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FAILURE PREDICTION OF THIN BERYLLIUM SHEETS USED IN

SPACECRAFT STRUCTURES

INTRODUCTION

In an attempt to predict failure for cross-rolled beryllium sheet structures

higher order macroscopic failure criteria are used. These require the knowledge of

in-plane uniaxial, biaxial, and shear strengths. The current report includes test

results for in-plane biaxial tension, uniaxial compression for two different material

orientations, and shear. All beryllium specimens have the same chemical

composition (see Table 1). In addition, all experimental work was carried out in a

controlled laboratory environment. Numerical simulation complements these tests.

A brief bibliography supplements references listed in a previous report.

TABLE 1. Chemical Composition of Beryllium Specimens

Element Chemical Composition (weight %)

Be 99.10

BeO 1.00

Fe 0.06

C 0.12

A1 O.03

Mg -0.01
Si 0.02

BIAXIAL STATE OF STRESS

Experimental Studies

A biaxial state of stress using a uniaxially loaded specimen was achieved by

orienting the material axes 45 ° from the direction of the load (Fig. 1). To minimize

the possibility of failure at the grips, a total of three specimens were designed with

curved transitions; also, aluminum pads were epoxied to the ends (Fig. 2). In-plane

strain was measured using bonded Micro-Measurement precision strain gages

(Types CEA-06-062UR-350 and WK-06-062AP-350). Rosette gages were placed on

both sides of each specimen and a single free-field gage was placed on one side of
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each specimen fl)r measurement of strain normal to the direction of the applied

load (Fig. 3). A Material Testing System (MTS) Extensometer (Model 632.86B-03)

was used to record through-thickness strains. Each specimen was loaded using an

89-kN (20-kip) capacity MTS uniaxial testing machine.

Test Results

Stress-strain curves are plotted for each gage (see Figs. 4-6 for typical

examples). An average Young's modulus is measured to be 29.5x104 MPa (42.8x106

psi). Poisson's ratio for in-plane and through-thickness deformations is 0.096 and

0.14, respectively. These ratios are calculated as follows:

vy,x = Ex/Sy,x (1)

uz,x = Ex/Sz,x (2)

where E x is the conventional Young's Modulus for the loaded "x" direction, and Sy,x

(or Sz,x) is the measured stiffness in the "y" (or "z") direction due to stress in the

loaded "x" direction (see Fig. 1 for directions). Failure stresses for each specimen

are listed in Table 2.

TABLE 2. Failure Stress of Each Specimen

Specimen Number Failure Stress

MPa (ksi)

1 397.55 (57.66)

2 529.24 (76.76)

3 536.96 77(7L. )

Average* 533.10 (77.32)

*Computed using Specimens 2 and 3 only.

As indicated in Table 2, Specimen 1 failed at a very low load, which occurred

almost immediately after yield. This may have been caused by the MTS clip gage

scratching the surface or from a flaw in the specimen. To avoid scratching the

surface 0.2032-mm (0.008-in.) thick brass shims were placed between specimen 2

and the MTS clip gage's contact points. Brass shims were not placed on specimen 3

because it was loaded to failure chronologically before the other two specimens.
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Elastic Studies

In order to compare elastic properties from an earlier test [1] with data

obtained from this experiment, the stress tensor aligned with the loaded axis is

transformed to the material axis [2]. (Note that all calculations are shown in

Appendix (A)). Components of the transformed stress tensor are then substituted

into the following three-dimensional orthotropic elasticity equations that relate

stress and strain [1]:

cL = ¢oL/EL)- vI.,T(aT/El')" vI.,Sr (asTIEsT) (3)

_T = ¢oTIET) - VT, L (oLIEL) - VT, Sr (osrlEsT) (4)

CST = (os-r/Es_r) - vST, L (oL/EL)- VST,T(aT/ET) (5)

VL_T---- r L,T/GL)T (6)

Manipulation of Eqs. 1-6 leads to the stiffness equations:

SL,x = 2/(1/EL- VL,T/ET) (7)
Sr, = 2/(a/ET- VT,L/EL) (8)
SST,x=- 2/(UST,L/EL+ VST)T/ET) (9)

where, for example, SL, x is the measured stiffness in the long (principal) rolled

direction due to stress in the loaded "x" direction. Finally, engineering constants

reported in an earlier study [1] are substituted into Eqs. 7-9 for comparison with the

current tests. Results shown in Table 3 are in satisfactory agreement except for an

order of magnitude difference in the short-transverse stiffness. This may be due to a

gage factor error.

Biaxial Failure

Based on results from the second and third specimens, failure strength is 533

MPa (77.32 ksi), which is 3.45 MPa (500 psi) less than the failure stress when the

material is loaded only in the transverse (secondary) direction, and 31.0 MPa (4.50

ksi) lower than the failure stress predicted for a specimen loaded only in the long

(primary) rolled direction.
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TABLE 3. Comparison of Lockheed's Transformed Engineering Constants with

Observed Stiffness

Stiffness Experiment Lockheed

GPa (103 ksi) GPa (103 ksi)

Ex 294.96 (42.78) 295.23 (42.82)

Sy,x -3,061.96 (-444.10) -3,753.5 (-544.40)

SL,_ 643.49 (93.33) 646.73 (93.80)

S r,x 637.49 (92.46) 635.01 (92.10)

Ss-r,x 1,989.55 (288.56) 18,084 (2,623.00)

GL,T 137.14 (19.89) 136.86 (19.85)

COMPRESSIVE STATE OF STRESS

Experimental and Numerical Studies

Knowledge of maximum in-plane compressive strengths, ol and a2, is

required for estimation of failure coefficients F1, Fn, and F_66 as well as F2, F22, and

F266 (see References [3-5]). Numerical models were constructed prior to laboratory

testing to aid in geometrical optimization of the experimental specimens, as

suggested in reference [6]. Both two- and three-dimensional models of a simple

compression specimen were generated (Figs. 7 and 8). The final design yielded a

38.1-mm x 12.7-mm (1.5-in. x 0.5-in.) experimental plate specimen (Fig. 9). Special

fixtures were machined from A-2 tool steel, hardened to Rockwell C 50/55, and

oriented to ensure that the specimens would not slip during loading (Fig. 10).

Eight hundred, eight-noded plate elements are used in a two-dimensional

model of the structure with approximately 16,500 degrees-of-freedom. Only one-

fourth of the actual structure is numerically modeled in order to capitalize on

conditions of symmetry. Predictions at five integration points are requested in the

through-thickness direction. Output at the top and bottom surfaces of the plate is

compared with data from strain gages. A fringe plot of simulated axial

displacements is shown in Fig. 11.

Symmetry conditions are also exploited for three-dimensional analysis. In

this case, only one-eighth of the structure is modeled with four hundred, twenty-
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noded hexahedral elements. At the same time four elements are used to model the

plate in the through-thickness direction. Results from the two- and three-

dimensional analysis are in close agreement. Fringe patterns in Figs. 12 and 13

illustrate axial displacement and stresses reported by the three-dimensional model.

Compression testing was carried out on two specimens. One coupon had the

longitudinal principal material axis oriented along the loading axis; the other had

the long-transverse principal material axis coinciding with the direction of the load

(Fig. 9). The specimens were loaded using a 44.5-kN (10-kip) capacity biaxial

Material Testing Machine (MTS) (tension/compression-torsion) machine. In-plane

strain was measured using bonded Micro-Measurement precision rosettes (CEA-06-

062UR-350) that were placed on each side of the specimen directly opposite from

each other. This was done to ensure symmetric distribution of the load. As a check,

prior to actual testing the specimens were lightly loaded and the stress-strain curves

of corresponding rosette strain gages were compared. Both specimens were loaded

at a rate of 445 N/s (100 lb/sec).

Discussion of Test Results

Although the primary objective of this test is to obtain compressive strength

coefficients for the longitudinal and long-transverse directions, the experiments also

verify results obtained by other investigators, as well as serve to recalculate and

compare the elastic moduli with results acquired from biaxial tests. Fig. 14 shows

one of the specimens after failure. Stress-strain curves for specimens loaded with

the principal axis of rolling that is parallel and perpendicular, respectively, to the

load are plotted in Figs. 15 and 16. Strains plotted are for gages oriented in the

direction of the load. Fig. 17 is similar to Figs. 15 and 16 but uses data collected

from gages oriented 45- from the loading direction. The average modulus of

elasticity is determined to be 3.00x105 MPa (43.8x106 psi). Table 4 summarizes the

failure strength determined for each specimen.

TABLE 4. Failure Strength for Compression Specimens

Specimen Number Failure Stress

MPa (ksi)

1 658.79 (95.55)

2 691.82 (100.34)
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Results obtained and the overall behavior of the compressive specimens are

not unexpected. For both longitudinal and long-transverse specimens, the material

fails catastrophically and exhibits properties distinctive of brittle material.

Compressive strength, in both cases, appears to be approximately 20% higher than

the tensile strength in the same direction, which is characteristic of brittle material.

Elastic moduli, obtained from the stress-strain curves are slightly higher than moduli

obtained from uniaxial tensile tests. Strain relations for orthotropic material

undergoing uniform compressive load, aft, in the longitudinal direction follow from

specialization of Eqs. 3-6:

c = "LVEL (10)
_'r c = VT, r (arC/EL) (11)

,si _ = -vSr, L (aLe/EL) (12)

3,LT c = r L,Te/GL,T (13)

Similarly, for a uniform compressive load, aT _, in the long-transverse direction, Eqs.

3-6 yield:

,f = af/ET (14)

'L c = VL,T(aTC/ET) (15)

¢ST c = -vST,T (aTC/ET) (16)

_'T,L c= r T, LC/GT, L (17)

Therefore, the strain tensor can be theoretically calculated and experimentally

verified, provided the material is within the elastic range.

Conclusions

Experimental testing shows good correlation with numerical analysis and

suggests that the numerical constitutive model is adequate. Principal failure

coefficients F1, F2, Fn, and F22, can be calculated from equations provided in Refs. [4]

and [5], the in-plane tensile strength data (Lockheed [1]), and results of the

compression experiment as follows:

Fi = (1/Xi)- (1/Xi')

Fii = 1 / (Xi Xi') (18)

where x_ and xi' for i, j = 1, 2, and 3 are tensile and compressive strengths in the three

principal directions of orthotropy. The resulting coefficients are:
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FI = 3.4153 x 10 -4 MPa -1

F2 = 3.2762 x 10 .4 MPa -1

FI 1 = 2.8225 x 10 -6 MPa °2

F22 = 2.5629 x 10 -6 MPa "2

(2.3548 x 10 -3 ksi -1)

(2.2588 x 10 -3 ksi -1)

(1.3516 x 10-4 ksi "2)

(1.2184 x 10 -4 ksi -2)

(19)

Although beryllium is ductile when loaded under tension in its own plane,

compressive loadings manifest very different behavior. Results obtained suggest

that the material exhibits brittle properties for compressive in-plane loadings.

IN-PLANE SHEAR STATE OF STRESS

Experimental and Numerical Studies

Determination of the principal coefficient F_ [3], as well as interaction

coefficients Flc,6 and F2_ [5], require knowledge of the in-plane shear strength, 0"6.

Toward this end and prior to actual fabrication and physical testing, a numerical

model is designed for simulation of a proposed in-plane shear test. Both two- and

three-dimensional models are generated (Figs. 18 and 19). Material and

geometrical nonlinearities are, once again, incorporated in the models. The actual

specimen is a 101.6-mm x 25.4-mm (4-in. x 1-in.) coupon with two 45" slits located

antisymetrically with respect to the x-x and y-y planes of symmetry.

As a preliminary test, titanium shear specimens were numerically modeled,

fabricated, and loaded to failure. This material was chosen because of its

availability and due to the fact that it has the same lattice microstructure,

hexahedral-close-packed, as beryllium. Satisfactory correlation between numerical

simulation and experimental data was determined for the shear strength of titanium.

The mode of failure was pure shear.

The two-dimensional numerical model has two-thousand, eight-noded plate

elements, which is equivalent to approximately 40,000 degrees-of-freedom. Five

through-thickness points of integration are provided for each of the nine integration

points per plate element. Numerical output is requested at each of the eight nodes

for both the top and bottom surface of the elements (i.e. at integration points 1 and

5). A fringe plot showing axial displacements at the failure load of 3.89 kN (875 lb)

is presented in Fig. 20.
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Figure 19 Three-Dimensional In-Plane Shear Model Finite Element Mesh
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For the three-dimensional model, 914 twenty-noded hexahedral elements are

used. Due to symmetry of the geometry and load, only one-half of the actual

structure is simulated. Two elements model the plate in the through-thickness

direction. Fig. 21 shows a fringe plot of numerical output for in-plane shearing

strains at failure.

Discussion of Test Results

Two experimental specimens, similar to the one shown in Fig. 22, are used to

estimate the shearing strength of beryllium. Unlike titanium, a mixed mode of

failure appears to dominate for beryllium. The material fails in a combined state of

shear and axial tension. Thus, the experiment can not be regarded as a totally

successful means for estimating shearing strength. However, via transformation of

the stress tensor, a state of pure shear can be achieved on rotated differential

elements (Fig. 23) that yields an average value of 344.74 MPa (50.0 ksi). This value

of in-plane shearing strength appears to be satisfactory and is verified by another

experiment recently conducted by NASA.

Conclusions

Experimental testing shows good correlation with numerical analysis. This

suggests that the constitutive model utilized for numerical simulation is adequate for

the type of analysis performed.

After careful examination of the failed surface, the mixed mode of failure,

tension-shear, can be attributed partially to the fact that the through-thickness

surfaces of the slits, especially around the center of the specimen, were heavily

oxidized. Surface cracks may have formed prematurely and induced a mixed mode

of failure.

Summary

Appendix B lists the in-plane shear and all other experiments required for

the evaluation of polynomial coefficients for the cubic failure theory. Table 7

summarizes general experiments required for a continuum, while Table 8 shows a

special subset of these experiments that provide coefficients necessary for thin plane

failure prediction. Updated lists of all strength coefficients and their numerical

values needed to establish Tsai-Wu [5] and the higher-order criterion [4] equations

for cross-rolled beryllium sheet material are given in Tables 9 and 10.
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CLAMPED PLATES WITH OUT-OF-PLANE POINT LOAO

Three clamped plates (numbered 2, 3, and 4 in Table 5) subjected to a

central point load were tested. Primary purpose of these tests is to verify the failure

criteria described earlier and to add to the existing beryllium data base of known

material behavior. A hardened steel rod was used to impose the load. Clear spans

of the tested plates varied from 50.8 mm x 50.8 mm (2 in. x2 in.) to 101.6 mm x

101.6 mm (4 in. x 4 in.). Specimen 1 has not yet been tested. Specimen 4 has been

loaded only to its initial failure point.

Experimental Procedure

Specimens 2, 3 and 4 were monitored with multiple TML gages, type FLE-1-

350-11 (Figs. 24-26), and loaded to failure in an 87-kN (20-kip) MTS machine.

Specimen dimensions shown are from support to support. To provide material to

simulate a clamped-edge condition actual plate sizes are 50.8-mm (2.0-in.) longer in

the transverse direction and 38.1-mm. (1.5-in.) longer in the longitudinal direction.

Clamped edge conditions were achieved by a specially designed fixture (Fig. 26).

TABLE 5. Dimensions of Square Clamped Plate Bending Specimens

Specimen Longitudinal Transverse

Number Clear Span Clear Span

mm (in.) mm (in.)

1 25.4 (1.0) 25.4 (1.0)
2 50.8 (2.0) 50.8 (2.0)
3 75.1 (3.0) 75.1 (3.0)
4 100.2 (4.0) 100.2 (4.0)

Loading for each test was carried out by a hardened steel rod having a

contact radius of 3.175 mm (0.125 in.). Rate of loading was approximately 8.2 N/s

(1.85 lb/sec). All specimens were tested at a room temperature of approximately

22 ° C (72* F).

Results

The laboratory results show an intriguing tendency of cross-rolled beryllium

to maintain strength after initial failure. The load versus deflection curve of

specimen 3 (Fig. 27) shows a primary failure followed by an ultimate failure at
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approximately 170% of the primary failure. Specimens 2 and 3 initially failed at 2.4

kN (530 lbs) and 2.2 kN (484 lbs), respectively. The impactor completely penetrated

these plates at an ultimate strength of 4.2 kN (923 lbs) and 3.5 kN (769 lbs),

respectively. Most strain gages display a linear response to the load before the

initial failure, followed by a nonlinear relationship afterwards. An exception occurs

for the gage located directly under the point of loading (Fig. 28). At this point of

localized stress concentration, strain response becomes nonlinear after

approximately 60% of the initial failure load.

A photograph of failed specimens 2 and 3 (Fig. 30) reveals a star-shaped

pattern with a number of cracks radiating from the point of loading. Specimens 2

and 3 depict five- and four-point stars, respectively, within a circular area that has

been punched out. Diameters of these circular areas are proportional to their plate

dimensions. Also, close inspection of the specimens themselves reveals that

delaminations in the middle surface of the plate may be seen along the edges of

these circular openings.

Specimen 4 was loaded to its primary failure load, 2.1 kN (480 lb), followed

by unloading. Careful visual examination showed no damage on the top surface

(loading side) and four barely visible cracks radiating from the center of the bottom

surface (Fig. 31). Depth of the cracks is unknown. Attempts will be made to

determine these dimensions and extent of any delamination before the plate is

loaded to ultimate strength.

Conclusions

Since specimens 1 and 4 have not been tested to ultimate failure and

numerical modeling has not been completed, conclusions are pending for these

specimens. After the entire series of plates have been tested, more definite

conclusions can be reached for beryllium sheet material loaded out of its own plane.

Future Directions

Specimen 1 will be tested in the same fashion as specimen 4. The extent of

damage and structural integrity will then be determined.

The test fixture was designed to accommodate a variety of length-to-width

plate ratios. Table 6 lists the dimensions of a series of plates that are to be tested.

Each has a different span length or length-to-width ratio. These plate specimens

will be ordered and tested after experimentation on specimens 1 and 4 is complete.

The variety of aspect ratios in this test matrix will provide important biaxial data for

design of beryllium plate structures.
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TABLE 6. Nominal Dimensions of Clamped Plate Bending Specimens

Longitudinal" Transverse" Number of

mm (in.) mm (in.) Specimens

25.4 (1.0) 50.8 (2.0) 1

25.4 (1.0) 75.1 (3.0) 1

25.4 (1.0) 100.2 (4.0) 1

50.8 (2.0) 25.4 (1.0) 1

50.8 (2.0) 75.1 (3.0) 1

50.8 (2.0) 100.2 (4.0) 1

75.1 (3.0) 25.4 (1.0) 1

75.1 (3.0) 50.8 (2.0) 1

75.1 (3.0) 100.2 (4.0) 1

100.2 (4.0) 25.4 (1.0) 1

100.2 (4.0) 50.8 (2.0) 1

100.2 (4.0) 75.1 (3.0) 1

aActual specimen dimensions are 5.1-mm (2-in.) longer in one direction and 38.1 mm (1.5 in.) in the

othcr.
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Appendix A: Calculations

General transformation of stress tensors is as follows:

crij = C_ki ,_,j crk, (20)

where aki and at_ are direction cosines for a second order tensor transformation.

In matrix form Eq. 20 becomes:

[a MAT] = [R] T [a I_,X] [R] (21)

where [R] is a matrix of direction cosines relating the coordinate and material axes.

For an in-plane biaxial test

Ox 0

[OlAX] = 0 0

0 0

[at.AX] and [R] are as follows:

; [R] =

0.707 0.707 0

-0.707 0.707 0

0 0 0

(22)

Substituting [ot.Ax] and [R] in Eq. 21 the following material stress tensor is obtained:

IcYMAT]

1 1

_ o

1 1

o

0 0 1

o x (23)

Comparing "MAT and aij, the following relations are derived:

OL = OT = OL,T = 0.5 Ox (24)

A. Properties of Material Axes

Using the constitutive

relations are obtained [1]:

equations for orthotropic

_L =

_T

, s'r =

7 L,T =

(O'LIEL) ° VL)T 0T/ET) " VL)ST (crsT/EsT)

('aT/ET) - VT, L. (aL/EL) - vT, ST (crsT/EsT)

(o_'IEs-r) - IJST, L (ag/Eg) - VS'I',T (oT/ET)

r L,T/GL,T

material the following

(25)

(26)

(27)

(28)
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By substituting Eq. 24 into Eqs. 25-28, the following stress-strain relations are

obtained:

"L = 0.5 [OL (1/EL" VL,T/ET)]

,r = 0.5[OL(1/ET-
¢ST = -0.5 [°L ( vsT, L/EL + VST,T/ET)]

7 I.,T = 0.5 [a L/GL,T]

(29)

(30)
(31)

(32)

Moreover, stiffness coefficients are obtained as follows [1]:

SL,, = Ox / 'L = 21(llEL-vL,TIET)

ST, x = Ox IeT m 21(llET-vT, LIEL)

SsT,x = ox/, ST =- 2/(VST,L/EL + VST,T/ET)

(33)

(34)

(35)

By substituting strength values and Poisson's ratios obtained from the biaxial test

and an earlier report [1], the following stiffness matrix coefficients are obtained:

SL,x = 646.73 GPa (93.8 x 10 6 psi)

ST, x = 635.01 GPa (92.1 x 10 6 psi)

SsT,x = 17.93 GPa (2.6 x 10 6 psi)

(36)

B. Properties of Loading Axes

The strain tensor can be transformed from material to loading axes as

follows:

[,MAT] = [R] ['LAX] [R] T (37)

since, [R] T = [R] -1. For the case of biaxial loading the relations obtained from such

a transformation are:

ex = 0.5(eL + (_T + 2 'L,T)

ey -- 0.5 (eL + 'T-2 (_L,T)

(38)
(39)

where e L, 6T, and, ST, are estimated from Eqs. 23-25. Therefore, the modulus of

elasticity, Ex, and the stiffness coefficient, Sy.x, for the loading axes are estimated as

follows:

Ex = Oy/, _ = 295.23 GPa- (42.82 x 10 6 psi) (40)

Sy.x = ax / ,y = -3,753.51 GPa (544.4 x 10 6 psi) (41)
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Appendix B: Strength Parameters

Table 7. Experiments Required for Evaluation of Coefficients

Experiment Axis Coefficients

Uniaxial:

Tension and } F1, F2, F3

Compression } X, Y, Z Fll, F22, F33

Pure Shear:

Positive } F4, F5, F6

or Negative } x, Y, z F44, F55, F66

Biaxial:

Tension-Tension or }

Compression-Compression }

or, Tension-Compression }

X-Y F12, FlI2, F122

X-Z F13, Fl13, F133

Y-Z F23, F223_ F322

Combined:

Tension or Compression } X-Y F166, F266

and } x-z F144, F344

Shear } Y-Z F255, F355

Table 8. Experiments Required for Evaluation of Coefficients for Plates

Experiment Axis Coefficients

Uniaxial:

Tension and } F1, F2, F3

Compression } x, Y, z Fll, F22, F33

Pure Shear:

Positive } F4, Fs, F6

or Negative } x, Y, z F44, F55, F66

Biaxial and Shear:

Tension-Tension or }

Compression-Compression }

or Tension-Compression }

with in-plane shear }

X-Y

X-Z

Y-Z

F12, Fl12_ F122, F166_ F266

F23, F223, F322, F244, F344

F13, Fl13, F133, F155, F355
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TABLE 9. Failure Strength Coefficients for Cross-Rolled Beryllium Sheets Using
the Tsai-Wu Model

Strength Coefficient Numerical Value

F 1 3.54 x 10-4 MPa -1 (2.44 x 10 -3 ksi -1)

F 2 4.17 x 10 -4 MPa d (2.77 x 10- 3 ksi -1)

F 3 8.70 x 10 -4 MPa -1 (6.00 x 10 -3 ksi d)

Fll 2.84 x 10 -6 MPa -2 (1.35 x 10-4 ksi -2)

F22 2.67 x 10 -6 MPa -2 (1.27 x 10-4 ksi -2)

F33 2.91 x 10 -6 MPa -2 (1.38 x 10 .4 ksi -2)

F44 3.72 x 10 -6 MPa -2 (1.77 x 10 .4 ksi -2)

F55 3.45 x 10 .6 MPa -2 (1.64 x 10 .4 ksi -2)

F66 1.09 x 10-5 MPa "2 (5.17 x 10 -4 ksi "2)

F12 -2.56 x 10 -6 MPa -2 (-1.22 x 10 -4 ksi -2)

Note: F13 and F23 are not yet available.

TABLE 10. Failure Strength Coefficients for Cross-Rolled Beryllium Sheets Using
the New Proposed Criterion

Strength Coefficient Numerical Value

F 1 3.54 x 10 -4 MPa -1 (2.44 x 10-3 ksi -1)

F 2 4.17 x 10 -4 MPa -1 (2.77 x 10-3 ksi -1)

F 3 8.70 x 10 .4 MPa -1 (6.00 x 10-3 ksi -l)

F11 2.84 x 10 -6 MPa -2 (1.35 x 10 -4 ksi -2)

F22 2.67 x 10 -6 MPa -2 (1.27 x 10 -4 ksi -2)

F33 2.91 x 10 -6 MPa -2 (1.38 x 10 4 ksi -2)

F44 3.72 x 10 -6 MPa -2 (1.77 x 10 .4 ksi -2)

F55 3.45 x 10 -6 MPa -2 (1.64 x 104 ksi "2)

F66 1.09 x 10-5 MPa -2 (5.17 x 104 ksi -2)

F12 -1.29 x 10 -6 MPa -2 (-6.11 x 10-5 ksi -2)

F13 -1.65 x 10-5 MPa -2 (-7.82 x 10 .4 ksi -2)

Fll 2 -6.90 x 10 -1° MPa -3 (-2.26 x 10- 7 ksi -3)

F122 -2.18 x 10-1° MPa -3 (-7.14 x 10 .8 ksi -3)

F166 -1.14 x 10-1° MPa -3 (-3.74 x 10 -7 ksi -3)

F266 -1.14 x 10-1° MPa -3 (-3.74 x 10- 7 ksi -3)

Fll 3 -5.82 x 10 -7 MPa -3 (-1.91 x 10 .4 ksi -3)

F133 9.31 x 10 -8 MPa -3 (3.05 x 10-5 ksi -3)

F144 5.59 x 10 -7 MPa -3 (1.83 x 104 ksi -3)

F344 -9.89 x 10 -8 MPa -3 (-3.24 x 10- 5 ksi -3)

Note: F23 , F223, F233, F244, F155, F255, F355, and F366 are not yet available.
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Appendix C: Notation

a X

GL =

aT =

cYST =

[G MAT] =

MAW]=

=
EL =

EST =

"7LT =

Ex =

EL =

ET =

Es-r =

GL,T =

v y,x =

V ST,x =

gy,x

SI.,x =

S'r,x

Ss'T,x

c_ki, a Ij

stress parallel to the direction of the load

stress in the long material direction

stress in the transverse material direction

stress in the short transverse material direction

material axis stress tensor

load axis stress tensor

material axis strain tensor

load axis strain tensor

strain in the long material direction

strain in the transverse material direction

strain in the short transverse material direction

shear strain in the plane of the material

Young's modulus for load axis

elastic modulus for long material direction

elastic modulus for transverse material direction

elastic modulus for short transverse material direction

in-plane shear modulus

in-plane Poisson's ratio

through-thickness Poisson's ratio

measured stiffness in "y" direction due to stress in the "x" direction

measured stiffness in long material direction due to stress in the "x"

direction

measured stiffness in transverse material direction due to stress in

the "x" direction

measured stiffness in short transverse material direction due to

stress in the "x" direction

direction cosines for transformation of stress tensor
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