
NASA Technical Memorandum 104060

NONDIMENSIONAL PARAMETERS AND
EQUATIONS FOR BUCKLING OF
SYMMETRICALLY LAMINATED THIN ELASTIC
SHALLOW SHELLS

(NASA-TM-IO_060) NONDIMEN$1ONAL PARAMETERS N9i-22397

AND EQUATIONS FOR BUCKLING OF SYMMETRICALLY

LAMINATED THIN ELASTIC SHALLOW SH_LLS

(NASA) 47 p CSCL lID Unclas
03/24 0011748

Michael P. Nemeth

March 1991

National Aeronautics and
Space Administrat on

Langley Research Center
Hampton, Virginia 23665





Nondlmenslonal Parameters and Equations for Buckling of

Symmetrically Laminated Thin Elastic Shallow Shells

Michael P. Nemeth

NASA Langley Research Center

Hampton, Virginia 23665

Summary

A method of deriving nondimensional equations and indentifying the

fundamental parameters associated with bifurcation buckling of shallow

shells subjected to combined loads is presented. More specifically,

analysis is presented for symmetrically laminated doubly-curved shells that

exhibit both membrane and bending anlsotropy. First, equations for

nonlinear deformations of thin elastic shallow shells are presented, and

buckling equations are derived following the method of adjacent equilibrium

states. Next, the procedure and rationale used to obtain useful

nondimensional forms of the transverse equilibrium and compatibility

equations for buckling are presented. Fundamental parameters are identified

that represent the importance of both membrane and bending orthotropy and

anlsotropy on the results. Moreover, generalizations of the well-known

Batdorf Z parameter for symmetrically laminated shells with full anisotropy

are presented. Using the nondlmenslonal analysis, generalized forms of

Donnell's and Batdorf's equations for shell buckling are also presented, and

the shell boundary conditions and approximate solution methods of the

boundary-value problem are briefly discussed.

Results obtained from a Bubnov-Galerkln solution of a representative

example problem are also presented. The results demonstrate the advantages

of formulating the analysis in terms of nondimensional parameters and using

these parameters for parametric studies. The results specifically show that
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shells with positive Gausslan curvature are much more shear buckling

resistant than corresponding flat plates and shells with negative and zero

Caussian curvature. In addition, the results indicate that the importance

of bending anisotropy on shear buckling resistance is influenced by shell

curvature.

Introduction

Buckling behavior of laminated composite plates and shells has received

renewed interest in recent years due to the search for ways to exploit

anisotropy in the design of aerospace vehicles. The present study focuses

on buckling analysis of symmetrically laminated doubly-curved shallow

shells. These shells are candidates for aircraft applications such as wing

cover panels, empennage and fuselage skins, engine cowlings, and wlng-to-

body fairings. In addition, these shells have potential spacecraft

applications such as liquid fuel tankage, pressure bulkheads, mlssle nose

cones, and payload modules. Understanding the fundamental parameters that

affect the performance of these shell structures, as well as the importance

of anisotropy, is a key ingredient of their design, and ultimately their

use. Moreover, these parameters can provide valuable information useful in

developing scaling laws for structural testing of plates and shells.

Symmetrically laminated shells exhibit anisotropy in the form of

material-induced coupling between pure bending and twisting deformations

that is commonly exhibited by symmetrically laminated plates undergoing

bending deformations. In addition, they exhibit-anisotropy in the form of

coupling between pure biaxlal stretching and membrane shearing. The

anisotropy is manifested in shell buckling theory by the presence of odd-

combination mixed partial derivatives in the partial differential equations



governing buckling and the natural or force boundary conditions. The

presence of the these derivative terms prevent simple closed form solutions

from being obtained. Studies that assess the importance of anisotropy on

buckling behavior of symmetrically laminated plates are presented in

references i and 2. In reference I, nondimensionalizatlon of the partial

differential equation governing plate buckling is presented and

nondimensional parameters are identified that provide physical insight into

plate buckling behavior. The results presented in reference i suggest the

potential for using nondimensional parameters to characterize plate buckling

behavior, assess the importance of anisotropy, and aid in their preliminary

design. The results presented in the present paper build upon the results

presented in reference i.

A major objective of the present paper is to present nondimenslonal

parameters that will aid in, and simplify, buckling analysis and preliminary

design of laminated composite shallow shells. It is a well-known fact that

shells with a high degree of curvature are sensitive to small imperfections

in their geometry under certain loading conditions, and that this

imperfection sensitivity leads to collapse loads often substantially below a

predicted bifurcation buckling load [3]. However, there is a class of shell

problems for which imperfection sensitivity is minimal under certain loading

conditions and the addition of a slight amount of curvature has a positive

effect on increasing the buckling resistance of a flat plate [4]. In this

case, results obtained from a bifurcation buckling analysis can be used to

obtain credible estimates of the collapse load. It is for this class of

shallow shells that the nondimensional parameters and equations presented in

the present paper have been derived. A significant example of a

nondimensional parameter that has seen wide use in the buckling analysis and



design of isotroplc cylindrical shells is the well-known Batdorf Z or

curvature parameter [5,6].

Nondimensional parameters can play a key role in the preliminary design

of aerospace vehicles. An important consideration is that, in the initial

preliminary design phase, a structural designer is usually under severe time

constraints and often prefers to have information available in a handy chart

form. Nondimenslonal parameters permit fundamental results to be presented

as a series of curves, on one or more plots, that cover the complete range

of shell dimensions, loading combinations, boundary conditions, and material

properties. In addition, the curves also furnish the designer with an

overall indication of the sensitivity of the structural response to changes

in geometry, loading conditions, boundary conditions, or material

properties. Often in preparing design charts of this nature, a special

purpose analysis is preferred over a general purpose analysis due to the

cost and effort involved in generating results encompassing a wide range of

design parameters. Examples of design charts for buckling and postbuckling

of orthotroplc plates that use nondlm,_nsional parameters are presented in

references 7 and 8. Another very useful benefit of nondlmenslonal

parameters is that they can be used to greatly simplify the equations and

results when performing analysis and to provide insight into the order and

importance of various terms appearing in the equations.

Two major objectives of the present paper are to present a method of

deriving nondimensional equations for doubly-curved shallow shells subjected

to combined loads, and to indentlfy the fundamental parameters associated

with bifurcation buckling of these shells. The paper begins with a

presentation of the equations for nonlinear deformations of symmetrically

laminated elastic shallow thin shells. Next, the equations for buckling are



presented using the method of adjacent equilibrium states, and are cast into

a form suitable for nondimenslonalization. The paper then indicates the

steps required, and the rationale used, to obtain nondimenslonal forms of

the transverse equilibrium and compatibility equations for buckling.

Fundamental parameters are then identified that can be used to represent the

importance of membrane and bending orthotropy and anisotropy on shell

behavior. Parameters are also presented that are generalizations of the

Batdorf Z parameter for symmetrically laminated shells with full anisotropy.

After obtaining the nondlmensional buckling equations and identifying

the nondimensional parameters, generalized forms of Donnell's and Batdorf's

equations for shell buckling are presented. These generalized equations

contain the effects of both laminated material properties of the shell as

well as double curvature. Finally, a brief discussion of shell boundary

conditions and approximate solution methods for the shell buckling problem

is presented.

The analysis presented in the present paper was inspired by the work

presented in reference 8. For this reason, and for many useful discussions,

the author would like to dedicate this paper to the late Dr. Manuel Stein of

NASA Langley Research Center.

Equations for Nonlinear Deformations

The basic equations for doubly-curved shallow shells of general shape

and uniform thickness t are presented in this section in terms of the

orthogonal lines-of-curvature curvilinear coordinates (_i,_2,[) shown in

figure I° The equations presented consist of the strain-displacement

relations, nonlinear equilibrium equations, compatibility equations, and

constitutive equations for symmetrically laminated shells.



Strain-Displacement Relations

The nonlinear strain-displacement relations used herein to describe the

deformation of a shallow shell of general shape are the relations of

Donnell-Mushtari-Vlasov classical thin-shell theory. These relations are

well known (for example see reference 6, pp. 190-197), and are given by

o o

el(f I, 42 , C) = _l(fl , 42 ) + C _l(fl , f2 )

o o

e2(f I, 42 , C)- e2(f I, f2 ) + f _2(fl , f2 )

_3({I , 42, ¢) - o

(I)

o 0

V12(@l ' f2' C) - 712(_I' f2 ) + f _12(fl ' _2 )

o

713(fi , 42 , f)- 713(_ I, f2 )

o

723(fi' f2' C)= 723(fi , 42 )

in which

o u2 aAl w !(!aw_2
_I l aul + + +

= Ala_l AIA2 a42 _i 2"AIa_I"
(2)

o i au2 Ul aA2 w !(! 8w )2
_2 - --- + + +

A2a_2 AIA2 a_l _22 2 A2a@ 2
(3)

1 aUl

A2af 2

u2 aA2 ! au2 Ul aA1
- +

AIA 2 af I Ala_ 1 AIA 2 a_2

1 aw aw
+

AIA 2 af 1 af 2
(4)

o 1 a#! #2 aAl
_I - +

Ala_ 1 AIA 2 a_ 2
(5)

o I a#2 #I aA2

_2 = +
A2af 2 A1A 2 a_ 1

(6)
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o 1 a/_l _2 aA.__Z2_t.a#.__..Z2/31 aA._j.t
- . + - (7)

_12 A2a_2 AIA 2 a(l Ala_l AIA 2 a(2

o law

v13 - BI+ Alafl
(8)

o law (9)
723 - _2 + A2af2

The symbols u I and u2 are the displacements of the shell reference surface

(in the tangent plane) in the _i and _2 directions, respectively, and the

symbol w is the displacement along the direction normal to the shell

surface. The coordinate f corresponds to a distance along an axis normal to

the shell surface, at a given point, as shown in figure i. The terms R I and

R 2 represent the principal radii of curvature of the reference surface along

the _i and f2 coordinate directions, respectively, and the symbols A I and A 2

are the coefficients of the first fundamental form of the surface given by

2 2 2

(dS) - (Aldfl) + (A2d_2) (i0)

where dS is the differential arc-length between to neighboring points on the

0 0 0

surface. The terms _I' _2' and 712 are the membrane strains, and the terms

0 o o

_i' _i' and _12' when multiplied by [ are the strains associated with

O o

changes in curvature of the shell reference surface. The terms _13 and 723

are the transverse shearing strains and are assumed to be zero-valued in

accordance with the assumptions of classical first-approximation thin-shell

theory. Enforcing this condition yields expressions for the surface

rotations in term of the normal deflection w; i.e.,



!0w (It)
E1 - _ AlafI

Iaw
- - (12)

_2 A20_2

Nonlinear Equilibrium Equations

The nonlinear equilibrium equations of Donnell-Mushtari-Vlasov shallow

shell theory are obtained by enforcing equilibrium of a differential shell

element in its deformed configuration. The equations resulting from this

process are given as follows. The equation corresponding to the summation

of forces in the _I direction is given by

L aL 2 aA2 aAl - 0 (13)afl(NIA 2) + (NI2A I) N 2 _ + NI2 a_2 + AIA2q I

where NI, N2, and NI2 are the membrane stress resultants and ql is an

applied membrane surface traction. Similarly, the equation corresponding to

the summation of forces in the _2 direction is given by

a_2 0AI aA2_I(NI2A2) + (N2AI) N I -- + - (14)af 2 + NI2 _ AIA2q 2 0

where q2 is also an applied membrane surface traction. The equation

corresponding to the summation of forces in the f direction is given by

N 1 N 2

where P denotes the contribution of the membrane forces to the transverse
m

(normal to the surface) equilibrium that is given by

p a__ law law
m - 0(I[NIA2(AIa(I ) + NI2A2(A20(2 )]



(! aw ) + N2AI(! aw )] (15b)+

o_2[NI2A1Alaf I A2af 2

The symbols QI and Q2 denote the transverse shearing stress resultants. The

equation corresponding to the summation of moments about the _l-axis is

given by

a

a_2 'aAl aA2 - 0 (16)_ M 2 AIA2Q 1
a_l(MiA 2) + (MI2AI) + M12 af 2 a_ I

where MI, M 2, and MI2 are the bending stress resultants. Similarly, the

equation corresponding to the summation of moments about the _2-axis is

given by

aA 2 aA 1

aLI(MI2A2) + a_2(M2AI ) + M12 H I -- - AIA2Q 2 - 0 (17)a_ I af 2

A more convenient form of the nonlinear equilibrium equations, for the

purpose of defining nondimensional parameters, is obtained by requiring the

curvilinear coordinates _i and _2 to be surface coordinates with units of

length. A new set of curvillnear coordinates sI and s2 are introduced such

that

2 2 2

(dS) - (ds I) + (ds 2) (18)

For this set of coordinates, A I = i and A 2 = I.

equations simplify to

aN I aNl2

-- + as-_ + ql - 0as I

aNl2 aN2 + q2 " 0
as--_ + as 2

The nonlinear equilibrium

(19a)

(Igb)



where

aQ I aQ 2 N I N 2

 m-0 (19c)

P
m

a__ aw aw a aw aw

0_I[NI 0si + NI2 _s 2] + _s2[N12 _Sl+ N 2 0s 2]
(19d)

aM 1 aMl2

as-_ + as--_ " Qi - 0
(Ige)

aM2

as_ + as I Q2 = 0
(19f)

A similar set of equations derived for postbuckling analysis of isotropic

shallow shells subjected to thermal loads is presented in reference 9.

The equilibrium equations given in equation (19) are reduced to a set

of three equilibrium equations as follows. First, the expression for P
m

given by equation (19d) is rearranged, by differentiating, to give

aNl aNl2.aw aNl2 aN2 aw

= [asI + [ as--_

2 2 2

+ N1 L2w + N2 a w ._@_w
+ 2N12 aslas 2

as I as 2

(20)

Substituting equations (19a) and (19b) into equation (20) gives

2 2 2

aw _ (21)
P - - ql as I q2 8_WsW2+NI L2w + N2 _-_ + 2N12 --_
m as I as 2 aslas 2

Next, eliminating the transverse shear stress resultants from equation (19c)

using equations (19e) and (19f) gives

2 2 2

a M I a MI2 a M 2 N I N 2 aw _ aw

2 + 2 aslas2 + _ - _i - R_ + q3- ql as I q2 as 2
as 1 as 2
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2 2 2

+ "1 +"2 + 2"12 w
as I as 2 aSlaS2

--- 0 (22)

Equations (19a), (19b), and (22) are the nonlinear equilibrium equations

used in this paper to obtain the equations for buckling of shallow shells.

Compatibility Equation

The compatibility equation for the nonlinear boundary-value problem is

obtained by eliminating u I and u 2 from equations (2), (3), and (4). It is

convenient, for the purpose of the present study, to express equations (2)

through (4) in term of the length coordinates; i.e.,

o au I w lcaw_2

_i - as-_ + _i + 2"as I"
(23)

_2 au2 +o w I(__V__ 2
- as2 _22 + 2 as 2"

(24)

o aUl au2 aw aw
i + I +

VI2 - as 2 as I as I as 2
(25)

Eliminating u I and u 2 yields

2 0 2 0 2 0
2 2 2 2 2

a _i 0 c2 O TI2 O w 2

8s 2 0s I 0s I 0s 2 0s I 2 0s 2 i

(26)

For shallow shells, for which the curvatures are mildly varying, the

following approximation is used to simplify the compatibility equation;

i.e. ,

2 2

as I 2 as I

(27a)
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2 2

Os 2 I Os 2

Using this approximation, the compatibility equation becomes

2 0 2 0 2 0
2 2 2 2 2

8 _i 0 _2 O _12 _ ( a w ) 2_ a w _ 1 _ + ! a w

2 + 2 0Sl0S2 0Sl0S2 2 2 + 2 RI
0s 2 0s 1 0s 1 0s 2 R2 0s 1 0s 2

(27b)

(28)

Constitutive Equations

The shells considered in this paper are symmetrically laminated and

exhibit both anisotropic membrane and bending behavior.

constitutive equations are given by

O O O

N I - AllC 1 + Al2C 2 + AI6VI2

The corresponding

(29a)

0 0 0

N 2 - Al2e I + A22e 2 + A26_12 (29b)

0 0 0

NI2 - AI6_ I + A26c 2 + A66_12 (29c)

2 2 2

ow_
a w L2w . 2D16 0Sl0S

- - 2 D12 0s 2 2M 1 DII 0s I

(30a)

2 2 2

8 w a w 2D26 a w
M 2 - -DI2 _ " D22 2 " asla s

as I as 2 2

(30b)

2 2 2

a w @ w 2D66 ___ w
MI2 - -DI6 _ - D26 2 - 8SlaS2

as I as 2

(30c)

where All, AI2, A22, and A66 are the orthotropic membrane stiffnesses;

AI6 and A26 are the anisotropic membrane stiffnesses; DII, DI2, D22, and D66

are the orthotropic bending stiffnesses; and DI6 and D26 are the anisotropic
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bending stiffnesses of classical laminated thln-shell theory (for example

see reference i0).

Buckling Equations

The equations governing buckling are derived using the method of

adjacent equilibrium described in reference 6 (see pp. 201-202). Prior to

buckling, the shell is assumed to be in a Primary equilibrium state given by

the displacement field (u_, u_, we). Near the point of buckling, there is

assumed to exist an adjacent equilibrium state (6Ul, 6u2, 6w) sufficiently

close to the primary equilibrium state such that 6Ul, 6u2, and 6w are

infinitesimal quantities. Moreover, prebuckling displacements normal to the

shell reference surface are presumed to be negligible; i.e., wp - O. Using

this method, the linearized bifurcation buckling equations are obtained by

substituting

u_ + 6u I (31a)U I

u_ + 6u 2 (31b)U 2

w _ 0 + 6w (31c)

into the basic equations of the nonlinear boundary-value problem given

previously. Associated with the substitutions defined by equations (31) are

variations in the strains and changes in curvature. In addition, increments

in strains and changes in curvature produce increments in the stress

resultants via the constitutive equations. The relationships for the

strains and changes in curvature are given by

O

ePi + 6e I (32a)e I

13



O

e2 _ e_ + 6e 2 (32b)

0

TI2 -" TP2 4 6112 (32c)

0

ml -" 0 + 6m I (32d)

0

,c2 --,. 0 + 6,_2 (32e)

O

m12 -_ 0 + 6_12 (32f)

where

au I
(33a)

as 2
(33b)

au I au__2

TP2 = as--2+ as I
(33c)

86ui 6w

6_ I - as I + R1
(33d)

86u2 6w

6e 2 = 8s 2 + R2
(33e)

a6u I 86u__._!2

6712 - -- +
as 2 as I

(33f)

2

o a6w
6_ I - - 2

as I

(33g)

2

6m 2 - - 2

8s 2

(33h)

O

6_12 = -2

2

a 6w

aslas 2
(33k)
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and where the superscript p denotes the primary equilibrium state. The

relationships for the stress resultants are given by

NI _ N_ + 6N I (34a)

N 2 _ N_ + 6N 2

NI2 _ N_2 + 6N12

(345)

(34c)

M I _ M_ + 6M I (34d)

M 2 _ M_ + 6M 2 (34e)

MI2 _ M_2 + 6M12 (34f)

and result from substituting equations (32) into the constitutive equations

(29) and (30). The superscript p again denotes the primary equilibrium

state. In equations (32) and (33) terms of quadratic degree and higher in

6Ul, 6u2, and 6w have been omitted in accordance with the assumption that

the variations are infinitesimal in size. The specific form of the

constitutive equations are given by

a6Ul 6w) + a6u2 a6Ul a6u2
6N I - All (O-_--i+ RI AI2 (as 2 + R_) + AI6 (0-_2 + a-_--I )

(35a)

O6Ul 6w) + a6u2 a6ul a6u2
6N 2 = Al2(as--_- + RI A22(as2 + R_) + A26(as--_- + a-_-1 )

(35b)

O6u 1 05u 2 _ a6u2
(35c)

6M 1 - -DII

2 2 2

a 6w a 6w _ 2D16 8 6w
0Sl0S 22 DI2 Os28s I

(35d)
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2 2 2

_6w 0 6w ___ 6w
= = - 2 - 2D26

6M2 -D12 0s 1 D22 0s 2 aSlaS2

(35e)

2 2 2

a 6w a 6w _ 2D66 _ 6w
= 2 D26 2 asl_s26M12 -DI6 as I as 2

(35f)

The form of the buckling equations used herein are obtained by

substituting equations (31) through (34) into equations (19a), (19b), (22),

and (28). Neglecting terms greater than linear in the displacement, strain,

changes of curvature, and stress resultant increments yields the following

equations of the adjacent equilibrium state (buckling equations)

O6N 1 a6N12
+

as 1 as 2
0 (36a)

a6N12 a6N 2
+

as 1 as 2
--= 0 (36b)

2

a 6M I

2

0s 1

2 2

a 6M 2 6N I 6N 2+ 2_+ _-- -- @6w 06w
2

OSl0S 2 0s 2 R1 R2 ql as 1 q2 0s 2

2 2 2

+ NI _ a 6w a 6w
2 + N2 "--7 + 2N12 aSlaS2

as 1 as 2

- o (36c)

2 2 2
2 2

a 6e I a 6_ 2 a 6T12 1 a 6w i
= 2 + -- 2

2 + 2 aSlaS2 R2 OSl R1 as2as 2 as 1

(36d)

where the superscript p on the prebuckling stress resultants has been

dropped for simplicity. An additional operation used, but not explicitly

shown, to obtain the buckling equations given above is the enforcement of

the requirement that the primary equilibrium state satisfies the equilibrium

equations and compatibility equation of the nonlinear boundary-value

problem.
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Nondlmensionalizatlon of the Buckling Equations and Parameters

One objective of this paper is to determine the nondimensional

parameters governing the buckling behavior of shallow thin elastic shells.

This objective is accomplished following the procedure presented by Batdorf

in references ii through 13 for isotropic curved plates, by Stein in

reference 8 for flat laminated orthotropic plates, and by the author in

reference i for flat symmetrically laminated plates. The rationale used in

this paper for deriving the nondimensional equations and selecting the

nondimensional parameters follows, to a great extent, the work presented by

Stein [8]. This rationale is to make the the field variables and their

derivatives of order one, minimize the number of independent parameters

required to characterize the behavior, and to avoid introducing preferential

direction into the nondimensional equations.

The first step in the nondimenslonalization procedure is to formulate

the boundary-value problem in its simplest form which corresponds to two

coupled homogeneous linear partial differential equations. This task is

accomplished by introducing a stress resultant function 6_ defined by

2

(37a)
6N I - 2

as 2

2

(37b)
6N 2 -

8s 1

2

(37c)
6N12 - . aSlaS2

This stress resultant function (or simply stress function) satisfies

equations (36a) and (36b) identically. Upon eliminating these two equations

from the boundary-value problem, the equation guaranteeing compatibility of

17



the buckling strains must be satisfied. This buckling compatibility

equation is given by equation (36d). To get the buckling compatibility

equation into a solvable form, the inverted form of the constitutive

equations are used to express the buckling strains in terms of the stress

function; i.e.,

2 2 2

2 + 2 a16 0Sl0S2 (38a)
6e I all as 2 a12 as I

2 2 2

a _ _ O _

2 + a22 2 a26 aslas2 (38b)
6e 2 - a12 Os 2 Os 1

2 2 2

I 2 + 2 (38c)
6712 a16 as 2 a26 as I a66 aSlaS 2

where equations (37) have been substituted into the usual constitutive

equations involving the membrane stress resultants, and where all ' a12 , a22 ,

a16 , a26 , and a66 denote the coefficients of the inverted form of the

membrane constitutive equations. Substituting equations (38) into the

buckling compatibility equation (36d) and simplifying gives

4 4 4 4 4

2a26 a 6_ 2a16 ___ +a22 4 " 3 + (2a12 + a66)-/[26_2 3 all 4

as I oslas 2 oslas 2 aslas 2 as 2

2 2

i a _w l___6w

2 + RI 2
R2 as I as 2

FollOwing the analysis presented in reference 8, the following

(39)

nondimensional coordinates are used

z I _ Sl/L I and z 2 _ s2/L 2 (40)

18



where L I and L 2 are characteristic dimensions of the shell shown in figure

I. Substituting these nondimensional coordinates into equation (39) and

2 2 --
multiplying through by LiL2/Jalla22 yields

4 4 4 _ 4 4

O_ 4 3 2 2 3 +
m o_

0z I 0Zl0Z 2 0Zl0Z 2 m 0Zl0Z 2 _m 0z2

where

2 2

LI a_6w.

Jalla22 [Rq 0z I 0z 2

am - L_(a22/all )I/4

(41)

(42a)

2a12 + a66
- (42b)

2falla22

a26

_m" " 3 1/4
(alla22)

(42c)

a16

and 6m- - 3 1/4 (42d)

(alla22)

The next step in the nondimensionalization involves the buckling

equation given by equation (36c). To express this equation in terms of the

buckling displacement 6w and stress function 6_, the equations defining the

stress function and the constitutive equations given by equations (35d)

through (35f) are used. Substituting equations (37) and (35d) through (35f)

into equation (36c) and simplifying gives

19



4

a 6w + 4D16DII 4

as I

4 4 4 4

+ 2(D12+ 2D66 ) a 6w a 6________w a 6wz 2 2 + 4D26 3 + D22 4

aslas 2 aslas 2 aslas 2 as 2

2

+ -- +
2

RI as 2

2 2 2 2

06w _6w a 6w a 6w a 6w
! _ + ql + q2 Nl N2 - 2N12

2 as 1 as 2 2 2 aSlaS2
R2 as I as I as 2

=0

(43)

Substituting the nondimensional coordinates defined by equation (40) into

2 2 -
equation (43), multiplying through by LIL2/JDI!D22 yields

4 4 4 6b 4 41 a6w
_+ 2__+ 4 +2 _ 6W + 2 2 3 --2 4

_b 4 4_b7 b 3 _b
az I aZlaZ 2 azlaz 2 aZlaZ 2 ab az 2

+

2 2

2 L 2 B=6_ @6w + _2 a6w
LI _ + 2 + ql Oz I az 2

RIJDIID22 az 2 R2JDIID22 az I

2

2 KI2_ 22 2 a 6w
2 a 6____wwK2 _ - 2-- - 0

KI_ 2 _ _b azlaz2
az I 8z 2

(44)

where the nondimensional parameters appearing in this equation are given by

eb " _I(DII/D22 )I/4
(45a)

m

DI2 + 2D66

f
DIID22

(45b)

DI6

7b" s )1/4
(DIID22

(45c)

D26

6b" (DIID_2)I/4

(45d)
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2

NIL 2

K !" 2 -- i

JDIID22

2

N2L 1

K2= 2 _

JDIID22

2

NI2L 2

2 _ 1/4(DIID 2)

2

_ qlLIL2

ql"

_511D22

2

_ q2L_LI

q2"

_D--IID22

To obtain equations of order one, a new stress resultant function

defined by

(45e)

(45f)

(45g)

(45h)

(45i)

6F - 6_/_DIID22 (46)

is introduced into equations (44) and (41). Equation (44) becomes

4 4 • J: _ 4

2 _ + 4_bTb _ @ 6w + 4"b _ + i @ 6w=b 4 3 + 2p 2 2 2 4

8Zl aZlaZ2 azlaz2 ab aZlaZ2 _b az2

2 2

LI 2 L2 2+__a6F+ a6F
2 R2 2RI az 2 az I

+ ql + q2
az I az 2

2

2 2 KI2_ 2
2 a&w K2 _ - 2--

KI_ 2 2 _b aZlaZ2
az I az 2

= 0 (47)

Similarly, substituting equation (46) into equation (41) and simplifying

gives
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4

2a6F
m 4 + 2_m_ m

az 1

4

_,LIE_
3

azlaz 2

4 _ 4 4

+ 2t_ --_ 6F m a 6F i a 6F2 2 +2 3+--2 4 =
a

aZlaZ 2 m azlaz 2 em az2

2 LIi L2 a 6w a 6w
2 + -- 2

Jalla22DllD22 az I RI az 2

(48)

The term given by

I ! 11/2
12/alla22DllD22 J

has dimension I/t, where t is the shell wall thickness. To get the equation

to a form of order one, a nondimenslonal displacement 6W is introduced into

equation (48); i.e.,

6W = 6w

! ]1/2
12/alla22DllD22 J

(49)

The nondimensional displacement 6W defined in equation (49) has character

similar to 6w/t. Using equation (49), equation (48) simplifies to

4 4 4 _ 4 4

2 8 6F + 2am_ m O 6F a 6F 2 ra a 6F + 1 a 6Fa 4 3 + 2# + -
m 2 2 a 3 2 4

az I aZlaZ 2 aZlaZ 2 m aZlaZ 2 a m az 2

2 2

J lz 2 + zI
Oz I az 2

= i

where

(5O)

2 i

L I

Zl" RIJ_ [alla22DllD22] I/4 (51a)

2

L2

Z2-

R2JI--_[alIa22DIID22]I/4 (51b)

Equation (47) also simplifies to
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4

a b 4

az 1

4

_O__tK_
+ 4_b7 - s

aZlaZ 2

+ 2/9

4 4 4

a _W 4_[ a 6W +!
2 2 + 3 2 4

0Zl0Z 2 ab 0Zl0Z 2 ab 0z 2

2 2

+ I + z2 a. .ZF]+ +
az 2 az I aZl az 2

2
2 2

2 _ a _W KI2_ __@.6W
2 _ K2_ 2

KI_ _ 2 ab 0Zl0Z2
0z I 0z 2

---0

Equation (50) can be expressed in operator form as

(52)

where

D (6F) ,//12 D (6W) - 0
m c

(53)

4 4

a6F + _ + 2#D (6F) - a 4 2am7 m

m m az I aZlaZ2

4 6 4 4
a 6F + 2_mm_9__/U[_+! a 6F

2 2 _ 3 2 4

0Zl0Z 2 m 0Zl0Z 2 am 0z2

(54a)

2 2

and D (6W) - Z2 a 6w + Zl a 6w
C 2 2

az I 0z 2

(54b)

The operators D and D are referred to herein as the membrane stiffness
m c

operator _nd the curvature operator, respectively.

To get equation (52) into the desired form, it is necessary to express

the nondir:lensional stress resultants KI' K2' KI2' ql' and q2 (see equations

(45)) in terms of a loading parameter p. These relationships are given by

KI _ ._gl(Zl,Z2) _ (55a)

K2 - -Z2g2(zl,z2)p
(55b)

K12 - ,__3g3(zl,z2)p
(55c)

23



qi - _494(Zl'Z2 )_ (55d)

q2 - Z5g5(zl'z2)_ (55e)

where the minus signs are used to make compression loads produce positive

values of the critical loading parameter. The parameters_l,_2, _3 _4'

and _ are load factors that indicate the ratio of the nondimensional
5

membrane stress resultants and surface tractions prior to buckling. The

functions gl(Zl,Z2) through g5(zl,z2) indicate the spatial variation of the

nondimensional membrane stress resultants and surface tractions. Using

these relations, equation (52) is expressed in operator form as

Db(6W ) + /I-2 Dc(6F ) = pKg(6W)

where the operators are defined by

(56)

4 4

2E__ a_w
Db(6W) " _b 4 + 4_b? b 3

az I aZlaZ 2

+ 2_ --_ + 4 ___ + ! a 6w2 2 3 2 4 (57)

azlaz 2 _b aZlBZ 2 _b az2

2 2

__igl(Zl 2 a 6W _2g 2 z2)_ _ a 6WK (6W) _ ,z2)_ = " (zI, 2

g 0z I 0z 2

2 2

______ _ £ (Zl,Z2)a__z_ _£ _ ,a6w2_g3(zl'z2) _b azlaz2 4g4 5g5(zl'Z2)az2
(58)

The operators Db and K are referred to herein as the bending stiffness andg

geometric stiffness operators, respectively.

Equations (53) and (56) constitute the eigenvalue boundary-value

problem for buckling of doubly-curved shallow shells. The smallest value of

the loading parameter p for which the equations are satisfied constitutes

buckling of the shell. The equations are nondimensional and are of order
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one. Thus, the magnitude of the parameters multiplying the derivatives is a

direct indication of the effect each term in the equations will have on the

solution of a given problem. The parameters ZI and Z2 are generalizations

of the Batdorf Z parameter presented in references ii through 13 for

isotropic cylindrical panels. These generalizations of the Batdorf Z

parameter rely heavily on the work presented by Stein in reference 8, and

thus are referred to herein as the generalized Batdorf-Stein Z parameters.

As the shell approaches a flat plate, the parameters Z 1 and Z2 approach zero

and the equations uncouple.

Parameters in Terms of Membrane Stlffnesses

The parameters am, _, Vm' 6m' Zl' and Z2 have been given in terms of

the coefficients of the inverted form of the membrane constitutive equation.

Expressions for these parameters in terms of the usual membrane stiffness

coefficients are obtained as follows.

First, inverting the membrane stiffness matrix [A] associated with

equations (35) yields

2

al I _ (A22A66_ A26)/det(A) (59a)

2

a22 _ (ALIA66_ Al6)/det(A ) (59b)

a12 - (AI6A26- A!2A66)/det(A)
(59c)

2

a66 _ (ALIA22. Al2)/det(A ) (59d)

a16 - (AI2A26 - A16A22)/det(A)

a26 - (AI2AI6- Al]A26)/det(A)

(59e)

(59f)
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where

2 2 2

det(A) - (ALIA22- AI2)A66- ALIA26- A22AI6 + 2AI2AI6A26 (59g)

Substituting these expressions into the expressions for the nondimensional

parameters gives

ALIA66_ 2 ]1/4
L2 AI6 (60a)

2

am - Lq [A22A66_ A26

2

ALIA22" AI2" 2AI2A66 + 2AI6A26

_ 2 ]1/22 (ALIA66- AI6)(A22A66- A26 )

(60b)

AI!A26- AI2AI6

?m- [ 23 211/4(AllA66" A16) (A22A66- A26)

(60c)

and 6 -
m

A22AI6- AI2A26

2 2 s]i/4(ALIA66- AI6)(A22A66- A26)

(60d)

2 _ 2 2 _] 1/2

ZI - h (ALIA22- AI2)A66" ALIA26- A22AI6+ 2AI2AI6A2 v i

R1 12 (AllA66- AI6)(A22A66- A_6)DllD22

J

2 2 2 2 .] 1/2(A A A )A A A A A + 2A AL2 II 22- 12 66- Ii 26" 22 16 12 16A2
oi

Z2 R2 12 (,\11A66 - A16)(A22A66- A26)DllD22

- = 0, and theFor the case when A16 and Ag. 6 are zero-valued; 7m 0, 6m

remaining nonzero parameter_ simplify to

h[All ]I/4

O_m -- LI[A22J

2

ALIA22" AI2- 2AI2A66

2A66JAIIA22

(60e)

(60f)

(60g)

(60h)
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z1 [ llJ2R1 12,/AllA22DllD22J

(6oj)

For the case of an isotropic material, the nonzero parameters are given by

e__2

m L I

_- i

2

LI v 2 1/2

ZI - RI t (i - )

v2 1/2z2 - L2 (I - )
R2t

where t is the total plate thickness.

(60k)

<601)

(60m)

(6On)

Reduction to a Single Equation in Terms of W

Generalized Donnell-Steln Eaua_ion. Donnell showed (see references II

through 13) that a single eighth-order differential equation could be

obtained for isotropic cylindrical shells by eliminating the stress function

appeariug in the buckling equations. This task is performed by applying

successive differentiation to obtain a single equation referred to by

Batdorf a_; an escalated equation (see reference 14). ApplyingDonnell's

approach to a doubly-curved shallow shell, equation (53) is operated on by

the curvature operator to give

__ 2

D (Dm(6F)) - J12 D (6W) (61a)
C C
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Using the fact the the differential operators in equation (61) are linear,

their order of operation can be interchanged to give

Dm(Dc(6F)) = J12 D (6W) (61b)
C

Next, operating on equation (56) with the membrane stiffness operator yields

Dm(Db(6W) ) + J12 Dm(Dc(6F)) - PDmKg(6W ) (62)

Substituting the right-hand-side of equation (61b) into equation (62) yields

an eighth-order partial differential equation referred to herein as the

genecalized Donnell-Stein equation; i.e.,

2

Dm(Db(6W)) + 12Dc(6W) = PDmKg(6W) (63)

Modlfled Batdorf-Steln Equatlon. The doubly-curved shallow shell

counterpart to Batdorf's equation is obtained by expressing equation (53) as

- Ji-2 D'I(Dc(6W))m (64)6F

-i
where D ( ) denotes the inverse differential operator (anti-derivatlves)

m

which symbolically represents integration. A detailed account of the use of

inverse differential operators is given in references ii through 14. Using

the fact that the differential operator and inverse differential operator in

equation (64) are linear, their order of operation can be interchanged to

give

_F - JI-2 D (D_I(6w))- (65)
C m

Substituting equation (65) into equation (56) yields the desired equation;

i.e.,

+ 12D2[D-I(6W)]cm - _pKg(6W) = 0 (66)Db(6W)
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This integro-differential equation is a generalization of Batdorf's modified

equilibrium equation presented in reference 12 and is referred to herein as

the Modified Batdorf-Stein equation.

Implied Membrane Boundary Conditions. As pointed out by Batdorf in

references II through 13, the original Donnell and Modified Batdorf

equations for isotropic cylindrical shells implicitly prescribe boundary

conditions on the membrane displacements and stress resultants. This

attribute of these equations is a direct consequence of the elimination of

the stress resultant function. Thus, the Generalized Donnell-Stein and

Modified Batdorf-Stein equations presented in this paper also possess this

attribute. Results presented by Batdorf [11-13], Rehfield and Hallauer

[15], and Sobel, et. al. [16] suggest that the effect of membrane boundary

conditions on the predicted buckling load and mode shape of shallow

isotropic cylindrical shells may, in several cases, be small. For these

cases, buckling results obtained from the Generalized Donnell-Stein and

Modified Batdorf-Stein equations give reasonable estimates of the collapse

load. This information, however, is not generally known for shallow

laminated composite shells. It does seem reasonable that, for the class of

slightly curved shells which are not imperfection sensitive, the coupling of

membrane and bending behavior is mild enough that the analytical predictions

of buckling that are obtained from the Generalized Donnell-Stein and

Modified Batdorf-Stein equations are reasonably accurate and thus useful in

preliminary design of shallow shells.

The actual membrane boundary conditions implied by solutions to the

Generalized Donnell-Stein and Modified Batdorf-Steln equations are

determined from the displacement form of the membrane equilibrium equations.

These equations are obtained by substituting Constitutive equations (35a)
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through (35c) into membrane equilibrium equations (36a) and (36b). This

step yields two coupled partial differential equations that relate the

unknown membrane buckling displacements 6u I and 6u 2 to the known transverse

%

buckling displacement 6w. Using differentiation, the two coupled equations

are converted to two independent uncoupled equations; i.e., one equation

relating 6u I to 6w and another relating 6u 2 to 6w. Performing these

operations and nondimensionalizing the resulting equations yields the

following equations for the special case of AI6 and A26 being zero-valued.

2 AI2 O 6W

Dm(6UI) = " m El + Z2 s

JAIIA22 az I

- [(2# + A!2

[ JAIIA22

)Z I
3

1 ___@_6W_._.2
z2

m azlaz2

(67a)

[jA _ I 22 j z2 3m az2

[ ]3_ 2 a 6w
(2# + AI2 )Z2 _m Zl

/ALIA22 azlaz 2

(67b)

where the nondimensional membrane displacements 6U I and 6U 2 are given by

2

ALIA22" AI2

6U l - L I 6u I

12_AIIA22DIID22

(68a)

ALIA22 - AI2

and 6U 2 - L 2 6u 2

12_AIIA22DIID22

(68b)

These differential equations are generalizations of those presented by

Donnell (see reference II) for isotropic cylindrical shells.
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A general method of determining the membraneboundary conditions

implied by 6W is to expand both 6U I and _U 2 into full double Fourier series

and then determine the Fourier coefficients using the orthogonality of the

functions forming the double Fourier series. Once the Fourier series are

determined, stress resultants are computed directly from the membrane

constitutive equations. The boundary conditions are identified by examining

the functional form of the Fourier series for the displacements and stress

resultants on the boundary of the shell.

Approximate Solution of the Buckling Equations

Simple closed form solutions to equations (63) and (66) are not readily

aval[able since the geometric stiffness operator generally has variable

coefficients and both the geometric stiffness and bending stiffness

operators have odd-combinatlon mixed partial derivatives (e.g., three

derivatives with respect to zI and one with respect to z2)° Approximate

solutions, however, can be obtained by methods such as the Bubnov-Galerkln

method (see reference 12 for example). The usual way of solving equations

(63) and (66) by the Bubnov-Calerkin method involves using series expansions

for 6F and 6W that satisfy all the boundary conditions of a given problem.

These expressions are then substituted into equations (63) and (66) to

obtain two residuals (one for each equation) since the series expansions

generally do not satisfy the two differential equations. Then, the

residuals are expanded in the same series (i.e., same basis of the solution

space) and the components of the residuals are forced to be zero-valued in

an integrated sense. This process results in a generalizedalgebraic

elgenvalue problem whose elgenvector includes the buckling displacement

modal amplitudes and the stress function amplitddes.
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Often in performing analysis for preliminary design, or parametric

study, it is desirable to simplify the analysis as muchas possible. One

such simplification was introduced in shell buckling analysis by Batdorf

(see references 12 and 13). The method associated with this simplification

consists of a Bubnov-Galerkln solution to Batdorf's counterpart of the

Modified Batdorf-Stein equation. The results and discussion presented by

Batdorf in references 12 and 13 suggest that use of the Modified Batdorf-

Stein equation is preferred to the use of the Generalized Donnell-Stein

equation when applying the Bubnov-Galerkin method. By eliminating the

stress function using the inverse differential operator, the size of the

generalized algebraic eigenvalue problem to be solved in the Bubnov-Galerkin

method is significantly reduced, and thus the attractiveness of the analysis

for parametric study is greatly increased. The application of this method

to the Modified Batdorf-Stein equation is outlined in the subsequent

section.

Bubnov-Galerkin Formulation for the Modified Batdorf-Steln Equation

To obtain an approximate solution to equation (66), the nondimensional

transverse buckling displacement is expressed as

M N

6W _ 6WMN - Z Z a _p(Zl)_q(Z2) (69)
p-I q=l pq

where the basis functions _p(Zl) and %q(Z 2) are selected such that 6WMN

satisfies all the boundary conditions of the given problem, and are at least

a linearly independent set. Substituting equation (69) into equation (66)

yields a residual since the assumed displacement series does not satisfy the

integro-differential equation, equation (66). The residual is given by
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M N 12D_(Dml(_p_q)) pKg(_p_q)} 0 (70)RMN- E E a " {Db(_p_ q) + - -
p=l q=l pq

and is dependent on the number of terms taken in the series. The evaluation

of the terms involving Db and K are straightforward, however, theg

evaluation of the term involving the inverse operator is somewhat involved.

The general procedure for determining Dml(_p_q) is to first expand D'I(6W)m

in a general double Fourier series as if it is an arbitrary function of two

variables (see reference 14). Next, the condition that Dm(DmI(_w)) - 6W is

(i.e. the left-hand-enforced by operating on the Fourier series with Dm

side of the equality) and then substituting equation (69) for 6W appearing

on the right-hand-side of the equality. The Fourier coefficients are then

determined using the orthogonality property of the functions forming the

basis of the Fourier series. The resulting equations yield the following

equation

M N

D-I(6w) - D00 + Z qZlDml(¢p_q)apq (71)
m 4 p-i =

The leading constant term is of no significance in the Bubnov-Galerkln

2 l(,w)solution since it vanishes once D (Dm ) is computed.c

In the Bubnov-Galerkin method, the residual is assumed to be a function

that can be expanded in the same basis functions as 6W; i.e., it is assumed

that the residual can be expressed as

M N

RMN- X X r • (zl)Oi (
p=l q=l pq p q z2)

(72)

The coefficients r represent the components of the residual in the
Pq

function space spanned by Sp.and Sq. The coefficients rpq are determined by
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multiplying equation (72) through by the set of functions • @ (for m = i,
mn

2 ..... M and n z I, 2 ..... N) and integrating the resulting equation over

the region on which the boundary-value problem is defined.

where

1 !

II ""RMN_m(Zl)#n(Zl)dZldZ 2 _ E E r F H
0 o p=l q=l pq pm qn

This step gives

(73)

Fpm - Io_m(Zl)_p(Zl)dZl (74a)

I

and Hq n m Io_n(Z2)$q(Z2)dz 2 (74b)

An approximate solution to the boundary-eigenvalue problem is obtained by

requiring that the components of the residual series expansion be zero-

valued. Noting that the F and H coefficients of the right-hand-side of
pm qn

equation (73) constitute a nonsingular coefficient matrix of the linear

system of equations defined by equation (72), a sufficient condition for the

components of the residual series to vanish is given by

II

II RMN_m(zl)#n(zl)dzldz2 - 0o o (75)

for all combinations of m - I, 2 ..... M and n = I, 2 ..... N. More

precisely, the following equations must be satisfied.

M N M N

E E K a = p E E KG a (76)

p=l q=l mnpq pq p=l q=l mnpq pq

where K constitutes the stiffness matrix given by
mnpq

K - KB + KC (77a)
mnpq mnpq mnpq
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The stiffness coefficients associated with bending are given by

I !

KBmnpq " I I Db(Opqq)¢mCndZldZ2
O 0

(77b)

and the stiffness coefficients associated with shell curvature are given by

1 1

K C I I 12D_(Dml(_p_q))_m_nmnpq _ 0 o dZldZ 2 (77c)

The term KG constitutes the geometric stiffness matrix and its
mnpq

coefficients are given by

I 1

KGmnpq = IoIoKg(¢P_q)¢m_ndZldZ2
(77d)

Once the specific form of ¢ and • are given, the inverse differential
m n

operator can be obtained, the stiffness and geometric stiffness matrices can

be computed, and the eivenvalue problem can be solved. Buckling is defined

by the smallest value of p that satisifes the generalized algebraic

eigenvalue problem defined by equation (76).

Results and Discussion

Following the procedure presented in the previous section of this

paper, the buckling behavior of a shell can be determined in terms of _b' _'

?b' 6b' am' #' ?m' 6m' ZI' and Z2. For a given family of laminates, such as

the [(_0)n] s laminates (n = I, 2 .... ) described in reference I, changes in

the fiber orientation and stacking sequence of a laminate generally results

in changes in all the nondimensional parameters presented herein. Plots

showing the dependance of several of the parameters on fiber orientation and
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stacking sequence are presented in reference i. The point to be made is

that the parameters are not independent with respect to laminate

construction. However, insight into determining, and understanding, the key

parameters affecting buckling behavior can be obtained by studying how the

parameters vary with respect to laminate construction, and by studying the

sensitivity of the buckling behavior with respect to varying each parameter

in an independent manner. For example, an indication of the sensitivity of

the buckling behavior with respect to variations in these parameters can be

obtained from plots of a buckling coefficient as a function of each

parameter. To demonstrate this philosophy, some typical results of a

parametric study are presented in the next section of this paper for a

representative example problem.

Example Problem

The example problem presented in this section is a shallow shell that

is loaded on its edges by a uniform shearing traction • as shown in figure

2. The shell is supported such that the transverse displacement and

rotation along the edges are zero-valued (clamped with respect to bending

behavior). The basis functions used in the approximate analysis presented

herein that satisfy these boundary conditions are given by

- cos(p-l)_z I- cos(p+l)_z I (78a)
P

- cos(q-l)_z 2- cos(q+l)_z 2 (78b)
q

for p = i, 2, ..., M and q = i, 2 ..... N. Associated with these basis

functions, and the use of the Modified Batdorf-Stein equation, are implied

membrane boundary conditions. To greatly simplify the analysis, the example

problem is defined as a shell that has A16 = A26 - O; i.e., its membrane
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behavior is specially orthotropic. The corresponding implied boundary

conditions are given by 6U i - 6N12 - 0 on the edges zI - 0 and I, and 6U 2 -

6N12 - 0 on the other two edges.

Applying the procedure for approximate solution of the Modified

Batdorf-Steln equation described in the previous section of this paper

yields explicit expressions for the stiffness and geometric stiffness

coefficients defined in equations (77). The stiffness coefficients K B
mnpq

and geometric stiffness coefficients KG are identical to those obtained
mnpq

from a Bubnov-Calerkin analysis of a flat plate and are not presented

herein. The contribution of the stiffness coefficients associated with

shell curvature to equation (76) is expressed by

4 M N KC
-_7. 7. a

p=l q=l mnpq pq
- Z(m-l,n-l) am_2,n_ 2

-{Z(m-l,n-l) + Z(m+l,n-l)}a
m,n-2

Z(m+l,n-l) am+2,n_ 2 -{Z(m-l,n-l) + Z(m-l,n+l)}am_2, n +

{Z(m-l,n-l) + Z(m-l,n+l) + Z(m+l,n-l) + Z(m+l,n+l)}am, n +

-{Z(m+l,n-l) + Z(m+l,n+l)}am+2, n + Z(m-l,n+l) am_2,n+ 2

-{Z(m-l,n+l) + Z(m+l,n+l)}am,n+ 2 + Z(m+l,n+l) am+2,n+ 2
(79)

where

Z(m- l,n-l) -

2 2 2

12[Z_(m-1) + Zl(n-1) ]
2 4 2 2 4 2 4

{am(m-1 ) + 2_(m-1) (n-l) + (n-l) /am}_

(80)

for m - i, 2 ..... M and n - I, 2 ..... N.
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Results obtained from the approximate analysis are presented in figures

2 and 3. The buckling resistance of a shell is indicated in these figures

by the nondimensional shear buckling coefficient K defined by
s

2

_L 2
K - _ (81)

s _2)i/4(DIID

where • is the applied shearing traction. For the results presented in the

figures, the orthotropic parameters (ab, _, _m' and _) and the anisotropic

parameters (Vb, 6b, ?m' and _m) that are not varied are set equal to one and

zero, respectively. This baseline set of values corresponds to an isotropic

shell with sides of equal length (LI - L2).

Results showing shear buckling coefficient as a function of the

Batdorf-Stein shell curvature parameters, Z I and Z2, are presented in figure

2. Results are shown in this figure for flat plates and for shells with

zero, negative, and positive Gaussian curvature with values of ZI and Z2

ranging from 0 to i00. The results presented in figure 2 indicate that the

shear buckling resistance of a shell is significantly influenced by shell

curvature, especially for the larger values of Z I and Z 2 shown in the

figure. The results also indicate that the shells with positive Gaussian

curvature are the most buckling resistant. Moreover, the shells with

positive Gaussian curvature are more buckling resistant than those with

negative Gaussian curvature, which are more buckling resistant than those

with zero Gaussian curvature. Flat plates exhibit the lowest buckling

resistance.

Results showing shear buckling coefficient as a function of the

curvature parameters, ZI and Z2, and the bending anisotropy parameters ?b
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and _b (see equations (45c) and (45d)) are presented in figure 3. Results

are shown in this figure for flat plates and for shells with positive

Gaussian curvature corresponding to Z1 = Z2 - i00. Values of the

anisotropic parameters range from 0 to 0.5. This range of values is

considered to be representative of a large class of laminated plates [I].

Results are presented in figure 3 corresponding to both positive and

negative directions of the applied shear traction. The distinction of

loading direction results from the presence of the bending anisotropy.

The results presented in figure 3 indicate the shear buckling

resistance of a shell with positive Gaussian curvature is more sensitive to

variations in the anisotropic parameters than a corresponding flat plate.

The results show substantial reductions in buckling resistance with

increasing values of the anisotropic parameters for shells loaded in

positive shear, and similar increases in buckling resistance for shells

loaded in negative shear. Similar results were obtained for a corresponding

shell with negative Gaussian curvature that indicate the sametrend, but not

to as large an extent as exhibited by the shell with positive Gaussian

curvature.

The results presented in figures 2 and 3 show that varying parameters

independently can give insight into the factors driving the structural

response. For example, by independently varying the parameters associated

with shell curvature it has been found that positive values of Gaussian

curvature substantially improve the shear buckling resistance of a shell.

In addition, it has been determined that shell curvature can significantly

affect the importance of the bending anisotropy on the shear buckling

resistance. Both of these observations clearly indicate the benefits of
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using nondimensional parameters to formulate the analysis and to perform

parametric studies.

Concluding Remarks

A method of deriving nondimensional equations and indentifying the

fundamental parameters associated with bifurcation buckling of shallow

shells subjected to combined loads has been presented. Analysis has been

presented for symmetrically laminated doubly-curved shells that exhibit both

membrane and bending anisotropy. The analysis includes equations for

nonlinear deformations and buckling of thin elastic shallow shells, and the

procedure and rationale used to obtain useful nondimensional forms of the

transverse equilibrium and compatibility equations for buckling are

discussed. Fundamental parameters of the problem have been identified that

explicitly indicate, in a compact manner, how both membrane and bending

orthotropy and anisotropy influence buckling behavior. Generalizations of

the well-known Batdorf Z parameter for symmetrically laminated shells with

full anisotropy have also been presented, as well as generalized forms of

Donnell's and Batdorf's equations for shell buckling. In addition, shell

boundary conditions and approximate solution methods of the nondimensional

boundary-value problem have been briefly discussed.

Results obtained from a Bubnov-Galerkin solution of a representative

example problem have also been presented. The results demonstrate the

advantages of formulating the analysis in terms of nondimensional parameters

and using them to perform parametric studies. The results specifically show

that shells with positive Gaussian curvature are much more shear buckling

resistant than corresponding flat plates and shells with negative and zero

Gaussian curvature. In addition, the results show that the importance of

4O



bending anisotropy on shear buckling resistance is affected by shell

curvature.
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