,)|Q"

it+d,5 2( i+1,j T ,J) 2{[ ]H Jcos(fy y)l + (7.9)

[R**]|[A**](—sin(6g — 83))[©2"" }-

[R*] is the matrix of wave vectors acting in the )-direction (Ri,2,4,5 in (5.11)).
[R**] is the corresponding matrix of wave vectors acting in the (8} + 5 )-direction
(only the shear vector, R; in (5.11), is used in the 5-wave model). Then [A*] =
diag(gy + @,q; — &, 44, 4y) and [f\**] = diag(?} + &,7y — a,y,7,;) are the corre-
sponding wavespeeds in those same directions. The wavestrengths are
Az | B (Aucost + Avsindy)

243
~ A - -é_ y i ’
Ge — | 1% — B (Bucost + Avsind) (7.10)

~ a(@®ap-4p)
£ (—Ausinfy + Avcost))
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0
0

Q= 0 : (7.11)

(8 — 1)2 (Aucosfl; + Avsind})
The present study concentrates on the variations in €1* and Q**. It is assumed
that the wave vectors, wavespeeds, and g', are constant, and all variables are taken
as the Roe-averaged values. In addition, 8, although a function of Au, Av, and

Ap, is considered constant in order to simplify the final expressions. With these

assumptions, this becomes a linearized analysis and one can obtain

0%,1; 108 1(s.ix o1
A i AL At ' J Y “|1A* 8, — 6. ——
okt = L 20 { (A oste 9)|6UR+
' . (7.12)
R**]|[A**](—sin( .
ol -0/ 55-}
In a similar fashion, for the (i — 1/2) face
0%;_3,; 10% 1 N an*
e 2’7 * *
—= A -0
ot = 1 2 a5 { A ees(8h ~ 09 5
- (7.13)
[R"H[f\" —sin(6y — 69))| mr— UL }
The monotonicity constraints are
o®
o <6U1+1> =0
i+1
7.14
( aé,_%) By (7.14)
e.v. 5., ) 2"
The derivative matrices for the 5-wave model can be found as aﬁ*/ OUgr =
e R v ol ~- ot ol
_ 1)4 co —1)9 sin —
T +9)+5 'ﬂ_q‘ T — B —(72:;} - I (7.15)
1_!7 122!::12+v ) ‘yTzlﬁ. ‘ytlﬁ _ 1-—1 ? '
a a a
0 0 0 0
oar* 0 0 0 0
dUgr 0 0 0 0]’ (7.16)
_(B—Al)j"i (ﬂ—l?cos@& (8—1)sind), 0
a a
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and (81*/9UL) = —(8§1*/8Ux), and (8§1**/8UL) = —(81**/8Un).

The monotonicity analysis is carried out numerically. The Mach number M,
flow angle a, and 3 are chosen, then 6, and 8 are each varied independently be-
tween —90° and 90° with incremental changes of 7/32. Eigenvalues are computed
for each condition. They are usually real numbers, but can also be complex con-
jugates; in such cases only the real parts are considered. If they meet the criteria
of equation (7.14), then monotonicity is preserved at that condition. It turns out
that plotting (8, — @) vs. (8 — o) removes the dependence on a (in other words,

plots are the same regardless of the value of ).

A sample plot is shown in figure 7.1(a). The conditions are M=3, #=0.95.
There are two very small regions where monotonicity is preserved. (Note that
some points may be missing from these monotonicity plots wherever the eigenvalue
solver does not converge within a specified number of iterations. However, we are
more interested in general regions than in specific points.) As a specific example,
from the figure it is seen that the scheme is monotone for approximately 30° <
8, —a < 75° when 8, —a = 75°. These example allowable conditions are sketched

in figure 7.1(b).

It is also evident from figure 7.1(a) that if (6, — &) lies between roughly —60°
and 60°, then no ', chosen will insure monotonicity. Other A’s less than 1.0
produce similar plots. Only when 8 = 1.0 is there always some 64 that will yield
a monotone scheme, as shown in figures 7.2(a) through (c). Here, the diagonal
where !, = 8, corresponds to the grid-aligned scheme. The effect of Mach number
is also shown in the figures. At low Mach numbers, only the grid-aligned method
is monotone (i.e. 6, must = 8, and § must = 1.0), while at higher supersonic

Mach numbers the monotone region is extended slightly from the M=3 case.

It is clear from this analysis that the restrictions on allowable 8; for a mono-
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tone scheme given by this analysis are quite severe, if not impossible to meet. For-
tunately, in practice it appears that the restrictions on 8}; can be relaxed somewhat
while still maintaining reasonably non-oscillatory solutions near discontinuities for

a wide variety of flows.

Through an extensive amount of numerical experimentation with actual solu-
tions to the Euler equations, the following observations have been made regarding
reducing the oscillatory behavior of the grid-independent model to an “accept able”

level:

(1) When M > 1, best results are obtained when 6 is limited to lie between
o+ K *sign(8, — @) and §,. K is a small number for lower Mach numbers and is

larger for higher Mach numbers.

(2) When M << 1, 6 does not need to be restricted, except in a very small
region (see (3) below). Between M = 0 and M = 1, the allowable region is

transitioned smoothly between the subsonic and supersonic cases.

(3) In the boundary layer region of Navier-Stokes solutions, odd-even point
decoupling can occur when 6/ is taken as (6, + ), and a ~ 6;. This condition
occurs on grid interfaces in the boundary layer that are aligned with the flow
direction, and is due to the fact that all components of the 6;-wavespeeds in
the grid direction equal zero, and the (6} + T) shear wave has an extremely small
wavespeed. Hence the dissipation is very small, and the result is essentially central-
differencing in that direction. By limiting the angle 8} to lie outside of a small
region near (6, — @) = 0 at (§; — a) = £90°, this decoupling can be alleviated.
Numerical examples of viscous flows both with and without 8}-limiting will be

given in Chapter 8.

An attempt has been made to parameterize the “monotonicity regions” in

accordance with the three observations made above. The empirically-generated
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8'-limited regions for four different Mach numbers are shown in figures 7.3(a)
through (d). It should be stressed that the determination of these regions is
based only loosely on theory and primarily on numerical experimentation. The
following empirical scheme has been found to give good results for a wide variety
of problems. It is by no means deemed to be the best scheme for improving the
monotonicity properties of the 5-wave model. First, some variables are defined:

(0, —a) +m/2
1 — min(M,1)* + 001
(0, —a)—m/2

= 7.18
Y2 = 1 min(M,1)% + 0.01 (7.18)

T M =20
=—= 1
Y3 3 {tanh( T ) + 1} (7.19)
T M —20
= — . 2
ve =3 {tanh( T ) +1} (7.20)

n (7.17)

ys = (6, — o) + g - gmin(M,l)‘* (7.21)

ye = (8, — ) — -’25 + er-min(M,l)"‘ (7.22)
y-,E-i-\/ma.x -(g)z—{(og—a)ju-g}z,o. (7.23)
Ys = —Y7 (7.24)

Yo = +\/ma.x L(%) —{(8—2) - 5} 0 (7.25)
Yio = —Yo (7-26)

Y1 = min(ye,ma-X(y4,y9 )) (7-27)

Y2 = ma.x(ys,nxin(y3,y8)). (7~28)

The allowable regions are then taken as:

(62 — @) > max(y1,yr)
(83 — ) < min(yz,¥10) (7.29)

11 < (9:1 - a) < Y12-
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If (8", — a) does not lie within one of the allowable regions, then it is limited

to either y;; or yi2, whichever is closer.



CHAPTER 8

TWO-DIMENSIONAL RESULTS

8.1 Euler Computations

Both first-order and second-order two-dimensional Euler computations are
performed for several different cases in this section. -Unless otherwise noted,
second-order computations do not utilize any type of limiting of higher-order terms
for either the grid-aligned or grid-independent comput ations. This is done in order

to avoid confusion with and separate the effects of the 6',-limiting procedure.

8.1.1 Shock Reflection

The M = 2.9 inviscid shock reflection case is computed on a Cartesian mesh
4.8 units wide by 1.6 units high. An oblique shock enters the domain from the
upper left corner, reflects off the bottom wall, and exits out the right end. The
flow is turned through an angle of 10° by the incident shock. The nondimensional
boundary conditions (nondimensionalized by combinations of fo and doo) are:
at inflow p = 1, pu = 2.9, pv = 0, and pE = 5.9907; at the top boundary
p = 1.6328, pu = 4.3272, pv = —0.7630, and pE = 9.5091; at the back boundary,
outflow conditions are set by second-order extrapolation from the interior; at

the body along the bottom wall, simple reflection boundary conditions are used.
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Computations are performed using explicit four-stage time-marching. They are
initiated from freestream conditions and are run until the L;-norm of the residual
of all four equations drops below 1 X 10~ !2. Computations are performed on two

different mesh sizes: a 49 x 17 mesh and a 97 x 33 mesh.

First-order computations using the grid-aligned solver, run at a CFL number
of v = 2.2, converge in 158 iterations on the coarse mesh and 258 iterations on the
fine mesh. Nondimensional pressure contours and pressure values along three j=
constant cuts (left to right through the mesh) are shown in figures 8.1 and 8.2.
First-order results using the 5-wave model are also obtained using v = 2.2. The 64
values are frozen using the following procedure: they are computed every iteration
for the first 20 iterations, then only once every 20 iterations until the log of the L-
norm of the residual drops to below —3.5. After this, the 84 values remain frozen.
The 5-wave model is run on the coarser mesh both with and without the 6;-
limiting derived in Chapter 7. The solution converges in in 245 iterations (6} not
limited) and 191 iterations (',-limited). On the finer mesh the solution converges
in 319 iterations ()-limited). The results are given in figures 8.3 through 8.5. On
both meshes, the 5-wave model gives sharper shock wave resolution than the grid-
aligned scheme. The 8';-unlimited method produces the sharpest resolution, but
at the cost of oscillatory behavior near the discontinuities. When the 8);-limiting
procedure is employed, 5-wave model results are still significantly sharper than

the grid-aligned results, and appear to be monotone as well for this problem.

The grid-aligned model on the 97 x 33 grid converges in about 14.1 CPU
seconds on the Cray 2 computer, while the 5-wave model requires about 25.4
CPU seconds (6/;-limited). Thus, the 5-wave model is about 1.8 times more costly
than the grid-aligned model to reach the same level of convergence for this case.
Per iteration, the 5-wave model is about 1.5 times more costly. A significant

percentage of this cost is associated with the limiting of the 8)-directions. Without
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Figure 8.1:

b) Pressure Along j = Constant Lines

Shock Reflection, First-Order, Grid-aligned, 49 x 17



97

a) Pressure Contours

pressure

b) Pressure Along j = Constant Lines

Figure 8.2: Shock Reflection, First-Order, Grid-aligned, 97 x 33
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Figure 8.3: Shock Reflection, First-Order, 5-Wave (6',-Unlimited),

49 x 17
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Figure 8.4: Shock Reflection, First-Order, 5-Wave (6',-Limited), 49 x 17
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Figure 8.5: Shock Reflection, First-Order, 5-Wave (6',-Limited), 97 x 33
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8',-limiting, the 5-wave model is only about 1.2 times more costly than the grid-

aligned model per iteration.

Second-order results for this problem are obtained using a CFL number of
v = 1.1. Grid-aligned model results are shown in figures 8.6 and 8.7 on the two
grids. Since no limiting of higher-order terms is employed, there are undershoots
present in the solutions forward of each shock wave. These solutions converge
the Lo-norm of the residual of all four equations to 1 X 10712 in 249 and 423
iterations, respectively. Second-order 5-wave model results are given in figures
8.8 through 8.10. A 8'-unlimited solution on the 49 x 17 mesh (figure 8.8) shows
very sharp shocks, but a large amount of oscillatory behavior is also present aft
of the shocks. This solution converges in 494 iterations. When 6;-limiting is
used, these oscillations are reduced in magnitude, while still maintaining slightly
sharper shock resolution than the grid-aligned method as shown in figure 8.9. In
the figure, the wiggles in the “3.6”-level contour are caused by oscillations which
are still present downstream of the reflected shock. The 5-wave 6';-limited solution
on the 97 x 33 grid is shown in figure 8.10. Again, results are slightly sharper than
the grid-aligned method on the same grid and additional oscillations are visible
downstream of the reflected shock. The 8',-limited solutions converge in 391 and

659 iterations, respectively, on the coarse and fine grids.

For the shock reflection problem, the 5-wave model appears to be a viable al-
ternative to the grid-aligned model for first-order computations. When 8/;-limiting
is employed, results appear to be free from spurious oscillations, and shocks are
captured with fewer interior points than the grid-aligned method. In fact, the
49 x 17 5-wave solution gives comparable resolution to the grid-aligned solution
on a mesh with four times as many mesh cells. For second-order computations,
very little advantage of the 5-wave model over the grid-aligned model is seen.

Results are slightly sharper, but the extra cost for the method may outweigh its



102

™

M4 121 34

a) Pressure Contours

pressure

b) Pressure Along j = Constant Lines

Figure 8.6: Shock Reflection, Second-Order, Grid-aligned, 49 x 17
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pressure

b) Pressure Along j = Constant Lines

Figure 8.7: Shock Reflection, Second-Order, Grid-aligned, 97 x 33



104

pressure

Figure 8.8:

b) Pressure Along j = Constant Lines

Shock Reflection, Second-Order, 5-Wave (8- Unlimited),
49 x 17
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b) Pressure Along j = Constant Lines

Figure 8.9: Shock Reflection, Second-Order, 5-Wave (Oh-Limited),
49 x 17
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b) Pressure Along j = Constant Lines

Figure 8.10: Shock Reflection, Second-Order, 5-Wave (6-Limited),
97 x 33



107

small advantage. Also, small oscillations still plague the solutions.

8.1.2 Ramp Flow in a Channel

Euler computations are performed for supersonic channel flow with a 15°
finite-length ramp at an inflow Mach number of 2.0 on a 49 x 17 grid. This case
was first used to test grid-independent flow solvers by Levy et al. [24]. The grid
is 3 units long by 1 unit high. The ramp begins at ¢ = 0.5 units and is 0.5 units
long. At the end of the ramp, the bottom channel wall again becomes parallel
to the top wall. A picture of the grid is given in figure 8.11. The boundary
conditions are uniform freestream inflow at the left, second-order extrapolation at
the right, and simple reflection conditions at the top and bottom walls. For this
case, some extra dissipation necessary to prevent oscillations in the 5-wave model
solution near the bottom wall in the region of the expansion fan was provided by
using the grid-aligned scheme in combination with the simple reflection boundary

conditions to obtain the flux at the lower wall.

A first-order computation using the grid-aligned method is shown in figure
8.12. As in the shock reflection case, an explicit four-stage time-marching scheme
is employed using a CFL number of v = 2.2. Figure 8.12(a) shows Mach number
contours, while figure 8.12(b) shows Mach number values along two j = constant
lines (left to right through the mesh). It can be seen that this grid-aligned first-
order result smears the primary shock a good deal and barely shows evidence
of the two reflected shocks. The 5-wave model with no ) limiting, shown in
figure 8.13, shows extremely sharp resolution of the shocks. However, significant
oscillations are also present in the solution. When 6;-limiting is employed, the

oscillations essentially disappear, but much of the resolution of the 5-wave model



108

NN ANERENN
TP L LV VLV VA
TP LV LV VAV A
TP LUV VL VA

AR EERNNN)

AR RARURRNY

Ramp Flow 49 x 17 Grid

Figure 8.11:

Mach Number Contours

a)

) —

A

Constant Lines

b) Mach Number Along j

Ramp Flow, First-Order, Grid-aligned

Figure 8.12:



b) Mach Number Along j = Constant Lines

Figure 8.13: Ramp Flow, First-Order, 5-Wave (6;-Unlimited)

b) Mach Number Along j = Constant Lines

Figure 8.14: Ramp Flow, First-Order, 5-Wave (8;-Limited)
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is also lost. These results are shown in figure 8.14. They are still sharper than
the grid-aligned results. The results from figures 8.12, 8.13 and 8.14 converge the
L,-norm of the residual of all four equations to 1 X 10712 in 263, 346, and 315
iterations, respectively. The 5-wave model uses the same strategy for freezing 84

described for the shock reflection case.

Second-order solutions are obtained with v = 1.1. Results using the grid-
aligned model are shown in figure 8.15, while 5-wave model results without and
with 6-limiting are shown in figures 8.16 and 8.17, respectively. When no 8-
limiting is employed, results are very sharp but oscillatory. The )-limited solu-
tion is significantly less oscillatory, and is slightly sharper than the grid-aligned
solution. However, as for the second-order shock reflection case, the amount of

benefit probably does not outweigh the disadvantages in this case.

8.1.3 Oblique Supersonic Shear

The oblique shear wave case is computed on a 61 x 21 Cartesian mesh 3 units
wide by 1 unit high. Fluid enters the domain from the lower face at a 45° angle
and exits out the top face. To the left of the shear wave M = 1.812, while to the
right M = 1.510; there is one transition cell where M = 1.661. There is no pressure
change through the shear. The nondimensional boundary conditions are: to the
left of the shear p = 1, pu = 1.282, pv = 1.282, and pE = 3.427; to the right of
the shear p = 1, pu = 1.068, pv = 1.068, and pE = 2.926; at the transition zone
p=1, pu=1.175, pv = 1.175, and pE = 3.165; on the top and right boundaries,

outflow conditions are obtained using second-order extrapolation.

The exact solution is shown in figure 8.18. Figure 8.18(a) shows Mach number

contours while figure 8.18(b) shows Mach number values along three j = constant
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b) Mach Number Along j = Constant Lines

Figure 8.15: Ramp Flow, Second-Order, Grid-aligned

b) Mach Number Along j = Constant Lines

Figure 8.16: Ramp Flow, Second-Order, 5-Wave (8-Unlimited)
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Figure 8.17: Ramp Flow, Second-Order, 5-Wave (}-Limited)
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lines through the mesh. All computations are performed using four-stage explicit
time-marching. When initiated from the exact solution, a first-order Euler com-
putation using the grid-aligned method smears the shear wave significantly, as
shown in figure 8.19. The first-order 5-wave model, with 8)-limiting, converges
to the results shown in figure 8.20. Results are significantly sharper, although
there is still some oscillatory behavior near the discontinuity. For this particular
example, the initial condition for the 5-wave model is the grid-aligned solution.
The 8, values are recomputed once every 30 iterations until the log of the Ly-norm
of the residual drops below —3.5, after which they remain frozen. It should be
noted that if 3 is allowed to be zero (instead of being restricted to be greater than
0.05) and the outflow boundary conditions are extrapolated from 45° upstream
(instead of in a grid-aligned fashion), then the 5-wave model can maintain the

exact solution in one iteration when the exact solution is the initial condition.

Second-order solutions using the grid-aligned and 5-wave models are shown in
figures 8.21 and 8.22. The grid-aligned results are now fairly sharp, comparable in
width to the first-order 5-wave results. The second-order 5-wave results are even
sharper, however. The shear wave is now resolved with almost no spreading at
all. Because this is a fairly weak shear wave case, the grid-aligned model does not
yield any noteworthy pressure distortions as a result of misinterpreting the oblique
shear wave. Both the grid-aligned and 5-wave models produce pressure fields in
error from the exact solution by less than 0.5%. This 45° supersonic shear wave
case demonstrates an advantage of the 5-wave model over the grid-aligned model.
For both first and second-order computations, the model resolves the oblique shear

wave with significantly fewer interior points than the grid-aligned method.
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a) Mach Number Contours

b) Mach Number Along j = Constant Lines

Figure 8.19: Oblique Shear, First-Order, Gri.d—Aligned
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b) Mach Number Along j = Constant Lines

Figure 8.20: Oblique Shear, First-Order, 5-Wave
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a) Mach Number Contours

b) Mach Number Along j = Constant Lines

Figure 8.21: Oblique Shear, Second-Order, Grid-Aligned

a) Mach Number Contours

b) Mach Number Along j = Constant Lines

Figure 8.22: Oblique Shear, Second-Order, 5-Wave
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8.1.4 Supersonic Flow Over an Airfoil

Euler computations are performed for the NACA 0012 airfoil at M = 1.2,
a = 0° on several different grids. Thé finest is a 257 x 73 O-mesh with an outer
boundary extent of 20 chords and an average minimum spacing at the body of
0.0031 chords. It is shown in figure 8.23. Two coarser meshes, a 129 x 37 and
a 65 x 19, result from removing every other point from the next finest mesh.
The inflow/outflow boundary conditions in the farfield for supersonic flow are
simply freestream values when the grid boundary cell is an inflow boundary (i.e.
the outward-pointing grid-face normal points into the freestream direction), and
are extrapolated from the interior using second-order interpolation when it is an
outflow boundary. The boundary conditions at the body are simple reflection

conditions, and periodic boundary conditions are enforced where the grid meets

itself behind the airfoil.

These airfoil results, as well as all results to follow in the remainder of the
paper, are computed using the implicit approximate-factorization time-stepping
procedure. The CFL numbers at which the solutions are advanced are taken in
accordance with the analysis performed in Chapter 6. Results are not converged
to machine zero in general; sufficient convergence is assumed when the La-norm
of the residual drops by at least 4 orders of magnitude and/or the lift and drag

values settle down and do not vary significantly with further iterations.

At the conditions enumerated above, the NACA 0012 airfoil has a flowfield
with a curved bow shock located in front of the airfoil and oblique shocks ema-
nating from the trailing edge. Figures 8.24 through 8.26 show results for the first-
order accurate grid-aligned model on the three successively finer grids. Shown are

nondimensional pressure contours, plotted in increments of 0.05 (the freestream



117

Figure 8.23: NACA 0012 257 x 73 O-Grid
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Figure 8.24: Supersonic Airfoil-Flow, First-Order, Grid-Aligned, 65 x 19
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Figure 8.25: Supersonic Airfoil-Flow, First-Order, Grid-Aligned, 129 x 37
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Figure 8.26: Supersonic Airfoil-Flow, First-Order, Grid-Aligned, 257 x 73
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value of 1.0 is not plotted), as well as pressure along a j = constant grid line
over the upper half of the airfoil. The j = constant grid line is taken at j = 11,
j =21, and j = 41 for the three grids. Its location is shown in figure 8.27. The
two finer meshes produce reasonable-looking results, although the shock waves
are very smeared. The coarsest mesh (65 x 19) produces very poor results, but
this grid is so coarse that a good solution would not be expected in any case.
First-order 5-wave model results (with 6,-limiting) are computed by restarting
the corresponding grid-aligned solution with 8, frozen. Results are shown in fig-
ures 8.28 through 8.30. The shock waves are captured much more sharply by this
method, although there are still some small oscillations present near the discon-
tinuities. The 65 x 19 mesh is again too coarse to produce a reasonable-looking

solution.

In an effort to explore the grid-semsitivity of the grid-aligned and 5-wave
models, computed drag values are plotted for each of the grids in figure 8.31. For
a first-order scheme, it is expected that the results behave in a linear fashion when
plotted vs. the inverse of the square root of the total number of gridpoints. This
indeed appears to be the case for both methods (on grid sizes of 129 x 37 or finer).
The drag coefficient is approaching about 0.0955 as the grid approaches infinite
refinement. The 5-wave model produces drag values in closer agreement with this
“correct” value on all three grid sizes tested. For example, on the 257 x 73 grid,
the 5-wave model gives a drag value 9.0% in error from the extrapolated “exact”

value, while the grid-aligned result is 6.5% in error.

Second-order computations using the grid-aligned model on the three grids
are given in figures 8.32 through 8.34. Results now have much sharper resolution.
Since no limiting of higher-order terms is performed in these computations, some
undershoots and overshoots are present near the computed shock waves. Second-

order 5-wave model results are given in figures 8.35 through 8.37. These results are
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Figure 8.27: Supersonic Airfoil-Flow, Location of j = Constant Line
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Figure 8.28: Supersonic Airfoil-Flow, First-Order, 5-Wave, 65 x 19
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Figure 8.33: Supersonic Airfoil-Flow, Second-Order, Grid-Aligned,
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Figure 8.35: Supersonic Airfoil-Flow, Second-Order, 5-Wave, 65 x 19
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still somewhat sharper than the grid-aligned results, but there are also significant
oscillations near the shocks. Computed drag coefficient values are plotted as a
function of the inverse of the grid size in figure 8.38. Second-order results behave
linearly when plotted this way (for a'sufficiently fine mesh). The drag coefficient
again extrapolates to about 0.0955 on an infinitely fine mesh for both methods.
The 5-wave model gives better predictions for the drag on all three grids. On
the finest, it deviates from the extrapolated value by 0.05% while the grid-aligned
method deviates by 0.22%.

In summary, use of the 5-wave model for supersonic flow over an airfoil results
in sharper shock resolution and better airfoil drag prediction than the grid-aligned
model. The increase in shock resolution is more dramatic for first-order computa-
tional accuracy, although even second-order results show a noticeable difference.
In spite of the fact that 8)-limiting was employed, both first and second-order

5.wave model results are somewhat oscillatory near the computed shock waves.

The effect of limiting the higher-order terms in the second-order solution using
the 5-wave model is investigated at this point. A computation is performed on
the finest mesh with the “min-mod” limiter employed. This limiter is described
in more detail by Anderson et al. [30]. Results are shown in figure 8.39. The
shock waves are resolved with the same number of interior points as figure 8.37,
but now the amount of oscillations near the discontinuities is reduced. Hence
the use of standard limiters for second-order computations seems to be viable
in conjunction with the 5-wave 6',-limited model. While the limiter does not
guarantee oscillation-free solutions for this model, it does seem to reduce the

amount of oscillations present.
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8.1.5 Subsonic Flow Over an Airfoil

A grid convergence study is performed using the Euler equations for subsonic
flow over an airfoil in order to investigate the effect of the 5-wave model on an
airfoil flowfield where no shock waves are present. The conditions are M = 0.3
and a = 1°, and results are computed on the same three O-meshes used in the
supersonic airfoil flow study. Boundary conditions on the body are again simple
reflection conditions, and periodic boundary conditions are applied where the mesh
meets itself behind the airfoil. The inflow /outflow boundary conditions applied
at the outer boundary for subsonic flow are obtained using characteristic theory.

To summarize, the local Riemann invariants Rt and R™ are constructed as

R+ — qg‘l) + Za—(‘l)l
7 (8.1)
2a(®)
R™ = q(o) - ’
9 v - 1

where g, indicates the velocity normal to the outer grid boundary face and the
superscripts “(i)” and “(0)” indicate that conditions are taken from inside and
outside (= freestream) the grid boundary, respectively. The normal velocity and

speed of sound at the face are then taken as

1 _
(g9)t = §(R+ +R7)
1 (8.2)
af = 171—(R+ — R—).
If (gg)t > 0, the entropy sr and the tangential velocity (g ) are extrapolated from

inside the grid boundary. Otherwise, they are taken as the freestream values. The

density boundary condition is then obtained using

(38%)1/7 . (8.3)

The u and v velocity components are constructed from (g,)r and (rg)s, and the

il

Pt

energy is calculated using the equation of state.
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Min-Mod Limiter Employed

.08 ) .
——— grid-aligned

r-e--- S-wave

.06+
o .04+
021 o
,cr//‘
Q¥==" | . ! . J . ! L
0 1 2 4 5 x 102

3
1/(ni*nj)1/2

Figure 8.40: Grid-Convergence Study for Subsonic Airfoil-Flow, First-
Order



129

Figure 8.40 is a plot of computed drag coefficient vs. the inverse of the square
root of the grid density for the grid-aligned scheme and the 5-wave model on the
three grids using first-order spatial discretization. The “exact” Euler solution
should give zero drag. The 5-wave model, restarted from the grid-aligned solution
with 8, frozen, gives a far better prediction of the drag than the grid-aligned
scheme for all three grids. Entropy contours (where entropy is defined as p/(p”) —
1) for both methods are given in figures 8.41 and 8.42. Contour values plotted are
in increments of 0.001 for both figures. These figures indicate significantly lower
entropy production over the airfoil surface using the 5-wave model. The maximum
entropy values for the grid-aligned model are 0.0303, 0.0251, and 0.0183 for the
coarsest through finest meshes, respectively. For the 5-wave model the maximum

values are only 0.0052, 0.0028, and 0.0018.

It is believed that the difference in entropy levels is due to the different ways
that the two models interpret the flow near the stagnation point of the airfoil.
Near the stagnation point, the flow undergoes very rapid turning with relatively
small changes in pressure. The grid-aligned model interprets this turning to be
in part due to the action of + and — acoustic waves with nearly offsetting Ap’s.
Because the local flow is subsonic, the wavespeeds associated with each of these
acoustic waves are of opposite sign, so the flux computed at interfaces near the
leading edge is assigned a pressure which is too high or low by an amount Ap. This
results in increased entropy generation. In contrast, the 5-wave model interprets
the rapid turning near the stagnation point to be due primarily to the action of a
(6!, + §) shear wave, which has no associated pressure jump across it. Numerical

entropy generation is lower as a consequence.

Total pressure loss values (= (Ptoo — Pt)/Ptoo) along the upper surface of the
airfoil are plotted for the grid-aligned and the 5-wave models in figures 8.43(a)

and (b). The total pressure loss approaches zero for both models as the grid is
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refined, as expected. Near the leading edge the grid-aligned model shows much
higher magnitudes than the 5-wave model, reflecting the higher entropy generated
there. Over the majority of the surface of the airfoil on the finest mesh, however,
the grid-aligned model shows lower total pressure loss values. It appears that
these are approaching zero at a faster rate than those from the 5-wave model as

the grid is refined. The reason for this is unknown.

Drag coefficient values from the grid-sensitivity study for second-order accu-
rate computations are plotted in figure 8.44. Again, the 5-wave model gives lower
values than the grid-aligned model, but in this case the difference is not so dra-
matic as for first-order. This is reflected in the entropy contours as well, shown
in figure 8.45 for grid-aligned and 8.46 for the 5-wave model. (Contour values
plotted are in increments of 5 X 108 for both figures.) The 5-wave model appears
to have only slightly lower entropy values overall. The maximum values for the
grid-aligned method are 0.0018, 0.0011, and 0.0006 on the coarsest to finest grids,
respectively, while the maximum values for the 5-wave model are 0.0015, 0.0009,
and 0.0007. Total pressure loss values on the airfoil upper surface are plotted in
figures 8.47(a) and (b). In general, results are similar for the two methods. The
5-wave model gives somewhat higher values just aft of the leading edge than the
grid-aligned model on all three grids, but values near the trailing edge are lower.
For completeness, the pressure contours resulting from the second-order fine mesh
5.wave model solution are shown in figure 8.48. Pressure levels in increments of
0.005 are plotted. The grid-aligned result on the finest mesh is identical to this

figure, so it is not shown.

In summary, first-order computations using the 5-wave model give lower nu-
merical entropy generation in a subsonic Euler computation over an airfoil. As
a result, the drag prediction is nearer to the correct result of zero. Second-order

computations using the 5-wave model still give better drag prediction than the
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Figure 8.44: Grid-Convergence Study for Subsonic Airfoil-Flow, Second-
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grid-aligned method, but the difference is not as great as for first-order. Entropy
levels are similar for the two methods. Hence there does not appear to be a sig-
nificant advantage to using the 5-wave model over the grid-aligned method for

second-order computations of subsonic airfoil flows such as this.

8.2 Navier-Stokes Computations

Only second-order spatial accuracy is used for all Navier-Stokes computations.
No limiting of higher-order terms is employed. All solutions are advanced in time
using the implicit approximately-factored algorithm, and convergence is assumed
to be reached when the Lo-norm of the residual drops by at least 4 orders of
magnitude and/or the lift and drag values settle down and do not vary significantly

with further iterations.

8.2.1 Shock/Boundary-Layer Interaction

A shock/boundary-layer interaction is computed over a flat plate in a domain
that is 1.84 units wide by approximately 1.29 units high. The plate is assumed
to start 0.24 units from the left. The finest grid employed is a 93 x 141 with
minimum spacing at the wall of 9 x 10~% units. It is shown in figure 8.49. Coarser
meshes of 47 x 71 and 24 X 36 are obtained by removing every other point from

the next finest mesh.

The inflow Mach number is 2.0, and the Reynolds number per unit length is
296,000. Laminar flow is assumed. A shock wave enters from the left of the domain
at a height of 0.7930 units. It has an angle such that it impinges on the plate

1.0 unit from the leading edge. The flow is turned through an angle of 3.1°. The
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Figure 8.49: Shock/ Boundary-Layer Interaction 93 x 141 Grid
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boundary conditions at inflow (below the shock) are: p =1, pu =2, pv =0, pE =
3.78571. Above the shock and along the top wall: p = 1.13038, pu = 2.18509,
pv = —0.11834, pE = 4.23855. At the right wall all variables are extrapolated
from the interior using second-order interpolation. Along the bottom wall in front
of the plate symmetry conditions are applied, and on the plate itself no slip, zero
pressure gradient, and adiabatic wall boundary conditions are assumed. For this
problem, the thin-layer Navier-Stokes equations are employed: it is assumed that
viscous terms arising from derivatives in the streamwise direction are negligible in

comparison to the viscous terms arising from derivatives normal to the wall.

Pressure contours for the grid-aligned model on the three grids are shown
in figure 8.50, while 5-wave model results are shown in figure 8.51. (The 5-wave
model results are obtained by restarting the grid-aligned solutions with 84 frozen.)
Values in the figures are plotted from 0.84 to 1.44 in steps of 0.03. Results are very
similar for both methods, with the exception that the 5-wave model gives slightly
sharper shock resolution. Also, some oscillatory behavior is evident near the plate
leading edge as well as at the shock inflow location for the 5-wave model. Skin
friction plots over the plate surface are given in figure 8.52 for the two methods.
In figure 8.52(a) it is seen that the grid-aligned method gives reasonable levels
on all three grids, with the greatest discrepancies between the solutions occuring
in the separated region and near reattachment. The 5-wave model, on the other
hand, gives very high skin friction levels on the coarsest mesh (as shown in figure
8.52(b)), indicating that the velocity profiles are predicted to be too full. This can
be seen in the computed velocity profiles at two locations on the plate in figure
8.53, in comparison with grid-aligned results on the same grid. On the two finer
grids, the 5-wave model gives consistent skin friction results in good agreement

with the grid-aligned model.

It is not known why the 5-wave model predicts fuller profiles on the coarsest
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Figure 8.50: Shock/Boundary-Layer Interaction, Pressure Contours,

Grid-Aligned
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mesh for this case. Aside from this discrepancy, the model behaves much as
expected, considering the results from the earlier Euler shock reflection case. For
this second-order computation, the shock structure is captured slightly better
than when the grid-aligned scheme is used, but some oscillations also appear in
the flowfield. The very small increase in shock resolution does not seem to be

worth the added expense and increased oscillatory behavior of the 5-wave model.

8.2.2 Subsonic Separated Flow Over an Airfoil

A specific case where an advantage of the 5-wave model over the grid-aligned
model is fully realized in a second-order computation is for viscous separated flow
over a NACA 0012 airfoil at M = 0.5, @ = 3°, and Re = 5000. Full Navier-Stokes
computations are performed on a series of C-meshes. The finest, a 257 x 97 grid
with outer boundary extent of 14 chords and average minimum spacing on the
body of 2 x 10~* chords, is shown in figure 8.54. There are 176 cell faces on the
airfoil. Coarser meshes are obtained by removing every other gridpoint from the
next finest mesh. Subsonic inflow/outflow boundary conditions are applied on the
outer boundary, and no slip, zero pressure gradient, and adiabatic wall conditions

are used at the body. Continuation conditions are applied on the wake cut.

This test case was first discussed by Venkatakrishnan [31]. He found that
on even reasonably fine meshes, the grid-aligned upwind scheme does a poor job
for this case since there is a detached shear layer emanating from about mid-
chord on the airfoil upper surface which is not oriented with the grid. The shear
is misinterpreted by the grid-aligned model as a combination of shear and com-
pression/expansion, with the end result of a distortion in the computed pressure.

Grid-aligned results on the three grids showing this pressure distortion are shown
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Figure 8.54: NACA 0012 257 x 97 C-Grid
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in figure 8.55. Pressure contours are plotted in increments of 0.005. As the grid is

refined the distortion diminishes in extent, but does not goes away on these grids.

The 5-wave model is run by restarting the grid-aligned solutions with 84
frozen. Results are plotted in figure 8.56. On all three grids, the pressure distortion
is essentially eliminated. Lift coefficient values, plotted as a function of the inverse
of the number of gridpoints in figure 8.57, show that both models are approaching
the same value of ¢; ~ 0.055 as the mesh is refined. In spite of the fact that the 5-
wave model does a good job of reducing the pressure distortion on all three meshes,
the lift is seriously overpredicted (by about 120%) on the coarsest one. This can
be seen in a plot of surface pressure coefficient on the 65 x 25 grid, given in figure
8.58. The surface pressure values given by the 5-wave model are significantly lower
than the grid-aligned values over the upper surface, as well as slightly higher over
the lower surface. On the other grids the two models are in closer agreement,
although the grid-aligned model is always closer to the “correct” extrapolated lift
coefficient. Drag coefficient values are plotted in figure 8.59. Figure 8.59(a) shows
the total drag coefficient, while figure 8.59(b) breaks the drag coefficient into its
friction drag and pressure drag components. Both models do reasonable jobs of

predicting the drag on the two finest meshes.

In summary, the 5-wave model can essentially eliminate pressure distortions
which arise in a separated viscous flow computation due to misinterpretation of
oblique shear waves by the grid-aligned scheme. However, the surface pressure
levels (and hence the lift coefficient) predicted by the 5-wave model are more
sensitive to grid density than those predicted by the grid-aligned model, so a
fairly fine mesh is required for a reasonable level of accuracy in this regard. Since
the grid-aligned method shows pressure distortions on even the 257 x 97 grid, the

5-wave model appears to be worth the additional effort in this case.

All results obtained for the Navier-Stokes cases to this point using the 5-wave
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Figure 8.60: Viscous Airfoil-Flow, Pressure Contours, 5-Wave (65-
Unlimited), 129 x 49
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model have employed 6}-limiting. When 6',-limiting is not employed, the odd-even
point decoupling mentioned in Chapter 7 can occur in the boundary layer. An
example is shown in figure 8.60. Pressure contours over the rear half of the airfoil
are shown for computations on a 129 x 49 grid. Several of the contours show the

oscillatory behavior.



CHAPTER 9

EXTENSION TO THREE DIMENSIONS

9.1 Governing Equations

The nondimensional Navier-Stokes equations in curvilinear coordinates and

conservation form can be written in three dimensions as:

auU* OF* 8G* OH* OF:; 8G% OH:
= + +

5t T Ty T ec - 8 T o T o’ (9-1)

where

pv (9-2)

F* = = | putv + &yp (9.3)

ol

G* pv*v + Myp (9-4)

i

~i-
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0
1 €111 + £y7'12 +€.713
F, = i £ + EyTaz + €273 (9.6)
. €231 + EyTaz +‘ §2Ta3 )
§(Vimj — Q1) + &(Vimaj — Q2) + &:(ViTsj — Q1)

0 A

1 NzT11 + NyT12 + 72713
G, = 7 NzT21 + MyT22 + M2T23 (9.7)
_ M=Ts1 + 7y Ts2 + 12733 )

| 7:(Vim1j — Q1) + my(ViT25 — Q2) + n:(ViTsj — @s3) |

3 . ;
1 (a1 + Cyiz + (T3
H =75 (oT21 + (yT22 + (T2 (9.8)

) €731 + (yTa2 + (2Ts3 )
| ¢ (Vims — @) + G(Vimes — Q2) + Ga(Vimsj — Qs) |

Wt = Gut Egv + bew
v* = nzu + Nyv + MW (9.9)
w* = (u+ v+ Gw.
All variables are nondimensional as defined in Chapter 2. The terms u*, v, and
w* are the contravariant velocity components, and Vi, V2, and V3 represent u, v,

and w, respectively. 7i; and Q; are given by (2.14) and (2.15), but now

9 _¢ 8 .0 o
5X, _ “=a¢ T ™an " "7
8 8 8 8
ax, ~ae T T O (010

_3__£_B__+ _6_+C_a_
59X, ot T "Tan " ol

The ideal gas equation of state is given by

u2+,02 +w2)

p=(y-1)p (E - 5 (9.11)

Also, Stokes’ hypothesis, A+ (2/3)p =0, and Sutherland’s law (2.34) are assumed

to apply, and v is taken as 1.4 and Pr is taken as 0.72.
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In three dimensions, the inverse of the metric Jacobian J is given by:

TV = ae(ynze — Yezn) — ve(Tnze — 2¢2n) + 2¢(2ny¢ — T¢Yn), (9.12)

and the metrics of the transformation are
b = J(ynze —Yczn) &y = J(anze = 2zn) &= J(@auc — 2cvn)
ne = J(yeze —veze)  my=J(xze—zenc)  n: = J(zcye —zeye)  (913)
(e = J(yezn — yn2ze) v = J(2¢zq — 29%¢) (e = J(2eyn — To¥e)-
The Euler equations are the same as the Navier-Stokes equations (9.1), except

that the viscous terms F2%, G%, and HJ, are taken as zero.

9.2 Spatial and Temporal Discretization

Since only Euler computations are performed in three dimensions in this
study, the discretizations described here will not include viscous terms. The basic
scheme employed is CFL3D [32]. It is an implicit finite-volume method, in which
the left-hand side is approximately factored and AU is solved for in three

sweeps through the mesh:

[ 1 F*

—_ U =
LJAt+653U AU =T
[~ “

I aG* . ,
HN+%6U1MU_JNAN (9.14)
[ 1 oH* | I

il U = —- "
7a: Hoegm | A Ta U

where the terms A, U’ and A;U" are intermediate results. The conserved variables

are updated at the cell centers using

Ut — U™ 4 A, UM, (9.15)
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The right-hand side T in (9.14) is defined by
= — (55}3‘* +6,G* + 6¢H*), (9.16)

and
8F" =Fiy i~ Fig

3k
5,G* = G"; jra — Glij—d .k (9.17)
5CH* = H*i,j,k+1,» - H*i,j,k—é'
The right-hand side terms in (9.17) are the fluxes at the six faces of a computa-
tional cell, evaluated through the use of a flux function, as described in sections
9.3 and 9.4. The right-hand side T can also be written in the form

(]
T=-Y $.04, (9.18)
=1

where the summation is over the six faces of the compt.ltational cell, AA, is the
area of cell face £, and ® is the normal flux per unit face-area, given by:

P4y
pagu + P(Cz)g
® = | pggv+p(cy)g | - (9.19)
pPggw + p(cz)g
pagH

The variables ¢, ¢y, and ¢, represent the components of the unit-normal direction
vector 7 in the z, y, and z directions, respectively. They are written in spherical

coordinates as:
¢, = cosfcosy

¢y = sinfcosy (9.20)
c, = siny.
The subscript g is used to indicate the grid-face normal angle. For example,
(cz)g = cosfgcosipy. The angles 4, 1, and the grid-face normal direction vector
iy are pictured in figure 9.1. The variable g4 is the outward velocity normal to

the cell face, given by

99 = u(cz)g + v(cy)g + w(c;)g- (9.21)
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The implicit spatial derivatives of the convective and pressure terms are spa-
tially first-order accurate, resulting in block-tridiagonal inversions for each sweep.
Approximate left-hand side Jacobians of the form given in Chapter 3 are employed
regardless of whether the grid-aligned or the grid-independent model is employed

on the right-hand side.
9.3 Grid-Aligned Flux Function

The normal flux per unit face-area in three dimensions can be computed using

the grid-aligned flux function:

1 U
&= (PL+®r)-; ;pkmkm, (9.22)

where the waves are represented by the vectors

i+
Ry = | 7 +d(cy)g (9.23)
b +

()
R, = | 7 —a(cy)g (9.24)
w

—&(Arl)g
R; = —a(Arz)g (9.25)
—a(Ars)g
—a{i(Ar1)g + B(Ar2)g + W(Ars)g}

u
R, = 5 . (9.26)
w
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The terms Ary, Arg, and Arg are given by
Ary = ((e2)? = 1) Au + (e2)(ey)Av + (ez)(ez) Aw
Ars = (¢y)(cz)Au + ((¢g)? — 1) Av + (¢y)(e:)Aw (9.27)
Ars = (e.)(ca)Du + (¢:)(ey)Av + ((¢2)? — 1) Aw

and the subscript g indicates that the components ((cz)gs(cy)gs(cz)g) of the grid-
normal direction 7, are used. The Roe-averaged outward velocity normal to the

cell face is

gy = U(cz)g + B(cy)g + w(es)g- (9.28)

The vectors (9.23) through (9.26) represent, respectively, + acoustic, — acoustic,
shear, and entropy waves. R, R,, and R, are eigenvectors of the linearized three-
dimensional Euler equations, while R, is a linear combination of the remaining
two eigenvectors, which, along with R., R,, and R., span the eigenspace of this
system. The expression for the combined shear wave R, is derived in Appendix

B, and a geometric interpretation of its effects in state space is given below.
The vector of wavestrengths is given by:

=5 (Ap + padgy)

0= o (87 2 pals) | | (9.29)
EHCIVEN)
where
Agqy = Au(cr)g + Av(ey)g + Aw(ecz)g- (9.30)

The wavespeeds are all in the fig-direction and are given by:

A =gy +a
el (9.31)
5‘3:-‘29
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The Roe-averaged (hatted) values are still defined by (4.9).

In three dimensions, the (Au, Av, Ap)-space interpretation of the wave de-
composition is not as helpful as it was in two dimensions, since the jump Aw is now
important. Instead, when describing the action of the three-dimensional waves,
the Ap-“direction” is ignored, and jumps are plotted in (Au, Av, Aw)-space.
Hence the change in pressure caused by an acoustic wave cannot be represented.

Figure 9.2(2) shows the change in velocity associated with a 47, acoustic
wave, while figure 9.2(b) shows the change for a —1iy acoustic wave. Each of these
waves also causes a positive change in pressure and a change in density, which are
not pictured. Similar to the two-dimensional case, the entropy wave causes only a
change in density (with no change in velocity or pressure), so it is not represent able
at all in (Au, Av, Aw)-space. Finally, there are two i;xdependent eigenvectors,
as discussed in Appendix B, which represent shear in the plane perpendicular to
the 7 -direction. Any two eigenvectors in this plane are independent provided
that the directions of the corresponding velocity jumps are perpendicular. An
example of two such waves is given in figure 9.3. These waves propagate in the

fig-direction, which is normal to the change in velocity across both of the waves.

The two shear waves can be replaced by the single shear wave (9.25) with
strength p/a. Its net result is the sum of the velocity changes across the other
two. This single shear is, in effect, the wave that causes a change in states from
R to R', where R' is the point in (Au, Av, Aw)-space on the line from L with
direction 7y where the perpendicular line from R intersects. This is illustrated in

figure 9.4, along with hypothetical + and — acoustic waves.
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Figure 9.1:  Grid Face Normal Angles
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Figure 9.2: Effect of Acoustic Waves
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9.4 Grid-Independent Flux Function

The dominant direction of wave propagation for the grid-independent wave
model is again assumed to be the velocity-difference direction. For three-dimen-

sional flow, this direction is given by 74, defined by the angles (84,%4), which are

84 = tan™? (%—Z—)

by = tan-1 (Aw * sign(Au)) .
VAu? + Av?

The angles are each defined from —3 to 3.

obtained using:

(9.32)

As in the two-dimensional grid-independent model, ?he wave types and stren-
gths for the three-dimensional model describe the difference between the left and
right states. The wave-propagation direction can be frozen as 7); (defined by the
angles (8},%4)), resulting in the requirement of a shear wave of type similar to
the shear wave used in the grid-aligned model. The end result is, again, a 5-wave

model, which is computed using:
1 1o
& =2 (2L +®r)— 7 O _|M|%Ra. 33
2( L+ ®r) 2k=1| x| QxR (9.33)
The R are given by

R, = | 9 +a(cy), (9.34)

R, = | % - a(ey), (9.35)
]




X (
R; = —aEcy); (9.36)

(9.37)

—a(Ar)y
Rs = —a(Ary)y (9.38)
—&(AT‘;«;)&
—a{a(Ar)y + 9(Ara)y + B(Ars)a}

where

‘j.'i = ﬁ(cz):i + f’(Cy):i + ‘D(CZ):i-' (9-39)

The parameters ¢z, ¢y, Cz, and A7y, Ar,, Arg are still defined by (9.20) and
(9.27). The subscript d and the prime (') indicate the frozen direction ny. For
example, (¢z)}; = cosf!,costpy.

The vector of wavestrengths is given by:

Ap 4 %(Au(cz)& + Av(ey)y + Aw(c,):i)

| B - B (au(e)l + Boley)s + Auler)a)
& = | (8- 1)2(Aulen)l + Av(ey)l + Auw(en)) | - (9.40)

i (00 - 89
2
a
The parameter 3 is similar in form to that derived in two dimensions. For the
minimum-pathlength model,

Ap/(pd)
Au(ca)y + Av(ey)y + dw(ez)y

5= min[ ,1] . (9.41)

The minimum-area model, used for all computations in this study, results when

in Ap/(pa) ’
b= [{ RuleaYy + Boley)s + Aw(c,);} ’1] ' (9:42)
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The parameter 3 is generally limited to be no less than 0.05 and is frozen along

with 7}, as an aid to convergence.

The effects of the acoustic waves R, and R, as well as the shear wave R
can be plotted in (Au, Av, Aw)-space. Plots look the same as the grid-aligned
wave plots (figures 9.2(a), 9.2(b), and 9.4) except that the angles are now given
by 8, and 9. The shear wave R, is henceforward referred to as the (7 + )
shear wave, in order to parallel the (8, + %) shear wave from the two-dimensional
theory of Chapter 5. It causes a change of velocity in the 7n,-direction, as pictured
in figure 9.5. Therefore the direction of propagation of the wave itself must be
90° to this. Unlike the two-dimensional case, however, in three dimensions there
are an infinite number of directions perpendicular to the #i',-direction. This is
tantamount to saying that the difference in velocity between two states L and R

(with no pressure difference) can be attributed to an infinite number of shear wave

types, each of which travels in a different direction perpendicular to 7.

An illustration of this concept is given in figures 9.6(a) through (e). For
this example a first-order computation is assumed, where two neighboring cells
have velocities Vi = (1,0,0), Vg = (1,1,0). Also, the nig-direction is assumed to
be computed from these velocity values (i.e. they are not frozen from an earlier
time step). Figure 9.6(a) shows the geometry, including the velocity-difference
vector AV which indicates the direction 7iq. One type of shear wave that could
describe this difference in states is a “layer-type” shear, as pictured in figure 9.6(b).
Across this shear plane the velocity vector both rotates and lengthens. There is
no velocity component normal to the “layer-type” shear wave, so it is steady with
drift velocity &g = 0.

Other interpretations of the velocity difference are shown in figures 9.6(c)
through (e). In each of these, the shear wave does have a drift velocity &s. This

drift velocity is always normal to the fig-direction. It is a maximum in figure
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9.6(e), for the case of the “2-D-type” shear wave. It is termed “2-D” because the
drift velocity is parallel to the plane defined by the velocity vectors Vi and Va
(with origins of the vectors at the same point). Across a “2-D-type” shear wave
the velocity vector lengthens, but there is no rotation. It should also be noted
that although the wave passes through both points L and R in figure 9.6(e), it is

assumed that L lies infinitesimally to one side of the wave and R to the other.

The initial strategy used to determine the direction of propagation of the
(i + Z) shear wave involved the grid geometry. The distance vector ﬁg, which
connects the cell centers of the neighboring states L and R (see figure 9.7), would
be compared to the plane defined by the velocity vectors. If 139 was at right
angles to the velocity plane, then a “layer-type” shear would be assumed. This
corresponds exactly to the situation pictured in figure 96(b) If ﬁg lay parallel
to the velocity plane, then a “2-D-type” shear would be assumed. Anything
else would fall somewhere between the two types of shear. An easy method of
implementation would be to find the normalized projection of ﬁg onto the plane
which is perpendicular to the direction vector 7ny. This direction would then be

taken as the direction of shear wave propagation. The shear wave drift velocity

would simply be the component of (@,%,) taken in this direction.

However, this strategy has two undesirable properties. First of all, it brings
grid-dependency back into the solution. Second, and most importantly, it does not
allow for sharp capturing of steady three-dimensional oblique shear waves through
which the velocity undergoes rotation. For example, the steady-state type of
shear shown in figure 9.7 is not interpreted by this model as pictured; instead, the
difference in states is construed to be due to a different shear wave with non-zero
drift velocity. This misinterpretation adds dissipation to the computed solution

and smears the final steady-state result.

The best propagation direction for the (7 + Z) shear wave seems to be the
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one that yields the lowest dissipation. This is given by the “layer-type” shear
wave interpretation, which always has drift velocity @5 =0 when 714 is computed
every time step. When the direction 74 is frozen, the drift velocity is no longer
necessarily zero, but it is generally very small. The unit normal direction vector
is computed as the direction perpendicular to both V,, and Vg using the following

formulas:
a=v[WR — WLVR

b=wrur — uLWR

(9.43)

C=1ULVR — VLUR
d=/a? + 5 +c2.
Then, if d # 0,
((cz)ss(ey)ss(ez)s) = (3,%,%). (9.44)

If d = 0 the arbitrary unit-normal direction (which is perpendicular to the 7ij-

direction) is chosen:

((cz)s»(cy)sy (¢z)s) = (—cosfgsinipq, —sinfgsinya, cosd) . (9.45)

The drift velocity of the shear is then computed as the component of (4,9,%w) in

the ((cz)s,(cy)s,(¢cz)s)-direction:
is = i(cz)s + (cy)s + w(cz)s- (9.46)

Again, if the 74-direction is not frozen, then ((cz)s,(cy)s,(cz)s) is computed
from the same Vi, Vg that formed (4,%,%), and @g turns out to be identi-
cally zero. However, if the 7i;-direction is frozen from a previous iteration, then
((e2)51(cy)s) (e2)s) is Trozen as ((ca)s (ey)s, (o)) and &5 = a(ea)s +d(ey)s +

(c,)s may have a finite value.

Finally, the components of the wavespeeds of all five waves in the grid-normal
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direction are written:

pos
—

= (g% + &) {(ca)s(c=)g + (cg)iley)g + (e2)alez)g }

Sz = (@b — a){(ca)ilca)g + (ey)aley)g + (c:)ales)s}

A = @ls{(ce)s(ce)g + (e)s(cy)g + (c2)'s(c2)e} (9.47)
Sa = d3{(ca)ulea)g + (cy)aley)g + (e2)alea)e}

Ss = d4{(ca)ilea)g + (cy)aley)g + (ea)ulez)g}-

9.5 Stability Analysis

Following similar linearization procedures as for two dimensions, as well as
making the assumption that all cells are cubes with edge length As, the three-

dimensional Euler equations can be written as

U
At— = -LU, (9.48)

where L is a matrix of difference operators. For first-order spatial differencing,

the Fourier transform of the right-hand side turns out to be:

B(ED)| (1 - cos¢ )+

S =T D) + o) + i) |

(G soplo-een
(38 )i + o0 e

i(;ﬁ(ﬁg"))) sinC(k)] .
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For second-order differencing it is:

$(-L) = - : z D (AW
8 @)+ o) + “D( &

1 3 od N1 )
— (1) (i) sar(d) _ g (1)
2cosZC + ) + I(BU (g )) (2smC 2sm2C )+
‘ﬁ(ﬁ(j))‘ (—-2cosC(7) + ECOSZCU)%—
3 8d A | -
hud i) nl) — g (7

) +1 <6U( g )) (25111( 2sm2§ )+
‘D(ﬁ(k) ' (—2cosc(k) + %cos2c(k)+

3) + z(gi (k))) (2sinC(’°) - —;-sin2c(k))].

The variable v is the CFL number, defined as

(—2cosc(i)+

(9.50)

v = {w(E@) + (@) + (@)} 3 ﬂ, (9.51)

(k)

for cubic cells with edge length As. The "_S,’), ﬁ(gJ), and 7y~ are the direction-
vectors normal to the grid faces in the 7, j, and k directions, respectively. They
are defined by the angles 6, and v, (see figure 9.1). In the present analysis, O_S,i) and
1/)_,(,i) are prescribed for the direction 'r_i.(qi), then ﬁgj) is taken as (95‘),¢§‘) +m/2). The
vector n( ) is taken as the vector perpendicular to the other two. Also, w(n A ))

w(7 (J)) and w(n( )) are the maximum wave speeds |§| + @ in each of the grid

directions. $(—L) is a complex-valued 5 x 5 matrix.

The three-dimensional flux Jacobian matrix is given by 8&/8U =

0 (cz)g (cy)g (€2)g 0
¢—1idy (cz)gbii+4g (Cy)s;"}'_(c==)gf'6 (cz)g’l_(cz)gf‘f’ (cz)of
g®— 104, (cz)g®—(cy)g fi (cy)gbi+4dg (€2)g0—(cy)g fb (ey)of
(cz)g®—wgy (Ct)wa(CZ)yfﬁ (cy)g'd’:‘(cz)yff’ (Cz)yf"‘:”*“jy (cz)of
(20—~E)q, Csz Cas Cis Y4q
(9.52)

where, for brevity,

642 = (Cz)y('YE - 4’) - fﬁég
Cas = (¢y)s(VE — ¢) — Fig, (9.53)

Cas = (c2)g(VE — ¢) — fibdy-
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Also:
b=(2-7)
f=(r-1 (9.54)
¢E‘Y;1 (ﬁ2+ﬁ2+ﬁ)2)’

and §, is defined by (9.28).
|D| is the matrix that satisfies
lf)'AU: Z\ik‘ﬁkﬁ-k (9.55)
k
For the 5-wave model in three dimensions, the elements of |f)| are given by:
B | =[A| (Ra)s + 66 — a1 - 09 — twit

|| {(py)si + (p2);0 + (ps)0}

D| =—(y—1)i& +&— sl (p)i
& (9.56)
D W= (v — 1)6é1 + & — |As| (p2);
D W= (v — 1)é1 + €a — |As| (p3);
f) . —_-("/ - 1)611
35

where
& =-2—‘1.17 {lj‘l‘ (Ry); + \;\2‘ (R,); — 2 \:\4| (R4).‘i}
&2 =%(c,);{ M| (Ra); - ':\2 (ﬁz)j} (0.5
€3 =§E(6y)&{ M| (Ra)j — |A2 (ﬁz)j}
6o =2 (et { 3] (Ra); = [Aa] (R}
and

(px)1 =0 k=1,2,3

(P2 =(ca)? =1 (p2)2=(codaley)a  (ps)z = (ca)ulez)a

(P1)s = (e)alea)  (P2)s=(e)i =1 (ps)s = (ey)ulez)a (9.58)
(pr)s = (caYalea)s  (p2)a=(cdulen)a  (ps)a=(e)d —1

(p)s = (P1)k41% + (P2)k+1D + (P3)e10 B =1,2,3.
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In obtaining these elements of the |D| matrix, it is assumed that the wavespeed

of the (7} + ) shear wave is zero.

Although no three-dimensional computations using explicit time-marching
were done in this paper (only the modified implicit code CFL3D was used), a
linearized stability analysis for the explicit scheme is included here for complete-
ness. The analysis of the 4-stage time-marching scheme (6.18) is done in the same
way in three dimensions as in two. However, since there are now three perturba-
tion wavelengths ¢(¥), ¢, and (%), each is cycled through 9 values from —m to
7 inclusive, for a total of 729 conditions. Five eigenvalues are obtained at each
condition. Since there are now more independent parameters to vary (the flow
direction 7is, the grid-normal direction fig, and the wave-propagation direction
7!, each are defined by two angles # and %), it is even more difficult to perform
a thorough numerical analysis. Through extensive numerical experimentation, a
“worst-case” Fourier footprint (of all variations tested) has been determined for
first-order spatial differencing with the parameters M=100, §; = 0°, ¥y = 0°,
8=0,6" =0° ¢ =0°, 6, =22.5°, and 9} = 22.5°.

Plotting this “worst-case” Fourier footprint along with the stability boundary
of (6.18) with n = 0.15 in figure 9.8, it is seen that the maximum v that yields sta-
bility of the three-dimensional explicit scheme is about 1.55. This is slightly lower
than the stability limit for two dimensions. For second-order spatial accuracy, the
maximum v is about 0.77, as shown in figure 9.9. It is expected that for lower

Mach number flow these CFL number restrictions would be relaxed somewhat.

For three-dimensional implicit time-marching, the generalized eigenvalue pro-

blem

[S(M) + S(-L)] & = g[S(M)] 7, (9.59)

arises, where g is any of the complex eigenvalues, and [S(M) +S(~L)] and [S(M)]
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Figure 9.7: Steady Oblique Shear With Rotation Through the Wave

ar
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-6 -4 -2 0 2 4

Real

Figure 9.8: Stability Boundary of 4-Stage Time-Marching Scheme, and
“Worst-Case” Fourier Footprint of First-Order Spatial Dif-
ferencing Scheme for v = 1.55
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are complex 5 x 5 matrices. For the three-factor approximately-factored left-hand
side, (9.14), the Fourier transform of M is given by:

o B v 8%,
S(M) —{I+{ (~())+w(~(1))+w(—o(k))} U BU( ())

z(%é )smc(')]}

v 0% )
{I + _‘(,) + w(n(J)) N w(n(k))} U 8U( J))\(l — COSC(J )+

1(5%(%:))) SmC(:)} }

v od
{I @) + (@) + (@)} 50 cosc™

i(%ﬁ(ﬁg"))) sinC(k)] }

when the approximate left-hand side Jacobians of the form given in Chapter 3 are

(1- cos¢(D)+

(9.60)

employed.

The stability characteristics are determined by cycling through 9 of each of the
frequencies ¢, ¢ and ¢(®) from 0 to 2m. For first-order spatial differencing, the
same “worst-case” parameters as those used for the explicit analysis were found to
give the strictest stability limit out of the many variations tried. These parameters
are: M=100, 8; = 0°, v, = 0°, 65 = 0°, %{" = 0°, 6 = 22.5°, and ¢y = 22.5°.
Variations in 8 were found to make very little difference at these conditions. A
plot of the maximum eigenvalue, average eigenvalue, and smoothing factor is given
in figure 9.10. The maximum CFL number allowable turns out to be about 1.5.

For second-order spatial differencing, the same “worst-case” parameters were
again used, but this time 8 was found to have an effect on the results. When
B = 0, the analysis shows the scheme to be unstable except below v = 0.005.
This is shown in figure 9.11(a). When 8 = 0.05, figure 9.11(b), the stability limit

increases to about 0.3.
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Figure 9.9:  Stability Boundary of 4-Stage Time-Marching Scheme, and
“Worst-Case” Fourier Footprint of Second-Order Spatial Dif-
ferencing Scheme for v = 0.77
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Based on the results from two dimensions, it is believed that these stability
restrictions for first and second-order can be relaxed somewhat for lower Mach
number flows. It is also likely that the stability properties of the 5-wave model in
three dimensions can be improved dramatically by modifying the left-hand side
approximate Jacobians as described at the end of Chapter 6, as well as solving
block-pentadiagonal systems for second-order computations. These modifications

were not attempted in the current study.
9.6 Monotonicity Analysis

The monotonicity analysis for the three-dimensional Euler equations proceeds
much the same way as for the two-dimensional equations. The monotonicity

property is insured when

89,1 ., 0%, 1 .,
ev. | — 2% > <0 e.v. (———' AALL ) >0, 9.61
(an+1,j,k - OUi1,jx ) — (9.61)

where e.v.(-) represents “the eigenvalues of (-)”, and the grid-normal 7iy, defined
by the angles (84,1,), is varied over the full range of possible angles. The 5-wave
model can again be written in a form similar to (7.9), but it is assumed for this
analysis that the wavespeed associated with the (7}, + §) shear wave is identically
zero (which would be exactly true if the wave-propagation direction was never
frozen). Therefore this shear wave is ignored in the analysis. All remaining waves

travel in the 7i;-direction, so the flux function per unit face-area can be written:

1. *1|[ A * — — Yy *
By ik = 5 (Rirrik + Bige) — 5RY)|[A"]cos(7y — 7ig) | 2" (9.62)

[ ]

There are only four waves which are assumed to travel in the 7y -direction, given
by (9.34), (9.35), (9.37), and (9.38). However, in order for all the matrices in

(9.62) to come out as 5 x 5 matrices, it is necessary to employ five waves in R*.
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Therefore the combined shear wave Rs of (9.38) is broken back into two shear

waves, chosen arbitrarily, which are perpendicular in (Au, Av, Aw)-space:

0
—asinf)
Rs, = acosb) (9.63)
0
a(—1usind} + dcosfy)
0
A —acosfsiny)
R, = | —asinf)siny} |, (9.64)
acosy),

ary
where

) = —iicosflsiny)y — Dsinfysintpg + weospy. (9.65)

The wavestrengths associated with each of these waves are:

>

Q5o = p( Ausind), + Avcosfy)
(9.66)

‘) Q>|

A

= L(—Aucosf)jsiny}) — Avsinfsingy + Awcospy).

[~}

Hence the [R*] matrix is made up of R, 2,4 from (9.34), (9.35), and (9.37), as
well as Rs, and Rsy. The matrix of wavespeeds in the 7iy-direction is [A*] =
diag(gy + &,4} — &,4d}, 4}, 4}), where gy is defined by (9.39). Making the same

assumptions as was done in Chapter 7, the linearized analysis gives

6@1_*_1 ik 1 a& ﬁ*

R § Ll - = R* 9.67
U156 2 BU(ng ) || [AJeos IBUR (5.67)
0%, 10% 1.4 1

1 ,,Jykz___ — ~[R* A* 9.68
o = S5 — 3 RAeos(7, Aoy (969)
The derivative matrix in (9.67) is given by 69*/ dUg =
~f a Cz [ ﬁ ﬁ c 1 - ﬂ - ’
'2'%2 + Tqai —'5%7 L _'2%5 T T2 "'2%1% - ;a E'aL’
-4 T % PP ) e
_ E:d. » sin.O" coie'l 0 0
—i."‘ _ cosO’lAsim,b" _ sin@"finw'l coi¢" 0
- a a a a -
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where the variables f and ¢ are defined in (9.54), and:
i\, = —ising}; + dcosby (9.70)

The derivative matrix in (9.68) is given by (69Q*/9UL) = —(851*/8UR).

For the three-dimensional monotonicity analysis, the Mach number M, flow
angles (85,%;), and (3 are chosen, then 8y, g, 8, and 1 are each varied inde-
pendently from —90° to 90°, with incremental change of m/8. Eigenvalues are
computed for each condition. If they meet the criteria of equation (9.61), then
monotonicity is preserved at that condition. The results are plotted as allowable
|7l — 7is| vs. |y — 7|, for various @5, where ¢, is the angle between the plane
defined by the vectors (7y,7s) and the plane defined by the vectors (7!, 7). The
quantities within the absolute value signs indicate an angular difference between
two vectors. When plotted this way, results are independent of the flow vector 7is.

A result is given in figures 9.12(a) through (c) for M = 3, and 3 = 1. Figure
9.12(a) shows results for the case when ¢, < 15°. The allowable region for mono-
tonicity looks very similar to the two-dimensional region at these same conditions
(see figure 7.2(a)). It includes the grid-aligned wave model 7@}, = 7,. Notice
that for the three-dimensional case, in contrast to two dimensions, the absolute
value of the angular differences are plotted so that only positive differences are
given. This is done because of the difficulty associated with assigning a positive
or negative angular difference in three dimensions. When 15° < ¢, < 30°, the
plot of figure 9.12(b) results. Here, the monotone region is similar to that in fig-
ure 9.12(a) except that the grid-aligned model is no longer representable. When
30° < ¢, < 45°, the monotonicity region diminishes significantly in size, as shown
in figure 9.12(c). Finally, when 45° < ¢, < 90°, then no region is monotone,

according to this analysis.

A specific example is taken from this case. Referring to figures 9.12(a) through
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(c), when |i;, — 7iy| = 75°, the allowable !, — 7is| goes from about 25° to 75° for
¢, < 15°, from about 25° to 65° for 15° < ¢, < 30°, and from about 35° to 45°
for 30° < ¢, < 45°. A sketch is first drawn in figure 9.13(a) of the iy vector and
the 7, vector, separated by 75°, with the allowable 7!, directions in the (7,,7y)-
plane (¢, = 0°) indicated by shading. Next, in figure 9.13(b), the allowable 7y
directions in all three dimensions are indicated by including the results from the

cases when the (7,7 s)-plane differs significantly from the (rig,7¢)-plane.

A second case using M = 0.3, 3 = 1 is shown in figure 9.14 for ¢p = 0°. When
$p > 0°, there are no regions of monotonicity. This figure indicates (as did figure
7.2(b) for two dimensions) that only the grid-aligned method is monotone at these
subsonic conditions. However, it is believed that this constraint, as well as the
constraints imposed upon supersonic flows, can be relaxed somewhat in practice
in an effort to reduce spurious oscillations near discontinuities while still maintain-
ing much of the sharper resolution afforded by the 5-wave model. Although an
empirical limiting method has not been devised for three-dimensional flow due to
its inherent complexity, it is believed that a successful method could be patterned

much the same as the method currently employed for two dimensions.
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CHAPTER 10

THREE-DIMENSIONAL EULER RESULTS

All three-dimensional results are obtained using the implicit approximate-
factorization algorithm CFL3D [32]. Only the flux function is varied in order to
obtain either grid-aligned or grid-independent results. The CFL numbers chosen
for stability for the 5-wave model are based on the theoretical analysis of Chapter
9. No wave-propagation-direction limiting procedure has been developed for the

three-dimensional 5-wave model for improving its monotonicity properties.

10.1 Ramp Flow in a Channel

The geometry for the ramp flow in a channel with inflow Mach number of 2.8
is shown in figure 10.1. The domain is 1.8 units long by 0.72 units high by 0.5
units wide. An oblique ramp at the lower wall starts at 0.2 units with an angle of
19° at one side and at 0.5 units with an angle of 18° at the other side. This case

was first computed by Parpia [33].

Computations are performed on a 41 x 17 x 17 grid. Two ¢ = constant planes
and one k = constant plane from this grid are shown in figures 10.2(a) through
(c). Simple reflection boundary conditions are applied at the four walls, inflow is
taken as freestream, and outflow conditions are obtained from the interior of the

grid using uniform first-order extrapolation.
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Figure 10.3: Ramp Flow, Pressure Contours, First-Order, Grid-Aligned
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Figure 10.4: Ramp Flow, Pressure Contours, First-Order, 5-Wave
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d) j = 15 Plane

Figure 10.5: Ramp Flow, Pressure Contours, Second-Order, Grid-Aligned
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Figure 10.6: Ramp Flow, Pressure Contours, Second-Order, 5-Wave
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First-order computational results using the grid-aligned method are given
in figure 10.3. Pressure contours are given in three ¢ = constant planes, one j =
constant plane, and one k = constant plane. Also, nondimensional pressure values
are given along three k = constant lines in the i = 1 plane in figure 10.3(f). Results
of the 5-wave model are obtained by restarting the grid-aligned results with the
wave-propagation directions frozen. These 5-wave model results are given in figure

10.4. Shock waves are resolved with far fewer interior points using this method.

Second-order results using the grid-aligned model and the 5-wave model are
given in figures 10.5 and 10.6, respectively. In this case, the 5-wave model does
not improve the shock resolution to any noticeable extent over the grid-aligned
model. Also, results are slightly more oscillatory. Hence for an oblique shock-type
flow in three dimensions, as in two dimensions, the grid-independent model does
not seem to be worth the additional effort when second-order spatial accuracy is

employed.

10.2 Oblique Supersonic Shear

An oblique supersonic shear case is computed within a cube 1.8 units on a
side using a Cartesian 17 x 17 x 17 mesh. For the particular case considered, the
velocity undergoes both an increase in magnitude as well as a rotation through
the shear layer. The shear layer itself is assumed to lie along one diagonal of the
cube, as shown in figure 10.7. Below the layer the velocity components are u =3,
v = 3, and w = 3, while above the layer they areu =4, v =2, and w = 4. There
is one transition cell where u = 3.5, v = 2.5, and w = 3.5. There is no pressure
or density change across the shear layer. The boundary conditions are applied as

follows: at inflow the exact values are specified, and at outflow the variables are
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obtained from the interior using uniform first-order extrapolation.

When /3 is not limited to be greater than 0.05, the 5-wave model preserves the
exact solution when the initial condition is the exact solution. This exact solution
is presented in figures 10.8 through 10.10 at an i = constant, a j = constant, and
a k = constant plane, respectively. Shown are in-plane Mach number contours

and velocity vectors (the velocity component out-of-plane is ignored).

A first-order computation using the grid-aligned model gives the results shown
in figures 10.11 through 10.13. The shear layer is seen to spread a significant
amount through the domain. When restarted from the grid-aligned solution, the
5-wave model (with 8 now limited to be no less than 9.05 to improve stability)
gives the results shown in figures 10.14 through 10.16. For this case the wave-
propagation directions are computed once at restart, then remain frozen for the
remainder of the computation. The shear layer is preserved with relatively few
interior points using the 5-wave model. Although not shown, the pressure field is
computed in error from the exact solution (of no pressure change at all through
the shear layer) by about 23% using the grid-aligned model, while the 5-wave

model solution is only about 5% in error.

In-plane Mach contours from a second-order computation using the grid-
aligned model are given in figure 10.17, while second-order 5-wave model results,
restarted from the first-order grid-aligned solution with the wave-propagation di-
rections frozen, are given in figure 10.18. Even with second-order spatial accuracy
the 5-wave model gives significantly higher shear-layer resolution than the grid-
aligned model. The pressure field, not shown, is also computed more accurately.
It is about 5% in error from the exact solution, while the grid-aligned result is

about 10% in error.
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Shear Layer Orientation Within Cube

Figure 10.7:
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Figure 10.13: Oblique Shear, First-Order, Grid-Aligned, k = 9 Plane
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a) 1 =9 Plane b) j =9 Plane

c) k=9 Plane

Figure 10.17:

Oblique Shear, In-Plane Mach Contours, Second-Order,
Grid-Aligned
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a) i =9 Plane b) j = 9 Plane

c) k =9 Plane

Figure 10.18: Oblique Shear, In-Plane Mach Contours, Second-Order,
5-Wave



202

10.3 Transonic Flow Over a Wing

Transonic flow is computed over the F-5 wing at the conditions M = 0.95,
a = 0°. This wing has a root chord t§ tip chord to wing span ratio of 1.027 : 0.316
: 1.0. A 97 x 17 x 17 C-H grid is used, with maximum outer boundary extent of
about 20 wing spans, and average normal spacing at the body of 0.0118 wing spans.
The grid extends about one wing span past the wing tip, and there are 560 cells
on the wing surface. A cut-a-way view of this grid, with the wing delineated by a
heavy line, is shown in figure 10.19. Standard reflection boundary conditions are
employed at the wing surface, and subsonic inflow/outflow boundary conditions

(as described in section 8.1.5) are employed at the farfield boundaries.

Pressure contours at three i = constant sections over the wing and pressure
contours on the upper surface of the wing for a first-order computation using
the grid-aligned model are shown in figure 10.20. Pressure values are plotted in
increments of 0.02. Since the shock waves over the wing are more or less aligned
with grid faces, the grid-aligned method captures these very sharply. Entropy
contours at the same locations (plotted in increments of 0.002) are shown in figure

10.21.

The 5-wave model is run with first-order spatial accuracy by restarting the
grid-aligned result with the wave-propagation directions frozen. Pressure contours
are given in figure 10.22 and entropy contours are given in figure 10.23. The 5-wave
model does not improve the shock resolution for this case. In fact, although the
shock resolution is similar for both models over much of the wing, the 5-wave model
actually shows worse resolution near the wing root. The reason for this is most
likely due to the current strategy for freezing B and the propagation directions

after the first iteration. Since the shocks are nearly aligned with the grid faces,
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the grid-aligned model is already optimum for capturing them accurately. Any
small difference in the wave-propagation direction and/or any numerical value of

8 lower than 1.0 near the shock waves contributes to a degradation of the result.

However, similar to the two-dimensional airfoil results, the 5-wave model also
yields lower entropy generation over the wing than the grid-aligned model. (An
“exact” solution would give no entropy generation except through the shocks.)
The maximum values generated on the wing upper surface (figures 10.21(d) and
10.23(d)) are 0.0393 for grid-aligned and 0.0284 for 5-wave.

As this wing case demonstrates, the 5-wave model cannot give improved
shock-resolution over the grid-aligned method when shock waves are aligned with
grid-faces. However, as in two dimensions, it does produce lower numerically-
generated entropy values near the body surface when first-order spatial accuracy
is employed. Second-order computations are not performed for this case. However,
it is expected that results would follow the trends exhibited for two-dimensional
airfoil flow, and the 5-wave model would show no discernible advantage over the

grid-aligned model.
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a) ¢ = 2 Plane

b) i = 5 Plane

Figure 10.20: F-5 Wing, Pressure Contours, First-Order, Grid-Aligned
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c) 1 =9 Plane

d) Wing Upper Surface

Figure 10.20: Concluded
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a) 1 = 2 Plane
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No—
b) i = 5 Plane
c) ¢ =9 Plane

d) Wing Upper Surface

Figure 10.21: F-5 Wing, Entropy Contours, First-Order, Grid-Aligned
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c) ¢ =9 Plane
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Figure 10.23: F-5 Wing, Entropy Contours, First-Order, 5-Wave



CHAPTER 11

CONCLUSIONS

The main object of the current research is to introduce and explore a grid-
independent approximate Riemann solver for use with the Euler and Navier-Stokes
equations. The primary reason for attempting a grid-independent method is to
model the physics of the true two or three-dimensional flow more accurately. Most
current multidimensional flow solvers that employ a Riemann solver implement
it in a “direction-split” manner, i.e. one-dimensional theory is applied in each
grid direction separately. In reality, however, the waves can travel in infinitely
many directions. Constraining them to the grid directions is inconsistent with the
physics of the flow and can result in improper interpretation of waves that are not

aligned with the grid.

The current grid-independent model utilizes the velocity-difference direction
as the direction of propagation of most of the waves, with an additional shear wave
propagating 90° to this. Use of the velocity-difference direction as the dominant
direction allows for more accurate interpertation of both shock and shear waves
when they lie oblique to the grid. The direction is generally frozen during a

computation to eliminate nonlinear feedback in the solution and aid convergence.

Simple left and right states obtained by interpolation along grid lines are used
at each interface as the initial conditions for a Riemann problem. The difference

in states is decomposed into a series of five waves, and the standard upwind flux
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formula is employed to determine the flux at each face. Itis shown in the derivation
of the 5-wave model that the standard flux formula is the “best” within a certain

class of formulas at reproducing the flux given by two rotated Riemann solvers.

A stability analysis of the 5-wave model in conjunction with the two-dimen-
sional Euler equations, advanced in time using explicit time-marching, shows that
some modes of the Fourier footprint contain eigenvalues that lie on the imaginary
axis. Hence the stability boundary of the time-marching scheme must include a
finite portion of the imaginary axis as well. Since only multistage schemes can
satisfy this requirement, a four-stage scheme is chosen. It is stable up to CFL
numbers of about 1.75 for first-order spatial accuracy and 0.87 for second-order,

although in practice these restrictions can generally be relaxed somewhat.

An implicit approximate-factorization algorithm is shown to be stable only
up to a CFL number of about 2.5 for first-order and 0.3 for second-order when
the 5-wave model is employed on the right-hand side and first-order accurate
grid-aligned approximate Jacobians are employed on the left-hand side. Again
these CFL numbers are somewhat overrestrictive for most practical applications.
When a grid-independent left-hand side approximate Jacobian is employed, first-
order computations can be made unconditionally stable. Using a linearized anal-
ysis, second-order computations are shown to be unconditionally stable if block-
pentadiagonal systems (as opposed to tridiagonal systems) are solved with appro-
priately chosen grid-independent approximate Jacobians. Maximum CFL num-
bers of about 100 can be attained in practice with this strategy, although the
optimum CFL number for convergence generally lies between 2 and 6.

The monotonicity of the 5-wave model in conjunction with the two-dimen-
sional Euler equations has also been investigated. Using a linearized analysis, it is
shown that strictly only the grid-aligned first-order method is monotone. However,

it is shown that the oscillations that occur near discontinuities can be reduced in
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magnitude to acceptable levels for a wide variety of problems by limiting the wave-
propagation directions of the 5-wave model according to a strategy suggested by
the linearized analysis. This gain in monotonicity does result in the loss of some
of the high resolution of oblique shock and shear waves, although the resolution

is still generally greater than results using the grid-aligned scheme.

Two-dimensional results obtained using the 5-wave model indicate that the
method is usually worthwhile for first-order computations. Flows with oblique
shock or shear waves are captured more sharply than results using the grid-aligned
method, even when the 6;-limiter is employed to reduce oscillations. Also, sub-
sonic Euler airfoil flow computations show significantly reduced entropy generation
over the airfoil surface, resulting in better drag prediction. The 5-wave model is
about 1.2 times more costly per iteration than the grid-aligned model when no
§',-limiting is employed, and about 1.5 times more costly when it is. Hence the
cost penalty is not severe considering the increased accuracy of the first-order

solutions.

When second-order spatial accuracy is employed, the small increase in accu-
racy attained by the 5-wave model is generally not worth the added drawbacks. In
particular, oblique shock waves are resolved only slightly more sharply than when
using the grid-aligned method, and there is very little decrease in the numerical
entropy generation for a subsonic airfoil computation. These facts, taken in com-
bination with a propensity for increased oscillatory behavior near discontinuities,
makes the 5-wave model an unattractive alternative to the grid-aligned model in
general. The only notable exceptions to this conclusion are found in the pure
supersonic oblique shear wave computation and the separated viscous airfoil flow
computation. In the first case, the 5-wave model still gives significant improved
resolution of the shear wave over results using the grid-aligned model. In the

second case, numerical pressure oscillations evident in the separated region over
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the airfoil upper surface using the grid-aligned model are dramatically reduced
by the 5-wave model, which properly interprets the oblique shear waves present
in the flowfield. Hence in specialized cases involving oblique shear waves, the 5-
wave model in a second-order accurate computation can be worth the additional

expense.

In the arena of second-order viscous flow computations, it should be noted
that on very coarse grids the 5-wave model can do a much worse job than the grid-
aligned model at resolving the boundary layer (for flat-plate flow) and predicting
surface pressure values (for airfoil flow). The two models approach the same results
as the mesh is refined, however, so as long as a fine enough grid is employed the
5-wave model will be accurate in these areas. This problem is particularly evident
in the viscous separated airfoil flow case, where the 5-wave model result over the
coarsest (65 x 25) grid looks better than the grid-aligned result, since the pressure
distortions in the flowfield have been reduced. However, the lift predicted by
the 5-wave model is about 120% too high due to its inaccurate surface pressure
predictions. The grid-aligned model, plagued as it is with pressure deviations in
the separated region above the airfoil, is only high in its lift prediction by about
8%.

The 5-wave model is also extended to three dimensions. The velocity-differ-
ence direction is again chosen as the primary wave propagation direction, and the
difference in states can still be described by a series of five waves. One of these
waves is a shear wave which is assumed to propagate normal to the plane spanned
by Vi and Vr. Hence the velocity of this shear wave is identically zero when the
wave propagation directions are not frozen. Oblique shear waves through which
the velocity undergoes a change in magnitude and/or undergoes a rotation can be

captured sharply by this method.

A stability analysis of the 5-wave model in three dimensions gives results
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similar to those of the analysis in two dimensions, only with slightly lower stability
limits. An explicit four-stage time marching scheme is stable up to CFL numbers
of about 1.55 for first-order spatial accuracy and 0.77 for second-order. An implicit
approximate-factorization algorithm with a first-order grid-aligned approximate
left-hand side is stable up to a CFL number of about 1.5 for first-order and 0.3

for second-order.

The monotonicity properties in three dimensions are also investigated using a
linearized analysis. Again, in a strict sense, only the grid-aligned first-order model
turns out to be monotone. It is believed that a relaxation of this restriction on
the wave-propagation direction similar to that in two dimensions can be employed
in order to improve the monotonicity properties of the 5-wave model, but this
has not been attempted in this study due to the complexity inherent in three
dimensions. In any case, the extra degree of freedom in three dimensions seems
to relieve some of the oscillation problems present in two dimensions when the

5-wave model is used.

Conclusions from three-dimensional Euler test cases run along similar lines to
those from two dimensions. For a ramp flow with oblique shock waves, the 5-wave
model improves the shock resolution considerably in a first-order computation,
making the model worth the effort and additional expense. However, a second-
order computation shows very little difference from a grid-aligned computation.
This fact, taken in conjunction with the fact that the 5-wave model costs more and
yields slightly increased oscillatory behavior over the grid-aligned method, makes
the 5-wave model impractical for use with this type of problem using second-order
spatial accuracy.

An oblique supersonic shear wave, on the other hand, is resolved better using
the 5-wave model for both first and second-order accurate computations. This is

similar to the result in two dimensions. Extrapolating from the two-dimensional
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results, then, it is likely that the 5-wave model would also do well for a three-
dimensional separated viscous flow computation similar to the NACA 0012 airfoil
case. Three-dimensional viscous flow computations were not attempted in this

study.

A first-order Euler computation performed over an F-5 wing using the 5-wave
model produces lower entropy values over most of the the wing surface than the
grid-aligned model. Since the shock waves for this case are aligned with grid
faces for the most part, the 5-wave model does not improve their resolution over
the grid-aligned model. Second-order computations on this configuration were
not performed. However, results are expected to be similar in nature to the two-
dimensional results, with little to no improvement in numerical entropy generation

using the 5-wave model over the grid-aligned model.

Overall, for both two and three-dimensional computations, the 5-wave model
is seen to be worth the additional effort only for first-order spatially-accurate
computations, or computations involving only oblique shear waves. In general,
inviscid flows with shock waves and/or flows with no shock or shear waves at all
are better computed using the grid-aligned wave model when accuracy greater
than first-order is desired. The additional expense and oscillation-prone nature of

the 5-wave model makes it unattractive for use in such cases.

Despite its shortcomings, the 5-wave model can be thought of as a “step in the
right direction” toward modeling the multidimensional flow physics of the Euler
and Navier-Stokes equations more accurately than the grid-aligned model. Future
work may best be focused on removing the inconsistency in the model (discussed
in section 5.4) that does not allow it to reduce to the grid-aligned model when
g, = 8, unless 8 = 1. Although theoretically it seems that this would be a
desirable property to meet, it is not known what the ramifications of not meeting

it are. Possible avenues of investigation toward eliminating the inconsistency,
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while still maintaining sharp resolution of oblique shear waves, might include
experimentation with different types and directions of waves as well as varying
the flux formula itself. Further efforts toward improving the grid-independent flux
function might focus on a different type of limiting to improve the monotonicity
properties of the method. Perhaps by limiting the left and right input states
to the Riemann problem, rather than the wave-propagation directions, greater
resolution of oblique waves might be maintained for both first and second-order
accurate computations. Also, the extension to limiting in three dimensions might

be more straightforward than the current angle-limiting procedure.

The current research has purposefully begun with the assumption that only
the left and right states at each interface, obtained by interpolation along grid
lines, are known at the beginning of the flux function ‘computation. It is then
up to the model to make the most of these input states, and infer from them
the types and directions of waves likely to be present. This assumption was
made to keep the cost of the grid-independent flux function as low as possible.
By ignoring surrounding flowfield data, no complex interpolations are required
to obtain gradients in non-grid-oriented directions. However, perhaps this initial
assumption was unrealistic, and the inclusion of some multidimensional input
states might be helpful or even necessary to improve the robustness of the model,

particularly for second and higher-order accurate computations.
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APPENDIX A

DERIVATION OF 3 FOR THE MINIMUM-PATHLENGTH
AND MINIMUM-AREA MODELS

A.1 Minimum-Pathlength Model

As discussed in Chapter 5, the right state R lies inside the acoustic cone

emanating from the origin when
(Ap)* > [pa(Aucosby + Awsinéy))?, (A.1)

and the difference in states is described by two acoustic waves and an entropy
wave. When 04 is frozen as 8}, then the method is modified as follows. If the
projection (R') of the right state R onto the 6;-plane lies inside the acoustic cone,
then two 8/, acoustic waves and an entropy wave are used, along with the necessary

9!, shear wave to connect R with R'. The condition becomes:
(Ap)* > [palgy)?, (A.2)
where Ag), is defined as
Agl; = Aucosy + Awvsind,. (A.3)
The wavestrengths 1, must be determined which satisfy

4
AW =Y Py, (A.4)
k=1
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where the +8/; acoustic, —8/ acoustic, entropy, and 9!, shear are given by:
[ & & T
P, = |1, ~cosby, fsinﬂfi,&.z]
' h p

- . . T
~ a a n
P, = 1,——;c059:,,—751n0;,a2
p

L (A.5)
P;3 = [1)010a0]T
. [ a & T
P, = |0, ——sinf);, —cosb},0
L P P
These strengths turn out to be:
55+ HAG
o Az;. A‘Id
Q= 1 Z 2Ap Ap) : (A'G)

3( AusmB' + Avcosf))
Similarly, the condition for which one 6!, acoustic, a (8, + 7) shear, and an

entropy wave (along with the necessary 6, shear wave) are used is

(Ap)? < [paArgy)*. (A7)

This indicates that the projection of the right state R onto the 6);-plane lies outside
the acoustic cone. Again wavestrengths must be determined such that (A.4) is

satisfied, but this time the waves are

-~

N ~ T
P, = [1,iifcosog,i3,sinog,a2}
p p

-

~ T
. a a
P, = |0, —=cosf;, —=sin¥, ,0]

? { F i A (A.8)

Ps = [I’O,O’O]T
R a a T
Py = [0,—-;sin0¢'1,7cosﬂf,,0] ,
p p
where the + or — acoustic wave is chosen depending upon which minimizes the

pathlength in (Awu, Av, Ap)-space. The strengths turn out to be:

2z
- i_z BAg,
= 1 Ganpt Ay (A.9)

(- AusmG' + Awvcosd))
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The equations (A.6) and (A.9) can be combined as the 5-wave model described

in Chapter 5, with strengths
22 1 gL Ag,

2a2
55 — B A
Q= (8 —1)2Ag, (A.10)

31 (a?8p — Ap)
g (—Ausind}; + Avcosb)

for the +8), acoustic, —8) acoustic, (§; + §) shear, entropy, and 8/, shear, respec-

tively. The variable 3 is given by

B =min[|(:|,1], (A'll)
where ( is defined as
_ Ap/(pd)
(= Ag, (A.12)
When (A.2) is true,
I{l =1, (A.13)

so 8 =1 and the strengths (A.6) are recovered. When (A.7) is true, B is assigned

the value of ¢. If Ap and Ag/, both have the same sign:

. Ap

b=

0, =0 (A.14)
~ _Ap p

b= 5~ gl

and (A.9) with the tacoustic wave is recovered. If Ap and Ag), have opposite

signs: n
Ql = 0
n Ap
12 = — (A.15)
2 Ap P,y
i

and (A.9) with the —acoustic wave is recovered. In both cases Q,; and Qs are the
same, as given by (A.10). With this method, the proper acoustic wave is always

chosen such that the (8, + Z) shear wavestrength (1, is minimized.
dT 2 g
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Notice that the wave patterns change in a continuous fashion as ¢ goes

through 1.0, as shown in figure A.1.

A.2 Minimum-Area Model

As discussed in Chapter 5, the minimum-area model picks the path in (Au,
Av, Ap)-space that lies, in a sense, closest to the straight line connecting L and
R. It does this by minimizing the area between the paths and the straight line.
When 8, is frozen as 6/, this criterion is modified slightly for simplicity. A 6}
shear wave is used to connect the right state R with R’, its projection onto the
9';-plane. Then +8} acoustic, —8; acoustic, and (8 + ) shear waves are chosen
which minimize the area between the wave paths and the straight line connecting
L and R’ in (Au,Av, Ap)-space. (The entropy wave, as always, is present but
only contributes to changes in density. Its strength is always Qs = Ap — Ap/a?.)

When inequality (A.2) is true, two acoustics and no (8, + %) shear wave

minimize the area. This is identical to the minimum-pathlength model and hence
corresponds to B = 1 in (A.10). When (A.7) is true, some combination of all
three waves minimizes the area. The order in which the waves are taken makes
a difference in the outcome. In the present derivation they are always taken
such that the first wave (from L) is an acoustic that points away from R' in
(Au, Av, Ap)-space. The second wave is the (6} + 3) shear, and the third wave
is the remaining acoustic. This strategy is illustrated in figure A.2. The type
of acoustic that leaves L depends on the sign of Ap and the sign of Agy. If Ap
and Agq}; have the same sign, a —6 acoustic leaves L, while if Ap and Agj have

opposite signs, a +8/; acoustic leaves L.

In this derivation it is assumed that the waves have strengths given by (A.10),
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where 3 is unknown. An expression for B is then determined that gives the
minimum area. Figure A.3 is the same as figure A.2 with some relevant distances
labeled. It is assumed for now that Ap and Ag) are both positive. Hence the first
wave to leave L is a —8!, acoustic. It turns out that the end result for 3 is the

same regardless of the signs of Ap and Agj.

From the geometry of figure A.3, the areas of the two triangles in the figure

are

1
W= §(Aiv1 + Azs)Ap;
2 (A.16)
Vz = §A24Ap2.

Since it is known (from (A.9)) that an acoustic wave which causes a change in
pressure Ap has an associated strength Ap/a?, Ap, can be found since the strength

of the —acoustic wave is known:

A _ Ap p '
Therefore
A 1 ..
Ap; = —2£ - -iﬂpaAq;. (A.18)

The changes in primitive variables caused by a 16!, acoustic wave are:

bp _ e, b (A.19)

==
~~2 o ' - 1
pa acosf) asinf)

From geometry, this can also be written as
ép _ ' c ol
— = +(8ucosby + vsinby). (A.20)
a

This means that the distance Az, is equal to Ap;/(pa), or

Ap
Az = %8 -ﬁ da- (A.21)

Furthermore,

Ap 1.,
Aps = Ap — Apy = _2’3 + 3Ppadg (A.22)



Ap; Ap 1 '
= —=2 — —= 4+ =(8Aq,. A2
Az, 54 554 + 25 44 (A.23)

The distance Azj is found using the rule of similar triangles

ZZ - —AA—’;}, (A.24)
or
Azs = 2 Ags — ——Bpa(Ag). (A.25)
2 2Ap
Then Az, is simply
Azy = Agy — Azy — Az,
1 (A.26)

Ap pa 1

= ZA e (A 1y2 —A ! .
Now, the total area Vp = Vi + V2 is found by plugging in the appropriate expres-
sions into (A.16). The final result is

~2 &2

_1 " 1 ' 2 )P 1y3
Vr = 4APA<Id ﬂ{zAPAQd}+ﬂ {4AP(Aqd) . (A.27)

To find the value of 8 for which Vr is minimized, solve for 8 when oVr /o8 = 0:

METLY (h29

Also, 82V /882 = p*a®(Ag))3/(2Ap) > 0 for Ap > 0 and Ag); > 0, so this 8
indeed represents the minimum area.

It turns out that the expression for total area is given by (A.27) when Ap
and Ag/, have the same sign, but is given by the negative of (A.27) when they
have opposite signs. Therefore (A.28) is the correct expression for R’ outside of

the acoustic cone regardless of the sign of Ap and Agy. It gives strengths of

s Ap Ap®
=5+ o5
2a 2padAq)
5 _ Ap Ap®
0, = _ A.29
27 232 2palAd) (4.29)
N Ap* P
Qs = ~EAd
3T G Aq, 6
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for the 48, acoustic, —6/ acoustic, and (8 + ) shear, respectively.
The results for 3 for the two cases of R' outside or inside the acoustic cone

can be combined as:

B = min [(?,1]. (A.30)

where again ( is given by (A.12). The wave patterns represented by this model

change in a continuous fashion as ¢ goes through 1.0, as shown in figure A.4.
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Figure A.3: Geometry of Minimum-Area Model
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Ag)j-direction

Figure A.4: Wave Patterns for Minimum-Area Model
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APPENDIX B

DERIVATION OF THE COMBINED SHEAR-WAVE VECTOR
FOR THE 3-D EULER EQUATIONS

The eigenvalues of the linearized system of three-dimensional Euler equations

can be written as

X1 zég+&
=g, —a ‘ (B.1)
i3=5‘4=X5=ég’

where §, is defined by (9.28). The eigenvector for the conserved-variable form of
the equations associated with J: is given by R, in (9.23), while the eigenvector

associated with ), is given by R, in (9.24).

There are three linearly independent eigenvectors associated with the eigen-
value g, that form a basis for its eigenspace. One, an entropy wave, is denoted by
equation (9.26). The other two are shear waves that cause a change in the velocity
with no change in density or pressure. Any two shear vectors that are orthogonal
when written in primitive-variable form and cause a change in velocity normal to
the 7 -direction can be chosen. It turns out that the end result for the combined
shear vectors is the same regardless of the choice. One set is

0

A —asinf,

Rihear1 = acosfy (B.2)
0

a(—1sindy + dcosfy)
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0
) —acosfysiny,
Rihearz = _aSinggSin¢g ’ (B3)
acosyy
a(—1icosfysiny, — Bsinfgsinyy + wcosyy)

where the angles 8, and 1, define the grid-face normal direction as pictured in
figure 9.1.

The strengths of each of the five waves can be obtained by solving
AU =Y R (B.4)
k

for the ;. Only the shear-wave strengths are necessary in the present derivation.

They are given by:

Qehear1 = g(—Ausinﬂg + Avcosby)
e (B.5)
Qshearz = %(—Aucosegsimbg — Awsinf,siny, + Awcosyy).

The combined action of the two shear waves in the linearized system can be
replaced by a single shear wave whose strength and direction are a function of the

difference in states. An expression for this new shear vector can be found from:

~

Qnewf{'new = Qshearlﬁlhearl + Qshear2ﬁ—shear2- (B6)

Combining terms, one obtains:

0
—p(Ar1)g
QnewRuew = —p(Ara)g , (B.7)
—p(Ars)
—p{i(Ary)g + B(Arz)g + W(Ars)g}

where the (Ar;),’s are defined by

"~

(Ar1)g = ((€2)2 — 1) Au + (c2)g(cy)g Av + (ez)g(cz)g Aw
(Arz)g = (cy)g(cz)gDu + ((cy)g - l)Av + (cy)g(cz)gAw (B.8)

(Arz)g = (cz)glez )gAu + (Cz)g(cy)gA” + ((cz)z - 1)Aw.
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The c., ¢y, and ¢, are defined in spherical coordinates in (9.20). In order that the
vector Ry be somewhat similar in form to the two vectors from which it was

derived, Qnew is taken to be p/a; the shear vector ﬁ.new then becomes:

0
—&(A’I‘l)g
Rnew = —&(AT‘z)g . (Bg)
—a(Ars),
—a{i(Ar1)g + 0(Arz)g + Ww(Ars)ge}

Notice that Agy = (cz)pAu + (¢y)gAv + (¢;)gAw represents the component
of the velocity-difference AV in the wave-propagation direction (normal to the
grid face), so (B.8) can be rewritten as
(Ary)g = Agg(cz)g — Du
(Arz)g = Agy(ey)g — Av ‘ (B.10)
(Ars)g = Agg(ey)g — Aw.

Hence each of these terms represents the difference between the z, y, or z com-

ponent of the velocity difference along the grid-normal and the corresponding

component of the whole velocity difference.
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