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In the ordinary theory of optimal control (LQR and Kalman Fillet),

tae variances el the actuators and the sensors are assumed to bc known( not

related t(_the capacities of the devices). This assumption is not true in practi_:e.

Generally, a device with greater capacity to exert actuating forcc_; and a sen:_or

capable of sensing greater sensing range will generate noise of !treater power

sr_cctral density.

When the ordinary theory of optimal control is used to estimate Ihe

crrrors of Ihe outputs in such cases it wilt lead to faulty resulls, because !he

capacities ¢_f such devices are unknown before the system is designed. The

performance, o[ the system designed by the ordinary lheory will not bc (_ptimal
as the variances of the sensors and the actuators are neither known nor om

s_anl. "["he interaction between the control system and structure could hc serious

because Ihc ordinary method will lead to greater feedback (Kalman gain)
m;ltrices.

The :n;,.in purpose of this paper is to dvelop methods which cnn

optimize the performance of systems when noises of the actuators and the

s,.msors are related to their capacities. These methods will result in s+nallcr

flmdback ( Katm;,n gain) matrix. The smaller matrices will reduce the interac-

tion between the control system and syslem structure and, thereby, reducing Ihc

r,:quirements on the structures and consequently making the svructur,: mnre
f:.c×ihle.

I NrI'R O D U CTION

In the optimal control of stochastic systems, we ordinarily assume that

r_oiscs of the actuators and the sensors are not related to the capacity of lhe

g.ctutors and sensors[ 1,2,31 This assumption is not true in practice.Gcnera,ly,

the \,ariances of actuators and the sensors, especially the acttvttor:_ , arc rclaled

t,_ the ,:apacitics of the devices. Obviously, a fuel jet capabh.' of gen_,:ralillg a

force of lflO lhs will have greater noises than the one capable ,:_r gencr;_tinl:_, a

for':c cr I Ih. It will be realistic and practical to assume that Ihc noise variance
of the actuator:_ and the sensors be linear function of the variance ol the co, n-

trolling forces and the output of the sensors i.e., the observaliot_s. I Inder this

assulnt,tion when device is required to have greater capacity it will also inlro

duce greater noise The ordinary method of optimal control prohlerns have _t
i,.:aq three clefccts

(a) II is i_arcl to specify correctly the noise power spcclral dct_sflies

of the actuator and the sensor because the capacities of these device:- arc I_n
known
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before Ihc system _s designed

(b/ The resultant feedback and Kalman gain matrice_ may not be

optimal when the noises in these devices are not related to their capacities.

Therefore, the pmformance of the control system may m_t be as good a_; it

would be olherwi_::e.

(c) When the noises are assumed to be not relaled to the capacilie_

of the devices, the re>_Itant feedback and Kalman gain matrices will be large,

making lhe interaction between control system and the slructurc unsafe[,l].
Because of these defects, it is hard for us to eslimale the errors ,_1

tm oulputs. The errors of thc outputs will be large, and the inlelaction t,elween

the control system and system structures will produce large errors.

In some control systems, such as communications satellile and cm.-or-

bil telescope, the precision of the control system is critical, and in lhe future

rnissions their strll(tures could be very flexible. The variance,; of the_e devices

will t_e assumed to be linear functions of their capacities.

In this paper, we will develop methods which will optimize the pcr-

f,)_marce of systems when noises of the actuators and the sensors are _claled to

t'acir capacities. The feedback (and Kahnan gain) matrices are found I_y thiv

methods will be automatically smaller than those found by ordinary methods.

_lhcrefore, the intctaction between the control system and the strurclurc will be

reduced and thereby, permitting more flexible structures.

11 PROBI,EM STATES'lENT

l.el ,ys t'rst c,n_sider the optimal control of a first order system

la)
X = a x + U + _,','

u = - f x 1 .h)

J = E { × + r 11
Ic)

3"his is a steady-state optimal control problem with exact obscrvati_n.

f is the feedback coefficient to be determined, a and r are given paramemrs. E

i,, the mean operator, w is a zero mean white Gaussian noise. Unlike Ihe oKli

nary control problem, we assume that the variance of the noise w, can be

cles:cl ibed by
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W= W 0 + O_ O"
U

2 2

=%+ 5
2

where W 0 , and c_ are non-negative constants. (Tu can bc considered as Ihe

r,ominal variance of the input, a good measure of the capacil'¢ of the ac-

taator.From (la) and (lb), we have

x =( a- f)x + w

(3)

According lo stochastic control theory, the variance of x, ,:lenolcd t-,y P

can he determilmd b'/

2(a-f)P + W = 0 (4)

Since cr,¢ = P , eq.(4) reduces to

2

2(a - f ) + W + o_ f P= 00 (5_

2

or ( 2a -- 2f + ¢x I ) P + W0 = 0 (6

Since P must be greater than or equal to zero, the following condition must
hold

2

2a - 2f+ ot f < 0 (v)

The cczst functional can be written as

2

J = P + r f P (g)

Ilsin_ eq.(B ), we have

2 \V o

J=( 1 + r f ) .............................. 2--
(2 f- 2 a - o 1 )

(9)

']'he inequality above indicate the stable region for the problem.

25"



The stable region for ordinary problem is defined by

a-f < 0 (10)

The stable regions describe by equations (7) and (10) are plolted in

F'ig. 1. Obviously, the stable region of the present problem is only a subset of

the region of the ordinary problem. The stable region becomes smaller when _

becomes greater and this region is not directly related to the constant term. For

certain values of a > 0 and c_, it is possible that there is no f which lie in the

slable region, i.e.. such a system can't be stabilized.

The optimal feedback control can be found by differentiating

equation (9) with respect to f and equating the derivative of .I with respect to f

to zero. The derivative of J with respect to f after simplification can he
written in the form

d J 2 Wo 2
- 2 2 ( rf

dr (2 f-2a---_ f )
- 2 ra f+oz f- I )

Equating the derivative of J to zero and solving the quadralic equa-

tmn in f and neglecting the extraneous solution, we obtain the optimal feedback
control as follo,_s.

2 4r
-2 r a ) + (c_-2r a)

2 r

(1la)

Figs 2,4 and 6 show the ratio of optimal feedback (the value of f

given by equation (1 la)) to the feedback found by ordinary method vs. r for

'various values of a and o_. We can see that the value of 17fo is less than 1,

i.e., when the noise of the actuator is capacity related, the optimal feedback

tc.nds to} decrease.The reason for this is that a grealer feedback corresponds to

a greater actuator signal, and increased capacity of the device and increased

noise power spcctdal density of the noise.Therefore, a smaller feedback matrix

will he preferred. When r becomes smaller, c_ becomes bigger and a becomes

greater. The difference between f and f0 will becomes greater. The reason is
nol hard to imagine. When r becomes smaller, the feedback by the c_rdinary

rnethoct hecomes greater even it is out of the stable region, while the Ieedl_ack

by the present nnethod although becomes greater but the increment will nol be

significant because it has not taken the increase in noise power into considera-

tion, and the feed1,ack will never be out of the stable region. When c, (alpha)

becomes greater, noise is more related to the capacity and the system will more

seriously depend on the feedback. Figs 3,5 and 6 show the ratios of oplirnal

cost found by Ihe propsed method to the case when f is found b, the ordinary

method. Fig.5 does not have a plot for c_ =1, because the feedback found by

the ordinary me.thod is out of stable region, and the ratios, Jo/J is infinite,
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I1! GENERRAL CASE

In tile above section, we have solved a simple problem by theoretical

approach. In general system contains multiple stales with multiple inputs alld

multiple output.s, and 1he meassurements are corrupted by noise.s. Then , lt_e

problem can be stated as follows.

wilh constraints

T T

min 3 = E { Y Q Y + u R tl }
v, K ( 1 1b)

y
H x

x = Ax + B u + Gw (,lZa)

u = - F x (12.b)

^

x = A x + B u + K ( z - M x_ (12.;)

where

y= Output vector
x= State vector

u= Control Vector

z= Measurement Vector

x= Estimated State Vcclor

w= input noise vector (zero-mean white Gaussian noise)

v= Measurement noise vector( zero mean white (_aussi;i_n

nf_ise)
t:' = Feeclback matrix

I< = Kalman Gain Matrix

and the matrices are of appropriate dimension
The noise covariance matrices

r

E{,, w} = w

are given by

T

Vu(v v}=

The ordy difference between the ordinary problem and proposed problem is

that the model of Ihe covariance matrices w and v. Ordinarily W and V 'are
assumed to bc constan¢ matrices which are not related to the ca_nacilics of Ihe
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agU._Drs and sensors. In this paper W and V are assumed Io be matrices

whose covariance matrices are functions of the capacities of actualor_ and
StH1SOFS.

The capacity of an actuator can be reasonably be represented by ihc

nominal varianac(: of the actuator signal,

2
(T = E

I.I,
I O0

.T T A T
(u 2 } = f E {x x } f = f P_ f

l i oo i i x i

where f_ is the ith row of F.

And , we will assume the variance of an actualor to be a linear

funclion of its capacities , i.e.,

W = diag{ w I ' w 2' wm}

2
W, -- W + _ . (Y

1 I kl .
I

Similarly,

where w, and _. are non-negative constants
v (I n

V = diag { V_ , V 2 ...... V; }

V. = V, + [3 i (r
u _0 7,I

where V., and [3 i are non - negative constams
fl

Cr

2 2

( ) = e ' A p '--'_ E z m (x x }m m m,'. i i "=-- x
i i i i

where m _ is tim ith row of M.

Clearly the covarince matrices become functions of the fecdback

and Kalman gain matrices.

Equation ( 12.a ) ,(12.1)) and (12.c) can be written as
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A -BFK M A- BF-KM

G

+

0 K

W i

V _i

Ao:ording to the Stochastic Control lheory

following equafiom

P P
X X X

p _ p_

X x X

A -BF

KM A-- BF-KM

AKM

-.BF

A- BF-KM

the covariance matrices

T

P ,:

satisfy the

x

p,
x

T

IG [:,°11Goi].o
where W and V are f_J ictions of P P"x , _ , F and K .To solve Ihe above

optimization problem, we probably have to use numerical appr{mch

IV D IRI_.C-I" APPROACtl

The simplest way to solve the problem is to use direct approach. In

the direct approach, wc assume that all the elements of F and K aFe paramelcrs.

The cost J can be found by solving equation (1 lb) ileratively when F and K are

given. Various techniques of optimization theory can be used to firld the op-
timum valu{- {}[ F and K.

However, this me(hod can solve only prol}lems of smaller dimension.
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["or relatively large problems, the number of parameters will be large and the

computational effoJts to find the cost for given F and K will also be large:there-

fore, the total computational load will be large

It seeems that the challenging problem here is developmenl of corn-

putationally efficient fast algorithm to sove the feedback gain and the Kalman

gain
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