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In the ordinary theory ol optimal control (LQR and Kalman Filter),
tne variances ¢f the aciuators and the sensors are assumed to be known( nol
related to the capacities of the devices). This assumption is not truc in practice.
Gienerally , a device with greater capacity to exert actuating forces and a sensor
capable of sensing greater sensing range will generate noise of greater power
sacctral density.

When the ordinary theory of optimal control is used to cstimate the
crrrors of the outputs in such cases it will lead to [laulty results, because the
capacitics of such devices are unknown before the system is cesigned. The
performance of the system designed by the ordinary theory will not he optimal
as the variances of the sensors and the actuators are neither known nor con
stant. The interaction between the control system and structure could bhe scricus
becanse the ordinary method will lead to greater feedback (Kalman gain)
rmatrices.

The man purpose of this paper is to dvelop methods which can
optimize the performance of — systems when noises of the actuators  and the
sensors are related to their capacities. These methods will result in smaller
fredback ( Kalmean gain) matrix. The smaller matrices will reduce the interac-
tion hetween the control system and system structure and, thereby, reducing the
requirements on the structures and consequently making the structure more
ficxihle.

INTRODUCTION

in the optimal control of stochastic systems, we ordinarilv assumec that
noises of the actuators and the sensors arc not related to the capacity of the
actutors and scnsors[1,2,3] This assumption is not truc in practice.Generatly,
the variances of actuators and the sensors, cspecially the actuators |, are related
1y the capacitics of the devices. Obviously, a fuel jet capable of gencrating a
force of 100 Ihs will have greater noises than the one capable of generating a
foroe of 1 1h. 1t will be realistic and practical to assume that (he noise variance
of the actuators and the sensors be linear function of the variance of the con-
trolling forces and the outpul of the sensors i.e., the observations. Under this
assumption when .« device is required to have greater capacity it will also intro-
duce greater noise. The ordinary method of optimal control  problems have  at
least three defects.

(a) It is hard to specify correctly the noise power spectral densities
of the actuator and the sensor because the capacitics of thesc devices are un-
knowvn o
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helore the system s designed

(b) The resultant feedback and Kalman gain matrices mav not be
optimal when the noises in these devices are not related to their capacitics.
Therafore, the performance of the control system may not be as good as it
would he otherwie.

(¢) When the noises are assumed to be not related to the capacities
af the devices, the resultant feedback and Kalman gain matrices will be larpe,
making the interaction between control system and the structure unsafc(4].

Becausce of these deflects, it is hard for us to estimate the crrors of
the outputs. The errors of the outputs will be Jarge, and the interaction helween
the control system and system structures will  produce large crrors.

In some control systems, such as communications satellitc and on-or-
hit telescope, the precision of the control system is critical, and in the future
missions their structures could be very flexible. The variances of these devices
will he assumed to be lincar functions of their capacities.

In this paper, we will develop methods which will optimize the per-
[ormarce of systems when noises of the actuators and the sensors are related o
their capacitics. The fecdback (and Kalman gain) matrices arc found by this
methods will be automatically smaller than those found by ordinary methorls.
Therefore, the interaction between the control system and the strurcture will be
reduced and thereby, permitting more flexible structures.

Il PROBLLEM STATEMENT

Let us rst cousider the optimal control of a first order systemn

X = ax +u+w (I.al
u=-Ix (1.h)

2 2 ‘

J o= E {x.+ru} (to

This is a stcady-statc optimal control problem with cxact obscrvation,
{ is the feedback coclficient to be determined. a and r are given parameters. E
i« the mean operator. w is a zero mean white Gaussian noise. Unlike the ordi-
nary control problem, we assume that the variance of the noise w. can be
cdescribed by
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W= W + o O

0
u
)
= W0 + a [ o
X
2
o . : .
u can be considered as the

where W and @ are non-negative constants.
nominal variance of the input, a good measure of the capacity of the ac-

tuator.From (1a) and (1b) ., we have

x =(a-f)x + w
(3)

According to stochastic control theory, the variance of x, denoted hy P

can be determined by

2(a-fH)P + w = 0 ()
Since 0( = P, e¢q.(4) reduces to
2
2(a = )+ W, + af P=0 (5)
2
or (2a - 2f +at )P+ W =0 (6)
Since P must be greater than or cqual to zero, the following condition must
hold
2a - 2f+ o f < O (7
The cest functional can be written as
2
J = P + [ P (s
Using cq.(6 ), we have
2 W,
T=(l+rf - —-
(2f-2a —al )
(9

The inequality above indicate the stable region for the problem
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The stable region for ordinary problem is defined by

a—-f < 0 (10)
The stable regions describe by equations (7) and (10) are plotted in
Fig. 1. Obviously, the stable region of the present problem is only a subset of
the region of the ordinary problem. The stable region becomes smaller when «
becomes grecater and this region is not directly related to the constant term. For
certain values of a > 0 and «, it is possible that there is no { which lic in the
stable region, i.e.. such a system can’t be stabilized.

The optimal feedback control can be found by differentiating

equation (9) with respect to [ and equating the derivative of | with respect to f
to zero. The derivative of J  with respect to [ after simplification can bhe
written in the form

_ 2 Wy 2
- 2 2 (rf -2rafl+af-1)
o (2r-2a—tf)

oo

Equating the derivative of J to zero and solving the quadralic cqua-
ton in [ and neglecting the extraneous solution, we obtain the optimal feedback
control  as  follows.

2 >.-
_ T oa) + \/ ( =271 a) * 41

— («

2r
(11a)

Figs 2,4 and 6 show the ratio of optimal feedback (the valuc of f
given by equation (11a)) to the feedback found by ordinary method vs. r for
various values of a and . We can sece that the value of {/fo is less than 1,
i.c., when the noisc of the actuator is capacity related, the optimal (cedback
tends to decrease. The reason for this is that a greater feedback corresponds to
a greater actuator signal, and increased capacity of the device and increased
noisc power specti«l density of the noisc. Therelore, a smaller feedback matrix
will be preferred. When r becomes smaller, a becomes bigger and a becomes
greater. The difference between f and ,  will becomes greater. The reason is
no!t hard to imagine. When r becomes smaller, the feedback by the ordinary
mcthod  becomes greater even it is out of the stable region, while the feedback
by the present method although becomes greater but the increment  will not be
significant because it has not taken the increase in noise power into considera-
tion, and the feedhack will never be out of the stable region. When « ( alpha)
becomces greater, noise is more relaled to the capacity and the system will more
seriously depend on the feedback. Figs 3,5 and 6 show the ratios of optiral
cost found by the propsed method to the case when [ is found bv the ordinary
method. Fig.5 doecs not have a plot for a =1, because the feedback found by
the ordinary method is out of stablc region, and the ratios, Jo/J is infinite,
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1l GENERRAL CASE

In the above section, we have solved a simple problem by theorctical
approach. In general system contains multiple states with multiple inputs and
raultiple outputs, #nd the meassurements are corrupted by noiscs, Then | the
problem can be stated as follows.

min _ T
IJ=EA{y o VY * u Ru } ‘
F.K (11b)
with constraints
y = Hx
Xx = Ax + Bu + Gw (]2.2')
u = - F «x (]2.11)
~ " 4 (1Y
x =Ax + Bu + K (72 - Mx) (12.9)
vwhere
y=Output vector
x= State vector
u= Control Vector
7= Measurement Vector
x= Estimated Statc Vector
w=inpul noise vector (zero—mean white Gaussian noise)
v= Measurement noise vector( zero mean white Gaussian
nnise)
' = Feedback matrix

K Kalman Gain Matrix
and the matrices arc of appropriate dimension
The noise  covariance  matrices  arc  given by

T
E{v w } _ W

T ’
E{v v} v

The only difference between the ordinary problem and proposed problem is
that the model of the covariance matrices w and v. Ordinarily W and V are
assumed to be coastani matrices which are not related to the capacitics of the
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actuators and scnsors. In this paper W and V arc assumed (o be matrices

whose covariance matrices are functions of the capacitics of actuators and
SNSOTS.

The capacity of an actuator can be reasonably be represented by the
nominal varianacc of the actuator signal,

2 5 ~ T oA T
o =FE {u‘} =L E {xx }I =
1

i o0 i 00 i1 x i

where [, is the ith row of F.

And , we will assume the variance of an actuator to be a linear
function of its capacitics , i.c.,

W =diag{ w,, w,, wo}
2
W, = w + o, O

i i u
i

where w . and o, are non-negative constants
0

Similarly,
Vo= diag{ Vv, .v, . VvV |
2
\Y = V. + B. o
| '0 1 ;
where v, and B, arc non - ncgalive  constants
0
2 2 . .
A )
(T"‘i:E{ zi } = m,E {x x }m, - m“Fxmi
where ™ s the ith row of M.

Clearly the covarince matrices become functions of the feedback
and Kalman gain matrices.
Equation ( 12.a) ,(12.b) and (12.¢) can be writlen as

28



=
>
|
os}
T
p
Q
o

=
Z
>
[
sl
-
(
P
=
>
[
=

According to the Stochastic Control theory the covariance matrices <atisly the
following cquation:

| % p - A -BF
! X X X
i +
i
i‘Px; P; | KM A - BF-KM
A ~BF P, P -
X X
K M A - BF-KM P - P
_ — X X X
.
G 0 W 0 G 0
+ =0
0 K 0 V 0 K
where W and  are {irictions of Px , P; ., F and K .To solve the ahove

optimization problem, we probably have to use numerical approach
IV . DIRECT APPROACH

The simplest way to solve the problem is to use dircct approach. Tn
the direct approach, we assume that all the elements of F and K are parameters.
The cost J can be found by solving cquation (11h) iteratively when F and K are
given. Vartous techniques ol optimization theory can be used to find the op-
timum valuc of F and K.

Howcever, this mcthod can solve only problems of smaller dimension.
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For relatively large prohlems, the number of parameters will be large and the
computational efforts to find the cost for given F and K will also he large:there-
fore, the total computational load will be large

It seecems that the challenging problem here is development of com-
putationally efficient fast algorithm to sove the feedback gain and the Kalman

gain
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