
G

M

i_T -_ ,
__ k

\

RICIS Symposium '90

Software Engineering:
Aerospace Applications &

Research Directions

November 7 & 8, 1990
Houston, Texas

University of Houston-Clear Lake NASA/Johnson Space Center

;°

Research Institute for

University of Houston-Clear Lake Computing & Information Systems

SOFTWARE ENGINEERING

Aerospace Applications & Research Directions

RICIS Symposium 1990

There is international concern about the impact of computer

systems upon life and property issues within all elements of a

world wide community of interacting social, financial, medical,

and technical organizations. Software Engineering has achieved

recognition as the discipline that captures the paradigms that

must be used to produce high integrity software within limited

time and budget constraints. The aerospace community has become

a leader in applying these disciplines to software that provides

control of life and property. During the decade of the 1990's

these disciplines need to be applied to non-aerospace life and

property critical computer systems.

The RICIS '90 Symposium has been organized to provide a review of

current and future applications of software engineering

paradigms. Distinguished professionals from industry,

government, and universities have been invited to participate and

present their views and experiences regarding research,

education, and future directions of software engineering.

We trust that you will find this symposium to be informative and

enjoyable.

Technical Co-Chair
Sadegh Davari
Technical Co-Chair

2700 Bay Area Blvd. • Box 444 • Houston, TX 77058-1098
(713) 283-3800 FAX (713) 283-3810

University of Houston-Clear Lake &
NASA/Johnson Space Center
This conferenceisone ina seriesofconferencespresentedunder the auspicesofthe UniversityofHouston-Clear

Lake'sSoftwareEngineeringProfessionalEducation Center(SEPEC), which isthe educationand trainingbranch

oftheResearch InstituteforComputing and InformationSystems (RICIS).The UniversityofHouston-ClearLake

founded RICIS incooperationwith NASA/Johnson Space Centerand the aerospacecommunity.

The Mission of RICIS
The institute'smissionistoconduct,coordinateand disseminateresearchon computing and informationsystems

among researchers,sponsorsand usersfromtheUniversityofHouston-ClearLake,NASA/Johnson Space Center,the

aerospaceand computing industries,and otherresearchorganizations.

The Mission of SEPEC
The missionofthe Software EngineeringProfessionalEducation Center istoprovideeducationand trainingfor

softwareprofessionalswith an emphasis on large,complex distributedsystems.SEPEC alsoservesasa testbed for

researchand innovationin softwareengineeringeducationand training.

ADA Users' Symposium
RICIS '90sharestheweek withanotherkey software

engineeringactivity,the Third Annual NASA Ada

Users'Symposium. Topicstobe coveredonTuesday,

November 6,willcomplement RICIS '90.The Ada

Users'Symposium ishostedby NASA/JSC, MITRE

Corporation,and UH-Clear Lake;and willbeheldat

the NASA/Gilruth Center. Itisfree;however, pre-

registrationisrecommended. Contact SEPEC at

(713) 282-2223 i_oradditionalinformation and

registration.

Conference Steering Committee

General Co-Chairs:
A. Glen Houston, Director, R1CIS, Utt-Clear Lake

Robert B. MacDonald, Assistant for Research and Education-

Mission Support Directorate, NASA/JSC

Technical Co-Chairs:
Rod L. Bown, Associate Professor of Computer Science, UH.Clear

Lake

Sadegh Davari, Assistant Professor of Compuler Science, UI-t-
Clear Lake

Administrative Co-Chairs:
Glenn B. Freedman, Director, SEPEC, UH-Clear Lake
Don Myers, Coordinator, SEPEC, UH-Clear Lake
Glen Van Zandt, Human Resource Development Specialist,

NASA / JSC

Wednesday, November 7

8:00- 5:00

8:30- 12:00

12:00- 1:00

1:15- 1:45

1:45- 2:45

2:45- 3:00

3:00- 5:00

5:00- 6:00

Registration

Tutorials

Lunch fortutorials

Welcome & Introductions

Keynote Address

Break

Session 1

Wine & Cheese Reception

Thursday, November 8

8:00- 3:00 Registration

8:30-10:00 Session 2

I0:00-10:15 Break

10:15-11:45 Session 3

11:45- 1:30 Lunch Speaker

1:30- 3:00 Session 4

3:00- 3:15 Break

3:15- 5:00 Session 5

RICISSYMPOSIUM

Aerospace
Applications

&
Research
Directions

November 7

1:15- 1:45 p.m. Welcome & Introductions

A. Glen Houston

Director, RICIS, University of Houston.Clear Lake

Thomas M. Stauffer

President, University of Houston -Clear Lake

Daniel A. Nebrig

Associate Director, Johnson Space Center

Robert B. MacDonald

Manager, Research and Education, Information Systems and University Programs Directorate, NASA/JSC

Keynote Address

1:45 - 2:45 p.m.

Introduced by Sadegh Davarl, Technical Co-Chair, University of Houston-Clear Lake

David Weiss, Software Productivity Consortium

SYNTHESIS: Integrating Product and Process
Many software developers share the goal of making software products easier to produce by

the manufacturing process. The problem is how to organize the production process and the

products to eliminate rework. The solution lies in viewing system production as creating

different members of a family, rather than creating a new system each time requirements

change. Synthesis is a proposed systematic process for rapidly creating different members

of a program family. This talk will be a discussion of the goals of Synthesis and the Synthesis

process. The technology needed and the feasibility of the approach will be briefly discussed.

Finally, the status of current efforts to implement Synthesis methodologies will be given.

Break

2:45 - 3:00 p.m.

Session 1

3:00 - 5:00 p.m.

Lessons Learned in Software Engineering
Chair: Gary Raines, Manager, Avionics Systems Development

NASA / JSC

Report From NASA Ada Users' Group
John R. Cobarruvias

Flight Data Systems Division, NASA/ JSC

Software: Where We Are & What Is Required In The Future
Jerry Cohen

Boeing Aerospace and Electronics

Managing Real-Time Ada
Carol A. Mattax

Hughes Aircraft Corp., Radar Systems Group

5:00 - 6:00 p.m. Wine and Cheese Reception

Office,

November 8

Session 2

8:30 -10:00 a.m.

Software Engineering Activities at SEI
Chair: Clyde Chittister, Program Director of Software Systems,

Software Engineering Institute, Carnegie Mellon University

SERPENT User Interface Management Systems
Reed Little

Senior Member, Technical Staff, SEI

A Task Description Language for Distributed Applications
Dennis Doubleday

Senior Member, Technical Staff, SEI

Break

10:00 - 10:15 a.m.

Session 3

10:15 - 11:45 a.m

Software Reuse
Chair: Robert Angier, IBM Corporation

Recent Reuse Research Activities
Will Tracz

IBM System Integration Division

Ada Net
John McBride

Planned Solutions

Lunch

11:45 - 12:30 p.m.

Lunch Speaker
12:30- 1:30 p.m. Ed Berard, Berard Software Engineering Inc.

Ada in the Software Engineering Marketplace

Session 4

1:30 - 3:00 p.m.

Break

3:00 - 3:15 p.m.

Session 5

3:15 - 5:00 p.m

Software Engineering: Issues for Ada's Future
Chair: Rod L. Bow"n, University of Houston-Clear Lake

Assessment of Formal Methods for

Trustworthy Computer Systems
Susan Gerhart

Microelectronics and Computer Technology Corp. (MCC)

Issues Related to Ada 9X
John McHugh

Computational Logic Inc.

Posix and Ada Integration in SSFP
Robert A. Brown

Charles Draper Laboratory, Inc.

Ada Run-Time Issues
Chair: Alan Burns, University of York (U.K.)

Key members of the Ada Run-Time Environment Working Group (ARTEWG) will discuss

projections for the next release of the Catalog of Interface Features and Options (CIFO).

RICISSYMPOSIUM

N91-22725

Synthesis: Intertwining Product and

Process

David M.Weiss

SEPEC - 7 Nov 90

$ OFT W A R E

RODUCTIVITY

CONSORTIUM

Keynote Address 1:45 -2:45 Nov. 7, 1990

SYNTHESIS: INTEGRATING PRODUCT AND PROCESS

David M. Weiss

Software Productivity Consortium

Abstract

A current_'end in manufacturingisto design the manufacturingprocess and the

productconcurrently.The goal isto make the producteasy to produce by the
manufacturingprocess. Although software isnot manufactured, the techniques

needed to achieve the goal of easilyproduciblesoftware exist.The problem ishow to

organizethe softwareproductionprocess and the products to eliminaterework. The
solutionliesin viewing system productionas creatingdifferentmembers of a family,

ratherthan creatinga new system each time requirements change. Engineers should

be able to take advantage of work done in previous developments, ratherthan

restatingrequirements,reinventingdesign and code, and redoing testing.

Synthesis isa proposed systematicprocess forrapidlycreatingdifferentmembers of a

program family. Family members are describedby variationsintheirrequirements.

Requirements variationsare mapped to variationson a standard design to generate

productionqualitycode and documentation. The approach is made feasibleby using

principlesunderlyingdesign for change. Synthesis incorporatesideas from rapid

prototyping,applicationgenerators,and domain analysis.This talkwllbe a discussion

of the goals of Synthesis and the Synthesisprocess. The technology needed and the

feasibilityof the approach willbe brieflydiscussed. Finally,the statusof currentefforts

to implement Synthesis methodologies willbe given .

f

x..

Topics

Synthesis vision

• Components of a Synthesis process

- The application engineering and domain engineering
processes ,

• Application Engineering: Building the application

• Domain Engineering: Building the application engineering
environment

• Summary

SEPEC - 7 Nov 90 2
CONSORTIUM

/-
Typical Problems

• Ill-defined and changeable requirements

• Confusion of requirements, design, code

• Transformational barriers

m

Rediscovery and reinvention

Requirements - > Design - > Code

Requirements - > Test

f

Goals

• Bring the customer into the production loop for validation

• Separate the concerns of requirements determination and
validation from design, coding, and testing

• Respond rapidlyto changes in requirements

• Rapidly generate deliverable products

- generate code and documentation

- achieve high productivity

- achieve high quality

• Achieve systematic reuse

- capture and leverage expertise

- reuse systems

SEPEC - 7 Nov 90 4

f

The Synthesis Application Development
Process: Idealized

• ._'_'_----.-. Deliverables

I Accepted
n • I / Executable _ts

Kequ,rements_q / Code &
[Documentation

Application Engineering I

Key:

O _ Cust°meJ

/-
Approach

• Integrate the development process and the product

- Design for producibility

- Concurrent engineering for software

• Reorganize the software development process

- Evolve a family rather than build single systems

• Develop systematic approach to building flexible
application generators

• Use existing technology

SEPEC - 7 Nov 90

._"/.41_ sov'rwARe
._'/_,,,l!__F_ooucr_vIr ¥

A Synthesis Process

Feedback
(Customer

needs)

_ Define family and develop _-
production capabilities]

1

t
[oduction---_

amework_
,,
Y

Produce Family Members

Y

_pplications .__._

Feedback

(Environment
needs)

Process J

Examples of Similar Approaches

• YACC, LEX--parser/compiler applications

• Tedium--fle_ble application generator (MIS orientation)

• Systematica--generation of CASE tools

• Toshiba software factory

- Generation of power plant software

- Standardized design

- Automated generation of 70%-80% of delivered code

• Spectrum

- Prototype application engineering environment

- Standardized design

- Automated generation of code

SEPEC - 7 Nov 9t? CONSORTIUM

f

Synthesis

Any methodology for constructing software systems as
instances of a family of systems

Process + Methods + Workproducts

f

Components of Synthesis

Application Engineering: An iterative process for
constructing application systems.

- Requirements are described by an application model

Rapidly determine requirements and generate
deliverable software

Application Engineering Environment: A framework
(automated or manual) that supports a prescribed
application engineering process.

- Rapid prototyping and generation of systems

- Automated generation of members of program families

- Automated reuse of systems

SEI'EC - 7 Nov 90 10

,___p$o FTWA RE

RODUCTIVITY

CONSORTIUM

Components of Synthesis (continued)

Domain Engineering: A repeatable, iterative process for the
design and development of both a family of systems and
an application engineering process for the family.

Systematic development of product families for member company
domains

- Missing step in current processes

Domain Model: A specification for an application
engineering environment.

- Conceptual framework (Language for specifying application models)

- Reuse architecture (Standard, adaptable design)

- System composition mapping (Map from language to reuse architecture)

Domain: (1) A business area
(2) A family of applications to be created within

a business area

f

A Synthesis Process

Feedback
(Customer

needs)

(---_ DOMAIN EN,GINEERING_
I

ion._
_nvironmenX.....--- _

-- APPLICATION ENGINEERI_G_ --4"J
I

Y

Feedback
(Environment

needs)

Key:

SEPEC -7 Nov g0 12 CONSOATIUM

f

The Application Engineering Process

Requirements/_

Needs

Application
Engineer

ORIGINAL PAGE IS

OF PO0_ _JAL."rY

/7

Application Engineering for Host-at-Sea
(HAS) Buoy Systems

SEPEC - 7 Nov 9_3 14

.PY.._SV" sorrw,,ae

." CONSORTIUM

f

f

The Host-at-Sea (HAS) Buoy System

HAS Buoys drift at sea and monitor and report on environmental
conditions. A typical HAS Buoy:

Is equipped with a set of sensors that monitor environmental conditions,
such as air and water temperature and wind speed. The value of a

particular condition at a given time is determined by averaging sensor
readings.

Can determine its location, using the Omega or some other navigation
system.

Maintains a history of the environmental data it has collected, a history of
its location, and a correlation between the two.

- Is equipped to transmit and receive messages via radio.

- Periodically transmits messages containing current weather information.

Responds to requests that it receives, via radio, to transmit more detailed
reports and to transmit weather history information.

SEPEC - 7 Nov 90 CONSORTIUM

f

The Host-at-Sea (HAS) Buoy System
(continued)

HAS BuQys drift at sea and monitor and report on environmental
conditions. A typical HAS Buoy:

- Is equipped with an emergency switch, which, when flipped, causes the

buoy to transmit an SOS signal in place of its periodic wind and

temperature reports.

- Has a red light that it can turn on to be used in emergency rescue

operations.

- Can accept location data from passing ships, via radio messages.

- Performs built-in tests (BIT) to determine if its computer and sensors are

operating properly.

HAS as a Real Time System

\

• Meet real-time deadlines for sampling sensors, sending
messages

• Perform several functions concurrently, i.e., message
broadcasting, data collection

• Reorder processing priorities based on occurrence of
external events

• Receive and respond to requests from other systems

• Maintain history data base

• Handle exceptions, such as resource failures, without
human intervention

• Missing: human-computer interface
__a__.,e s°_wAaE

RODUCTIVITY
A'_/A_" CONS O RTIU M

SEPEC - 7 Nov 90 1 fl

/- \

The Buoy Application Engineering
Environment

IOuoy Requirement] Application Lltngua_ Environment

Selrlso]r8

",,¢a t *,¢ Tt_por ot_a-o

w_ spted

A_ "r *,_l_er it ure

(D

Comm Links Options

r e_o _nsh_p [t

sate_;l_e Ortega Nlv_gator

ComponQnt.s

Computers

R_elv_,'t

Air Wind

:i !!

W_ter

Temp

MIPS Ram

Cycle
Length

ORIGINAL P_

oF POOR_¢
GE IS

f

The Buoy Application Engineering
Environment

IBuoy Requifementll AppllClltion Lllnguage Environment

Sensors

_.d sot*d

62)

I

Air VY" i nd

Sample
Rate

@] @T@___ @

Comrn Links Options

mot • .B_**D t g _ t

Sst_"'t* Om*_a NIV_tO_

Components

ofq
C_p.t,rf

oF]
__O.._F]

"err-.p S eed

Water Temperat ire

Kange: Low/High Kesolul _n Response

MIPS Rate

o..._.....
Cycle

Length

W_ter

Temp

SEPI:C - 7 Nov 90 20 CONSORTIUM

f

Characteristics of the Buoy Application
Engineering Environment

• Focuses on requirements decisions, independent of design
and implementation

• Focuses on variabilities used to describe members of the

Buoy family

• Generates code and documentation for the application
engineer (transparently)

• Simulates Buoy operations in a form meaningful to the
customer

• Analyzes consistency, completeness, cost, and performance
of the application model

-- Do I have enough MIPS to do the job?

-- Have I specified unnecessary redundancy?
t

-- How much will it cost?

f

A Synthesis Process

Feedback

(Customer

needs)

4----_ DOMAIN ENGINEERING} _-
i t

I I

It

ion Engi 't
"-,...____ nvi ro n m e nL_.._....._ ',

I i
1'

-i APPLICATION ENGINEERING --_
1
T

_pplication_____

Key:

_ I _oc_

Feedback

(Environment

needs)

' SEPEC - 7 Nov 90 22

,__,_pSOFTWA RI_

RODUCTIVITY

CONSORTIUM

f

Domain Engineering: Building the
Environment

General Needs of Sources.of Parts
Business Line/ . 1

Customer Inpu_

.... q_ Domain Analysis ,,,.. Domain ImplementationFeedback fr Domain Model • •

/xpplican°n " I " I *"[-]

Engineering ' __ _

M..Modeling L_ -''_' ° -7-27

f

Domain Analysis

A Process For Refining/Creating Specifications For An

Application Engineering Environment

SEPEC - 7 Nov 90 24 CONSORTIUM

The Domain Model

Conceptual Framework-

- Application Modeling Language: Language for stating
requirements

• Reuse Architecture

System software architecture organized for ease of
reuse through adaptation

Specifications for parts for reuse library

System Composition Mapping

- Process for selecting and adapting parts for generation
of code and documentation

- Mapping from the modeling language to corresponding
entities in the reuse architecture

f

Application Engineering Using The
Domain Model

ReqNeeds

Application
Generation

SF.PF.C - 7 Nov 26

ORIGINAL PAGE IS

OF POOR (_IJALITY

CONSORTIUM

f

Application Modeling Language

Goal: Representation of requirements in application terms

• Support engineering decision making

• Specialize for the domain

• Separate representation, semantics, presentation

• Permit representation of expected variations

Application Modeling Language for
The HAS Buoy Domain

Buoy nequlrern_nl:B Application LIm.ngua,ge Envlronrn_nt

Sensors

.....__1
.._. P1

A_r T._p.r etu_$

Comm Links OpUons

sht_ E_rgo_ov IEqi,Jlpmo n'_

s_*_l_l,t O_eg8 _ov_16t_

U_r *_al N6v_at _

Components

°2. D

Wind

. Spood

Wntar

Terap

IPS _t_

_p

[Length

.,_.,. E]

SEPEC - 7 Nov 90 28

t

CONSORTIUM

f

Reuse Architecture
Goal: Define mechanically adaptable products for the domain

• Create information hiding class hierarchy to manage
changeability and guide design decomposition

- Divide software components into classes according to:

1) Relative likelihood of change

2) Origin of change (functional requirements,
environment, software design decisions)

-- Each class is an abstraction

- Write specifications for components to be stored in
reuse library

• Create process structure (for real-time systems) to support
reconfigurability

• Identify dependencies among components to support
systematic reuse

f

The System Composition Mapping

Goal: Select and adapt classes to compose applications that
satisfy application models

• For each set of variations described in an application
model, select appropriate parts from the reuse library

• Instantiate (Adapt) parts as determined by the application
model

SEPEC - 7 Nov 90 30 CONSORTIUM

f

Domain Implementation

A Process for Refining/Creating An Application
Engineering Environment

Y

Synthesis: Major Products and Processes

General Needs of

Business Line

1
I

DOMAIN ENGINEERING

Domain Analysis

Sources of

acQ_Zus ure_ Parts Ie Architect ". I

// %.

f '_ _ Domain Implementation ,_[..___

i / / \

I I /
I I /

, ._. t ,"

Feedback / Application Application Modeling Application / Feedback•,t-- 1 Requirements Q ,4, GenerationRefinement ,. .

APPLICATION ENGINEERING

SEI'EC - 7 Nov 90 32

,[Irjl_llppS o FT W ARE

RODUCTIVITY

CONSORTIUM

f

Synthesis

Synthesis: _ methodology for the construction of
software systems as instances of a family of systems having
similar descriptions.

Synthesis process: Aalg systematic process for producing
reuse architecture, apphcation modeling language, and
system composition mapping within an application
domain.

a

SEPEC - 7 Nov 9_

Key Synthesis Concepts

• Families of Systems

Domains are formalized as families of systems that share many common
features. Software systems are derived as instances of a family,
not as single unique systems.

Model-Based Specification and Analysis

Specify requirements and system-building decisions precisely in an application
model suitable for analysis,
not constantly rework solution-specific representations.

• Reuse Architecture Designed for Adaptation

Creation and pre-planned reuse of mechanically adaptable subsystems based
on engineering decisions,
not opportunistic search and match with "reusable "parts.

• System Composition Mapping

Mapping from variations in an application model to adaptations in all
deliverables for the implementing subsystems,
not just tracing to possibly affected components.

3, %'*XffC¢-"coNso..,oM

Summary

The technology to improve the software production
process exists

Reorganizing software production to take advantage of the
family viewpoint is the key to improvement

One organization that concentrates on continually
improving production of family members (process
oriented)

- One organization that concentrates on determining
requirements for family members (project oriented)

Similar reorganizations are happening in engineering fields

- customer involvement

- shorter time to market

- more variation across product line

Session 1

Lessons Learned in Software

Engineering
Chair: Gary Raines, Manager, Avionics Systems

Development Office, NASA/JSC

Report from NASA Ada User's
Group

John R. Cobarruvias

Flight Data Systems Division, NASA/JSC

Paper not available at time of printing.

Software: Where We Are & What
is Required in the Future

Jerry Cohen
Boeing Aerospace and Electronics

Paper not available at time of printing.

Managing Real-Time Ada
Carol A. Mattax

Hughes Aircraft Corp., Radar Systems Group

Paper not available at time of printing.

N91-22726

Session 2

Software Engineering Activities
at SEI

Chair: Clyde Chittister, Program Director of Software
Systems, Software Engineering Institute,
Carnegie Mellon University

Session 2 8:30 - i0:00 a.m. Nov. 8

Serpent:

A User Interface Management System

Reed'T.itlle, Software Engineering Institute, Carnegie Mellon University
Len Bass, Software Engineering Institute, Carnegie Mellon University

Brian Clapper, Naval Air Development Center
ErJkHardy, Software Engineering Institute, Carnegie Mellon University

Rick Kazman, Software Engineering Institute, Carnegie Mellon University
Robed Seacord, Software Engineering Institute, Carnegie Mellon University

Abstract

Prototyping has been shown to ease system specification and implementation, especially in the area of

user interfaces. Other prototyping approaches do not allow for the evolution of the prototype into a

production system or support maintenance after a system is fielded. This paper presents a set of goals
for a modern user interface environment and Serpent, a prototype implementation that achieves these

goals.

Introduction

The advent of the modern graphics-oriented workstation is placing increasing emphasis on quality of

the user interface. End users are increasingly more demanding that software should be both functional

and easy to use. In response, both software and hardware vendors must pay more attention to the user

interfaces that accompany their products. However, it is very time consuming and expensive to construct
a user interface: in some systems, the user interface development and maintenance cost exceeds 50%

of the total software cost [1]. And if history is any indication, this cost is going to get more expensive in

the future. The trend is to make these systems more "user friendly', which implies that the user interface

needs to be more complex and robust, and thus more costly.

The current state-of-the-practice in the specification, design, implementation, and maintenance of

interactive computer systems usually does not give the user interface of the system sufficient

consideration. In general, software engineering techniques currently used for the development of

systems are usually an ad h0c combination of "tricks* and "tools', with little regard for formalism and

standardization. Further, the process of user interface development is labor-intensive. Current user

interface development tools and methods inadequately address this problem. In particular, while more

and more vendors are providing user interface toolkits and graphics packages, these packages typically

require extensive and specific knowledge of a particular toolkit or user interface library. These packages

also require the use of conventional, procedural languages such as C and Ada. These languages are not

particularly well-suited to user interlace specification and implementation, so the user is forced into

worrying about low-level syntactic issues.

The Case for Evolutionary Development

One major problem with the software engineering of a user interface is that it is difficultto design a user

interface and know a priori (before implementation) if it is "good'. In fact, there are generally multiple, and

often conflicting, definitions of "good'. Some of the criteria used in the definition of "good" are:

1. does the operator "like" it?

2. does it support the mission goal? and

This work was sponsored by the Department of Defense.

3. is it fast enough?

The current methods used to build interactive systems can result in user interfaces that are non-

intuitive for the opera15r to use and sometimes do not perform the necessary functions. Additionally, the
user interface is often intertwined with the non-user interface parts of the system, making the task of

modification and extension of the user interface during the sustaining engineering phase of the system
extremely difficult.

In many respects, the user interface component is no different from the other components of a system.
The user interface benefits from the accepted software engineering techniques, such as the

determination of the specification of what is to be done before the design of how to do it, etc. However,

user interfaces are especially difficult to build, and using a standard sequential method of construction

(commonly known as the water-fall method) is not appropriate.

Practice has shown that it is better to use an iterative method, where there is specification, design,
implementation, test, evaluation, and a return to specification again [2]. Frequently, there are several

iterations of the specification to evaluation path. It is a fact of human nature that it is easier for people to

determine what it is that they do not like about a user interface than it is for them to unambiguously
specify what they want in a user interface.

Previous User Interface Approaches

Earty prototyping efforts were marked by intense coding in traditional programming languages of both

the user interface and the underlying application. This approach is cumbersome and error-prone, due to
the low-level semantics of these languages. Using this process, changes to the user interface

specification may force major changes in the application program. Even though the prototype may have

only addressed some limited portion of the overall requirements, there is a natural tendency to use it as a
basis for the deliverable product.

Later, specialized prototyping languages were developed, employing specific shorthand notations to

generate corresponding function invocations [6]. These languages are usually fairly arcane, not unlike

RPG and its successors, in that the user interface designer must be intimately familiar not only with the

language, but also with the built-in functions. One of the big drawbacks to this approach is that after the

prototype has been built, the user interface must be rec(_led (using the prototype as requirements) due to

the performance and maintenance issues; there is no smooth transition from prototype to product.

With the advent of fourth generation languages and the increased use of computers for management

information systems came the concept of rapid prototyping [4]. This approach is marked by the

application of database concepts to software development: changing a value in the database causes a

resultant change in the presentation. One major advantage over other approaches is that, for each

function that can be invoked by the user, there is a corresponding program-callable routine. Once the

user interface is specified, the appropdate calls can be made by the application program. However, if the

user interface changes, the application program must be changed.

The explosion in workstation capabilities in the last few years has sparked many new ideas about how

to use these capabilities for user interface development [9, 10, 8, 3, 5, 7], leading to a multitude of tools

and environments, such as Prototyper, xv'r, UIL, Granite, Autocode, and MIKE. However, each tool is

marked by the use of a specific language and/or interactive tools tailored to the capabilities of a particular

platform and/or to the specific user interface toolkit supported. Application support in these packages

usually takes the form of a fixed set of functions that can be invoked as necessary by the application, or a

set of functions that are dynamically generated by the prototyping tool to implement the user interface.

Again, if the user interface changes, the application must be changed to invoke the new functions,

Finally, user interface technology is evolving rapidly. Today's leading edge data presentation theory

becomes tomorrow's commonplace toolkit, giving way to some previously unimagined technology. None

of the above approaches adequately provides for the effective integration and use of new toolkits.

Goals of a Modern User Interface Environment

In 1987 the Software Engineering Institute started the User Interface Project to address perceived

problems in user interface development and to assist the transition of user interface design and

development technology into practice. Out of this effort arose a set of goals for the next generation of

user interface environments:

1. In any computer system, there should be a true separation of concerns between the

application and the user interface. This is simply the concept of modularity: the application
should not try to perform the functions of a user interface, and vice versa. One should be
able to develop the application independently of the user interface, in a language

appropriate to the semantics of the application; similarly, user interface development should

be independent of the application.

2. The user interface specification, design, and implementation should be simple and

straightforward; prototyping should be fairly easy using the mechanisms provided by the
environment. Non-programmers should be able to perform these activities with a minimum

of training. The mechanisms used to perform these activities should not have to change,
even though the user interface style or underlying user interface toolkit may change.

3. It must be possible to prototype the interface and functionality of a system without an

application. The user interface support mechanisms should be sufficiently rich to support
reasonably sophisticated prototypes. As the prototype matures, facilities should be

provided to add an application, in pieces or all at once, thus providing evolutionary

development.

4. Existing systems should be able to take advantage of new toolkits as they become
available, without affecting the application portion of the system. The mechanisms for

incorporating these new toolkits should be relatively simple.

5. Performance, when the environment is used strictly as a prototyping vehicle, should be

reasonable, although special performance considerations may have to be made when used

in production.

User Interface Management System (UIMS)

One tool which meets the above goals is the UIMS. A UIMS is generally composed of four parts:

1. a dialogue, which specifies how information is to be presented to the operator and how to

respond to operator commands,

2. a dialogue manager, which is responsible for interpreting the dialogue during the execution

of the system,

3. a realization component, which is responsible for the actual physical interface between the

operator and the system, and

4. the application, which is responsible for all the non-user interface functionality of the

system.

A UIMS can be thought of as software oriented "erector set" that is tailored for the development of user

interfaces. The UIMS provides an environment where it is very easy and fast to change the form and

function of a user interface. This provides the ability to quickly prototype and change the user interface

during the system s_ecification, design, and implementation phases. A UIMS also enforces the

separation of what is to be presented to the operator from the how it is presented. This provides a very

convenient mechanism for the decoupling of the user interface from the rest of the system, which makes

maintenance and the changes to the user interface easier.

Serpent

Starting with the above goals, the User Interface Project developed a user interface environment

known as Serpent. Serpent is a UIMS, using the standard Seeheim model[Ill, that supports the

development and execution of the user interface of a software system. Serpent supports incremental

development of the user interface from the prototyping phase through production to maintenance.

Serpent encourages the separation of concerns between the user interface and the functional portions of

an application. Serpent is easily extended to support multiple tooikits.

Architecture

Figure 1 shows the overall architecture for Serpent. The architecture is intended to encourage the

proper separation of functionality between the application and the user interface poCdons of a software

system. The three different layers of the architecture provide differing levels of control over user input

and system output. The presentation layer is responsible for layout and device issues. The dialogue

layer specifies the presentation of application information and user interactions. The application layer

provides the actual system functionality.

The presentation layer controls the end-user interactions and generates low-level feedback. This layer

consists of various tooikits that have been incorporated into Serpent. A standard interface has been

defined which simplifies adding new toolkits. Each toolkit defines a collection of interaction objects visible
to the end user.

The dialogue layer specifies the user interface and provides the mapping between the presentation and

application layers. The dialogue layer determines which information is currently available to the end user

and specifies the form that the presentation will take, a_spreviously defined by the dialogue specifier (the

individual responsible for oreating the user interface specification, or dialogue). The dialogue layer acts

like a traffic manager for communication between application and toolkits. The presentation level

manages the ,presentation; the dialogue layer tells the presentation what to do. For example, the

presentation layer manages a button that the end user can select; the dialogue layer informs the

presentation layer of the position and contents of the button and will act when the button is selected.

The application layer performs those functions that am specific to the application. Since the other two

layers are designed to take care of all the user interface details, the application can be written to be

presentation-independent; there should be no dependency in the application on a specific toolkit.

The data that is passed between different layers is known as shared data. Data passed between an

application and the dialogue layer is referred to as application shared data, while data passed between a

toolkit and the dialogue layer is called toolkit shared data. A shared data definition provides the format of

the data.

application

layer

Figure 1: Seq)ent Architecture

Slang

In Serpent, user interface dialogues are specified in a special-purpose language called Slang. Slang

provides a mechanism for defining the presentation of information to, as well as interactions with, the end

user. A Slang program defines and enumerates a collection of interaction objects and allowable actions

to be available to the end user. Slang provides variables for intermediate storage and manipulation,

along with a full complement of primitive arithmetic operations.

The interaction objects available to the dialogue writer are defined by the toolkit. Each toolkit defines a

set of pdmitive objects that may be used in a dialogue. Each object has a collection of attributes that

define its presentation and a collectk)n of methods that determine how the end user can interact with that

object.

In Slang, dependencies between items are automatically enforced. That is, suppose variable V

depends on the value of some object attribute A. it A changes (perhaps due to some end user action),

the value of V is reevaluated automatically. This important and powerful feature allows the dialogue

writer to build complex, interdependent interaction objects simply by referencing data items; the

dependencies are automatically determined and enforced by the the Serpent system.

Slangalso allowsa dialoguewriter to grouparbitraryobjectsinto logicalcollectionscalled view

contro/lers that may be created or destroyed as a unit. Specifying a view controller in Slang defines a
view controller temp/_te; each template has a creation condition that defines when an instance of the

template should come into existence. The existence of a view controller instance and its child objects can
be controlled by the values of Slang variables or by the creation, modification, or destruction of application

data. When a view controller instance's creation condition is no longer valid, it and its associated objects

are destroyed. Multiple instances of a view controller template may exist at any time. A view controller
serves two main purposes:

1. It maps specific application data onto display objects with which the end user can interact.

2. It controls the existence of a series of related objects.

Application Program Interface (API)

From the application developer's perspective, Serpent behaves like a database management system.

Shared data is a "common" database manipulated by the application, the presentation layer (usually in

response to end-user actions), or the dialogue layer (in response to actions within the dialogue).

The application can add, modify, or delete shared data. Information provided to Serpent by the

application is available for presentation to the end user. The application has no direct interface to the

presentation layer and therefore cannot affect how data is presented to the user. When end user actions

cause the dialogue to change the application shared database, the application is automatically informed.
In this sense, the application views Serpent as an active database manager.

Saddle

The type and structure of data that is maintained in the shared database is specified in a shared data

definition file, defined in a language called Saddle. This data definition corresponds to the database

concept of schema. A shared data definition file is created once for each application and once for each

toolkit that is integrated into Serpent.

The shared data definition file is processed to produce a language-specific description of shared data.

Processors currently exist for Ada and C. If the application is written in C, the processor will generate
structure definitions that can be included into the application program. If the application is written in Ada,

the processor will generate package specifications.

Input/Output Toolkit Integration

Given that Serpent manipulates objects, the toolkits that are integrated most easily are those that are

object-oriented. The successful integration of object-orianted graphics systems and their associated

toolkits has been a major proof of Serpent's ability to separate presentation concerns from application
concerns.

The process of integrating a toolkit into Serpent is conceptually simple. It can be logically divided into

three parts:

1. the objects with which the end user will interact must be determined, along with their
behavior;

2. these objects must be defined to Serpent through the use of Saddle; and

3. "glue" code must be written to allow the toolkit to communicate with the dialogue manager,
through Serpent's shared database facility.

If a toolkit already has an object orientation, then the first and third integration steps are usually

straightforward.If it does not, then a set of objects and their attributes which conform to the Serpent
model must be built on top of the toolkit.

Toolkit integration presents other practical difficulties. The integrator has to decide how much of the

underlying toolkit to expose to a dialogue writer, whether to change any of the default behavior of the

system, and whether to make the system more robust by, for instance, performing error checking that the
toolkit does not handle.

The User Interface Development Process Using Serpent

Slang was designed explicitly for user interface specification. A Slang dialogue writer is not burdened

with the technical and procedural details necessary to manipulate specific interaction objects; those

details are hidden in the presentation layer. The dialogue writer merely specifies the objects that make up

the user interface and indicates how they relate to one another and to the end user; the Serpent runtime

system manages the interaction objects. The dialogue specifier needs to be familiar with the

characteristics of various objects, such as knowing that an Athena widget set label widget appears as a

rectangle on the screen; however, the specifier does not need to know how to tell the Athena toolkit

library how to display such a widget.

Slang dialogues can be executed without of an application, allowing the building, testing, and

refinement a prototype before designing and implementing the rest of a system. Often, however, a

prototype requires the existence of some application functionality, if only to initialize display values.

Slang's rich set of primitive operations allow the user interface designer to "mock up" application

operations in the prototype dialogue. Once the prototype has been refined, the simulated application

behavior is removed from the dialogue and the real application is added.

A Simple Example
Perhaps the best way to illustrate the simplicity of prototyping with Slang is by example. Figure 2

shows the screen display for a counter demonstration, using the X Toolkit Athena widget set. The box

labeled "PRESS" is a command widget that can be selected by the user via a mouse. The box above the

command widget is a label widget containing the current value of the counter. When the user selects the
button labeled "PRESS", the value in the label widget is incremented by 1.

PUSH

QUIT i

Figure 2: A Simple Example

InSlangthisexample is implemented as follows:

VARIABLES :

counter : _;

OBJECTS:

/*

width, height, vert_distance,

are all specified in pixels

*/

background: form_widget

{ATTRIBUTES:

width: 640;

height: 645;

}

and horiz distance

display: label_widget

{ATTRIBUTES:

parent:

width:

height:

vert distance:

horiz distance:
m

label text:

)

background;

60;
40;

150; /* from upper left of parent */

310; /* from upper left of parent */

counter;

push_button:
{ATTRIBUTES:

parent:

width:

height:

vert distance:

horiz distance:

label text :

connand_widget

background;

60;

40;

250; /* from upper left of parent

310; /* from upper left of parent

"PRESS";

*/
*/

METHODS :

notify :

{counter := counter + I;

}
}

The background 0bje_ pro_des a fo.n on which toforte the otherobjeds. The displayobje_

definesthe labelwidgetcontainingthe cu_entvalueofthe counter;notethatthe label_textfield,which

controlswhat isactuallydisplayedinthe fo._ widget,isdependent on the valueof the globalvanable

counter. When the value of the variable changes, all items that depend on it are re-evaluated. Put more

simply, if counter changes, the text displayed in the display object will change automatically.

The push_button object defines the command widget that the end user will select in order to

increment the value displayed on the screen. When the user selects the button, the presentation layer

captures the event and communicates it to the dialogue via a notify method, causing the associated code

snippet to be executed. In this case the counter variable is incremented, which in turn causes the label

in the display object to be changed.

Dependencies and type conversions are managed automatically by the Serpent runtime system,

allowing the dialogue writer to focus on user interface issues, rather than syntactic details. For example,

the counter variable is an integer; the label_text attribute of the display object is a string. Slang

converts the counter value to a string before assigning it to the the label_text attribute; the dialogue
writer merely needs I_ specify the dependence between the variable and the attribute. Further, the

attributes for every interaction object take reasonable defaults, so the dialogue writer does not need to
specify a value for every possible characteristic of an object.

In short, Slang is designed to minimize the amount of information the dialogue writer needs to specify
in order to manipulate interaction objects.

Status

The initial implementation of Serpent was done under ULTRIX 2.2 on DEC microVAX II and III

workstations. Serpent was also easily ported to run under SUNOS 3.5 or higher on SUN2 and SUN3

workstations and DECStation 3100 & 5000 platforms. We expect porting to similar UNIX platforms to be
relatively straightforward.

Applications can be written in either C or Ada, and simple mechanisms exist to extend Serpent to

support other high level languages. Serpent was implemented predominantly in C, with additional support

software written as shell scripts.

Currently, two different interfaces to X Window System toolkits have been written for Serpent: one

implements a subset of the Athena widget set and the other implements the Motif widget set. In addition,

Lockheed's Softcopy Map Display System has been integrated.

An interactive What-You-See-ls-What-You-Get (WYSIWYG) graphical editor that hides most of the

details of the user interface specification is available. The editor provides for fast feedback, so that the

entire application system need not be executed, or even exist, to begin to "get a feel" for the interface.

Serpent is available from the Software Engineering Institute and MIT through anonymous ftp. It is also
contained in the X11 R4 contrib release from MIT.

Conclusions

As a result of our experiences in developing user interfaces with Serpent, we have concluded that

Serpent offers the following advantages over other user interface development approaches:

1, The active database model for applications allows the true separation of application issues
from user interface issues, thus ensuring modularity. Application writers are also free from
the syntactic drudgery inherent in programming large, complex toolkits.

2. The constraint mechanisms implemented via automatic dependency updates ensure that all
participants (application, dialogue manager, and toolkit) are synchronized in terms of the
state of the system.

3. Serpent's language-independent interface definition and inter-process communication
mechanisms help in achieving modularity. Application developers are not constrained to
work in a single language.

4. Serpent's toolkit integration support reduces the integration process to a sedes of concise,
well understood steps. Once a particular toolkit is integrated, its objects are available for
use in any dialogue.

5. Due to Serpent's inherent separation of concerns, system developers can experiment with
different user interface styles, and even different toolkits, without changing either the
application code or the API. This also provides for the injection of new toolkits and user
interface paradigms into an existing system, while minimizing the system portions which are

affected.

Serpenthasachievedthegoalsof a modernuserinterfaceenvironmentsetforthearlier.Theuser
interfacespecificationmechanismsaresimpleanddirect;changesintheuserinterfacearemadeeasily,
withoutchangingthe application.The applicationprograminterfaceis simpleand easyto useand
enforcesa true separationbetweenthe applicationand the user interfaceportionsof the system.
Prototypingis accomplishedrapidly,with reasonableprovisionfor applicationfunctionalitysimulation.
Serpent'stoolkitintegrationmechanismsallowanewtoolkitto beincorporatedintoSerpenteasilywithout
affectingtheapplication.Finally,Serpentis itselfaprototype,implementingthegoalslistedabove.Even
so, performanceis quitereasonable,andwearecontinuallymakingimprovements,althoughwewould
notyetrecommenditfortime-criticalproductionenvironments.

References

[1] Boehm, Barry W.
A Spiral Model of Software Development and Enhancement.
Computer21(5), May, 1988.

[2] Boehm, Barry W.
Improving Software Productivity.
Computer20(9), September, 1987.

[3] Colborn, Kate.
OSF Determines User Interface; Choices Could Affect the Development of Applications Software.
EDN, December, 1988.

[4] Fisher, Gary E.
Appfication Software Prototyping and Fourth Generation Languages.
Technical Report, National Bureau of Standards, May, 1987.

[5] Foley, James, et al.
Defining Interfaces at a High Level of Abstraction.
IEEE Software, January, 1989.

[6] Hanner, Mark Allen.
Gambling on Window Systems.
UNIX Review, December, 1988.

[7] Kasik, David J., et al..
Reflections on Using a UIMS for Complex Applications.
IEEE Software, January, 1989.

[8] Kolodziej, Stan.
User Interface Management Systems.
Computerworld, July 8, 1987.

[9] Myers, Brad A.
Tools for Creating User Interfaces: An Introduction and Survey.
Technical Report CMU-CS-88-107, Carnegie Mellon University, 1988.

[10] Myers, Brad A.
The Garnet User Interface Development Environment: a Proposal.
Technical Report CMU-CS-88-153, Carnegie Mellon University, 1988.

[11] Pfaff, G. (Ed.).
User Interface Management Systems.
Springer-Vedag, Berlin, 1985.

Session 2 8:30 - i0:00 a.m. Nov. 8

N91-22727

Prototyping Distributed Simulation Networks

Dennis L. Doubleday

Software Engineering Institute

Prototyping Distributed Simulation Networks

Dennis L. Doubleday

Software Engineering Institute

Abstract

Durra is a declarative language designed to support application-level programming. In this paper we

illustratethe use of Durra to describea simple distributedapplication:a simulationof a collectionof
networkedvehicle simulators. We show how the language is used to describe the application, its
components and structure,and howthe runtimeexecutiveprovidesfor the executionof the application.

1. Programming at the Application-Level
Many distributed applications consist of large-grained tasks or programs, instantiated as processes,

running on possibly separate processors and communicating with each other by sending messages

of different types.

Since the patterns of communication between the processes can vary over time and the speeds of

the individual processors can differ widely, the developers may need explicit control over the

allocation of processors to processes in order to meet performance or reliability requirements.

Processors are not the only critical resource. The resources that must be allocated also include

communication links and message queues. We call this network of various processor types, links,

and queues a heterogeneous machine.

Currently, users of a heterogeneous machine network follow the same pattern of program

development as users of conventional processors: Programmers write individual tasks as separate

programs, in the different programming languages (e.g., C, Lisp, Ada) supported by the processors,

and then hard code the allocation of resources to their application by explicitly assigning specific

programs to run on specific processors at specific times. This coupling between the component

programs and the built-in knowledge about the structure of the application and the allocation of

resources often prevents the reuse of the programs in other applications or environments.

Modification of the application during development is often expensive, time-consuming, and error-

prone. The problem is compounded if the application must be modified while running in order to deal

with faults or mode changes. We claim that developing distributed applications for a heterogeneous

machine is qualitatively different from developing programs for conventional processors. It requires

different kinds of languages, tools, runtime support, and methodologies. In this paper we address

some of these issues by presenting a language, Durra. We briefly describe the language and its

distributed runtime support environment and then present, as an example distributed application, a

simple simulation of a network of vehicle simulators.

The rest of this paper is organized as follows. Section 2 briefly describes the Durra language and

runtime environment. Section 3 discusses the problem we are attempting to address in the realm of

This work is sponsored by the U.S. Department of Defense. The views and oonclusions contained in this document are

solely those of the author(s) and should not be interpreted as representing official policies, either expressed or implied, of

Carnegie Mellon University, the U.S. Air Force, the Department of Defense, or the U.S. Government.

networked simulation devices. Section 4 describes the work we have done to date toward that end.

2. Introduction to Durra

Durra [2] is a language designed to support the development of distributed, large-grained concurrent

applications running on heterogeneous machine networks. A Durra application description consists of

a set of task descriptions and type declarations that prescribe a way to manage the resources of the

network. The application description describes the tasks to be instantiated and executed as

concurrent processes, the types of data to be exchanged by the processes, and the intermediate

queues required to store the data as they move from producer to consumer processes.

2.1. The Durra Language

Task descriptions are the building blocks for applications. A task description includes the following

information (Figure 1): (1) its interface to other tasks (ports); (2) its attributes; (3) its functional and

timing behavior: and (4) its internal structure, thereby allowing for hierarchical task descriptions.

talk task-name
ports

port-declarations

attrlbutas
attribute-value.pairs

behavior

functional specification
timing specification

structure --
process-declarations
bind-declarations
queue-declarations
reconfiguration-statements

end task-name

-- Used for communication between a process and a queue

-- Used to specify miscellaneous properties of the task

-- Used to specify task functional and timing behavior

A graph describing the internal structure of the task

--Declaration of instances of internal subtasks

-- Mapping of internal ports to this task's ports

-- Means of communication between processes

-- Dynamic modifications to the structure

Figure 1: A Template for Task Descriptions

The interface information declares the ports of the processes instantiated from the task. A port

declaration specifies the direction and type of data moving through the port. An In port takes input

data from a queue; an out port deposits data into a queue:

ports
inl : In heads;

outl, out2: out tails;

The attribute information specifies miscellaneous properties of a task. Attributes are a means of

indicating pragmas or hints to the compiler and/or runtime executive. In a task description, the

developer of the task lists the actual value of a property; in a task selection, the user of a task lists the

desired value of the property. Example attributes include author, version number, programming

language, file name, and processor type:

attributes -"
author = "Jmw";

implementation = "program name";

Queue Size = 25;

The behavioral information specifies functional and timing properties of the task. The functional

information part of a task description consists of a pre-condition on what is required to be true of the

data coming through the input ports, and a post-condition on what is guaranteed to be true of the data

going out through the output ports. The timing expression describes the behavior of the task in terms

of the operations it performs on its input and output ports. For additional information about the syntax

and semantics of the functional and timing behavior description, see the Durra reference manual [1].

The structural information defines a process-queue graph and possible dynamic reconfiguration of the

graph.

A process declaration of the form

process__name: task task_selection

creates a process as an instance of the specified task. Since a given task (e.g., convolution) might

have a number of different implementations that differ along different dimensions such as algorithm

used, code version, performance, or processor type, the task selection in a process declaration

specifies the desirable features of a suitable implementation. The presence of task selections within

task descriptions provides direct linguistic support for hierarchically structured tasks.

A queue declaration of the form

queue_name [queue_size]: po__name_l > data_transformation> pod_name_2

creates a queue through which data flow from an output port of a process (port_name_l) into the

input port of another process (port_name_2). Data transformations are operations applied to data

coming from a source port before they are delivered to a destination port.

A port binding of the form

task_port = process_port

maps a port on an intemal process to a port defining the external interface of a compound task.

A reconfiguration statement of the form

If conditionthen
remove process-names
process process-declarations
queues queue-dec/arations

end If;

is a directive to the executive. It is used to specify changes in the current structure of the application

(ie., process-queue graph) and the conditions under which these changes take effect. Typically, a

number of existing processes and queues are replaced by new processes and queues, which are
then connected to the remainder of the original graph. The reconfiguration predicate is a Boolean

expression involving time values, queue sizes, and other information available to the executive at

runtime.

2.2. The Durra Runtlme Environment

There are two classes of active components in the Durra runtime environment: the application

processes and the Durra executives. As shown in Figure 2, an instance ofthe executive runs on

each processor while the processes are distributed across the processors in the system.

Proclllllor I 1

..

Processor 2

iProcessor 3 E,]

... <

Processor 3

Executive

LL

a -- Process Graph withProcessorAllocation

Processor I i Processor 2
i =

E]_emCUet,ve_ Executive"

b -- Actual Communication Patterns

Figure 2: The Durra Runtime Environment

The executives interpret the resource allocation commands produced by the Durra compiler, monitor
reconfiguration conditions, and implement the necessary changes in the application structure.

The component processes making up .a Durra application are instances of independent tasks

(programs) that can be written in any language for which a Durra interface has been provided
(currently, there are Durra interfaces for both C and Ada). The Durra interface is a collection of

procedures that provide communication and control primitives. The component processes use the

interface to communicate with the Durra executives and, indirectly, with other application processes.
For a more detailed discussion of the Durra nJntime environment, see [3].

3. Distributed Simulation Networks

The development of large networks of heterogeneous simulation and training devices often presents

problems related to the performance and interconnectivity of the network components. There is a

need to evaluate various design alternatives before committing to a specific implementation.
Problems arise in several areas:

• Multiple protocols. Cooperating devices are often written using different communication
protocols because they rely on predetermined standards or technologies. When
communicating devices use different protocols, it is necessary to translate messages in a
way that is transparent to the communicating agents. This meb'ffage translation
consumes time and reduces performance.

• Multiplelevelsof fidelity.Whendevelopinghierarchicalnetworksof simulationand
trainingdevices,it is often the case that the time scales (i.e., granularity), amount of
data, and level of detail in the data are not compatible between levels or devices. Thus,
there is a need to filter (i.e., reduce) data moving up in the hierarchy and to pad (i.e.,
augment) data moving down the hierarchy. This is a different type of lranslation' from the
protocol translation described above. The translating programs in this case need to have
a thorough understanding of the application to compensate for the mismatch in the levels
of detail.

• Multiple technologies. When connecting devices that use different hardware technology,
the developers of the distributed application need to compensate for differences in
speed, performance, and fault-tolerance requirements.

This collection of problems is just an illustration of the issues that must be addressed by the

developers before implementing the network. A useful technique is to develop prototypes using

emulators of the component software and hardware devices. The emulators are easier to implement

than the real devices and can more easily be reconfigured into alternative structures. Experiments
can be conducted under various load conditions and measurements of performance can be derived

from these experiments.

4. Using Durra to Prototype Simulation Networks
We are using Durra to develop a tool for testing and evaluating various network configurations. We

are implementing the tool as a distributed application consisting of clusters of emulators. These

emulators are responsible for interpreting specifications of hypothetical application tasks. We use the

Durra language to describe the various components of the system, their ports and message queues,

and the types of messages exchanged between components. We use the Durra runtime environment

to execute the application and perform dynamic reconfigurations of the application, to emulate mode

changes, and to evaluate their impact on performance.

The final version of our tool will include at least four types of emulators:

1. Generic simulation device emulators: These programs will mimic the I/O behavior of
a generic networked simulation device. Scripts specifying the behavior of the emulated
device(s) will be developed. Differences in I/0 behavior between different types of
simulation devices can be emulated through variations in these scripts. The initial
scripts consist simply of position updates and timing instructions. Eventually they
should be more representative of actual networked simulation sessions; this could be
accomplished by adaptation of I/O logs of an actual simulation session.

2. LAN emulators: These emulators will model communications delay in the network
(e.g., token ring delay). This kind of emulation can likely be accomplished via buffer
tasks in the Durra runtime, which would mean that no executable version of these
emulators need be developed.

3. Intelligent gateway emulators: These programs will model the effect of various
message-filtering and protocol translation techniques on the networked simulation's use
of processor and communications resources.

4. Console emulator: This program will provide an interactive user interface to the
simulation environment, allowing the experimenter to change emulation parameters,
inject faults, and collect data.

4.1. Example: A Simple Network Specification
Inthissectionwepresenta Durraspecificationofa simplenetworkofsimulators.Inthisexample,we
instantiatea userconsole and two LAN emulators, each consisting of a group of three simulators and

one gateway process. The reader should note that there is nothing special about this configuration--

another version consisting of some other grouping could just as easily have been constructed from

the same primitive building blocks.

The following is the Durra description of the message type used for communications between the

application components. The message type description is purposely a very general one. A generic

description of the message type allows us in the actual implementation of the type to use a variant

record to represent both simulator position updates and command messages and easily combine

both types of messages in a single data stream.

type message is array of byte;

At the lowest level of the structure we have the descriptions of the primitive tasks, the simulator, the

gateway, and the console. The simulator task has one output port, through which it emits its position

updates, and one input port, through which it receives position updates and user commands. The

gateway task has one input port and two output ports; port to_wan sends messages outside the I_AN

and port to_/an distributes remote messages to the simulators in its LAN. The console task is the

application user's interface to the tool; it accepts a set of user commands and forwards them to the

gateway task for each I_AN in the configuration. The gateways may in turn forward those messages

to the simulators in their respective LANs if the nature of the command requires it.

task simulator

ports
inl : in message;

outl : out message;
attributes

version = "2""
t

implementation = "simulator" ;

end simulator;

task gateway

ports
inl : in mRssage;

to_lan : out massage;

to wan : out message;
attributes

version = "2";

implemmntation = "gateway";

end gateway;

task console

ports

to_lan : out message;
attributes

xwindow = "-geom 80x24+0+0 -title CONSOLE";

implementation = "console" ;

end console;

The Durra task/an encapsulates the internal structure of the LAN itself. Thi'_instantiation of a I_AN

includes one gateway task and three simulator tasks, as well as three built-in Durra buffer tasks. The

buffer tasks implement the routing of message traffic between the component tasks of the I.AN. Task

gate_merge merges local and remote messages intended for the local gateway. Task gate_rob

merges messages from the local simulators and then distributes them to both the gate_merge task

and the �an_rob task. The lan_mb task merges those local messages with the remote messages

forwarded from the gateway and distributes them all to each of the local simulators. Note that, given

this structure, each simulator will receive its own updates; these can either be ignored by the

simu/atoror used as a check to ensure that its own updates are being distributed properly.

task lan

ports

inl : in message;

outl : out message;

structure

process

gate : task gateway attributes version = "2"; end gateway;

siml, sire2, sim3 :

task simulator attributes version = "2"; end simulator;

gate_merge : task merge

ports

from_lan, from_wan: in message;

to_gate : out message;
attributes mode == fifo;

end merge;

gate_mb : task merge_broadcast

ports

froml, from2, from3 : in message;

to_gate, to_lan : out message;

attributes mode = fifo;

end merge_broadcast;

lan_mb : task merge_broadcast

ports

from_gate, from_lan : in message;

tol, to2, to3 : out message;

attributes mode = fifo;

end merge_broadcast;

queues

qgate_in[lO] : gate_merge.to_gate >> gate.in1;

qgate_out [I0] : gate.to_lan

qsiml_in [I0] : lan_mb.tol

qsim2_in [10] : lan_mb, to2

qsint3_in[lO] : lan_mb.to3

qsiml_out [i0] : siml. outl

qsim2_out [I0] : sire2, outl

qsim3_out [I0] : sim3. outl

qmb_to_gate [i0] : gat@_mb.to_gat@

qmb to lan[lO] : gate_mb.to_lan

bind

inl = gate_merge, from_wan;

out i = gate. to_wan;

end lan;

>> lanmb.from_gate;
>> s_n_.inl;

>> sim2.inl;

>> sim3.inl;

>> gate_mb.froml;

>> gate_mb.from2;

>> gate_mb.from3;

>> gate_merge.from_lan;
>> lan mb.from lan;

At the highest level of abstraction, the Durra task intemet provides the view of the application as a

console process controlling two connected, but independent, local area-'_etworks. These I_AN

simulators may be distributed to separate physical processors. Figure 3 shows a graphical view of

thestructureoftheapplication.

task _u_tez_et

structure

process

lanl: task lan attributes pEoQessor = netl; end lan;

lan2: task lan attributes proQessor = net2; end lan;

uc : task console attributes version = "xterm"; end console;

uc b : task broadcast

ports

from uc : in mlssage;

to lanl, to lan2 : out message;

end broadcast;

lanl_m, fan2 m :
B

task merge

ports

f rom_uc, f rom_lan
to lan

attributes mode = fifo;

end merge;

: in message;

: out message;

queues

quctob : uc.to lan >> uc b.fro_ uc;

qucbtol : uc_b.to_lanl >> lan1_m, from_uc;

qucbto2 : uc_b.to_lan2 >> lan2.m, from_uc;

qltom[lO] : lanl.outl >> lan2_m, from_lan;

q2tom[lO] : lan2.outl >> lanl_m, from_lan;

_utol[lO] : lan2_m.to_lan >> lan2.inl;

q_to2[lO] : lanl m.to fan >> lanl.inl;

end internet;

Only three of the aforementioned Durra tasks, the simulator, the gateway, and the console have

actual implementations associated with them. The lan task's behavior is defined constructively from

the behavior of the simulator and the gateway, the three buffer tasks (whose behavior is implemented

in the Durra executive), and the connections between them all. Similarly, the behavior of the intemet

task derives from the connections between its components, the two instantiations of the lan task and

the console.

5. Conclusions

Application-level programming, as implemented by Durra, separates the structure of an application

from its behavior. This separation provides developers with control over the evolution of an

application during application development as well as during application execution. During

development, an application evolves as the requirements of the application are better understood or

as they change.

This evolution takes the form of changes in the application description, modifying task selection

templates to retrieve alternative task implementations from the library, and connecting these

implementations in different ways to reflect alternative designs. During execution, an application

evolves through mode changes or in response to faults. This evolution takes the form of conditional,

console

merge II i merge

t.AN

message , message

=r' lI I ='°
simulators gateway gateway

merge merge
beast

simulators

merge
beast

Figure 3: S1ructureof the Application

dynamic reconfigurations, removal of processes and queues, and instantialion of new processes and

queues without affecting the remaining components. This approach to application-level programming

is similar in spirit to the constructive approach of CONIC [4]. We illustrated this method for

developing distributed applications by describing the implementation of a simple prototyping tool for

modelling various configurations of networked simulators. We wrote Durra task and application

descriptions and used them to control the evolution of the application, both during the development

and during the execution.

References

[1] M.R.BarbacciandJM. Wing.
Durra: A Task-Level Description Language.
Technical Report CMU/SEI-86-TR-3 (DTIC AD-A178 975), Software Engineering Institute,

Carnegie Mellon University, December, 1986.

[2] M.R. Barbacci and J.M Wing.
Durra: A Task-Level Description Language Reference Manual (Version 2).
Technical Report CMUtSEI-89-TR-34, Software Engineering Institute, Carnegie Mellon

University, September, 1989.

[3] M.R. Barbacci, D.L. Doubleday, C.B. Weinstock, M.J. Gardner.
Developing Fault-Tolerant Distributed Systems.
Technical Report, Software Engineering Institute Technical Review 1989, 1990.

[4] J. Kramer and J. Magee.
A Model for Change Management.
In Proceedings of the IEEE Workshop on Trends for Distributed Computing Systems in the

1990's, pages 286-295. IEEE Computer Society, September, 1988.

Session 3

Software Reuse

Chair: Robert Angier,/BM Corp.

Session 3 10:15 - 11:45 a.m. Nov. 8

Research Directions in Software Reuse

November 8, 1990

Will Tracz

MD 0210
IBM Federal Sector Division

Owego, NY 13827
(607) 751-2169

net: OWEGO@IBM.COM

Unclassified

Bm l

ml m

m I m _

____.----__E l

N m m

m B

/ m m • m

Session 3

Software Reuse

Chair: Robert Angier,/BM Corp.

Session 3 10:15 - 11:45 a.m. Nov. 8

Research Directions in Software Reuse

November 8, 1990

Will Tracz

MD 0210
IBM Federal Sector Division

Owego, NY 13827
(607) 751-2169

net: OWEGO@IBM.COM

Unclassified

i llmmmm& m m
mmmmm m
m mm m m m
m _mmmm n_mum

_ _ ----__--mlm im mm
mm
mm mm_ m , m

MogaFcogramming Motivation

"Currently, software is put together'one statement at

a lime. Whet we need is Io put soltware togeUmr

one coml_o_nl el a _nlW." - Barry BolNtak el tie

Domain Spedlk: Software ArcJdtocturo (DSSA)

Work_p, J_ 11-12,tWO.

Topics

.- OarpatlSTO

• Domain Anaiyshs and Mo_ng

• Rapid Prololyping

• Software _ndtng

• Formal Methods

,- Recent Workstmpa

• Realilles of Reuse - January lggO

• Melhods and Too_ for Reuse - June lWO

,- 3-C Model for Soltwere Components

"Megaptogramm_ng ts the type of thing you can go

• 3-1er genemrs o_¢e and use to explain what

DARPA is gothg to do Ior Itmm to make their

software less exper_ve and have better quality." -

Barry Boehm, at the IS1"O Software Technology

Commurdty Meeting, June 27-29, 1990.

"Software productivity improvements m the past

have been aocldenlel because they allow us to

"work lasler". DARPA wants people to "work

smarler" or to avoid work ellogether." - Barry

Boehm, at the Domain Specific Software

Architecture (DSSA) Workshop, July 11-12, 1990.

u..,..,,,._ _BM

Mega_ Vision

p Megelxogrammmg is a "giant slep" toward

increasing

• "e,vek_enwNpn_uct_.
• mainlenance producth/tty,

• reliability,

• availability,

• 8ecuclty,

• porfabiItty,

• inleroperabillty and

• operational capability ."

Megaprogramming will incorporate proven,

well-dehned components whose qualily will evo4ve,

Megaprogramming requires the modification o1' the

Iradilional sollware clevelopment process.

Domain-_m B01tware architectures need to be

delined and implemented wilh open Jnlerfaces

according to software composition pril_iples, and

open interface specifications.

AdditK)nal environmental capabilities are _ to

prov_Je soltware un¢lerstanding

Megaprogramming Software Team

"Configuration .. Components + Interfaces +

Documentation

Software Team = Conligur=tton + Process +

Aulomalk_ + _." - Bill Schedm, at the ISTO •

SollNmre Technology Community Meeting. June

27-29, 1990.

Megaprogranwning Software Team Goal

To create an environment to:

1. "manage systems as configurations of components,

interfaces, specll'matlons, etc.,

2. Increase Ihe scale of units of sollware construction

(to modules), and

3. increase the range of sca/es of itmls r)l software

Interchange (algorithms to subsystems) "'

--

I

Key Elements of Megaprogramming Software

Team

,. CCmllNmm_ sotm:w -- currently, components under

cor_de_tion are from reuse libraries (e.g.,

SIMTEI.20 or RAPID) or COTS (Commercial

Off-The.Shell) soltware (e.g., GRACE or Booch

components). _tion generator techeolow is

desirable to provkle for adalXable modules.

Re-eng|neered compommts (e.g., CAMP) could

provide addilional resources.

interface dMbdlom -- currently_ there exists an ad

I_oc standard conmting or Acla package

specifications and informal documentation, it is

desirable to (:immk_ a Module Interconnect

Formalism (MIF) with hid(leh implementations

supported by Iornwl analysis and validation tools.

System documenmllon -- currently, simple hypertext

systems are sup10ortln 0 the texlual documentation

associated with software components It is desirable

to create a reposilory-based, hyperrrmdia

environment that provides traceabilily between

artifacts and supports the Caplure, qt,ery, and

navKJat_n of domain knowledge

u.... .,._ IBM s

Key Elemenbm of Megaprogramming Software

Team

,. Pfo¢ml _ - currently, there exists no

predClable Ioitware devetownent process, tt is

¢isamble to Oevetop an e_lutionary deveiopment

lile oycte With _ to cloll_In engineering.

Integrated mqutmmem acquisition, and

reverselre-engineert ng.

• Procl_ Aulomltion -- ctal'ently, CASE IOOis are

either stand.tone or federated (e.g., Unix'). It is

clearable to tnlegrmte the tools and create a

meta-wogramm|ng environment to support proca_

descrtptk)n and refinement.

.. Conlll_=UNmnte_ -- currently, only a priori

so4tware metrics and process inslrumentation exists.

It is desirable to integrate the meast_rement process

with tool support and to create an cost-estimatlon

capability.

' Ul_t tl I INIIl_Itl k OI ATII T _4111 _HI_

u,,,:,._,_ TllM 6

Resoul'ces

- STARS ISc41ware Technology 1o4-Adaptable Reliable

Sy_ems) SEE (Sollware Engineenng Environment)

• Arcadia

." CPS/CPL (Common Prototy_ng System/Commen

Prototypmg Language)

,- DSSA (Domain Spac_ Software Anchilectures)

- FOB (Perm=e_ Oefect Bases)

.- SWU (Soitwam Understanding)

•- REE (Re-Englneertng)

Inlerlace and archileclure codifcatK)n will bo supported

by a Models Intemonnect Formalism (MIF). which is an

oulgrowth o_ the CPSLCPL program.

Goal ol MIF

To _lu_eJ), o_escr_be a aotl'ware componenl auch Itmt

tm _ end use can be ,_con'_li_xx-I wiU_ut

JookJng al Jla k,np/emenlal/o,n.

Compmmnt Interface

_. entry points,

• type definillons

• data fi:lrmats (e.g. Ada package specification).

i,. a dMIortptlor) of ill furl¢floNIlily,

• side effects,

P pedo_nance expectations.

• degree end kind Of a_'ance Of co.si._lency

belt_n specil'lcation and Imptenmnlal,)n

(relisbll|ty), and

_, approprmte test cases.

SWU Design Record

The design record will provKle a "common data structure

for system documentation and libraries".

The suggested data elements in a design record include:

_. code,

•- test cases,

,- library and DSSA links.

,- design structure.

'- access rights. J

•- configuration and version data,

b hyperlext paths,

," metric data,

," requirement specircation fragments,

b PDL texts.

•- inlerface and architecture specificalions,

.- design rationale,

.- c'_laiog information, and

.- search points.

Megaprogramming Soltware interchange

"Soflwue Interchange - Software Team +

+ Reposlk_y + Exchange" - Bill

Scherlis. at the ISTO Sottware Technology

Community Meeting, June 27-29, 1990

Megaprogramming Software interchange Goal

To "enable wide-area commerce in SOflware

components."

IBH

Elements of MegaprogrammJng Software
Imen:hange

," C_ -- currently, conventions are

emerging. II is desirable to create a cooperaOve

decision and consensus mechanism that supports

adaptable, mulli-configurebon Iibrenes. which

present a slendarO search capability.

Repmlltoryllnventmy-- currently, repositories support

code storage only. It is desirable to retain, assess.

and valKlele o_har software assets such as

architectures, lest cases, specifications, designs, end

design rabonales.

Exchange/Brokerage -- currenl intellechlal property

rlghls and government ecquisllion reglltations ere

stilling a sollware component industry, It ts

desirable to populele cerlein apphca|fon domains

(via DSSA) and Io support the creation of an

eleclronic soflwere componenl comn)eice by

• defin.)g rnechemsms [or access coe_lrol,

• auOmntcabonlcertifica|ion, end

• e._abhsl)ing composibon conventions

Realities of Reuse Workshop

January 4-5 1990

Syracuse, NY

The goal o/"/ha works/Top was Io

".. _rve as e forum for shanrig practical experiences

end meUK)dologies

,. for specilying and designing soflware for reuse,

•. for defining the level and kinds or components that

can de reused, and

•. for inoorporabng reuse philosophies into

organizations"

Highlights

Sollware Reuse: Represenling a Reusable Software

Collectk)n

William Frakes, Software Produ¢livily Consoftkml

IR approach is the best way to go about organizing

a library.

other approaclzes (keyword, feceted, semantic net,

IJypertext) require sngnificant amounts of effort to set

up and to catalog

ReaUilel el Language _ l_r Reuse: What we

- What we have.

Larry I.atmx, UNwml_/of Maine

*, Code and type inheritance

,. paratneterizahon

,. granularity of change

,. algor#tpm parameterlzatlon.

u.......... _ IBH 13

Hlghllghts

_ s_em c_
Donald Hanman, _ 8o_um Systems,

•" Prolo system lhat IS$1 built for RADC.

•" Graphical inpul language for oYawing data flow

daagrams, Irmn s#mulating them (if the contents of

II)e nodes as real code).

," One can also watch the data Flow nodes fire.

Designing for Reuse: Is Ada Class Conscious?

Slmlom Cohen, Soitware Enghtmerlng Institute

Feaflare Analysis

Conunonalily Analysis to develop a generic

_1 cllttecllares

Highlights

1_llvmre Design Melhodokqly

David M_r, RPI

The following are myths:

1. generic sollware is riot efficient.

2. generic i_ftware is hard to [it_, and

3. software librarles only address the

implementation level.

Rationale:

1. algorithms can be more complex and efficient

lhan any simple ones that a programmer would

tend to wrile from scratch.

2. Library can be organized into a se.manlic net

that a user could easily nawgale In find what

was needed.

3. 80% of the effort to build a IJbrnry is writing the

specifications that could he reu._ed at high level

design time

ORIGii,_AL _AGE IS

or qu Lrry

Highlights THIRD ANNUAL WORKSHOP:
METHODS & TOOLS FOR REUSE

Jww 13-15 lg90

Ib/_c_e, NY

• /f you are not teaching software reuse, you are not

te41ching software engineering (Bob Cook -

University of Virginia)

The (throw everything into a) "Bag" approach was

the style of software reuse in the 80"s, Ilie "Generic

Architecture" approach Is the slyte [el" lira 90"s.

• "Cloning" (a rmw-to-me term) is a form of unplanned

reuse (_alvegmg) popular at HP al_d olher

companies.

," What is needed to sfimulale sollwarr_ icuase are

handbooks Ihal describe tim al'chalPcllliP.s Of

applications along with their destftn r,_honale.

•. GOTO's were lollnd bad m the. 70"_ hu I/re same

reason thRt Top Down Doconuipsltu_l_ will L_ Found

bad In the 90's -- failure to rt}odl#,'_r_z(, r nmolexstv

Highlights THIRD ANNUAL WORKSHOP:

METHODS & TOOLS FOR REUSE

•. A good interface specification has enollgh

inlormalion so the (re-) user doesn't have to look at

the code to figure out whet it does and how to use

it.

One (large) problem thai people have failed Io_

realize is that software reuse doesn't stop at

retrieval.

Dais flow diagrams provide too much informabon to

be included in the functional specification of a

reusable software component.

Domain Analysis research projects are achvely

being addressed at TRW, Bell Labs, UNISYS,

ESPRIT, Magnovox, CONTEL, MCC and SPS.

Highlight,, THIRD ANNUAL WORKSHOP:

METHODS & TOOLS FOR REUSE

IP SPS (Software ProducUWty Solubons) speculated that

In 6 years they have increased their programmer

productivity an order of magnitude throtJgh

I. simple black box reuse (functmn libraries)

2. paramaterlzed black box reuse (Ads generics)

3. large component reuse (modules/Ads packages)

4. inheritance (required object-ormnted

programming language)

5. paramaterlzed application generalors

NOTE: they indicaled the switct_ to OOPL was the

greatest facilitator of reuse.

_. Best malaprop: "Generics are somethmq you use

when you can't afford the name bran(/"

u.¢,...,,._ [BH ,8

ORIGINAL PAGE IS

OF POOR _IUALFrY

Paper Summaries

KAPTUR: KNOWLEDGE ACOUISmON FOR

PRESERVATION OF TRADEOFFS AND UNDERLYING

RATIONALES

Sidney C. Bain, CTA INCORPORATED

Roll-your-Own hypertext system for capturing design
decislons.

An impressive domain analysis case sludy in tools
to supporl reuse

REUSE OF SOFTWARE KNOWLEDGE: A PROGRESS

REPORT

Prem Devanbu, AT&T BELL LABORATORIES

" Knowledge Base to assisl in software reuse.

tlYPERBOLE: A RETRIEVAL-BY-REFORMULATION

INTERFACE THAT PROMOTES SOFTWARE VISIBILITY

Palricia Carando, Schlumberger L_boratory for

Computer Science

,_ Ge,)eric user e)lerface and data ana/y._s architecture
to analyze well data

GJaphica/ workslahon IDol (500-600 c/_._es)

Paper Summaries

AN EMPIRICAL FRAMEWORK FOR SOFTWARE REUSE

RESEARCH

BiN Frake¢ SoBware ProducUvily Consortium

• " Determine the relationships between the dependent
variables in model

I. quality,

2. productivity, and
3. reuse

THE 3C MODEL OF REUSABLE SOFTWARE

COMPONENTS

Slephen Edwards, InslJtute for Defense Analyses

Emphasis on the maintenance paybacl_ from using
the 3C model

THE THREE CONS OF SOFTWARE REUSE

Will Tracz, IBM Corporalion

Tile gospel aCcording to Will

|
,,j

Paper Summaries

DESIGNING FOR 8OFTWARE REUSE IN ADA

ShoiomCohen,SB/Camegle-MenonUniwmCty

• Implementation Implications of using the 3C model

in regards to h#erarchies of parameterized nlo_ls.

•" Coupling inversmn - where conlex! is fixed for

implemen(atmn effCk_cms within the generic

architeclura.

THE PRACTITIONER REUSE SUPPORT SYSTEM (PRESS):

A TOOL SUPPORTING SOFTWARE REUSE

Comets Boklyndl, Brunel Untver_y

• ESPRIT fog4 Practitioner Project (one of many reuse

proJecls luntied by ESPRIT).

." Cal)t,re and reuse software concepts [rom designs

flpro(tgh code,

• (J.estionnaire was passed out to the them company

to assist in domain analysls

• "ca;pontcar' form for describlng soflware componenls

developed

u ,,.o IBM z_

Conceptual Model

Reusable Software Components

• Context

• Concepts

• Content

- Context

- Concepts

- Conlent

Paper Summaries

REUSE AT HEWLETT-PACKARD LABORATORIES

Marlin L Grlmk _ac.kard Laborstodes

,_ Hyperlext tools.

b Oblecl-Oriented Oesign.

BEYOND RETRIEVAL: UNDERSTANDING AND

ADAPTATION IN SOFTWARE REUSE

Kanm Hull & Ronnie Thomson, GTE Laboaalodes Inc.

• SATURN (Soflwsre Adapta_on Through

UnOerstandable Reuse Notation)

THE STARUTE INTELLECTUAL REUSE PROJECT

Robert P. Cook, Uni_m_ily ol Virginia

• Reusable operaling syslern, and syslm, mo_lelling

componenls

Conceptual Model

Context

• "Language shapes thought"

- Inheritance

- Genericity/Paramctcri/;ition

- Importation

• Binding time

- Compile time

- Load/Bind time

- Run Time

Conceptual Model

Concepts

• Concept: - IVhal

• Content: - How

• Context:

I. Conceptual - relationshil,

2. Operational - with/to what

3. Implementation - trade- of[s

Context: what is needed to complete the
definition of a concept or content within an
environment. (I..cltour)

Software Components

Formal Foundations

* Horizontal Structure

l. type inheritance

2. code inheritance

. Vertical Structure

- implementation dependencies

- virtual interfaces

• Generic Struct,te

- variations/adaptations

WJT.M" &INk4 3 IqlNI b II WJT-._C Mmi¢l 1990 h_ll Ig

Conceptual Model

Example

• Concept: Stack

- Operational Context: Eicmenl/Type

- Conceptual Context: Dequc

- hnplementation Context: Sequence

Conceptual Model

Example

• Stack Implementation

I. Inherit Deque

2. Use an array

3. Use a linked-list

• memory management

• no memory management

• concurrent access

Megaprogramming Example

Stack - > Deque

make Dcque (Triv] is
Stack _ Triv'J

* (rename (Push = > Push Right)
(Pop = :; Pop_Right)
(Stack = > Deque)

* (add Push_Left, Push_Right)

end;

Hyperprogramming Example

Make with View

make intcgerSet is
LIL_Set (_lntegerView }

en<l;

view Integer_View :: Triv = • Standard is
types (Element = • Integer):

end;

ISJT- t(" &|e_4-1
i,Me S_ t_4 WJT.)C &le4d I_

Iql_lJ _ I!

Megaprogramming Example

Make with Vertical Composition

make Short Stack is
LIL S_ack

- - horizontalcomposition

needs (List_Theory = • List_Array)
- - verticalcomposition

end;

LILEANNA Example

Package Expressions

ib b./4__Lql¢ ImtgdK! l!

IiMst t f _er_PKtgplle *
eJ4mM_ I_lCkele*lklde (al_) *

_mlDtt _ rut tee hcka_ *

I_taleso Pe<t_ *

_ry_PKtl_t*ta,t,t tl_tl_m (Imr/ _ti_ (C (t,euse;

L: LiSt.Of CirCuSeS)

reterl Itoote_n}

• |rlmdml ((klBl'__t_r D O_r_ _est,lt5))
end;

Ada Net
John McBride

Planned Solutions

Paper not available at time of printing.

Session 4

Software Engineering: Issues
for Ada's Future

Chair: Rod L. Bown, University of Houston-Clear Lake

Assessment of Formal Methods
for Trustworthy Computer

Systems
Susan Gerhart

Microelectronics and Computer Technology Corp. (MCC)

Paper not available at time of printing.

Issues Related to Ada 9X
John McHugh

Computationa/ Logic, /nc.

Paper not available at time of printing.

Session 4 1:30 - 3:00 Nov. 8

POSIX and Ada Integration In The

Space Station Freedom Program

Dr. Robert A. Brown

The Charles Stark Draper Laboratory, Inc.

This paper discusses the integration of real-time POSIX and

real-time, multiprogramming Ada in the Space Station Freedom

Data Management System. Use of POSIX as well as use of Ada

has been mandated for Space Station Freedom flight software.

However, POSIX and Ada assume execution models that are not

always compatible. This becomes particularly true once Ada

has been extended to support multiprogramming. This paper

points out the conflicts between POSIX and Ada multiprogramming

execution models and describes the approach taken in the Data

Management System to resolve those conflicts.

Session 5

Ada Run-Time Issues

Chair: Alan Burns, University of York (U. K.)

