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Summary of Progress

During the period August 1, 1990 ~ January 31, 1991, significant progress was made in a
number of areas. In this report, we will focus on the results included in the Ph.D. dissertation
of Mr. Steven S. Pietrobon, a Ph.D. student supported by the grant. Mr. Pietrobon completed
his dissertation in December, 1990 and will formally receive his Ph.D. degree in May, 1991.
A copy of the dissertation is included as an Appendix to this report. One journal paper
has already been published based on this research [1], and two more are being submitted to
the IEEE Transactions on Information Theory this month [2,3]. In addition, a number of
conference presentations have resulted from this work [4-11]. The following sections contain
a brief summary of the important aspects of this dissertation.

1) Trellis Coded Multidimensional Phase Modulation

Since the publication of the paper by Ungerboeck [12], trellis-coded modulation (TCM)
has become a very active research area. The basic idea of TCM is that by trellis coding onto
an expanded signal set (relative to that needed for uncoded transmission), both power and
bandwidth efficient communication can be achieved.

TCM can be classified into two basic types, the lattice type (e.g., M-pulse amplitude
modulation (PAM) and M-quadrature amplitude shift keying (QASK)) and the con-
stant amplitude type (e.g., multiple phase shift keying (MPSK)). Constant amplitude
modulation schemes have a lower power efficiency compared with lattice type modulation
schemes but are more suitable for certain channels, e.g., satellite channels containing nonlin-
ear amplifiers such as traveling wave tubes (TWT’s).

In any TCM design, partitioning of the signal set into subsets with increasing minimum
intrasubset distances plays a central role. It defines the signal mapping used by the modulator
and provides a tight bound on the minimum free Euclidean distance (d free) Detween code
sequences.

We have investigated a class of trellis-coded multidimensional (multi-D) MPSK modu-
lation schemes. Signals from a 2L-dimensional (2L-D) MPSK signal set (which we denote as
L x MPSK) are transmitted over a two-dimensional (2-D) modulation channel by sending
I consecutive signals of an MPSK signal set. Therefore, the I x MPSK signal set is the
cartesian product of L 2-D MPSK signal sets.

An efficient method of partitioning multi-D MPSK signal sets has been developed that
leads to easily implemented multi-D signal set mappers. When these signal sets are combined
with trellis codes, significant asymptotic coded gains in comparison to an uncoded system
are achieved. These codes provide a number of advantages compared to trellis codes with
2-D signal sets which make them particularly attractive for NASA satellite communication
systems: 1) flexibility in achieving a variety of fractional information rates, 2) codes which are
partially or totally transparent to discrete phase rotations of the signal set, 3) suitability for
use as inner codes in a concatenated coding system, and 4) higher decoding speeds resulting
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from the high rate codes used (rate k/(k + 1) with k up to 15 for some codes).

For trellis coded L x MPSK modulation, with M = 2, effective information rates of
I — (j/L) bits/symbol, for j = 1,2,---,L, can be achieved. This allows a system designer a
greater choice of data rates than is available with 2-D signal sets (L = 1) without sacrificing
data quality.

An analytical description of multi-D signal sets in terms of block code cosets, and the use
of systematic convolutional encoding, results in an encoder design (from the differential en-
coder to the 2-D signal set mapper) that allows many good codes to be found. This approach
also leads to the construction of signal sets that allow codes to be transparent to multiples
of 360°/M phase rotations. Finally, due to the way the signal sets are mathematically con-
structed, a signal set mapper can be easily implemented by using basic logic gates and L-bit
binary adders.

A systematic code search based on maximizing dfree (and thus the asymptotic coding
gain) as well as minimizing the number of nearest neighbors for various degrees of phase
transparency was performed. For L x 4PSK, asymptotic coding gains up to 7.8 dB compared
to an uncoded system were obtained. For L x 8PSK and L x 16PSK, codes exhibiting
asymptotic coding gains up to 5.85 dB were found.

Since a Viterbi decoder processes k bits in each recursion of the algorithm, the large values
of k for codes using multi-D signal sets allows very high bit rates to be achieved (compared to
convolutional codes that map only into a 2-D signal set). The large number of branch metric
computations can be reduced either through the use of a modified Viterbi algorithm or large
lookup tables. Finally, a method has been developed that uses the redundancy in some signal
sets to achieve symbol synchronization at the decoder for codes that are not fully transparent.

Rate k/(k+ 1) trellis codes with-L x MPSK modulation also have the advantage of
being useful as inner codes in a high rate concatenated coding system with Reed-Solomon
(RS) outer codes over GF(2*). In the inner decoder makes errors, one trellis branch error
will exactly match one symbol in the outer RS codeword. The symbol oriented nature of
trellis coded L x MPSK inner codes can provide an improvement of up to 1 dB in the
overall performance of a concatenated coding system when these codes replace bit oriented
trellis coded 1 x MPSK inner codes of the same rate. This can be an extremely important
advantage in achieving high bandwidth and power efficiency in concatenated coding systems
such as NASA’s TDRSS.

2) Trellis Coding with Multidimensional QAM Signal Sets

We have also performed a systematic code search for trellis codes with multi-D QAM signal
sets. The 2-D signal sets used in the construction of the multi-D signal sets range from 16
to 512 points and were designed to have minimum energy, to be 90° rotationally symmetric,
and to be suitable for partitioning. Where possible, the signal set selected is the same as that
commonly used in the literature and in practical implementations of TCM schemes.

Rate k/(k + 1) codes were used in the code search. The codes presented all have signal
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sets with 27 signal points, where [ is a positive integer. Some of the advantages of multi-D
signal sets are: possible 90° phase invariance, lower coding complexity, non-integer information
rates, and suitability for use in a concatenated system. The multi-D QAM signal sets were
constructed through the use of cosets by a method similar to that used for multi-D MPSK.

The code search found the codes having the largest minimum free Euclidean distance
(djree) and the smallest number of nearest neighbors. This maximizes the asymptotic coding
gain and minimizes the bit error probability at high SNR. There are usually two different
possible phase transparencies for a linear code, and the best codes for each phase transparency
were found. The information rates ranged from 3 to 8 bits/symbol, with signal sets up to
eight dimensions for the 16QAM and 32 CROSS constellations, six dimensions for the 64
CIRC constellation, four dimensions for the 128 CROSS and 256 CIRC constellations, and
two dimensions for the 512 STAR constellation. (The 64 CIRC, 256 CIRC, and 512 STAR
constellations are new 2-D signal sets.) Codes were found having asymptotic coding gains up
to 6 dB.

The codes constructed for the small size signal sets (especially 16 QAM) may be useful in
NASA’s satellite communication systems where high bandwidth efficiency is required at the
expense of more linear amplifiers. The codes constructed for the larger size signal sets may
be useful for high capacity microwave links and telephone modems where high data rates are
required on bandwidth limited channels.

3) Rotationally Invariant Trellis Codes

One aspect of trellis coding that has come under increasing study is the search for codes
that are invariant to phase rotations of the received signal set. The rotations under considera-
tion are those caused by a demodulator in a communication system. When the signal set has
rotational symmetries, e.g., MPSK or 16QAM, the demodulator has no knowledge of which of
the symmetries was transmitted. Thus, the demodulator selects one of the symmetries with
which to demodulate the received signal, regardless of whether it is the correct or incorrect
symmetry.

In uncoded systems, this problem is easily corrected by differentially encoding (precoding)
the data before transmission. After demodulation, differenital decoding (postdecoding) of the
received data is then used to return the data to its original form. Precoding of the data also
allows the recovery of data altered by phase slips within the demodulator. This occurs when
noise in the received signal causes the demodulator to lose lock and results in another of the
signal set symmetries being selected.

For trellis coding the situation is much more complicated. Here, we are dealing with
sequences of symbols in the code space rather than independent symbols, as in the uncoded
case. In fact, convolutional and trellis codes can be thought of as subclasses of sequence codes.
Unlike block codes, sequence codes have code words of infinite length, consisting of sequences
of symbols taken from a finite or infinite size signal set. Any finite or infinite set of sequences
can be considered as a sequence code. If a coded sequence has been rotated, the resulting






uwm [ (‘\ i

e

code sequence may or may not be in the code space.

The transparency or rotational invariance of a sequence code is the minimum non-zero
phase rotation for which all code sequences in the code space can be rotated such that the
rotated sequences are still in the code space of the sequence code. A sequence code is rotation-
ally invariant or transparent if the invariance of the code is equal to the minimum non-zero
phase symmetry of the two-dimensional (2-D) signal set. If there are some sequences which
are not in the code space after a phase rotation, a decoder will produce erroneous data if the
received sequence has been rotated by this amount.

A good example of this is the NASA standard (2, 1, 6) convolutional code with Gray
mapped QPSK modulation. This code is not 90° transparent (and is therefore not rotationally
invariant), but it is 180° transparent. A decoder will produce erroneous data after a 90° or
—90° rotation. To overcome this, the decoder needs to recognize that a 90° rotation has
occurred and rotate the received sequence. This process can be slow, resulting in many errors
being produced before the decoder is properly synchronized. A rotationally invariant code,
however, will only produce a small number of errors after a phase rotation, since there is no
need to detect and then correct for a phase rotation.

In order to describe and study rotationally invariant sequence codes, we use the parity
check equations (PCE) of a code. For rate k/(k + 1) codes, a single PCE fully describes
the relationship between the 2-D symbols in a code sequence. However, the PCE gives no
information about the input/output relationship of an encoder, i.e., it is independent of the
encoder implementation. This allows us to minimize the number of variables in finding good
rotationally invariant codes, thus simplifying the code search.

A systematic method of obtaining rotationally invariant trellis codes for a variety of 2-D
signal sets has been developed. Since codes based on linear PCE’s cannot be rotationally
invariant for 2-D signal sets with more than two points, an alternative general nonlinear PCE
was found. This nonlinear PCE allows the construction of invariant codes for 2-D signal sets
that are “naturally” mapped.

A general method of combining the precoder with a systematic encoder without increasing
the encoder memory was also discovered. This eliminates the need for a postdecoder, since
the precoder is part of the encoder trellis.

When a signal set has 90° rotational symmetries or only one input bit is checked by
the encoder, the general PCE is relatively simple, with only one non-linear term. The best
rotationally invariant nonlinear codes found for QPSK, 8PSK, and 16PSK signal sets have
smaller free distances than the best corresponding linear codes. However, their low number
of nearest neighbors may result in good performance at moderate E,/No ratios. The QAM
codes found were very good. Most of these codes had the same free distance as the best
corresponding linear codes. In particular, the new 90° rotationally invariant rate 3/4, 64
state, 16-QAM code with a 5.44 dB asymptotic coding gain is being considered for adoption
by CCITT as the V.FAST coding standard for Two-Wire High-Speed Modems. This code
transmits 3 bits/symbol and achieves an almost 5 dB real coding gain at a BER of 10~5 over
uncoded 8PSK.






4) Implementation of a Bandwidth Efficient Coding Scheme for the Hubble
Space Telescope

A trellis coding scheme using 8PSK modulation has been designed for use on NASA’s
Hubble Space Telescope (HST). By using a four dimensional signal set (i.e., the cartesian
product of two 8PSK symbols) and a rate 5/6 encoder, it is possible to obtain a bandwidth
efficiency of 2.5 bits/symbol. This implies that the data rate can be increased from the current
1 Mbit/s to 7.5 Mbit/s without any increase in bandwidth. The code selected has 16 states
and gives a real coding gain of 3.1 dB compared with uncoded 2.5 bits/symbol 8PSK and 1.5
dB compared with uncoded QPSK at a bit error rate of 10-%. Due to the multidimensional
signal set, this code is also fully rotationally invariant. A 2 Mbit /s serial implementation of a
Viterbi decoder is being implemented for this code. This work is due to be completed by the
end of the grant period.
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TRELLIS CODING WITH MULTIDIMENSIONAL SIGNAL SETS
AND ROTATIONALLY INVARIANT TRELLIS CODES

Abstract

by

Steven Silvio Pietrobon

Shannon’s capacity bound shows that coding can achieve large
reductions in the required Eb/N0 in comparison to uncoded schemes. For
bandwidth efficiencies of 2 bit/sym or greater, these improvements have
been obtained through the use of Trellis Coded Modulation (TCM) and
Block Coded Modulation (BCM). A method of obtaining these high
efficiencies using multidimensionat MPSK and QAM signal sets with
trellis coding is described. These schemes have advantages in decoding
speed, phase transparency, and coding gain in comparision to other
trellis coding schemes. Finally, a general parity check equation for
rotationally invariant trellis codes is introduced from which
non-linear codes for two dimensionai MPSK and QAM signal sets are
found. These codes are fully transparent to all rotations of the signal

set.
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CHAPTER ONE
INTRODUCTION

In nearly all communication systems which are modeled with an
Additive White Gaussaian Noise (AWGN) channel, there are three main
parameters that determine the performance of the system. These are the
information  bit error rate (Pb), the signal to noise ratio per
information bit (Eb/N 0 where Eb is the energy per bit and N 0/2 is the
double sided noise density) and the bandwidth efficiency (K, the number
of information bits transmitted in each signalling interval of T
seconds). In the communication schemes we are considering, a two-

dimensional symbol is transmittted in each signalling interval. We use

the unit bitsym for K.
Assuming a flat channel, these three parameters can be related to

each other through Shannon’s famous capacity bound [62]

C=8B logz(l + E’/NO), (1.1

where C is the capacity of the channel (in bit/sec), B is the bandwidth
(in Hz), and }.’.’/N0 is the signal to noise ratio (E’ is the energy per
symbol). We have taken the base two logarithm since bits are used as

the basic unit of information. Shannon’s noisy channel coding theorem

effectively states that P can be made as small as desired as long as

the transmission rate does not exceed C for the given B and E’/N o

Conversely, reliable communication is not possible if C is exceeded.

1
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We can modify (1.1) so that the capacity bound relates K and
Eb/NO instead of C, B and ESINO. Assuming perfect Nyquist signalling

(i.e., the bandwidth expansion factor is one) we have that

K < C/B, (1.2)

i.e., K must be less than C/B for reliable transmission. We also have

E/N, =K E/N. (1.3)

Thus, substituting (1.2) and (1.3) into (1.1) we obtain the bound
E/N 2 —p— (1.4)

This bound is plotted in Figure 1.1. Note that the minimum Eb/NO that
can be acheived is In 2 or -1.59 dB. However, to achieve this minimum,
K must be infinitely small (i.e., approaching 0). This implies that
very large bandwidths will be required. As K increases, the minimum
Eb/N0 also increases. This fact is very important since it tells us the
price we have to pay (in terms of Eb/N 0 in order to achieve larger K
and thus greater bandwidth efficiency.

Also shown in Figure 1.1 are points for uncoded Binary Phase
Shift Keying (BPSK) and Quadrature Phase Shift Keying (QPSK) at a Pb of
10°. Note the large improvements in Eb/N , that can be achieved, even
if we maintain the same value of K. To achieve these gains, coding must
be used.

Traditionally, this has been achieved through the use of block
codes, convolutional codes, or a combination of the two. These schemes

involve the addition of redundant bits to the information bits. These
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redundant bits are used to increase the minimum free Hamming distance

(d’:m) of a code compared to an uncoded scheme where Hamming distance
is defined as the number of differing bits between two codewords. The =
d}:m of a code is the minimum Hamming distance between all non-equal =
codewords. -
BPSK or (Gray mapped) QPSK modulation is used with these codes z
because the squared Euclidean distance between two codewords is -
proportional to the Hamming distance between the codewords. Thus, the %

minimum squared Euclidean distance between non-equal codewords (dim)

is proportional to the d{:m of a code. Therefore, one can find a code
without considering the signal set being used. The limitation of these ==
codes is that K cannot be greater than or equal to two bit/sym. N
The paréxhetér K is imponant because the required bandwidth for a %
communication system is inversely proportional to K. When bandwidth is —
limited such that the required K is 2 bit/sym or greater, alternative L
coding techniques are »rcquircd.‘ Since we cannot increase bandwidth (as é
the traditional schemes do), the only way to obtain redundancy is .
through an expanded signal set. The basis for this technique was first §
described systematically by Ungerboeck [65]. —
Unécrbocck obtained bounds of K versus E,/N 0 for various one s
dimensional (1-D) and 2-D signal sets. Some of these bounds are =
reproduced in Figure 1.1 for BPSK, QPSK, and 8PSK modulation (E/N  is v
used as the reference here, though). As can be seen, the potential =

coding gain of using 8PSK for K = 2 bit/sym compared with uncoded QPSK
is 6.6 dB (this is only 1.2 dB less than the theoretical minimum for -
K = 2 bitsym). This would require an infinitt amount of coding effort B
though, and so a practical coding system will have a coding gain -
-




somewhat less than 6.6 dB.

The codes that Ungerboeck obtained in [65] are based on
convolutional codes with k input bits and k+1 output bits, which are
then mapped into a signal set. Convolutional coding schemes with K of 2
bit/sym or greater have become known as Trellis Coded Modulation (TCM).
The difference between these schemes and traditional convolutional
codes is that the codes are based on d?m only and not on the d':m of
the code.

More recently, there has been active research in wusing Block
Coded Modulation (BCM) to obtain high  bandwidth efficiency
(5,11,13,26,27,31,34-36,39,41,59,61,63,80]. The basic method for this

was first outlined in [33] and is also known as multi-level coding.
1.1 Partitioning

__An important class of signal sets is Multiple Phase Shift _Keying I
(MPSK) modulation. These signal sets have the property that each 2-D
signal is of equal amplitude. This is useful in nonlinear channels such
as in communication satellites with travelling wave tube amplifiers
where the signal set remains largely unaffected (although spectral
regrowth can occur causing an increase in  bandwidth). Quadrature
Amplitude Modulation (QAM) signal sets have the advantage of greater
efficiency (due to their denser packing), but usually require a linear
or near-linear channel to avoid any distortion of the signal point
levels. -

An important part of either TCM or BCM is in the partitioning of

the signal set being used. This is related to partitioning a set into



subsets. Each partition divides a previous set into (wo subsets, with
an equal number of points in each subset. So, starting with the
original signal set, we divide this set into two subsets. Each of these
two subsets are divided into two and so on, until only one point
remains in each subset (we assume that the number of points in the
signal set is a power of two).

The partition is wusually made such that the minimum squared
Euclidean distance between all non-equal points in each subset is as
large as possible. The minimum of these distances over all the subsets
is called the Minimum Squared Subset Distance (MSSD) at partition level
P (82, the partition level starts at O for the full signal set and
increments by one for each two-level partition). Usually, due to
symmetry in the signal set, 82 is the same in each subset. If 8; is the
same as the previous parition level, we try to minimize the average
number of nearest neighbors in each coset.

This partition leads to a mapping of n bits into each of the 2°
poirms (the 2° sﬁbsctg at partitioﬁ level n). It is this mapping and
the 8:’5 of the signal set that lead to construction of good TCM or BCM

schemes.

1.2 Trellis Coding with Multidimensional Phase Modulation

There are some limitations of only mapping into a 2-D signal set
with linear convolutional codes. One of them is that this class of
codes has an integer value of K (since k = K }for a rate k/(k+1) code).
To obtain fractional rates, schemes have been developed that use

periodically time varying treilis codes (PTVTC) [30]. For example, to
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obtain K = 2.5 bits with 8PSK modulation, two trellis codes are used.
The first code transmits 2 bits for the first symbol, followed by 3
bits for the next symbol. This process then repeats.

For a specific PTVTC it has been shown that one can obtain a
single encoder that modulates L 2-D signal sets, where L is the period
of the code [48]. There appears to be no reason why this is not true in
general (on the condition that the PTVTC convolutional encoder is
linear). This would indicate that it might be better to find a code
that considers the L 2-D signal sets as a whole, rather than one at a
time. Indeed, this appears to be true in terms of coding gain and a
number of other criteria as well.

This concatenation of L  signal sets is called a  muld-
dimensional (or muiti-D) signal set. Other work on trellis codes that
have used mult-D signal sets are  described in [3,4,6,14-
17,19,37,48,50,51,56,75,76].  Usually, the concatenation is with 2-D
signal sets, giving a 2L dimensional signal set. R

A major part of obtaining good codes with multi-D signal sets is
in finding good partitions as described above. If there are I bits for
each 2-D signal set, the total number of points in each signal set is
2™ Even for small I and L (e.g, I =3 and L =2) the number of
multi-D points becomes very large and thus finding a good partition (or

partitions) by hand becomes very difficult.

A solution to this problem is to use the partition of the 2-D
signal set. For example, we can use the partition (and notation for the

subsets) for 8PSK given in [65] (reproduced in Figure 1.2). A 4-D 8PSK

signal set would consist of the set AOXAQ where x denotes the cartesian

product. The first partition could consist of the cosets BOxBO U BlxBl
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and BOxB1 U BIxB0. It is also not too difficult to see what the MSSD is
for these two levels (A(ZJ = 0.586 and Af = 2Ag = 1.172, where we use A
to indicate the MSSD’s for multi-D signal sets). The rest of the
partition can follow in a similar manner.

Although this method gives a good intuitive feel of how muit-D
partitions are made, it has its limitations when larger values of L are
considered. In fact, the problem becomes very similar to finding good
block codes (and their cosets), except that we are dealing with more
than one “level” of coding (also called coding level). Each level of
coding effectively codes one of the partition levels of the 2-D signal
set. To distinguish one level from another, powers of 2 are used in the
codewords. For example, a codeword at partition level O (of the 2-D
signal set) might have a code word of [l 1], at level 1, a codeword of
[2 2] and so on. This can be seen in the previously described example.

At partition level one of the 4-D signal set, we can see that the first

coset has two code words of -length 2 at code level 0, corresponding- to = -

the (2,1) block code with a d}:m of 2. The other two code levels are
uncoded, i.e., they use the (2,2) block code which has a dl:m of one.
Another method for constructing multi-D signal sets is Forney’s
2-construction or 3-construction [23].

In Chapter 2, we present in detail the construction of trellis

codes that use multi-D MPSK or LxXMPSK. The encoder is broken into three

parts, the differential encoder, a systematic convolutional encoder and

the signal set mapper.

In Chapter 2, the results of 7a systematic code search for a wide
variety of rates and signal sets are presented. The 2-D signal sets
that were used are QPSK, 8PSK and 16PSK, with the number of 2-D signal
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sets (L) varying from one to four. Codes with the following values of K
were found, 1.0, 125, 133, L5, 167, 175 20, 225, 233, 2.5,
267, 275, 30, 325, 333, 35, 367, and 375 bits. The complexity
of the codes (the number of checked bits, k, plus the memory of the

encoder, v) ranges up to a value of 10.

1.2.1 Code Transparency

The construction of the Signal sets has been described by use of
coset  representatives or  generators. This method has also been
described in [22]. The generators allow the signal set mapper to be
easily implemented using exclusive OR gates and I = logzM bit binary

adders.

A signiﬁcant :{dvantagc of usingﬂ generators forr Vthisr mapping is
that it determines a simple relationship of how the n mapping bits are
affected when the signal set has been rotated by W = 360/M degrees,
mc.g., 8PSK beingmrotated 45° (this can be caused by phasc slips  within
a demodulator). With a 2-D signal set, nearly all linear convolutional
codes are not fully transparent to phase rotations of ¥ (an exception
is BPSK). This implies that a Viterbi decoder needs to synchronize with
‘the received signal set. These synchronizers are usually based on a
measure of the performance of the decoder. Due to the synchronizers
random nature, it may take many symbols before a decoder recognises an
out of synch condition and attempts to lock on to the correct phase.
With MPSK modulation, this can be a significant problem as the points
are very close in phase (45° for 8PSK, 22.5° for 16PSK). Demodulators
are thus more likely to have phase slips than if QPSK or BPSK were

used.
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With a transparent code, a phase rotation has no affect on the
coded sequences and so a Viterbi decoder does not need to have a
synchronising  circuit, simplifying the design and possibly improving
performance. The coded sequences may remain the same on a phase
rotation but the relation between the information sequence and coded
sequence  will change with a phase rotation. To overcome this,
differential encoding (or precoding) before the encoder and
differential decoding (or postdecoding) after the decoder are used.

With modulo-M or a combined modulo-M and modulo-2 addition of the
generators, it is shown in Chapter 2 that at most I bits out of the
n < IL bits used in the mapping are affected by a phase rotation of ‘F.
Since these bits are wusually evenly spread out through the mapping
bits, many codes can be found that are fully transparent to phase
rotations of ¥ (this is because only two to four of the mapping bits
are actually coded, the rest remaining uncoded). This mapping also

allows the design of general precoders and postdecoders.

1.2.2 Decoder Speed

Another advantage of using muld-D signal sets is the large
values of k that can be used. This can result in very high decoding
speeds, possibly approaching 1 Gbit/s for a single codec. ~ This is
because each iteraton of the Viterbi algorithm decodes as many as IL-1
bits (the maximum value of k), while the decoder complexity, in terms
of the number of coded bits and encoder memory, is about the same as
for trellis codes which use only a 2-D signal set. Howc\"cr, the branch
metric calculator is usually much more complicated, due to the greater

number of parallel transitions between the trellis.
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As an example, a decoder that has been built for a PTVTC has an
intpmal clock rsggedéi of 75 MHz [18]. The code is of rate 8/9 with 8PSK
modulation giving K = 2.67 bit/sym. Since the 2-D symbol rate is the
same as the decoder internal clock speed, the bit rate is limited to
200 Mbit/s. However, the equivalent multi-D scheme (which uses a 3x8PSK
signal set) has each decoder iteration decbding 8 bits instead of 2.67
bit/sym on average. Thus, this same decoder (with about 50% extra
hardware due to the parallel transitions that need to be decoded) could
be made to have a bit rate of 600 Mbits! This code also has other
advantages due to the multi-D signal set. It is fully transparent
(compared with only 180° transparency for the PTVTC) and it has a
asymptotic higher coding gain due to its larger dim.

In Figure 1.1 we have plotted the points for the COMSAT code, as
well as the point for the equivalent mult-D code [46] at a Pb of 107,
As can be seen, the multi-D code achieves an extra 0.5 dB coding gain.

Also shown in Figure 1.1 are various other coding schemes.

1.2.3 Decoder Implementation

The practical side of trellis codes is examined in Chapter 5.
Here, the implementation of one of the 262 codes from Chapter 2 that
were found in the search is described. A soft decision Viterbi decoder
and encoder for this code has been designed. Initially, the code that
was chosen was a rate 7/8 code with 3x8PSK modulaton, K = 2.33, two
checked bits and 16 states.

This code was chosen mainly due to a previous PTVTC code that was
implementcrdr which has similar properties to the code we have chosen

[30] (called the COMSAT code, after the company that developed the

(I B ] ul ] W s | I
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decoder). Note that this COMSAT code is not the same code as that shown

in Figure 1.1. This COMSAT code has a rate of 7/9, uses 8PSK
modulation, has K =2.33, a maximum of two checked bits and 16 states.

The main differences between our code and the COMSAT code is that for

an equivalent hardware complexity, our code is about L = 3 times faster

in terms of bit rate and has a phase transparency of 90° verses 180°

for the COMSAT code [48]. Our code also has a larger dfm (4.0 instead

of 3.515). Figure 1.1 plots the simulated performance of our code [46],
showing a 2.2 dB coding gain in comparison to uncoded QPSK at a Pb of

10°,

Recent developments have led us to change our code to a 2.5
bit/sym, 4-D 8PSK code (its simulated performance [46] is also plotted
in Figure 1.1). This code also has 16 states and two checked bits,
implying minimal changes to the already exisiting design. It is also
45° invariant. The reason for the change are due to INTELSAT’s new
SONET standard which requires a 155.52 Mbit/s bit rate through a 70 MHz
channel. A 2.5 bit/sym code will be able to meet this standard and so
our low data rate design cm;ld be a “proof of concept” for the SONET
system.

The codec is to be implemented using standard TTL logic (mainly
low power and advanced Schottky). The internal clock speed of the
Viterbi decoder is 10 MHz. Each of the 16 add-compare-select (ACS)
operations (one for each state), is to be performed serially. Thus,
only one ACS circuit is required. A total of approximately 23 clock
cycles are required for each iteration of the Viterbi algorithm. This — ——
gives a maximum bit rate of | 3.04 Mbit/s and 2.17 Mbit/s for the 2.33
bit/sym and 2.5 bit/sym codes, respectively.
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1.3 Trellis Coding with Multidimensional QAM signal sets

The methods that are described in Chapter 2 for MPSK modulation
can also be applied to QAM constellations. Some work has already been
done in this area [5,8-10,12,22,24,64,68,74] but nearly all of it has
been ad hoc in nature (some codes were even designed by “hand”). In
Chapter 3, we apply the systematic multi-D construction and code search
methods developed for MPSK signal sets to that of QAM signal sets. A
“natural” mapping of each 2-D 90° rotationally symmetric QAM signal set
(ranging from 16 to 512 points) is presented. This allows us to easily
determine the phase properties of the codes.

The code search used 2-D to 8-D signal sets with X ranging from
3.0 to 8.0 bit/sym. Some of the Ilarger size signal sets were further
limited in the number of dimexisiong 7 due to computatibhai: limitations.
The benefits of the code search have resulted in new codes being found
that are 90° invariant and thét Ahav.c- .the fewest number of nearest
neighbors (me). Also, a 16 state, 3 bit/sym 8D 16QAM code was found
that has 6.02 dB asymptotic coding gain (y). This code can also be used
in larger size signal sets for the same Yy (although Nfree may not be

optimum).
1.4 Rotationally Invariant Trellis Codes

As has been described earlier, a desirable property of trellis
codes is to have full transparency. One way to achieve this is through

a multi-D 7signa1 set. If L 22, the | decoder will need to synchronize
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onto the L 2-D symbols. This may be a problem in some channels where
symbol loss is likely to occur, e.g, in fading channels. Thus, codes
are desired which have only a 2-D signal set (to avoid symbol
synchronisation) and that are fully transparent. Linear codes cannot
achieve these requirements. This is because at least two bits are
always affected in the signal set mapping. The parity check equation
for linear codes (which describes the relatdonship between the coded
bits) will always change on a phase rotation for all non-trivial codes. i
To obtain phase transparency, the code has to be made non-linear.
That is, there are logical AND operations in the code. Rotationally
invariant codes have been previously found in [3,10,19,40,75] with
multi-D  signal sets and in [1,3,32,44,52,54,73,74,81] for 2-D signal
sets. The work in [48,49,70] concentrated on finding rotationally
invariant rate 1/2 codes with QPSK modulation. We have extended this
work into finding rotationally invariant codes for rate 2/3 8PSK and
rate k/(k+1) QAM. ' o e
To obtain the codes in [48] we used a parity check equation that
was found by Ungerboeck [66]. This parity check equation was designed
such that the equation remained the same after a 90° phase rotation. To
achieve this, a non-linear term was added into the equation. With ratei
2/3 8PSK the situation becomes much more complicated. The parity check
equation now has to compensate for three terms being affected on a

phase rotation, not just two as in the QPSK case. To find the various

approach was taken.
This was achieved by finding a general parity check equation for

any rate k/(k+1) rotationally invariant trellis code that has a natural

- - —_————
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type mapping (it is really two equations, one with modulo-2 arithmetic
and the other with modulo-M arithmetic). From this relatively simple
general equation, one can derive the rate 1/2 general nparity check
equation that was found by Ungerboeck. Also, the complicated rate 2/3
equations can also be derived. With these parity check equations, a
code search for rate 2/3 8PSK rotationally invariant trellis codes was
performed.

The rate 2/3 codes with two checked bits were found to have 0 dB
asymptotic coding gain, but with very small N__. This small N __ may
make these codes suitable for fading channels in comparison to uncoded
QPSK. Other rate 2/3 codes with one checked bit were also found.
However, their  parallel transitions in a fading channel is a
significant disadvantage (although the codes have y = 3.0 dB).

A surprising result was found for the rotationally invariant QAM
codes. For all except one code, the d";m of the invariant codes are
the same as the best linear codes, with the invariant code having fewer

Nf;_thah “the linear codes. The results of a code search for rate 12

QPSK codes are also presented.
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CHAPTER TWO
TRELLIS-CODED MULTIDIMENSIONAL PHASE MODULATION

In this chapter, we investigate a class of trellis coded
multidimensional (muiti-D) MPSK modulatior_l schemes. Signals from a
2L-dimensional (2L-D) MPSK signal set (which we shall denote as LxMPSK)
are transmitted over a 2-D modulation channel by sending L consecutive
signals of an MPSK signal set. Therefore, the LxMPSK signal set is the
Cartesian product of L 2-D MPSK signai sets. Trellis coded multi-D
phase modulation (TC-LxMPSK) provides us with a number of advantages
that usually can’t be found with TC-MPSK: (i) flexibility in achieving
a variety of fractional information rates, (ii) codes which are
partially or totally transparent to discrete phase rotations of the
signal sét; and  (iii) higher 7decode‘r- speeds resulting from the high
rate codes used (rate k/(k+1) with k up to 15 for some codes).

In Section 2.1, we introduce a block coding technique for
partitioning LxMPSK signal sets. Section 2.2 describes how the encoder
system, comprising a differential precoder, a systematic convolutional
encoder, and a multd-D signal set mapper, is obtained for the best
codes found in a systematic code search. The signal sets are designed
such that the codes can become transparent to integer multiples of
360°/M rotations of the MPSK signal set. Also, due to the way in which
they are mathematically constructed, a signal set mapper can be easily

implemented by using basic logic gates and L bit binary adders. The

17
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systematic code search is based on maximizing the minimum free

Euclidean distance {(d_ ) and thus the asymptotic coding gain, as well

free
as minimizing the number of nearest neighbors (N._) for various
degrees of phase transparency. TC-Lx4PSK, TC-Lx8PSK, and TC-Lx16PSK
codes for L =1 to 4 are found. For TC-Lx8PSK and TC-Lx16PSK,
asymptotic coding gains up to 5.85 dB compared to an uncoded system are
obtained. The TC-Lx4PSK codes exhibit asymptotic coding gains up to 7.8
dB. Among the L =1 codes listed are some new codes which have
improvements in me and phase transparency compared to codes found
previously  [43,65.68,76].  Viterbi  decoding of TC-L«<MPSK is also

discussed, concentrating on maximum likelithood decoding of the parallel

transitions within a code trellis.

2.1 Multi-D Signal Set Partitioning

In order to describe set partitioning we will start  with the
familiar partitioning of the §PSK signal set. This is followed with an
example of multi-D signal set partitioning using the 2x8PSK signal set.
Generalizations will be gradually introduced, so that by the end of
this section the reader should become thoroughly familiar with the

concepts involved.

2.1.1 Partitioning the 8PSK Signal Set

In partitioning the 8PSK signal set, or 1x8PSK, we form a minimum
squared subset distance (MSSD) chain of & = 0.586, & =2, & =4, and
8; = oo (assuming that the average signal energy is one). Figure 1.2
illustrates this partitioning, in which each subset is equally divided

ol
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into two smaller subsets such that the MSSD in each smaller subset is
maximized. Partitioning continues in this manner until we have eight

‘. . . 2
subsets, each containing a single point, hence 63 = oo,

2.1.2 Partitioning 2x8PSK

A 2x8PSK signal set (L = 2) is illustrated in Figure 2.1. We use
integers y, to indicate the first 8PSK point and y, for the second 8PSK
point, where Yy, € (0,1,....,7}). Nawral mapping is used to map the
integer Y, into each complex valued 8PSK signal, ie.,
Y, exp[»/-_l'yjn'/4], for j=1,2. We can also represent Y, and Y, in
binary form as the vector y, = [y?,y},y?], with y} e {0,1}, and where
y, = 4y§+ 2y}+ y?, for j=12. That 1is, the least significant bit
(Isb) of Y, corresponds to the right most bit and the most significant

bit (msb) to the left most bit. We will use this convention throughout

the chapter.

20 | @1 2@ o1

3 @0 3@ @0

4@ ®7 4@ @7

5@ ®6 5@ ®6
Y1 y2

Figure 2.1: The 2x8PSK signal set.

To represent a 2x8PSK signal point we form the 2 x 3 binary

matrix,



2 1 _0
yl yl yl y]
y: =

2 1.0
y2 y2 y2

Since there are a total of six bits used to describe a signal
point, the unpartitioned signal set (indicated by Q% has a total of 2°
= 64 points. We also say that Q0 s rat pa.nitionr level p=0. It can
easily be seen that the MSSD at partiion level p=0 s
Ag = 5; = 0.586 (we use large A to indicate the MSSD’s for L > 1 and
small & for L =1). The next partiion (at partition level p = 1)
divides VQO into two subsets of 32 points each. We call Q' the subset
that corrﬁz;irnrs the all zero element (e, y, =9, = 0). The other
subset of 32 points is its coset, labeled Ql(l). In forming these two
subsets, we would like their MSSD, A?, to be larger than Ag. If this
were not possible, then we should find a partitioning that leads to a
maximum reduction in the number of nearest neighbors within the smaller
subsets (i.e., the _average number of signal points that are distance Af
away from any point). In principle, the partitioning could be carried
out in this heuristic manner.

A more efficient way of partitioning Q" is to require the column
‘vectors of y, ie, ¥y = [yi,y;]T, for 0<i<2 to be codewords in a
block code. This representation using block codes is also known as
multilevel coding (first described by Imai and Hirakawa ([33] and later
applied to QAM by Cusack [13]). To express this mathematically, we need

to introduce some further notation. We define Cm as that block code

1

which contains the column vectors y, for 0 <i < 2. Thus, Cm contains
0

the least significant bits of y and vy, Cm contains the middle bits
1
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of y, and y,, and so on. The actual value of m, indicates which block
code is being used. For L = 2 there are only three block codes that are

of interest to us: CO, which is the (2,2) block code with Hamming

distance d =1 (and code words [0 0)", [0 1], [1 1], and [1 0",

Cl, which is the (2,1) block code with Hamming distance dl = 2 (and

code words [0 0]T and [1 l]T), and C2, which is the (2,0) block code
having only one code word, [0 0]" and Hamming distance d2 = oo,
L-m,

Also, since Cm denotes a block code with 2 ' code words, we

1

can write that the partition level p is the sum of all the mi’s that
produce the subset QF, ie, p = Ziio m. Since there are I = logzM
bits needed for each MPSK point, p can range from 0 to IL (0 to 6 in
this case). A shorthand way of writing which column vectors yi belong

to which block codes is Q(Cm ,Cm ,C
2 M

m). Thus, we can write
0

Q° = Q(CO,CO,CO). Since Co contains all possible length two binary
vectors, then Q° is generated.

To obtain the next partition (at level p=1), we let
Q= Q(CO,CO,CI). This partition satisfies our previous comments on
partitioning. That is, there are only two code words in Cx (reducing
the number of points to 32), and Cl contains the all zero code word. In
partitioning, we also require the property that all the points in Q'
belong to Q° (written ”as Q< Qo). For this example, since Cl c Co.
this property is satisfied. i This can be stated more generally as
Q" <P, for 0<sp<IL-l. Thus, if we have two partition levels p

and p’, and p’ = p+1, then C,rcC_ for0<is<IL

1 1

The partition Q' is equivalent to forcing the Isb’s of Y, and Y,

to be either both zero or both one. By inspection of Figure 2.1 we can



thus see that AT = 20 = 1.172. In fact, we can use a more general

Z
0

expression which gives a lower bound on the MSSD. From [27,61] we have,

W2 . 2 2 2
AP > min (SHde,...,Sldml,SOdmo), 2.D

where dm is the Hamming distance of the code Cm, for 0<ic<Il
i i

From (2.1), we obtain for 2x8PSK,

Ai > min (mmz,zdml,o.sssdmo). (2.2)
For p=0 and 1, we can see that (2.2) is sausfied with equality. In
fact, due to the symmewry of the 8PSK signal set, (2.2) is an equality
for all values of p. It can be seen that in partitioning Q" into Q' and
its coset Q’(l), we could have formed Q(Co’CJ’Co) or Q(CI,CO,CO)
instead of Q(CO,CO,C]). However, both these other partitions have
A? = (0.586, and are therefore not good partitions, since we want Af to
be as large as possible. This is because dim can be lower bounded by
2Af for many trellis codes [65].

Ignoring for the moment how the cosets are ,fo,l,'me’d’ we can
partition Q' into Q* and its coset Q*2), and so on. (The value within
the brackets of the coset will be explained in Section 2.1.3.) Every
time we partition, we want to make Ai as large as possible. To do this

we use the following rule. The Cm that we partition (into Cm+l) from
i i

level p to level p+l should be the i cormresponding to the smallest

S?dm at partition level p. If there are two or more Sfdm that have
i i

the smallest value, we choose the one with the smallest 1.
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Note that once Cm has been partitioned to C2 (or CI_ | in
i

general), then that particular block code cannot be further partitioned

(since it contains only one code word). Table 2.1 illustrates the

3

partitioning of the 2x8PSK signal set. The arrows show which Cm s are

1

being partitioned as p is increased. The values of A; are also shown.

Note that at p =3, we have S?dm =4 for both i=1 and 2. As

1

indicated by the above rule, i = 1 is chosen to be partitioned to form
Q*. Even though Ai = A; = 4, partition level 4 is still useful for
coding since the number of nearest neighbors for Q' is less than for

Q. This will become more apparent when the actual codes are found.

TABLE 2.1
2x8PSK SIGNAL SET PARTITION

Partition QP Minimum squared ( 2) Generator
Level (p) subset distance p ([p)T

0 Q(CO,CO,CO) min(4,2,0.586) = 0.586 [0 1]
v

1 Q(CO,CO,Cl) min(4,2,1.172) = 1.172 [11]
N

2 Q(Co’co’cz) min(4,2,e0) =2.0 [0 2]
¥
3 Q(CO’CI’Cz) min(4,4,) =4.0 [2 2]
¥
4 Q(Co’cz’cz) min(4 ,e0,00) =4.0 [0 4]
¥
5 Q(CI,CZ,CZ) min(8 ,o0,00) =8.0 (4 4]
N2
6 Q(CZ'C2’C2) min(ee,c0,00) = oo -

The above rule usually works quite well. For L = 3, though, some
of the best partitions do not follow this rule. Instead, we can allow a
A12= to be smaller than the rule proposes, in order to obtain a larger

Ai, for some p’ > p, than is possible by following the rule.



2.1.3 Formation of Cosets

Now consider partition level p = 1. We have shown that there are
two subsets, namely Q' and its coset Ql(l). To obtain Q‘(l), we must
look at how coset codes are derived from block codes. Recall that C1 is
the (2,1) block code with Hamming distance d1 = 2. The coset of this
code, Cl(l), is rfcr)r’med 7bry adding modulo-2 a non-zero code word that
belongs to CO, but does not belong to C1 (called the generator 1%, to
all the code words in C,. We illustrate this with an example. C, has
code words [0 0]', [0 1], [1 0", and [1 1]* (remember that these code
words correspond to column vectors of y) and Cl has code words [0 0]T
and [l l]T. Therefore, the generator 1 could equal [0 1]T or [l O]T.
We  arbitrarily  choose  t° = [0 1]V Thus, C(H=C &1 =
{[0 I]T,[l O]T}. (In this chapter the symbol @ will be used to denote
modulo-2 (exclusive-OR) arithmetic and + to denote integer or modulo-M,
M > 2, arithmetic) Note that if ° =[10]", the same coset vectors
would have been found, except that they would have been in a different
order. Also note that the Hamming distance between codewords in Cl(l)
is equal to dl.

We can also write a general expression for the cosets at

partition level p = 1 as
C)=cC & 2.3)

where (’ e (0,1). Thus, when {’ =0, we obumin C(0) = C, and when
{® =1, we obtain the coset of C, C(. In a similar way we can
divide Cl into C2 and its coset C2(2), and Cl(l) into cosets Cz(l) and
| C2(3) | Figure 22 givéﬁ an illusu'atidﬁ of this partition. For the

) . . 1 T
second generator, there is only one choice, ie., T =[11]. The
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general expression for the cosets at partition level p = 2 becomes

cey'+¢) =C, @ ¢t @ O

-] e ¢[J) @.4)
where C2 is the all zero vector and (" € (0,1}, for 0 < m < 1. We also
note that C, < C < C  and that = C_, but that " e C_ . for
0<m< 1.

N
C,0)=C, -

1

C,@)= 1

C0(0)=C0

o]

C.M=|,

C1(1)=C1+{(1)

1

m=0 m=1 m=2
do_l d1=2 d2=°°

Figure2.2: Partitioning of the L = 2 binary vector space.

Since we have shown how the cosets of Cm are formed, we can now
show how the cosets of QP are formed. We start with the simplest case,
the single coset of Q! namely Q'(1). In the same way as the block codes
are partitioned, we must find a 2 x 3 matrix that belongs to Q% but

does not belong to Q. This is called the generator of Q' and is
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labeled t°. Since Crrl is partitioned in going from Q% o Q' this
0

implies  that t® = [0,0,10], where 0 is the all zero vector [0 O]T,
ie.,

00
00

0 _ 0

t bt [ 1 ].
An alternate notation for t° (using the symbol to), is to treat t° as
if it represented two integer values, y and Y, Thus, t° in integer
form is ©° = [0 1]".
0

To form the coset Q'(1), all that is required is to add t

modulo-2 to all the signal points in Q'. We write this as
Q') = Q' @ ", .5

where 2° e {0,1} indicates which of the two subsets is being selected.
We can see that in coset Q'(l), the Isb’s of Y, and y, are either 0 and
1 or 1 and O, respectively. Thus this coset has the same MSSD as Q'
ie., A? = 1.172. Alternately, * can be added modulo-M (modulo-8 in
this case) to the signal points in Q!. With modulo-8 arithmetic, the
Isb’s of Y, and y, are still added modulo-2, but the Isb’s now produce
carries which affect the middle and most significant bits. This is

dchot:’,d as
QY = Q' + 2%° (mod 8). (2.6)

For example, a signal y = [1 3]T (where y = [yl yz]T) in Q' becomes
(12" with modulo-2 addition of t° to y or [l 4]" with modulo-8

addition of ¢ to y. Using either type of arithmetic, we still obtain

I I I LY WOV emm o enm sl

i I\}ill |

&ty

!
il

il




27

the required partition, although the ordering of signal points within
each coset is different. In constructing rotationally invariant trellis
codes, we will find that there is a distinct advantage to using
modulo-M arithmetic over modulo-2 arithmetic.

Continuing with the set partitioning, it should be obvious that
the next generator is t = (1 I]T. From Table 2.1, we see that t'

corresponds to the generator of C v The expression for the cosets of Q?

is

Q07 + %) = QF + z‘[ ] + z°[ ? ] (mod 8), 2.7)

where z € {0,1}, for 0 <i < 1. For npartition level p =3, we choose
¢ = [0 2]T, with 2* € {0,1} used to select &2, Continuing in the same
way, we can partition the signal set untii we obtain only a single
(4-D) signal point. Thus we can form the equation (using the generators

from Table 2.1)

4
¢
[ [ Po [ Pr [P [ ] 2[ Y et w9

where z = L’ 27, with 7 e (0,1), for 0<i<5 and y@) gives the

y(2) = Q%)

integer representations of the two 8PSK signal points. The signal set
mapping given by z can now be directly used by a convolutional encoder.
Since Y, and y, can be described in terms of z, the signal set mapper
can be implemented using simple logic circuits (exclusive-OR circuits
for modulo-2 addition and binary adders for modulo-M addition).

Alternatively, since z can be represented with only six bits, one can
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use a small ROM. Figure 2.3 illustrates two possible signal set mappers
for 2x8PSK. Figure 2.3(a) shows a mapper using modulo-2 arithmetic, and
Figure 2.3(b) shows a mapper using modulo-8 arithmetic.

In general, we can write (2.8) as

yo = | | == % 7Y, 2.9)

Y, i=0
where z = X' 27, with Z e (0,1), for 0<i<IL-1. The addition
in (2.9) is not specified, but may be modulo-2 (using the binary matrix
generators), modulo-M (using the integer generators), or a combination
of modulo-2 and modulo-M. Figure 2.4 illustrates the partitioning of Q°
Cinto @ and its cosets Q42 + 22' + 2°) for the 2x8PSK signal set

using modulo-8 addition.

2.1.4 Partitioning 3xMPSK and 4xMPSK Signal Sets

In a similar fashion to 2x8PSK, to partition Lx8PSK (for L > 2)
requires the partitioning of length L > 2 block codes. We again look
for partitions that have an increasing Hamming distance. For L = 3,

there are two partitions that are interesting.

The first partiion has Hamming distances d0 =1, d: = 2, d; = 2,

and d3 = oo, These Hamming distances correspond to the (3,3), (3,2),

1
v

(3,1), and (3,0) block codes ' Co’ C C;, and C3, respectively, where

Cs c C; C C: c Co‘ Table 2.2(a) gives the three generators, t?, 1::, and

12, that were chosen, along with the Hamming distances (dm) and the

1
number of nearest neighbors (N ) at each partition - level m. The choice
was not completely arbitrary, since one of the generators must be the

all ones vector (which in this case is 1:?). The reason for this will be

8
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Figure 2.3(a): 2x8PSK signal set mapper with
modulo-2 addition.
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Figure 2.3(b): 2x8PSK signal set mapper with -

modulo-8 addition.
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Q'm=0’ <
= Q3+ro-
-0’43

Q'4)
Qo=
93(2)=QB+-}‘
— < B
93(6)=Q3+r;
Qo =a° -
03(1)=Q3+—(1)-
92(1)=Qz+[(1’ < -
93(5)=Q3+rg'
Ql(1)=Ql+[(1) -
: D a’y)=a’+| )
92(3)=QZ+B < .
93(7)=Q3+-l-
p=0 - p=1 ‘ p=2 p=3
Q°=Q(Cy,Co,.Co) Q'=Q(C.Co.C)  Q2=Q(Cy,Co.Cy)  Q=Q(C,.C,.Cy)
A3=0.586 Al=1.172 A3=20 Ad=40

Figure 2.4: A three level 2x8PSK signal set partition.
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TABLE 2.2
BINARY GENERATORS FOR L = 3 AND 4
@UL=3( ) L =3 1D
m\T my\T
m dm Nm (1:1) m dm Nm (1:2)
0 1 31 [11 1] 0 1 3100 1]
1 2 31 [110] 1 1 1 ] [01 1]
2 2 1 1[01 1] 2 3 1 111 1]
(c) L=4
m|d [N (™’
0 1 4 | [0001]
1 2 6 [0011)]
2 2 2 [0101]
3 4 1 [1111)]

explained in Section 2.2.

It is interesting to note that the generator matrix for these
block codes can be formed from the generators. In general, a generator
matrix Gm for an (L,L-m) block code Cm, for 0 £ m € L-1, can be formed
from the generators " to 17, ie, G = (™2 For

example, for the L = 3 block codes given in Table 2.2(a),
. 111 |
G=|110] 6! = [
011

For the other L =3 partition, we have d =1, df= 1, d§=3,

10 1 _
11],(;2_[011].

O

and d, = . These distances comrespond to block codes C, Cf, Ci, and
C3, where C , © Ci c Cf cC . Table 2.2(b) shows the generators for
these codes. Note that ti is the all ones vector in this case. The

advantage of this partiion 1is that d; =3 is larger than d; = 2.



However, df = 1 is less than d: = 2.

The partitions of

are given

where we try to maximize A; at each partition level. In

in Table 2.3.

3x8PSK

that will

be useful

Table 2.3(a) corresponds

fo

for

the

32

rellis coding

first partition

Tables 2.3(b)

and 2.3(c), the second set of block codes are used to increase Ai to

1.757 while Af decreases to 0.586. In Table 2.3(c), Az increases to 6.0

and Ai decreases to 2.0. Note how Az = 6.0 is obtained in Table 2.3(c).

At p =4 we have Aj = min (4.0,2.0,.0) and at the next partition level,

A} = min (4.0,609) = 40. Now C_ is  partiioned to  give
2
Ag = min (8.0,6.0,) = 6.0. In the next level, we partition Cm to
1
obtain A: = 80. In Section 3, the reasons why these Ilatter two
partitions are used will be seen more clearly.
TABLE 2.3(a)
3x8PSK SIGNAL SET PARTITION (I)
Partition p Minimum squared 2 Generatgr
Level (p) Q subset distance (Ap) (tp)?
0 Q(CO,CD,CO) min(4,2,0.586) = 0.586 [111]
¢
1 Q(C,,C,C) | min(4,2,1.172) = 1.172 [110]
¥
2 QC.,C..CH | min(4,2,1.172) =1.172 [011]
0’0" 2
3 Q(C ,C ,C) min(4,2,) =2.0 [2 2 2]
0’03
4 Q(C,,C.,C) | min(4,4,) =4.0 [220]
¢
5 Q(C,CLC.) | min(4,4,) =4.0 [022]
0’y 3
6 Q(C ,C.,C) min(4 ,eo,00) =4.0 [4 4 4]
L0 T3
7 Q(C},C,,C)) | min(8,e0,) =8.0 [4 4 0]
$
8 Q(C!,C.,C.) | min(8,00,00) =8.0 [0 4 4]
02 33
9 Q(C3vC3’C3) min(°°,°°,°°) = o -

®@on e

| NI | u | W |

i



33
TABLE 2.3(b)
3x8PSK SIGNAL SET PARTITION (II)

Partition P Minimum squared 2 Generatgr

Level (p) Q subset distance (a2 (t")?

0 Q(C,,C,C)) | min(4,2,0.586) = 0.586 (00 1]
¥

1 Q(co,co,cf) min(4,2,0.586) = 0.586 [011]
¥

2 Q(CO,CO,Cz) min(4,2,1.757) = 1.757 [111]
A

3 Q(C.,C.,C.) | min(4,2,) =2.0 [222]
0 4’0 3

4 Q(CO,C:,C3) min(4,4,) =4.0 [2 2 0]

J

5 Q(C ,CL,C.) | min(4,4,00) =4.0 [0 2 2]
0 ~L2 3

6 Q(C ,C.,C.) | min(4,c0,0) =4.0 (4 4 4]
~L0 3 3

7 Q(C',C.,C.) | min(8,c0,00) =8.0 [4 4 0]
I R M

8 Q(C!,C.,C.) | min(8,00,00) =8.0 (0 4 4]
02 3T

9 Q(C31C3ac3) min(“)w!w) = o= -

For L = 4 there is only one good way to partition length 4 block
codes. ~ Table 2.2(c) gives a summary of the basic parameters.” Using
Table 2.2(c), we can partition the 4x8PSK signal set as shown in Table
24.

For Lx4PSK and Lx16PSK we obtain from (1) that,

A§ 2 min (4d_,2d ), (2.10a)
1 ]

A: 2 min (4d_,2d 0.586d_,0.152d ), (2.10b)
3 2 1 0

respectively, where p = ZL:) m, I=2 for (210a) and I=4 for

(2.10b)). In a similar fashion to Lx8PSK, the signal set partitions can

be obtained for L = 2 to 4. Tables 2.5, 2.6, and 2.7 give a summary of

the partitions for Lx4PSK, Lx8PSK, and Lx16PSK, respectively.
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7 " TABLE 2.3(c)
3x8PSK SIGNAL SET PARTITION (IIT)

Partition P Minimum squared 2 Ge'ﬁeﬁréﬂt'r
Level (p) Q subset distance (a2) (t")‘P
0 Q(C,,C,.C)) | min(4,2,0.586) = 0.586 (00 1]
3
1 Q(co,co,cj) min(4,2,0.586) = 0.586 [01 1]
NP
2 Q(co,co,ci) min(4,2,1.757) = 1.757 (111]
4
3 Q(C,,C,,C,) | min(4,2,) =2.0 [0 0 2]
0073
4 Q(C ,C3LC) | min(4,2,) =2.0 [022]
AT
5 Q(C.,C:C) | min(4,6,) =4.0 [4 4 4]
L0723
6 Q(Ci,Cz,CS) min(8, 6 ) =6.0 [222]
S
7 Q(C:,CS,CB) min(8,ec,o0) =8.0 [4 4 0]
4
8 Q(C;,CB,C ) | min(8,ee,00) =8.0 [0 4 4]
3 3
9 Q(C3,C3,C3) min(oo,oo,oc) = oo -

2.1.5 Larger Dimensional MPSK Signal Sets and the Squaring

Construction |
One way to obtain larger dimensional MPSK signal sets is to take
an LxMPSK signal set partition (with its corresponding MSSD’s relabeled
as 8?, for 0<i<IL) and form a 2LL’° dimensional MPSK signal set
which we label as L'’XLxMPSK. Thus if we have a 2x8PSK signal set, the
MSSD’s Az, 0 £p < 6L, for L’xéxSi’SK are given by

A% > min (84 ,4d ,4d ,2d ,1.172d ,0.586d ), 2.11)
p ms m4 m3 m2 ml m0

where the dm‘s are the Hamming distances of (L’,L’-rni) block codes. If

1

L’ =2 we can form the 2x2x8PSK signal set, which is equivalent to the

i mn el ;e @ e
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4x8PSK SIGNAL SET PARTITION

TABLE 2.4

Partition P Minimum s quared 2 Generatgor
Level (p) Q subset di stance (Ap) (t")‘B
0 Q(C,,.C,.C) | min(4,2,0.58) = 0.58 [000 1]
1 Q(Co'co’é{) min(4,2,1.172) = 1.172| [001 1]
2 Q(Co,Co,éz) min(4,2,1.172) = 1.172]  [010 1]
3 Q(co,co,ég) min(4,2,2.343) = 2.0 [000 2]
4 Q(co,él,cs) min(4,4,2.343) =2.343|  [1111]
5 Q(co,cl,é4) min(4,4 ) =4.0 [0022]
6 Q(co,éz,c4) min(4,4 , o) =4.0 [0202]
7 Q(Co,éB,C4) min(4,8 , o) =4.0 (000 4]
8 Q(él,cs,c4) min(8,8 , ) =8.0 [2222]
9 Q(Cl,é“,C“) min(8 e, %) =8.0 [00 4 4]
10 Q(éz,C4,C4) min(8 ,ce, 00 ) =8.0 [0 40 4]
11 Q(é3,C4,C4) min(16,,0) =16.0 (444 4]
12 Q(é4,C4,C4) min(ee, o0, o0) = o ;
TABLE 2.5
SUMMARY OF Lx4PSK PARTITIONS
L=2 | L=3(I)| L=3 (AD|L=3 (ID| L =4
Partitionf , |gen , |gen. , |8en- , |&en. , |gen.
Level ()] %5 | (5] 25 |(e?F] 25 |(e®F] 25 [ePF] 26 | (tFF
0 2 1ot 21l 21oo1] 21| o01] 2 {ooot
1 4| 1| 4| 10| 2o 2/|o11] 4 |oo11
2 4 1021 4lon]| 42201 4| o002 4 o101
3 8 | 221 4 |2221 6| 111] 4| 022] 4 |0002
4 1S 8 {2200 8| 2200 6 111] 8 |1111
5 - -1 8 |o22 8oz 12222 8 0022
6 oo S - S 8 o202
7 I R N P I N S P D7)
p, p,| 1 3] o 3| 3 2] 4 s| 4 7

35
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TABLE 2.6 =
-
SUMMARY OF Lx8PSK PARTITIONS

L=2 | L=3(I)| L=3 (ID| L=3 (IID] L =4 -
Partition gen. gen. gen. gen. gen. =
2 2 2 2 2 =
Level (p) AP (73 Ap €13) Ap (t?J Ap (t?J A, (t?] o
0 |0.586| 01 |0.586] 11110.586| 001]0.586( 001} 0.586|0001 =
1 1.172| 11 |1.172] 110{0.586| O110. 586 011} 1.172|0011 -

2 2 02 §1.172] 011§1.757| 111)1.757| 111} 1.172{0101
3 |4 22 12 22242 22212 002§ 2 0002 =
4 |4 04 |14 22044 22092 022} 2.343|1111 =

5 8 44 |4 022}4 022)4 444 4 0022

6 - - |4 4444 44416 222| 4 0202
7 - - 18 44018 440|8 440| 4 0004 -]

8 - - 18 0448 0448 044} 8 2222

9 - - - - - - - -1 8 0044
10 - - - - - - - - |8 0404 =
11 - -1 - - - - - - 16 4444 =
P, P, P, 1 3 5] 0 36 2 36 2 6 5 4 8 11 =
4x8PSK signal set. Table 2.8 illustrates this partitioning. Note that =]
-

the MSSD’s obtained are exactly the same as those found with the 4x8PSK
partitioning given in Table 2.4. Figure 2.5 shows a block diagram of a
signal set mapper for the partiion of 2x2x8PSK. The function T B
correspbnds to the 'ma;;)pinrg given by the gcnérators in Table 2.8 and T, o
to the generators in Table 2.4. —
L _J
z'l 9 T2 ‘—;'—YI i
L2007 ' 32

! z; 6 T, —-;’YZi -
’ = -
Figure 2.5: Block diagram of 2x2x8PSK signal set mapper. ;
For L’ = 2, the above method of obtaining larger dimensional MPSK ;
is essentially equivalent to the squaring or two-construction described —
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TABLE 2.7
SUMMARY OF Lx16PSK PARTITIONS

L=2 L=3 (I) | L=3 (II)|] L=3 (III)] L =4
Partition , |8en. , |&en. , |8en. , |&en. , |gen.
Level ] %5 [(f] 25 |(?F] 25 [2®F] %5 [?3] 45 (7]
0 10.152] o1 fo.152| 111}0.152| 00140. 152] 001} 0.152 0001
1 10.304| 11 [0.304| 110§0.152| 011}0. 152| 011} 0.304|0011
2 l0.586| 02 {0.304| 011]0.457| 111{0.457| 111} 0.304|0101
3 [1.172] 22 ]0.586] 222]0.586{ 222[0.586| 002| 0.586|0002
4 |2 04 11.172| 22001.172] 220}0. 586| 022] 0.609|1111
5 |4 44 [1.172] 02201.172] 022{1.757| 222] 1.172]0022
6 |4 08 |2 444{2 444{2 444} 1.172(0202
7 18 88 |4 4404 44014 440} 2 0004
8 - - |4 04414 044 |4 044] 2.343|2222
9 - - |a 8884 8884 888| 4 0044
10 ; - I8 880(8 880|8 880| 4 0404
11 - -8 0888 0888 088} 4 0008
12 - - - - - - - 18 4444
13 - - - -1 - - ; - |8 0088
14 - -1 - - - . - - 18 0808
15 ; - - - . - - 16 8888
PP PP, 1357] 0369 2369 2569481215

by Forney [23]. The cubing or three-construction corresponds to L' = 3.
One can continue squaring or cubing various multi-D signal sets in an
iterative fashion to obtain many larger dimensional signal sets. If we
desire an LxMPSK signal set, all that is required is to factor L to
determine which constructions are needed. For example, if L = 24, we
could factor this into a 2x2x2x3x8PSK signal set. If L is a prime
number, then the appropriate length L block codes and their
corresponding generators must be found.

Table 2.9 gives the generators for L =5 and 7. Also given are
the Hamming distances and the number of nearest neighbors for each
length L block code. Note that there are three different partitions for

L =5 and four different partiions for L = 7. This seems to suggest
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7 TABLE 2.8
2x2x8PSK SIGNAL SET PARTITION

' : =
ojacc,,C,.C,.C,.C,.C)|min(8,4,4,2,1.172,0.586)= 0.58| [0 1]
1Q(C,,C,.C,.C,.C,.E ) min(8,4,4,2,1.172,1.172)= 1.172 [1 1]
2 Q(Co,co,co,co,co,éz) min(8,4,4,2,1.1720) =1.172| [0 2]
3|(c,,C,.C,.C..C|min(8,4,4,2,2.343,) =2.0 | [0 4
4lQ(c,C,C L .C.C min(8,4,4,4,2.343,0) =2.343| [2 2]
s|ec,.C.C,.C L .C)Hlmin(8,4, 4,4, 0, ) =4.0 | [4 4
6/Q(C,.C,,C.&.C.C)|min(8, 4, 4,0, 00, ) =4.0 | [0 8
7|Q(C,,C & .C..C,.C)|min(8,4, 8,00, e, ) =4.0 | [0 16]
8|@(C,,& .C.C,C.C)|min(8,8, 8. o, 0, 0) =8.0 | [8 8]
9|a(C,,C & ,C.C..C)Imin(8,8 , e, o0, o, o) =8.0 |[16 16]
0jQ(C,.&,,C,.C..C,.C)|min(8 ,e0, o0, o0, o, ) -8.0 | [032]
tj@,,C,.C,.C..C,.C)|min(16, 5, %, 0,0, ) =16.0 |[32 32]
2|ad,,C,,C,.C..C,.C,)|min(e,c, w0, 00, 0, ) = o :

that the number of wuseful partitions increases by one for each
successive prime number. Thus, L = 11 is expected to have five useful
partitions, and so on. These partitions were constructed by hand and
probably represent the practical limit of hand constructions. For
L = 11 and above, an algorithmic or mathematical method is required. In
forming each partition, we have tried to maximize the Hamming distance
and minimize the number of nearest neighbors. For example, the type IV
partition maximizes the Hamming distance and minimizes the number of
nearest neighbors for the (7,4) block code while the type III partition
maximizes the Hamming distance and minimizes the number of nearest
neighbors for the (7,3) and (7,2) block codes.

For larger dimensions, these methods may produce block codes

M

|l

&l

ol a1 4«
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TABLE 2.9
BINARY GENERATORS FOR L = 5 AND 7

L =5 (I) L= 5 (I L = 5§ (II)
m
m\T m\T m,T
dm Nm (11) dm Nm (12) dm Nm (13)

of 1 5 [[11111]) 1 5 |[11111]) 1 5 {{00001]

1{2 {10 [[00O11]} 1 2 [[o0001]) 1 1 {[00010]

2¢ 2 | 4 ({[00101]) 2 2 ([00110]F 2 3 {[00101]

3] 2 1 |[11000]}f 3 2 |[10101]} 2 1 {{01001]

41 4 1 [[01111]fF 4 1 |[01111]f S 1 |[11111]

L =7 (I) L =7 (II) L =7 (III) L =7 (IV)
m

d [N | @D |d [N | (D" jd N (' jd IN | )]

of 1| 7([111111y) 1| 7{[11111113§ 1| 7|[00000011§ 1| 7|[0000001]
1] 2{21|[0000011]] 1| 2{[0000001]] 1| 1}{[0001000]} 1| 3|[0001000]
21 2] 9{[0001001]} 2| 5|[0000101]} 2| 6([1111111]} 1| 1{[1000000]
3§ 2| 3{[oo100101} 2| 1|[0100010]] 2| 2|[0000101]} 3| 7{[0110100]
4| 2| 1|[ooo1100}} 3| 3|[0011100]§ 3| 2{[0101010]§ 3| 3|[0011010Q]
s 4] 2([11110001] 4| 2|[0001111]] 4| 1]|[1100011]} 3| 1|[0001101]
61 6/ 1|[[0111111]) 6| 1|[1110111]) 5| 1|[0O11111]} 7| 1|[1111111]
which do not have the largest possible minimum distance. For example,

the largest Hamming distance that can be obtained for the (24,12) coset

code is six. However, the (24,12) Golay code has a Hamming distance of

eight.

Thus, we

For L =2,

are fairly certain

3,

and 4, the block codes

signal sets have been found.

This

that

the best

partitions

for

2.2 Trellis Coded Multi-D MPSK Design

section

describes

how

convolutional

codes

are relatively

simple.

these LxMPSK

are

constructed

for the LxMPSK signal sets described previously. We first show how to
good phase

construct

signal

sets

which

have

rotation

properties.
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Following this, a method used to find good convolutional codes based on

parity check equations 1is presented.

2.2.1 Construction of Signal Sets

Equation (2.9) can be used to describe a signal point in an
LxMPSK signal set. The- number of bits 7 needed to describe each signal
point is IL. If the 1Isb is wused for coding, we can form a rate
(IL-1)/IL. code. A more convenient measure of rate is to use the average
number of information bits transmitted per 2-D symbol. This is called
the bandwidth efficiency of the code, K = (IL-1)/L (bit/sym). The unit
biYs/Hz can also be wused, but this assumes that perfect Nyquist
fillering is wused in the receive and transmit filters. Since this s
not the case in many practical systems, we make a distinction between
the units bit/sym and bit/s/Hz. -

Other rates can be achieved by setting the q Isb’s of the mapping
to 0. We do this to insure that the MSSD’s are as large as possible, so
that the best codes can be found. In this case (2.9) can be rewritten

as

L ! .
@)= | =X 2%, (2.12)

for 0<sz<2™"1, 0<q<L1, and where y%z) represents a point
z in an LxMPSK signal set such that the first q bits of (2.9) are 0. As
before, we do not restrict the type of addition that is used. We now

let z = [Z9!

,...,zl,zo], where z is the Dbinary representation of gz,
and the Isb of z is always the coding bit. This notation insures that

the parity check equations of a convolutional code can always be

o o a gl ann e

aliy W em s

g
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expressed in terms of the Isb’s of z without depending on the type of
signal set used or its partitioning. From (2.12), codes with
K = (IL-q-1)/L can be formed. An upper limit of q = L-1 is set because

for q 2L the signal set is partitioned such that dm = oo, 1., an
0

M/2-PSK, for j 21, signal set is being used (one exception is the

4x8PSK signal set (Table 2.4) where dm =4 for q =L). The MSSD’s
0

range from Az to AfL and the uncoded minimum squared Euclidean distance
(MSED) is Azﬂ’ since uncoded transmission uses only half as many

signals as coded transmission.

Example 2.1
We can form a rate 4/5 code with a K of 2.0 bit/sym from a 2x8PSK
(L = 2, I = 3) signal set with q = 1. Then

y’(2)=z“[i] +z3[2] +22[%]+zl[g] +z°[%](mod8).

The uncoded MSED is Ai = 2.0, which is the same as uncoded 4PSK.

2.2.2 Effect of a 360°/M Phase Rotation on a Multi-D MPSK

Signal Set
Using modulo-M arithmetic in (2.12), multi-D signal sets can be

constructed such that there are at most I bits in z affected by a
signal set rotation of ¥ = 360°’M. For 4PSK, 8PSK, and 16PSK, this
corresponds to rotadons of 90°, 45°, and 22.5°, respectively.
Initially, we consider all possible mapped bits, ie., q = 0.

Consider that a I1xMPSK signal set has been rotated by ‘¥. Since we

are using natural mapping, the integer representation of the rotated
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signal point is y =y+1 (mod M), where y is the integer
representation of the signal point before rotation. If y is in binary

notation, then

Y=y ®1=y, (2.13a)
y: = yl @ yo, (2.13b)
y =y &y'y, (2.13¢)

If there are I = log2 M bits in a signal set, then we see from (2.13)
that all T bits are affected by a phase rotation of ‘¥
Consider the 2x8PSK signal set, with the mapping given by (2.8).

The phase rotation equations of this mapping can be determined as
follows. From (2.8), the signal outputs can be written in terms of z as

il s 3, 1,1 4 2, o0

y = 427+ 227+ ) 1 + (4z'+ 22°+ z) 1 (mod 8). (2.14)

2
After a 45° phase rotation we have ij = yj + 1 (mod 8), for j = 1,2

From (2.14), we can form the following phase rotation equations,

y“ ] = 42+ 22+ 7'+ 1)[ i ] + (4z'+ 2%+ zo)[ ? ] (mod 8).
2r

Note that ahl 1s added tor thc”t'errr'x whose coset is [l I]T. Hence this
 term “absorbs” the effect of the phase f;)tétio;l, leaving the remaining

term unaffected. As can be seen, bits zs, zs, and z' are affected in a

manner similar to y2, y', and yo in (2.13), and bits z4, Mzz, and z° are
unaffected by the phase rotation. Thus, we can form the phase rotation

equations

s wmi oW 0

i
i
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.

0
=2, A

2 4
=2z, zZ =2z,

(2.15)

- = O
o W oW
L Y I |

1 3 1 S 1.3
=z @1, z =2 Bz, 2z z D z-7.

If the signal set had been constructed using modulo-2 addition (instead
of modulo-8), only 2’ would have remained unchanged by a 45° phase
rotation.

Using general notation, we can express (2.14) as

Y‘ L P P P 1
| = Mz et 22+ 29 o+
YL 1
+ ZI'l{g“} - 2{g[} + {go} (mod M), (2.16)

where P, for 0 <j <I-1, corresponds to those partition levels where
t* equals the vector [2j,2j,...,2j]T. The term g for 0<j<I1,
corresponds to those remaining terms that have at least one (but not
all) component in t* with value 2. For (2.14) we would have p, = L,
P, = 3, and p, = 5. These values of p, are given for all the signal set
partitions shown in Tables 2.5-2.7. We can now write the phase rotation

equations as
0.2 1. (2.17)

and for all other partition levels, z‘: = Z°,

For L = 2, there is only one term in each g However, for L 2 3,
there are two or more terms in each g Since the terms in g do not
contribute to the phase rotational properties of the signal mapping,

these terms can be added modulo-2 before being added modulo-M to the



other terms. This is best illustrated with an example. For the

(I) signal set in Table 2.3(a), we have the following mapping equation:

Yy 0 4 4 0 2]
y, =24 + Z|4| + Bl4| + £|2| + 2] +
4 0 4 2] 0
y3 . S b S
v o 1] 1T
+ 22| + 2)1] + 21| + 21
2] 1] 0, 1
1 0 1
= @2%+ 227+ D)|1| + 41| @ Z|1|} +
1 1 0
S 0 WJ] ) 0 1 1
+ 24z |1| &z 1|y + {z°|1| & z|1]} (mod 8)
1 0 1 0
7 4 1

1 8 5 2

44

3x8PSK

1 z z z
= (4z6+ 22+ zo)[ 1 ] + 4|2 7| + 2|70 2| + | 2 (mod 8).

YA Zz YA

The reason for this combination of modulo-2 and modulo-M arithmetic is

that it reduces the -number of logic circuits required in a signal set

mapper. For small IL, it may be simpler to use ROM’s for signal set

mapping, but for 'lafrrgre IL this dual addition becomes preferable. Figure

2.6 gives a block diagram of the three 3x8PSK signal set mappers and

Figure 2.7 illustrates the mapper for 4x8PSK. This combination of

modulo-2 and modulo-M additon has no effect on the MSSD’s (at least

for L £4). In a similar manner, we can also obtain the signal set

mappers for Lx4PSK and Lx16PSK.

Due to the phase rotational properties and simplified hardware

that the combined modulo-2 and modulo-M mapping allows, these are the

signal sets that are wused to find all the trellis codes

chapter.
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Figure 2.6(a): 3x8PSK signal set mapper (I).
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Figure 2.6(b): 3x8PSK signal set mapper (II).
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Figure 2.6(c): 3x8PSK signal set mapper (III).

We have shown that for q = 0, the bits that are affected by a
phase rotation of ¥ are zpj, for 0 <j<I1 For q >0 the bits that
are affected are zpjﬂ, for 0 <j <I-1. However, depending on the
signal set, P-4 fdr sbme j may be less than =zero. If this is true,
the minimum phase transparency is Zd‘i’, where d” is the number of terms
P g that are less than zero, and the number of bits that are affected
by a 2d‘i’ phase rotation is s" =1 - d. For example, the 3x8PSK signal
set in Table 2.3(a) has p =0, p, =3, and p, = 6. Thus if q =1, then
P, 4 = -1, which is less than zero, implying that d =1, and thus
only s’ =1-d =2 bits are affected by a 2¥ = 90° phase rotation. (A
phase rotation of W = 45° of this signal set produces its coset.)

Fortunately, for the codes and signal sets considered in this

chapter, the above complication does not occur. This is partly due to

the fact that for many signal sets with q = 0, the first L-1 Isb’s are
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not affected by a phase rotation of ¥. Since we consider only signal
sets with 0 <q<L-l, d =0 in these cases. For those signal sets
where this is not true (e.g., in some 3xMPSK signal sets), it has been
found that the convolutional codes produced are inferior (in either
df“=c or number of nearest neighbors) to an alternative signal set with
d” = 0.

When a signal set is combined with a convolutional encoder we
must consider the effect of rotating coded sequences. A similar result
to above is obtained so that, depending on the code and the signal set,
the signalv set can be rotated in multibles of 2% and sill produce
valid code sequences (where d defines the degree of transparency). The
actual determination of d is described in Section 2.2.4. The number of
bits that are affected by a 24y phase rotation is s = I - d.

For 0 £ q £ L-1, the actal bits that are affected by a phase

b

rotation of ¥ are z’, where bj =P Q for 0<j<I-1l. More

generally, the bits that are affected by a phase rotation of 2°¥ are

c.

z’, where ¢ = Py @ for 0 <j <s-1. These two separate notations
i ]

(bj and Cj) are used because the determination of d depends on bj, as
will be shown in Section 2.2.4.

2.2.3 The General Encoder System

From the above information we can now construct a suitable
encoder system, as illustrated in Figure 2.8. The general encoder
system consists of five sections. These sections are the differential
encoder (or precoder), the binary convolutional encoder, the multi-D
signal set mapper, the parallel to serial converter, and the 2-D signal

set mapper.
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The precoder codes only those bits which are affected by a phase

rotation. The input bits into the encoder which are precoded are

< c [
denoted w® w' .., w'l If c, =0, we replace w® (which does not

exist) by 2°, as shown in Figure 2.8 by the dashed line (a different
precoder must then be used). For example, an encoder for a rate 8/9
code which uses the 3x8PSK (I) signal set given in Table 2.3(a) may
(depending on the phase transparency) need this modification. This is
because this signal set has b0 = (0, and thus if the code has d =0,
then z° will need to be precoded.

The muli-D signal set mapper can be implemented as described in
Section 2.2.2. We must insure that the correct labels are used to map
the signal set if q is greater than zero. All the labels in Figures
2.4, 2.7, and 2.8 assume that q = 0.

The second to last section of the encoder is the parallel to
serial converter, which takes the L groups of I bits and forms a stream
with I bits in each group. That is, we assume that the channel is
limited to transmitting one 2-D signal point at a time. Finally, the
2-D signal set mapper takes the I bits for each 2-D signal point and
produces the required real and imaginary (or amplitude and phase)
components for a modulator.

At this point, we summarize the notation and indicate the limits

on the parameters used in the search for good codes. For a rate

(IL-g-1)/(IL-q) code,

I = no. of bits in each 2-D signal (2 < I < 4),
M = 2! = no. of signal points in each 2-D signal set,

L = no. of 2-D signal sets (1 S L < 4),

(.
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p = partition level of signal set (0 < p < IL),

q = the partition level p where mapping begins (0 < q < L-1),
z = signal set mapping parameter (0 < z < 2°%-1),

k = [L-q-1 = no. of input bits to encoder,

k = no. of bits checked by encoder (1 < k < k),

¥ = 360°/M = minimum phase transparency with q = 0,

P,
P, = the bits z’ affected by a ¥ phase rotation with q = 0,
d = degree of phase transparency %, for 0 < d < 1),

s = I-d = no. of bits in z affected by a 2°¥ phase rotation,

c

¢ =P,9= the bits z’ affected by a 2%y phase rotation.

The following two sections describe the precoder and encoder design in

more detail.

2.2.4 Differential Encoding and Decoding

Let the bit streams thrat‘ are differentially encoded be w o(D),
w!D) ,., w'(D), where D is the delay operator. We first assume
that c, > 0 (i.e., the convolutional encoder output zO(D) is not

affected by a phase rotation of 2%%, where d = I-s). Let

s -1 . c,
wD) = ¥ 2'w'(D). (2.18)
i=0

The precoder outputs are the bit streams x ’(D), x ‘o) ...,
x *\(D) which go into the convolutional encoder. Similar to (2.18), we

let

s-1 ¢
x(D) = .Z 2'x '(D). (2.19)

i=0
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For the noiseless channel, we let the Viterbi decoder output
which goes into the differential decoder (or postdecoder) be xr(D), and
the output from the postdecodér be wr(D). After a 2% phase rotation,

we have from Section 2.2.2 that

x(D) = x(D) + 1I(D) (mod S), (2.20)

where S = 2' and 1(D) is the all ones sequence. For the postdecoder, we
desire that wr(D) = w(D) for all multiples of 2%y phase rotations. This

is achieved by defining the postdecoder equation as

wr(D) = ((S-1)D + 1)xr(D) (mod S). (2.21)

Substituting (2.20) into (2.21) we obtain

w (D) = ((S-DD + D(x(D) + 1(D)) (mod S)
= ((S-1)D + Dx(D) + ((S-1)D + DI(D) (mod S)
= w(D) + (S-)I(D) + (D) (mod S)
= w(D) + (H1D) - , (mod §)
= w(D),

as required. thice that since 1(D) is defined to be 1 for all time,
then D'I(D) = 1(D) for ;all i. In bfactical situations, the sequence
added to x(D) to form xr(D) is not constant, and will change with time
(e.g., random phase slips within a demodulator). This will introduce
short error bursts in wr(D) whenever a phase slip occurs due to the
combined effect of decoding and postdecoding. The precoder equation can
be derived from (2.21) as |

x(D) = Dx(D) + w(D) (mod S). (2.22)

ai ul | WikE & .
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We shall now consider the case when C, = 0, ie., z°(D) is

affected by a 2°¥ phase rotation. In this case we redefine w(D) to be

WD) = 3 2'wiD), (2.23)

i=1

and x(D) to be
s -1 .. €
xD) = ¥ 2"'x (D). (2.24)
i=1
For this «case, we have 2xr(D) + zS(D) = 2x(D) + zo(D) + 1(D),
where xr(D) and z(:(D) are the inputs to the postdecoder for a noiseless
channel. Thus, similar to (2.21), the postdecoder equation is defined

to be

2wr(D) = ((S-1)D + 1)(2xr(D) + z?(D)) (mod S). (2.25)

Rearranging (2.25), we obtain the precoder equation

2x(D) = 2Dx(D) + 2w(D) + D + S-1)2°(D) (mod S). (2.26)

Figure 2.9 illustrates the two types of precoders. Note that the
storage elements have a delay of LT. Figure 2.9(a) illustrates the

precoder with ¢ > 0, where there are s inputs that are precoded. The

0
basic component of the precoder is the modulo-2’ adder. For most codes
this is the precoder to be used. For the bits that are not precoded,
X =w, forie= c,

Figure 2.9(b) shows the other case, where Cy = 0 and s-1 input
bits are precoded (the other precoded bit is z°). The adder circuit for

this case is different from Figure 2.9(a).
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2.2.5 Convolutional Encoder

The convolutional encoder is assumed to be in feedback systematic
form, as in [65]. That is, zj(D) = xj(D) for 1 £j <k where D is the
delay operator and polynomial notation is used. The parity sequence,
2(D), will be some function of itself and the x(D), for 1 <j <k
The Parity Check Equatdon (PCE) of an encoder describes the
relationship in time of the encoded bit streams. It is a very useful
and efficient means of describing high rate convolutional codes, since
it represents the input/output encoder relationships in a  single

equation. For an R = k/(k+1) code, the parity check equation is
H'D)ZD) & H'(D)ZD) & (D)D) = 0D), (2.27)

where kK, 1 <k <k, is the number of input sequences that are checked
by the encoder, H(D), for 0 <j <k, is the parity check polynomial of
zi(D), and O(D) is the all zero sequence.

___There are two types of systematic convolutional encoders that can
be constructed. Before proceeding with the description of these
encoders, we return to the parity check equation given in (2.27). As in
[65), we define the constraint length v 1o be the maximum degree of all
the parity check polynomials H(D), for 0<j<k For k<j<k,
H(D) = 0, since the bits corresponding to these polynomials are not

checked by the encoder. The parity check polynomials are of the form

HD) =0 ®h) D' ®-@hD® N, 15j<k (2.282)
H'D) = D" ® h) D' &-® h'D & 1. (2.28b)

If K<v, we let hi =0, for 1 <j<K This insures that the squared
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Euclidean distance (SED) between paths in a trellis leaving or entering
a state is at least A:H. Thus all codes in this class have a MSED
between all possible non-parallel coded sequences of at least ZAzH'
The parallel transitions provide an upper bound on the dfmc of a code.
A theoretical justification for constructing codes in this manner can
be found in [60] where it is shown, using random coding arguments, that
these codes have a large free MSED on the average.

A minimal systematic encoder can be implemented from (2.28),

since hg = 1 [65]. The encoding equations are

ZD) = ¥D), 1 €£j <k (2.29a)
(D) = HXD)x (D) ®--® H'(D)x'(D) ® (H'D) & 1)2°D). (2.29b)

An encoder implementation using (2.29) is shown in Figure 2.10.
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For all codes with v = 1 and for some codes with v > 1, k = v.
For these codes we cannot restrict hg, for 1 <j<k This is because k
checked bits require at least k terms in H(D), for 1 <j <K, that are
variable. If there are not enough variables, then there will be some
non-zero xi = [x,..x’x'] such that Zjil HD)x =0 (mod 2). That
is, there will be more than 2"'E parallel transitions between states in
the trellis. To avoid this problem, when k =v, we use (2.28) without
any restrictons. In this case, the MSED between all possible
non-parallel coded sequences is at least qu + Azﬂ, since the MSED
between paths leaving a state is Ai (since hg e {0,1}, for 1 €j<Kk
and between paths entering a state s A:” (since hi, =0, for
1 <j<k.

An algorithm in [57] allows the conversion of the systematic form
of the encoder to a non-systematic form. There are usually a number of
non-systematic encoders to choose from which give the same PCE as the
systematic encoder. The encoder selected should have the same effect on
a phase rotation as the systematic encoder, in order to be compauble

with the precoder.

Examglc 2.2

In this example, we describe how to implement a particular code.
The code is used with a 3x8PSK signal set. Thus L =3 and I = 3. We
also choose q =1, so that a 233 bit/sym (rate 7/8) code is formed.
The partition that is used is given in Table 2.3(b), from which we
obtain p =2, p =3, and p, = 6. The code is 90° transparent, so that
d=1 and s = 2. Therefore c0=pl-q=2, and c1=p2-q=5. Thus

bits w* and w° are precoded using a modulo-4 adder. Since ¢ > 0, the
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precoder given in Figure 2.9(a) is used. For this code, k = 2 and the
parity check polynomials are HD) =D*® D’ ® D & 1, H'(D) = D, and
HD) = D’ @V D% Excluding ther pafallcl to serial converter and the 2-D
signal mapper, the encoder is shown in Figure 2.11. This code has 16
states (v = 4). Note that the multi-D signal set mapper does not

correspond exactly to Figure 2.6(b), since q = 1.

2.2.6 Convolutional Encoder Effects on Transparency

- The convolutional encoder can affect the total transparency of
the system. The method used to determine transparency is to examine the
parity check equation and the bits that are affected by a phase
rotation. A code is transparent if its parity check equation, after
substituting zj(D) with zi(D), for 0<js<k (the rotated sequences),
remains the same. There are normally at most I bits that are affected

b b

by a phase rotation, z%.z2", bj =P Q for 0 <j<I1  That

is,

b0 bD

Zr =z @1, (2.30a)
bl bl bO

z =z &z, (2.30b)
b b b b

2z =z'® 2%, (2.30c)

Assume that the largest value of bj <K is b, This implies that only
one term in the parity check equation is affected by a phase rotation.
The other bits have no effect since they are not checked by the
encoder, i.e., bj >k for 1 <j<I-1. The parity check equation after

a phase rotation of W then becomes
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-~ -~ b b
H(D)z*(D) & H D)z *(D) & 1(D)] &--& HAD)Z(D) = (D),
- - b b b
H'(D)z(D) ®--® H °(D)z (D) &--® H'(D)Z(D) = E[H D)D),  (2.31)

b b
where E[H O(D)] is the modulo-2 number of non-zero terms in H 0(D) and

1(:)) = Zj:’m D is the al one sequence  (i.e., E[ﬁlbO(D)](D) =
HO(D)I(D)). Thus if there is an even number of terms in H 0(D), (2.31)
is the same as (2.27). That 1is, the code is transparent to integer
multiples of ‘¥ phase rotations of the signal set. However, if there is
an odd number of terms in HbO(D), then E[HbO(D)] =1 and the coset of
the convolutional code is produced. Even though the two equations are
closely related, the codes are quite different and a decoder is not
able to produce cormrectly decoded data from a ¥ phase rotation of the
Vsignal set.

Now assume that zthc first two terms are affected by a phase
rotation, i.e., the largest value of bj <k is b. The terms in the

1
b b b b
parity check polynomial H O(D)z 0(D) & H l(D)z l(D) now become

b b b b b b
[H°D) ® H D))z D) ® H '(D)z (D) & E[H %D)I(D).

in this case the paﬁty check equation is different after a phase
rotation (even if E[Hbo(D)] = (). This means that the code is not
transparent to a ‘¥ phase rotation, but it could be transparent to 2¥ or
4¥ phase rotations. This is because the phase rotation equations reduce

to
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for a 2°¥ phase rotation, where d = 1 or 2. If there is an even number

b

of terms in H '(D), then d = 1. This is because an even number of terms
b b

in H 1(D) cancels the effect on =z l(D) when the signal set is rotated

by 2¥. That is, the code is transparent to integer multiples of 2%

phase rotatons, but not to multples of W. If there is an odd number
b

of terms in H '(D), this cancellation effect does not occur, implying

that d = 2 and the phase transparency is 4¥.

~

In general, if the largest wvalue of bj <k is bf, then

b .
d =f+ E[H r(D)]. We can then determine those bits z’ which are

affected by a 2¢  phase rotation, i.e., c = bj+d =P @ for

0 £j < s-1, where s = I-d.

Example 2.3
For the code given in Example 2.2, k =2, I =3, and q = 1. Thus

b0=1, b1=2, and b2

then f = 1. Therefore d

5. Since the largest value of bj <2 is b

L]

b
1 +EH'D)] =1+ED ®D =1 Thus the

i

code is 90° transparent, and ¢, = 2and ¢ = 5.

2.2.7 Systematic Search for Good Small Constraint Length Codes

An approximate lower bound for the symbol error probability [65]

of a multi-D code is givcxi by

N, di KE,
Pe) > re Q , (2.32)
L

2 N,

where Eb/NO is the energy per information bit to single sided noise

density ratio and Q() is the complementary error function. In (2.32),
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the division by L normalizes the average number of errors per multi-D
signal to that of a 2-D signal set.

For each multi-D signal set considered, there are a number of
code rates which can be achieved. As v is increased, a comprehensive
éode searcﬁ Vt;écorrvles time consumingr Vdue to the greater complexity of
each code. We have thus limited our search to v + k < 10. (The number
of checked bits k also affects the complexity of the code search.) As
indicated by (2.32), the criteria used to find the best codes are the
free MSED (dim) and the number of nearest neighbors (me). We have
also included the «code transparency (d) as a criteria in the code
serach. The code search algorithm that was implemented is similar to
that in [65], but with a number of differences which include the extra
criteria mentioned above.

The actual code search involves using a rate k/(k+1) code. Thus
two separate notations are used to distinguish the rate k/(k+1) encoder
andwwt}lem 7si§np1iﬁicdd rate F{(Efl), gncoder. For the rate k/(k+1)wre_ncqf:1¢r,
we have X = [x:,...,x:] (the input to the encoder) and
z = [z:,...,z:\,z:] (the mapped bits or encoder output) at time n.

Also, e = [e:,...,e;,e:] is the modulo-2  difference  between two

encoder outputs z  and zr’l at time n, ie, e =1z & z’. Note that

k+l

there are 2 combinations of z and z; that give the same e. For the

rate k/(k+1) code, we denote reduced versions of x, z, and e as

~ k 1 ~ ko1 ~ k 1
L= [xn,...,xn], z = [zn,...,zn,z:], and e = [en,...,en,e:],
respectively.

In order to find dim for a particular code, the squared
Euclidean weights (SEW) wz(en) are used. As defined in [65], wz(en) is

the MSED between all combinations of a(zn) and a(z;) such that

([N I e e e W e e | 1/ a e

Wi
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e =2 @ z; and a(z) is the actual LxMPSK signal point. This can be

n

defined as

w’(en) = min dz[a(zn), az_ @ e)l, (2.33)
all Z

where dz[a(zn), a(z"l)] is the SED between a(zn) and a(zr'l). One can then
use the all zero path as a reference to find dim in a code search,

ie.,

& = min | wie), (2.34)
where the minimization is over all allowable code sequences with the
exception of the all-zero sequence. We can use (2.34) 1o find dim
provided that the minimization of (2.33) does not depend on z:, as
shown by Ungerboeck [65].

Although the minimization of (2.33) does not depend on zg for
IXMPSK signal sets, it cannot be assumed that this also applies to
LxMPSK for L 2 2. By expressing dz[a(zn), a(z @ en)] directly in terms
of z and e, it can be shown that 3x4PSK (I), 3x8PSK (I and II), and
3x16PSK (I, II, and III) all depend on z:. This implies that (2.34)
becomes a lower bound in these cases. However, due to the large number
of parallel transitions for these codes, we can still determine d?

free
(and N ) using a slightly modified version of (2.34).

k+1 2k+2

Since there are 2" values of e, there are a total of 2
computations required to find all the values of wz(en). For example, a
rate  11/12 code with 4x8PSK modulation requires nearly 17 million
computations. This can be reduced by letting zg =0 (or 1) and

minimizing (2.33) over all z = [z:,...,z:‘,O]. This reduces the number
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2k+1
277,

of computations to In fact, it is possible to even further

decrease the number of computations. Using some difficult algebraic

P

manipulations, it can be shown that the L output bits z corresponding

. Ll
to cosets t° with some components equal to 2 can all be set to zero.

For example, the 4x8PSK signal set with q = 0 can have bits ZZ’ z:,

zm, and z:l all set to 0 when minimizing (2.33). This is due in part

n
‘to the MPSK signals being antipodal for these values. Thus the total
number of computations can be reduced to yaaktd
In order to reduce the time needed to find dim, we note that

kk

the trellis is equivalent to a rate k/(k+1) code with 2 parallel

transitions. Also, there are ZE* ! different sets of parallel
transitions. If the minimum SEW is found for each of these sets of
parallel transitions, the code search is greatly simplified, since the
search for a rate K/(k+1) code is all that is needed and k is usually

small. Thus, the SEW’s required for a rate k/(k+1) code search are

wz(zn) = min wz(en), (2.35)

. . o kK _k+l
where the minimization is over all [en,...,cn+ 1. We define the free

MSED of this rate k/(k+1) code as

ffm = min | wz(En), (2.36)

where the minimization is over all allowable code sequences (e(D))

defined by

for 'é'l, e, #0, and N 2 2. The code sequences of length N =1 are the

ol w0 W @ e | |l
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parallel transitions, where the MSED is the MSSD of the parallel
transitions. A code might have &' larger than the MSSD of the
parallel  transitions, implying that dim occurs along the  parallel

transitions. With K checked bits and a rate k/(k+1) code, the MSSD of

. . 2
the parallel transitions is A:+E+1' Thus we can express df“=e as

d*> = min (E{im, AZ ). (2.37)

free q+i+l

The best value of kK can be determined from the free MSED of the
best code for the previous value of v. The search starts with v =1 and
k=1, and we find the code with the best dim and N_. We then
increase v by one and determine k as follows. If dim for the previous
best code was d; , then K remains the same. This is because the limit
of the parallel transitions (A:+E+1) has not yet been reached and the
trellis connectivity needs to be reduced in order to increase dim or
reduce Nﬁu. If dim for the previous best code was A:+;+ P then k is
increased by one - from the previous value; otherwise, dim and N__
would remain the same. If Him = A2+E+l for the previous best code,
then k can remain the same or increase by one. Both values of k should
be tried in order to find the best code. The best code is then found
for this value of v and k, and the above process is repeated for each
increasing value of v.

As can be seen from (2.33), there may be some values of e and z
for  which wz(en) < dz[a(zn), a(zrl D en)]. The “number of  nearest
neighbors” for e (denoted m(en)) is defined as the average number of
times that wz(en) equals dz[a(zn), a(zn & en)]. If wz(en) equals
dz[a(zn), a(zn 35 en)] for all values of z, then m(en) = 1. For

example, in naturally mapped 8PSK it is found that for e = [011] and
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[111] dz[a(z“), a(zrl @ en)] = (0.586 for four wvalues of z and 3.414
for the other four values of z. Thus m(en) = (0.5 for e = (011] and
[1 1 1]. For all other vaiues of e, it can be shown that m(en) = 1.
Zehavi and Wolf [79] give a general approach to determining the full
code distance spectrum, whereas we are only interested in the number of
nearest neighbors.

We can state this generally as follows. Let the number of bits in

z that are varied to find wz(e“) be b. Then

mee) = % u[wz(en) - d’fa(z), az, @ en)]]2‘b, (2.38)

where u(-) is the unit step function and the summation is over all the
bits in z that are varied to find wz(en). Normally b = k + 1, but this
can be reduced to b = k - L for the reasons mentioned previously.

For the simplified rate k/(k+1) code, m(En) is the sum of all the

m(e )’s for which wz('é'n) = wz(en), ie.,
mE) = X u(wz(zn) - wé(en)} m(e ), (2.39)

where the summation is over all [e:,...,e:”]. We can think of m(En) as

the total average number of nearest neighbors along each set of

parallel transitions.

The number of nearest neighbors for the MSSD A:&n is

Ny =3 u[A:&H } wz(en)] me ), (2.40)

where the summation is over all e = [e:,...,e:“"l,O,...,O]. The number
of nearest neighbors for paths with SED Him can be calculated using

m(En) as follows:
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free

A
N =3 m(e ), (2.41)
=1

where N is the length of a path a that has a SED of Him and A is the
number of paths that have a SED of Eiﬂ. If dim occurs along the
parallel transitions, me = N A’ and we define the next nearest free
SED and number of nearest neighbors as ¢ =38 ad N =R,

next free next free
respectively. (Note that d and N may not be the tue next

next next

nearest paths, since there may be some closer paths occuring along the
parallel transitions.) When there are several codes that have the same
free MSED and number of nearest neighbors, the ‘“next nearest” values
are used in code selection. When dim occurs along paths with SED
@, N =N . The next nearest values in this case are not

free free free

L _ A2 -
given in the code tables. If Hﬁm = Aq+;+1, then N__ =N, + me.

Example 2.4

In Example 2.2 we have a k=2, q =1, rate 7/8 (2.33 bit/sym)
code with a 3x8PSK (II) signal set. After determining the mapping of
the signal set, (2.33) was used to find the SEW’s for each signal
point. Equation (2.35) determines the wz('é'n)’s that were used to find
the best rate 2/3 codes. For these codes dzm =A. = Ai = 4.0.

f q+k+1

Using (2.40) we determined that me is 15 (after normalizing, there

are only 5 paths per 2-D symbol). In the code search for the best rate
2/3 codes, there were many codes which had d:m = Him = 4.343. Thus

(2.41) was used to determine Nwu for each best code. Table 2.10 gives
the values of wz('é'n) and m('én) for each En that were used in the code
search. The best code with a transparency of 90° was found to have

N =24

next
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TABLE 2.10
SQUARED EUCLIDEAN WEIGHTS USED IN THE CODE SEARCH FOR
RATE 7/8 (2.33 bit/sym) CODES WITH 3x8PSK (II) AND k = 2

~ 2 ~ ~
e |w (en) m(en)
000| 0.0 1
001 1.172} 2
010 1.757| 4
011| 0.586 1
100 2.0 6
101} 1.172| 2
110{ 1.757| 4
111} 0.586 1

In order to reduce the number of codes that must be tested in our
code search algorithm, rejection rules were used. As in Rule 1 of [65],
time reversal of the parity check polynomials was used to reject codes.

Even though wz(é'n) and m(En) are used to find the best codes, Rule 2 in

2~

,  wher
r(en)+q ¢

[65] can still be exploited, provided that WZ(EH) =A

r(En) is the number of trailing zero’s in 'é'n. When this is not true, it
may still be possible to find some combinations of the parity check
polynomials that can be rejected (this was also implemented in our code

search). Rple 3 Vin [65] was also used to eliminate codes.

) In the code search, a rate E/(E+1) code is searched for a
parrticuleﬁxrr Q:rwBerore finding Efim, the code search program checks to
make sure that the code Vonly produces sequences with length N 2 2. If
for some input ;n # 0, the inputs to the systematic encoder are all
zero, the state of the encoder goes from one state to the next as if a
zero input had occurred. Thus parallel transitions will occur in the

rate  k/(k+1) code, which should not have parallel transitions.

Therefore, in the code search, codes at level i (1 <i<k) were

[T 4 ] € @& @0 e i . w6

&l
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rejected if for some [X',...x'] # 0, zjil XH(D) (mod 2) = 0(D).

Two programs written in pascal were used in the code search, one
for codes with v > kK and the other for codes with v = k. For specific
values of I, L, and q, y¥%z), for 0 Sz < 2““*‘-1, was generated using
the coset representatives !, for O < p <IL-1, that are given in
Tables 2.5, 2.6, and 2.7. The squared Euclidean weights wz(en) were
then calculated using (2.33) for all e. Since the value of k can
change with each v, wz(En) and m('é'n) were computed, if necessary, as
the program went from the smallest to the largest v.

The code search used the various rejection rules before the time
consuming tasks of finding aim (using the  bi-directional  search
algorithm [38]) and me (using a technique based on the Viterbi
algorithm). The rejection rules were organized so that the best codes
for each of the two possible phase transparancies were found. The code
search found those codes which had the largest free distance (for a
particular transparency). If a code was found to have its free MSED
equal to or greater than the previous best code, Nfree was determined
and this code was listed if either its aim or N had improved over
the previous best code.

The octal code generators were then listed along with their
aim, N . and phase wansparency d. A small list of codes was
produced (for each code search) from which the best codes could be
chosen. Every time that k is increased by one in the code search (which
is done automatically), the program determines and lists A§+E+| and N,
for use in the code tables.

The asymptotic coding gain y of each code compared to the uncoded

case, as shown in the code tables, is
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Y = 10 log (d}_/d) (dB), (2.42)

where di is the smallest MSSD of an equivalent uncoded 2-D or multi-D
scheme. In nearly all cases, di = A:u‘ For codes with a non-integer K,
no equivalent IxMPSK scheme exists which has the same K, and so the
equivalent uncoded multi-D  signal set is used instead. For the 4x8PSK
signal set with q =3, K =2 bit/sym. Thus, a natural comparison would
be against uncoded 4PSK, which has di = 2. (In this case, Aiﬂ = 2.343,
which is inconsistent with other codes that also have K = 2 bit/sym.)
The asymptotic coding gains compared to uncoded (M/2)-PSK are found by

adding to 7y the appropriate correction factor

de

— (dB), (2.43)
(I- 1)51

= 10 log

YM/l 10

as shown in the code tables. The transparency (in degrees) is also
given for each code. The parity check polynomials are expressed in

octal notation in the code tables, e.g., H'D) = D°+D'+D*+D+1=

(001 010 111), = (127),.

In Tables 2.11, 2.15, and 2.19, codes for TC-1x4PSK (rate 1/2
4PSK), TC-Ix8PSK (rate 2/3 8PSK), and TC-1x16PSK (rate 3/4 16PSK),
respectively, are presented. These tables give the best code for each
phase transparency, which (to the best of our knowledge) have not been
previously published. The best codes, without regard for phase
transparency, were originally published by Odenwalder [43] for 4PSK
(with the codes in non-systematic form), by Ungerboeck [65,68] for
8PSK, and by Wilson, et. al. [76] for 16PSK.
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TABLE 2.11
TRELLIS CODED 1x4PSK.
K = 1.0 bit/sym, di = 4.0, Nu = 1 (1x2PSK).

vikl ' 0’ [Inv.jdl N, ¢ N |y (dB)
1 1 3 360°| 6| 1| -| - | 176
201l 2 s |sec| 10| 1| - | - | 3.98
3{1] o6 13 |180°| 12| 2| - | - | 477
1| o4 13 se°| 12| 1| - | - 477
4l1| o6 21 [180°| 12| 1| - | - |477
1l 10 23 lseoe| 14| 2| - | - | 5.44
sl1] 36 45 |180°| 16| 2| - | - |6.02
1| 26 53 |360°| 16| 1| -| -|6.02
611 o042 117 |1807| 20| 11| - | - | 6.99
711] 126 235 (1807 20| 2| - | - | 6.99
1| 144 223 |3607| 20| 1] - | - |6.99
gl1| 262 435 [180°] 24| n| - | - |7.78
1| 362 s15 |360| 24| 9| - | - |7.78
ol1] 0644 1123 |180°| 24| 2| - | - |7.78
1| 0712 1047 [360°| 24| 1| - | - | 7.78
72=OdB

Tables 2.12, 2.16, and 2.20 list the TC-2x4PSK codes (rates of
1.5 and 1.0 bit/sym), the TC-2x8PSK codes (2.5 and 2.0 bit/sym), and
the TC-2x16PSK codes (3.5 and 3.0 bit/sym), respectively. Tables 2.13,
2.17, and 2.21 list the TC-3x4PSK codes (1.67, 1.33, and 1.0 bit/sym),
the TC-3x8PSK codes (2.67, 2.33, and 2.0 bit/sym), and the TC-3x16PSK
codes (3.67, 3.33, and 3.0 bit/sym), respectively. Tables 2.14, 2.18,
and 2.22 list the TC-4x4PSK codes (1.75, 1.5, 1.25, and 1.0 bitsym),
the TC-4x8PSK codes (2.75, 2.5, 225, and 2.0 bitsym), and the
TC-4x16PSK codes (3.75, 3.5, 3.25, and 3.0 bit/sym), respectively.



TABLE 2.12(a)

TRELLIS CODED 2x4PSK

K = 1.5 biysym, g=0, d’ = 4, N = 6 (2x4PSK).

™~ 3 2 1 0 2 2
vik h h h h Inv. dfree free| nenxt next Y (dB)
11 - - I 3 |180° 41 2 6 81 0.00
2(2 - 1 3 5 90° 6 6 - - 1.76
3121 - 04 06 11 | 90° 8| 5 - - 3.01
412 - 10 06 23 | 90° 8 1 10 16| 3.01
513 14 30 02 41 |180° 10 8 - - 3.98

3 16 24 06 53 [360° 10 7 - - 3.98
6{3] 030 042 014 103 [180° 12 140.25 - - 4.77

31 076 024 010 157 |360° 12 130.75 - - 4.77
7131 044 022 114 211 {180° 12 8 - - 4.77

‘Yz = 1.76 dB
TABLE 2.12(b)
TRELLIS CODED 2x4PSK
K = 1.0 bitsym, g=1, &’ = 40, N_ = 1 (IX2PSK).
e 2 0 2 2

vik h h Inv. dfrec free dnext next Y (dB)

11 - 1 3 90° 8 5 - - 3.01

211 - 2 5 90° 8 1 12 8 3.01

3(2f 04 02 11 [360°| 12 5 - - 4.77

412 14 06 23 |180° 12 | - - 4.77

5121 30 16 41 |180°| 16 8 - - 6.02

62| 036 052 115 [180°| 16 1 - - 6.02

7121 044 136 203 {180°] 20 6 - - 6.99

8121 110 226 433 {180°] 24 33 - - 7.78

Y, = 0 dB
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TABLE 2.13(a)
TRELLIS CODED 3x4PSK
K = 1.67 bivsym, q=0, d = 40, N_ = 15 (3x4PSK I).

vE[ h® % n' b |mv.|d N |& IN_ |y (dB) sie.
i1 - - 1 3|o90| 4|7 6| 32]000]| 1
20120 - 2 1 s|oe| 4| 3 6| 24| 000 1
2 - 2 1 5|360°| 4| 2 - | - 1o000]1I
3020 - 04 02 11|90°] 4| 1 6| 6/ 0.00 |I11
2| - 04 02 11 [360°| 6 |11 S -l 1r
31 05 04 02 11 ]90°| 4 | 025| - | - | 0.00 |III
al2] - 14 02 21 |180°| 6 | 6 | - 17611
303 o1 02 06 11 |360°| 6 | 4 |l - 17611
4{3/ 10 04 02 21| 90°| 6| 55| - | - | 1.76 |1
30 12 04 02 21 |180°| 8 |19 Sl 301 1
5(3] 24 14 02 41 |180°| 8 | 7 S - 3011
613 (024 042 010 105 [180°| 8 | 3 10| 16301 1
72=2.22dB

Equivalent R = 5/6, TC-2x8PSK (2.5 bit/sym) codes with up to 16
states have been found independently by Lafanechére and Costello [37]
and by Wilson [76], although with reduced phase transparency. The 2
state. TC-Lx8PSK and TC-Lx16PSK codes were also found by Divsalar and
Simon [15].

In the code tables it can be seen that for the same complexity,
there are usually two codes (and in some cases three codes) that are
given. Note that the code with the worst phase transparency has a
better free distance or a | fewer number of nearest or next nearest
neighbors. Thus, if phase transparency is not required, one should
choose the less phase transparent code in order to obtain the maximum

performance for a given complexity.
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TABLE 2.13(b)
TRELLIS CODED 3x4PSK
K = 1.33 bisym, g=1, d’ = 4.0, N = 3 (3x4PSK ID).

viE| b’ n? on' on® (v.d® N |d N |y (dB) 2;%
1] - - 1 3]oee| 4] 1] 8| 4] 0.00 |1
1 - - 1 31360° 6| 7| - | - |176]1I
201 - - 2 s51{30°| 6| 4| 10| 9| 1.76 |11
2| - 2 1 s5to9°| 6| 2| 8| 4| 1.76 (I
2| - 3 1 5 |18o°| 8| 21] - | - |301] 1
2l - 2 1 5 |360°] 8| 16] - | - |301]11
302 - 04 02 11|90 6 8| 1| 1.76 |11
2| - 02 06 11 |180°| 8| 3| 12| 100] 3.01 | II
3| 06 04 03 11 |90° 8 -1 - 301 (I
413 14 04 12 23| 90°| 10| 5| - | - |3.98 I
513 30 04 22 43 | 90°| 12| 13| - | - | 477 (I
63| 036 060 026 103 | 90°| 12| 2| - | - | 477 |1
713 140 160 062 213 | 90°| 12 14| 5| 477 111
3| 004 154 056 207 |180°| 12| 1| 16| 128 4.77 |1II
Y, = 125 dB

2.2.8 Decoder Implementation

When the Viterbi algorithm is used as the decoder, a measure of
decoding complexity is given by ZV‘&/L. This is the number of distinct
transitions in the trellis diagram for any TCM scheme normalized to a
2-D signal set. The maximum bit rate of the decoder is kfd, where f s
the symbol speed of the decoder. Since k is quite large for mult-D
signal sets (at least (I-1)L), high bit rates can be achieved. For
example, a Viterbi decoder has been constructed for a rate 7/9
periodically time varying trellis code (PTVTC) with v =4, k =2, and
8PSK modulation [30]. This decoder has f ;= 60 MHz and a bit rate of

1
I
i
4
|
|
1

Qi oW & wl € € 0

|

Qi

S

|

W iy e

L

{ &



TABLE 2.13(c)

TRELLIS CODED 3x4PSK

K = 1.00 biysym, q=2, d: = 40, N_ = 1 (1x2PSK).

Bl 0> n* n' B |Iv.|@ N |& IN |y (dB) Sig.
o - - - - 190°| 6| 4| - - | 176 | 1T
1] - - 1 3]90° 6| 2 8 1| 1.76 |III
1 - - 180°| 8| 3| 12| 16| 3.01 | 1II
2 - 3 2 90°| 10| 4 | - - | 3.98 |III
2 - 06 02 11|90 10| 2| - - | 3.98 [1II
2| - 02 06 13 |180°| 12| 5| - - | 477 (111
2 - 12 16 21 90°] 12| 1| 14| 2| 477 |l
20 - 04 12 27 |180°] 12| 1| 16| 22| 4.77 |III
3| 10 04 02 21 |180°| 14| 3 | - - | 5.44 | 11
3| 22 16 04 53 [180°| 16| 2 | - - 1 6.02 |11
3| 24 14 02 43 [360°| 16| 1| - - 160211
3| 070 004 022 101 |180°| 18| 3 | - - | 6.53 | II
3| 156 024 046 213 [180°] 20| 3 | - - 1699 | 11
3| 044 014 102 217 |360°] 20| 2 | - - 1699 | II
72=O.0 dB
TABLE 2.14(a)
TRELLIS CODED 4x4PSK
K = 175 bivsym, q=0, d_ = 4.0, N_ = 28 (4x4PSK).
viEl h* h? R' B [Inv. dim el nex|Y (9B
11 - - 1 3]|900°| 4| 12| 6| 64| 0.00
2(2] - 2 1 5]90°| 4 4| 6| 48| 0.00
3(3] 04 02 01 11 {[90°| 6 | 28| - - 1176
4(3] 10 04 02 21 |90°| 8 | 78| - - | 3.01
5(3] 24 14 02 41 [90°| 8 | 30| - - | 3.01
6(3| 050 032 004 103 | 90°| 8 | 14| 10| 160| 3.01

Y, = 243 dB
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TABLE 2.14(b)

TRELLIS CODED 4x4PSK
K = 1.50 biysym, g=1, dj = 4.0, N_ = 6 (2x4PSK).

™~ 4 3 2 1 0 2 2
vk h h h h h Inv. dfree free| next next Y (dB)
1)1 - - - 1 3 90°| 4 4 8 64| 0.00
212 - - 2 1 5 90° 8 78 - - 3.01
312 - - 04 02 11 | 90°| 8 30 - - 3.01
412 - - 12 04 23 90°| 8 16 12 320 3.01
513 - 14 34 06 41 90°| 8 6 12 176 | 3.01
3 - 04 14 22 43 |180°| 8 6 12 160 | 3.01
64| 014 006 056 022 103 | 90°| 8 2 12 62| 3.01
‘Y2 = 1.76 dB
TABLE 2.14(c)
TRELLIS CODED 4x4PSK
K = 125 bisym, g=2, d’ = 4.0, N_ = 4 (4x4PSK). -
&~ 4 3 2 1 0 2 2
vik h h h h h qlﬂV. dfrere free dn:xt next Y (dB)
1i1 - - - 1 3 90° 8 30 - - 3.01
211 - - - 2 5 90° 8 14 12 64| 3.01
312y - - 06 02 11 | 90° 8 6 12 64| 3.01
2 - - 02 06 11 |[180° 8 6 12 321 3.01
3] - 01 03 06 11 | 90° 8 2 12 56| 3.01
431 - 10 14 06 21 | 90° 8 2 12 8| 3.01
5|4 10 04 06 22 41 90° 12 8 - - 4.77
64| 024 014 006 042 103 | 90°| 16| 109 - - 6.02
y, = 0.97 dB
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TABLE 2.14(d)

TRELLIS CODED 4x4PSK
K = 1.00 bivsym, q=3, &’ = 4.0, N, = 1 (1x2PSK).

vk h3 hz hl ho Inv. dlf’ree free :cxl next Y (dB)
o0y - - - - 90° 8 141 - - | 3.01
1y - - 1 3 |180° 8 61 16| 64| 3.01
2(2) - 2 3 51090 8 21 16 64| 3.01
3]3] 02 04 03 11 | 90° 16| 45 - - | 6.02
413] 02 10 06 21 | 90°| 16 17| - - | 6.02
513] 22 10 06 41 | 90°| 16 5 - - 6.02
63| 010 060 036 105 | 90°| 16 1| 20 41 6.02
Y, = 0 dB
TABLE 2.15
TRELLIS CODED 1x8PSK
K = 2.0 bit/sym, d’ = 2.0, N_ = 2 (1x4PSK).
T 2 1 0 2 2
vik h h b Inv. dfree Nfree dnexl next Y (dB)
(1] - 1 3 |180°|2.586|2 - - | 1.12
2|11} - 2 5 (180°|14.0 |1 4.586| 4 | 3.01
3|12 04 02 11 |360°]4.586|2 - - | 3.60
4121 14 06 23 [180°|5.172(4 - - | 4.13
2| 16 04 23 |360°|5.172{2.25 - - | 4.13
5|2| 14 26 53 |180°|5.17210.25 - - | 4.13
2| 20 10 45 [360°]5.757|2 - - | 4.59
6|2| 074 012 147 [180°|6.343|3.25 - - | 5.01
712| 146 052 225 |180°(6.343|0.125] - - | 5.01
. 2| 122 054 277 |360°|6.586]|0.5 - - 1518
812| 146 210 573 |180°|7.515|3.375| - - | 575
2| 130 072 435 {360°|7.515|1.5 - - 1575

y4=0dB
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TABLE 2.16(a)

| TRELLIS CODED 2x8PSK
K = 2.5 bitsym, q=0, &’ = 1.172, N = 4 (2x8PSK).

™~ 3 2 1 0 2 2
viki h h h h Inv. dfree free| next next Y (dB)
111 - - 1 3] 90°1.757 812.0 41 1.76
201 - - 2 5 {90°2.0 4 (2.929 321 2.32
3121 - 04 06 11 | 45°12.929 16 - - 3.98
412 - 16 12 23 | 45°;3.515| 56 - - 4.77
5121 - 10 06 41 | 45°(3.515 16 - - 4.77
62 004 030 113 | 45°|4.0 6 14.101 80| 5.33
21 - 044 016 107 | 90°14.0 6 14.101 481 2.33
7131110 044 016 317 | 90°{4.0 2 14.101 251 5.33

'Y4 = -1.35 dB
TABLE 2.16(b)
TRELLIS CODED 2x8PSK
K = 2.0 bisym, q=1, d’ = 2.0, N = 2 (1x4PSK).

™ 3 2 1 0 2 2
vik] h h h h Inv. dfree free| next next Y (dB)
{1 - - 1 3| 45°13.172 8 14.0 6] 2.00
201 - - 2 5| 45°|4.0 6 |5.172 321 3.01
3121 - 04 02 11 [180°|4.0 2 |5.172 16| 3.01
4131 04 14 02 21 | 90°|5.172 8 - - 4.13
5131 24 14 06 43 | 90°(6.0 6 - - 4.77
613/012 050 004 125 | 90°|6.343 5.5 - - 5.01
7131110 044 016 317 | 90°|7.515| 25 - - 5.75

Y, = 0 dB
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TABLE 2.17(a)

TRELLIS CODED 3x8PSK
K = 2.67 bisym, q=0, &’ = 1.172, N_ = 12 (3x8PSK I).

VIR P Wb v g N Nae T 9B el
1y - - 1 3] 45°|1.172 4| - - 1000 | II
21y - - 2 5| 45°11.757| 16| - - 1.76 | 11
3{2] - 04 02 11 | 45°}12.0 6 (2.343 16} 2.32 I
413| 14 04 02 21 | 90°|2.343| 12| - - | 3.01 I

3] 10 04 02 21 |180°|2.343 81 - - | 3.01 I
5(3] 30 14 02 53 | 90°]2.929| 48| - - | 3.98 I
6(3(050 022 006 103 | 90°|3.172| 12| - - | 4.33 I
73056 112 004 225 | 90°|3.515| 84 - - | 4.77 I

3|100 050 022 255 |180°(3.515| 76| - - 1 477 I

Y, = -1.07 dB

TABLE 2.17(b)
TRELLIS CODED 3x8PSK

K = 2.33 biysym, g=1, ¢’ = 1.757, N_ = 8 (3x8PSK I).

T s PO o L O ol
- - - 1 3] 90°2.0 62.343] 16| 0.56 | II
2 - - 3 1 7 90°|2.586 6| - - | 1.68 | II
2| - - 06 02 11 | 90°|3.515| 16| - - | 3.01 | II
2l - - 04 02 11 |180°|3.757| 24| - - | 3.30 | II
31 - 10 04 06 21 | 45°|3.757| 12| - - | 3.30 |III
21 - - 14 02 27 | 90°|4.0 15 {4.343| 24| 3.57 | II
3] - 22 16 06 41 | 45°/4.0 71 - - | 3.57 |III
3| - 010 046 060 105 | 45°(4.0 3 14.686 8| 3.57 |III
41060 024 014 002 101 [180°}4.0 2| - - | 3.57 |III

Y, = 0.11 dB
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TABLE 2.17(c)
TRELLIS CODED 3x8PSK

K = 2.00 bitsym, g=2, &’ = 2.0, N = 2 (1x4PSK).

vIR[ Bt R et et I N N Y @B e
oy - - - 1 3 [180°(3.757] 24 - - 1274 | 11
211 - - - 2 5 (180°|4.0 15 |5.757| 144 3.01 | II
312 - - 04 02 11 | 45°|4.0 7 - - | 3.01 |IIT
412 - - 12 04 27 | 45°|14.0 3 ({5.7571 32} 3.01 |III
5{3| - 14 24 02 41 [180°(5.757| 17.5| - - | 459 |III

3 - 16 22 06 53 [360°5.757 17 - - | 459 |IIT
6{3] - 030 042 014 103 |180°|6.0 11 - - | 477 11T

41014 044 024 006 103 [180°|6.0 4 - - | 477 |11

Y, = 0 dB

K = 275 bisym, q=0, &’ = 1.172, N_ = 24 (4x8PSK).

TABLE 2.18(a)

TRELLIS CODED 4x8PSK

M E h4 h3 hz hl ho Inv. dirce free d:exl next Y (dB)
- - - 1 3 | 45°|1.172 8 |1.757 64| 0.00
212 - - 2 1 5| 45°1.757 48 - - 1.76
312 - - 04 02 11 | 45°|2.0 8 12.343 64| 2.32
413 - 10 04 02 21 | 45°|2.343 40 - - 3.01
513| - 30 14 02 41 | 45°[2.343 8 12.929| 288 | 3.01
614{030 020 052 014 101 | 45°]2.929| 136 - - 3.98
Y, = -0.94 dB
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TABLE 2.18(b)

TRELLIS CODED 4x8PSK
K = 2.50 bit/sym, g=1, &’ = 1.172, N = 4 (2x8PSK).

~ 3 2 1 0 2 2
vk h h h h Inv. dfree free| next next Y (dB)
111 - - 1 3| 45°|2.0 8 12.343 64 | 2.32
212 - 2 1 5 |45°]2.343} 40 - - 3.01
3121 - 04 02 11 | 45°(2.343 8 13.172 32 | 3.01
43| 14 04 02 21 | 45°(3.172 16 - - 4.33
5(3] 24 14 02 41 | 45°|3.515| 64 - - 4.77
63| 014 024 042 103 | 45°/4.0 28 |4.686] 1088 5.33
Y, = -1.35 dB
TABLE 2.18(c)
TRELLIS CODED 4x8PSK
K = 2.25 bit/sym, q=2, d’ = 2.0, N = 8 (4x8PSK).
™~ 4 3 2 1 0 2 2
k| h a h h h Inv. dfree free| next next Y (dB)
11} - - - 1 3 | 45°|2.343 8 [3.172 321 0.69
21 - - 3 1 5 ]45°13.172| 16 - - 2.00
21 - - 06 02 11 | 45°]4.0 28 14.343 64| 3.01
2 - - 02 06 11 | 90°{4.0 28 |4.686] 64| 3.01
3] - 04 06 12 21 | 45°(4.0 12 |4.686 32| 3.01
41 10 04 06 22 41 | 45°|4.0 4 14.686 16| 3.01
y, = 0.51 dB



TABLE 2.18(d)
TRELLIS CODED 4x8PSK

K = 2.00 bivsym, g=3, d’ = 2.0, N, = 2 (1x4PSK).

82

v E h4 'h3 hz hl ho Inv. dirce free dxzxext next Y (dB)
111} - - - 1 3 |90°4.0 28 14.686 64 ( 3.01
224 - - 2 3 5 145°4.0 12 |4.686 321 3.01
3131 - 02 04 03 11 | 45°14.0 4 {4.686 16 | 3.01
4141 10 04 02 03 21 | 45°|4.686 8 - 3.70
5(4| 02 10 04 22 41 | 45°/6.343 16 - 5.01
614|034 044 016 036 107 | 45°(6.686 6 - 5.24
4044 024 014 016 103 | 90°(7.029| 24 - | 5.46
Y, = 0 dB
TABLE 2.19
TRELLIS CODED 1x16PSK
K = 3.0 bit/sym, d’ = 0.586, N = 2 (1x8PSK).
2 1 0 2 2
v E h h h Inv. dfree Nfree dnexl next Y (dB)
11 - 1 3| 90°!0.738|2 - - 1.00
211 - 2 51 90°1.324/4 - - 3.54
311 - 06 13 | 45°11.476|8 - - 4.01
1 - 04 13 ) 90°(1.476{4 - - 4.01
411 - 06 21 | 45°|1.47614 - - 4.01
1 - 10 23 | 90°]1.628(4 - - 4.44
51 - 24 43 | 45°11.781|8 - - 4.83
1 - 10 45 | 90°{1.910| 8 - - 5.13
6/1] - 056 135 | 45°12.0 |2 2.085 16| 5.33
1 - 032 107 | 90°(2.0 |2 2.085 8| 5.33
711 - 126 235 | 45°12.0 |2 2.366 16| 5.33
812| 344 162 717 | 90°|2.085|2.938] - - 5.51
2| 224 112 527 |180°|2.085(1.219| - - 5.51
Y = 0 dB
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TABLE 2.20(a)

TRELLIS CODED 2x16PSK
K = 3.5 bit/sym, q=0, dj = 0.304, N = 4 (2x16PSK).

~ 2 1 0 2 2
vik h h h Inv. dfree free dnext next ¥ (dB)
111 - 1 3] 450 |0.457] 8| - - | 1.76
211 - 2 5 45° |0.586| 4 [0.761| 32| 2.84
32| 04 06 11 [22.5°]0.761| 16| - - | 3.98
42| 16 12 23 [22.5°10.913| 56| - - | 477
si2| 10 06 41 |22.5°10.913| 16| - - 477
62| 004 030 113 |22.5°|1.066| 80| - - | 5.44

2| 044 016 107 | 45° |1.066| 48| - - | 5.44
712] 074 132 217 |22.5°11.172] 4 |1.218] 228 5.85

y = -2.17 dB
TABLE 2.20(b)
TRELLIS CODED 2x16PSK

K = 3.0 bivsym, g=1, &’ = 0.586, N, = 2 (1x8PSK)
v E h3 h2 hl ho Inv‘ diree free iext next Y (dB)
11] - - 1 322.5°0800 8| - | - | 1.82
201] - - 2 5 |22.5°|1.172| 4 |1.476| 32| 3.01
32| - 04 02 11| 90° |1.476] 16| - - | 4.01
42| - 14 06 23 | 45° |1.757] 8| - - | 477
s(2] - 30 16 41 | 45° {1.781] 16| - - | 4.83
62| - 044 016 107 | 45° |2.0 4 (2.085| 48] 5.33
7131110 044 016 317 | 45° |2.085| 25| - - | 5.51

78=0dB

83



TABLE 2.21(a)
TRELLIS CODED 3x16PSK
K = 3.67 bitsym, q=0, d’ = 0.304, N_ = 12 (3x16PSK D).

84

M E hj h2 hl ho Inv. d?ree free :CXI next Y (dB) :;%.
11l - - 1 3 22.5°0.304| 4| - - 10.00 | II
2(11] - - 2 5{22.5°|0.457| 16| - - 1176 | 11
302] - 04 02 11 |22.5°|0.586] 6]0.609| 16| 2.84 | T
413 14 04 02 21 | 45° |0.609| 12| - - 1301 1
31 10 04 02 21 | 90° |0.609| 8| - - 13.01 | I
5/3| 30 14 02 53| 45° |0.761| 48| - - 1398 I
63050 022 006 103 | 45° |0.890| 12| - - | 466 | 1
713|056 112 004 225 | 45° [0.913] 84| - -l 4771
3(100 050 022 255 | 90° |0.913| 76| - - 1477 |1
Yy = 0 dB
TABLE 2.21(b)
TRELLIS CODED 3x16PSK
K = 3.33 biysym, =1, &’ = 0457, N_ = 8 (3x16PSK II).
viE| bR bt % | Iav d] N d N Y @B)
1{1] - - 1 3|4s5°|0.586| 6[0.609| 16| 1.08 | II
212| - 3 1 7(45°|0.738| 6| - - | 2.08 | 11
3|2 - 06 02 11 | 45° |0.913] 16| - - [ 3.01 |11
2| - 04 02 11| 90° [1.043| 24| - - | 3.58 | 11
4(3] 10 04 06 21 [22.5°(1.043| 12| - - | 3.58 |11
2| - 14 02 27 | 45° |1.172] 12(1.195| 24| 4.09 | II
53| 34 16 06 41 |22.5°|1.172] 4| - - | 4.09 |11
63| 032 046 006 103 |22.5°|1.218] 8| - - | 4.26 (11T
7/3| 014 102 044 203 |22.5°(1.370| 32| - - | 477 111
3| 006 072 062 223 | 45° |1.476] 8| - - | 5.09 111
¥, = -1.97 dB
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TABLE 2.21(c)

TRELLIS CODED 3x16PSK
K = 3.00 bivsym, q=2, d’ = 0.586, N = 2 (1x8PSK).

v[E] B n* nt | Inv.|db NN Y @B
11l - - 1 3900 |1.043] 24| - - 250 |11
alt] - - 2 5190°|1.172| 12{1.628] 144 3.01 | II
32| - 04 02 11 |22.5°|1.172| 4| - - | 3.01 |11
al2] - 12 04 27 [22.5°|1.628) 32| - - | 4.44 |11
512] - 14 02 41 |22.5°]1.628| 16| - - | 4.44 |III
2] - 22 14 43 | 45° |1.757| 16| - - | 4.77 |11
62| - 054 020 115 |22.5°[1.757| 8 [2.085| 48| 4.77 |III
3| 020 004 012 101 | 45° |2.0 62.085| 72 5.33 | II
3| 050 030 026 101 | 90° |2.0 6 |2.085| 60| 5.33 | II
7]3| 060 106 050 213 | 45° |2.0 6(2.214] 56| 5.33 |III
3| 016 110 052 203 | 90° [2.0 6 (2.343| 64| 5.33 |III
ys=0dB
TABLE 2.22(a)
TRELLIS CODED 4x16PSK
K = 3.75 bitsym, q=0, d’ = 0.304, N = 24 (4x16PSK).
viE| n* b® n* b’ n® | Inv.d N & IN___ |y (dB)
11l - - - 1 3 {22.5°l0.304] 8[0.457| 64| 0.00
2121 - - 2 1 5 |22.5°]0.457| 48| - - | 1.76
3|2 - - 04 02 11 |22.5°]0.586| 8 |0.609| 64| 2.84
4(3] - 10 04 02 21 |22.5°/0.609| 40| - - | 3.01
53| - 30 14 02 41 |22.5°|0.609] 8 |0.761| 288 | 3.01
6/41030 020 052 014 101 |22.5°|0.761| 136 | - - | 3.98

y, = -1.87 dB
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K = 3.50 bivsym, g=1, d°

TABLE 2.22(b)
TRELLIS CODED 4x16PSK

= 0304, N = 4 (2x16PSK).

v E h3 hz hl ho InV- dfree free d:exl next .Y (dB)
111 - - 1 3 (22.5°/0.586| 80.609| 64| 2.84
2{2] - 2 1 5[22.5°|0.609| 40| - - | 3.01
3(2] - 04 02 11 {22.5°/0.609| 8 [0.890| 32| 3.01
4/3| 14 04 02 21 [22.5°/0.890| 16| - - | 4.66
5(3| 24 14 02 41 |22.5°]0.913] 64| - - | 4.77
63| 014 024 042 103 [22.5°]1.172| 24 [1.218|1088 | 5.85
Y = -2.17 dB
TABLE 2.22(c)
TRELLIS CODED 4x16PSK
K = 3.25 bit/sym, q=2, d’ = 0.586, N = 8 (4x16PSK).
V E h4 h3 h2 hl ho Inv. d?ree free rzlcxl next Y (dB)
11 - - - 1 3122.5°/0.609| 8 |0.890| 32| 0.17
2 - - 3 1 5122.5°|0.890| 16| - -] 1.82
2| - - 06 02 11 |{22.5°|1.172] 24 {1.195| 64| 3.01
2| - - 02 06 11 | 45° |1.172| 24 |1.218| 64| 3.01
4131 - 04 06 12 21 [22.5°|1.172| 8 ]1.218| 32| 3.0l
54| 10 04 06 22 41 [22.5°]1.218] 16| - - | 3.18
64| 050 030 024 016 101 |22.5°|1.499| 72| - - | 4.08
v, = 0.35 dB
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TABLE 2.22(d)
TRELLIS CODED 4x16PSK
K = 3.00 bit/sym, q=3, d’ = 0.586, N = 2 (1x8PSK).

v|k| b’ }f h' h° | Inv. qjm N 1IN LY @B)
11| - - 1 3|45 |1.172| 24|1.218) 64| 3.01
202 - 2 3 5 |22.5°|1.172| 8 |1.218] 32| 3.01
3|3| 02 04 03 11 |22.5°1.218] 16| - - | 3.18
4|3| 04 10 06 21 [22.5°|1.781| 48| - - | 4.83
5|3| 22 16 06 41 |22.5°|1.804| 24| - - | 4.88

3] 24 14 02 43 | 45° [1.827| 64| - - | 4.94
63| 050 024 006 103 |22.5°|2.0 8 [2.343| 64| 5.33

Y, = 0dB

140 Mbit/s. However, with the equivalent rate 7/8 code with 3x8PSK
modulation, the bit rate will be L =3 times as fast, ie, 420 Mbits.
The branch metric calculator, though, will be more complicated due to
the  larger  number  of  parallel transitions between  states.
Alternatively, one could build a decoder operating at a 20 MHz speed
and achieve the same bit rate of 140 Mbit/s. In addition to providing
decreased decoder complexity, this multi-D code has an asymptotic
coding gain which is 0.56 dB greater and is 90° transparent, compared
with a 180° transparency for the PTVTC [48].

Although the decoding complexity of the Viterbi algorithm is
measured in terms of ZV*E/L, for multi-D schemes the complexity of
subset (parallel transition) decoding must also be taken into account

due to the large number of pérallel transitions.
' zk-i

The Viterbi decoder must find which of the parallel

transitions is closest, in a maximum likelihood sense, to the received
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signal. A brute force method would be to determine the metric for each
of the ZR'E paths and then find the minimum. This would involve at
least 2"';-1 comparisons. Since  there  are 2E+l sets of  parallel
transitions, a total of 2**- 2! comparisons would be required. For
large k and small k, this is an unacceptably large number of
computations.

Fortunately, as shown in [23] for binary lattices, it is possible
to greatly reduce the number of computﬁtions required. In fact, the
decoding scheme becomes very similar to Viterbi decoding, except that
finite length sequences are used.

To illustrate this we will present the decoding scheme for
TC-2x8PSK  parallel transitions with k =2 and an efficiency of 2.5
bit/sym (a rate 5/6 code). There are eight sets of parallel
transitions, with eight paths in each set. Figure 2.12 shows the
parallel  transition decoding trellis for z =[0 0 0] (e, the three
Isb’s are set to zero). In Figure 1.2, we use the notation AQ to
indicate the whole 8PSK signal set, which divides into BO and Bl (4PSK
signal sets rotated 45° from each other). BO divides into CO and C2
(2PSK signal sets rotated 90° from each other), and Bl divides into Cl1
and C3. This notation is also used in [65] for partitioning an 8PSK
signal set. Each segment in Figure 2.12 thus represents two parallel
lines. The length of this trellis equals the dimensionality L =2 of
the signal set.

The path COxCO corresponds to those four paths that have 2 =0

and C2xC2 corresponds to those four paths that have 2 =1, giving a

total of eight paths. To decode, hard decisions can be made for CO and

4 5

C2 for each time period, from which the values of z and z° can be
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Co Co

C2 C2

Figure 2.12: The parallel transition decoding trellis
forz = [0 0 0] and the 2x8PSK signal set.

determined. For example, say that COxCO decodes into the points 04,
with a metric of m, and C2xC2 decodes into the points 66, with a
metric of m , where the metrics are the sum of the Euclidean distances
(or log-likelihood metrics for a quantized channel) from the first and
second received points. After comparing the two metrics, if m, < m,
then 22 =0 and the point 04 would give z*=1 and 2’ = 0 (see Table
2D If m, > m, then z° = I, and the point 66 would give z' =0 and
2 = 1. This is equivalent to the add-compare-select (ACS) operation
within a Viterbi decoder.

To decode the other sets of parallel transitions, the cosets
formed by z°, z', and z* can be added to the trellis paths COxCO and
C2xC2 to form the required trellis. This is illustrated in Figure 2.13,
where the ending state in the trellis indicates which set of parallel
rransitions is being decoded. In this example, there are a total of
eight hard comparisons and eight ACS type comparisons. These 16
comparisons compare with the 56 comparisons required in a brute force
approach, a 3.5 times reduction.

The above maximum likelihood method can be applied to other codes
where a Viterbi like decoder can be used to decode the parallel

transitions. With this method, the complexity of decoding the parallel

transitions can approach the complexity of the rate k/(k+1) Viterbi
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111

Figure 2.13: The full parallel transition
decoding trellis for the 2x8PSK signal set.

decoder. A simpler approach may be with large look-up tables using
ROM’s. The ROM itself would output the k - k bits of the chosen path,
along with the branch metric for that path. For the TC-2x8PSK example
given previously, we could use one ROM for each set of parallel
transitions. If the ROM’s had eight bit words, then three bits could be
used for the decision, and the remaining five bits for the branch
metric. A total of eight ROM’s would then be required, one for each set
of the parallel transitions.

When using ROM’s, it is desirable to reduce the number of bits
(b) required to represent each received 2-D signal point, since there
are a total of bL bits required to address the ROM. One way to reduce b
is to convert the ‘“checkerboard” (rectangular) type decision boundaries
that result from separate quantization of the inphase (I) and
quadrat\jrc (Q) components to ‘“pie chart” (radial) type decision

boundaries. For example, if four bits are used in I and Q for an 8PSK

IO SV VSR B TR, calin ks

L [Ii
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signal with checkerboard decision boundaries, a pie chart pattern as
shown in Figure 2.14 may be used instead with a total of five bits to
represent each point (a reduction of three bits). A ROM may be used to
do the conversion, or the pie chart pattern may be already available as

polar coordinates from a digital demodulator.

Figure 2.14: Pie chart decision
boundries for 8PSK (32 regions).

A problem with TC-LxMPSK is the need to synchronize the decoder
with the L 2-D symbols on each trellis branch. For q = 0, most codes
are fully transparent. The decoder performance can then be used to find
the correct synchronization with the received sequence. For q > 0, many
codes are not fully transparent, and the decoder will need 10
synchronize to one of the 2°L possibilities (which can be quite large
for some codes). However, one can take advantage of the fact that not
all signal points are used for q > 0. For example, the 2x8PSK signal
set with g =1 consists of the signal sets BOxBO or BIxBl. The
synchronizer would find the smallest distance between a received pair
of points and the expected signal set. These distances would then be
accumulated over a sufficient length of time to make a reliable

decision on the symbol timing.
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If we let each signal point be represented by its phase (since
the amplitude is constant for 8PSK), we can write
BO = (0°90°,180°270°), and Bl = (45%135°225°315°). Let ¢' and ¢
represent the phase of the first and second received symbols,
respectively. The synchronizer distance metric is then given by

® = min min |¢’-a‘ + min |¢*Bl).

" ie(o.1) [aeBi " BeBi ” ]
In the synchronized noiseless case, <I>n will equal zero. In the
non-synchronized noiseless case, there are two possible outcomes for
CDn, i.e., complete matchup (CI>n = 0° and only one signal is matched
(CI)rl = 45°). If each possiblity is equally likely, then the average
value of CDn is 22.5°. With noise, ® can be accumulated over a
sufficient length of symbols to take advantage of this average phase
distance  between the non-synchronized and  synchronized cases to
reliably determine symbol synchronization. This symbol synchronization

is independent of the Viterbi decoder, so the decoder must only

determine phase synchronization.

2.2.9 Discussion

In order to make a comparison of all the codes listed, a plot of
nominal coding gain y' = 1010gl 0 dim verses complexity
B = logz(ZV*E/L) =V +k- logL) for each code found is made. These
plots are given in Figure 2.15 for effective rates of 1.0 (with 4PSK
modulation), 2.0 (8PSK), and 3.0 bitsym (16PSK), Figure 2.16 for
effective rates of 1.5 (4PSK), 2.5 (8PSK), and 3.5 bit/sym (16PSK), and
Figure 2.17 (for the remaining rates). (Note that these graphs do not

gl a w1 4 I )
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Figure 2.17: Plot of 10 log 10 d 7, verses complexity 8 for K = 1.25, 1.33, 1.67, 1.75,
2.25,2.33, 2.67, 2.75, 3.25, 3.33, 3.67, and 3.75 bitsym.
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take  into account  the  additional complexity due 1o parallel
transitions.) Some one state (“uncoded”) codes are included as well.
These one state codes correspond to block coded (or multilevel) schemes
that have recently become an active research area
[5,11,13,27,31,34-36,41,59,61,63,80].  Although the multi-D  one  state
codes have negative complexity (compared to trellis codes), they can
achieve coding gains above 0 dB. There has also been research in
multi-level schemes which ﬁse convolutional coiciie’sdr[78].

Note from Figure 2.15 for TC-Lx8PSK, K = 2.0 bit/sym, and v = 1,
that as L increases the complexity decreases and “{' increases,
eventually reaching 6.0 dB for L = 4. Thus, for the 8-D signal set, the
complexity factor can be reduced by a factor of four, while maintaining
Y, compared to the TC-1x8PSK code with v = 2. Beyond B =4 ( and
¥ = 6.0 dB), increases in asymptotic coding gain are achieved with the
new codes that have been found. With L =4, a ceiling of Y =90 dB
will be reached due to the nature ‘of the set partitioning. It would
seem that very complex codes are required (B > 15) if this 9.0 dB limit
is to be exceeded.

Figure 2.15 also shows the Lx16PSK codes with effective rates of
3.0 bit/sym. For small P, the same effect observed for TC-Lx8PSK and
2.0 bit/sym occurs. That is, [ decreases and Y increases as L
increases. Between B =3 and =9, the L =1 and L = 2 codes are very
close.

Figure 2.17 illustrates the wide range of performance that can be
achieved with the codes found. One can choose from a high rate code
with 3.75 bit/sym (but requiring a large amount of power) to a low rate

code with 1.25 bit/sym. In choosing a code, a designer may start with a
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required K in order to obtain a certain bit rate through a bandwidth
constrained channel. A trade-off can then be made between decoder
complexity and the reduction in SNR that can be achieved with the codes
found. Simulations or theoretical calculations of a few selected codes
may also be made in order to obtain a more realistic assesment of the
performance available.

Note that many codes have the same asymptotic coding gain for
increasing  complexity. In  reality, these codes do increase in
performance with increasing complexity due to a decrease in number of
nearest neighbors. This is especially noticeable for low SNR where the

effect of nearest neighbors becomes more important.

2.3 Conclusions

An efficient method of partitioning multi-dimensional MPSK signal
sets has been prgsentqd that leads to easily implemeted multi-D signal
set mappers. When these signal sets are combined with trellis codes to
form a rate k/(kk+1) code, significant asymptotic coding gains in
comparison to an uncoded system are achieved. These codes provide a
number of advantages compared to trellis codes with 2-D signal sets.
Most importantly, K can vary from I-1 to I-(1/L) bit/sym, allowing the
coding system designer a greater choice of data rates without
sacrificing data quality. As K approaches I, though, increased coding
effort (in terms of decoder complexity) or higher SNR is required to
achieve the same data performance.

The analytical description of muld-D signal sets in terms of

block code cosets, and the use of systematic convolutional encoding,
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has resulted in an encoder design (from the differential encoder to the
2-D signal set mapper) that allows many good codes to be found. This
approach has also led to the construction of signal sets that allow
codes to be transparent to multiples of 360°/M phase rotations. In
general,” increasihg ;)haﬁsc transparenéy uéﬁﬁly resulrts in lower code
performance, due to more nearest or next nearest neighbors or smaller
free distance.

Another advantage is decoder complexity. As a Viterbi decoder
decodes k bits in each recursion of the algorithm, the large values of
k of codes using multi-D signal sets allows very high bit rates to be
achieved (compared to convolutional codes that map only into a 2-D
signal set). The large number of branch metric computations can be.
reduced either through the use of a modified Viterbi algorithm or large
look up tables. A method has been presented that uses the redundancy in
some signal sets to achieve symbol synchronization at the decoder for

codes that are not fully transparent.
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CHAPTER THREE
TRELLIS CODING WITH MULTIDIMENSIONAL QAM SIGNAL SETS

The first work on trellis coding with Quadrature Amplitude
Modulation (QAM) signal sets was presented by Ungerboeck in [65]. This
work was extended in [58,72] for two-dimensional (2-D) signal sets and
in [8-10,12,22-25,55,64,68,74] for multidimensional (multi-D) signal
sets. The reason for the large activity in this area is due to the
advantages that coding with an expanded signal set allows, viz.,, high
bandwidth efficiency at a reduced Signal-to-Noise-Ratio (SNR) compared
to an uncoded system.

Many of the codes presented in the literature have been found in
an ad hoc manner. There has been no attempt, as far as the author is
aware, to find the best codes with the fewest number of nearest
neighbors. Also, many authors use infinite size signal sets in the
design of their codes. Although this simplifies the search for good
codes and leads to an easier understanding of multi-D signal sets, the
codes produced may not be optimum for practical finite size signal
sets.

This chapter addresses this problem and presents the results of a
systematic code search for trellis codes with multi-D QAM signal sets.
The 2-D signal sets used in the construction of the multd-D signal sets
range from 16 to 512 points and were designed to have minimum energy,

be 90° rotationally symmetric, and be suitable for partitioning. Where
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possible, the signal set selected is the same as that commonly used in
the literature and practical implementations of TCM schemes.

Only rate k/(k+1) codes are used in the code search. Rotationally
invariant nonlinear codes for the 2-D signal sets presented in this
chapter are given in Chapter 5. Also, the codes presented all have
signal sets with 2! signal points, where I is an integer greater than
zero. Some of the advantages of multi-D signal sets are: possible 90°
phase invariance, lower coding complexity, and non-integer bandwidth
efficiency (K bits per 2-D symbol, or bit/sym). The multi-D signal sets
were constructed by a method similar to that in Chapter 2, ie,
through the use of cosets.

In our code search we sought to find the codes which have the
largest ‘minimum free Euclidean distance (dfm) and of those codes, the
code with the smallest number of nearest neighbors (N ). In this way
we maximize the asymptotic coding gain (y) and minimize the probability
of _event  error (Ee) at ”,high_ B S!}IR.V There are usually twov_v_cliffer_lie'm
possible phase transparencies for a linear code, and the best codes for
each phase transparency are presented. The values of K range from 3 to
8 bit/sym, with signal sets up to eight dimensions for 16QAM and
32CROSS, six dimensions for 64CIRC, four dimensions for 128CROSS and
256CIRC, and two dimensions for 512STAR. (The 64CIRC, 256CIRC, and
512CROSS are new 2-D signal sets.) The codes have Y ranging up to 6 dB.

3.1 Construction of 2-D QAM Signal Sets

In designing the 2-D signal sets used in this chapter we

considered three criteria. The most important is that the signal set
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can be partitioned such that the minimum squared subset distance (MSSD)
at partition level i, 6?, is as large as possible. The values of i
range from O for the full signal set to i =1 where there are M = 2!
subsets, with each subset having a single point (and 8? = o0). We will
be using a binary partitioning where each subset is divided into two
equal size subsets (in terms of the number of points) at the next
partition level.

This can be achieved with rectangular or QAM signal sets. These
signal sets are finite subsets of the Z° + (0.50.5 infinite size
signal set (z is the set of all integers). Letting 8; be normalized to
one, we then have 5?” = 28?, for 0 <i<I-1 (for finite signal sets
there is usually some i for which this is not true). As shown later, we
can obtain good codes as long as 8? =2, 8; = 4, and 8; = 8.

The second criterion is to choose the shape of the signal set to
maximize the shaping gain, i.e., determining where the signal points
are placed so as to minimize the energy of the constellaton. From
[65], we note that the lower bound on dim for many trellis codes 1is
28?. This indicates that we should first design a 2H point signal set
that has minimum energy (and thereby maximize dim).

The third criterion is that the signal set should have 90°
rotational symmetry. This allows a demodulator to only have 10 lock
within a 90° range, resulting in faster lock times [24]. This cnierion
can be incorporated into the above criteria by designing a 2H! point
constellation that is 180° rotationally —symmetric. By rotating  this
signal set 90° to form the second subset, a 90° symmetric 2" point
signal set is obtained. The 2t point subset should not have any

points that map onto points in the subset produced by a 90° rotation.
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This prevents the 2! point signal set from having 83 = 0.

The method followed was to design the 2! point subset from a
finite subset of the 2°%(Z* + (0,0.5)) infinite lattice. This  signal
set has points along the vertical axis, but none along the horizontal
axis. In practice, a subset of the 2 + (1,0) infinite lattice is used
in order to avoid working with fractions.

After obtaining the 2! point signal set, we rotate the entire
signal set by 45° to obtain our final rectangular signal set. The
reason for this 45° rotation is to reduce the numbgr of points in the
inphase and quadrature components of the signal set. This results in a

simpler modulator design.

3.1.1 Construction of 4, 8, 16, and 32 Point Signal Sets

Although codes are not given for the four and eight point signal
sets, we will present their construction since they provide insight
into the problem of constructing good signal sets. To construct a four
point signal set, we start with the BPSK signal set and rotate it by
90° to form the second subset. Rotating these two subsets by 45° gives
the QPSK signal set.

Figure 3.1 shows the three steps needed to obtain the eight point
signal set. This signal set does not produce good codes because of its
high energy (the energy E8 = 1.5 with Sg = 1). This results in dim
having a lower bound of 282’/!-38 = 2.667 (signal set energy normalized to
one). Compare this with naturally mapped 8PSK where dim has a lower
bound of 4. The 8PSK signal set can be constructed in a similar fashion
to the rectangular signal sets. That is, we start with the QPSK signal

set (where there are no points on the vertical or horizontal axis),
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rotate the set by 45° (instead of 90°) to obtain the second subset, and

then rotate these two subsets by 22.5° to obtain the final signal set.

. ® 4 10
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(@) (b) ©

Figure 3.1: Construction of an eight point signal set.

Another eight point signal set is 8AMPM (which is 180°
rotationally symmetric). This signal set has an energy of E; = 1.25
(for 5; = 1). Thus, the lower bound for codes using this signal set is
25?/5; = 3.2. This is better than the 8QAM signal set constructed
previously, but still worse than 8PSK. The 8AMPM signal set has
5(2/E; = (0.8, compared with 0.586 for 8PSK. Thus, it appears that for a
suffuciently large rﬁcmdry encoder, the SAMPM codes may be able to

“catch up” to the 8PSK <codes due to larger “in-between” distances
(i.e., 2-D symbols that are seperated by 8: between trellis path
pairs). A total of (4-3.2)/(0.8-0.586) = 3.7 in-between distances would
be required to make up the difference.

The eight point signal set seems to be the only case where the
best signal set is not rectangular. For I 2 4, our construction method
works very well. Figure 3.2 illustrates the construction sequence of
the 16 point signal set. In this case we start with the SAMPM signal
set to form the standard 16QAM signal set. This example illustrates the

reason for rotating the signal set by 45° In the unrotated signal set
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there are seven different amplitude levels along each axis (requiring 3
bits to represent each axis), whereas the rotated signal set has four

amplitude levels (requiring only 2 bits per axis).

4 o4 e ® 040 ©
® ¢ o ® ¢ o o ole o
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- ® 4 @ @ 40 ©
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(a) (b) (c)

Figure 3.2: Construction of a 16 point signal set (16QAM).

For the 32 point signal set, the starting signal set is 16CROSS
(which has the same energy as 16QAM). This gives the standard 32CROSS
signal set. The 16QAM and 32CROSS signal sets are illustrated in

Figures 3.3 and 3.4, respectively.
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Figure 3.3: Partitioning of 16QAM signal set.

The bits yo,yl,...,yr'1 are used to represent each point in the
signal  set and comespond to  the 1%, 2™, ™ levels of

partitioning. We use three shadings of points to illustrate the first
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Figure 3.4: Partitioning of 32CROSS signal set.

three levels of partiioning. The black points represent the first
level subset with y° = 1 while the white and gray points represent the
first level subset with y’ = 0. The gray points represent the second
level subset with y0 = 0 and yI = 0.

Bits y° and y' are used to label the first two levels of
partitioning. The remaining  bits, y?',...,y“ are given in  integer

i'zyi) next to the points in the grey second level

notaton (y" = ZL; 2
subset. Let a’Qy' + yo) represent a subset at the second partition
level. Thus, m2(0) is the first subset (which is given by the gray
points). By rotating ©%0) 90° we obtain «’(1). Rotating w’(1) by 90°
gives @*2), and so on. In this way, the whole signal set can be
constructed from «’(0). We call this a “natural” mapping since the bits
y° and yl are changed in exactly the same manner as in naturally mapped
QPSK.

Let 0)2(2y: + y‘:) represent the subset that results from rotating
0’@2y' + y%) by 90°, where yi and y? are the bits correponding to the

rotated subset. Then
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zyi + y’i =2y +y° + 1 (mod 4). 3.1

We can also express yl and y0 in binary notation. That is,
r r

= y0 &1= y°, (3.2)
=y' &y’ (3.3)

e O

Since the <y  bits stay with their signal sets after a rotation, the
bits yz,...,yr'1 are unaffected by a phase rotation (i.e., yir = yi, for
2 <i<I-D.

The y’ labels an Figures 3.3 and 3.4 are such that we try 1o
double af with each partition. The 16QAM signal set has & =2' for all
i. The 32CROSS signal set has é5f=2i for i=0 to 3 and & =38
(instead of 16). All the signal sets in this section (QPSK, 8PSK,
16QAM, and 32CROSS) are well known and have been used in practical
communication systems. The following section describes the construction

of four larger signal sets, three of which are new.

3.1.2 Construction of 64, 128, 256, and 512 Point Signal Sets

Using the mgthod described at the beginning of this chapter, we
obtain the 64 point signal set as shown in Figure 3.5. This is
basically a 64QAM signal set, except that we have taken a point from
each comer and placed it at a less energetic point. The energy of this
new signal set (which we have named 64CIRC) is 10.25. This is less than
the energy of 64QAM which is 10.5 (a 0.105 dB differen_ce). This signal
set has 8 = 2' fori = 0 to 4 and & = 16 (instead of 32).

For the 128 point signal set, the construction was more

difficult. The minimum energy 64 point signal set was found to have
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Figure 3.5: Partitioning of 64CIRC signal set.

Si = 4. Some of the outer points had the same energy, and so there were
several _ways _ to construct different signal sets with the same minimal
energy. All of these were found to have 6: = 4 (instead of 8). A
suboptimum signal set was then found (with the next smallest energy).
There were two constellations, one of which is the 128CROSS signal set.
This is the signal set given in Figure 3.6. The 128CROSS signal set has
an energy of 20.5 (compared with 20.4375 for the minimal energy signal
set). The difference between the two signal sets is only 0.013 dB, a
negligible amount. The 128CROSS signal set has 8? =2 for i=0 to 5
and & = 32 (instead of 64).

The 256 point signal set has only one solution. Figure 3.7
illustrates the constellation which we have named 256CIRC. The 256CIRC
signal set has an energy of 40.6875 compared to the 42.5 for 256QAM.
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Figure 3.6: Partitioning of 128CROSS signal set.

The difference in energy is 0.189 dB. We have 5? =2 for i=0 to 3,
with 82 = 8 for i = 4 t0 6, and & = 64.

As for other signal sets with an odd number of points, the
“opdiﬁum’; signal set for 512 points (in terms of energy) could not be
found with 5; = 8 (the best was 5: = 4), A “suboptimum” ;sirgnal set was
found with an energy of 81.6875. The optimum signal set has an energy
of 81.546875, a difference of only 0.007 dB. Figure 3.8 gives the
signal set and its partial two-way partiion. We have called this
signal set SI2STAR. This signal set has & =2' for i=0 tw 4,
8 = 16, 8, = 16, & = 80, and § = 128.
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Figure 3.7: Partitioning of 256CIRC signal set.
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3.2 Trellis Coded Multi-D QAM Design
In this section we will describe how multi-D QAM signal sets are
constructed. Also, the general encoder system and the results of our

code search are presented.

3.2.1 Construction of Multidimensional QAM Signal Sets

The method used to construct the 4-D, 6-D, and 8-D signal sets is
very similar to that described in Chapter 2 for multidimensional MPSK
signal sets. We will assume that the reader is familiar with this
construction method.

The length L block codes used in our construction are the same as
those given in Chapter 2. Table 3.1 gives the minimum squared subset
distance (Ai) and the generator (") at partition level p for the
multi-D 16QAM signal sets. To obtain the cosets for the larger size
signal sets, the generators in Table 3.1 are used along with an extra
(I-4)L cosets. For example, the extra cosets for 4-D 32CROSS would be
" = © 16 and ()" = (16 16). For the 8D signal sets, the

order of the cosets changes slightly. For 8-D 32CROSS we have (1)
© 00 16)7, 5T = 38 888, @' = (0 0 16 16)", T
0 16 0 16)", and ()T = (16 16 16 16)".

The total number of bits used to map a multi-D signal set is
equal to IL (where L is the number of 2-D signal sets). This may be
reduced by q bits (q <L) for lower code rates. In the search for good
trellis codes, the computation of the Euclidean weights is proportional
to 29 We have limited IL-q to at most 17 (2**  computations);

otherwise the code searches would have taken too long.
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TABLE 3.1
SUMMARY OF Lx16QAM PARTITIONS

L =2 L=3 (1) L=3 (II)}{L=3 (III) L =4
PartitionfMSSD |gen. [MSSD|gen. {MSSD |gen. |MSSD|gen. |MSSD | gen.
Level (p)| (A2) | (tPJ) (AZ)|(tPF] (A2) [(ePF) (A2 |(tPF) (a2) | (e7]

0 1 01 1 111 1 001 1 001 1 {0001
1 2 11 2 110 1 011 1 011 2 0011
2 2 02 2 | 01n 2 | 222 2 | 002 2 (0101
3 4 22 2 | 222 3 111 2 | 022 2 {0002
4 4 04 4 | 220 4 | 220 3 111 4 |1111
5 8 44 4 | 022 4 | 022 4 | 444 4 0022
6 8 08 4 | 444 4 | 444 6 | 222 4 0202
7 16 88 8 | 440 8 | 440 8 | 440 4 0004
8 - - g8 | 044 g8 | 044 g | 044 8§ 2222
9 - - 8 | 888 8 888 8 888 8 (0044
10 - - 16 | 880y 16 | 880 16 | 880 8 {0404
11 - - 16 | 088] 16 | 088 16 | 088 8 {0008
12 - - - - - - - - 16 [4444
13 - - - - - - - - 16 |0088
14 - - - - - - - - 16 0808
15 - - - - - - - - 32 |8888
P, P, 1 3 0 3 3 2 4 6 4 8

The main difference in terms of signal mapping between MPSK and
QAM is the effect of phase rotations on the mapping. For MPSK, all bits
yo,yl,...,yl'l are affected. For QAM signal sets, as shown in Section
3.1.1, only the two least significant bits are affected.

To describe how the generators are added to form the multi-D
signal set, we first introduce some notation. Let z° to z=%' be the
IL-q bits that map into the multi-D signal set. The integers Ypeees¥y
are the representations of each 2-D point in the 2L-D signal set. That

is,

T
y. = L, 2y, (3.4)
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where y; € {0,1). In general, a muli-D point y = [yl,...,yL]T is

expressed as follows,

L L.
y=|:]=.Z 2Z%, (3.5)

where 0 £ q < L. The summation in (3.5) can be taken in a number of
ways. Since the signal sets in this chapter are 90° symmetric (that is,
there are four rotational symmetries), some of the cosets in (3.5) are
added modulo-4, while the remaining cosets are added bit-wise modulo-2.
Using the preferred method of addition, and assuming q = 0, we
can express (3.5) as
% N
-l =@z +z);1 +2{g1]+{g0} (mod 4){ +
YL
2"(h |} +-+ 8(h) + 4{h}, (3.6)

. . P P
where P, and P, correspond to those partition levels where t® and t

1
equal the vectors [1,1,..., 1]T and [2,2,...,2]T, respectively. The
terms g and g, correspond to the modulo-2 sum of cosets with some (but
not all) one’s or two’s in the coset. All the other cosets are added
modulo-2 and are indicated by the terms h2 to h“.

After a 90° phase rotation and assuming q = 0 we have

i.e P, P 1
. =12z +z + || + 2{g1) + {go} (mod 4)| +
yL r 1
' I .
2 {h“] 4t 8{h3} + 4{h2}, 3.7
7 , Po Po
where y,, toy, are the rotated 2-D symbols. That is, 2" =12 @1

P P P
and z'=z' ®z° All the other mapping bits are unaffected by the

T
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phase rotation.
Equation (3.6) can best be illuswrated by an example. This will
show how we can use the mod-4 and mod-2 additions to form our multi-D

signal set. We will use the 3x16QAM (I) signal set from Table 3.1.

Thus, the mapping equation is (with q = 0),

Y, ] 8 8 0 4 4
y z!! + 28 +2|8] + 2|4 + z 4|l + 28l4] +
y2 8 0 8 4 4
3

1}
00 00 O
o

0] 2 0 1 1
2121 + 22| + 22| + 2] + 21 + 1
2] 0 2 1 0 1
3 o1 50 41 20 11
= {2z + 2)|1| + 24z’ |1] & z'|1|} + <z°|1| @ z |1]|} (mod 4)| +
1 1 0 1 0
0 1 1 0 1 1
8{z''l1]| @ 2°l1| @ 2|1|} + d2B|1| ® 2|1] @ 2°|1
1 0 1 1 0 1
3 01 47‘45 1212
= |Qz" + z)|1] + 2|z @Sz + |z EBzz (mod 4)| +
i z y4
9 10 - : 6 7
z &z Z Dz
823®zwezii+4z:®z7@z
z oD z z D z

Figure 3.9 shows how this mapper may be implemented. The values of P,

and P, for each type of multi-D signal set are also given in Table 3.1.

3.2.2 Encoder System

The encoder system is essentially the same as that given in
Chapter 2. The only differences are in the construction of the multi-D

differential

signal set mapper (described in section 3.2.1) and the

encoder (or precoder). Since only two bits are affected by a rotation,
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the precoder and differential decoder (or postdecoder) equations are
relatively easy to describe.

The encoders have rate (IL-q-1)/(JL-q) and can transmit I-(q+1)/L
bit/sym. The value q indicates how many least significant bits (Isb) in
the mult-D signal mapping are set to zero, as indicated in (3.5). A
block diagram of the encoder system that is used in this chapter is
given in Figure 2.8. We use the same notation, with w'(D) as the binary
input sequences to the precoder, x(D) as the binary input sequences to
the systematic encoder, zi(D) as the binary output sequences of the
encoder, and yj(D) as the integer output sequences of the signal set
mapper.

In order to determine which precoder to use for a code, we need to
determine the code transparency. Again, the technique used has been
previously described in Chapter 2. We will summarize the important
points here. Lctt{ng b0 = p,q and bx = P,q the transparency d = f +
E[Hbf(D)], where the largest value of bj <k is b, k is the number of
checked encoder  bits, Hi(D), for 0<i<k oare the parity check
polynomials of the code, and E[Hi(D)]' is the modulo-2 number of
non-zero delay terms in Hi(D). A code is then transparent to 29x90°
phase rotations.

The mapping bits that are affected by a 2x90° phase rotation are

b b b b b b b b

z° and z' (with zr°=z°®1 and zrl=zl$z°) for d =0, z'
b b

(with zr1 =z'® 1) for d =1, and no bits for d = 2. For codes with

d =2, no precoder is required. When d = 1, no precoder is required if
b
bl = 0. This is because z' =2 is the encoded bit for the encoder.

When bl > 0, the precoder equation is (from Chapter 2)
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b b b
x (D) = Dx (D) ® w (D), (3.8)

where wi(D), for 1<1i<IL-q, are the inputs to the precoder and

xi(D) wi(D) for all i not equal to bl. The postdecoder equation is

AP, AP
w (D) =D @ 1)x (D), (3.9)

Ab b
where x l(D) is the estimated sequence for x 1(D) from the decoder and
b
vlw\/ (D) is the resulting postdecoded sequence.

For d =0 (full transparency), there are two fypes of precoders.
From Chapter 2, we have for b0 > 0 the precoding and postdecoding
b b b b
equations (letting x(D) = 2x (D) + x (D) and w(D) = 2w '(D) + w "(D))
x(D) = Dx(D) + w(D) (mod 4), (3.10)

and
w(D) = (3D + 1)X(D) (mod 4). G.11)

The precoding and postdecoding equations for bo =0 are (letting
b

x(D) = x (D) and w(D) = wb‘(D)),

2x(D) = 2Dx(D) + 2w(D) + (D + 3)2°(D) (mod 4), (3.12)

and
2w®D) = 3D + 1)2x(D) + 2°(D)) (mod 4). (3.13)

3.2.3 Code Search Results

The code search was basically the same as in Chapter 2. The main
difference was in how the 2-D signal set is affected by a phase
rotation. The code search program was modified so as to read in a

subset and then rotate it by the required number of rotations to form
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the 2-D signal set. For the QAM codes, these subsets are given in
Figures 3.3 to 3.8, and rotations of 0° 90° 180° and 270° were made
to form the signal set. (An MPSK signal set is generated by rotating
the subset point [0 1] M times in increments of 360/M degrees.) The
construction of the muiti-D signal sets and the different code
transparencies were also incorporated into the program.

As in Chapter 2, we limited our code search to a code complexity
of v+ k<10 (v is the number of binary memory elements in the
encoder). The systematic encoder is the same as is Chapter 2. The
results of our code search are listed in Tables 3.2 to 3.17. Each table
provides the following information:

The spectral efficiency of the codes K (in bit/sym).

The minimum squared distance of the uncoded signal set (di) used
for comparison. This signal set is taken to be the smallest 2-D or
multi-D signal set which has the same K as the codes. In most cases
this signal set is the first subset of the first partition level.

The number of nearest neighbors for the uncoded signal set (Nu).
When comparing Nu for signal sets with different dimensionalities, one
should divide each Nu by the L of its signal set. This normalizes N to
two dimensions.

The memory (v), number of checked bits (k), parity check
polynomials in octal notation (h° to hi), phase invariance, minimum
free squared Euclidean distance (dim), number of nearest neighbors

(N_), and asympototic coding gain (y = log o(d";m/d:) ~dB) of each

free
code is given. For comparison purposes, N__ should be divided by L to
normalize N to two dimensions.

When dfm occurs along parallel transitions, the next nearest
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squared Euclidean distance (d:m) and number of next nearest neighbors
(N _) are also given.

For comparison to 2-D signal sets with an integer value of K, the
terms at the bottom of each table can be added to y. This will give the
adjusted asymptotic coding gain.

In Tables 3.2, 3.3(a), and 3.5(a) we have also given the number

of nearest neighbors for infinite size constellations (NTm), taken
from [68].
TABLE 3.2
TRELLIS CODED 1x16QAM
K = 3.0 bisym, d’ = 2, N = 2.25 (1x8AMPM).
2 I 0 2 2 oo
v E h h h Inv. dfree Nfree dnext free free Y (dB)
1|1 - 1 3 |360°f 3 | 3.375| - - - 1.76
2|1 - 2 5 1360°f 4| 2.0 5 |7.594 4 | 3.01
312 02 06 11 [180°f 5 | 3.781| - - - 3.98
2] 04 02 11 |360°| 5 | 3.656| - - 16 | 3.98
4121 16 12 27 [180°] 6 | 9.594) - - - 4,77
2] 16 04 23 |360°] 6 | 9.156| - - 56 | 4.77
52| 02 14 41 |180°] 6 | 1.891| - - 16| 4.77
2] 36 02 55 |360°] 6 1.812 - - - 4.77
612 026 042 117 |180°| 7 | 6.172| - - - 5.44
2| 060 004 123 |360°| 7 | 4.828| - - 56| 5.44
712| 050 132 255 |180° 8 {19.238} - - 344" | 6.02
2| 164 026 253 [360°| 8 |15.574| - - - 6.02
812 070 322 411 |180°| 8 | 2.387| - - 44’ | 6.02
Different code. Yepsk = 1.35 dB, Yoanem = 0.0 dB.

As the number of points in each 2-D signal set increases, the

maximum number of dimensions for which we give codes decreases, until



TABLE 3.3(a)

TRELLIS CODED 2x16QAM

K = 3.5 bisym, q=0, d’ = 2, N_ = 13.5 (2x16QAM).

120

T T T

=~ 4 3 2 1 0 2 2 oo
VV k| h h h h L Inv. dfree free dnexl next free Y (dB)
Iyt - - - 1 3 {180° 2 | 4.5 3 127.0 - 0.00
2{2( - - 1 3 590 3 (20.25 - - - 1.76
312 - - 04 02 11 [180°] 4 |29.312f - - 88 | 3.01
4121 - - 10 06 23 | 90°! 4 | 9.062] 5 |121.5 24°| 3.01
513 - 14 30 02 41 180°] 4 | 4.0 5| 60.75 - 3.01

3| - 16 24 06 53 360°| 4 | 4.0 | 5| 53.156| 8| 3.01

6(4/020 030 046 014 113 |180°| 5 |31.641 . - | 3.98
4]004 010 024 042 111 [360°| 5 [31.328 . 144°| 3.98
"Different code. Y, = 2.02 dB, ¥,,, ., = 0.67 dB.
TABLE 3.3(b)
TRELLIS CODED 2x16QAM
K = 3.0 bitsym, g=1, &’ = 2, N = 225 (Ix8AMPM).
End 3 2 i 0 2 2
vikl b h h h Inv. dfrcc free next next Y (dB)
1|1 - - 1 3 490° 4 | 29312} - - 3.01
21 - - 2 5 190° 4 9.062] 6 |91.125] 3.01
3121 - 04 02 11 [360°| 4 4.0 6 |56.953| 3.01
4131 04 14 06 23 [180°| 6 32.453) - - 4.77
31 02 04 12 21 [360°] 6 | 31.844] - - 4.77
5(31 06 14 22 43 [180°| 6 9.062| - - 4.77
613024 030 056 103 [180°| 8 |114.605| - - 6.02
713(034 044 106 203 [180°| 8 | 28.5 - - 6.02
31044 070 106 203 |360°| 8 | 23.797| - - 6.02
YszSK = 1.35 dB, Ysavem = 0 dB

1
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TABLE 3.4(a)
TRELLIS CODED 3x16QAM
K = 3.67 bisym, q=0, d’ = 2, N_ = 33.75 (3x16QAM D).

v|E| n® h? n' n® |Iv.|a? [N, |d | N |y (@B sie.
i1l - - 1 3]9e| 2| 1575| 3 [1080] 000 I
201} - - 2 5|9°| 2| 675! 3| 27.0]0.00 | 11
20 - 2 1 5 |30°] 2| 45 | - - | 0.00 | I
302 - 04 02 11]90°| 2| 225! 3| 20.25] 0.00 |1II
2| - 04 02 11 [360°| 3 | 37.125| - - |76 | 1
4l2] - 14 02 21 |180°| 3 | 2025 | - - 176 | 11
33| 01 02 06 11 |360°| 3 | 135 | - - 176 | 1
413 12 04 02 21 |180°| 4 |102.188| - -1 301 | T
513 24 14 02 41 [180°| 4 | 41.438] - .30t | 1
6|3 /024 042 010 105 {180°| 4 | 21.188] 5 [121.5 | 3.01 | I
Yepsk = 2.23 dB, Yearpm = 0.87 dB

we only give codes for the 2-D signal set for 512STAR. As mentioned in
Section 3.2.1, the reason for this is due to the large number of
computations associated with determining the Euclidean weights of each
multi-D signal point.

When Nfree or Nwu is taken into consideration in doing a code
search, different codes can result from different signal sets. For
example, the best v = 8 codes for 16QAM, 32CROSS, 64CIRC, 256CIRC, and
512STAR are all different. Therefore separate tables for each type of
signal set are given. With multi-D signal sets, codes with full
transparency appear due to the “spreading out” of the two bits that are
affected by a phase rotation.

Figure 3.10 is a plot of the asymptotic coding gains of various

codes with multi-D 16QAM signal sets compared to uncoded 8AMPM versus
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TABLE 3.4(b)
TRELLIS CODED 3x16QAM
K = 3.33 biysym, g=I, dj = 2, N_ = 675 (3x16QAM 1I).

Tl w4 3 2 1 0 2 2 sig.
vik| h* n’ h h h® |Inv.idt | N |d_ | Ny (dB)|.°
11| - - - 1 3]90° 2 225 | 4 20.25 | 0.00 |III

1l - - - 1 31{360° 3 | 23.625| - - 1.76 | 11
2|1 - - - 2 51360°] 3 | 135 5 68.344| 1.76 | II

2 - - 2 1 5]90°] 3 675 | 4 20.25 | 1.76 |III

21 - - 3 1 5 |180°| 4 |112313] - - 3.01 | I

20 - - 2 1 5 1360° 4| 87.0 - - 3.01 | II
3(2] - - 02 06 11 [180° 4 | 21.188) 6 |1139.062| 3.01 | II

3] - 06 04 03 11| 90°| 4 | 11.062] - - 3.01 |IIT
4(3] - 14 04 12 23 | 90°| 4 6.0 5 37.969| 3.01 {III
5/4| 04 30 10 22 47 | 90°| 5 | 21.875] - - 3.98 |III
6141022 006 066 010 133 | 90°| 6 |177.547| - - 4.77 |111

4|014 052 024 056 115 [180°| 6 [149.797| - - 4.77 |111

Vopsg = 181 @By Yy ypy = 0-46 dB

decéc-ic;r Vcoirrnple)rcrity (vr+ k i;gzL). Only the highest rrate‘ codes A for
each L are plotted, otherwise the figure would become too complicated.
The highest gains are achieved for the 2-D codes (which also has the
lowest K). Increasing L results in a decrease in coding gain since K
increases. However, the 3.75 bitsym codes appear to perform slightly
better than the 3.67 bit/sym codes.

In Tables 3.2, 3.3(a), and 3.5(a), note that the N __’s obtained
for the finite signal sets are much less than for the infinite size
signal sets. For the more complex codes, where the codes in [68] are
different than the ones we found, very large differences between the

me’s can again be seen. This illustrates the advantages obtained
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Figure 3.10: Plot of asymptotic coding gain (against uncoded 8AMPM)

versus complexity for some trellis codes with mult-D 16QAM signal sets.
when a code search finds the codes with minimum me. As we increase
the size of the signal set, the Nm’s asymptotically approach the
values for the infinite size signal sets. A good example are the v =2
codes for 2-D signal sets. We start with N = 2 for 16QAM and reach
N __ = 3.594 for 512STAR, where N7 = 4. |

An interesting code is the v =4 code in Table 5(d). This code
uses the 4x16QAM signal set and has K = 3 bit/sym. This sixteen state

code has y equal to 6.02 dB and is 90° invariant. Although the code has



[ [y i |
o @l 4

TABLE 3.4(c)
TRELLIS CODED 3x16QAM
K = 3.00 bitsym, q=2, & = 2, N_ = 2.25 (Ix8AMPM).
~ 4 3 2 1 0 2 2 sig.
vik| h h h h h Inv. dfree free dnexl next Y (dB) set
olof - - - - - 90°| 3 |13.5 - - 1.76 | 11
11 - - - 1 3 [180°] 4 [21.188] 6 [182.25 3.01 I1
2121 - - 32 5 90° 4 6.0 5 30.375| 3.01 |III
33| - 04 03 02 11 | 90°1 5 |14.875] - - 3.98 [III
413 - 04 06 12 27 | 90°| 6 |31.015| - - 4.77 111
53] - 30 14 16 43 | 90°) 6 5703 7 44.0 4.77 111
41 20 10 04 02 41 [180°| 7 |34.43 - - 5.44 | 11
6(4{024 010 004 042 101 |180°| 8 |77.805} - - 6.02 | 1I
41044 050 024 002 103 |360°| 8 |40.316] - - 6.02 | II
Yopse = 1:35 dB, 7,,,, = 0 dB
TABLE 3.5(a)
TRELLIS CODED 4x16QAM
K = 3.75 biysym, g=0, dj =2, N_ = 63 (4x16QAM).
o~ 3.2 .1 .0 2 2 oo
vk h h h h Inv. dfree free next next free Y (dB)
11 - - 1 3(90° 21| 27.0 216.0 - 0.00
2121 - 2 1 5 190° 2 9.0 162.0 - 0.00
3(3] 04 02 01 11 {90°| 3 | 945 - - 1.76
4|3 10 04 02 21 [ 90° 4 (402.875 - - 3.01
51(3 24 14 02 41 | 90°| 4 1159.875 - 496 | 3.01
6{3| 050 032 004 103 | 90°| 4 | 78.875 1215.0| 240°| 3.01
Different code, Yepsk = 2.32 dB, Yoarem = 0.97 dB
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TRELLIS CODED 4x16QAM

TABLE 3.5(b)

K = 3.50 bitsym, q=1, &’ = 2, N_ = 27 (4x16QAM).

v E h4 h3 h2 hl ho Inv. d?ree free tzlexl next 1 (dB)
111 - - 1 3] 90° 2 9.0 4 324.0 | 0.00
212 - - 2 1 5 90° 4 |402.875| - - 3.01
3(2) - - 04 02 11 ) 90°| 4 (159.875| - - 3.01
412 - - 12 04 23 ] 90°] 4 | 78.875| 6 [3645.0 | 3.01
53] - 14 34 06 41 | 90°; 4 38.375| 6 (2004.75] 3.01

3] - 04 14 22 43 |180°] 4 38375 6 |1822.5 | 3.01
614(014 006 056 022 103 | 90°| 4 18.125) 6 |{637.875| 3.01

Yo = 202 dB, ¥, = 0.67 dB
TABLE 3.5(c)
TRELLIS CODED 4x16QAM

- K = 3.25 bit/sym, g=2, di = 2, Nu = 9.0 (4x16QAM). -

~ 4 3 2 1 0 2 2
vik| b h h h h Inv. dfree free dnext next Y (dB)
1] - - 1 3] 90°| 4 |(159.875] - -] 3.01
211} - - 2 5 ]190° 4 | 78875 6 |729.0 3.01
3121 - - 06 02 11 | 90°| 4 | 38.375{ 6 |729.0 3.01

2 - - 02 06 11 [180°| 4 | 38.375{ 6 |364.5 3.01
413 - 10 14 06 21 | 90°| 4 18.125) 6 91.125] 3.01
5141 10 04 06 22 41 | 90°| 4 8.0 6 | 91.125] 3.01

YBPSK

= 1.70 dB, ¥,,,,,,, = 0.35 dB
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TABLE 3.5(d)

126

v

TRELLIS CODED 4x16QAM
K = 3.00 bit/sym, g=3, d: = 2, N = 225 (1x8AMPM). -
4 3 2 I 0 2 2 L
v E h h h h h Inv. dfrec free next next ‘Y (dB) ;
o h ) -
olo| - - - - - |90°| 4| 78.875| - - 3.01
11 - - - 1 3 [180°| 4 | 38.375| 8 [1640.25 | 3.01 -
2021 - - 2 3 5190°| 4| 18.125] 8 [1640.25 | 3.01 =
3130 - 02 04 03 11 | 90°| 4 8.0 8 [1127.672] 3.01 =
441 12 10 04 03 21 | 90°| 8 |734.628] - - 6.02 -
54| 26 22 10 06 41 | 90°| 8 [320.832] - - 6.02 _
6141056 042 020 006 101 | 90°| 8 |142.066] - - 6.02 =
Topsg = 135 By Yo py = 0 dB _
TABLE 3.6
TRELLIS CODED 1x32CROSS -
K = 40 bisym, d’ = 2, N_ = 2.875 (1x16CROSS).
[}
v E hz hl ho Inv. diree free d:exl free Y (dB)
1] - 1 3 [360°| 3 | 4.672] - ; 1.76 _
211] - 2 51360°| 4 | 2.5 5 113.432] 3.01
3121 02 06 13 |180°| 5 | 6.715| - - 3.98 _
21 04 02 11 |360°] 5 | 6.693] - - 3.98
4l2] 16 12 27 [180°| 6 [19.427| - - 4.77 =
2| 16 04 23 |360°| 6 |19.109] - - 4.77 -
s(2] 16 22 45 [180°| 6 | 3.75 | - - 4.77 =
2| 34 16 45 |360°| 6 | 3.438] - . 4.77 -
6121 026 042 117 |180°| 7 |13.003| - - 5.44 _
2| 036 064 115 |360°| 7 |11.118] - - 5.44 =
7121 050 162 211 |180°| 8 [45.124| - - 6.02 B
21 056 150 223 [360°] 8 |38.338] - - 6.02 =
8121 070 226 431 |180°| 8 | 5.154| - - 6.02
2| 272 304 455 |360°] 8 | 4.900| - - 6.02
Yismoss = 0-0 4B
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TABLE 3.7(a)
TRELLIS CODED 2x32CROSS
K = 4.5 bit/sym, g=0, dj = 2, N = 16.312 (2x32CROSS).

~ 4 3 2 1 0 2 2
vikl h h h h h Inv. dfree free! next next Y (dB)
1y - - - 1 3 |180°] 2 5.75 3 | 34.328]| 0.00
212 - - 1 3 5190°f 3 [26.508] - - 1.76
3121 - - 06 02 11 [180°| 4 |41.266| - - 3.01
4121 - - 10 06 23 | 90°| 4 [13.266f 5 [189.341] 3.01
513| - 14 30 02 41 |180°| 4 5.0 5 | 94.671| 3.01
31 - 16 24 06 57 (360°| 4 | 5.0 5 ] 83.34 | 3.01
614|004 014 020 046 113 |180°] 5 |50.659| - - 3.08
41004 010 024 042 111 (360°| 5 |50.620] - - 3.98
Y scross = 0.51 dB.
TABLE 3.7(b)
TRELLIS CODED 2x32CROSS
K = 4.0 bit/sym, q=1, di = 2.0, Nu = 2.875 (1x16CROSS).
I 3 2 1 0 2 2
vik| h h h h Inv. dfrec free next next b (dB)
111y - - 1 3 [90° 4 | 43.633| - - 3.01
211 - - 2 5190° 4 13.266f 6 |174.611| 3.01
3(21 - 04 02 11 |360°| 4 5.0 6 [111.069| 3.01
4131 04 14 02 21 [180°| 6 | 62.411| - - 4.77
3| 10 04 02 21 {360°| 6 | 61.893| - - 4.77
5|31 24 14 06 43 [180°| 6 18.240f - - 4.77
613|024 014 042 103 |180°| 8 |257.357| - - 6.02
7131034 044 106 233 [180°| 8 59.178| - - 6.02
31044 070 106 203 {360°| 8 55477 - - 6.02
=0 dB

Yl 6CROSS
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TABLE 3.8(a)
TRELLIS CODED 3x32CROSS
K = 4.67 bit/sym, =0, d: =2, N = 40.312 (3x32CROSS ).

viE[ n® n* n' on® |Tav.|d | N |d | N |y (dB) 2;%
1] - - 1 3|90 2| 19.188] 3 [137.312] 0.00 | I
201 - - 2 5|90°| 2| 8625 3| 34.328] 0.00 | II
21 - 3 1 5 |180°| 2| 7.922| - - | o000 |11
20 - 2 1 51360°| 2| 45 | - - o000 |11
3020 - 04 02 11]90°| 2| 2875 3 | 26.508] 0.00 |III
2| - 04 02 11 [360°| 3 | 48.344| - - 176 | 10
4l2] - 14 02 21 [180°| 3 | 25.746| - - 176 | 10
303/ 01 02 06 11 |360°| 3 | 17.164| - - 176 |10
413 12 04 02 21 |180°] 4 [143.566] - - 301 1
513 24 14 02 41 [180°| 4 | 60.189| - - 1301 1
6131024 042 010 105 |180°| 4 | 32.297| 5 [181.295] 3.01 | I

Yiscross = 0.67 dB

k = 4 (sixteen paths into every state) and a large N__ (183.657 when
nomalized to two dimensions) this code may be useful at high SNR where
its large free distance will be very important. Its decoder complexity
is six, the same as the 16 state code with a 2-D signal set, which has
1.25 dB less asymptotic coding gain and is 180° invariant.

For the larger size signal sets not given, the same codes fou.nd
for the corresponding smaller size signal sets can be used. For small
complexity, the codes are very likely to be optimum (for the critena
used). However, the larger the complexity, the more likely it is that
the existing codes are not optimum. However, these éodes are still
likely to be better than a code with maximum dim chosen at random

without regard to N_ .
free

a
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TABLE 3.8(b)
TRELLIS CODED 3x32CROSS
K = 4.33 bit/sym, gq=1, d: =2, N = 8.625 (3x32CROSS II).

viE[ 0* 0’ n? ' R |mwvd | Nl | Ny (dB) 2;%
11} - - - 1 3[o90°| 2| 2875 4| 30.367] 0.00 |III
1 - - - 1 3|30° 3| 31180 - - | 176 | 1
201 - - - 2 51360°| 3| 17.164| 5 | 120.885| 1.76 | II
20 - - 2 1 s5|o9°| 3| 8582 4| 31.041] 1.76 |III
2| - - 3 1 5 |18°| 4 |161.523] - - 301 1
20 - - 2 1 5|360°| 4 [128.515 - - 30111
302 - - 02 06 11 |180°| 4 | 32.297| 6 |2042.616 3.01 | II
3 - 06 04 03 11| 90°| 4 | 15.002] - - | 3.01 |1
4|3 - 14 04 12 23| 90°| 4| 75 | 5| 62.778) 3.01 |III
5(4] 10 12 32 04 41 | 90°| 5 | 37.935| - - | 3.98 |11
6|4 (022 006 044 010 133 | 90°| 6 |321.508] - - | 477 I
4|014 052 030 056 115 |180°| 6 [273.836| - - | 477 |1
= 0.35 dB

Yl 6CROSS

Changing the signal set mapping may also result in better codes.
For example, there is another 128 point signal set with the same energy
as 128CROSS. A code search with this signal set resulted in some codes

with a lower me than with 128CROSS. There are other multi-D signal

sets that have 2 points in each 2-D signal set where I is not an

integer [10,12,24,74]. The codes presented here can be used with these

signal sets as well. These signal sets are designed to map 2™

points
into 2L dimensions with minimum energy. The codes usually have
d:m = 4, which gives a fundamental coding gain of 3 dB. Extra gain is
achieved through the smaller size (and smaller energy) of the signal

sets. Cosets can be partially used in the construction of these signal



K = 4.00 bit/sym, q=2,

TABLE 3.8(c)
TRELLIS CODED 3x32CROSS

dj = 2, N = 2.875 (I1x16CROSS).

4 13 .2 1 0 2 2 sig.

v E h h h h h Inv. dfrec free next next Y (dB) set
0|0| - - - - - 90°| 3 17.164| - - 1.76 | 11
i) - - - 1 3 |180°| 4 322971 6 {294.605| 3.01 II
2121 - - 3 2 5 90°| 4 7.5 5 49.347| 3.01 |III
3131 - 04 05 02 11 | 90°| 5 24.668| - - 3.98 |III
4131 - 04 06 12 23 90°! 6 54.379| - - 4.77 111
513}t - 30 24 16 41 90°| 6 11.881| 7 84.531] 4.77 |[II1
41 02 10 04 22 41 [180°| 7 69.262| - - 5.44 | 11
6141034 024 014 042 101 |180°| 8 {171.597| - - 6.02 II
41044 050 024 002 103 {360°] 8 92,1921 - - 6.02 IT

Yiscross = 0 9B
TABLE 3.9
TRELLIS CODED 4x32CROSS
K = 4.00 bit/sym, g=3, di = 2, Nu = 2.875 (1x16CROSS).
~ 4 3 2 1 0 2 2
vik| h h h h h Inv. dfree free next next Y (dB)
0l0] - - - - 90°| 4 115.377 - - 3.01
111} - - - 1 3 [180° 4 59594 8 (3111.766| 3.01
2121 - - 2 3 5 90°| 4 26.531 8 13400.215] 3.01
3(3] - 02 04 03 11 | 90°] 4 10.0 8 (2434.473] 3.01
4141 16 12 06 03 21 | 90°| 8 |1571.475| - - 6.02
5141 26 22 14 06 41 90°| 8 686.798 - - 6.02
614056 042 020 006 101 | 90°; 8 | 290.952( - - 6.02
YIGCROSS = 0dB
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TABLE 3.10
TRELLIS CODED 1x64CIRC
K = 5.0 bit/sym, d’ = 2, N = 3.188 (1x32CIRC).

vik| r* n' n® |Inv. dim N, .. d_IN |y (dB)
11 - 1 31{360°| 3| 5.379| - - 1.76
201 - 2 5 1(360°| 4 | 2.875| 5 [17.145] 3.01
3(2] 02 06 11 |180°| 5 | 8.573| - - 3.98
2| 02 04 13 |360°| 5 | 8.566| - - 3.98
42] 16 12 23 |180°| 6 [25.815| - - 4.77
2| 16 04 23 |360°| 6 |25.637| - . 4.77
s{2] 16 22 45 [180°| 6 | 4.672| - - 4.77
2| 34 16 45 |360°] 6 | 4.492| - - 4.77
6/2| 064 042 115 |180°| 7 |17.668| - - 5.44
2| 036 064 123 |360°] 7 |15.634| - . 5.44
7|2| 024 116 205 |180°| 8 |67.858| - - 6.02
2| 164 026 253 |360°| 8 [59.375| - - 6.02
8(2] 124 204 413 [180°| 8 [10.147| - - 6.02
2| 272 304 523 |360°| 8 | 9.760| - - 6.02
= 0.0 dB.

Y32CIRC

sets also.

In implementing the codes given in the tables one may wish to
change various aspects of a code in order to simplify the encoder and
Viterbi decoder. One desirable aspect is the conversion of the
systematic (feedback) convolutional encoder to non-systematic
(feedforward) form. An algorithm for this conversion is given in [57].

The cosets may also be changed. Since all the codes presented
have parallel transitions, some of the «cosets for the parallel

transitions can be simplified since they do not play any part in



TABLE 3.11(a)
TRELLIS CODED 2x64CIRC

K = 5.5 bisym, q=0, d’ = 2, N_ = 17.766 (2x64CIRC).

4 3 2 1 0 2 2
v E h h h h h Inv. dfree free| next next Y (dB)
1y - - - 1 3 |180°f 2 6.375{ 3 | 38.443| 0.00
212 - - 1 3 5 190° 3 (29.979] - - 1.76
3{2 - - 06 02 11 [180°] 4 |48.347 - - 3.01
4121 - - 10 06 23 | 90°| 4 (15910 5 (232.012] 3.01
5131 - 14 30 02 41 [180°| 4 5.75 5 {116.006} 3.01
31 - 16 24 06 57 [360°| 4 5.75 5 1102.322] 3.01
6]4|004 014 020 046 111 {180°f 5 |62.280| - - 3.98
4004 010 024 042 111 {360°! 5 |62.268| - - 3.98
Yiscme = 0.41 dB.
TABLE 3.11(b)
TRELLIS CODED 2x64CIRC
K= 5.0 bit/sym, g=I, dj = 2.0, Nu = 3.188 (1x32CIRC).
i 3 2 1 [1] 2 2
vik| b h h h Inv. dfree free next next v (dB)
111] - - 1 3| 90° 4 52.218) - - 3.01
211} - - 2 5| 9° 4 15.910f 6 {231.461] 3.01
3{2{ - 04 02 11 (360°] 4 5.75 6 |148.116] 3.01
4131 04 14 02 21 |180°] 6 83.043| - - 4.77
3] 10 04 02 21 ({360°| 6 82.725| - - 4.77
5(3| 24 14 06 43 |180°| 6 | 24.860| - - 4.77
613(024 014 042 103 |180°] 8 |368.382| - - 6.02
713(034 044 106 233 |180°| 8 8§3.408| - - 6.02
3(044 070 106 203 {360°| 8 | 79.962| - - 6.02
YSZC!RC =0dB

132

|
Wil ow 1 | Wi W Ry wm o e

il

alll gl o e




C l (

("

TABLE 3.12

TRELLIS CODED 3x64CIRC

K = 5.00 bit/sym, gq=2, di =2, N = 3.188 (1x32CIRC).

viE[ n* n* b® b' n® v |d [N |d I N |y (@B) Sig.
olo] - - - - - [ooe| 3| 19222f - - 176 | 1
11l - - - 1 3 |180°| 4 | 39.105| 6 |369.473] 3.01 | II
2l2| - - 3 2 5|90 4| 8625 5| 61.269] 3.01 |1II
303 - 04 03 02 11| 90°| 5| 30.634| - .| 3.98 [III
4(3| - 04 06 12 23 | 90°| 6 | 70312 - - | 477 |m
s{3| - 30 14 16 41 | 90°| 6 | 16.193] 7 |114.183| 4.77 |1II
4120 10 04 02 41 [180°| 7 | 93.954| - - | 544 |1
6]4]034 024 014 042 101 |180°| 8 |245.520| - - 602 |11
41044 050 024 002 103 |360°| 8 |197.143| - . 60211

Y32CIRC=0dB

TABLE 3.13

TRELLIS CODED 1x128CROSS

K = 6.0 bit/sym, d’ = 2, N = 3.344 (1x64CROSS).

viE[ n* n' b’ |Inv.|d} | N :m (oo |Y (dB)
11| - 1 3|360°| 3| 6.061 - - 1.76
201] - 2 5|360°| 4 | 3.250| 5 |20.265| 3.01
3(2] 02 06 11 |180°| S5 |10.132| - - 3.98
2| 04 02 11 |360°| 5 [10.103] - - 3.98
42| 16 12 27 [180°| 6 [32.033| - - 4.77
5(2] 16 22 45 |180°| 6 | 5.281| - - 4.77
6{2| 064 042 115 |180°| 7 |23.434| - . 5.44
2| 036 064 123 |360°| 7 |20.429| - - 5.44
7]2| 024 132 205 {180°] 8 [96.202| - - 6.02
2| 164 026 253 |360°| 8 [79.119| - - 6.02
812| 070 322 411 |180°| 8 [13.646| - - 6.02
2| 124 320 413 |360°| 8 [13.289] - - 6.02
= 0.0 dB.

YﬂCROSS
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TABLE 3.14(a)
TRELLIS CODED 2x128CROSS
K = 65 bit/sym, q=0, d’ = 2, N_ = 19.828 (2x128CROSS).

V E h4 h3 h2 hl ho Inv. diree free :exl next Y (dB)
il - - . 1 3 ]1s0e| 2 | 6.688] 3 | 47.635] 0.00
212 - - 1 3 5|90 3 |35.938 - ] 1.76
3l2] - - 06 02 11 |180°| 4 [60.850| - - | 301
4l2l - - 10 06 23 | 90°| 4 |17.681| 5 |315.766| 3.01
s3] - 14 30 02 41 |180°| 4 | 6.5 | 5 |157.883] 3.01
3 - 16 24 06 57 |360°| 4 | 6.5 | 5 |138.322] 3.01
6141020 030 062 004 115 |180°| 5 |83.886| - ~ | 3.98
41004 010 024 042 111 |360°| 5 |83.792] - i 3.98
Y,umoss = 0-35 dB.
TABLE 3.14(b)
TRELLIS CODED 2x128CROSS
K = 6.0 bivsym, g=1, &’ = 2, N = 3.344 (Ix64CROSS).
I 3 2 1 0 2 2
vik| h h h h Inv. dfree free dnext next Y (dB)
il - - 1 3]o90| 4] 61.620] - - | 3.01
211l - - 2 s |o0°| 4| 17.681] 6 |293.842] 3.01
3|2 04 02 11 |360°| 4| 65 | 6 |184.306| 3.01
4|3 04 14 06 23 |180°| 6 |102.715] - - | a7
31 02 04 12 21 |360°| 6 [102.192] - - | 477
513/ 06 14 22 43 |180°| 6 | 28.731| - - | 477
6131024 030 056 103 |180°| 8 |530.186| - - | 6.02
713|034 044 106 203 |180°| 8 |112.917| - . | 6.02
3044 070 106 203 |360°| 8 |107.250| - - | 6.02
Y64CROSS=0dB
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TABLE 3.15
TRELLIS CODED 1x256CIRC
K = 7.0 bit/sym, &’ = 2, N, = 3.609 (1x128CIRC).

v|k| h* h' h°® |Inv. d:m N, d:m N, |y @B
{1} - 1 31{360°| 3| 6.711 - - 1.76
201] - 2 5(360°| 4 | 3.438| 5 |24.223| 3.01
32| 02 06 11 [180°| 5 | 12.112| - . 3.98
2] 04 02 11 (360°| 5 | 12.110{ - - 3.98
412! 16 12 27 |180°| 6 | 39.681| - - 4.77
2| 16 04 23 |360°| 6 | 39.611| - - 4.77
sl2| 16 22 45 |180°] 6 | 6.230| - - 4.77
20 34 16 45 |360°| 6 | 6.177] - - 4.77
62| 026 042 117 |180°| 7 | 29.313| - - 5.44
2| 036 064 115 {360°| 7 | 26.276| - . 5.44
712| 050 162 211 |180°| 8 [125.480| - - 6.02
2| 056 150 223 {360°| 8 |106.540| - - 6.02
8(2| 124 204 537 [180°| 8 | 17.755| - - 6.02
2| 272 304 455 [360°| 8 | 17.514| - - 6.02
= 0.0 dB.

Yl 28CIRC

determining the free distances of the codes given. For example, in the
3x16QAM signal sets, we could change ¢, t'°, and ' to [0 0 8],
(08 0], and (8 0 0]". This simplifies both the signal set mapper and
the branch metric calculator within a Viterbi decoder without having
any affect on dim (since most codes have d:m £ 8). Only very
complex codes with d;'m > 8 would requirc the full set of cosets that
are given. If the cosets are changed (thereby changing the signal set
mapping) one should perform another code search in order to find the

codes with the smallest N

free

For codes that are either 180° or 360° invariant it is not



TABLE 3.16(a)
TRELLIS CODED 2x256CIRC

K = 7.5 bitsym, q=0, &’ = 2, N = 21.048 (2x256CIRC).
V E h4 h3 h2 hl ho Inv. diree free icxt next Y (dB)
11} - - - 1 3[180°| 2| 7.219| 3 | 51.427| 0.00
202l - - 1 3 5190 3 [39.136] - - 1.76
302] - - 06 02 11 |180°| 4 [67.714| - - 3.01
412] - - 10 06 23 | 90°| 4 [19.903] 5 |363.416| 3.01
53] - 14 30 02 41 [180°| 4 | 6.875| 5 [181.708| 3.01
3/ . 16 24 06 57 |360°| 4 | 6.875| 5 [159.484| 3.01
614|004 014 020 046 113 |180°| 5 |96.908| - - 3.98
41004 010 024 042 111 |{360°| 5 |96.895| - - 3.98
Yipseme = 0-30 dB.
TABLE 3.16(b)
TRELLIS CODED 2x256CIRC
K = 7.0 bit/sym, g=1, d’ = 2.0, N = 3.609 (1x128CIRC).
M E h3 h2 hl ho Inv. diree free iext next Y (dB)
1] - - 1 3 |90°] 4| 69.817] - - | 3.01
211 - - 2 5090°] 4| 19.903] 6 [360.320| 3.01
302] - 04 02 11 |360°] 4 | 6.875| 6 [227.181] 3.01
4(3| 04 14 02 21 [180°| 6 [125944| - - | 477
3| 10 04 02 21 |360°| 6 |125.842| - - | 4.77
5|3] 24 14 06 43 [180°| 6 | 35.762| - - | 4.77
6|3(024 014 042 103 |180°| 8 |683.545| - - | 6.02
7(3]034 044 106 203 |180°| 8 |140.894| - - | 6.02
3]044 070 106 203 [360°| 8 |138.492| - - | 6.02
Ysscme = 0 9B
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TABLE 3.17
TRELLIS CODED 1x512STAR
K = 8.0 bitsym, ¢’ = 2, N = 3.711 (1x256STAR).

v|k| B h' n° |Inv. dim N, d:m N. . |y (@dB)
111 - 1 31{360°| 3| 7.045| - - 1.76
201 - 2 51360°| 4 | 3.594| 5 [26.143| 3.01
3{2] 02 06 11 |[180°} 5 | 13.072| - - 3.98
21 04 02 11 |360°| 5 | 13.071] - - 3.98
20 16 12 27 |180°| 6 | 43.571| - - 4.77
5(2| 16 22 45 [180°| 6 | 6.626| - - 4.77
621 064 042 115 [180°] 7 | 32.749| - - 5.44
21 036 052 115 |360°| 7 | 29.821| - - 5.44
7121 024 132 205 |180°| 8 [143.926| - - 6.02
2| 056 106 275 |360°| 8 |123.283| - - 6.02
g812| 130 306 513 |180°| 8 | 20.078] - - 6.02
= 0.0 dB.

Y256STAR

necessary to add any cosets modulo-4. Instead, all the cosets can be
added modulo-2, simplifying the signal set mapper. Again, to find the

best codes, one should repeat the code search with the new signal set.

3.3 Conclusions

A method has been described for obtaining 2-D  constellations
suitable for trellis coding and for use in constructing
multi-dimensional signal sets. A variety of codes, some of which are
fully invariant to 90° phase rotations, have been found using a
systematic code search.

These codes can be used with other multi-D signal sets. However,
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they may not be optimum in terms of the minimum number of nearest
neighbors. The small size signal sets (especially 16QAM) may be usetul
in satellite communication systems where high bandwidth etficiency is
required at the expense of more linear amplifiers. The large size
signal sets (up to 512 points) should be wuseful for high capacity
microwave links and telephone modems where high data rates are required

in limited bandwidth channels.
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CHAPTER FOUR
IMPLEMENTATION OF A VITERBI DECODER

As a demonstration of the performance capabilities of trellis
codes using multidimensional signal sets, a Viterbi decoder for one of
the codes given in Chapter 2 was designed. The choice of code was based
on two factors.

The first factor was its application as a possible replacement
for the coding scheme currently used on the Hubble Space Telescope
(HST). The HST at present uses the rate 1/3 v = 6 convolutional code
with BPSK modulation. With the modulator restricted to 3 Msym/s, this
implies a data rate of only 1 Mbiys, since K = 1/3 bit/sym. This is a
very bandwidth inefficient scheme, although the  system has the
advantage of simplicity and large coding gain.

The basic requirement from NASA was for a scheme that has as
large a K as possible. Since a satellitt channel was being used, 8PSK
modulation was selected. This allows a K of between 2 and 3 bit/sym.
The next influencing factor was the 2.33 bit/sym Periodically Time
Varying Trellis Code (PTVTC) that was implemented by COMSAT [30]. This
16 state code was designed for 140 Mbit/s cable restoration service
over the 72 MHz transponders onboard INTELSAT satellites.

As mentioned in Chapter 2, the equivalent 16 state 6D-8PSK
trellis code has many advantages over this PTVTC. For this reason the

rate 7/8, 2.33 bit/sym, 6D-8PSK, 90° invariant treilis code was chosen.

139
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A direct comparison can then be made between the two codes,

illustrating the advantages that the multi-D signal set provides.

4.1 Encoder Impiementation

At first, the systematic encoder in Figure 2.11 was used in the
design. However, it was found that in designing a Viterbi decoder, it
would be simpler if a non-systematic convolutional encoder was used.
This is because the state transitions in a non-systematic encoder are
highly structured, compared with the almost “random™ transitions of a
systematic encoder.

To convert the systematic encoder to a non-systematic form, the
technique described in [57] is used. This method uses the fact that the
impulse response of ecach shift register in a non-systematic encoder
will  produce output sequences that are equivalent to the generator

polynomials. . Since = a systematic encoder must also produce the same

1

sequences, it is relatively casy to find linearly independent output
sequences from a systematic encoder that can be used as generators of a
non-systematic encoder.

There is usually more than one set of possible generator
polynomials. The polynomials are chosen so that the inputs x'(D) and
x’(D) are affected by a 90° phase rotation in the same way as in a
systematic encoder. Thus, the differential encoder for the systematic
code can also be used for the non-systematic encoder.  The

non-systematic encoder equations that were found for the 6D-8PSK code

are
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(D) = x(D) @ (D* ® D)x'(D), (4.1a)
Z/(D) = (D* ® D)X*(D) ® (D ® Dx'(D), (4.1b)
(D) = Dx'(D). (4.1c)

Figure 4.1 illustrates the new non-systematic encoder. After a
90° phase rotation, we have zf(D) = 2'(D) ® 1(D), zlr(D) = z'(D), and
z(D) = 2/(D).  Rotating the equations in  (41)  gives (D) =
xz(D) @ 1(D) and X:'(D) = xl(D), the same as for the systematic encoder.

The encoder uses a Phase Locked Loop (PLL) to generate the three
times clock for transmitting the three 2D symbols. This PLL is based on
the 74HC4046 Integrated Circuit (IC). The encoder is able to accept

data either serially or in seven bit bytes.
4.2 Decoder Implementation

Due 1o the complexity of the decoder design, only a brief
description is given here. As such, only the important design decisions
are described.

To reduce the cost of the codec, a serial implementation of the
decoder was chosen. That is, one clock cycle would be required for each
state of the code. Since there are 16 states, at least 16 clock cycles
are required to process each received 6D point. As will be described in
more detail later, an extra seven clock cycles are required for
start-up purposes. Thus, a total of 23 «clock cycles are required for
each iteration of the Viterbi algorithm.

The technology and clock speed in our design is the same as used
in another Viterbi decoder dééigned by the author [47,48]. This gave us

greater confidence that the design would work, even though the actual
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design is twice as complicated. Our design uses a 10 MHz clock (giving
100 ns clock cycles) and Schottky TTL logic for its ease of use and
large variety of functions. The actual technologies used are 74LS
(Low-power Schottky TTL) for non-time critical sections of the circuit
and 74F (Advanced Schottky TTL) for time critical sections. Other
technologies are used for functions not available in 74F or 74LS.

The decoder is operated asynchronously to the received data
clock. This requires one of the seven extra clock cycles described
above. Internally, the decoder operates synchronously to the 10 MHz
clock. The decoder starts operation after detecting the first rising
edge of the received 6D symbol clock. After 23 clock cycles, the
decoder stops and waits for the next rising edge of the 6D symbol
clock. This allows the decoder to operate at any data rate from 0 to 3
Mbit/s.

Each iteration of the Viterbi algorithm decodes seven bits for
each received 6D signal point (since the code rate is 7/8). The maximum
6D symbol rate of thé decoder is the internal clock speed divided the
number of clock «cycles required to decode the seven bits, i.e.,
4.35x10° 6D symbols per second. Therefore, the maximum bit rate of the
decoder is 3.04 Mbit/s. For the HST, this code could achieve a data
rate up to 7 Mbit/s. For actual use on the HST, it is intended that the
decoder would be implemented on a VLSI chip, where the required
decoding speed would be achieved.

There are six main sections in the Viterbi decoder. These are

¢ Branch Metric Calculator (BMC)
o State Metric Calculator (SMC)
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e Survivor Sequence Memory (SSM)

o Signal Set Synchronizor (SSS)

¢ Minimum State Metric Selector (MSMS)
¢ Branch Point Selector (BPS)

Figure 4.2 illuswrates a block diagram of the decoder. The above

sections are described as follows.

4.2.1 Branch Metric Calculator

For each transition of the trellis there are 32 parallel paths
(due to the five unchecked bits in the encoder). The BMC must determine
which of the paths is closest to the received 6D signal point (the
Branch Point (BP)) as well as the Branch Metric (BM) for this path. The
BM can be calculated in a number of ways. The optimum BM’s for AWGN
channels with quantization are log-likelihood metrics [48].
Alternatively, one could make an approximation based on the squared
Euclidean distance between the received point and the points along the
transitions.

In our design we have chosen to use Read Only Memory’s (ROM’s) to
store the precalculated BP (five bits are used to represent each
parallel path) and BM (based on log-likelihood metrics). The encoder
can produce one of eight (ie, 2;”) sets of parallel paths (each
containing 32 paths). The BP and BM must be determined for each of
these eight sets of parallel paths.

We have chosen four bits to represent the BM value. This gives a
BM range from O (closest to the received 6D point) to 15 (furthest from

the 6D point). Decoder simulations in [28] indicate that this amount of
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quantization results in little performance degradation.

To minimize the number of address bits to the ROM, each received
2D signal point has been quantized to five bits. After extensive
simulations in  [28], it was found that pie-chart or angular
quantization results in the least performance degradation (0.2 to 0.3
dB). The simulations included the “dartboard” quantization pattern
proposed in [56]. Cut-off rate calculations in [42] have also confirmed
this result.

Each ROM therefore has an address space of 15 bits (five bits for
each 2D symbol). The ROM’s used for the BMC are 32Kx8 27C256’s. A total
of nine ROM’s are required. five for determining the eight BP’s and
four for the eight BM’s.

Alternative BMC schemes which exploit the finite length trellis
structure of the parallel transitions were also considered. That 1is, a
Viterbi like decoder can be wused to decode the parallel transitions.
However, their large complexity (in a discrete implementation) led us
to choose the simpler ROM look-up method. For a VLSI implementation,
though, the trellis decoding method would be preferable due to the
flexibility that VLSI provides in designing circuits. Thus, the Viterbi

decoder (with the BMC) could be implemented on a single chip.

4.2,2 State Metric Calculator

The:; SMC updates the §Ea£c Metrics (SM) for each state of the code
in each iteration of the Viterbi algorithm. A SM 1is an indication of
how close the received sequence is to the closest path of all paths
leading into a particular state. Since the code has two checked bits,

there are four paths leading into each state (since we choose the
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closest path among the 32 parallel paths in the BMC). For each of the
four paths, we must add the BM for that path to its corresponding SM
(also known as the old SM) from the previous iteration. The new SM for
the four paths leading into a state is the smallest of these
summations. This path is selected and all other paths are eliminated.
This is called the Add-Compare-Select (ACS) operation.

With four paths into each state a 4:1 ACS circuit is required.
With 16 states in our code, the ACS operation needs to be performed 16
times (explaining the need for 16 clock cycles). The ACS circuit also
produces two Path Decision (PD) bits which indicate which of the four
paths was chosen. This information is passed to the SSM where it is
stored.

Since the decoder operates serially, only one ACS circuit is
required. The 16 SM’s are stored in two 74AS870 dual 16x4 static Random
Access Memory (RAM) chips. Eight bits are used to represent each SM. As
shown- 1n ,[28]’,,,,ﬂ1is, is '{rlgpevyhaf} enough bits when two’s complement
arithmetic is wused in the ACS circuit to prevent overflow [29,48].
Before the first new SM can be calculated, four old SM’s are read out
from the RAM’s. This takes four clock cycles. It takes another two
clock cycles to perform the ACS operation. To achieve a slightly higher
speed, we could have done the ACS operation in one clock cycle.
However, this would have required six comparator chips to find the
minimum SM. An increase of one clock cycle and the use of three
comparator chips was chosen to decrease the complexity of the design.

Another clock cycle Vis used to write to the other half of the
dual 16x4 RAM’s. Since all the read and ACS operations are pipelined,

an additional 15 clock cycles are required to write the 15 remaining
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new SM’s. In the next iteration of the algorithm we read from where the
SM’s were written in the previous iteration and write to where the old
SM’s had been stored. The process then repeats.

For the ACS circuit, the appropriate BM’s must be added to the
correct old SM’s. Twelve 2:1 multiplexers and a copy of the

convolutional encoder are needed to accomplish this task.

4.2.3 Survivor Sequence Memory

The SSM has two tasks. It must store the Path Decisions (PD’s)
generated by the SMC and “traceback” through the previously étored PD’s
to determine the final decoded bits for x* and x'. This requires
alternating write and read (for the traceback) operations on the
memory. The traceback depth is the required number of PD sets (each set
consists of 16 two bit PD’s) that the SSM must trace back through.

The PD’s must be stored in the remaining 16 clock cycles that are
available. There are two ways this can be achieved. Storing two PD bits
in each clock cycle or storing four PD bits in every other cycle,
leaving the alternate cycle to perform part of the traceback. With the
first method at least two separate memories are required since the
traceback operation cannot be performed simultaneously with the storage
of the new set of PD’s (due to the design of memory chips). Since there
is a finite amount of memory, the oldest PD set must be written over.

There is usually a point where one method is better than the
other (in terms of the total memory size required) based on the number
of clock cycles available and the traceback depth. A traceback depth of
around 25 to 30 results in little performance degradation [28,42].

Comparing the implementation complexity of the two methods, the
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alternating read/write method proved superior.

With this design only eight clock cycles are available to perform
a traceback. To maintain integer power of 2 address spaces for the
memories (and thus efficiently use practical memory designs), a
traceback depth of seven is used for each SSM memory chip. To achieve
the required traceback depth, four 64x4 memories are required. This
gives a traceback depth of 28. The taceback is performed in a
pipelined fashion, switching between memories when required and waiting
for the next received set of data to continue with the traceback. Four
separate memories are required since there are four tracebacks in
operation at any one time.

Since there are no 64x4 RAM’s commercially available, larger
256x4 93422A RAM’s were used. This chip has separate input and output
data buses which simplifies the SSM design. We use the state with the
smallest SM to start the traceback. This is the best state the SSM
could start with (since it corresponds to the path that is closest to
the received signal) and helps give the decoder a slight performance
improvement over choosing a random or a fixed state. The Minimum State
Metric Selector (MSMS) provides the information needed to achieve this.

At the correct time and place in the circuit, the two decoded
bits ;(1 and ;2 are produced. The two bits are passed to the Branch
Point Selector (BPS) where they are re-encoded to select one of the
eight 5 bit branch points. The branch points are delayed by 34 6D
symbol periods, 28 due to the traceback, 4 due to the pipeline delay in
the traceback, and 2 due to the re-encoding of the decoded data.

The seven decoded bits are then differentially decoded (optional)

and then parallel to serial converted for the final decoder output.
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Precoding and postdecoding are optional as there are some communication
systems that do not require phase synchronization. For example, a burst
modem can provide phase information in the preamble of a burst. A
74HC4046 PLL is used to generate the required seven times clock for the
serial data. This PLL is tuned to lock within 0 to 3 MHz, but as
expected for PLL’s the lower frequency limit will be somewhat greater

than DC. The decoded data is also available in seven bit bytes.

4.2.4 Signal Set Synchronizer

The SSS has the task of synchronizing the decoder to the received
sequence of 2D symbols. Since the signal set consists of three 2D
symbols, the decoder must synchronize to one of the three possible ways
the received data can arrive. Also, since the code is only 90°
invariant, the decoder must synchronize to either a 0° or a 45°
rotation of the received signal set. Thus, there are a total of six
possible combinations of delay and rotation for the received signal.

The decoder is asynchronously locked to DATCLK, which is the
received 2D symbol clock whose frequency has been divided by three. A
delay of zero, one, or two 2D symbol periods of DATCLK is used for
timing synchronization. Since the received Inphase (I) and Quadrature
(Q samples can be converted to polar format (or are already in polar
format), the received signal can easily be rotated by 0° or 45° for
phase synchronization.

- To achieve phase synchronization, the method of using the
rcceivéd W6D Vsignal set  as déscribed in Chapter 2 was considered. As
pointed out in [28], this method is quitt complex. By slightly

increasing the complexity of the SSS used for timing synchronization, a
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separate synchronizer for phase is avoided.

The SSS works by examining the rate of increase of the minimum SM
from the MSMS. If the rate is high, this indicates that the decoder is
out of synch and needs to be resynchronized. A variable threshold in
the SSS is used for this purpose. If the threshold is exceeded, the SSS
will toggle the current phase rotation.

The phase rotation is toggled first since it is more likely that
a phase slip has occurred within the demodulator than a 2D symbol slip.
The SSS then ignores the decoder for 128+V 6D symbol periods (V is a
variable from 0 to 63) to allow the decoder to settle into its new
signal set configuration. If the decoder still displays an abnormally
high rate of increase for the minimum SM, the SSS will again toggle the
phase. Otherwise the decoder goes back to its original monitoring
state.

We toggle the phase for a second time under the assumption that
the demodulator has experienced a second phase slip (or a burst of
noise on the channel created a false alarm, causing the SSS to place
the decoder in the incorrect phase). After waiting for 1284V 6D symbol
time periods, if the threshold is again exceeded in the next V 6D
symbol periods, we toggle the phase for a third time. If the threshold
is exceeded again (for the fourth time) we assume that a symbol delay
has occurred and we increase the DATCLK delay by 1 (mod 3).

The whole process then repeats untii we have the correct 2D
symbol delay and phase rotation (indicated by a normal rate of increase
of the minimum SM). As can be seen, we give the decoder every
opportunity to correct for the more likely phase slip (or even a false

alarm from the decoder) than a 2D symbol slip. This implies that phase
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slips are comrected quickly, while symbol slips take a very long time

to correct.

4.3 Other Decoder Features

The decoder can be mounted within a 3U high 19 inch rack. On the
front panel, three Light Emitting Diodes (LED’s) are used to indicate
the 2D symbol delay and two LED’s are used to display the current phase
rotation of the SSS.

To test the decoder, the 2D symbol delay and phase rotation can
be independently set to manual control. In this way, the SSS can be
isolated from the rest of the circuitry so that any problems with the
rest of the decoder can be fixed without the SSS interfering. It can
also be used to test the SSS by manually introducing phase rotations
and delays into the received signal. There are four switches used for
this. For 2D symbol control, there is a manual/automatic switch and a
three position switch to manually select one of the symbol delays. The
phase control also has a manual/automatic switch and a two position
switch to select one of the phase rotations.

Two rotary type switches are used to select the format of the
received data. One switch is used to select between 3, 4, or 5 bit
quantization while the other switch selects between signed magnitude,
reverse  binary, straight binary, two’s complement, and phase data
formats. The first four types of data format are used with I & Q
samples while the phase data format is used when only quantized phase
information is received from the demodulator.

There are also switches for disabling the postdecoder from the
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decoder and the precoder from the encoder. The encoder has another
switch to select between seven bit parallel or bit serial data. One
final switch is used to loopback the data produced by the encoder to
the  Viterbi decoder. This provides a useful self-test for the
encoder/decoder system. The encoder/decoder interface diagram is given

in Figure 4.3.

Rx_I/Rx_Phase ——.

Rx_Q _5‘_.
Rx_sym_clk —»

7
——> Rx_data_parallel
— Rx_data_serial
—— Rx_clk

Electrical
Input
Electrical
Qutput

Auto/Man_sym_synch — Viterbi decoder
Sym_1/2/3 —=|
Auto/Man_phase_synch —=
Phase_0°/45° —=
Synchronizer_threshold e
Synchronizer_span —s{
Quantization_3/4/5_bits ——s
Input_type —
Postdecoder_select ——
Loopback_select —

> Sym_synch_state
L 2. Phase_synch_state

Manual Input
Visual Output

1 Internal loop back connection

T data_parallel =+l.0 5 8 |-~ Tx_sym
X_ ataf)s(exglk—f 3. 83— Tx_sym_clk
-
Precoder_select 2 & Encoder
Serial/parallel_data — § =

Figure 4.3: Viterbi decoder/encoder interface diagram
for 16 state 2.33 bit/sym 6D-8PSK trellis code.

The 176 integrated circuits of the design are placed on two
double height Speedwire Eurocards (233.4x220 mm). Speedwire allows
quick and reliable connections (if it is done correctly) between the

chips that can be easily changed. The speedwire boards also have good
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groundplanes, critical when operating at high clock speeds. The Viterbi
decoder (which operates at 10 MHz) is placed on one board (taking 96
chips) while the encoder, SSS, and various interface chips are placed
on the other board.

BNC connectors are used at the back of the rack for external data
and clock connections. It is assumed that all received data changes on
the rising edge of its clock. Similarly, the codec produces its signals
in the same format. TTL 50/70 Q interface signals are used for these

external interfaces.

4.4 An Alternative Viterbi Decoder

The decoder described above can be modified to implement the 16
state 2.5 bit/sym d4D-8PSK trellis code given in Table 2.16(a). This
cc_>de has the advantage of being fully transparent and of using a
smaller size signal set (4D instead of 6D). This implies that decoder
synchronization is much easier to perform. Its disadvantage is a
decrease in coding gain of 0.7 dB at Pb = 107 compared to the 2.33
bit/sym code [46].

The 2.5 bit/sym code could be used for the new SONET standard
requiring 155.52 Mbit/s through a 72 MHz transponder. With a parallel
implementation of the decoder (requiring only one clock cycle to decode
five bits in each iteration of the Viterbi algorithm) an internal
decoder speed of 31.104 MHz (1/5 the bit rate) is required. The 2D
symbol rate is equal to the bit rate divided by K, ie., 62.204 Msym/s.
With 72 MHz of bandwidth available, a bandwidth expansion factor of no
more than 1.157 (equal to the bandwidth divided by the 2D symbol rate)
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needs to be met by the modulation system. Converting the parity check

polynomials from Table 2.16(a) to non-systematic form we obtain,

Z(D) = (D) & (D’ & 1)x'(D), (4.22)
Z\D) = D)D) ® (D> ® D & 1)x'(D), (4.2b)
(D) = Dx*D). (4.2¢)

An implementation of the non-systematic encoder for the 2.5
bit/sym code is given in Figure 4.4. Converting the 2.33 bit/sym design
will require changes to the BMC and various interface circuitry as well
as a new simpler SSS. Due to the smaller size signal set, the total
chip count can be expected to decrease. Also, since only five bits are
decoded during each iteration, the decoder speed will decrease to 2.17

Mbit/s.
4.5 Conclusions

A serial implementéiioﬁ"’ of a Viterbi decoder for the 16 state
2.33 bit/sym code with a 6D-8PSK signal set has been described. This
decoder can provide high data rates (up to 3 Mbits) and is intended
for future use on the Hubble Space Telescope. Due to its serial
implementation the decoder design is quite complex, but could be
implemented on a single VLSI integrated circuit.

The Branch Metric Calculator has been implemented through the use
of large look-up table ROM's. A VLSI implementation may use a Viterbi
type decoding algorithm to allow single chip implementation. An
alternative 2.5 bit/sym 4D-8PSK code has been proposed for use in the
new SONET 155.52 Mbit/s transmission system.
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CHAPTER FIVE
ROTATIONALLY INVARIANT TRELLIS CODES

One aspect of trellis codes that has come under increasing study
is the search for codes that are invariant to phase rotations of the
received  signal  set  [1,3,19,32,40,44,48,56,70,73-75,81].  The  rotations
that we are considering are those caused by a demodulator in a
communications system. When the signal set has rotational symmetries,
e.g., MPSK or 16QAM, the demodulator has no knowledge of which of the
symmetries were transmitted. Thus, the demodulator selects one of the
symmetries in which to demodulate the received signal, regardless if it
is the correct or incorrect symmetry.

In uncoded systems, this problem is easily corrected by
differentially encoding (precoding) the data before transmission. After
demodulation, differential decoding (postdecoding) of the received data
is then used to return the data to its original form. The precoding of
the data also allows the recovery of data caused by phase slips within
the demodulator. This occurs when noise in the received signal causes
the demodulator to lose lock and results in another of the signal set
symmetries being selected.

For trellis codes the situaton is much more complicated. Here,
we are dealing with sequences of symbols in the code space rather than
independent symbols, as in the uncoded case. In fact, convolutional and

trellis codes can be thought of as subclasses of sequence codes. Unlike
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block codes, sequence <codes have <code words of infinite length,
consisting of sequences of symbols taken from a finite or infinite size
signal set. Any finite or infinite set of sequences can be considered
as a sequence code. If a coded sequence has been rotated, the resulting
code sequence may or may not be in the code space.

The transparency or rotational invariance of a sequence code is
the minimum non-zero phase rotation that all code sequences in the code
space can be rotated such that the rotated sequences are still in the
code space of the sequence code. A sequence code is rotationally
invariant or transparent if the invariance of the code is equal to the
minimum non-zero phase symmetry of the two-dimensional (2-D) signal
set. If there are some sequences which are not in the code space after
a phase rotation, a decoder will produce erroneous data if the received
sequence has been rotated by this amount.

A good example of this is the industry standard (2,1,6)
convolutional code with Gray mapped QPSK modulation. This code is not
90° transparent (and is therefore not rotationally invariant), but it
is 180° transparent. A decoder will produce erroneous data after a 90°
or -90° rotation. To overcome this, the decoder needs to recognize that
a 90° rotation has occurred and rotate the received sequence. This
process can be slow, resulting in many errors being produced before the
decoder is properly  synchronized. A rotatiqnally invariant  code,
however, will only produce a small number of errors after a phase
rotation, since there is no need to detect and then correct for a phase
rotation.

'In order to describe and study rotationally invariant sequence

codes, we will be using parity check equations (PCE). For rate k/(k+1)
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codes, a single PCE fully describes the relationship between the 2-D
symbols in a coded sequence. However, the PCE gives no information
about the input/output relatonship of an  encoder, ie., it s
independent of the encoder implementation. This allows us to minimize
the number of variables in finding good rotationally invariant codes,
thus simplifying the code search.

Rotationally invariant rate 1/2 QPSK codes based on a non-linear
PCE have been found in [70]. This Chapter extends this work by
presenting a general PCE (actually, it is two equations that can be
combined into one), from which good rate k/(k+1) rotationally invariant
trellis codes can be found.

We first show that linear codes cannot be rotationally invariant.
This is followed by the presentation of the general PCE and how it is
used to find good rotationally invariant trellis codes. Finally, we
present the results of a systematic code search for rotationally

invariant QPSK, 8PSK, 16PSK, and QAM signal set codes.

5.1 Sequence Codes with Linear Parity Check Equations

k! points, let (y%y'...y"), where

For a 2-D signal set with 2
yi e {0,1} for 0<i<k be a binary representation of each point in
the signal set. Also, let y’(D), y'(D),..y(D) be the binary
sequences that form a sequence of signal set points (where D is the
delay operator).

We formally define a parity check equation (PCE) for a rate
k/(k+1) sequence code as an equation which defines the relationship

between the encoded binary sequences yo(D), y'(D),...,yk(D). A PCE is
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linear (under modulo-2 addition) if it is in the following form,

HYD)y*D) &-& H'(D)y'(D) & H(D)y'(D) = 0(D), (5.1)

where H'(D) for 0 i < k are binary polynomials and O(D) is the all
zero sequence. The Hi(D)’s are also known as parity check polynomials

and are of the form

HY(D) = h\i’DV D h:D ® h° (5.2)

where'h’; e {0,1} for 0 £i < k, 0 €j<v, and v is the maximum degree
of all the parity check polynomials. For practical codes, v is finite
and is called the constraint length of the code. The memory (m) of a
sequence code is the minimum number of delay elements required to
implement an encoder. It has been shown in [20] that m = v for linear
PCE’s.

When a phase rotation of a signal set occurs, the binary
sequences representing the signal set sequence will change. We call
these  the  rotated  sequences  which  are  labeled by y‘:(D).
yi(D),...,y:(D). These rotated sequences are a function of the onginal
unrotated sequences. To determine the effect of a phase rotation we
substitute  these rotated sequences into the PCE (e, y(D) s
replaced by yi(D)). If the resuling equation is exactly the same as
the original PCE, the code has a transparency equal to that phase

rotation.
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Example 5.1 Rate 1/2 convolutional code
Let us examine the standard rate 1/2, memory six convolutional
code with Gray QPSK mapping. Figure 5.1 shows the Gray mapped QPSK

signal set. This code is usually expressed in its encoder form, i.e.,

v’D) = 0* ® D' ® D’ ® D & 1)x(D) = g’ (D)x(D), (5.3)
y'@D) = O° ® D’ ® D' ® D’® 1)x(D) = g'D)x(D), (5.4)

where x(D) is the binary input sequence of the encoder. Combining (5.3)
and (5.4) we obtain the PCE

£O)y'D) ® g'(D)yD) = 0D). (5.5)

That is H'D) = g’D) and HD) = g'(D).

1.0

yy
01 00
[ o
11 10
[ [

Figure 5.1: Gray mapped QPSK.

We now investigate what happens when the signal set is rotated.
From Figure 5.1 we see that after a 90° rotation the rotated sequences

are

y'D) = y'(D) & 1(D) = y'(D), (5.6)
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y/(D) = y'(D), (5.7)

where 1(D) is the all ones sequence. Replacing yO(D) with y?(D) and
y'(D) with y (D) we have

gDy D) ® g'D)y'(D) & 1(D) = 0D),
D)y’ ® g Dy'D) = g'O)ID). (5.8)

Since there is an odd number of non-zero terms in gl(D) and any delay

of 1(D) is equal to 1(D), then g (D)I(D) = 1(D). That is,

gDy’ D) @ g'D)y'Dd) = 1(D). (5.9)

Comparing (5.5) and (5.9), we see that they are not the same, thus
implying that this code is not 90° transparent. In fact, no good code
(i.e., go(D) and gl(D) are at least different from each other) can be
90° transparent for a rate 1/2 code with a linear PCE and Gray QPSK
mapping. Using a similar method, it can be shown that this code is 180°

transparent.

As shown above, the effect a phase rotation has on the PCE
depends a great deal on the form of the rotated sequences. More
specifically, it depends on the particular signal set mapping that s

used. We discuss this matter in the next section.

5.1.1 Signal Set Mappings

Since we can’t have all the bits in a mapping unaffected by a
phase rotation, we should try to minimize the effect as much as

possible. The mapping should also be consistent with the signal set
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partitioning schemes descibed in [65], since these partitions help us
to find good sequence codes.

The so-called “natural” mapping has these properties.  The
naturally mapped MPSK signal set is a good example of this. For
example, naturally mapped 8PSK. It has the desired partition properties

and the following rotated sequence equations,

/(D) = y’(D) & 1(D) = y'(D), (5.102)
yi(D) = y'(D) ® y'(), (5.10b)
y:(D) = y'(D) ® y'(D)y'(D). (5.100)

The multiplication in (5.10c) involve the bit wise logical AND of the
coefficients of the polynomials, e.g, if y® =D®D® 1 and
yl(D) =D ® 1 then yo(D)-yl(D) =D ® 1. That s, this polynomial
multiplication is a non-linear operaton. Note that each rotated bit is
a function of itself plus some added term. Thus, when substituted into
a PCE, the original PCE is produced plus some extra terms. We will
discuss this in greater detail later.

A simpler way of describing what happens to the binary sequences
after a phase rotation is with integer notation and modulo-M addition.

We let the integer representation of yO(D), yl(D),..., yk(D) be

2'y{(D). (5.11)
0

yD) =

1

" MM

Thus, with natural mapping, the rotated sequence y (D) (in integer

notation) can be expressed as

y(®D) = y(D) + 1(D) (mod M). (5.12)
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With rectangular signal sets we should also try to obtain a
“natural” mapping. We will show how this can be achieved by using the
16QAM signal set. Similar to MPSK, we use a mapping based on the
partitioning of the 16QAM signal set as an example. Figure 5.2
illustrates the first two levels of the partition. Note that the four
subsets are related to each other by an appropriate number of 90° phase
rotations, Each of these four subsets can be labeled by the first two
bits of the mapping, i.e., y® and y'. After a 90° rotation the rotated
sequences for y0 and yi are given by (5.10a) and (5.10b), respectively.

The remaining two bits (y2 and y3) are used to define the four
way partition of each of the four subsets. However, as shown in Figure
5.2, these last two bits are mapped such that they are not affected by

a 90° rotation, i.e.,

y'(D) = y'D), (5.132)
y:(D) = y'(D). (5.13b)

This considerably simplifies finding a PCE, since only two sequences
are affected by a rotation. A similar approach can be used with other
rectangular signal sets (e.g., 32CROSS). For the 32CROSS mapping in [1]
(and which was accepted as the V.32 modem standard) the first rhree
bits are affected by a rotation, This results in a more complicated
encoder requiring two AND gates (all our codes require only one AND
gate).

We will be constructing codes based on these signal sets since

they have relatively simple rotation equations.
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5.1.2 More on Linear Parity Check Equations

We will now show that linear PCE’s cannot be made invariant when
two or more binary sequences are affected by a rotation. We will use
the rotation equations given in Section 5.1.1. For simplicity, we will
only consider two bits are affected by a rotaton, i.e., equations
(5.10a) and (5.10b). Substituting equations (5.10a) and (5.10b) for
y’(D) and y'(D) into the linear PCE (5.1) we obtain

H'D)y'(D) @ y’D)) ® HD)y(D) & 1(D)) = 0(D),
H'(D)y'D) ® HYD) ® H'(D))y’(D) = EH(D)I(D), (5.14)

where E[HO(D)] is the modulo-2 number of non-zero terms in HO(D). Even
if E[HO(D)] =0, (5.14) is not equal to the original PCE (5.1). This
shows that if two sequences being affected, we cannot have an invariant
linear code. When more than two sequences are affected, the situation
is even worse. For these cases, non-linear terms (such as yO(D)-yl(D))

are produced.
5.2 A General Parity Check Equation for Invariant Sequence Codes

We now introduce our general parity check equation(s) (GPCE) that
can be used to find any rotationally invariant rate k/(k+l) sequence
code. To simplify the derivation, we will assume that all k bits are
checked by the encoder and that all I = k+1 bits in the signal set are
affected by a rotation. This basic equation can then be modified for
other sequence codes where these conditions are not true (e.g., rate
2/3 8PSK with one checked bit or rate 3/4 16QAM).

The GPCE is actually two equations, one that uses modulo-M
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arithmetic and the other modulo-2 arithmetic. The two equations need to
be combined in order to produce the final invariant PCE (IPCE). After
the introduction of the GPCE, we will illustrate its use by deriving
the rate 1/2 IPCE as found in [70]. This is followed by the derivation
of a rate 2/3 IPCE for 8PSK modulation and two checked bits.

5.2.1 The Equations

Our basic aim is the introduction of a non-linear term (as in
[70]) into the linear PCE so that after a rotation the non-linear term
“generates” additional terms which cancel the terms generated by the
linear part of the IPCE. We start by assuming that EHYD)] = 1. This
may seem contrary to what is desired (we have that HO(D)y?(D)
= HO(D)yO(D) @ 1(D)), but this assumption results in a small

simplification in the final IPCE. We could have started with
E[H'(D)]
EH'(D)] = 1.

Since the HO(D)yO(D) term generates 1(D) after a rotation, the

0, but as shown Ilater, there is an equivalent IPCE with

non-linear term must also generate 1(D). We also assume that all

I = k+1 bits are affected by a rotation. The modulo-M GPCE is

z(D) = (D* + (MR2-1)DPy(D) (mod M), (5.15)

where y(D) is defined in (5.11), zD) = L° 27Z(D), Z(D) are binary
sequences, and v > a > b > 0. The restricion on a and b allows us to
find good sequence codes.

Before presenting the modulo-2 GPCE, we examine what happens to
z(D) on a phase rotation. Substituting y(D) from (5.12) for y(D), we
obtain (all additions are modulo-M),
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z(D) = (D* + (M/2-1)D")y (D)

= (D' + (M/2-1)D")(y(D) + 1(D))

= (D' + (M2-)D°)y(D) + D*1(D) + D°(M/2-1)(D)
z(D) + M2(D).

Note that a number before the term “(D)” is an infinite sequence of
that number, e.g., M/2(D) is an infinite sequence of the number M/2.

We see that z(D) has the M/2(D) séquence added to it. In terms of
the binary sequences, we have zi(D) = zi(D) for 0 €£i1i<k-1 and z':(D)
= zk(D) ® 1(D), ie., all the binary sequences in 2z(D) are unaffected,
except the most significant binary sequence, which is inverted. In the
modulo-2 GPCE all the terms in the equation must be unaffected by a
rotation or produce terms that cancel each other.

Since Zz“(D) is the most significant bit of z(D), it is a function
of all yi(D). Thus, by always including this term, the IPCE will check
all k input bits to the encoder and avoid parallel transitions. Also,
after a rotation, zk(D) generates a 1(D) sequence which will cancel the
1(D) generated by H°(D)y’(D). Since the remaining z(D) terms are
unaffected by a phase rotation, we include a linear combination of
zi(D), 0 <i< k to increase the number of invariant codes that can be
examined in a code search. We don’t irnclude' zo(D) since it is a linear
function of y%(D) (which is taken care of by H'(D)y’(D)).

The modulo-2 GPCE therefore is

2“0) @ h! ' D) - h!z'(D) ® H'D)y'(D) = 0(D), (5.16)

where hi e (0,1} for 0 <i <k From (515) we can obtain expressions
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for Z(D) in terms of yi(D) and substitute them into (5.16) to obtain
the IPCE.
If E[H°(D)] = 0 the modulo-M PCE will be of the form

z(D) = (D' + (M-1)D")y(D)
= (D* + M2D® + (M2-1)D")y(D)
= (D* + (M2-)D)y(D) + M22D"y(D)
= (D' + (M2-1)D)y(D) + M/2D"y’(D).

Thus, it can be seen that zk(D) will be the same as the z"(D) obtained
from (5.15), except that D°y°(D) will be added to it. When z“(D) is
substituted into (5.16), the extra DbyO(D) term will be added to
H°(D)y’(D) (forming the new parity check polynomial H°D)). This makes
fi%D) have an odd number of non-zero terms, or E[A’(D)] = 1. Therefore,
the restriction E[HD(D)] =1 covers all possible codes and also results
in a simpler IPCE.

Note that the form of (5.15) is not unique. Providing that zk(D)
is a function of all yi(D), then three or more delay terms in (5.15)

could be used. For example, with E[H(D)] = 1 and I = 3,

2D) = (D' + 4D° + 7D%y(D) (mod 8). (5.17)

For the codes found in this chapter we have used (5.15) for z(D).
The reason for this is to simplify the code search. Also, work done in
[48] for rotationally invariant QPSK codes indicates that having three
or more delay terms does not give an increase in free distance compared
to using only two delay terms. The affect on the number of nearest

neighbors is not known though.
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5.2.2 The Rate [/2 Invariant Parity Check Equation

The original rate 1/2 IPCE equation found by Ungerboeck was
obtained by hand. Here (in a slightly modified form) we present its
derivation using the GPCE. This equation can be used in rate k/(k+l1)
MPSK codes where the encoder checks only one of the k input bits to the
encoder, in rate k/(k+1) QAM codes where there are four rotational
symmetries, and in other 2-D or multi-dimensional signal sets.

We let the binary input sequence be

(D) = x'(D), (5.18)

and the output sequence be

y(D) = yXD) + 2y'(D). (5.19)

From (5.15) the modulo-4 GPCE is

2(D) = (D* + D")y(D) (mod 4). (5.20)

The next step is to express z(D) in terms of yO(D) and y'(D).

Substituting (5.19) into (5.20) and expanding z(D), we obtain

(D) + 2Z'(D) = (D* + D°'(D) + 2(D* + D"y'(D) (mod 4). (5.21)

To find z(D) and z'(D) in terms of y'(D) and y'(D), the logic
equations of a two bit adder are used. Figure 5.3 illustrates how two 2
bit adder blocks can be joined to give the required zO(D) and z‘(D)
outputs.

We have for each 2 bit adder that
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D'y’ (D)—{A

0
0 s z(D)

D'y (D){a Ci

1
b 1 S Z (D)
D y (D)——B Co

Figure 5.3: Two bit adders used to form z(D) for rate 1/2 encoder.

S=A®B®C, (5.22a)
C = AB & C:(A @ B). (5.22b)
We thus have
(D) = (D* ® DY)y'(D), (5.23a)
Z'(D) = (D* ® D*y'(D) ® D*°(D) D’ D). (5.23b)

Notice that zl(D) contains a non-linear term. A logic AND gate is used

to implement this function. From (5.16) we obtain,

z'(D) ® H'D)y (D) = 0D). (5.24)

Substituting (5.23b) into (5.24) the final IPCE is

@* @ D°y'(D) ® Dy’(D)D’’(D) & H'(D)y’(D) = O(D). (5.25)

As for a linear PCE, the parity check polynomial of y'(D) is H'(D) =
D* ® D°. Since this polynomial gives the values of a and b, the code
can be completely described by H’(D) and H'(D).

Note that (5.25) is similar to the linear PCE (5.1), but with
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H'(D) having only two delay terms and a non-linear term that is added.
Codes for rate 1/2 QPSK based on (5.25) can be found in [70], where the
encoder implementation is discussed in detail. Substituting the rotated
forms of yo(D) and yl(D) into (5.25) will easily show that this
equation is invariant.

As in [70], we will use systematic encoders to implement the
IPCE. Since the IPCE is non-linear, it is not always possible to find a
minimal (ie., m = v) implementation of the encoder. An equation to
determine m is given in [70]. It can be shown, however, that for
a -b <2 a minimal implementation of the encoder can be found. For
a - b > 2, a restriction on HO(D) needs to be made in order to obtain a

minimal implementation.

Example 5.2 Rate 2/3 8PSK with one checked bit
In this example we present a simple eight state code for rate 2/3
8PSK and one checked bit. With v = 3, we must have a =2 and b = |.

Thus our parity check equation is

(D’® D)y'(D) ® D%'(D)Dy’(D)® (D’® thze hD & y’D) =0(D). (5.26)

There are no yz(D) terms since HXD) = 0. An implementation of this
encoder is shown in Figure 54. It is similar to a linear systematic
encoder, except for the non-linear term that is added. Notice that the
AND gate multiplies the sequences yo(D) and DY’®D) o form
yo(D)-D'lyo(D). The output of the AND gate is then twice delayed to
obtain the correct non-linear term.

There are two possible codes, one with R’ = 13 g = 1011,

=D’®D®1 = HO(D) (all codes will be given in octal notation) and
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% (D) — v (D)
x (D) -y (D)
D F~{+r D =+ D 4—=y (D)

€ < D'y’ (D)

Figure 5.4: Rotatonally invarant rate 2/3 8PSK encoder (E =1, m=3)

the other with h’ = 15. Since the free distance of a code is the same
going forwards or backwards in time, these two codes must have the same
free distance (the bit reverse of h! =06 is 06 and of h =13 s 15).
This time reversal technique (first given in [65]) can be wused to
reduce the number of codes that need to be examined in a search for
more complex codes. The minimum free squared Euclidean distance (dim)
is 40, which occurs along parallel transitions. Thus an asymptotic
coding gain (y) of 3.01 dB is achievéd. The number of nearest neighbors
(N ) is equal to one. The smallest squared Euclidean distance that
occurs along non-parallel transitions (d:m) is 4.586. Its average
multiplicity (Nnm) is 025. An eight state linear code  has
d> = 4.586, but is only 180° transparent [56].

free

5.2.3 Rotationally Invariant QAM Codes

As shown in Section 5.1.1, only the two least significant bits of

a QAM signal set mapping are affected by a 90° phase rotation. With an
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appropriate mapping, these two least significant bits are affected in
the same way as the two bits in naturally mapped QPSK.

The IPCE in (5.25) can be used if there is only one checked bit
However, the dim will be at most limited to 4 (with the minimum free
squared Euclidean distance of the uncoded signal set equal to 2). For
v =3 and one checked bit, (5.26) gives a code with d' =4 (along
the parallel transitions). To increase the free distance, the number of
checked bits (k) needs to be increased. The IPCE for this more general

case is

HYD)y (D) ®--® H:D)y’(D) & (D'® D")y'(D) & H(D)y’ (D)
= D(D)-D’y’(D). (5.27)

The yk(D) to yZ(D) terms can be added just as in the linear PCE since

these terms are unaffected by a phase rotation.

Example 5.3 Rate 3/4 16QAM with k = 2

We let v=3 a=2 b=1 h"=13 h'=06 and h* = 02. Figure
5.5 illustrates a systematic encoder implementation. This code is very
similar toﬂ the code given inr t732]7 except that a 16QAM signal set is
used instead of 32CROSS. It has dim = 5 (when normalized to a signal
energy of one, the minimum free squared Euclidean distance is 2.0,
equal to that of uncoded QPSK), which gives an asymptotic cpding gain
of 3.98 dB. The average number of nearest neighborsw is 0.875, compared
with the best 180° invariant linear code, which has an N__ of 3.781.
This indicates that the fully invariant code should perform better than

the best linear code.
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Figure 5.5: Rotationally invarant rate 3/4 16QAM encoder k = 2, m = 3).

5.2.4 The Rate 2/3 Invariant Parity Check Equation

Obtaining a rate 2/3 IPCE by hand is very difficult and was one
of the main reasons for finding the GPCE. The only use found thus far
for this equation is for rate 2/3 8PSK with two checked bits. The best
rate 3/4 16PSK codes have only one checked bit up to v = 7. Thus the
rate 1/2 IPCE can be used for 16PSK.

For the rate 2/3 IPCE, we start with the modulo-8 GPCE. We have

zD) = (D* + 3D")y(D) (mod 8) (5.28a)
zD) = (D' + DOY’(D) + 2((@* + D"y'(D) + D’%°(D))
+ 4((D* + DYy D) + D%'D)). (mod 8) (5.28b)

Figure 5.6 illustrates how z(D) can be implemented with two bit logic
adders.

We have
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0
a0 j
Dy (D)—={a Ci .
0 s~ z (D)
D’y (D)TB Co (&)
) [ LA C; 1
D'y (D)——={a GCi sp=z (D)
D°y' (D) B C, > 5 i"
l——u‘A Ci 2
St w (D)
B C,
t
Figure 5.6: Two bit adders for rate 2/3 encoder.
Z\(D) = (D* ® DYy'(D) ® D*y*(D)-D’’(D), (5.292)
Z2(D) = (D* & D")y¥D) & w (D), (5.29b)
where
_wi(D) = D*y'(D)-D’'(D)
® D’(D)-((D*® D")y'(D):Dy’(D) & D*y’(D)). (5.30)
The rate 2/3 IPCE is then
(D*® DyAD) ® w(D) @ h'z'(D) & H'D)y (D) = O(D). (5.31)

Notice that in wz(D) we Vhaycr non-linear terms involving yl(D). In an
encoder implementation we always have D'lyo(D), yo(D), and Dy°(D)
available to form non-linear terms involving yO(D). This is not true
for yl(D). Thus, delay terms need to be added to the encoder to produce
the required non-linear terms involving yl(D). In other words, a

minimal implementation is not possible and we have m 2 v + a - b (the
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inequality is due to the non-linear nature of these codes, similar to
the rate 1/2 IPCE described in Section 5.2.2).

Since both yl(D) and yO(D) are outputs of a delay element in this
case, the two least significant bits in a symbol are fixed in leaving a
state, 1i.e., only two of the -eight possible signal points can be
chosen. However, there are four paths leaving a state, and so the
minimum squared distance leaving a state is 0 (not 5? as desired). The
minimum squared distance entering a state is Sf as expected. Therefore,
the minimum free squared distance is lower bounded by 5? (the same

minimum squared distance as the uncoded case).

Example 5.4 Rate 2/3 8PSK with two checked bits.
As in Example 5.2, we let v=3 a=2, and b = 1. From (5.31),
the IPCE is

(D’@D)y’(D) ® w(D) ® hz'(D) & (D’®h!D’®h DS1)y’(D) = OD).  (5.32)

An implementation of this encoder is shown in Figure 5.7. Note the
extra delay element required to produce D'lyl(D) and y'(D). Also note
how wz(D) and zl(D) are obtained through the use of a times three
modulo-8 multiplier and a modulo-8 addition element. In this case we
have m=v +a -b =4, The dim of both of the two possible codes
(varying hl) is 2, giving a 0 dB asymptotic coding gain compared to
uncoded QPSK. me = (.25 for both codes.

For an 8PSK signal set, it can be shown that di  will always be
equal to 8? = 2, no matter how large v is. Let us assmune that hl = 0.

For this case any code that has (5.31) as its PCE will always have the
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x(D) * 4— y* (D)
x (D) — D —3—+——y‘(D)
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Figure 5.7: Rotationally invariant rate 2/3 8PSK encoder (k = 2, m = 4).

following sequences as valid code sequences.

y(D,i) = 6D+ 6D"'+ 6D™? +-, for -0 < 1 < oo,

This can be seen from (5.28a) where z(D) = (D" + 3D"y(D,i) =
2D"° 44 2D Thus we have y’(D) = O(D) and z*(D) = O(D) which
satisfies the GPCE (5.16).

The squared Euclidean distance between the sequences y(D,i) and
y(D,i+1) is equal to 2. Since the minimum dim is always at least 2,
then dim =2 for h, =0 and any HD). For hl = 1, a similar argument
can be used (with y(D,) = 2D+ 2DM+ 2D"? +.., for -0 < i< o), 10
show tha; d§m= 2. |

To oy and overcome this problem we looked at other forms of
z(D). The only other practical z(D) (with two delay terms) s
(3D*® D®y(D), but this still gives di’m =2 for all codes. As shown

by Example 5.4, however, me is very small and this may compensate

S

i en m
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for the small free distance at low signal to noise ratios. By letting

zZ(D) = (D* + D° + 2D%y(D), it may be possible to have dfm > 2.

5.2.5 Precoding and Postdecoding

The function of the precoder is to differentially encode
(precode) the data so that phase rotations will not affect the data
after decoding and differential decoding (postdecoding). This subject
is covered in greater detail in [70] for the rate 1/2 IPCE.

Here we present a general method for obtaining a precoder and
postdecoder as well as show how the precoder can be combined with the
encoder. Let w(D) be the input to the precoder and x(D) be the input to

the encoder, where

k , i k . .
wD) = I 2'"'w'(D) and x(D) = Z 2" 'x'(D). (5.33)

From Chapter 2, the precoder equation is

2x(D) = 2Dx(Dj + 2w(D) + (b + (M—l))yO(D) (mod M), (5.34)

and the postdecoder equation is

2w(D) = (M-1)D + 1)@x(D) + y*(D)) (mod M), (5.35)

where the symbol A over a sequence indicates the decoder’s estimate of
an original sequence. Equations (5.34) and (5.35) can be implemented in
a real system, with the precoder before the encoder and the postdecoder
after the decoder. However, since the encoder is itself invariant to
phase rotations, it is possible to combine the encoder and precoder,

thus eliminating the need for a postdecoder. This allows the decoder to
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make the best estimate of the transmitted sequence without having extra
errors introduced by a postdecoder.

There are two steps in combining the precoder with the encoder.
The first involves the precoding of fo(p). The remaining input bits are
then precoded. Let the outputs of the systematic encoder binary delay
elements (not counting any extra delay elements) be labeled s:"l to s:
from left to nght (or sV l(D) o s’(D), respectively in  sequence

notation). By examining the systematic encoder structure, it can be

shown that

y°(D) = (D°h? ® D° 'n) "' @D Dh))y*(D) ® D°y“(D) ® D°s"(D), (5.36)

where b is defined in Section 5.2.1. To determine the equation needed

to precode x*(D), we rearrange (5.36) to obtain

s"(D) = y*(D) ® BMD)y’(D), (5.37)

where

“BD)=D"°® D'b”h:) & hg. T (5.38)

In order that wXD) is unaffected by a phase rotation, we now let our

precoding equation be

x*(D) = y*0) = w*(D) & s"(D) & EBD)ly (D). (5.39)

Substituting (5.37) into (5.39) and assuming a noiseless channel we
obtain  the  postdecoding equation (not used in  practise  since

posfdccodiﬁg occurs within the decoder) as

w (D) = (B(D) ® E[B(D))y’ (D). (5.40)
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After a phase rotation we have y(: = yo @ 1. Thus,

w (D) = (BMD) @ E[BMD))y D)
= (B(D) ® E[BD))(y° (D) & 1(D))
= (B(D) ® E(BM))y’(D) = w*(D),

which shows that the k™ bit is correctly precoded. To precode the
remaining input bits, we use a modified form of (5.34). For our

systematic encoder implementation and k 2 2, we have that

y'D) =D*°x'(D); 1 <i <k, ab21 (5.41)

Thesc‘ dclayeﬂdﬂ W sequences of ,. x‘i’(D)r for 1 £i<k-1 are used by the

precoder as follows. Let
k-1 k-1
wD) = £ 2" 'w'(D) and xD) = T 2 x'(D). (5.42)

Our precoder equation now becomes

2x’(D) = 2Dx’(D) + 2w'(D) + (D + (M2-1)y’(D) (mod M/2). (5.43)

All the sequences that x’(D) depends on in (5.43) are available in the
encoder, thus allowing an implementation without any increase in the

number of delay elements.

Example 5.5 Rate 2/3 8PSK
Let v=3 m=4a=2>b=1h =0 and H'D) =D*® D & 1.
To precode xz(D), first note that B(D) =1 & D’ !, From (5.39) we have

x}(D) = w'(D) & s'(D). (5.44)
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From (5.43) it follows that
2x'(D) = 2Dx' (D) + 2w' (D) + (D + 3)y’(D) (mod 4). (5.45)
Expressing (5.45) in binary notation, it can be shown that
x'(D) = Dx'(D) @ w' (D) ® Dy (D)y"(D). (5.46)

Figure 5.8 illustrates an implementation of the complete precoder/

encoder.

2
w3(D) —@ — D . y*(D)

1
x (D) D |—eey' D)

? 3
i1 ——s_

w' (D)

e y'(D)

Figure 5.8: Rotationally invanant rate 2/3 8PSK encoder k=2, m=4)
combined with differential encoder (precoder).

5.3 Systematic Code Search

Our criteria for finding good rotationally invariant codes are
based on maximizing the asymptotic coding gain (y) and minimizing the

probability of an event error (Pe). Y and Pe can be expressed in terms
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of the minimum free squared Euclidean distance (d@®> ) and the number
free

of nearest neighbors (me), ie.,

2

d 2
Y = 10 log,, '?E @B) and Pe 3> N, Q| / 4riaNEs |, (5.47)
1 0

where dim is normalized so that the average energy of the signal set
is equal to one, 8? is the minimum squared distance of the uncoded
signal set, K is the number of information bits transmitted per 2-D
symbol, Eb/N0 is the energy per information bit to one sided noise
density ratio, and Q() is the Gaussian error probability function. The
expression for Pe approaches equality as Eb/N0 becomes large. For small
values of Eb/N o additional terms in the distance spectrum of the code
must be taken into account.

Therefore, the code search is designed to find all the codes

which have the maximum d:m (to maximize ¥), and from those codes to

selééf thé rcode:" ;vnh 7trlA1¢_ sx;lallest me (to minimize Pe)“. For Asome
classes of trellis codes, all the codes have the same dim and N__.
In this case we find the codes with the largest next nearest squared
Euclidean distance (d:w), and from those codes the code with the
smallest number of next nearest neighbors (Nnm) is selected.

Since the codes are non-linear, we cannot use algorithms such as
the bidirectional search algorithm to find d?m (or d:'m). Instead,
our algorithm must look at all pairs of paths produced in the trellis,
not just the path pairs which have the all zero path as one of the
paths. The Double Dynamic Programming Algorithm (DDPA) from Ungerboeck

[66] is an efficient algorithm to achieve this. This algorithm uses the
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properties of the trellis in order to reduce the computation time.
To find N (or N ), our algorithm is designed to find the
free next
number of nearest neighbors for paths starting at state [ and ending at
state J of the trellis (N (). We compute N _(IJ) for all
free free
combinations of I and J and then take the average to determine N free”
The computation of me(I,J) is determined from two  different
characteristics of the trellis. The first is the number of mergers at
state J of pairs of paths of length L (which have a distance of dim
between them) diverging from state I (Nm(I,J,L)). The second is the
number of paths between state I and state J of length L (NP(I,J,L)).
The length L is the number of 2-D symbols between states I and J.
Knowing the number of mergers and the number of paths, the number
of nearest neighbors of paths of length L between states I and J

(N free(I,J ,L)) is

Nnu(I,J L) = 2Nm(I,J ,L)/NP(I,J ,.L). (5.48)

Equation (5.48) is derived from the fact that each merger indicates
that there is one nearest neighbor for one path and another nearest
neighbor for the other path. Since the number of nearest neighbors is
defined as the total number of nearest neighbors seen by all paths
divided by the total number of bathé, (5.43) results.

me(IJ) is calcula;ed by summing N fx“(I,J,L) over all L up to
the lcngtﬁ where the distance between pathg from state I and J is
greater than d?m. Our implementation of this algorithm uses the

structure of the trellis (similar to the DDPA) to reduce the number of
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computations. Therefore, we have limited the code complexity (the
encoder memory (m) plus the number of checked input bits k) to a
maximum of eight. Also, the code search was limited to those codes
where m = v except the rate 2/3 8PSK codes with two checked bits where
m =V + 1 (where we limit codes to having a-b = 1).

When all the sequences in a code are reversed, the new code for
these sequences has the same d?m as the original code. Thus, we have
used the bit-reversal technique [65] to reduce the number of codes that

must be examined.
5.4 Results and Discussion

Table 5.1 lists the best rotationally invariant rate 1/2 codes
for QPSK modulation. Note that d?m is twice as large as normailly
given for these codes since we have normalized the energy of the QPSK

signal set to one. For v =3 to 5, dim is 2 less and for v = 6 and 7,

diﬂ is 4 less than the best linear codes ([56] (some of which are only

360° invariant). The me’s for the codes in Table 5.1 are quite

small, ranging from 3 to 10 times smaller than the Nme’s of the best

linear codes [56]. This reduction in Nfree partly compensates for the

smaller dim of these codes.
In Tables 5.2 and 5.3, our results for rate 2/3 8PSK are

presented. For k =1, the parallel transitions result in dim =4 and

frec =1 for all codes (Table 5.2). However, the next nearest

distances increase with increasing v. For v=3 to 6, d:m is the same

as d® for the best linear codes [56]. For v =7, d is 037 dB
free next

larger than d“;m for the best v = 7 linear code [56]. The v = 6 code
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TABLE 5.1
ROTATIONALLY INVARIANT RATE 1/2 QPSK CODES
K = 1.0 bit/sym, dj = 4, Nu = 1 (BPSK).

90° Inv. 180° Inv. | 360° Inv. | Inv.
h' h® |&* |N @ |IN_ |d®* |N. Iy (dB)

free free free free{ free free

<
=1

06 13 10 10.250| 12 2 12 1 | 3.98
06 23 12 10.333| 12 1 14 2 | 4.77
30. 45 14 10.667| 16 2 16 1 ] 5.44
050 105 16 {1.612] 20| 11 - -1 6.02
120 253 16 [0.201} 20 2 20 1 ]16.02

~N N bW
e

may be an alternative to Viterbi’s pragmatic rate 2/3 code (which is
90° invariant) [71]. It should perform as well or better than Viterbi’s
code with the added advantage that synchronization of the receiver with
the signal set is not required. In additon, Nnm is less than one, as

it is for all of the nonlinear codes listed in this table.

TABLE 5.2
ROTATIONALLY INVARIANT RATE 2/3 8PSK CODES
WITH ONE CHECKED BIT
K = 2.0 biysym, d’ = 2.0, N = 2 (QPSK).

45° Inv. 180° Inv. | 360° Inv. | Inv.
0 L L P L L Lo L PP LA L
3111 06 13 [ 40| 1.0 (4.586/0.250({4.586|2 - - 3.01
4111 06 23 | 40} 1.0(5.172|0.333|5.172|4 5.17212.25} 3.01
5/1{ 30 45| 40 1.0 |5.757|0.417|5.172{0.25 |5.757|2 3.01
611 060 105 | 40| 1.0 |6.343[0.467|6.343|3.25 - - 3.01
7(1] 030 203 | 40| 1.0 {7.172]0.333|6.343[/0.125/6.586{0.5 | 3.01
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TABLE 5.3
ROTATIONALLY INVARIANT RATE 2/3 8PSK CODES
WITH TWO CHECKED BITS
K = 2.0 bit/sym, &’ = 2.0, N_ = 2 (QPSK).

vim E h2 hl ho diree Nfrec diext Nnext Y (dB)
3{4(2; 06 00 13 | 2.0 1/4 | 4.010.375] 0.00
4{5|2| 06 00 23 | 20| 1/8 | 4.010.333| 0.00
5(6|21 06 00 43 | 20| 1/16] 4.0[0.167( 0.00

The results for the rate 2/3 ~codes with k =2 appear
disappointing. The aim of going to two checked bits was to remove the
parallel transitions in the hope of increasing d?m beyond 4. However,
as shown in Section 5.2.4, the reverse happened, and dim is only 2
when k = 2. The number of nearest neighbors though, divides by two with
each increase in v (beginning at 1/4 with v = 3). Also, the next
nearest distance is 4 with Nwu being smaller than me for the k =1
codes. Thus, it may be that these codes perform better than the k = 1
codes at moderate Eb/N 0 ratios due to a lower number of nearest
neighbors. Another strange aspect of these codes is that all the
properties examined (dim, e’ d:m, and Nnm) were the same for
every code. The reason that h' = 00 for all three codes is that hl =0
(if hi = 1 then h' would be non-zero).

The rate 3/4 16PSK codes in Table 5.4 follow a pattern similar to
the rate 12 QPSK codes. That is, d> is usually less than the best

free

linear codes, but me is smaller [56]. The exception is the v =7

code where dim occurs along parallel transitions. However, d:m and

Nnm follow the familiar pattern.
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TABLE 5.4
ROTATIONALLY INVARIANT RATE 3/4 16PSK CODES
K = 3.0 bit/sym, dj = 0.586, N = 2 (8PSK).

22.5° Inv. 45° Inv. | 90° Inv. | Inv.
VIRL bl N e [ Naen [Grree [Noree e | No | T (9B
311 06 13 |1.324/0.250f - - [1.476] 8 |1.476] 4 | 3.54
411 06 23 |1.476/0.333| - - [1.476] 4 |1.628] 4 | 4.01
5/1| 30 45 |1.628{0.417} - - [1.781] 8 |1.910f 8 | 4.44
6/1] 060 105 |[1.781|0.467| - - |2.0 2 (2.0 2 | 4.83
7i1] 030 203 {2.0 (2.0 ]2.062|0.333(2.0 2 - - | 5.33

In Table 5.5 we give the results for rate 3/4 16QAM. Unlike the
codes for MPSK modulation, most of the codes listed have the same dim
as the best linear code. Only the memory 4 code has a smaller dim.
Also the me’s are less than the linear codes given in Chapter 3. For
the codes where the dim’s are the same, this indicates that the best
rotationally  invariant codes should be better (surprisingly) than the
best linear codes. For the v = 4 code, me is 38 times smaller than
the best linear code. This may compeﬁsate for the reduction in dim
for this code.

In Table 5.6, rotationally invariant codes for rate 4/5 32CROSS,
rate 5/6 G64CIRC, rate 6/7 128CROSS, rate 7/8 256CIRC and rate 8/9
512STAR are given, respectively. The signal sets for these codes are
described in Chapter 3. In the code scarch all these signal sets
produced the same codes, although with different N_’s. Note that the

free

me’s do not increase monotonicly with the size of the signal set

(for linear codes me does increase monotonicly). This is probably

due to the unusual non-linear structure of the encoder.
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TABLE 5.5
ROTATIONALLY INVARIANT RATE 3/4 16QAM CODES
K = 3.0 bitsym, d’"= 2, N = 2.25 (BAMPM).

90° Inv. 180° Inv. | 360° Inv. Inv.
h2 n' B° |[&¢ 7 [N "IN d> "IN ¥ (dB)

free free free free free free

02 06 13 5 |0.875| 5 |3.781| 5 [3.656| 3.98

N W <
NNV NN RT

06 14 23 5 [0.25 6 |9.594] 6 (9.156] 3.98
10 30 45| 6 |0.547| 6 |1.891 6 |1.812] 4.77
020 014 103 | 7 |2.668] 7 |6.172] 7 |4.828] 5.44

"Divide by 2.5 for normalized d’_.

TABLE 5.6
ROTATIONALLY INVARIANT QAM CODES

5 32 64 128 256 512

vik| n* bt b e N e free free free free

3121 02 06 13 5 4.5 3.350| 2.847| 4.813| 4.329| 3.98
4121 06 14 23 5 1.292] 0.957| 0.811| 1.370] 1.230| 3.98
5(21 10 30 45 6 2.875| 2.135] 1.817| 3.266| 2.929| 4.77
6{21 020 014 103 7 119.992114.109{11.695{23.650{20.885| 5.44

It s interesting comparing the eight state invariant QAM code
proposed in [1] which was accepted as the V.32 modem standard with the
equivalent code in Table 35.6. "The V.32 code has 9.124 nearest
neighbors, double that of the code we have found. Also, the V.32 code
requires a seperate precoder, whereas our code can combine the precoder
with the encoder, eliminating the need for a seperate postdecoder. The
reason for this difference in N __  most likely lies in the extra
complexity of the V.32 code (which requires two AND gates). Complexity

also seems to have an affect on our codes as well. Nearly all codes
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have a-b = 1 and no codes were found that had a-b > 2. It appears that
the more non-linear a code 1is, the worse it will perform. The very
non-linear rate 2/3 8PSK codes with two checked bits performed very
poorly.

7 5.5 Conclusiohs

A systematic method of obtaining rotationally invariant trellis
codes for a wvariety of signal sets has been presented. Since codes
based on linear parity check equations are not invariant (for signal
sets with more than two points) an alternative general parity check
equation was found. This GPCE allows the construction of invariant
codes for signal sets that are “naturally” mapped.

A general method of combining the precoder with a systematic
encoder without increasing the encoder memory was also given. This
climinates the need for a postdecoder, since the precoder is part the
encoder trellis.

When a signal set has 90° rotational symmetries or only one input
bit is checked by the encoder, the invariant parity check equation is
relatively simple, with only one non-linear term. The best codes for
the QPSK and 16PSK signal sets were found to have smaller free
distances when compared to the corresponding linear codes. However,
their low number of nearest neighbors may make up for this loss at
moderate Eb/N , ratos. The QAM codes were found to be very good. Most
of these codes had the same free distance as the best linear codes as
well as a smaller me.

The results for B8PSK with two checked bits seem to be
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disppointing. These codes have 0 dB asymptotic coding gain. However,
their low Nfree may be useful at small Eb/N0 ratios. The 8PSK codes
with one checked bit all have 3 dB asymptotic coding gains and so are

more likely to be of practical interest.
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CHAPTER SIX
CONCLUSIONS

In this dissertation we have explored two important aspects of
trellis coding. These are the use of multidimensional signal sets to
find new trellis codes and the construction of codes that are
rotationally invariant. Trellis codes that use multi-D signals for both
Phase Shift Keyed (PSK) and Quadrature Amplitude Modulation (QAM)
signal sets were found. Many of these codes were found to be
rotationally invariant.

However, trellis codes using 2-D signal sets and linear
convolutional encoders cannot be made rotationally invariant. A general
Parity Check Equation (PCE) was found which produced non-linear trellis
codes that are rotationally invaﬁmt. -

The key to finding good trellis codes that use multi-D signal
sets is in the construction of the multi-D signal set mapper. The
mapper takes the n coded bits from the convolutional encoder and maps
them into L 2-D signals. To do this effectively, the multi-D signal set
must be partitioned. Due to the large number of signal points in the
multi-D signal set, doing the partitioning by hand becomes impractical.

The use of length L block codes, the partitoning of the basic 2-D
signal set, and the concept of subcodes and cosets led to a method of
easily partitioning a multi-D signal set. By adding the cosets either

modulo-M/modulo-2 for MPSK signal sets and modulo-4/modulo-2 for QAM
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signal sets, it became possible to find good rotationally invariant
codes using multi-D signal sets.

These codes provide large coding gains while allowing fractional
values of K and high decoding speeds, as demonstrated by a serial
implementation of a 16 state, 2.33 bit/sym, 6D-8PSK code. In our code
search, we have presented the best codes (in terms of d?m and N free)
for each of the two (and sometimes more) possible phase transparencies
of a coded system. Thus, the code most suited to the communication
requirement can be found.

With the general PCE, the key to finding good rotationally
invariant codes with 2-D signal sets was in splitting the parity check
equation into two equations. One equation used modulo-M arithmetic,
while the other equation used modulo-2 arithmetic. By writing the
modulo-M equation in terms of its binary sequences and combining these
sequences with the modulo-2 equation, an invariant PCE (with the
required non-linear terms) can be found. - o

Using the invariant PCE, rotationally invariant codes for 2-D
MPSK and QAM signal sets have been found. For MPSK signal sets, the
code performance in terms of dim was found to be inferior to trellis
codes using linear convolutional encoders. These codes, however, should
still be wuseful in channels where the phase needs to be corrected often
and a constant signal amplitude is required. The mobile satellite
channel is a good example.

Unfortuantely, we have not been able to find rotationally
invariant rate 2/3 8PSK codes with dime > 4.0. If such codes could be
found, their non-parallel transitions, large free distance, constant

amplitude, bandwidth efficiency, and rotational invariance would make
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them especially well suited to the fading channel enviroment of mobile
satellite systems.

Surprisingly, the non-linear rotationally invariant 2-D QAM codes
performed better than the best linear codes. Nearly all the non-linear
codes had the same dim and a smaller me compared to the best
linear codes. This better performance and the rotational invariance
makes these codes very attractive for telephone modems and
microwave-links where high values of K are required.

For the rotational invariant codes, a method of combining a
differential encoder with the convolutional encoder is given. Thus, the
receiver does not rtequire a seperate differential decoder. This may
lead to a small increase in performance since there is no postdecoder
making “hard decisions”.

Codes with only moderate complexity have been found. It s
expected that only small increases in coding gain can be obtained with
more complex codes. This is due to the fact that the existing codes are
already fairly close to the theoretical Shannon limit. However, we do
not expect this to impede a further search for more complex codes. The
increasing  performance capabilities of computers (to find the codes)
and miniaturization of  integrated circuits (for  implementing  the
decoders) will insure that more complex codes will eventually be used.
There may even be machines that are constructed specifically to search

for extremely complex codes.
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