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Abstract

Computation of frequency responses for large or-
der systems described by time-invariant state space

systems often provides a bottleneck in control sys-
tem analysis. In this talk we show that banding the

A-matrix in the state space model can effectivly re-

duce the computation time for such systems while
maintaining reliability in the results produced.

Introduction to the Problem

Consider tile following realization of some transfer

%nction G(ja;):

J:(t) = A,'(t) + Bu(t), y(t) = Cx(t) + Du(t)

where x 6 Ill", u(t) E IR m, and y(t) E IRp. The re-
lationship of the realization to the transfer function

is given by

G(jco) = C(jcoI-..1)-IB + D

In control system design the computation of the
frequency response plays an ilnportant role in

fi'equency-based design methods. For medium
sized problems the order of x(t) may be in the hun-

dreds while G(jcok) must be computed for hundreds
of values of cok. It has not been uncommon for a

frequency response calculation to require hours of
CPU time. Thus, efficient and reliable algorithms

for this computation are needed for handling large
order systems.

Typical Approach

A typical approach to computing frequency re-
sponses for state space systems is to first perform a
state transformation on tile realization to bring the
A-matrix into sonic reduced form and then solve

the appropriate system of linear equations for each

frequency point.

Computational Issues

The above algorithm for computing frequency re-

sponses involves two issues: efficiency and sensitiv-
ity. A potential bottleneck in computing frequency
responses is the solution of (ja2kI-A)X = B for X.

Efficient computation is accomplished by reducing
A to some form A which allows efficient solution of

tile above equation. Another issue is that of sen-

sitivity. The transformation process takes place in
finite precision arithmetic and hence will change, to

some degree, the properties of tile transfer function
which the realization represents. It. is important,
therefore, to consider the numerical properties of
the transformation.

Sensitivity of the Transformation

The effect of nuinerical computations in the pre-

sense of finite precision arithmetic can be treated
in terms of sensitivity of the coefficient matrices.
Tranformations which do not increase sensitivity to
state transformations are termed well conditioned.

Ill-conditioned t.ransformations can and usually do

significantly increase the sensitivity of the coeffi-
cient matrices to small perturbations. Presense of

this sensitivity is often an indication of a. numeri-
cally unstable algorithm.

Efficient Solutions to (ja,'kI-A)X= B

As stated, efficient solution of the above equation is

usually accomplished by reducing A to some spe-
cial form. Consider the case where m = 1 (i.e.,

B C IRY ×1). Then for A in general form, solution
of the equation requires O(n 3) floating point op-

erat.ions (or flops). For ,_t in ltessenberg form or

Schm" form, where ,4 is "nearly" upper triangular,

solution of the equation requires O(n 2) flops. The
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transformation to produce these forms is known
to be extremely well-conditioned. For A in diago-

nal form or Jordan canonical form, solution of the
equation requires O(n) flops. However, the trans-
formation producing these forms may be very ill-

conditioned, leading to a reduced form which no
longer accurately represents the tranfer function

of interest. A good compromise is to seek some

comproInise between the upper-triangular and di-

a_gonal forms. This leads reduced forms in which
A is upper-triangular and block diagonal or upper-
triangular and banded. We feel the banded form is

a better strategy since it is a simpler structure to
work with. The banded matrix is characterized by

its order and bandwidth; the block diagonal form
is characterized by order, block sizes, and block or-

der. Due to the simpler structure of the banded
matrix, algorithms based on banded matrices can

be adopted to vector hardware architectures in a
nicer way.

A New Banding Algorithm

The new banding algorithm uses several steps.
First the matrix A is reduced to real Schur, or

quasi-upper-triangular, form As. Then an order-

ing algorithm is applied to order tile eigenvalues
appearing on the diagonal of A2 in a way that will

aid the next step in producing a small bandwidth.
Tile transformations associated with the first two

processes is very well conditioned. The third step

involves examining the properties of the eigenval-
ues to determine a "good" bandwidth a priori. A
"good" bandwidth is one for which the condition
number of T is small. Next the matrix is reduced

to banded form, Ab, using a series of operations

to eliminate off diagonal elements. The operations
are accumulated in a matrix T. If T is found to

be ill-conditioned, then tlle tolerance for Step 3
is tighned and Steps 3 and 4 are repeated. Fi-
nally, the matrix Ab is brought to complex, upper-

triangular, banded form using a series of Givens
transformations. We note that the transformations

used in Step 4 are scaled to provide reduction in
their condition numbers.

An Illustration

The figure shown illustrates the banding algorithm.

The first operation shows the effect of bringing the

system to Schur form. After the matrix has been

brought to Schur form, the matrix is analyzed to
determine a "good" bandwidth. Here we choose

a bandwidth of 2. The second set of operations
shows how the algorithm reduces a diagonal of the
matrix. The third set of operations shows how the

remaining diagonals are eliminated to produce the

final upper-triangular, banded matrix.

Test Case

The algorithm described has been coded into For-

tran and installed into our Pro-Matlab implemen-
tation using the Pro-Matlab MEX facility. We

chose as a test set a set of single input, single
output systems with state order ranging from 20

to 80. Matrix coefficients were generated from a
random number generator. For each case we com-
puted 200 frequency points. The table shows times
for the Pro-Matlab bode function versus times for

our bodeq function. As one can see, the new al-
gorithm reduced the computation time from 75 to
88 percent.

Extensions and Future Work

The algorithm has also been applied to time simu-

lation of linear, time-invariant systems. The band-
ing strategy and algorithm could be extended to
generalized state space systems. In this case, we

would band the A and E matrices simultaneously.
Another possible area of future work would be pro-

duction of better banding algorthms. The current
algorithm is bases on solution of Sylvester equa-
tions and has a limitation: the algorithm cannot

band systems well when all eigenvalues are very
closely spaced. It should be possible to band these

matrices using different algorithms.

Summary

In summary, we have developed a new algorithm
for computing frequency responses of state space

models. In this development, we have taken into
account the two prime computational issues: effi-

ciency and sensitivity. We showed that the algo-
rithms worked on a test problem and was able to
reduce computational time considerable without a

notable cost in accuracy. Finally, we proposed that
the banding strategy may provide further applica-

tion in control system design.
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Introduction to the Problem

Consider a transfer function G(jw) with state space realization given by

&(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)

where u(t) E IRm, x(t) E ]Rn, and y(t) E IRp.

G(jw) is associated with {A,B,C,D} through

G(jw) = C(j_,I - A)-IB + D

Problem: desire G(jwk) for many (hundreds)of values of jw k
where n < 200 (medium order systems).

JPL

Typical Approach

1 Transform the system realization:

{A,B,C,D} T__ {:a,/),C',/)} := {T-1AT, T-1B, OT, D}

2 For each a;k do

a) solve (jwkI - _1.)--\_ =/) for .k"

b) compute G(jwk) = CX + b

Compuatational Issues

• Solution of (jwkI - A)X = £i' must be efficient.
This is usually the limiting factor.

• Given the presence of finite precision arithmetic

{),B,C,D} must be an accurate realization of G(j_).
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Sensitivity of the Transformation

Consider

{A+AA, B+AB, C+AC, D+AD} T_ {]4+A3, B+Ai_,C+AC, D+AD}

Then we have

where

+¢(T)_2IIAAII < IIA-7411< _(T)2 IIAAII
HAll- I1._1[- IIAll

_(T)_I IIABII < IIADII < _(T)IIABII
I[BII- II_ll- IIBII

_(T)_IlIACli < IIACll < ,_.,IIACll

_:(T) := I171111T-111and II II is some consistent norm.
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Efficient Solutions to (j_kI- _4)X =

• A a general matrix =_ O(n 3) flops/0a k

• A an upper Hessenberg or Schur matrix =¢ O(n 2) flops/w k

• _l a matrix in diagonal form =_ O(n) flops/a3 k

* ) a matrix in Jordan canonical form =_ O(n) flops/oa k

• ) a block-diagonal matrix =¢ O(n 1) flops/oa k , where 1 < I < 2

• _4 a banded matrix _ O(n • bw) flops/w k where bw is the bandwidth, 0 < bw < n
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A New Banding Algorithm

Given a full general A matrix, produce A b where A b is upper triangular and banded.

The algorithm is essentially

1 Reduce A to upper real Schur form, As

2 Order the eigenvalues appearing on diagonal blocks of As to produce Ao

3 Analyze Ao to determine a "good" bandwidth (to make K(T) small)

4 Uses an algorithm based on solving Sylvester equations to band Ao, producing A b

5 Convert the quasi-upper triangular matrix A b to complex, upper triangular form.

Step 4 uses transformations of the form

Ti ,j ---[i0001 0 xi, j
0 I 0
0 0 1
0 0 0

,°°°i]0 d 2 0 0
0 0 I 0
0 0 0 d4
0 0 0 0

JPL

An Illustration
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Test Case

Single-lnput, Single-Output Model with Random Coefficients
Pro-Matlab bode function versus banded bodeq function

pts. n

200 20
200 30
200 40
200 50
200 60
200 70
200 80

bode bodeq

(sec) (sec)
39.9 4.8
81.1 10.6

139.8 24.0
211.7 41.6
300.6 64.8
407.7 104.6
527.1 135.1

bw

3
3

13
17
20
31
32

Reduction in time from 75% to 88%

_(T)

250
350
45
38
66
27
67
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Extensions and Future Work

• Application to time simulation of {A,B,C,D}

• Application to extended (or generalized) models:

E_ = Ax + Bu, y=Cx+Du

• Better banding algorithms: Banding strategy has good potential but current algorithm
has some limitations.
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Summary

• Developed new algorithm for computing frequency responses of state space systems.

• The algorithm provides a method for trading off the two computational issues at hand:
sensitivity and efficiency.

• The algorithm was shown to provide large saving in computational time on a set of test
problems.

• The strategy has some potential for other applications on medium order models.
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