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I. STATEMENT OF WORK

The conWactor shall commence a definition effort at Stanford in coordination with Marshall Space Flight
Center, and Lawrence Livermore National Laboratory on the Ultra-High Resolution XUV Spectroheliograph
described in proposal CSSA 88-17. The following tasks will be performed:

1. Refine the scientific insmmaent requirements, and support the planned Space Station
meeting in September, 1990. The following issues will be addressed:

a. Experiment Mechanical Observation and Optical Bench.

b. Experiment internal architecture.

c. Requirements for the film cameras.

d. Telescope optical properties resulting form offset pointing.

e. Properties of telescope multilayer coatings.

f. Properties of gratings.

g. Configuration of MAMA detectors.

h. Telescope filters.

i. Effect of natural and artificial environments on critical materials,
including f'llters and optics.

j. Internal environment and experimenL

2. Respond to specific issues, such as experiment hardware classification, safety requirements,
and hardware redundancy, as required.

3. Develop a preliminary plan for the life cycle of the UHRXS experiment, including
refurbishment and upgrading.

4. Develop a preliminary plan for f'dm replacement by robotics.
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II. SCIENTIFIC AND INSTRUMENTAL REQUIREMENTS AND EXPECTED PERFORMANCE

1.0 Scientific Overview: The principal goal of the UHRXS 1 is to improve our ability to identify and to understand

the fundamental physical processes which shape the structure and dynamics of the solar chromosphere and corona; the

ability of the UHRXS imaging telescopes and spectrographs to resolve fine scale structures over a broad wavelength (and
hence temperature) range is critical to this mission. We review the scientific objectives and instrumental capabilities of

the UHRXS investigation, before proceeding to a discussion of the expected performance of the UHRXS observatory.

Objectives: The phenomena which are the principal focus of the UHRXS investigation include:

The morphology and energetics of the fine structure of the solar chromosphere/corona interface, including the

"chromospheric network", spicules, prominences, cool loops, and the magnetic field.

The structure, energetics and evolution of high temperature coronal loops.

The large scale structure and dynamics of the corona, including the solar wind interface (represented by

phenomena such as polar plumes), the magnetic field, and coronal mass ejections.

Solar flares, especially the evolution of the pre-flare state, the nature of the impulsive energy release, and the

evolution of post-flare loops.

Among the principal issues we plan to address are:

The nature of the mechanisms responsible for heating and cooling the various structures (spicules, loops, polar

plumes, prominences) which control the flow of mass and energy in the solar atmosphere.

The source of the material found in coronal structures and the solar wind, and the mechanisms responsible for

wanstxa'ting this material and establishing the various abundance anomalies observed.

The source of the energy responsible for transient phenomena, including coronal mass ejections, particle
acceleration, and the mechanisms reslxmsible for the impulsive release of energy.

Collec'tively, these objectives require: (i) observations with very high angular resolution, because the

fundamental processes in the solar atmosphere operate on very small scales [typically several hundred kilometers or less

(100 km corresponds to - 0.15 are-second resolution from earth)], (ii) observations encompassing wide fields of view,

because many phenomena of interest (such as prominences) involve very large scale structures, and the precise location
and timing of dynamic phenomena such as flares, prominences, and coronal mass ejections, are difficult to predict, (iii)

observations covering a wide range of temperatures, since the solar atmosphere is a su'ongly coupled system involving

interrelated phenomena occurring over four decades of temperature (10,000 OK to 100,000,000 OK), and (iv) the ability to
direcdy measure the fundamental parameters of the solar plasma, temperature, density, non-thermal motions, abundances,

microscopic conditions governing the excitation of radiation, and the solar magnetic field, on very small scales. UHRXS
is able to satisfy these very demanding requirements by utilizing a variety of instrumental techniques.

Instrumentation: The UHRXS instrumentation consists of."

eight XU-V Ritchey-Chr_tien multilayer telescopes, each able to image the chromosphere and corona to 1 RO
above the limb in a narrow wavelength band, between - 70 A and - 300 A, that is dominated by a line multiplet

excited over a narrow temperature range. Two Herschellian multilayer telescopes provide high resolution narrow
band soft x-ray (40 ,_ < _. < 70 _) images. Collectively, these telescopes allow detailed observations of solar

structures in the temperature range 50,000 K < T < 30,000,000 K, with 0.1 arc-sec resolution.

a multilayer coronagraph, able to image the corona to >10 RO with - 0.3 arc-second resolution in a band at -
173 J_, which is dominated by the emission of Fe IX and Fe X (~ 800,000 K to 1,300,000 K).



an FUV Telescope (ga3,1150 A - 1600 A), abletoimage thechromosphere and coronato IRO above the limb

in ~ 15 A bands at 1216 A [H I Ly a (7,000 < T < 30,000)], and 1550 A [C IV (T - 100,000 K)], permitting
observations of solar structures in the temperature range 7,000 K < T < 100.0(30 K with 0.1 arc-sec resolution.

three soft x-ray telescopes, each able to form spectroheliograms with angular resolution - 2.0 arc-sec over a field

of view ~ 8 are rain x 8 arc rain in the wavelength range kk 1.7 A. - 45 ,_, thereby investigating the
morphology of the coronal plasma in the temperature range between - 1,000,000 K and 100,0(30,000 K.

five high resolution grating spectrographs covering XUV (7_3. 170 A - 215 A), EUV (X_. 450 A - 11130 A), and
FUV (k),. 1150 A - 1600 ,_) bands which include strong lines of H I; He I, He II; C iii, C v; o v, O vI;

Ne VII; Mg X; Fe VIII - Fe XIV, and Fe XXIV. The field of view of the spectrographs is - 4 arc rain x 4 arc
rain, angular resolution - 0.5"; spectral resolution as high as L/Ak - 30,000 can be attained.

The characteristics of the UHRXS instruments are given in Tables 1 and 2. Observations from the Imaging

Systems are recorded on high resolution photographic emulsions; Observations from the Spectroscopic Systems are
recorded using the MAMA photoelectric array detector.

Table 1. Characteristics of the UHRXS Imaging Systems

_S'ystem ku* Ion Temperature"' Telescope Parameters Resolution

(_I,) (*K) ApertureFocalLgt PlateScale f ratioAiryRadius Angular Spectral

(mm_ (mm_ (ttm/arc-sec_ (arc-sec3 farc-sec_ L/A_.
A 1215.60/ H I 20,000 305 3500 17.5 11.5 0.I0 0.10 80

1548.00 CIV 100,000 0.13 0.13 60
B 304.00 Herr 50,000 190 3500 17.5 18.3 0.04 0.I0 20
C 143.30 NeV 400,000 190 3500 17.5 18.3 0.02 0.I0 32

or 150.1 OVI 300,000 100
D 88.10 Ne VII] 650,000 190 3500 17.5 18.3 0.01 0.10 60
A 1 69.70 Si VIII 850,000 100 2500 12.5 25.0 0.02 0.15 60
E 173.00 Fe IX/X 1,000,000 190 3500 17.5 18.3 0.02 0.10 30
F o* 195.14 FeXII 1,500,000 190 3500 17.5 18.3 0.03 0.10 25
G 211.00 FeXIV 2,500,000 190 3500 17.5 18.3 0.03 0.I0 23
A 2 54.7 FeXVI 4,000,000 I00 2500 12.5 25.0 0.02 0.15 I00
H 93.93 FeXVlll 6,500,000 190 3500 17.5 18.3 0.02 0.I0 40
I 132.80 FeXX/XXII/ 11,000,000 190 3500 17.5 18.3 0.02 0.10 33
F** 192.00 Fe XXIV 20,000,000 190 3500 17.5 18.3 0.03 0.10 25
N 173.00 Fe IX/X 1,000,000 190 I000 5.0 5.2 0.02 0.30 30

• Centralwavelength,_.o,of telescopebandpass;*,The bandpassofsystemF includes
• -. Note that these bandpasses are determined by FUV muhilayer interference filters, t

Table 2. Characteristics of the UHRXS Spectroscopic

11

System _ Telescope Parameters Resolution
(A) Apertme Focal Length Angular Spectral

_mm) (m_n) (_-_) (XlaX)
ctl/ct2 1150-1600 305 10,000 0.1/0.5" 30,000

540-1150 190 10,000 0.1/0.5" 14,000
F 170-190 190 10,000 0.1/0.5 ° 12,000

Z la 40.0-44.1 75 2,500 2.0 200

A** 190--215 190 10,000 0.1/0.5" 8,000

Z Ib 18.5-22.5 75 2,500 2.0 300

Z 2a 13.0-15.5 75 2,500 2.0 750

3a 8.4-9.2 75 2,500 2.0 850

Z 3b 6.1-6.8 75 2,500 2.0 8,000

A** 190-215 190 10,000 0.1/0.5" 8,000

Z 2b 1.7-1.9 75 2,500 2.0 10,000

Ions

lines of bothFe XII and Fe XXIV;

Systems

Observed- Temperature
Range (*K)

H I,Fe 1],C I.C 11,OI,O IV,C IV.SiII 7.000-I00,000

He I, He 11,C HI, O V,O VI,Mg X 50,0OO-I,000,000
O V,O VI,Fe VIR, Fe IX,Fe X, FeXI 200,0OO-1,250,000

C V. SiXII

Fe XIL FeXIII,Fe XIV

O V1], O VIII

Ne IX,FeXV1],Fe XVIH

Mg IX, MS XII

Si XIII, SiXIV

Fe XXIV

FeXXV, FeXXVI

800,000-2,000,000

1,500,O00-3,000,000

1,500,000-4,000,000

3,000,000-8,000,000

6,000,000-12,000,000

8,000,000-16,000,000

16,000,000-30,000,000

25,000,000-100,000,000

* See discussion in Section I]:4.0; .* The bandpass of System & includes lines of Fe X1] - XIV, as well as Fe XXIV.
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2.0 Mechanical Envelope and Optical Branch: The UHRXS mechanical configuration is shown in Figure la.

2.1 Mechanical Envelope: The UHRXS outer envelope is a vacuum tight enclosure -1.5 meter in diameter and

-3.0 meters long. Our present design calls for a separate aperture door for each telescope, however this philosophy will
be re-examined during our design phase.

A major question, which cannot be fully resolved until the configuration of the pointing system is determined,
is how the camera modules will be mounted, and accessed for film replacement. If the pointer utilized is a center of mass
configuration, then the cameras will be accessible from the rear, as shown in Figure 24b (Section n: 8.0). If the
experiment is end mounted to the pointer, then the cameras will be accessible from the side, as shown in Figure 24b.
This will, in turn, affect where the electronics modules ate placed. Tables 3 and 4 present our preliminary estimates of the
UHRXS mass and electrical properties.

Several designs are under consideration for the fabrication of the mechanical envelope. One option is to machine
the envelope from a cylindrical aluminum forging (Figure lb). A second option is to weld an polygonal structure from
machined aluminum plates (Figure lc). In either design, a vacuum-tight enclosure will be formed by fore and aft
bulkheads mounted with viton o-rings.

2.2 Internal Architecture: The major interior smacture of the UHRXS is an optical bench consisting of three

bulkheads connected by a truss structure, on which the main experiment components are mounted. The eight XUV
imaging telescopes will be mounted on the main bulkhead (Figure ld). The coronograph and objective crystal
spectrometers will be mounted on a forward bulkhead, and the EUV, XUV and FUV grating spectrographs and their
telescopes will be mounted on a rear bulkhead.

Table 3. Mass UHRXS Properties

Solar Aspect Sensor 1 kg
R.C. XUV Telescope Modules Typical (5 kg)
Dual Camera Module Typical (12 kg)

XUV Telescopes
Total 8 Modules 88 kg

Ultraviolet Telescope/Spectrograph 18 kg
Soft X-Ray Herschellian Telescope

Module and Camera 10 kg
XUV Coronograph and Camera 10 kg

XUV/EUV Spectrograph Typical (10 kg)
XUV/EUV Spectrographs

Total 3 Modules 30 kg
Objective Crystal Spectrographs 20 kg

MAMA Detector and HVPS Typical (3 kg)
MAMA Detectors (7 systems) 21 kg
System Electronics 15 kg
Optical Bench and Mechanical Envelope 75 kg

Baseplates (10 kg)
Mechanical Envelol3e (45 kg)
Optical Bench (20 kg)

Contingency and miscellaneous
Total 333 kg

Table 4. Electrical UHRX$ Properties

MAMA Amplifiers and HVPS 50 watts
MAMA Encoders 20 watts
Central Electronics 40 watts

Solar Sens_ and Correlation Tracking 5 watts
Active Mirror Servos 30 watts
Cameras 20 watts
Thermal Control 25 watts

Contingency 25 watts
Total 215 watts

Additional Specifications:
TM Rate: 10 Mbs
Volume: 5 cubic meters

Command Requirements: see Section 1I: 15



3.0 Imaging Telescopes: The principaltechnologyon which the UHRXS isbased isthatof normal incidence

multilayeroptics.Barbee2 has describedthe development of multilayeropticstechnology,and Walker etal.3 have

describedthedevelopment and applicationof multilayermirrorsforastronomicalimaging.The designof the UHRXS

imagingsystems,which arefiguredasconventionalRitchey-Chl-_tien4 orHerschellianopticalsystems,isbased directly

on our successfulrocketflightof October 1987,5 which obtainedthe firsthigh resolutionastronomicalXUV images

with both typesof opticalsystems.(A highresolutionsinglereflectionmultilayerimage has alsorecentlybeen reported

by Golub etaL6).Subsequendy, we have developedand successfullytesteda new rocketpayload7,the"MultiSpectral

Solar Telescope Array (MSSTA)", which is scheduled for itsinitialflightin December 1990. This new payload

incorporatesseven Ritchey-Chrdtienmultilayertelescopes(Figure2a) which are similar(with,however, smaller

apertures)tothoseplannedforUHRXS. Recentlycompleted performancetestsshave shown thattheMSSTA telcscopcs

have multilayercoatingsof very highefficiency,and opticalfiguresofhigh quality,providinguswith greatconfidence

thatwe willbe abletomeet,orexceed,theperformancespecificationswe have setforUHRXS. Each UHRXS telescope

consistsof fivebasicelements:the multilayermirrors,an activeservo to stabilizethe image, a fiberepoxy optical

bench,a thinmetallicfilter,and an image recordingdevice.We discussthe anticipatedperformance of the UIIRXS
telescopes below.

3.1 Multilayer Optics:The physicsofmultilayerstructuresforx-rayopticsisa rapidlydevelopingfield.Barbee9

has discussed the current status of multiiayer optics. A number of factors influence multilayer performance, including the
materials chosen to fotrn the alternating "scattering" and "spacer" layers of the multilayer, the nature of the interfaces and

the relative thickness of the two dissimilar layers in a layer pair, and the RMS micro-roughness of the interfaces (which
is strongly influenced by the micro-roughness of the subslrate.s on which the multilayers are formed). In his discussion,

Barbee emphasizes two multilayer systems, Mo/Si and Rh/C, which will be used for the majority of the multilayer
telescopes which are included in UHRXS. The principle characteristics of the multilayer mirrors which determine UHRXS

performance are mirror r¢flectivity and bandpass. We have already carried out extensive measurements (Table 5 s.z°) on the

Mo/Si mirrors which were fabricated by one of us (TWB) for the MSSTA payload. The improvements in multilayer

technology which have occurred over the past few years are made apparent by comparing the efficiency of system VI-a,
which was fabricated in 1987, and System XII-E, which was fabricated in 1990.1° Considerable flexibility in multilayer

resolving power is possible 11 (for example at - 173 ,_; resolutions over the range 15 < Z/Ak < 75 appear to be

possible), however high resolution comes at the expense of efficiency. We have assumed the values of reflectivity given
in Table 9 and the wavelength bandpasses given in Table 1 for UHRXS.

Table 5. Efficiencies and Bandpasses of the M$STA Ritchey-Chr&tlen Telescopes

System Mirror Centre2 eN(7,o)• e'(;_a)**e'p,s(ko)÷ _.(p,s)fwhme2(ko) _.fwhh
Coatin§ Wavelength(A1

VI-a Mo/Si 173 .25 .26 .26 17 .063 12
VI-b Mo/Si 211 .30 .32 .32 19 .09 14
XII-D Mo/Si 150 .45 .43 .44 12 .20 8
XII-E Mo/Si 173 .43 .41 .41 17 .19 10
XII-F Mo/Si 193 .32 .39 .36 22 .10 15
XILC Mo/MK 2 Si 304 .25 .25 .25 26 .063 18
X]]-G Mo/Mg 2Si 335 .20 -- .20 34 .04 23
XII-A/B AI/M_F2/Os 1216/1550 .... .51/.78+÷ 150/300 .26/.62 100/200
* Measurements at NIST ** Measurements at SSRL + Adopted values ++ Measured by Acton Research

3.2 Filters: Thin metallic filters which suppress visible and ultraviolet radiation by a factor of 1010 are a critical

component of a multilayer telescope. In addition to suppressing visible and ultraviolet light, fdters must also reduce
"contamination" from XUV radiation (especially from slrong lines such as He I _. 304 ,_) outside the bandpass of each
telescope. The successful fabrication of filters for the MSSTA payload s,t2 by Ldxel Corporation has given us confidence
that filters can be fabricated for UHRXS with the desired properties. Based on the characteristics of the MSSTA filters

(Table 6), we have developed the preliminary UHRXS f'dter designs in Table 7. As Table 6 demonstrates, we have been
able to develop filter designs which can reduce off-band contamination to less than 1% for most of the MSSTA XUV

band passes, and to no more than 10% for any bandpass. The MSSTA filter materials are divided between 2 filters of

equal thickness placed near the focal plane (Figure 2a), to minimize the possibility of light leaks due to pinholes.
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UHRXS will also use two main filters. However, thermal control considerations (see section II:10.1) make it

highlydesirabletohave a fullaperturefilteratthetelescopeentrance.We arestudyingtwo alternativestoenhance the
telescope thermal properties: (i) the use of a third thin prefilter at the enhance aperture of each UHRXS Ritchey Chrdtien

Telescope, or (ii) placing one of the two main f'dters at the entrance aperture. The fabrication o[prefilters, if their use is
deemed essential, is a complex issue.

Table 6. Properties of the MSSTA Ritchey-Chr_tien and Cassegrain Filters

System Wavelength Filter Composition Transmission

_)(A) Microns at g 9
XII-A 1216 Mg2F/AI 0.013

XII-B 1548 Mg2F/AI 0.013

XII-C 304 A1(.28)/C(.0125) 0.139
XII-D 150 Be(.60) 0.212
XII-E 173 A1(.28)C(.04) 0.208
XII-F 193 Al(.28)KBr(. 16)H20(.01) 0.155

XII-G 335 AI(. 18)/C(.008)/Te(. 14) 0.070
Via 173 A1(.28)/C(.04) 0.208

VI-b 2I 1 AI(.28)/KBr(. 16)H_0(.01) 0.143

Flux at k/Flux at 7_o
_.304 A L400-900 A _.171-193 A

1.000 0.005 0.0005
0.006 0.0001 0.076
0.003 0.0003
0.002 0.0000 -

0.040 0.088 0.0001
0.005 0.0005

0.026 0.0000 0.085

Table 7. Overview of UHRXS XUV Filter Component Material

Bandpass(A)

173

304

193, 211

335

150

132.8,143.3

88.1,93.9

54.7, 69.7

Aluminum Alum Ox. Carbon KBr Tellurium Beryllium Molylxl.

2845 A 60 A 382,1,

2950 A 60 A 152 A

2914 A 60 A 154

1706 A 60 A II0 A

1746 A

1288 A

Rhodium Phthal*

6000_

30OOJ, 280O

275 A 2800 A 800 A 384 A

3638 A 1600 A 2358 A

* Phthalocyanene

3.3 Optical Bench: Our baseline optical bench design utilizes a fiber epoxy optical bench. This design is based on

the optical benches developed for the MSSTA payload. 7 The MSSTA optical benches (Figure 2a) were fabricated from

ASA-12k graphite fiber, and an HBRF55A epoxy resin matrix was used. The use of longitudinal fibers increases
stiffness, and yields benches with a very low coefficient of thermal expansion. The telescope tubes are coated to minimize
the effects of length changes due to moisture. We have tested the sensitivity of the location of the focal plane of the Z<)
335 A telescope to changes in temperature [over a range of 20* F (from 65* F - 85* F)] and humidity. No variation in the

location of the focal plane was found as a result of either temperature or humidity variations. However, in order to
maintain the image quality required, the Ritchey-Chrdtien telescope optical bench length must be maintained to an
accuracy of 0.05 mm (50 microns). We are concerned that this accuracy may be attainable only by very stringent control
of the moisture content of the fiber epoxy bench. We propose to study two alternative approaches m maintaining the
proper separation between the primary and secondary mirrors.

the use of an invar optical bench, coupled with very precise control of the temperature of the bench.
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the use of a graphite epoxy optical bench, which incorporates the ability to measure the value of the
primary/secondary mirror separation by using a set of reference invar rods, and to control that separation with an
active system of pizeo-electric actuators.

We are confidant that one of the above approaches, or a combination of both, will prove effective.

3.4 Ritchey-Chr_tien Telescope Assembly and Alignment: During the fabrication of the MSSTA telescopes,

we developed procedures for assembly, alignment and testing which are dkecdy applicable to UHRXS. For example, the
use of a low outgassing elastomer to mount the primary mirror has proven to be a highly successful approach. 8

We have described the interferometric tests carried out on the MSSTA telescopes in a recent paper. _3 The

procedure used to test the figure quality and optical alignment of the MSSTA telescopes is shown in Figure 3a. The

interferometer and wedge provide two beams which after propagation through the telescope produce a set of fringes that
may be analyzed to determine the quality of the optics, and verify telescope alignment. Analysis of the fringes produced
when the optical flat is translated through the position of best focus was carried out using the code Micro-Fringe 3.1.

Figure 3b represents the predicted energy distribution of a point source imaged in the focal plane in the absence of
diffraction for the MSSTA ko 335 A telescope. The same information is conveyed in a different form in Figure 3c in

which the geometrical zonal spot diagram is presented. In Figure 3d, the point spread function, as computed from the

analysis of the interferometric fringes, is presented. The performance predicted for the telescope is essentially
diffraction limited! The results presented for the Xo 335 A telescope in Figure 3 are typical of the performance found for

all of the MSSTA Ritchey-Chr_tien telescopes.

3.5 Choice of Mirror Substrates: The diffraction limited performance predicted by the measured geometrical

perfection of the MSSTA telescopes provides a strong indication that our resolution goals can be achieved for UHRXS.
However, the critical technology that will determine the performance of the UHRXS telescopes at their operational

wavelengths is the surface finish of the mirror substrates on which the multilayer coatings have been applied. Harvey,

Zmek and Ftaclas t4 have examined the effect of surface finish on the performance of multilayer mirrors. Since the

multilayer coating tends to smooth high frequencY surfac e imperfections, it is the substrate mid-frequency surface
imperfections which will determine image quality (the high frequency imperfections affect multilayer reflectivity most

strongly). The analysis of Harvey et al. indicates that for a primary aperture of 10 inches (the aperture of the UHRXS
telescopes is 7.5") a 5 ARMS substrate microroughness should result in an image with, respectively, 40% at 44 A,

75% at 125 A, and 90% at 304 A of the energy in a 0.1 arc-second diameter circle for a point source. Baker Consulting,

Inc. has polished the Zerodur mirrors for the MSSTA telescopes using an advanced flow polishing technique to a

smoothness of - 1-2 A RMS. t5 We may be able to achieve sub-Angstrom smoothness for UHRXS with the use of

sapphire substrates. The selection of the substrate material for the multilayer mirrors is a key decision.

Performance of the Ritchey-Chr&tien Telescopes: Laser interferometric measurements on the assembled
MSSTA telescopes indicate that their optical performance implies a system accuracy of -_100 for 6328 A light. These

results, coupled with the theoretical analysis of Harvey et al., results suggest that the optical quality achieved for the

MSSTA telescopes is sufficient to exceed 0.1 are-second resolution. In section II:3.10, we discuss the combined impact

of optical quality and of other factors such as spacecraft jitter and f'dm resolution on overall UHRXS system performance.

3.6 The Herschelliau Telescopes: At wavelengths shorter than 70 A,, the lower efficiency of multilayer mirrors

and the weakness of the solar flux combine to make a single off-axis parabolic Herschellian mirror 7 a more effective

configuration than the double reflection Ritchey-Chr_tien. However, the preceding discussion on multilayer fabrication
and telescope assembly, and performance of the imaging Ritchey-Chrttien telescopes applies, with few exceptions, to the

HerscheUian telescopes as well. The properties and performance of the Herschellian Telescopes (A 1 and A 2), multilayer
coatings, and t'dters are given in Table 1 and 9. The configuration of the Herschellian telescopes is shown in Figure 2b.



Figure 3a. Arrangement of the He/Ne Laser (_, 6328 )k) interferometer, optical wedge, optical flaL and telescope during

alignment tests. The interferometer used wu the Zygo PTI. The angle of the wedge is greatly exaggeraced.
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Figure 3b. Radial Energy disu-ibution for a point source imaged by the _ 335 A in the absence of diffraction. The very

high quality mirrors place 90% of the energy in a circle of radius 0.06 Airy Radii (R, = 0.066") or 0.00d".

Figure 3¢. Calculated Geometrical Zonal Spot

Diagram for the _'0 335 ,I_ telescope based on
interferometric measurements. The circle represents the

Airy Disk radius (0.066").

Figure 3d. Calculated point spread function (PSI=) of

the _.o 335 _, telescope based on interferometric
measurements. The PSF is dominated by diffraction
effects.
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3.7 Photographic Emulsions: _We plan to use photographic films in 70 mm format to record the observations

from the imaging telescopes (A-I, #, A1, A2). To reach the resolution that we have set as our goal, 0.l arc-sec, will

require an emulsion with a resolution exceeding - 1 microns (500 lines pairs/gm). We have successfully used Kodak
100 emulsion with a resolution of 200 t/ram in our October 1987 flight, s We are currently testing the Kodak XUV

sensitive 649 emulsion, which has resolving power as high as 2000 l/ram, t6 We do not anticipate that obtaining XUV
film with adequate sensitivity and resolving power will be an insurmountable problem. The skill, and supportive policy

of the Research Division of Kodak has been an important part of the success we have achieved in obtaining high

resolution XUV images of the sun. However, we are concerned about F_V films because, presently, Schumann

emulsions iv are no longer available, and we have not yet found a FUV film with sufficient sensitivity and resolving
power to replace Schumann emulsions such as 101-07.

3.8 Telescope Focal Properties: We have studied two element optical systems, is including Cassegrain

(parabola/Hyperbola), pseudo Cassegrain (sphere/sphere), Dall-Kirkham (ellipsoid/sphere) and Ritchey-Chr_tien

(hyperboloid/hyperboloid) during the design of the MSSTA telescope. It is well known that improved performance over a

wide field of view can be achieved with aplanatic telescopes for which (to third order at least) coma is zero and spherical

aberration is absent. The Ritchey-Chr6tien telescope, + which is an aplanatic form of the Cassegrain configuration,

utilizes hyperboidal primary and secondary mirrors. The conic constant for the Ritchey-Chr6tien secondary mirror is more

negative than for the classical Cassegraln, which has a concave paraboidal primary and a convex hyperboichl secondary.

Consequently, the Ritchey-Chr_tien design was selected as the optical configuration for all the UHRXS telescopes except
the Herschellians. This provides an aplanatic system with excellent performances over a wide field of view. Oar

_eoretical studies revealed that the MSSTA Ritchey.Chr6tien telescopes are optically capable of yielding spatial
resolution better than 0.3 arc-seconds over a 48 arc-minute field of view, which corresponds to 200 line pairs/mm spatial

resolution at the fihn plane. It further established that spatial resolution of 0.03 arc-see (2000 line pair/ram) resolution is

theoretically possible near the optical axis at a wavelength of 173 ,_, with resolution of the order of 0.1 arc-seconds out

to 10 arc-minutes off axis. Figure 4 shows the et'fect of moving a flat detector plane along the optical axis in increments
of 0.3 mm (300 microns). Based on these results, We plan to control the location of the focal plane to 0.05 mm (50

microns). This will be accomplished by controlling the primary/secondary mirror separation.

We note that since these Ritehey-Chr6tien telescopes are aplanats; the primary image degradation arises from

curvature of field and astigmatism, At the edge of the usable field of aplanatic telescopes the distortion is usually only a

few hundredths of an arc-second. Image blur due to astigmatism is symme_c and therefore the center of the point spread

function can be very precisely located.
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Figure 4a. Through-focus spotlight diagrams for the
MSSTA Ritchey-Chr+den design. For the focal length

of 3500 ram, the scale of 50 shown above corresponds
to 3 arc-seconds.
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3.9 Active Mirror Servo: The pointing stability
and accuracy required for the high resolution UHRXS
observations will be achieved by active control of the
secondary mirrors of the UHRXS telescopes (primary
mirrors for the Herschellian Telescopes). The mirror
articulation system we plan to use, the Active Mirror
Servo (AMS), has been developed by Bali Aerospace
Systems Division (Figure 5); the AMS has already
achieved stabilization of a 6 inch aperture mirror to
the level of 0.08 arc-see with a 600 Hz bandwidth,
using an error signal derived from a Lockheed
Intermediate Sun Sensor (LISS). The range of the
AMS, - +15 arc man, is adequate to compensate for
pointing errors and jitter introduced by either the
proposed PIP, or the IPS.

Figure $ (left). The Ball Aerospace Active Mirror
Servo.

3.10 Image Quality: The quality of the image recorded on the UHRXS t-dins is deteamined by the following factors:

i. Telescope aberrations (for a perfect optical system) including diffraction (Ss)
ii. Aberrations due to (a) mirror tilt and (b) decentration (b,)

iii. The widening of the point spread function due to surface imperfections and slope errors (Be)
iv. Defocussing due to errors in primary/secondary separation (Ss)

v. Image blurring due to spacecraft and pointer jiuer and tracking errors (Sj)
vi. Image blurring due to target motion (_)

vii. Image blurring due to finite film resolution (8c0
viii. Scattering due to the various filters used (80

The net resolution, & is given by ......

5: [82(r,X)÷ 8:(r,_) + 8f(r,_)+ 8:(r,X)+ 82(r._)+ 82(r,_.)+ 82m(r,_)+ 82(r.k)] i/2

where r is the field position from the optical axis. For large field angles (Figure 4), and in the FUV, 8a(r,X) will
dominate the resolution. At small field angles and at XUV wavelengths, 8a can be held at 0.03". We list a preliminary
allocation of the error budget below. The net point spread function projected by Table 8 is 0.075 arc-seconds.

Table &

Tern Allocation

On Axis Image Point Spread Allocation at k 173 ]_

82 Team Allocation 82

8f(0) 0.02" 0.0004
8d0) 0.03 0,0009

_t(0) 0.03 0.0009

_d0) 0.03 0.0009

8s(O) 0.03 0.0009

Bj(0) 0.02 0.0004

Bin(o) 0.02 0.0004

adO) 0.03 0.0009

3.11 Discussion: A_th_ughtherearesigni_can_iss_stoberes_vedduringthefabricaft_n_ftheUHRXSte_esc_pes
(i.e., retaining proper focus may require the use of an mvar optical bench and/or active sensing__d control of
primary/secondary mirror separation), we are confident that the_ary UHRXS inslruments, the imaging telescopes A-I,

will meet or exceed their goal Of achieving 0.i arc'second resolution. We note that in order to achieve the highest
p0SS_I6reso_-uU'ofion-axJs-_-th-e RitcKey_CEr_fienop6caldesFgn,w-emusiplacethef'flmp_ne attheoptimumfocal
position.Thiswillcausetheresolutionatforexample173_ todegradefrom0.03"on-axisto0.05at8'off-axis,0.33

arc-see16'off-axis,and 0.75arc-seeat24'off-axis.We plantoinvestigatetheeffectsofdefocussing,whichingeneral

willslightlydegradeon-axisresolution,butimproveresolutionoff-axis.(Thispointisdiscussedby Hadaway etal.tS).
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We also intend to investigate the possibility of slightly curving the focal plane, which will provide a larger field at the
highest resolution. In any event, ifioperation it will be necessary to point the UHRXS telescopes direcdy at a structure

on the limb, in order to image that structure with the highest resolution, We note that the sensitivity of the UHRXS

telescopes (Table 9) is more than adequate for all of the scientific goals that we have established. We can judge this by
noting that the brightness of the UHRXS 173 A images, E and 1_, exceeds that of the 173 A telescope (Via) which

obtained the images shown in Figure 6 by factors of - 12 and 350, respectively!

Table 9. Predicted Performance of the UHRXS Imaging Systems

Telescope Parameters Solar Line Intensity(a) Flux In Focal Plane (b)

_0 E(_) (§) tf(_.)* Full Network Active Flare Full Network Active Flare

CA) Disk Retion Disk Region Re_ion
A 1215.60/ 0.8/0.8 0.05 - - 85.67 220.27 - - 9,300 24,000

1548.00 0.8/0.8 0.05 -- 14.00 (c) 72.00 (c) -- 1,500 8,000
B 304.00 0.25/0.25 0.17 7.60 (d) 10.99 73.00 160 230 1,500
C 143.30 0.60/0.60 0.20 0.04 (e) 0.03 (f) 0.10 (f') 5.6 4.0 14
D 88.10 0.50/0.50 0.20 .044 0.03 (f) 0.200 (f) 4.3 3.0 20

A 1 69.70 0.30 0.15 0.10 0.05 (f) 0,500 (f) 6.5 3.2 32
E 173.00 0.55/0.55 0.20 1.60 1.00 8.00 190 120 950
F 195.40 0.40/0.40 0.22 1.52 0.70 7.50 104 48 516
G 211.00 0.35/0.35 0.22 0.60 0.15 3.00 32 8 160

A 2 54.7 .15 0.15 0.13 - - 2.60 (g) 2 - - 40
H 93.90 0.60/0.40 0.15 0.03 -- 1.50 (h) 2.1 -- 105
I 132.80 0.60/0.35 0.15 ...... 5.0 (j) ...... 500 (j)
F 192.0 0.40/0.40 0.22 ...... 2.5 (j) ...... 180 (j)
I¢ 173.00 0.55/0.55 0.50 1.60 1.00 8.00 5,792 NA (1) NA (1)
Via (k)173.00 0.25/0.25 0.30 1.60 1.00 8.00 17.6 10.5 88
(§) Reflectivity of primary and secondary mirrors; (*) Filter Transmission; (a) Solar line intensity given in 103 ergs/(cm 2-
se,e-su'.). Network and active region fluxes from Vernazz and Reeves. 33 FuI1 disk flux from Malinovsky and Heroux 3a except

v 2 e 35 e ..36as noted; (b) Focal Plane Flux gien in milli-ergs/(cm -s c); (c) Cohen; (d) Fr eman and Jones; (e) Estimated from
calculations of Doeschek and Cowan; 37 (f) From ratios of Ne VIII _ 780 ,_; (g) Flux assumed to be in 5% of disk; (h) Flux
assumed to be in 2% of disk; (,j) Estimated from Feldman et al. 38 and Doeschek and Cowan37; (k) Included for comparison;
not part of UHRXS; (1) Disk will be occulted.

Figure 6. The corona at _,_. 171 A-175 A (Fe IX/Fe X) as photographed with Telescope VI-a (see Tables 5 and 9) on

October 23, 1987. The exposure times were 8 seconds (left) and 200 seconds (right). Kodak XUV-100 film was used.
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4.0 XUV, EUV and FUV Spectroscopic Systems: The baseline UHRXS Spectroscopic systems (Table 10) cover
bands in the XUV (170 A - 215 A), EUV (450 A - 1100 A) and FUV (1150 A - 1600 A). Each system consists of a

telescope similar to the primary imaging telescopes (See. 3.0), a slit which defines the size of the solar region being

analyzed, a grating, a thin metallic filter, and a MAMA detector. The grating spectrographs provide very high angular

resolution (0.1 x 0.5 arc-seconds) combined with spectral resolution high enough to study line profiles over the
temperature range 10,000 K < T < 30,000,000 K.

4.1 The Telescopes: The telescopes for the XUV and EUV spectrographs are identical to the imaging telescopes,

A-K, except that the focal length is 10,1300 mm rather than 3,500 mm., which permits 0.25 arc-see pixels with the

baselined MAMA detector. Each telescope is coated with a suitable reflecting surface (Mo/Si multilayers for the XUV,
Os for the EUV, AI/MgF2/Os interference films for the FUV). The FUV spectrographs are fed by Telescope A (Tables 1,

2) using a magnifying beamsplitter (Figure 7).

4.2 Optical Configuration of the Spectrographs: If the size of an image in the direction of dispersion in the

focal plane is limited by the use of a slit, a Rowland Geometry grating spectrometer can produce stigmatic images of line
profiles at several discrete wavelengths, provided the source spectrum consists of strong emission lines which dominate a
weak continuum. The solar coronal spectrum satisfies this criteria. The properties of the image of the entrance slit will
be determined by the configuration of the grating. Sampson 19 discusses the focusing properties of a number of grating
configurations. If a spherical grating is used at near normal incidence, astigmatism is small, and a high-quality image
results. If the grating is used away from normal incidence, then a toroidal or ellipsoidal grating allows astigmatism to be
eliminated for two wavelengths, and at wavelengths adjoining these wavelengths. For a toroidal grating 19 in the special
case where the angle of incidence, and the diffraction angle of the spectral line of interest are equal, the horizontal and
vertical radii of the Grating must be related by r = R cos2a. If the grating is ellipsoidal, then the condition for a stigmatic
image are given by e2 = b2 cos[3 cosa, and R = b2/a, where a, b, and c are the radii of the grating in the x, y and z axes.

We plan to use an ellipsoidal Rowland Geometry grating spectrometer with R = 1000 mm at near normal
incidence in the focal plane of the Ritchey-Chrttien telescopes as shown in Figure 8, to provide a dispersed spectrum

which will be recorded by a MAMA detector. The plate scale will be 50 microns/arc second, allowing a field 250 arc-see

(4 arc min) along the direction of the slit to be observed. The size of the field observed in the direction of the dispersion

will, of course, be determined by the width of the slit.

4.3 Slits: The grating spectrographs can utilize slits with either a width equivalent to 0.1" or to 0.5". Since the
telescopes are capable of resolution which approaches or exceeds 0.1", we can achieve 0.1" resolution across the slit, and

0.5" along the slit (limited by the MAMA pixel size) or 0.5" x 0.5" resolution respectively in the two slit

configurations.

Table 10. XUV, EUV, and FUV Spectroheliograph Performance

Wavelength Grating Parameters
(A) A_* Freq(F a) Effic_ a

al 1210-1245 6.7 1400 0.1

a2 1530-1565 6.7 1400 0.1

[3 450-1100 11.5 1400 0.01
6.5 O.05

F 170-195 22 3600 0.15 2°
A 190-215 15 3600 0.10 2*

Plate

13 rt/arcsec _/A
5° 5* 50 400

6.23* 6.23* 50 400

-3* -3 ° 50 400

Scales Resolution Count Rate'

AO AX Line(A) Phot](arcsec)2-sec

0.5" .035 H I 20,700/53,000 b/c
0.5" .035 C IV 6,900/35,000 b/c

0.5" .035 HeI(L584) 700/4,620 b/c
HeII(L3tM)d 2,600/17,341 b/c

1000 0.5" .014 FelX(_,171) 830/9,000 b/c

1000 0.5" .014 FeXII(_.I92) 3,200 c

2° 50
2* 50

a lines/turn, b in the chromospheric network, c in active regions, d second order, e solar fluxes taken from Table 9.

* Telescope effective area (re/4) (A2-a 2) epE_tt¢b in cm 2.

4.4 The Gratings: Two gratings will use multilayer coatings to operate in the XUV; one will be coated with

Osmium to operate in the EUV, and two will operate in the FUV by utilizing multilayer interference coatings. Barbee et

al. 2° have recently reviewed the status of multilayer gratings. Based on the discussion by Barbee eta/., we have estimated

the performance given in Table 10 for the multilayer gratings A and F. The performance assumed for the FUV (al, a2)
and EUV (13)gratings is based on the literature (see for example Hurley et al., m Huber et al., 21 and Morgan et al.21).

14
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Figure 7. FUV Beam Splitter. Note that the Figure 8. Configuration
splitter will appear as a dark line in the image grating spectrometer.
recorded by MAMA A.

of the ellipsoidal

5.0 The Soft X-Ray Spectroscopic Systems: As we pointed out in Paper I 1, the original UHRXS concept

incorporated four Herschellian telescopes. We plan to explore, for the initial UHRXS configuration, the replacement of

two of the Herschellian telescopes with three spectroheliographs which use sectored Wolter telescopes (_ 1-Y_ 3). (The

two remaining Herschellian telescopes are described in Section 3.5) The configuration of the spectroheliographs is

shown in Figure 9. Each spectroheliograph consists of four components, an objective double Bragg crystal spectrometer,
a Woiter I mirror segment, a thin metallic filter, and a MAMA detector, which is shared by all three telescopes.

l

O"
.J

Figure 9. Configuration of the soft x-ray spee_oheliographs. The objective crystal spectrometer is divided into two

sections (a_ b) which select different wavelengths. The mask determines the wavelength range which reaches the detector.

5.1 The Objective Double Crystal Spectrometer: The objective crystal spectrometer acts as a narrow ban@ass
filter, with a bandpass centered at Xo = 2d sin 0 (where 0 is the Bragg angle and d the crystal lattice spacing) for sources

along a locus parallel to the crystal rotation axis. The center of the bandpass varies for a source which is at an angle c_
from the optical axis of the telescope according to the equation, ),=X o (l+ct cot 0), as illustrated in Figure 10. The

bandwidth of the filter is determined by the rocking curve of the crystals. Burek" has presented a comprehensive review

of the properties of natural Bragg crystals. Table 11 summarizes the properties of a representative set of Bragg crystals

that might be used for the soft x-ray spectroheliographs _ 1 - • 3. Each double crystal specu'ometer is designed to
observe line multiplets in two bands (in 4 cases the H-like and He-like line multiplets of O, My, Si, and Fe). The line

multiplet to be observed is selected by a cam, which scans the Bragg angle to allow the crystal to scan over the

appropriate wavelength range. Note that scanning the Bragg angle generates a line profile for each point in the image
field.

5.2 The Wolter Sector Telescopes: The monochromatic radiation from each objective crystal spectrometer is
imaged by a nested Wolter I sector telescope 23Details of the Wolter sector telescopes are given in Figure 9 and Table 11.

In order to use a larger angle of incidence (and hence achieve greater collecting area for a mirror of a given length) the
1.79 - 1.85 A telescope is coated with W/C multilayers.

15



10/29/90

System

Zla

Zlb

Z2a

Z3a

Z3b

Z2b

Table 11. Properties of Objective Bragg Crystal Spectrometers and Wolter Telescopes

I

Ion Crystal Properties

(,_ Crystal 2d (,_,) 0 Rp _A_. Angle
40.2-41.6 C V Rb/C 57.00 45.0

44.02 Si XII 50.5

21.6-22.1 OVII Rb/C 40.00 32.0

18.97 OVIII 28.0

15.00 FeXVII TIAP 25.76 36.0

13.4-13.8 NeIX 31.5

9.1-9.3 Mg XI ADP 10.642 59.5

8.42 Mg XII 52.5

6.6-6.8 Si XIII _ 8.81 49.0

6.18 SiXIV 44.5

1.85-1.87 FeXXV Topaz 2.71 43.1

1.79 FeXXVI 41.3

Telescope Properties Filter

Coatin_ Reflectivity
.25 200 3.0" Nickel .60 Rh/C/Pht 7
.22

.20 300 3.0 ° Nickel .50 C/AI

.30

.15 750 2.50 Gold .40 C/AI

.40

.60 8,200 1.50 Nickel .60 AI

.65

.80 8,000 1.5° Nickel .60 Be

.80

.60 10,000 2.5° W/C .60 Be

.60

Discussion: The soft x-ray specm3heliographs provide high

resolution imaging and spectroscopy over the spectral range _. 1.7 ,_ -
45 A, which is essential to studies of the high temperature (T >

3,000,000 K) solar plasma. These observations will be unique in this

wavelength interval, because they combine both high angular (2") and

high spectral (_./A_. S" 1000) resolution. We note that image

stabilization for all the soft x-ray spectrographs will be achieved by

image motion compensation within the MAMA logic system. 24

Figure 10 (at right). Wavelength dependence of the image of a

loop on the solar limb observed at 6.647 _ (Si XIII ls 2 IS - ls2p
t p). The shaded area indicates the resolution, A_.,of the

spectroheliograph. At 10 7 K, the line profile fwhm is - 6 A_..

•244" +240"

8.640 6.654

o

I I

t I
15.647

x(A)

6.0 The MAMA Detectors: The current status of the MAMA array detector has been described by Timothy et
al. 25 The MAMA is well suited to the requirements of our program; it has the following advantages, compared to

competing technologies. (i) It is flight proven, and the developments required for UHRXS are currently on-going. (ii) The

MAMA can have extremely fast (in principle sub-microsecond) response time, which is well matched to the dynamics of
solar phenomena. (iii) The MAMA does not suffer from bias levels which vary across the array (i.e., non "fiat field") as
does the CCD. (iv) The nature of the MAMA (event detection by coincidence with orthogonal anode arrays) allows
compensation for image motion to be achieved, at the microsecond level within the detector, with virtually no
compromise to the quality of the image, z4 (v) The MAMA can be made with a photocathode that is blind to the visible,
greatly simplifying the problem of suppression of scattered fight in UV, EUV, and XUV instruments. (vi) The detector
format (i.e. array size) can be electronically controlled.

The UHRXS MAMA Configuration: The MAMA array that we plan to use will have a 1000 x 1000 pixel

format with 12-14 micron pixels. This will allow 2.0 arc-second resolution (1.0 arc-second pixels) over a field of view of
- 16 arc-min x 16 arc-rain for each of the x-ray spectroheliographs, and 0.5 arc-second resolution (0.25 arc-second pixels)
over a field of view of - 4 arc-min x 4 arc-rain for the XUV, EUV and FUV spectrographs. We review the current status
of the MAMA technology below.

6.1 MAMA Detector Systems: The components of a MAMA detector consist of the tube assembly, which can be

sealed with a window or used in the open-structure configuration, containing a single, high-gain, curved-channel
microchannel plate (MCP) electron multiplier with the photocathode material deposited on, or mounted in proximity
focus with the front surface. To detect and measure the positions of the electron clouds generated by single photon events,
the MAMA detector employs two layers of precision electrodes which are mounted in proximity focus with the output
surface of the MCP (see Figures 11 a and b).
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Digital logic circuits respond to the simultaneous arrivals of signals from several of these electrodes in each
axis, which are arranged in groups to uniquely identify a x b pixels in one dimension with only a + b amplifier and
discriminator circuits. For example, a total of 32 x 32, i.e. 1024, pixels in one dimension can be uniquely identified with
32 + 32, i.e. 64, amplifier and discriminator circuits. In the imaging MAMA detector tube, the arrays are mounted in
tandem with orthogonal orientations, so that positions can be sensed in two dimensions. In this configuration (a x b) 2
pixels can be uniquely identified with only 2 x (a + b) amplifier and discriminator circuits. The (1024 x 1024)-pixel array
thus requires a total of only 128 amplifier and discriminator circuits. The two layers of anode electrodes in the imaging
arrays are insulated from each other by a SiO2 dielectric layer. This dielectric between the upper layer electrodes is etched
away to allow the low energy (-30 eV) electrons in the charge cloud from the MCP to be collected simultaneously on
both arrays.

The encoding-electrode geometry has been refined as the MAMA technology has become more mature. Three
different encoding-electrode geometries are currently under evaluation, as shown in the schematics in Figure 12. These
are, in order of development, the coarse-fine, balanced coarse-fine and fine-fine configurations. All the configurations
encode the position of the detected photon in a similar manner. A charge pulse detected on a time-encoding electrode (e.g.
output F1 in Figure 12a or b) could have originated on one of a number of pixel electrodes connected to this output
electrode along one axis of the array. This positional ambiguity is removed by the detection of a simultaneous output
pulse on one of the coarse-encoding electrodes (e.g. output C1 in Figure 12a or b). There is only one position along the
array where a particular pair of fine- and coarse-encoding electrodes are adjacent. The f'me-fme configuration (Figure 12c)
operates in an identical manner with the simultaneous detection of pulses on the odd and even sets of electrodes. In the
imaging arrays, this position-encoding technique is implemented simultaneously in the two axes.
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Figure 12. Configurations of the different MAMA anode array encoding geometries.

In practice, it is not possible to exactly align a channel in the MCP with a particular pair of pixel electrodes.
Also, in order to obtain a uniform response across the active area, the dimensions of the channels are smaller than the
separation between the pixel electrodes. Typically, 10- or 12-micron-diameter channels on 12- or 15-micron centers are
used in the MAMA detectors with 25 x 25 microns 2 pixels. Furthermore, the high-gain MCP produces a space-charge
saturated electron cloud which expands rapidly when leaving the channel (see Figure 13a.)

In order to maintain the inherent high spatial resolution of the MAMA readout array, the spreading of the charge
cloud is controlled by keeping the distance from the output surface of the MCP to the anode array as small as possible
(typically of the order of 50 to 100 microns) and by applying an acceleral;ing potential of the order of +50 to +150 V
between the output surface of the MCP and the anode electrodes. A small differential voltage in the range 1 to 5 V is
applied between the upper and lower sets of electrodes in order to ensure that the charge cloud divides uniformly between
the electrodes in the two layers.

In the coarse-f'me and balanced coarse-fine arrays, the position of a charge cloud collected on two or three adjacent
electrodes in each axis is uniquely encoded. The positions of adjacent two-fold and three-fold events in each axis are
determined by the digital address-decode circuits. Since the nominal pixel size in the MAMA is determined by the center-
to-center spacing of the anode electrodes, the positions of adjacent two-fold and three-fold events differ by about one half
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of a pixel i.e. about 12.5 microns in the arrays with 25 x 25 microns 2 pixels. In the present MAMA systems adjacent

two-fold and three-fold events are co-added to produce the nominal pixel resolution with a good uniformity of response.
However, in these two array configurations a charge cloud collected on four or more electrodes produces a positional
ambiguity (see Figure 13b). Furthermore, we have determined that the imbalance in the inter-electrode capacitance
between the different groups of encoding electrodes in the coarse-f'me array produces a fixed pattern in the flat field
response and slightly degrades the point spread function 26. These effects are significantly reduced by interlacing the
coarse- and fine-encoding electrodes in the balanced coarse-fine array; however, inductive coupling caused by the very fast
(< 500 ps) charge pulses from the MCP still affects the pixel-to-pixel uniformity of response. For these reasons the fine-
fine array, in which the electrodes are capacifively balanced and inductively decoupled, is now the configuration of choice.

In addition, as shown in Figure 13c, four-fold and higher-fold events can be encoded without positional ambiguity. The
present systems of decode electronics fabricated at Stanford University are designed to accept up to six-fold events in each
axis. The key characteristics of the different encoding-electrode geometries are summarized in Table 12.
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Figure 13. Modes-of-operation of the different MAMA encoding-electrode geometries.

19



" _o_9Do

Table 12. Characteristics of the MAMA Encoding-Electrode Geometries

Coarse-fine array '

• n + m outputs encode n x m pixels in one-dimensional array

• 2 (n + m) outputs encode (n x m) 2 pixels in two-dimensional array
• position ambiguity for four-fold and higher-fold events in each axis
• imbalance in capacitive coupling between coarse- and Free-encoding electrodes
• inductive coupling between different groups of electrodes

Balanced coarse-fine array -

• n + m outputs encode n x m pixels in one-dimensional array
• 2 (n + m) outputs encode (n x m) 2 pixels in two dimensional array

• position ambiguity for four-fold and higher-fold events in each axis
• coarse- and fine-encoding electrodes capacitlvely balanced
• inductive coupling between different groups of electrodes

Fine-fine array -

• 2(n + 1) outputs encode n x (n +2) pixels in one-dimensional array
• 4(n +1) outputs encode [n x (n +2)] 2 pixels in two-dimensional array

• no position ambiguity for up to (- six fold events in each axis
• n must be even to avoid position ambiguities in last group of electrodes in each axis

• capacitively balanced
• inductively decoupled

It is of importance to note that the simultaneous arrival of pulses on non-adjacent electrodes in each axis is
declared a non-valid event and rejected by the address-decode circuits. The spatial resolution and geometric fidelity of the
MAMA detector is accordingly independent of position on the array or of signal level, a unique characteristic which has
been verified in a number of laboratory and ground-based telescope tests. A schematic of one of the decode circuits is
shown in Figure 14 and described in detail by Kasde. 27
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Figure 14. Schematic of the MAMA t-me-t-me address-decode circuit.
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AnumberofdifferentphotocathodesarecurrentlybeingutilizedintheMAMAdetectortubes.AtFUVandEUV
wavelengthsbelowabout1500Aopaquealkali-halidephotocathodesdepositeddirectlyonthefrontsurfaceoftheMCP
providethebestdetectivequantumefficiencies(DQEs).In thisconfiguration,photoelectronsproducedin the
photocathodeonthewebareabetweenthechannelscanbecollectedbymeansof appropriatefocusingpotentials,as
shownin Figure15a.Thepulse-countingDQEcanaccordinglybegreaterthan80%of theintrinsicphotocathode
quantumefficiency.However,thelateraldriftof thephotoelectronswill beenergydependentandthefocusingvoltage
requiredto maintainthedesiredpointspreadfunctionwill dependonboththephotocathodematerialandon the
wavelength.2sThebestphotocathodematerialsavailableatthistimeareCsI,KBrandMgF2.29All canbeusedin the
open-structureconfigurationatsoftx-ray,XUVandEUVwavelengths,butCsI,andtoalesserextent,KBrwill degrade
rapidlyif exposedtohumidity.OurpresentbaselineconfigurationutilizesMgF2photocathodes.However,forthesoftx-
rayspectrographinparticular,CsI may offer significant advantages. The use of a Csl cathode would require that the
microchannel plate and cathode be sealed in a small vacuum enclosure with a motor driven door.
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b. Semi-transparent, proximity-focused photocathode for use at
ultraviolet and visible wavelengths.

Figure 15. Schematics of MAMA photocathode configurations.

21



" 10/29/90

At ultravioletandvisiblewavelengths,whereactivatedphotocathodessuchasCs2Te,K2CsSb,and
(Cs)Na2KCsSbmustbeemployed,theMAMAsutilizethesemi-transparent,proximity-focusedphotocathodestructure
showninFigure15b.Inthisconfiguration,theinputsurfaceoftheMCPistypicallycoveredwithathin(oftheorderof
50to 100A thick)SiO2['tlm which inhibits photocathode degradation caused by backbombardment with positive ions

produced within the channels. Since the SiO2 film prevents photoelectrons landing on the web area from reaching the

MCP channels the pulse-counting DQE is reduced by a factor proportional to the channel open-area ratio of the MCP
(typically 50 to 65%). This reduction in the DQE is highly undesirable and we are currently investigating techniques to
eliminate the film while at the same time ensuring the long-term stability of the photocathode quantum efficiency.

6.2 Performance Characteristics: The configurations of representative imaging MAMA detector systems now

under evaluation are shown in Figure 16. All of the imaging MAMA anode arrays have been fabricated by Ball
Aerospace Systems Group (BASG), Boulder CO and units ofaU arrays have been fabricated with zero defects.

Figure 16. Configurations of representative imaging MAMA arrays.
Left: (256 x 1024)-pixel balanced coarse-t'me array with 25 x 25 microns 2 pixels.

Center: (224 x 960)-pixel t'me-fine array with 14 x 14 microns 2 pixels.

Right: (1024 x 1024)-pixel fine-fine array with 25 x 25 microns 2 pixels.

The (256 x 1024)-pixel balanced coarse-fine detector system with 25 x 25 microns 2 pixels (left array in Figure
16) was flown successfully on the NASA Goddard astronomy sounding rocket on 26 June 1989. The detector was used in

the time-tag imaging mode and recorded ultraviolet images of the galaxy NGC 6240. The timetagged data stream is being
used to correct the image blurs caused by drifts in the rocket pointing system. Analyses of these data are currently being
carried out by Dr. Andrew Smith at the NASA Goddard Space Flight Center.

The (224 x 960)-pixel fine-fine detector system with 14 x 14 microns 2 pixels (center array in Figure 16) is
being used in the laboratory to verify the capability of the MAMA to provide the spatial resolution required for the prime
spectrograph of the Lyman FUSE mission. This detector utilizes a curved-channel MCP with 8 micron-diameter channels

fabricated by Galileo Electro-Optics Corp., Sturbridge, MA (see Figure 17).
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In the initial imaging tests, the first (224 x 960)pixel detector, which is defect free, has demonstrated the
theoretical imaging performance at 2537 ._. The images of positive and negative USAF test targets recorded at this

wavelength are shown in Figure 18. A cut through the image of a 20-micron-diameter spot of light and a row from a
rectified flat-field image are shown in Figure 19. The spot image has the expected profile, and the deviations in the fiat
field are in perfect agreement with the Poisson statistics of the original exposure.

The (1024 x 1024)-pixel fine-fine array with 25 x 25 microns 2 pixels (right array in Figure 16) has been
configured with the encoding electrodes on only two sides of the active area. This permits four of these arrays to be
fabricated on a single substrate to produce a (2008 x 2048)-pixel array with a dead space between the four quadrants of

three pixels or less. An array with this configuration is currently being fabricated for the Space Telescope Imaging
Spectrometer (STIS). Imaging tests of the (1024 x 1024)-pixel detector system (i.e. one quadrant of the STIS detector) are
currently being carried out at both ultraviolet and visible wavelengths. The arrays currently installed in both the 40-mm-

format ultraviolet demountable tube and the 40-mm-format sealed visible-light tube are defect free. As examples of the
:pe of data currently being recorded with these detectors, an image of a test mask and a rectified flat field recorded at 2537

e shown in Figure 20. One of us (J. Gethyn Timothy) plans to fly the ultraviolet version of this detector on the
NASA Goddard astronomy sounding rocket late in 1990.

Detailed studies of the performance characteristics of all of the detector systems are now in progress.

Figure 17. (224 x 960)-pixel fine-f'me MAMA detector components.
Left: anode array mounted on the ceramic header.

Right: curved-channel MCP with 8-micron-diameter channels.
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III 3
III 4

Figure 18. Positive and negative images of a USAF test target taken at ultraviolet wavelengths with a (224 x 960)-pixel
f'me-fine array with 14 x 14 microns 2 pixels and a curved channel MCP with 8-micron-diameter channels. The sequence of

bars in these images starts with a resolution of 2.51 line-pairs mm -1 (Group 0, element 3 on the right side of the images).

The closest bars in the image have a resolution of 113.6 line-pairs mm "1 (Group 5, element 6 to the left of the image
centers).

I000

8OO

600

4OO

2OO

20 HICRON SPOT. ROW PLOT

\ 400

"JO0

o 200

100

14 MICRON /kRRAY, FLATK/_'LATS. ROW I00

0 0 j

_ lL

i

10005 I0 15 20 0 200 400 600 gO0

CoLumn Index Column Index

(a) 0a)

Figure 19, Data recorded with the 14-micron-pixel MAMA detector, a. A cut through an ultraviolet image of a 20-micron

spot of light at 2537 ,_. b. A row from a rectified fiat field image. Here one flat field image has been rectified by another

and then renormalized to its orig'.mal count rate, The data illustrated show deviations which are in perfect agreement with the
Poisson statistics of the original exposures (7.6%).
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a. Test mask.

_ +

b. Rectified flat field.

Figure 20. Images recorded with the (1024 x 1024)-pixel MAMA detector at 2537 A.

25



10_9D0

6.3 Future Developments: A number of breadboard units of the SOHO detectors are now in fabrication. The

detectors will operate in differrnf s-cientific instruments over the wavelength range from about 400 to 1600 A. Open
detector tubes, sealed detector tubes and sealed detector tubes with openable covers will be employed. All will be based on
the standard 25-mm-format demountable tube body fabricated by EMR Photoelectric, Princeton, NJ (see Figure 21).

In addition to the laboratory evaluations, the primary tasks of the MAMA program at this time are the detailed
design and fabrication of the (360 x 1024)-pixel flight detectors for the SOHO mission and the fabrication of the
prototype (2008 x 2048)-pixel detectors for STIS (Figure 22).

Figure 21. (360 x 1024)-pixel MAMA detector for SOHO.
Left: anode array mounted in the 25-ram-format demountable tube.

Right: rear view of tube body showing electrical outputs from the multi-layer ceramic header.

A major effort is underway at Stanford and at BASG to miniaturize the MAMA electronics through the
development of custom chips for the amplifier and discriminator and address-decode circuits. The hybrid MAMA
electronics systems will be used on both the SOHO and STIS programs. The requirements for SOHO are for a detector
head assembly incorporating the amplifier, discriminator and address-decode circuits, together with the detector high-

voltage power supplies, with dimensions no greater than 130 x 85 x 180 mm 3 and a mass no greater than 4.0 kg. This
low volume and mass must be achieved without compromising the requirements of high system speed (-175 ns pulse-
pair resolution) and low power (<7 W), coupled with the ability to operate for several years in the radiation environment
in low earth orbit and at the L1 libration point. Details of the technologies being employed for the custom chips are
given in the papers by David Kastle 27and Ed Cole. 3°
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Figure 22. (2048 nx 2048)-pixel f'me-fine MAMA array with 25 x 25 microns 2 pixels for STIS.
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7.0 Experiment Electronics Logic and Data Formats: The electronic block diagram for the UHRXS instrument

is presented in Figure 23.

7.1 Experiment Control: Control of the UHRXS observations will be exercised by an in-flight microprocessor

which will carry out the following functions: (i) distribution of the LISS error signal to the A_MS control circuits, (ii)
development and distribution of the correlation tracking error signal, (iii) control of exposure time and exposure sequence
for all cameras, (iv) control of format and integration time of all MAMA images, (v) selection of FUV filters, (vi)
control of wavelength selection and secondary mirror rastering for all spectrographs, (vii) monitoring of MAMA detector
gain and adjustment of the programmable high voltage power supplies to keep gain stable, (viii) thermal control, (ix)
control of all mechanisms, and (x) formatting of data and transmittal of data to the Space Station telemetry system. Real
time control of the pointing of the UHRXS can be achieved by using the slit jaw H Ly-ct (or C IV) images from the

FUV telescope, which covers an area 4' x 4' on the sun and also shows the precise position of the spectrograph slit.
Alternatively, the images from the EUV and XUV grating spectrographs may be used. This image will be available to
astronauts on the Space Station control panel and to the experimenters on the ground, allowing pointing commands to be
sent to UHRXS.

7.2 Data Formats and Data Handling: Telemetry rate is not a constraining commodity for the observations of

the UHRXS since the majority of our data is recorded photographically. For the photoelectrically recorded images, a

typical uncompressed spectroheliogram will have 1000 x 1000 x 10 =107 bits (assuming 0.1% precision). At a 'I'M rate
107 bits/sec, it would require 1 second to transfer a single image from image memory to telemetry. During our definition

phase, we will address the question of on board data compression in depth. For the present discussion, we will make the
conservative assumption that our images can be compressed by a factor of 10. We can, under this assumption, transmit
10 images every second to telemetry. (Note that this does not constrain the rate at which images can be accumulated and
placed in memory.) This rate is adequate for most of the solar objectives we have identified. For flares, however, greater
time resolution is desirable. The MAMA detector allows the size of the image array read out to be varied so that if Xl,

x2, yl,and Y2 are addresses within the MAMA array (Xl, x2, Yl, Y2 <1000), then an array x2-x 1 x Y2 -Y2, may be

selected. Flare images may, therefore, be further compressed by the following approach: If analysis of flare images by the
central processor determines that Xl + (x2-xl)/2 and Yl + (y2-Yl)/2 are the central coordinates of a flare enhancement,
then we can select an image which includes pixels xt .... x2, Yl .... Y2 for formatting, reducing the array size by a factor

(x2-xl) (y2-Yl)/106, When observing line profiles, Y2-Yl may be made only wide enough to accommodate a single line

profile, resulting in a pixel array -1000 x 50.
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8.0 Film Cameras: The placement of the f'dm cameras for the eight XUV imaging telescope, B-I, is shown in

FiguresIb and c.The eightcameras willbe configuredinfourdualcamera modules. Figure 24a isa sketchof a dual

camera design.We have assumed a filmreelsizeof 10 inches,which shouldpermita rolecontaining-2,500 feetoffdm,

corresponding to -10,000 exposures.Itmay alsobe possibleto develop a design which incorporatestwo reels,m

mounted sideby sideforeach telescope,witha mechanism toselectthereelthatisinactiveuse.This would permita

storagecapacityof 5,000 feetof film per telescope.Detailssuch as the number and type of drive motors,shutter

mechanisms,and method ofprodding identifyinginformalionforeach exposureremainstobe worked out.

The cameras forthecoronograph (I_)and the Herschellians(AI, A2) are placedback toback ina singledual

camera module.The camera fortheultraviolettelescope,A, isa singlemodule.

Access to the fdm camera modules for the coronograph/Herschelliansand for the FUV telescopepresenta

formidableproblem. Some preliminaryideasconcerning the configurationof thesecameras, and access tothem, are

shown inFigure24b.

UnexposedFilmReel --_

r-/

f

I

Figure 24a. Configuration of the dual camera module for the XUV imaging telescopes.

gut W, sw

Figure 24b. Placement md access of the film cameras. For an end-mounted pointer, all cameras

would be removed orthogonal to the experiment axis. For a center-mounted pointer, cameras A-I
would be removed f_m the rear, while cameras M/A would be removed onhogonal to the axis.
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9.0 Expected Performance

9.1 Imaging Telescopes: The UHRXS imaging telescope focal plane energy densities, D, are given by

m

D,(x,y) := 1 (r,,/4) (A2-a 2) V(x,y) aH dTeK,(Te)n2e (Te,x,y), (1)
4n(F.L.) 2

where A and a are the diameters of the primary and secondary mirrors, F. L. is the focal length of the telescope, and

V(r,x,y) is the vignetting function of the telescope. The solar plasma is described by aH, the number of electrons per

hydrogen atom (assumed constant), and ne2(Te), the emission measure at electron temperature Te and density ne which is
characteristic of the solar structure under study. The "kernel" of the integral equation, Kn(Te), which is the convolution of

the telescope efficiency and the solar emissivity, is given by

K_fr_) = _ 0acl'_j)Aze(_j)az_fTe)otzzi.i(Te), (2)
zzij

A z is the abundance of element Z, a7, is the fractional population of ionization stage z, and a7,ij is the excitation

function for transition (i--*j) including all population processes for the upper level i, and branching ratios to the lower
level j. The function e(_.) = %(_.) e,(_.)¢b(_.)tf(_.) [% and e, are the reflection efficiency of the primary and secondary
mirrors, eb(_.) is the efficiency of the beam splitter where appropriate, and t_ is the transmission of the f'dter (including

supporting mesh)] represents telescope throughput. The functions Aza7,(Te) az_j(Te) are taken from Mewe,
Gronenschild, and Van den Oord 31and Landini and Fossi 32. The functions I_(Te) for the UHRX$ imaging Telescopes are

given in Figure 25. The energy density in the focal plane of the UHRXS imaging telescopes for typical solar features is

given in Table 9. These energy densities significantly exceed those which were achieved for the image of Figure 6.
Clearly, images of sufficient sensitivity to address our objectives can be obtained with exposure times from - 0.3 second

to 10 seconds for the "quiet sun", and in shorter times for flares.

9.2 The Soft X-Ray Spectroheliographs: The soft x-ray speclv3heliograph count rates are given by

i

C.(x,y)= l (A2-a2)(_/8)V(x,y)atl dTeKa(Te)_(T_x,y),

41r(F.L.) 2
(3)

the symbols are the same as in Equation 1; • is the angle of the Wolter sector in radians. The kernel I_('re) is given by

Kn('re)= Z Azg2(0)e(XiJ)CD(Xij)aT"('re)cXzziJ(T')'

z_j

(4)

R(0) is the crystal reflectivity, _(_.) is the telescope efficiency as defined for equation 2, and eD is the detector efficiency.

The counting rates expected for post flare coronal loops are given in Table 13. The normalized functions I_(T_) for the

soft x-ray spectrotmliographs m'e plotted in Figures 26a and b for the principal lines imaged.

9.3 Spectroscopic Systems: The count rates for the grating spectrographs are calculated from Equations l and 2 by

multiplying Kn(Te) by ei(_)eD(_.) _Jhc where _l is the grating efficiency, and ED is the efficiency of the MAMA
detector. The normalized temperature response Kn(T_) of the grating spectrometers for the strongest lines within the

various bandpasses is given in Figures 26c-f. The anticipated count rates for the UHRXS spectrographs are presented in

Table 10. For spectrographs a, _, and V, rates are given for the "chromospheric network," and for active regions. For

spectrographA, the rates are foractive regions.
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Table 13. Soft X-Ray $pectroheliograph Performance

II

k I Plate Scales Resolution Solar Intensity CountRate References

(,_) ion pJarcsecmiIliA/ A0 _, (A) PostFlareLoop PostflareLoop

Is 40.27 C V 12.5 0.2 2.0" .20 700 .I0 6 Doeschek and Cowan 3"#

44.02 SiXII 230 .05 1.5 Doeschek and Cowan 37

_"Ib 21.6 O VII 12.5 0.I 2.0" .05 1,550 .05 3 WaLker.etaL 39

18.97 OVITI 7,000 .02 17 Walker,etal.39

Z2a 13.44 NeIX 12.5 0.7 2.0" .02 1,150 .01 4 Walker,etal.39
15.01 PeXVII 8,250 .01 4 Walker,etaL 39

3a 9.17 Mg X] 12.5 ' .04 2.0" .001 780 .01 9 Walker,etaL 39

8.42 Mg XII 10,350 .0025 200 Walker,etaL 39

2_3b 6.65 SiX]I[ 12.5 .03 2.0" .0008 12,300 .0025 260 Walker,etaL 3o

6.18 SiXIV 6,500 .0010 140 Walker,etaL 39

Z 2b 1.85 FeXXV 12.5 .01 2.0" .0002 1,500 .0002 1201600° Feldman_etal.3s

1.79 FeXXVI 300 .0002 10/500' Mewe, etat.31

(a)ergs/cm2-sec-str,(b)fractionofdiskcontainingemission; (c)photoxu/sec-(arc-sec)2:" peak ofClassX-I flare.
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10.0 Environmental Effects

10.1 Thermal Control: If we are able to use thin aluminum or beryllium pre-filters for each telescope, the con_ol

of the thermal environment of the optical bench and mirrors will be greatly simplified.We plan to incorporate thermal
sensors and heaters to control the temperature of each telescope. The telescopes will utilize Carbon fiber epoxy metering
structures which will have a very low coefficient of thermal expansion. We anticipate that only limited use of the thermal
control systems will be required to achieve our objectives.

10.2 External Environment: We are concerned about the external contamination environment. The presence of
atomic oxygen, and of organic molecules are the most serious problems. Knowledge of the external environment is a
critical experiment requirement.

10.3 Internal Environment: Prior to launch, the interior of the experiment will be maintained at a high vacuum.

We plan to use thin aluminum prefilters for each of the XUV telescopes, which should limit the influx of contaminants
to the vicinity of the primary and secondary mirrors. A blocking filter (Section 3.1) will provide protection for the FUV
telescope. However, no prefilter design has as yet been identified for the EUV spectroscopic telescope. Each UHRXS

telescope will also have a door which can be closed to protect the optical surfaces when venting or other Space Station
activities that pose a contamination hazard occur. During observations, the thermal control system will maintain each
telescope at elevated temperature compared to surrounding surfaces to further limit deposition of volatile contaminants.
Control of internal contamination by the careful selection of materials is a critical requirement for UHRXS.

11.0 Preflight and Inflight Calibration: We plan to carry out a very careful pre-flight calibration program using

the NIST and Stanford Synchrotron Radiation Laboratory (SSRL) photon light sources. Our calibration procedure will
involve use of NIST Calibrated photodiode standard sensors. Our goal is to achieve a photometric accuracy for the
photoelectrically recorded spectra over the full wavelength range of -3%, and -15% photometric accuracy for the
photographically recorded images. Achieving these levels of accuracy is important to many of our scientific objectives.
We plan to study the use of one or more of the following techniques to maintain our knowledge of instrument calibration
after launch: (i) comparison of UHRXS solar data with periodic flights of our MSSTA solar rocket observatory, which has
virtually identical XUV and FUV telescopes, (ii) periodic observation of a series of nearby sources such as hot white
dwarfs or the Local Interstellar medium which can be assumed to have constant luminosity over periods of several years,
and (iii) the inclusion of radioactive alpha sources (such as Po 210) which can excite fluorescent lines [such as AJ L ct (_t

171A)] within the band pass of selected telescopes.

12.0 Pointing Accuracy and Stability: The pointing accuracy and stability required for the UHRXS observations

will be provided by a control loop consisting of the Lockheed SPARCS solar sensor, and the Active Mirror Servo of
each Ritchey-Chr6tien secondary (or deep parabolic primary) mirror. This system has already demonswated a stability of
0.08 arc-second. We also plan to develop a correlation tracking signal based on the H Ly-ot image from the Far
Ultraviolet Telescope. The resolution of this image is limited to 0.5 arc-see by the pixel size of the MAMA detector,
which corresponds to an image element of 0.25 arc-seconds. However, Morgan, et al. 4° have shown that if the centroid of

a pattern is sought, the resolution of the MAMA detector is at least 0.04 pixel. Therefore, we may, by comparison of
successive images, determine the motion of the image to an accuracy of 0.01-0.02 arc-seconds. We plan to utilize the
correlation error signal derived to further improve the stability of our images.

13.0 Ground Operations: Ball Aerospace will develop a GSE unit, which will be used to operate the UHRXS

during testing and calibration. The GSE will be controlled by a sophisticated microprocessor such as the Micro-Vax or
Sun 3. After launch, the GSE will transferred to CSSAIStanford, and used as the central element in the UHRXS

Operations Control and Data Analysis Facility. We will fabricate a shipping container which will have several functions
in addition to la'ansportation, including vacuum storage or storage in an ultra clean atmosphere.

14.0 Launch Enclosure: We will develop a launch enclosure for the UHRXS which will interface with the Shuttle.

15.0 Flight Operations: We will establish flight operations centers at both CSSAJStanford and SSL/MSFC.

Commands will be generated and transmitted to GSFC from the MSFC Operations Center, and Data received from GSFC
at MSFC. Data will be distributed to the PI, Co I's, and Associated Scientists from the MSFC Operations Center. It is
highly desirable that the H Ly ct image which is displayed in the Space Station Console be available in real time on the
ground, so that real time control of observations is possible. The command structure requirements of the UHRXS are
quite modest; consisting of commands to (i) select the UV spectrograph to be read out by the decode unit, (ii) specify the
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MAMAarray size to be read out, (iii) select the location (on the sun) to which the PPS is to be pointed, (iv) command
A_MS rasters to obtain 4' x 4' Grating Spectroheliograms, and (v) select exposure times and command image recording for
the 11 UHRXS cameras.

An integral component of the UHRXS investigation is a program of collaborative ground based observations and

analysis which will provide critical magnetic field and coronal data. The magnetic field observations will be carried out by
Dr. Mona Hagyard with the MSFC Vector Magnetograph, and analyzed using the computer codes developed by Professor
S. T. Wu of the University of Alabama, Huntsville. The coronal observations will be carried out by Dr. David Sime

using the High Altitude Observatory's Coronal Station on Mauna Loa.

16.0 Observing Programs, Data Reduction and Analysis

The UHRXS Science Team: The team that will develop the observing program, carry out observations, and

analyze these observations, will consist of the PI and Co-I's, the Project Scientist, the Associated Scientists, and post-
doctoral scholars and students who will work with them. Dr. E. Tandberg-I-Ianssen will chair the meetings of the
Associated Scientists and Investigators, and will insure that the Associated Scientists are prepared to utilize the UHRXS

observations. The Associated Scientists, and Investigators will form teams to address each of the major scientific

objectives that we have identified for the UHRXS program. Each team will be led by one of the Investigators or
Associated Scientists; members of the UHRXS Consortium will work with the various teams according to their specific

interests and scientific objectives. Each team will develop an observing plan, and a plan for the analysis of the resulting
observations. The teams that we have identified, and the team leaders are:

• Chromospheric Fine Smacture:
• Solar Prominences:
• Solar Flares:
• Solar Active Regions:
• Solar Magnetic Fields:
• Large Scale Solar Structure:
• Solar Wind/Corona Interface

R.L. Moore

E. Tandberg-Hanssen
P.A. Sturrock
S.K. Antiochos

MJ. Hagyard
S.T. Wu
D. Sime

SSL/MSFC
SSL/MSFC

CSSA/Stanford University
Naval Research Laboratory
SSL/MSFC
University of Alabama, Huntsville
High Altitude Observatory

Data Handling and Archiving: Assuming a modest data rate of 300 photographic images per telescope per

day we can anticipate -1,000,000 high resolution images in a year of operation. We can also anticipate -107 or more

photoelectrically recorded images. These observations will constitute a unique resource for solar physics. We plan to
establish data archives for the UHRXS observations at both Stanford and MFSC, which will be made available to

interested scientists.

Guest Investigations with UHRXS: Scientists who are not part of the UHRXS team will be invited to

become Guest Observers by joining with one or more of the Science Teams defined above.

Analysis of UHRXS Observations: The UHRXS provides unprecedented tools:for the analytical study of the

solar atmosphere. The power of the UHRXS imaging telescopes is due to a unique combination of ultra-high angular
resolution (- 0.10 arc-second), .spectral resolution sufficient to isolate a single line multiplet," _"_d c_omp!¢t e thermal
coverage (10,000 K - 30,000,000 K). This capability is complemented by high resolution spectra which in most cases
permit the observation of line profiles, and which have angular resolution sufficiently high (0.5 arc-see - 2.0 arc-see) to
isolate very small structures on the sun. The coverage of the isoelectronic sequences of the most abundant elements
(Figure 27), is quite complete. We summarize the powerful analytical techniques which can be used to address
fundamental problems using UHRXS observations, below.

Analysis of Thermal Structure and Abundances: The broad temperature coverage of the UHRXS, coupled
with full coverage of the isoelectric sequences of C, O, and Fe in particular suggests that UHRXS will allow the analysis
of thermal structure and abundances with unprecedented clarity and precision. Walker 4i, Walker et al., 39 and Allen et

a/. 42 describe the techniques used in these analyses.

Density Sensitive Line Ratios: Walker 41 has discussed density sensitive line ratios in the wavelength
interval ~ i.5 - 100 A in He-like, Be-like and Ne-like ions, and Munro et al. 43 have described density sensitive line ratios

between 100 and 2000 A. An example of a line ratio accessible to UHRXS which should prove especially useful is the

35



I0/29/90
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Figure 27. Coverage of the isoelectronic sequences of H, He, C, O, Ne, M s, Si and Fe. An
entry in roman type indicates high resolution images only, italics indicate spectrohelio&rams

only, and bold face Indicates both.

Temperature Sensitive Line Ratlce: Malinovsky and Heroux34have shown that the intensity ratio of lines
of a single ion which differ significandy in the excitation potential of the upper level, such as O VI 2s IS - 2p _P
(7. 1032 A) and 2pip - 3d_D (_, 172.9 A) ate sensitive to temperature. GabrieP" has pointed out that the relative intensity
of certain dlelectronic recombination satellite lines and their nearby resonance lines vines as T"t,providing a powerful
temperature diagnostic for ions such as Mg XI, Si XIII, and Fe XXV, which are accessible to UHRXS.

Lines Sensitive to Non-Equilibrium Conditions: Gabriel "4 describes the effect of departures from
equilibrium between electron and ionization temperature on the ratios of non-autoionizing satellite lines and their nearby
resonance lines. Such line ratios in Si XIII and Fe XXV will be important for the analysis of flare generated plasmas.

Line Proffies: The UHRX$ grating spectrographs and the soft x-ray speet_heliographs have resolution, _JA _.
in the range - 8000 - 30,000, sufficient to measure the profiles of chromospheric and coronal lines. This capability will
allow the study of macroscopic motions which have been observed in the chromosphere 45and during flares.4_

Summary: The UHRXS represents a uniquely powerful combination of high angular resolution imaging and
diagnostic capability which can address directly the physical processes which control the generation and transport of
energy and the flow of mass in the solar atmosphere.

17.0 Utilization of _he UHRXS on Space Station: Because of its comprehensive nature, the UHRXS will provide
a unique resource for solar observations from space, which cannot be duplicated by any presently approved solar mission,
including SOHO and OSL. Indeed, UHIOf$ will be highly complementary to OSL. Accordingly, we hope that UHRXS
can be utilized at as high a duty cycle as possible. The central goal of the long range plan for solar observing facilities is
thedevelopment:of_ AdvancedSolarObservatory(Walkereta/."n)whichIsplarmedasa longdurationcomprehensive

space sL_tionbased solar observatory with capabilities which will extend beyondthoseof UtlRXS. We hope that UHRXS
will be.able to make ohurvations from "Freedom" until the ASO can be deployed.

18.0 Future Evolnttkm of UItRX$: The UHRXS insmmtent can be improved in three specific areas:

replacement of the baselined MAMA 1000 x 1000 - 12_ pixel arrays with arrays which have higher resolution
and a larger format (see, for example, FignR 22).

theadditionofthecapabilitytomeasure the polarizationofH Ly ctradiationinthecorona,whichwillallow
thedirectmeasurementofcoronalmagneticfields.4.

development of a far.ulwaviolet Michelson interfemmeter to allow high resolution wide field spectrobeliograms
to he o_ at H Ly a and C IV.

incorporation of an improved soft x-ray spectrograph which will allow six simultaneous channels of
spectroscopic data ratherthan six channels time multiplexed on a single channel.
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HI. PRELIMINARY WORK BREAKDOWN STRUCTURE

A preliminary Work Breakdown Structure for UHRXS, with the anticipated responsibilities designated by

organization, is given below. Prime responsibility is indicated by boldface type.

1.0 Program Development and Control Stanford/Ball/MSFC/LLNL

1.1 Program Management

1,2 Fiscal Management

1.3 Planning and Scheduling

1.4 Project Meetings & Reviews

1.5 Travel

1.6 Configuration and Data Management

1.7 Documentation

1.8 Subcontract Administration

2.0 Systems Engineering

2.1 Image Quality Assessment
2.1.1 Error Budgets

i.

ii.
111.

iv.

V.

vi.
2.1.2

Optical Aberrations
Thermal and Structural Distortions

Spacecraft Jitter
Film and Detector Resolution

Target Motion
Tracking Errors

Experiment Pointing and Aspect

i. Solar Aspect Sensors
ii. Correlation Tr_king
iii. Active Mirror Servo Control

iv. Roll Stability
v. Non-Solar Aspect Sensors

Stanford/MSF C/Ball

Ball/Stanford/MSF C

2.2 Optical Design
2.2.1 Ray Trace Analysis
2.2.2 Error Assessment

i. Focus
ii. Mirror Tilt

MSFC/Stanford

2.3 Electronic System Analysis
2.3.1 Electronic Top Level Configuration Design

2.3.2 Software Analysis
i. Data Compression and T/M Formatting

2.3.3 Electronic GSE

Ball/Stanford
Ball/Stanford

Bali�Stanford

2.4 Mechanical Systems Analysis

2.4.1 Mechanical Top Level Configuration Design
i. External Architecture
ii. Internal Architecture

2.4.2 Mechanisms

S tanf ord/ M S F C

37



10/29/90

2.5 Film Analysis
2.5.1 Film Type Selection
2.5.2 Film Storage and Handling Procedures
2.5.3 Film Testing and Calibration
2.5.4 Film Development Procedures

MSFC

3.0

2.6

2.7

Electronic Detector Analysis

2.6.1 MAMA Array and Pixel Format Specification
2.6.2 MAMA Multi-channel Plates Specification
2.6.3 MAMA Anode Specification

Modeling and Analysis
2.7.1 Thermal

2.7.2 Structural

2.7.3 Dynamic
2.7.4 Environmental (contamination) modeling

Ball�Stanford

Ball

Ball

Ball

MSFC

2.8 Calibration Analysis
2.8.1 Pre-launch

2.8.2 Post-launch

MSFC

Stanford

2.9 Interface Cona'ol
2.9.1 Robotics Interface, Film Supply and Retrieval

i. Film Cassette Design
ii. Film Transport Enclosure

2.9.2 Experiment/Pointer Interface
i. Electrical
ii. Mechanical/I'hermal

2.10 Performance Assurance

2.10.1 Performance, Verification and Test Plan
2.10.2 Stress Analysis
2.10.3 Hazardons Materials

i. Chemicals
ii. Radioactive Sources

iii. Pyrotechnics
2.10.4 Failure Model and Effects Analysis
2.10.5 Traceability of Matextals
2.10.6 Reliability

2.11 Transportation

Engineerin$ Model

3.1 Mechanical Envelope and Optical Beach
3.1.1 External m'chitectur¢

i. Vacuum enclosure
ii. Number and control of aperture doors

3.1.2 Internal Architectam_
i. Placement of telescopes and spectrographs
ii. Placement and access to cameras
iii. Placement of electronics

3.1.3 Control of internal environment

i. Material selection and outgassing
ii.
iii.

MSFC/Contractor TBD

Ball�Stanford

Ball/MSFC

MSFC

Stanford/ M SF C/B all

Conuol of gas exchange between experiment interior and exterior
Definitions of external environment
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3.2

3.1.4
3.1.5
3.1.6

3.1.7

iv. Effect of environment on critical components
ix. mirrors

filters

v. Control ofcomamination during manufacture, processing and shipment
Thermal control
Interface with Shuttle Launch Enclosure

Interface with pointer and Space Station
i. Mechanical
ii. Thermal

Fabrication

Optical Systems
3.2.1 XUV Ritchey-Chr6tien Telescopes

i. Optical design

ix. Ray trac2 analysis and error budget
_. Effects of variations in mirror separation
7. Effects of tilt of secondary mirror

ii. Telescope mirror blanks
ct. Material selection

_. Specification of figure and finish
y. Measurement of figure and Finish
8. Blank thickness and internal structure

e. Handling procedures for mirror blanks
iii. Multilayer coatings

tx. Analytical design
f3. Analysis of response to solar spectrum
y. Fabrication
8. Handlingprocedures

¢. Performance testing
_. Assessment of contamination and aging problems

iv. Optical beach and mirror cells
ct. Material selection

13.Design
7. Metrology
8. Thermal control

e. Fabrication
v. Filters

or. Placement of fdtcrs
13. Use ofpre-fflters

y. Design of filters
8. Thermal analyses

a. sunlight rejection
b. effect of paniculate and gas environments

e. Analysis of response to solar spectrum
_. Fabdcation of fdters
t 1. Handling of filters
0. Mounting of filte_

vi. Active mirror servo

tz. Design
[3.Control
y. Assembly
8. Integration into secondary minor coU

vii. Active focus measurement and control

a. Selection of actuators

_. Mounting of actuators
viii. Telcsc.ope assembly and testing

ct. Telescope assembly procedure
[3. Handling of assembled telescopes

MSFC

MSFC/Stanford

LLNL/Stanford

Stanford/MSFC/Ball

Stanford

Ball�Stanford

Stanford/MSFC

MSFC/Stanford
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3.3

3.2.2

y. Optical testing
8. X ray/XUW FUV testing
e. Thermal testing
_. Analyses of response of telescopes to solar spectrum
13. Vacuum testing

Soft X-Ray Herschellian Telescopes
i. Optical design

a. Ray trace analysis and error budget
[3. Effects of variations in minor focal plane separation

ii. Telescope mirror blanks
a. Material selection

13. Specification of figure and finish
y. Measurement of figure and trmish
5. Blank thickness and interval structure

e. Handling procedures for mirror blanks
iii. Multilayer coating

cc Analytical design
[_. Analysis of response to solar specu-um
y. Fabrication
8. Handling procedures
_. Performance testing
_. Assessment of contamination and aging problems

iv. Optical bench and mirror cells
a. Material selection

8. Design
y. Metrology
8. Thermal control
e. Fabrication

v. Filters
a. Placement of filters

[3. Use of ptcf'fltel_
7. Design of fdters
8. Thermal analyses

a. sunlight rejection
b. effect of particulate and gas environments

e. Analysis of response to solarspectrum

_. Fabricationof filters
i].Handlingoffilters

0. Mounting of filters
vi. Active mirror servo

a. Design
[3. Control
y. Assembly
8. Integration into secondary mirror ceU

vii. Active focus measurement and control
a. Selection ofacwators

13. Mounting of actuatcN
viii. Telescope assembly and testing

a. Telescope assemblyprocedure

_. Handling of assembled telescopes
'y. Optical testing
8. X-ray/XUV/FUV testing
e. Thermal testing

_. Analyses of response of telescopes to solar spectrum

MSFC

MSFC/Stanford

LLNL/Stanford

Stanford/MSFC/Ball

Stanford

Ball�Stanford

Stanford/MSFC/Ball

MSFC/Stanford

Spectroscopic Systems
3.3.1 XUV Grating Spectrographs

i. Rit_y-Chr_ien telescopes MSFC/Stanford/LLNL/Ball
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3.3.2

3.3.3

a. Optical design
_. Mirror blanks
?. Reflective coating
& Opticalbench and mirrorcells
e. Filters

_. Active mirror servo
TI. Active focus control
O. Telescope assembly and testing

ii. Grating spectrograph
cx. Optical design

_. Mechanical design
_. Fabrication

iii. Slits

iv. Gratings
a. Material selection

_. Specification of figure and finish
y. Grating blank fabrication technology
8. Grating ruling
¢. Multilayer coating for gratings

EUV Grating Spectrograph
i. Ritchey-Chr_tiea telescope

ct. Optical design
_. Mirror design
T. Reflective coating
8. Opticalbench and mirrorcells
e. Filters

_. Activemirrorservo?
_. Activefocuscontrol

e. Telescopeassemblyand testing
ii. Gratingspeca,ograph

a. Optical design
_. Mechanical design
?. Fabrication

iii. Slits

iv. Gratings
a. Material selection

13. Specification of figure and finish
7. Grating blank fabrication technology
8. Grating ruling
e. Reflective c(mting

FUV Telescoge and Spectrograph
i. Ritchey-Chr_ien telescope

ct. Optical design
i -ror

y. Reflective coating
8. Optical bench and mirror cells
e. Ultraviolet triter,
_. Active mirror servo

11. Active focus control
0. FUV beam splittex
t. Telescope assembly and testing

ii. FUV raters

iii Grating spectrograph

a. Optical design
_. Mechanical design
y. Fabrication

iv. Slits

Stanford/MSFC/Ball

Stanford/MSFC

LLNL/Stanford/MSFC

MSFC/Stanford/LLNL

StanforS.MSFC/Ball

S tanf ord/ M SF C
Stanford/LLNL/MSF C

MSFC/Stanford/LLNL/Ball

MSFC

Stanford/MSFC/Ball

Stanford/MSFC
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V° Gratings
ct. Material selection

I]. Specification of figure and finish
7. Grating blank fabrication technology
8. Gratingruling

_. Reflective coating

Stanford/MSFC/LLNL

3.4

3.3.4 Soft X-Ray Spectrograph
i. Wolter Telescope

_. Optical design
_. Mirror blanks
y. Reflective coating
5. Optical bench and mirror cells
_. X-ray filters
_. Active focus control
rI. Telescope assembly and testing

ii. Objective double crystal spectrograph

or.Crystal selection
[3. Crystal preparation and testing
y. Mechanical design
5. Bragg scandrive
g. Fabrication

iii. WolterCassegrainmultilayermirrors

ct.Opticaldesign

13.Mirrorbhanks
y. Multilayet coatings
5. Mechanical design

Film Cameras
3.4.1 Camera Design

i. Shutter

ii. Film transport
iii. Film capacity

3.4.2 Image identification system

3.4.3 Sensing of focal plane
3.4.4 Camera fabrication

i. Selection of materials
ii. Selection of film advance motors

3.4.5 Camera handling l_Wxdures
3.4.6 Camera testing

3.5 MAMA Detectors

3.6

3.5.1
3.5.2

3.5.3
3.5.4
3.5.5
3.5.6
3.5.7

Specification of array and pixel formats
Selection of multi-channel plates
Specification and design of anodes
Fah'icationofdelact_arrays

Testing of d_cctor arrays
Detectorvacuum enclosmv.s

Detector calibration

Electronics

3.6.1 Central Ixocessor
i. Microtxocess_
ii. Memory

3.6.2 Experiment control
i. Telescope focus

Stanford/MSFC/LLNL

Stanford/MSFC/Ba II

Stanford/LLNL/MSF C

MSFC

MSFC

MSFC/Stanford
MSFC/Contractor TBD

MSFC
MSFC

Ball�Stanford

Ball�Stanford
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4.0

3.6.3

3.6.4
3.6.5

3.6.6

3.6.7

3.6.8

3.6.9

3.6.10

ii. Active mirror servos

iii. Spectrometers
iv. Camera shutter
v. Mechanisms
vi. Position sensors
vii. Heaters

viii. Temperaturesensors
ix. High Voltage

x. Low Voltage
xi. Vacuum enclosures

xii. Doors

MAMA decodelogic

MAMA trackinglogic

Data storageand retrieval

Experiment/pointer interface
Command interface

Telemetry interface
Experiment mode and observational sequence cona'ol
Power system interface

3.7 Software
3.7.1

3.7.2
3.7.3
3.7.4

Data Compression and T/M Formatting

Experiment Microproce, s,u)r
Observing Mode Control
Housekeeping

Stanford/Ball/MSFC

3.8 Experiment Mechanisms Stanford/Ball/MSFC
3.8.1 External Door's
3.8.2 MAMA vacuum doors

3.8.3 EUV, FUV, XUV and soft x-ray spectrometer wavelength scans
3.8.4 Objective Bragg crystal wavelength scan
3.8.5 Active mirror servos

3.8.6 Telescope focus sensing and control
3.9 Experiment Calibration

3.9.1 Pre-latmch Calibration

3.9.2 In-flight calibration
3.9.3 Calibration Rocket Flights

3.10 Experiment Launch Enclosure

Flight Unit

Stanford/MSFC/Ball

4.1 Mechanical Envelope and Optical Bench
4.1.1 External architecture

i. Vacuum enclosure

ii. Number and control of aperture doors
4.1.2 Intea'tml Architecture

i, Placement of telescopes and spectrographs
ii. Placement and access to cameras

iii. Placement of electronics
4.1.3 Control of internal environment

i. Material selection and outgassing
ii.
iii.
iv.

V.

Stanford/MSFC/Ball

Control of gasexchange between experiment interior and exterior
Def'mitions of external environment

Effect of environment on critical components
a. mirrors

filters
Control of contamination during manufacture, processing and shipment
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4.2

4.1.4
4.1.5
4.1.6

4.1.7

Thermal control
Interface with Shuttle Launch Enclosure

Interface with pointer and Space Station
i. Mechanical
ii. Thermal

Fabrication

Optical Systems
4.2.1 XUV Ritchey-Ckrdtien Telescopes

i. Optical design

ct. Ray trace analysis and error budget
13. Effects of variations in mirror separation
y. Effects of tilt of secondary mirror

ii. Telescope mirror blanks
a. Material selection

]3. Specification of figure and finish
7. Measurement of figure and f'mish
5. Blank thickness and internal structure

e. Handling procedures for mirror blanks
iii. Multilayer coatings

ix. Analytica/design
13. Analysis of response to solar spectrum
y. Fabrication
& Handling procedures

e. Performance testing
_. Assessment of contamination and aging problems

iv. Optical bench and mirror cells
cc Material selection

Design
¥. Mctrology
& Thetma/control
e. Fabrication

v. Filters

ct. Placement of f'dters

13. Use of pre-ftlters
7. Design of f'dters
8. Thermal analyses

a. sunlight rejection

b. effect of parti'cuiate and gas en_mcnts
e, Analysisof responsetosolar spectrum
t;.  Ixica onoffdtm
I].Handlingoffilters

O. Mounting offdters
vi. Activemirrorservo

Ct.Design : ....
13. Conlrol
¥. Assembly
5. Integration intosecondarymirrorcell

vii. Active focus measurement and control

cc Selection of actuators

13. Mounting of actuators

viii. Telescope assembly and testing
Telescope assembly procedure

13. Handling of assembled telescopes
y. Optical testing
& X ray/XUV/FLrV testing
e. Thermal testing
_. Analyses of response of telescopes to solar spectrum

MSFC

MSFC/Stanford

LLNL/Stanford

Stanford/ MSF C /B all

Stanford

Ball/Stanford

Stanford/MSFC

MSFC/Stanford
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4.3

4.2.2
q. Vacuumtesting

SoftX-Ray Herscbelian Telescopes
i. Optical design

a. Ray trace analysis and error budget
[3. Effects of variations in minor focal plane separation

ii. Telescope mirror blanks
_t. Material selection

_. Specification of figure and finish
7. Measurement of figure and Finish
8. Blank thickness and interval structure

g. Handling procedures for mirror blanks
iii. Multilayet coating

0t. Analytical design
I]. Analysis of response to solar spectrum
7. Fabrication
8. Handling procedures
e. Performance testing
_. Assessment of contamination and aging problems

iv. Optical bench and minor cells
ct. Material selection

[3. Design
y. Metrology
8. Thermal control
e. Fabrication

v. Filters

a. Placement of t'flters

_. Use of prefdters
y. Design of fdters
8. Thermal analyses

¢t. sunlight rejection
B. effect of particulateand gas environments

e. Analysis of responseto solar spectrum
_. Fabrication of f'dtets
ri. I-Iandling of filters
0. Mounting of filters

vi. Active mirror servo

ct. Design
_. Control

¥. Assembly
8. Integration into secondary mirror cell

vii. Active focus measurement and control
¢t. Selection of actuators

_. Mounting ofactuato_
viii. Telescopeassembly and testing

oL Telescope assembly procedure
[3. Handling of assembled telescopes
y. Optical testing
8. X-ray/XIYV/FUV testing
¢. Thermal testing
_. Analyses of response of telescopes to solar spectrum

MSFC

MSFC/Stanford

LLNL/Stanford

Stanford/MSFC/Ball

Stanford

Ball�Stanford

Stanford/MSFC/Ball

MSFC/Stanford

Spectroscopic Systems
4.3.1 XIYV Grating Spectrographs

i. Ritchey-Chr6tien telescopes

a. Optical design
13.Mir bla s
y. Reflective coating
8. Optical bench and mirror cells

MSFC/Stanford/LLNL/Ball
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4.3.2

4.3.3

e. Filters

_. Active mirror servo
11. Active focus control
0. Telescope assembly and testing

ii. Grating spectrograph

a. Optical design
[3. Mechanical design
y. Fabrication

iii. Slits

iv. Gratings
a. Material selection

13. Specification of figure and finish
y. Grating blank fabrication technology
8. Grating ruling
e. Muitilayer coating for gratings

EUV Grating Spectrograph
i. Ritchey-Chrttien telescope

or. Optical design
9. Mirror design
y. Reflective coating
8. Optical bench and mirror cells
e. Filters

_. Active mirror servo?
1]. Active focus control
O. Telescope assembly and testing

ii. Grating spectrograph
cc Optical design
[3. Mechanical design
¥. Fabrication

iii. Slits

iv. Gratings
a. Material selecfion-

13. Specification of figure and f'mish
y. Grating blank fabrication technology
8. Grating ruling
e. Reflective coating

Telescope and Spectrograph
i. Ritchey.Chr_en telescope

a. Optical design
1]. Mirr_ blanks
y. Reflective coating
8. Optical bench and mirror cells
e. Ultraviolet fdters

_. Active mirror servo
1]. Active focus control
O. FUV beam splitter
t. Telescope assembly and testing

ii. PUV f'flters

iii Grating spectrograph
or. optical design
13.Mechani  ign
y. Fabrication

iv. Slits

v. Gratings
a. Material selection

13. Specification of figure and finish
3,. Grating blank fabrication technology

Stanford/MSFC/Ball

Stanford/MSFC

LLNL/Stanford/MSFC

MSFC/Stanford/LLNL

StanforSAtSFC/Ball

Stanford/MSFC

Stanford/LLNL/MSF C

MSFC/Stanford/LLNL/Ball

MSFC

Stanford/MSFC/Ball

Stanford/MSFC

Sta nford/MSF C/LLNL
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4.4

4.5

4.6

4.3.4

8. Grating ruling
e. Reflective Coating

Soft X-Ray Spectrograph =
i. Wolter Telescope

a. Optical design
9. b anks
y. Reflective coating
8. Optical bench and mirror cells
_. X-my filters
_. Active focus control
ft. Telescope assembly and testing

ii. Objective double crystal spectrograph
or. Crystal selection
13. Crystal preparation and testing
y. Mechanical design
6. Bragg scan drive
e. Fabrication

iii. Wolter Cassegraln multilayer mirrors

e. Optical design
Mirrorblanks

y. Mulrilayer coatings
5. Mechanical design

Film Cameras

4.4.1 Camera Design
i. Shutter

ii. Film transport
iii. Film capacity

4.4.2 Image identification system

4.4.3 Sensing of focal plane
4.4.4 Camera fabrication

i. Selection of materials
ii. Selection of film advance motors

4.4.5 Camera handling procedures

4.4.6 Camera testing

MAMA

4.5.1
4.5.2
4.5.3
4.5.4
4.5.5
4.5.6
4.5.7

Detectors

Specification of array and pixel formats
Selection of multi-channel plates
Specification and design of anodes
Fabrication of detector arrays
Testing of detector arrays
Detectorvacuum encl_

Detect_ calibration

Electrcmics

4.6.1 Cenwal processor
i. Microtm3cess_
ii. Memory

4.6.2 Experiment control
i. Telescope focus
ii. Active mirror servos

iii. Spactromete_
iv. Camera shutter
v. Mechanisms
vi. Position sensors
vii. Heaters

Stanford/ M SF C /LLNL

Stanford/MSFC/Ball

Stanford/LLNL/MSF C

MSFC

MSFC

MSFC/Stanford
MS F C/Contractor TBD

MSFC

MSFC

Ball�Stanford

Ball/Stanford
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5.0

6.0

viii. Temperature sensors
ix. High Voltage
x. Low Voltage
xi. Vacuum enclosures
xii.

4.6.3 MAMA decode logic
4.6.4 MAMA tracking logic
4.6.5 Data storage and retrieval
4.6.6 Experiment/pointer interface
4.6.7 Command interface

4.6.8 Telemetry interface
4.6.9 Experiment mode and observational sequence control
4.6.10 Power system interface

4.7 Software
4.7.1

4.7.2
4.7.3
4.7.4

Data Compression and T/M Formatting

Experiment Microprtr, essor
Observing Mode Control
Housekeeping

Stanford/Ball/ MSFC

4.8

4.9

Experiment Mechanisms
4.8.1
4.8.2
4.8.3
4.8.4
4.8.5

4.8.6

Stanford/Ball/MSFC

External Doors
MAMA vacuum dot_

EUV, FUV, XUV and soft x-ray spectrometer wavelength scans
Objective Bragg crystal wavelength scan
Active mirrorservos

Telescope focus sensing and control

Experiment Calibration
4.9.1 Pre-launch Calibration

4.9.2 In-flight calibration
4.9.3 Calibration Rocket Flights

Stanford/MSFC

4.10 Experiment Launch Enclosure

Ground Support Equipment (GSE)

Stanford/MSFC/Ball

BalllStanford/ M SF C

5.1 Bench Checkout Unit

5.2 Space Station Simulator

5.3 Insmtment Simulator

5.4 Electrical

5.5 Mechanical

5.6 Optical

5.7 Sottwm_

5.8 Omractedzation/Calibration Equipmeat

5.9 Shipping Container

Flight Operations Stanford/MSFC

6.1 Inflight Calibration
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6.2 Calibration Rocket Flights

6.3 Observational Programs

7.0 Data Handling and Analysis Stanford/MSFC

7.1 Microdensitometer analysis of f'dm data

7.2 Analysis of digital data

7.3 Data atchiving
7.3.1 Film data archive
7.3.2 Eleclronic data archive

8.0 Science Programs Stanford/MSFC

8.1 Chromospheric Fine Structure

8.2 Solar Prominences

8.3 Solar Flares

8.4 Solar Active Regions

8.5 Solar Magnetic Fields

8.6 Large Scale Solar Structure

8.7 Corona/Solar Wind Interface

9.0 The UHRXS Organization and the Work Breakdown Structure: The key to the effective utilization of
the Work Breakdown Structure described in sections III:l.0 - 8.0 is the control and coordination of the activities of

the 4 organizations which will have primary responsibility for the development of the UHRXS instrument;

CSSA/Stanford, MSFC, LLNL, and Ball Aerospace. The organizational structure, and the responsibilities of the
various organizations are described in section IV.
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IV.The UHRXS Program

1.0 UHRXS Development Approach: The Ultra High Resolution Soft X-Ray/XUV/UV Spectroheliograph
(UHRXS) will be developed for flight on the Space Station by a small team of investigators, led by Professor A.B.C.
Walker, Jr., who will serve as Principal Investigator if'I) and Mr. Richard B. Hoover, who will serve as Co-Investigator
(Co-I) and Principal Scientist O'S). The science team will include three senior Co-Investigators, (T.W. Barbee, Jr., E.
Tandberg-I-Ianssen, and J.G. Timothy), and Project Scientists at MSFC and Stanford. The design of the UHRXS
instrument is based on the successful rocket instruments developed by the Principal Investigator, the Principal Scientist,
one of the senior co-investigators (Troy W. Barbee, Jr.) and the Stanford Project Scientist (Joakim F. Lindblom). The
UHRXS Grating Spectrographs will utilize the MAMA (Multianode multichannel array) detector developed by a second
senior Co-Investigator (J. Gethyn Timothy) in collaboration with R. Bybee of Ball Aerospace. A third senior Co-
Investigator (Einar Tandberg-Hanssen) will be responsible for coordinating the activities of a distinguished group of
Associated Scientists, who will participate in the analysis of the UHRXS data. During the development of the UHRXS
instrument, the Associated Scientists will meet periodically to follow the progress of the instrument development, to
discuss strategies for the operation of the UHRXS after launch, and will offer advice as appropriate, but will have no direct
role in the Instrument Development.

The expertise necessary to develop the UHRXS instrument is available within the three institutions of the PI,
PS, and Co-rs (SSL; MSFC; CSSA; Stanford University; LLNL) and the major subcontractor, the Electro-Optical
Subsystems Division of Ball Aerospace, of Boulder, Colorado. The contractual responsibility for the development of the
film cameras is not yet assigned, due to the requirement for robotics compatibility which has developed subsequent to the
original proposal guidelines. The multilayer and ultraviolet telescopes and spectrographs will be fabricated, assembled,
tested and calibrated by the PI and Co-rs at their institutions. The film cameras will use technology developed for the S-
056 SKYLAB x-ray telescope, modified to accept 70 mm format f'dm, and for compatibility with replacement by robots.
These components will be integrated into the UHRX$ Optical Bench structure which will be fabricated by the MSFC
Test Laboratory

Bali Aerospace will develop the UHRXS electronics package, including the MAMA detectors, the aspect sensors,
and the Active Mirror Servos (AMS), and other mechanisms. Ball Aerospace will also develop the Electronic Ground
System Equipment (GSE). The integrated UHRXS Optical Bench structure and optical systems will be delivered to Ball
Aerospace, where the elecmmics, aspect sensors, and detectors will be integrated, and appropriate engineeringtestswill be
carried out. Final engineering tests and scientific acceptance tests will be carried out at MSFC. Calibration will he carried
out in the EUVE calibration chamber at the Space Sciences Laboratory, U.C. Berkeley, and/or at the Stanford
Synchrotron Radiation Laboratory (SSRL) and the SURF 11synchrotron at NIST.

2.0 Organization of the UHRXS Team: The proposed management structure for the UHRXS development is
shown in Figure 28. The UHRXS team is organized into two parts to efficiently carry out the two phases of the program,
(i) definition, design, development, testing, calibration, integration and launch, and (ii) operations, data reduction, and
analysis. The fu'st (pre-launch) part of our task will be carried out by the Principal Investigator (A.B.C. Walker, Jr.) the
Co-Investigators (R.B. Hoover, T.W. Barbee, Jr., E. Tandberg-Hanssen, and J.G. Timothy), their research team, and the
major subcontractors, the Ball Aerospace Systems Group and the (to be selected) camera subcontractor. In order to carry
out the second part of our task, the PI and Co-I's have formed a group of Associated Scientists who, collectively with the
PI and Co-rs, have the expertise necessary to address the broad range of scientific topics on which the UHRXS
observations will bear.

2.1 The Investigatm- Team: The Investigator team is based on the Stanford/MSFC/LLNL consortium which has

successfully carried out high resolution X-ray/XUV investigations of the sun with rocket borne Cassegrain multilayer
telescopes. The team has been expanded from this base as described below and in Figure 28, which illustrates our planned
management structure.

A.B.C. Walker, Jr., the Principal Investigator, will be responsible for the UHRXS activities at CSSA/Stanford.
He will hire a Program Manager and a Project Scientist to assist in the implementation of these ta_s. Four
major tasks will be carried out at Stanford, (i) procurement of the electronics package and Active Mirror Servos
(AMS) from Ball Aerospace, the electronic systems subcontractor, (ii) procurement of major components of the
XUV, EUV, and UV telescopes and spectrographs (mirror blanks, XUV and UV filters), and testing of the
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completed mirrors,gratingsand filters,(iii)designof the experimentlogicand programming of the flight
computer,and theGSE computer,and iv)developmentoftheFlightOperationsand Data AnalysisPlans.

R.B. Hoover, thePrincipalScientist,willbe responsibleforthe UHRXS activitiesatMSFC. He willsecurethe

servicesof a ProjectEngineer and ProjectScientistwithinMSFC to assisthim inthe development of the

instrument.He willbe responsibleforthe assembly of theXUV, EUV, and UV telescopesand spectrographs,
and theirtestingand calibration.Mr. Hoover willbe assistedby theMaterialsand ProcessesLaboratoryand the

TestLaboratoryatMSFC who willfabricatethe fiberepoxy telescopetube structuresfortheUV, EUV, and

XUV telescopes and spectrographs, and the UHRXS truss structure (Optical Bench). He will be responsible for

the procurement of the film cameras and flight film. He will supervise the development of the flight film.

T.W. Barbee, a senior Co-Investigator, will be responsible for the ruling of the grating blanks and the
fabrication of the multilayer coatings for the XUV telescope mirrors and gratings. (Dr. Barbee is one of the two
co-inventors of multilayer technology).

].G. Timothy, a senior Co-Investigator, will be responsible for insuring that the MAMA detector fabrication
and testing (which will be carried out by Ball Aerospace) is successfully completed. (Dr. Timothy developed the
MAMA detector in collaboration with R. Bybee of Ball Aerospace).

E. Tandberg-Hanssen, a senior Co-Investigator, will chair the meetings of the Associated Scientists, and insure
that their views on instrument capabilities, flight operations, and the data analysis and observing plans are made
available to the Program Manager and Project Scientists, who are responsible for implementing these
capabilities and plans.

We have arranged that senior engineering personnel from the Chief Engineer's Office, and the Quality Assurance
Office at MSFC, will participate in all major UHRXS reviews, and will be available to provide advice and

guidance to the Program Manager in evaluating and guiding the planning and execution of the UHRXS program,
including all hardware tasks carried out at Ball Aerospace and the camera subcontractor. A MSFC Project
Engineer will be appointed to insure that these responsibilities are implemented and the work to be done within
the MSFC laboratories is completed in a timely manner.

2.2 The Organization of the UHRXS Team: The organization of the UHRXS project team is presented in Figure

28. The PI, Co-rs and Program Manager will form a Senior Council, which will establish policies, plans, and objectives

for the program. The Senior Council will meet regularly at either MSFC or Stanford. The PI will implement these

policies, plans and objectives, with the help of the Program Manager (PM) and Senior Co-rs, each of whom has specific
responsibilities as indicated in Figure 28, and Section 2.1 above. The Program Manager will be directly responsible to

the PI for the UHRXS activities at Stanford. The Project Manager at Ball Aerospace will report directly to the PM. R.B.
Hoover will secure the assistance of a Project Scientist to direct UHRXS activities within SSL at MSFC, a Project

Engineer to oversee UHRXS activities within the Engineering Laboratories at MSFC, and a Project Administrator within

SSL. The Ball Aerospace Project Manager, the MSFC Project Engineer, and the Project Scientists at MSFC and
Stanford will meet with the Senior Council as necessary, and will have specific responsibilities as indicated. The

Program Manager will be responsible for the day to day implementation of the policies, plans and objectives established
by the Senior Council at Stanford and Ball Aerospace, and, through the senior MSFC Co-Investigator and the Senior

LLNL Co-Investigutor, tim activities at MSFC and LLNL; he (or she) will report directly to the PI. The Program

Manager will be assisted by a Program Administrator at CSSA/Stanford. The Ball Aerospace Project Manager and the

Stanford Project Scientist will rel:_'t directly to the Project Manager, and will be responsible for the tasks indicated in
Figure 28, i.e., elecutmics (including detectors) and Mirror Servo design, documentation, fabrication and testing (Ball

Aerospace, P.M.), and the design and testing of the XUV and EUV mirrors and gratings, the MAMA detectors, XUV and
EUV filters, and the various other tasks indicated (Stanford P.S.). The MSFC Project Scientist will be responsible for all

experimental work at MSFC; specifically telescope structure fabrication, telescope assembly, telescope testing and

telescope calibration, and procurement of the film cameras. The MSFC and Stanford Project Scientists will be

responsible for bringing instrument design changes, problems, or other matters which may affect the scientific
performance of the UHRXS instrument to the Senior Council.

The Program Manager will be responsible for insuring that the XUV and EUV telescopes and UHRXS Optical

Bench are designed, fabricated, assembled, tested, and delivered to Ball Aerospace in a timely manner. The tasks necessary
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to achieve this will be carried out by the Stanford Project Scientist, the MSFC Project Scientist and T.W. Barbee, Jr.,

(who will fabricate the XUV multilayer minor coatings), and the MSFC Project Engineer (who is responsible for the
work to be performed in the MSFC Engineering Laboratories).

The Program Manager will also be responsible for insuring that the major procurements necessary to develop
the XUV and UV telescopes are carried out efficiently, although the development of the specifications necessary for these

procurements will be the responsibility of the Project Scientists. The most challenging task of the Program Manager
will be to manage and administrate the activities of the development team at Ball Aerospace. He will be assisted in this

task by the Ball Aerospace Program Manager, by a Project Administrator who wiU be hired within CSSA/Stanford, and

by the MSFC Project Engineer, who will be able to draw on the expertise of senior MSFC elecu'onic, mechanical,

quality assurance and reliability engineers.

2.3 The UHRXS Electronics Subcontractor: The Electro-Optics Subsystems Division (EOD) of Ball

Aerospace Systems Group will be the primary UHRXS subcontractor.

2.4 The UHRXS Scientific and Data Analysis Team: The team that will develop the observing program, carry

out observations, and analyze these observations, will consist of the PI, PS and co-rs, the Project Scientists and Deputy

Project Scientist, the Associated Scientists, and post-doctoral scholars and students who will work with them. Dr. E.

Tandberg-Hanssen will chair the meetings of the Associated Scientists and Investigators, and will insure that the

Associated Scientists are prepared to utilize the UHRXS observations.

The Associated Scientists and Investigators will form teams to address each of the major scientific objectives

that we have identified for the UHRX5 progcam. Each team will be led by one of the Co-Investigators or Associated

Scientists: members of the UHRXS Consortium will work with the various teams according to their specific interests and

scientific objectives. Each team will develop an observing plan, and a plan for the analysis of the resulting observations.

The Principal Scientist will develop the overall UHRXS Observing and Data Analysis Plans, based on these individual
team plans. The teams that we have identified, and the team leaders are:

• Chromospheric Fine Structure: RL. Moore

• Solar Prominences: E. Tandberg-Hanssen
• Solar Flares: P.A. Strurrock

• Solar Active Regions: S.K. Antiochos

• Solar Magnetic Fields: MJ. Hagyard
• Large Scale Solar Structm_: S.T. Wu
• Coronal/Solar Wind Interface: D.G. Sim¢

SSL/MSFC

SSL/MSFC

CSSA/Stanford University

Naval Research Lalxx'amry
SSL/MSFC

Universityof Alabama, Huntsville

High Altitude Observatory

3.0 Instrument Procurement Strategy: We have developed a detailed plan for the procurement of the UHRX5

inswument. This plan establishes a very definite and simple interface between the optical systems and the Optical Bench
swacmre, and film cameras, which willbe fabricated and tested or procured by the Investigative Team, and the detectors,

experiment electronics and mechanisms, aspect sensors, and Active lvfirror Sexvos and GSE which will be developed by
Ball Aero_ace. This instrument procurement strategy is based on the unique capabilities of the investigative Team and

their institutions, and oct the capabilities of the major Instrument Subcontractor, Ball Aerospace. The parallel

development of the optical systems and Optical Bench by the Investigator Team and of the UHRXS electronics systems
by Ball Aerospace is an efficient and cost effective approach, allowing the instrument to be developed and launched in

accordance with the Space Station Schedule.

3.1 Development of the UHRX$ Instrument: We plan to cost the development of two complete UHRXS

Instruments; an Engineering Model and a Fright Unit.

3.1.1 The Optical Systems: The UHRXS optical systems will be developed by the Investigative Team (Stanford,

MSFC, LLNL). The technologies and techniques necessary for the UHRXS telescopes have already been successfully

implemented inour solarrocketprogram. Our development approach,and the divisionof responsibilities among the
institutions (Stanford, MSFC, LLNL) will be the same as those used in our successful rocket program. The completed

XUV, EUV and UV telescopes will be delivered to the MSFC Test Laboratory for integration into the UHRXS Optical
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Bench once completed. We plan to fabricate two complete sets of XUV, EUV and LrV telescopes. One set will constitute

the flight instruments, the second set will be backups and will also be used during testing and calibration to provide
parallel beams which can be used to verify telescope resolving power and sensitivity. A spare policy for other
components of the UHRXS will be developed during the definition phase. (In our original costing, we have assumed a

conservative spare policy.)

3.1.2 The Grating Spectrographs: The grating spectrographs will be designed by the Principal Investigator. The

gratings will be fabricated by T. Barbee, at LLL, and tested at CSSA/Stanford. The grating spectrograph smuctural
elements will be fabricated within the Engineering Laboratories at MSFC, and the instrument assembled and tested

within SSL/MSFC.

3.1.3 Optical Bench: The optical bench design will be developed by the Principal Scientist, with the participation of

the MSFC Engineering Laboratories. The optical bench will be fabricated by the MSFC Test Laboratory.

3.1.4 Cameras: An important objective of the present study will be to identify a contractor for the UHRXS cameras.

The cameras will be laXX:ured by the Principal Scientist.

3.1.$ The Electronics, Detectors and GSE: The UHRXS electIonics, detectors and GSE will be procured from

EOD/Ball Aerospace by the Principal Investigator, with the assistance of J.G. Timothy, Senior Co-Investigator.

3.1.6 Mechanisms: The mechanisms required for UHRXS include (i)the aperture door, (ii) a filter wheel for the

ultraviolet telescope, and (iii) a motor to rotate the EUV grating to scan wavelength. These are all standard devices and

will require no significant development. Ball Aerospace will fabricate these mechanisms. We plan to study the feasibility

of a scanning slit for the grating spectrographs during our definition phase. Thermal sensors, and heaters, if required, will

be provided by Ball Aerospace.

3.1.7 Active Mirror Servos: The Active Mirror Servos, including the mirror ceils, will be developed by EOD/Ball

Aerospace. The soft x-ray, XUV, EUV and ultraviolet mirrors will be fabricated by Stanford and LLNL, and shipped to

Ball Aerospace for installation into the mirror cells. The LISS Aspect sensor will be procured from Lockheed by Ball

Aerospace.

3.1.8 Experiment Shuttle Interface Equipment: The mechanical interface equipment necessary to provide an

interface between UHRXS and the Shuttle will be designed by Stanford and Ball Aerospace, and fabricated by the MSFC

Test Laboratory.

3.2 Subcontracts and Facilities at Other Institutions: We anticipate 6 major subcontracts for the purchase of

the following _gh! components. These are listed below, with the anticipated subcontra_,tors.

Mhror and grating blanks for the XUV and UV telescopes: Baker Consulting

• XUV Filters: Lgcel

UV Filters and Coating of the UV mirrors: Acton Research and the University of Alabama at Huntsville are

potential subcontractors.

The LISS Solar Aspect sensor and electronics: Lockheed

• Film Cameras: TBD

Film: E_tmaa Kodak

In addition, we plan to purchase Laboratory XUV Sources, a Laboratory xuv Monochromater, a Laboratory

Imerferometer, a Data Analysis Computer and Image ProcessingEquipment. The XUV monochromater will probably be
the Hettrick Scientific HIREFS. 164- 4m-M/F. The XUV sources may be purchased from Hettrick Scientific, or
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fabricated at Stanford, based on the design developed by R. Byer and J. Trail of the Applied Physics Department at
Stanford.

We have, so far, identified the EUVE calibration facility at the University of California at Berkeley as a

potential calibration facility necessary for UHRXS. Use of the NIST synchrotron may also be required.

4.0 Instrument Procurement and Operations Plans: We comment on specific UHRXS plans below.

4.1 Instrument Specifications: We plan to develop detailed instrument specifications during the Definition Phase

of our program, starting in FY1993. We have already prepared preliminary specifications (Appendix B). During the
Conceptual Design Study phase we will carry out a detailed ray u'ace analysis at MSFC, to specify the optical

configuration. A detailed design for the Optical system will then be carried out at MSFC. Based on these detailed

telescope specifications, we will develop detailed specifications for the entire UHRXS instrument. Ball Aerospace will be

responsible for developing detailed specifications for the electronics, detectors, active mirror servos, experiment
mechanisms, and GSE, during the definition phase. These processes will be reviewed on a monthly basis, utilizing the

management structure given in Figure 28. A f'mal specification review will be held with the MSFC Project Manager and
mechanical, electronic and quality assurance experts from MSFC before the definition phase report is Finalized.

4.2.0 Review Procedures and Documentation

4.2.1 Review Procedures: The Program Manager (PM) will hold monthly reviews of the development program (at

Stanford or MSFC) to monitor the status of the Optical system development occurring at Stanford, MSFC, and LLNL,

and the major procurements. Following the reviews of the status of the Investigator development program, the PM will
hold an overall UHRX5 review at Ball Aerospace on a bimonthly basis. The MSFC Project Engineer and the MSFC

mechanical, electrical, and Q & RA engineers will participate in these reviews as necessary.

4.2.2 Documentation: The Program Manager will be responsible for the overall documentation requirements of the

UHRXS program. Each element (Co-Investigators, Ball Aerospace, etc.) will develop its own documentation (drawings,

change orders, financial records, etc.) as necessary, and will report on a regular basis to the PM, and the Program
Administrators at MSFC and Stanford.

4.3.0 Performance Assurance: The overall performance assurance program _delines will be developed by the

Program Manager, with the advice of the Q & RA experts from the MSFC Quality Assurance Office and Ball Aerospace.

These procedures will them be carried out by each element (Co-rs, Ball Aerospace, MSFC Labs, etc.) and monitored by
the PM, with the assistance of the MSFC Project Manager and the Q & RA experts. A Preliminary Performance

Assurance Implementation Plan was presented in Appendix D of our original proposal. [2]

4.4.0 Test Program: The major test responsibifity for each component of the UHRX$ instrument will rest with the
element (Co-rs, Ball Aerospace, etc.) responsible for its development. For example, testing of the Optical systems will

be carried out by R. Hoover at MSFC, electronic testing of the MAMA detectors will be carried out by Ball Aerospace,
etc. In the case of the MAMA detector, extensive XUV tests on a prototype unit will be carried out at CSSA Stanford.

Once the UHRXS is fully assembled, testing of the integrated insm_nent will be carried out by Ball Aerospace

(see Appendix A), to qualify the electronics, detectors, and active mirror sensors, and at MSFC (vibration, thermal

vacuum) for the overall UHRXS package.

4.5.0 Hardware Fabrication Poficy: We will cost the fabrication of two complete UHRXS units, an engineering

model and a flight unit.

4.6.0 Cafibration: Calibration tests of the XUV and UV optical systems will be carried out at CSSA Stanford at the

level of the individual components and assembled telescopes. Detailed scientific acceptance tests and calibrations of the

integrated UHRXS insUa_nent will be carried out at MSFC in a SSL XUV calibration facility to be developed as
discussed in Section II 4 of Ref [2] and at the U.C. Berkeley SSL, Stanford SRL, and Surf II at NIST.
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4.7.0 Integratiou of the Instrument: The integration of the UHRX$ instrument will be supported by the PI, Co-I's

and the development contractor, Ball Aerospace, to verify electronics operation, and by the MSFC Engineering

Laboratories to verify thermal and mechanical properties.

4.8.0 Flight Operations: During the Definition Phase, we will prepare a preliminary Flight Operations Plan. Flight

operations will be under the direction of the Principal Investigator. He will be assisted by the Principal Scientist, the

Project Scientists, and by the Program Administrators. The PI, Co-I's, Associated Scientists, and the Post-Doctoral
Scholars and graduate students working with them will be active in carrying out the various observational programs that

are the objective of the UttRXS. We plan to have operations centers at both CSSA Stanford and SSL/MSFC. The

Associated Scientists will utilize the operations center most convenient to them.

4.9 Data Analysis: During the Definition Phase, we will prepare a preliminary Data Analysis Plan. During the

Development Phase, a detailed Data Analysis Plan will be prepared by the Project Scientist. The major data analysis
tasks will be carried out in the SSL/MSFC Data Analysis and Computation Facility and the REPL Data Facility at

Stanford. Data formats with the appropriate calibration and with ancillary information will be generated to meet the needs
of the PI, Co-I's, Associated Scientists, and Guest Investigators. Microdensitometering of the photographic data will be
carried out within SSI.YMSFC and at HAO.
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