

\

\

RICIS Symposium 90
Software Engineering:

Aerospace Applications &
Research Directions

November 7 & 8, 1990

Houston, Texas

F52E NNASN

University of Houston-Clear Lake NASA/Johnson Space Center

© e ,
? g @g Research Institute for

University of Houston-Clear Lake Computing & Information Systems

SOFTWARE ENGINEERING
Aerospace Applications & Research Directions

RICIS Symposium 1990

There is international concern about the impact of computer
systems upon life and property issues within all elements of a
world wide community of interacting social, financial, medical,
and technical organizations. Software Engineering has achieved
recognition as the discipline that captures the paradigms that
must be used to produce high integrity software within limited
time and budget constraints. The aerospace community has become
a leader in applying these disciplines to software that provides
control of life and property. During the decade of the 1990's
these disciplines need to be applied to non-aerospace life and

property critical computer systemns.

The RICIS '90 Symposium has been organized to provide a review of
current and future applications of software engineering
paradigms. Distinguished professionals from industry,
government, and universities have been invited to participate and
present their views and experiences regarding research,
education, and future directions of software engineering.

We trust that you will find this symposium to be informative and

enjoyable.
Rodney ‘L. Bown Sadegh Davari
Technical Co-Chair Technical Co-Chair

2700 Bay Area Blvd. . Box 444 - Houston, TX 77058-1098
(713) 283-3800 - FAX(713)283-3810

University of Houston-Clear Lake &
NASA/Johnson Space Center

This conference is one in a series of conferences presented under the auspices of the University of Houston-Clear
Lake’s Software Engineering Professional Education Center (SEPEC), which is the education and training branch
of the Research Institute for Computing and Information Systems (RICIS). The University of Houston-Clear Lake
founded RICIS in cooperation with NASA/ Johnson Space Center and the aerospace community.

The Mission of RICIS

The institute’s mission is to conduct, coordinate and disseminate research on computing and information systems
among researchers, sponsors and users from the University of Houston-Clear Lake, NASA/Johnson Space Center, the

aerospace and computing industries, and other research organizations.

The Mission of SEPEC

The mission of the Software Engineering Professional Education Center is to provide education and training for
software professionals with an emphasis on large, complex distributed systems. SEPEC also serves as a test bed for

research and innovation in software engineering education and training.

r N

ADA Users' Symposium ¢)
RICIS ’90 shares the week with anotherkey software C O n fe re n Ce Ove rV l eW
engineering activity, the Third Annual NASA Ada
Users’ Symposium. Topics to be covered on Tuesday, Wednesd ay, November 7
November 6, will complement RICIS ’90. The Ada

Users’ Symposium is hosted by NASA/JSC, MITRE 8:00 - 5:00 Registration
Corporation, and UH-Clear Lake; and will be held at 8:30 - 12:00 Tutorials
the NASA/Gilruth Center. It is free; however, pre- 12:00 - 1:00 Lunch for tutorials
registration is recommended. Contact SEPEC at 1:15 - 1:45 Welcome & Introductions
(713) 282-2223 for additional information and 1:45 - 2:45 Keynote Address
registration. 2:45 - 3:00 Break
\. J 3:00 - 5:00 Session 1
. . 5:00 - 6:00 Wine & Cheese Reception
Conference Steering Committee
General Co-Chalrs: Thursday, November 8
A. Glen Houston, Director, RICIS, UH-Clear Lake
Robert B. MacDonald, Assistant for Research and Education- 00- 3 i i
Mission Support Directorate, NASA /|JSC ggg i 1238 gzg:t;:t;on
Technical Co-Chairs: 10:00 -10:15 Break
Rod L. Bown, Associ. jence, UH-)) .
Lak:wn ssociate Professor of Computer Science, UH-Clear 10:15 -11:45 Session 3
Sadegh Davari, Assistant Professor of Computer Science, UH- 11:45 - 1:30 Lunch Speaker
Clear Lake 1:30 - 3:00 Session 4
Administrative Co-Chairs: 3:00 - 3:15 Break
Glenn B. Freedman, Director, SEPEC, UH-Clear Lake 3:15 - 5:00 Session 5

Don Myers, Coordinator, SEPEC, UH-Clear Lake
Glen Van Zandt, Human Resource Development Specialist,
NASA/JSC J

2 Aerospace
% Applugatlons
Research
Directions

RICIS SYMPOSIUM
~7

r : N
November 7
1:15 - 1:45 p.m. Welcome & Introductions

A. Glen Houston
Director, RICIS, University of Houston-Clear Lake

Thomas M. Stauffer

President, University of Houston-Clear Lake

Daniel A. Nebrig
Associate Director, Johnson Space Center
Robert B. MacDonald
Manager, Research and Education, Information Systems and University Programs Directorate, NASA/ JSC
Keynote Address
1:45-2:45p.m.

Introduced by Sadegh Davari, Technical Co-Chair, University of Houston-Clear Lake

David Weiss, Software Productivity Consortium
SYNTHESIS: Integrating Product and Process

Many software developers share the goal of making software products easier to produce by
the manufacturing process. The problem is how to organize the production process and the
products to eliminate rework. The solution lies in viewing system production as creating
different members of a family, rather than creating a new system each time requirements
change. Synthesis is a proposed systematic process for rapidly creating different members
ofaprogramfamily. This talk willbe a discussion of the goals of Synthesis and the Synthesis
process. The technology needed and the feasibility of the approach will be briefly discussed.
Finally, the status of current efforts to implement Synthesis methodologies will be given.

Break

2:45-3:.00 p.m.

-)

Session 1 Lessons Learned in Software Engineering
3:00-5:00 p.m. Chair: Gary Raines, Manager, Avionics Systems Development Office,
NASA/JSC
Report From NASA Ada Users’ Group
John R. Cobarruvias

Flight Data Systems Division, NASA/JSC

Software: Where We Are & What Is Required In The Future
Jerry Cohen

Boeing Aerospace and Electronics

Managing Real-Time Ada
Carol A. Mattax
Hughes Aircraft Corp., Radar Systems Group

5100 - 6:00 p.m. Wine and Cheese Reception

[November 8

Session 2 Software Engineering Activities at SEI

8:30-10:00 a.m. Chair: Clyde Chittister, Program Director of Software Systems,
Software Engineering Institute, Carnegie Mellon University

SERPENT User Interface Management Systems

Reed Little
Senior Member, Technical Staff, SEI

A Task Description Language for Distributed Applications
Dennis Doubleday
Senior Member, Technical Staff, SEI

Break
10:00 - 10:15a.m.

Session 3 Software Reuse
10:15-11:45a.m Chair: Robert Angier, IBM Corporation

Recent Reuse Research Activities

Will Tracz
IBM System Integration Division

Ada Net
John McBride

Planned Solutions

Lunch
L 11:45-12:30 p.m.

Lunch Speaker
12:30- 1:30 p.m. Ed Berard, Berard Software Engineering Inc.

Ada in the Software Engineering Marketplace

Session 4 Software Engineering: Issues for Ada's Future
1:30 - 3:00 p.m. Chair: Rod L. Bown, University of Houston-Clear Lake

Assessment of Formal Methods for

Trustworthy Computer Systems

Susan Gerhart
Microelectronics and Computer Technology Corp. (MCC)

Issues Related to Ada 9X
John McHugh

Computational Logic Inc.

Posix and Ada Integration in SSFP

Robert A. Brown
Charles Draper Laboratory, Inc.

Break
3:00 - 3:15 p.m.

Session 5 Ada Run-Time Issues
3:15-5:00 p.m Chair: Alan Burns, University of York (U.K.)

Key members of the Ada Run-Time Environment Working Group (ARTEWG) will discuss
projections for the next release of the Catalog of Interface Features and Options (CIFO).

RICIS SYMPOSIUMF-
X2

N91-22725

Synthesis: Intertwining Product and
Process

David M.Weliss

sssssss
A /A PRODUCTIVITY
W/ CONSORTIU M
SEPEC - 7 Nov 90 1 =

Keynote Address 1:45 =2:45 Nov. 7, 1990

SYNTHESIS: INTEGRATING PRODUCT AND PROCESS
David M. Weiss
Software Productivity Consortium

Abstract

A current trend in manufacturing is to design the manufacturing process and the
product concurrently. The goal is to make the product easy to produce by the
manufacturing process. Although software is not manufactured, the techniques
needed to achieve the goal of easily producible software exist. The problem is how to
organize the software production process and the products to eliminate rework. The
solution lies in viewing system production as creating different members of a family,
rather than creating a new system each time requirements change. Engineers should
be able to take advantage of work done in previous developments, rather than
restating requirements, reinventing design and code, and redoing testing.

Synthesis is a proposed systematic process for rapidly creating different members of a
program family. Family members are described by variations in their requirements.
Requirements variations are mapped to variations on a standard design to generate
production quality code and documentation. The approach is made feasible by using
principles underlying design for change. Synthesis incorporates ideas from rapid
prototyping, application generators, and domain analysis. This talk wll be a discussion
of the goals of Synthesis and the Synthesis process. The technology needed and the
feasibility of the approach will be briefly discussed. Finally, the status of current efforts
to implement Synthesis methodologies will be given .

o

Topics
Synthesis vision

Components of a Synthesis process

— The application engineering and domain engineering
processes

Application Engineering: Building the application

Domain Engineering: Building the application engineering
environment

Summary

27 SOFTWARE
o PRODUCTIVITY
CONSORTIUM

SEPEC - 7 Nov 90 2

/

. I
Typical Problems

Ill-defined and changeable requirements
Confusion of requirements, design, code

Transformational barriers
—~ Requirements —>Design —> Code

—~ Requirements —> Test

Rediscovery and reinvention

4 A

Goals

e Bring the customer into the production loop for validation

e Separate the concerns of requirements determination and
validation from design, coding, and testing

e Respond rapidly to changes in requirements
e Rapidly generate deliverable products

- generate code and documentation

— achieve high productivity

— achieve high quality

e Achieve systematic reuse
— capture and leverage expertise

- reuse systems

SOFTWARE
' . RODUCTIVITY
CONSORTIUM
4

SEPEC -7 Nov %0

\
The Synthesis Application Development
Process: Idealized

Deliverables

Acceptance

Mission
Concept

Accepted
Products

Delivered
System

Executable
Code &
Documentation

Application Engineering

Key:

= =\

Approach

e Integrate the development process and the product

— Design for producibility

— Concurrent engineering for software

e Reorganize the software development process

— Evolve a family rather than build single systems

e Develop systematic approach to building flexible
application generators

e Use existing technology

P SOFTWARE
; P 27 PRODUCTIVITY
. CONSORTIUM

SEPEC - 7 Nov %0 6 S

s B

A Synthesis Process

+———-i- Define family and develop {«----- 1
| production capabilities |
| : :
I |
Feedback | - | Feedback
(Customer | Production 1 (Environment
needs) | Framework | needs)
| |
| : |
- Produce Family Members F-->
|
Key:

Process

r Examples of Similar Approaches \

o YACC, LEX—parser/compiler applications
e Tedium—flexible application generator (MIS orientation)

e Systematica—generation of CASE tools

e ‘Toshiba software factory

- Generation of power plant software

- Standardized design

- Automated generation of 70%-80% of delivered code
e Spectrum

- Prototype application engineering environment

- Standardized design
- Automated generation of code

SOFTWARE
; p ﬁnoouawlrv
4 CONSORTIUM
8 s

SEPEC -7 Nov 90

s R

Synthesis

Any methodology for constructing software systems as
instances of a family of systems

e Process + Methods + Workproducts

-

e Application Engineering: An iterative process for
constructing application systems.

Components of Synthesis \

- Requirements are described by an application mode!

— Rapidly determine requirements and generate
deliverable software

o Application Engineering Environment: A framework
(automated or manual) that supports a prescribed
application engineering process.

— Rapid prototyping and generation of systems
— Automated generation of members of program families

-~ Automated reuse of systems

, . SOFTWARE
' 7, %}’RODUC‘TIVITY
CONSORTIUM
SEPEC - 7 Nov 90 10 P

Components of Synthesis (continued)

e Domain Engineering: A repeatable, iterative process for the
design and development of both a family of systems and
an application engineering process for the family.

- Systematic development of product families for member company
domains

- Missing step in current processes
e Domain Model: A specification for an application
- engineering environment.
- Conceptual framework (Language for specifying application models)
- Reuse architecture (Standard, adaptable design)
- System composition mapping (Map from language to reuse architecture)

e Domain: (1) A business area o
(2) A family of applications to be created within

" a business area

(A Synthesis Process)

£~ "7 DOMAIN ENGINEERING[* """~ 3
[T t
! | e |
Feedback E — - . E Feedback
{Customer | Application Engineering 1 (Environment
needs) | ‘ nvironmen | needs)
| !
~-71APPLICATION ENGINEERING -~ .
Y

Applications S>>

Key:

SOFTWARE
. o RODUCTIVITY
= CONSOATIUM
A

SEPEC -7 Nov %0 12

\

The Application Engineering Process

A
Requirements/ Exeé::dtabl g
Needs e

Application
Requirements
Y

Refinement

Application
Engineer

Applicatio
_________ >
Requirements Models

ORIGINAL PAGE |g
OF POOR QUALITY

Application Engineering for Host-at-Sea
(HAS) Buoy Systems

2SR SOFTWARE
' W s A PRODUCTIVITY
o gz Y-z CONSORTIUM
SEPEC - 7 Nov90 14 W=7

\

N

(The Host-at-Sea (HAS) Buoy System w

HAS Buoys drift at sea and monitor and report on environmental
conditions. A typical HAS Buoy:

Is equipped with a set of sensors that monitor environmental conditions,
such as air and water temperature and wind speed. The value of a
particular condition at a given time is determined by averaging sensor

readings. :

Can determine its location, using the Omega or some other navigation
system.

Maintains a Austory of the environmental data it has collected, a history of
its location, and a correlation between the two.

Is equipped to transmit and receive messages via radio.
Periodically transmits messages containing current weather information.

Responds to requests that it receives, via radio, to transmit more detailed
reports and to transmit weather history information.

SOFTWARE
; . PRODUCTIVITY
CONSORTIUM
SEPEC - 7 Nov 90 16

\

The Host-at-Sea (HAS) Buoy System

(continued)

HAS Buqys drift at sea and monitor and report on environmental
conditions. A typical HAS Buoy:

Is equipped with an emergency switch, which, when flipped, causes the
buoy to transmit an SOS signal in place of its periodic wind and
temperature reports.

Has a red light that it can turn on to be used in emergency rescue
operations.

Can accept location data from passing ships, via radio messages.

Performs built-in tests (BIT) to determine if its computer and sensors are
operating properly.

f

HAS as a Real Time System \

e Meet real-time deadlines for sampling sensors, sending
messages

e Perform several functions concurrently, i.e., message
broadcasting, data collection

e Reorder processing priorities based on occurrence of
external events

e Receive and respond to requests from other systems

e Maintain history data base

e Handle exceptions, such as resource failures, without
human intervention

e Missing: human-:computer interface

\ 2R SOFTWARE
A 7 PRODUCTIVITY
SEPEC - 7 Nov 90 '8 e CONSORTIOM

\
The Buoy Application Engineering
Environment

Buoy Requirements Application Language Environment|

Sensors

D

water Temperasture
L—L.Js
d

wind Speed

2 2

Atr Temporsture
7?77

Comm Links Options Components |MIPS Rate

= 5 O[] > D
D D Computers [Computer Speed

Snip Emergency Equipment

s.@u Omoco@iwﬂor ngr. [j CL:.Z;:‘;&:
5 5 O[] | .« [] ORIGINAL P

OF POOR

GE IS

(The Buoy Application Engineering

Environment
Buoy Requirements Application Language Environment ?el:ﬂl’ ;“:de
W R
Sensors
B -
"”é’;"'”" D Water Temperat{ire [rtas
wing Spwed Sample Range: Low/High Resolutjon Response
QO[]
77

Watar
Temp

Comm Links Options Components |MIPS Rate

Bhip (m.r‘.no[q Equipment D [Computer Speed l

A AT 20

Length

a 8. o | e

SOFTWARE
; . RODUCTIVITY
SEPEC - 7Nov¥Q 20 p CONSORTIUM

4 N N

Characteristics of the Buoy Application
Engineering Environment

e Focuses on requirements decisions, independent of design
and implementation

e Focuses on variabilities used to describe members of the
Buoy family

e Generates code and documentation for the application
engineer (transparently)

e Simulates Buoy operations in a form meaningful to the
customer
e Analyzes consistency, completeness, cost, and performance
of the application model
Do I have enough MIPS to do the job?
Have I specified unnecessary redundancy?
How much will it cost?

A Synthesis Process

f—__" DOMAIN ENGINEERING[® "~~~ A

| T i

; [|

E ‘ . - _ i E Feedback
Feedback | A pplication Engineering i (Environment
(Customer ‘ nvironmen : needs)

needs) | ; |
| ! |
‘-4 APPLICATION ENGINEERING -
Y

< Applications_>>

Key:

‘ SOFTWARE
i p PRODUCTIVITY
CONSORTIUM

© SEPEC - 7 Nov 90 22 74

f

Domain Engineering: Building the
Environment
General Needs of
Business Line/ Sources of Parts
Customer Input
Feedback frQm . . | Domain Model . .
Application” Domain Analysis — yp| Domain Implementation
Engineering
. Application :
Application PP . Reuse Library
Modeling Langua Engineering Tools

\

(Domain Analysis \

A Process For Refining/Creating Specifications For An
Application Engineering Environment

2 SOFTWARE
: W PRODUCTIVITY
CONSORTIUM

SEPEC - 7 Nov %0 24 s

\
The Domain Model

e Conceptual Framework

- Application Modeling Language: Language for stating
requirements

e Reuse Architecture

- System software architecture organized for ease of
reuse through adaptation

- Specifications for parts for reuse library

e System Composition Mapping

— Process for selecting and adapting parts for generation
of code and documentation

- Mapping from the modeling language to corresponding
entities in the reuse architecture

Application Engineering Using The
Domain Model

Executable \(' Documentation
Code

Application
Generation

Requirements/

Generator

System Compaosition
Mapping

$a Application
Models

{ Applcation Modeling
Language

Reuse Library

Reuse Architecture

SOFTWARE

~,
! /;W PRODUCTIVITY
CONSORTIUM

SEPEC ~ 7 Nov 90

ORIGINAL PAGE IS
OF POOR QUALITY

/

26 A

Application Modeling Language

Goal: Representation of requirements in application terms

e Support engineering decision making

| e Specialize for the domain

e Separate representation, semantics, presentation

e Permit representation of expected variations

(Application Modeling Language for R
The HAS Buoy Domain

Buoy Requirements Application Language Environment ;‘;’;de

s (5]
Water Temperastu L
6:9 e |
Wind Speed]
@ [°
AAAAAA perature S
»77 __J
Comm Links Options Components
Ship Emergenay Equipm Computers D
nnnnnnnnn Omega Navigator Receivers D
g ertiatNowigator | 1 pmemmters D

27 SOFTWARE
! e PRODUCTIVITY
CONSORTIUM
SEPEC -7 Nov 90 28 pe

s — D

Reuse Architecture

Goal: Define mechanically adaptable products for the domain

e Create information hiding class hierarchy to manage
changeability and guide design decomposition

- Divide software components into classes according to:
1) Relative likelihood of change

2) Origin of change (functional requirements,
environment, software design decisions)

-- Each class is an abstraction

- Write specifications for components to be stored in
reuse library

e Create process structure (for real-time systems) to support
reconfigurability

e Identify dependencies among components to support
systematic reuse

\
/ The System Composition Mapping

Goal: Select and adapt classes to compose applications that
satisfy application models

e For each set of variations described in an application
model, select appropriate parts from the reuse library

° Ins&antiate (Adapt) parts as determined by the application
model

‘ SOFTWARE
| . PRODUCTIVITY
- CONSORTIUM
30 &

SEPEC - 7 Nov %0

\
/ Domain Implementation

A Process for Refining/Creating An Application
Engineering Environment

(Synthesis: Major Products and Processes

DOMAIN ENGINEERING
General Needs of

Business Line Sources of
! .
I Reuse Architecture - Parts :
I - ~ X
- ~.

[- » Ty !

- —D(Domain Analysis +——--- System Composition ™ __ ____ = Domain Implementation | o __ |_
4— : N Mapping - 1
! o ! Pid P 7 X i
| e e - z \

{ e P e / \ |
-, P / AN |
: Conceptual Framework y~ e K \ |
- I
| i ’ // \\ !
{ e ’ \ t

| L 3
{ .7 - / \\ :
i e i
| I
! Application Modeling Language Apphcatiqrn F-lnsineerins |

ools
! p |
)
: ! ! / :
| N 7 |
! \d o Y |
L Application Modeli !
' | Feedback Application PP . ' cung Application Feedback :
- — - — Requnremems v A Generation |~~~ ~—~—-—~——-—- >
Refinement '\ ‘
APPLICATION ENGINEERING

SEPEC - 7 Nov %

\

2R SOFTWARE
s PRODUCTIVITY
4 CONSORTIUM
32 pz”

-

Synthesis

Synthesis: Any methodology for the construction of
software systems as instances of a family of systems having
similar descriptions.

Synthesis process: Any systematic process for producing a
reuse architecture, application modeling language, and
system composition mapping within an application
domain.

\

e Families of Systems

Domains are formalized as families of systems that share many common
features. Software systems are derived as instances of a family,
not as single unique systems.

e Model-Based Spgciﬁcation and Analysis

Specify requirements and system-building decisions precisely in an application
model suitable for analysis,
not constantly rework solution-specific representations.

e Reuse Architecture Designed for Adaptation

Creation and pre-planned reuse of mechanically adaptable subsystems based

on engineering decisions,
not opportunistic search and match with “reusable” parts.

o System Composition Mapping

Mapping from variations in an application model to adaptations in all
deliverables for the imglementin subsystems,
not just tracing to possibly affected components.

7 SOFTWARE
' e PRODUCTIV
CONSORTIUM
SEPEC - 7 Nov 90 34 e

/ Key Synthesis Concepts \

ITY

/

e The technology to improve the software production
process exists

Summary

e Reorganizing software production to take advantage of the
family viewpoint is the key to improvement

— One organization that concentrates on continually
improving production of family members (process
oriented)

— One organization that concentrates on determining
requirements for family members (project oriented)

e Similar reorganizations are happening in engineering fields
— customer involvement

— shorter time to market
- more variation across product line

\

Session 1

Lessons Learned in Software
Engineering

Chair: Gary Raines, Manager, Avionics Systems
Development Office, NASA/JSC

Report from NASA Ada User's
Group

John R. Cobarruvias
Flight Data Systems Division, NASA/JSC

Paper not available at time of printing.

Software: Where We Are & What

is Required in the Future

Jerry Cohen
Boeing Aerospace and Electronics

Paper not available at time of printing.

Managing Real-Time Ada

Carol A. Mattax
Hughes Aircraft Corp., Radar Systems Group

Paper not available at time of printing.

, NO1-22726
I
Session 2

Software Engineering Activities
at SEI

Chair: Clyde Chittister, Program Director of Software
Systems, Software Engineering Institute,
Carnegie Mellon University

Session 2 8:30 - 10:00 a.m. Nov. 8

Serpent:
A User Interface Management System

ReedTittle, Software Engineering Institute, Carnegie Mellon University
Len Bass, Software Engineering Institute, Carnegie Mellon University
Brian Clapper, Naval Air Development Center
Erk Hardy, Software Engineering Institute, Carnegie Mellon University
Rick Kazman, Software Engineering Institute, Carmegie Mellon University
Robert Seacord, Software Engineering institute, Carnegie Mellon University

Abstract :

Prototyping has been shown to ease system specification and implementation, especially in the area of
user interfaces. Other prototyping approaches do not allow for the evolution of the prototype into a
production system or support maintenance after a system is fielded. This paper presents a set of goals
for a modern user interface environment and Serpent, a prototype implementation that achieves these
goals.

Introduction

The advent of the modern graphics-oriented workstation is placing increasing emphasis on quality of
the user interface. End users are increasingly more demanding that software should be both functional
and easy to use. In response, both software and hardware vendors must pay more attention to the user
interfaces that accompany their products. However, it is very time consuming and expensive to construct
a user interface: in some systems, the user interface development and maintenance cost exceeds 50%
of the total software cost [1]. And if history is any indication, this cost is going to get more expensive in
the future. The trend is to make these systems more "user friendly®, which implies that the user interface
needs to be more complex and robust, and thus more costly.

The current state-of-the-practice in the specification, design, implementation, and maintenance of
interactive computer systems usually does not give the user interface of the system sufficient
consideration. In general, software engineering techniques currently used for the development of
systems are usually an ad hoc combination of “tricks” and “tools”, with little regard for formalism and
standardization. Further, the process of user interface development is labor-intensive. Current user
interface development tools and methods inadequately address this problem. In particular, while more
and more vendors are providing user interface toolkits and graphics packages, these packages typically
require extensive and specific knowledge of a particular toolkit or user interface library. These packages
also require the use of conventional, procedural languages such as C and Ada. These languages are not
particularty well-suited to user interface specification and implementation, so the user is forced into
worrying about low-level syntactic issues.

The Case for Evolutionary Development
One major problem with the software engineering of a user interface is that it is difficult to design a user
interface and know a priori (before implementation) if it is "good”. In fact, there are generally muitiple, and
often conflicting, definitions of "good". Some of the criteria used in the definition of "good" are:
1. does the operator “like" it?

2. does it support the mission goal? and

This work was sponsored by the Department of Defense.

3. is it fast enough?

The current methods used to build interactive systems can result in user interfaces that are non-
intuitive for the operafdr to use and sometimes do not perform the necessary functions. Additionally, the
user interface is often intertwined with the non-user intertace parts of the system, making the task of
modification and extension of the user interface during the sustaining engineering phase of the system
extremely difficult.

In many respects, the user interface component is no different from the other components of a system.
The user interface benefits from the accepted software engineering techniques, such as the
determination of the specification of what is to be done before the design of how to do it, etc. However,
user interfaces are especially difficult to build, and using a standard sequential method of construction
(commonly known as the water-fall method) is not appropriate.

Practice has shown that it is better to use an iterative method, where there is specification, design,
implementation, test, evaluation, and a return to specification again [2]. Frequently, there are several
iterations of the specification to evaluation path. it is a fact of human nature that it is easier for people to
determine what it is that they do not like about a user interface than it is for them to unambiguously
specify what they want in a user interface.

Previous User Interface Approaches

Early prototyping efforts were marked by intense coding in traditional programming languages of both
the user interface and the undertying application. This approach is cumbersome and error-prone, due to
the low-level semantics of these languages. Using this process, changes to the user interface
specification may force major changes in the application program. Even though the prototype may have
only addressed some limited portion of the overall requirements, therse is a natural tendency to use it as a
basis for the deliverable product.

Later, specialized prototyping languages were developed, employing specific shorthand notations to
generate corresponding function invocations [6]. These languages are usually fairly arcane, not unlike
RPG and its successors, in that the user intertace designer must be intimately familiar not only with the
language, but also with the built-in functions. One of the big drawbacks to this approach is that after the
prototype has been built, the user interface must be recoded (using the prototype as requirements) due to
the performance and maintenance issues; there is no smooth transition from prototype to product.

With the advent of fourth generation languages and the increased use of computers for management
information systems came the concept of rapid prototyping [4]. This approach is marked by the
application of database concepts to software development: changing a value in the database causes a
resultant change in the presentation. One major advantage over other approaches is that, for each
function that can be invoked by the user, there is a corresponding program-callable routine. Once the
user interface is specified, the appropriate calls can be made by the application program. However, i the
user interface changes, the application program must be changed.

The explosion in workstation capabilities in the last few years has sparked many new ideas about how
to use these capabilities for user interface development [9, 10, 8, 3, 5, 7], leading to a multitude of tools
and environments, such as Prototyper, XVT, UIL, Granite, Autocode, and MIKE. However, each tool is
marked by the use of a specific language and/or interactive tools tailored to the capabilities of a particular

platform and/or to the specific user interface toolkit supported. Application support in these packages
usually takes the form of a fixed set of functions that can be invoked as necessary by the application, or a
set of functions that are dynamically generated by the prototyping tool to implement the user interface.
Again, if the user interface changes, the application must be changed to invoke the new tunctions.

Finally, user interface technology is evolving rapidly. Today's leading edge data presentation theory
becomes tomorrow's commonplace toolkit, giving way to some previously unimagined technology. None
of the above approaches adequately provides for the effective integration and use of new toolkits.

Goals of a Modern User Interface Environment

In 1987 the Software Engineering Institute started the User Interface Project to address perceived
problems in user interface development and to assist the transition of user interface design and
development technology into practice. Out of this effort arose a set of goals for the next generation of

user interface environments:
1.In any computer system, there should be a true separation of concerns between the
application and the user interface. This is simply the concept of modularity: the application
should not try to perform the functions of a user interface, and vice versa. One should be
able to develop the application independently of the user interface, in a language
appropriate to the semantics of the application; similarly, user interface development should
be independent of the application.

2. The user interface specification, design, and implementation should be simple and
straightforward; prototyping should be fairly easy using the mechanisms provided by the
environment. Non-programmers should be able to pertorm these activities with a minimum
of training. The mechanisms used to perform these activities should not have to change,
even though the user interface style or underlying user interface toolkit may change.

3. It must be possible to prototype the interface and functionality of a system without an
application. The user interface support mechanisms should be sufficiently rich to support
reasonably sophisticated prototypes. As the prototype matures, facilities should be
provided to add an application, in pieces or all at once, thus providing evolutionary
development.

4. Existing systems should be able to take advantage of new toolkits as they become
available, without affecting the application portion of the system. The mechanisms for
incorporating these new toolkits shouid be relatively simple.

5. Performance, when the environment is used strictly as a prototyping vehicle, should be
reasonable, although special performance considerations may have to be made when used
in production.

User Interface Management System (UIMS)

One tool which meets the above goals is the UIMS. A UIMS is generally composed of four parts:

1. a dialogue, which specifies how information is to be presented to the operator and how to
respond to operator commands,

2. a dialogue manager, which is responsible for interpreting the dialogue during the execution
of the system,

3. a realization component, which is responsible for the actual physical interface between the
operator and the system, and

4. the application, which is responsible for all the non-user interface functionality ot the
system.

A UIMS can be thought of as software oriented "erector set” that is tailored for the development of user

interfaces. The UIMS provides an environment where it is very easy and fast to change the form and
function of a user interface. This provides the ability to quickly prototype and change the user interface
during the system specification, design, and implementation phases. A UIMS also enforces the
separation of what is to be presented to the operator from the how it is presented. This provides a very
convenient mechanism for the decoupling of the user interface from the rest of the system, which makes
maintenance and the changes to the user interface easier.

Serpent

Starting with the above goals, the User Interface Project developed a user interface environment
known as Serpent. Serpent is a UIMS, using the standard Seeheim model [11], that supports the
development and execution of the user interface of a software system. Serpent supports incremental
development of the user interface from the prototyping phase through production to maintenance.
Serpent encourages the separation of concerns between the user interface and the functional portions of
an application. Serpent is easily extended to support multiple toolkits.

Architecture

Figure 1 shows the overall architecture for Serpent. The architecture is intended to encourage the
proper separation of functionality between the application and the user interface portions of a software
system. The three different layers of the architecture provide differing levels of control over user input
and system output. The presentation layer is responsible for layout and device issues. The dialogue
layer specifies the presentation of application information and user interactions. The application layer
provides the actual system functionality.

The presentation layer controls the end-user interactions and generates low-level feedback. This layer
consists of various toolkits that have been incorporated into Serpent. A standard interface has been
defined which simplifies adding new toolkits. Each toolkit defines a collection of interaction objects visible
to the end user.

The dialogue layer specifies the user interface and provides the mapping between the presentation and
application layers. The dialogue layer determines which information is currently available to the end user
and specifies the form that the presentation will take, as previously defined by the dialogue specifier (the
individual responsible for creating the user interface specification, or dialogue). The dialogue layer acts
like a traffic manager for communication between application and toolkits. The presentation level
manages the presentation; the dialogue layer tells the presentation what to do. For example, the
presentation layer manages a button that the end user can select; the dialogue layer informs the
presentation layer of the position and contents of the button and will act when the button is selected.

The application layer performs those functions that are specific to the application. Since the other two
layers are designed to take care of all the user interface details, the application can be written to be
presentation-independent; there should be no dependency in the application on a specific toolkit.

The data that is passed between ditferent layers is known as shared data. Data passed between an
application and the dialogue layer is referred to as application shared data, while data passed between a
toolkit and the dialogue layer is called toolkit shared data. A shared data definition provides the format of
the data.

- application
layer

dialogue
layer

presentation layer

toolkits

Figure 1: Serpent Architecture

Slang

In Serpent, user interface dialogues are specified in a special-purpose language called Slang. Slang
provides a mechanism for defining the presentation of information to, as well as interactions with, the end
user. A Slang program defines and enumerates a collection of interaction objects and allowable actions
to be available to the end user. Slang provides variables for intermediate storage and manipulation,
along with a full complement of primitive arithmetic operations.

The interaction objects available to the dialogue writer are defined by the toolkit. Each toolkit defines a
set of primitive objects that may be used in a dialogue. Each object has a collection of attributes that
define its presentation and a collection of methods that determine how the end user can interact with that
object.

In Slang, dependencies between items are automatically enforced. That is, suppose variable v
depends on the value of some object attribute A. If A changes (perhaps due to some end user action),
the value of V is re-evaluated automatically. This important and powertful feature allows the dialogue
writer to build complex, interdependent interaction objects simply by referencing data items; the
dependencies are automatically determined and enforced by the the Serpent system.

Siang also allows a dialogue writer to group arbitrary objects into logical collections called view
controllers that may be created or destroyed as a unit. Specifying a view controller in Slang defines a
view controller templgte; each template has a creation condition that defines when an instance of the
template should come into existence. The existence of a view controller instance and its child objects can
be controlled by the values of Slang variables or by the creation, modification, or destruction of application
data. When a view controller instance’s creation condition is no longer valid, it and its associated objects
are destroyed. Multiple instances of a view controller template may exist at any time. A view controller
serves two main purposes:

1. It maps specific application data onto display objects with which the end user can interact.

2. It controls the existence of a series of related objects.

Application Program Intertface (API)

From the application developer's perspective, Serpent behaves like a database management system.
Shared data is a "common” database manipulated by the application, the presentation layer (usually in
response to end-user actions), or the dialogue layer (in response to actions within the dialogue).

The application can add, modify, or delete shared data. Information provided to Serpent by the
application is available for presentation to the end user. The application has no direct interface to the
presentation layer and therefore cannot affect how data is presented to the user. When end user actions
cause the dialogue to change the application shared database, the application is automatically informed.
In this sense, the application views Serpent as an active database manager.

Saddle

The type and structure of data that is maintained in the shared database is specified in a shared data
definition file, defined in a language called Saddle. This data definition corresponds to the database
concept of schema. A shared data definition file is created once for each application and once for each
toolkit that is integrated into Serpent.

The shared data definition file is processed to produce a language-specific description of shared data.
Processors currently exist for Ada and C. If the application is written in C, the processor will generate
structure definitions that can be included into the application program. If the application is written in Ada,
the processor will generate package specifications.

Input/Output Toolkit Integration

Given that Serpent manipulates objects, the toolkits that are integrated most easily are those that are
object-oriented. The successful integration of object-oriented graphics systems and their associated
toolkits has been a major proof of Serpent's ability to separate presentation concerns from application
concems.

The process of integrating a toolkit into Serpent is conceptually simple. It can be logically divided into

three parts:
1. the objects with which the end user will interact must be determined, along with their
behavior;
2. these objects must be defined to Serpent through the use of Saddle; and
3. "glue” code must be written to allow the toolkit to communicate with the dialogue manager,
through Serpent's shared database facility.

It a toolkit already has an object orientation, then the first and third integration steps are usually

straightforward. If it does not, then a set of objects and their attributes which conform to the Serpent
model must be built on top of the toolkit.

Toolkit integration p?esents other practical difficulties. The integrator has to decide how much of the
underlying toolkit to expose to a dialogue writer, whether to change any of the default behavior of the
system, and whether to make the system more robust by, for instance, performing error checking that the
toolkit does not handle.

The User Interface Development Process Using Serpent

Slang was designed explicitly for user interface specification. A Slang dialogue writer is not burdened
with the technical and procedural details necessary to manipulate specific interaction objects; those
details are hidden in the presentation layer. The dialogue writer merely specifies the objects that make up
the user interface and indicates how they relate to one another and to the end user, the Serpent runtime
system manages the interaction objects. The dialogue specifier needs to be familiar with the
characteristics of various objects, such as knowing that an Athena widget set label widget appears as a
rectangle on the screen; however, the specifier does not need to know how to tell the Athena toolkit
library how to display such a widget.

Slang dialogues can be executed without of an application, allowing the building, testing, and
refinement a prototype before designing and implementing the rest of a system. Often, however, a
prototype requires the existence of some application functionality, it only to initialize display values.
Slang's rich set of primitive operations allow the user interface designer to “mock up” application
operations in the prototype dialogue. Once the prototype has been refined, the simulated application
behavior is removed from the dialogue and the real application is added.

A Simple Example

Perhaps the best way to illustrate the simplicity of prototyping with Slang is by example. Figure 2
shows the screen display for a counter demonstration, using the X Toolkit Athena widget set. The box
labeled “PRESS" is a command widget that can be selected by the user via a mouse. The box above the
command widget is a label widget containing the current value of the counter. When the user selects the
button labeled “PRESS", the value in the label widget is incremented by 1.

QUIT

Figure 2: A Simple Exampie .

In Slang this example is implemented as follows:

VARIABLES:
counter: O

OBJECTS:
/*
width, height, vert_distance, and horiz_distance
are all specified in pixels
*/
background: form widget
{ATTRIBUTES:
width: 640;
height: 645;
}

display: label widget

{ATTRIBUTES:
parent: background;
width: 60;
height: 40;

vert_distance: 150; /* from upper left of parent */
horiz_distance: 310; /* from upper left of parent */
label text: counter;

}

push button: command_widget

(ATTRIBUTES :
parent: background;
width: 60;
height: 40;

vert_distance: 250; /* from upper left of parent */
horiz_distance: 310; /* from upper left of parent */

label text: "PRESS";
METHODS :
notify:
{counter := counter + 1;

}
}

The background object provides a form on which to locate the other objects. The display object
defines the label widget containing the current value of the counter; note that the label_text field, which
controls what is actually displayed in the form widget, is dependent on the value of the global variable
counter. When the value of the variable changes, all items that depend on it are re-evaluated. Put more
simply, if counter changes, the text displayed in the display object will change automatically.

The push_button object defines the command widget that the end user will select in order to
increment the value displayed on the screen. When the user selects the button, the presentation layer
captures the event and communicates it to the dialogue via a notify method, causing the associated code
snippet to be executed. In this case the counter variable is incremented, which in turn causes the label
in the display object to be changed.

Dependencies and type conversions are managed automatically by the Serpent runtime system,
allowing the dialogue writer to focus on user interface issues, rather than syntactic details. For example,

the counter variable is an integer; the label_text attribute of the display object is a string. Slang
converts the counter value to a string before assigning it to the the label_text attribute; the dialogue
writer merely needs (o specify the dependence between the variable and the attribute. Further, the
attributes for every interaction object take reasonable defaults, so the dialogue writer does not need to
specify a value for every possible characteristic of an object.

In short, Slang is designed to minimize the amount of information the dialogue writer needs to specify
in order to manipulate interaction objects.

Status

The initial implementation of Serpent was done under ULTRIX 2.2 on DEC microVAX Il and IlI
workstations. Serpent was also easily ported to run under SUNOS 3.5 or higher on SUN2 and SUN3
workstations and DECStation 3100 & 5000 platforms . We expect porting to similar UNIX platforms to be
relatively straightforward.

Applications can be written in either C or Ada, and simple mechanisms exist to extend Serpent to
support other high level languages. Serpent was implemented predominantly in C, with additional support
software written as shell scripts.

Curmrently, two different interfaces to X Window System toolkits have been written for Serpent: one
implements a subset of the Athena widget set and the other impiements the Motif widget set. In addition,
Lockheed’s Softcopy Map Display System has been integrated.

An interactive What-You-See-Is-What-You-Get (WYSIWYG) graphical editor that hides most of the
details of the user interface specification is available. The editor provides for fast feedback, so that the
entire application system need not be executed, or even exist, to begin to "get a feel” for the interface.

Serpent is available from the Software Engineering Institute and MIT through anonymous ftp. It is also
contained in the X11R4 contrib release from MIT.

Conclusions
As a result of our experiences in developing user interfaces with Serpent, we have concluded that
Serpent offers the following advantages over other user interface development approaches:

1. The active database model for applications allows the true separation of application issues
from user interface issues, thus ensuring modularity. Application writers are also free from
the syntactic drudgery inherent in programming large, compiex toolkits.

2. The constraint mechanisms implemented via automatic dependency updates ensure that all
participants (application, dialogue manager, and toolkit) are synchronized in terms of the
state of the system.

3. Serpent’s language-independent interface definition and inter-process communication
mechanisms help in achieving modularity. Application developers are not constrained to
work in a single language.

4. Serpent’s toolkit integration support reduces the integration process to a series of concise,
well understood steps. Once a particular toolkit is integrated, its objects are available for
use in any dialogue.

5. Due to Serpent's inherent separation of concerns, system developers can experiment with
different user interface styles, and even different toolkits, without changing either the
application code or the API. This also provides for the injection of new toolkits and user
interface paradigms into an existing system, while minimizing the system portions which are

affected.

Serpent has achieved the goals of a modern user intertace environment set forth eartier. The user
interface specification mechanisms are simple and direct; changes in the user interface are made easily,
without changing the application. The application program interface is simple and easy to use and
enforces a true separation between the application and the user interface portions of the system.
Prototyping is accomplished rapidly, with reasonable provision for application functionality simulation.
Serpent’s toolkit integration mechanisms allow a new toolkit to be incorporated into Serpent easily without
affecting the application. Finally, Serpent is itself a prototype, implementing the goals listed above. Even
so, performance is quite reasonable, and we are continually making improvements, although we would
not yet recommend it for time-critical production environments.

References

(1] Boehm, Barry W.
A Spiral Model of Software Development and Enhancement.
Computer 21(5), May, 1988.

{2 Boehm, Barry W.
Improving Software Productivity.
Computer 20(3), September, 1987.

[3] Colborn, Kate.
OSF Determines User Interface; Choices Could Affect the Development of Applications Software.
EDN , December, 1988.

{4] Fisher, Gary E.
Application Software Prototyping and Fourth Generation Languages.
Technical Report, National Bureau of Standards, May, 1987.

(5] Foley, James, et al.
Defining Interfaces at a High Level of Abstraction.
IEEE Software , January, 1989.

[6] Hanner, Mark Allen.
Gambling on Window Systems.
UNIX Review , December, 1988.

7 Kasik, David J., et al. .
Reflections on Using a UIMS for Complex Applications.
|EEE Software , January, 1988.

(8] Kolodziej, Stan.
User Interface Management Systems.
Computerworld , July 8, 1987.

{9] Myers, Brad A.
Tools for Creating User Interfaces: An Introduction and Survey.
Technical Report CMU-CS-88-107, Carnegie Mellon University, 1988.

{10) Myers, Brad A.
The Garnet User Interface Development Environment: a Proposal.
Technical Report CMU-CS-88-153, Camegie Mellon University, 1988.

[11] Pfaff, G. (Ed.).
User Interface Management Systems.
Springer-Verlag, Berlin, 1985.

Session 2 8:30 - 10:00 a.m. Nov. 8

NO1-22%27

Prototyping Distributed Simulation Networks

-

Dennis L. Doubleday
Software Engineering Institute

Prototyping Distributed Simulation Networks

Dennis L. Doubleday
Software Engineering Institute

Abstract

Durra is a declarative language designed to support application-level programming. in this paper we
illustrate the use of Durra to describe a simple distributed application: a simulation of a collection of
networked vehicle simulators. We show how the language is used to describe the application, its
components and structure, and how the runtime executive provides for the execution of the application.

1. Programming at the Application-Level

Many distributed applications consist of large-grained tasks or programs, instantiated as processes,
running on possibly separate processors and communicating with each other by sending messages
of different types. '

Since the patterns of communication between the processes can vary over time and the speeds of
the individual processors can differ widely, the developers may need explicit control over the
allocation of processors to processes in order to meet performance or reliability requirements.
Processors are not the only critical resource. The resources that must be allocated also include
communication links and message queues. We call this network of various processor types, links,
and queues a heterogensous machine.

Currently, users of a heterogeneous machine network follow the same pattern of program
development as users of conventional processors: Programmers write individual tasks as separate
programs, in the different programming languages (e.g., C, Lisp, Ada) supported by the processors,
and then hard code the allocation of resources to their application by explicitly assigning specific
programs to run on specific processors at specific times. This coupling between the component
programs and the built-in knowledge about the structure of the application and the aliocation of
resources often prevents the reuse of the programs in other applications or environments.
Modification .of the application during development is often expensive, time-consuming, and error-
prone. The problem is compounded if the application must be modified while running in order to deal
with faults or mode changes. We claim that developing distributed applications for a heterogeneous
machine is qualitatively different from developing programs for conventional processors. It requires
different kinds of languages, tools, runtime support, and methodologies. In this paper we address
some of these issues by presenting a language, Durra. We briefly describe the language and its
distributed runtime support environment and then present, as an example distributed application, a
simple simulation of a network of vehicle simulators.

The rest of this paper is organized as follows. Section 2 briefly describes the Durra language and
runtime environment. Section 3 discusses the problem we are attempting to address in the realm of

%

This work is sponsored by the U.S. Department of Defense. The views and conclusions contained in this document are
solely those of the author(s) and should not be interpreted as representing official policies, either expressed or implied, of
Carmegie Mellon University, the U.S. Air Force, the Department of Defense, or the U.S. Government.

networked simulation devices. Section 4 describes the work we have done to date toward that end.

2. Introduction to Durra

Durra [2] is a language designed to support the development of distributed, large-grained concurrent
applications running on heterogeneous machine networks. A Durra application description consists of
a set of task descriptions and type declarations that prescribe a way to manage the resources of the
network. The application description describes the tasks to be instantiated and executed as
concurrent processes, the types of data to be exchanged by the processes, and the intermediate
queues required to store the data as they move from producer to consumer processes.

2.1. The Durra Language

Task descriptions are the building blocks for applications. A task description includes the following
inftormation (Figure 1): (1) its interface to other tasks (ports); (2) its attributes; (3) its functional and
timing behavior; and (4) its intemal structure, thereby allowing for hierarchical task descriptions.

task task-name

ports -- Used for communication between a process and a queue
port-declarations

attributes] -- Used to specify miscellaneous properties of the task
attribute-value-pairs

behavior] -- Used to specify task functional and timing behavior
functional specification
timing specification

structure -- A graph describing the internal structure of the task
process-declarations ~--Declaration of instances of internal subtasks
bind-declarations -~ Mapping of internal ports to this task’s ports
queue-declarations -- Means of communication between processes
reconfiguration-statements -- Dynamic modifications to the structure

end task-name
Figure 1: A Template for Task Descriptions

The interface information declares the ports of the processes instantiated from the task. A pon
declaration specifies the direction and type of data moving through the port. An In port takes input
data from a queue; an out port deposits data into a queue:

ports
inl: In heads;
outl, out2: out tails;

The attribute information specifies miscellaneous properties of a task. Attributes are a means of
indicating pragmas or hints to the compiler and/or runtime executive. In a task description, the
developer of the task lists the actual value of a property; in a task selection, the user of a task lists the
desired value of the property. Example attributes include author, version number, programming
language, file name, and processor type:

attributes -
author = "jmw";
implementation = "program_name";

Queue Size = 25;

The behavioral information specifies functional and timing properties of the task. The functional
information part of a task description consists of a pre-condition on what is required to be true of the
data coming through the input ports, and a post-condition on what is guaranteed to be true of the data
going out through the output ports. The timing expression describes the behavior of the task in terms
of the operations it performs on its input and output ports. For additional information about the syntax
and semantics of the functional and timing behavior description, see the Durra reference manual [1].

The structural information defines a process-queue graph and possible dynamic reconfiguration of the
graph.

A process declaration of the form
process_name : task task_selection

creates a process as an instance of the specified task. Since a given task (e.g., convolution) might
have a number of different implementations that differ along different dimensions such as algorithm
used, code version, performance, or processor type, the task selection in a process declaration
specifies the desirable features of a suitable implementation. The presence of task selections within
task descriptions provides direct linguistic support for hierarchically structured tasks.

A queue declaration of the form
queue_name [queue_size): port_name_1 > data_transformation » port_name_2

creates a queue through which data flow from an output port of a process (port_name_1) into the
input port of another process (port_name_2). Data transformations are operations applied to data
coming from a source port before they are delivered to a destination port.

A port binding of the form
task_port = process_port
maps a pon on an intemal process to a port defining the external interface of a compound task.

A reconfiguration statement of the form

if condition then i
remove process-names
process process-declarations
queues queue-deciarations

ond if;

is a directive to the executive. It is used to specify changes in the current structure of the application
(i.e., process-queue graph) and the conditions under which these changes take effect. Typically, a
number of existing processes and queues are replaced by new processes and queues, which are
then connected to the remainder of the original graph. The reconfiguration predicate is a Boolean
expression involving time values, queue sizes, and other information available to the executive at
runtime.

2.2. The Durra Runtime Environment

There are two classes of active components in the Durra runtime environment: the application
processes and the Durra executives. As shown in Figure 2, an instance of the executive runs on
each processor while the processes are distributed across the processors in the system.

"Processor 1 Processor 2 Processor 3

(2]

A ;

a-- Process Graph with Processor Allocation

Processor 1 Processor 2 Processor 3

Executive Executive

E/>\£é |

b -- Actual Communication Patterns

Executive
(master)

b

The executives interpret the resource allocation commands produced by the Durra compiler, monitor
reconfiguration conditions, and implement the necessary changes in the application structure.

Figure 2: The Durra Runtime Environment

The component processes making up .a Durra application are instances of independent tasks
(programs) that can be written in any language for which a Durra interface has been provided
(currently, there are Durra interfaces for both C and Ada). The Durra interface is a collection of
procedures that provide communication and contro! primitives. The component processes use the
interface to communicate with the Durma executives and, indirectly, with other application processes.
For a more detailed discussion of the Durra runtime environment, see [3].

3. Distributed Simulation Networks

The development of large networks of heterogeneous simulation and training devices often presents
problems related to the performance and interconnectivity of the network components. There is a
need to evaluate various design alternatives before committing to a specitic implementation.
Problems arise in several areas:

 Muttiple protocols. Cooperating devices are often written using different communication
protocols because they rely on predetermined standards or technologies. When
communicating devices use different protocols, it is necessary to translate messages in a
way that is transparent to the communicating agents. This meSSage translation
consumes time and reduces performance.

o Muttiple levels of fidelity. When developing hierarchical networks of simulation and
training devices, it is often the case that the time scales (i.e., granularity), amount of
data, and level of detail in the data are not compatible between levels or devices. Thus,
there is a need to filter (i.e., reduce) data moving up in the hierarchy and to pad (i.e.,
augment) data moving down the hierarchy. This is a different type of ‘translation’ from the
protocol translation described above. The translating programs in this case need to have
a thorough understanding of the application to compensate for the mismatch in the levels
of detail.

« Muttiple technologies. When connecting devices that use different hardware technology,
the developers of the distributed application need to compensate for differences in
speed, performance, and fault-tolerance requirements.

This collection of problems is just an illustration of the issues that must be addressed by the
developers before implementing the network. A useful technique is to develop prototypes using
emulators of the component software and hardware devices. The emulators are easier to implement
than the rea! devices and can more easily be reconfigured into alternative structures. Experiments
can be conducted under various load conditions and measurements of performance can be derived
from these experiments.

4. Using Durra to Prototype Simulation Networks

We are using Durra to develop a tool for testing and evaluating various network configurations. We
are implementing the tool as a distributed application consisting of clusters of emulators. These
emulators are responsible for interpreting specifications of hypothetical application tasks. We use the
Durra language to describe the various components of the system, their ports and message queues,
and the types of messages exchanged between components. We use the Durra runtime environment
to execute the application and perform dynamic reconfigurations of the application, to emulate mode
changes, and to evaluate their impact on performance.

The final version of our tool will include at least four types of emulators:

1. Generic simulation device emulators: These programs will mimic the 1/0 behavior of
a generic networked simulation device. Scripts specifying the behavior of the emulated
device(s) will be developed. Differences in I/0 behavior between different types of
simulation devices can be emulated through variations in these scripts. The initial
scripts consist simply of position updates and timing instructions. Eventually they
should be more representative of actual networked simulation sessions; this could be
accomplished by adaptation of I/0 logs of an actual simulation session.

2. LAN emulators: These emulators will model communications delay in the network
(e.g., token ring delay). This kind of emulation can likely be accomplished via bufter
tasks in the Durra runtime, which would mean that no executable version of these
emulators need be developed.

3. Intelligent gateway emulators: These programs will model the effect of various
message-filtering and protocol translation techniques on the networked simulation’s use
of processor and communications resources.

4. Console emulator: This program will provide an interactive user interface to the
simulation environment, allowing the experimenter to change emulation parameters,
inject faults, and collect data.

——

4.1. Example: A Simple Network Specification

In this section we present a Durra specification of a simple network of simulators. In this example, we
instantiate a user console and two LAN emulators, each consisting of a group of three simulators and
one gateway process. The reader should note that there is nothing special about this configuration--
another version consisting of some other grouping could just as easily have been constructed from
the same primitive building blocks.

The following is the Durra description of the message type used for communications between the
application components. The message type description is purposely a very general one. A generic
description of the message type allows us in the actual implementation of the type to use a variant
record to represent both simulator position updates and command messages and easily combine
both types of messages in a single data stream.

type massage is array of byte;

At the lowest level of the structure we have the descriptions of the primitive tasks, the simulator, the
gateway, and the console. The simulator task has one output pont, through which it emits its position
updates, and one input port, through which it receives position updates and user commands. The
gateway task has one input port and two output ports; port fo_wan sends messages outside the LAN
and port to_/an distributes remote messages to the simulators in its LAN. The console task is the
application user’s interface to the tool; it accepts a set of user commands and forwards them to the
gateway task for each LAN in the configuration. The gateways may in turn forward those messages
to the simulators in their respective LANSs if the nature of the command requires it.
task simulator

ports
inl : in message;
outl : out message;
attributes

version = "2";
implementation = "simulator";
end simulator;

task gateway

ports
inl : in message;
to_lan : out message;
to_wan : out message;

attributes
version = "2";
implementation = "gateway'";

end gateway:;
task console

ports
to_lan : out maessage:
attributes
xwindow = "~geom 80x24+0+0 -title CONSOLE";

implementation = "console";
end console;

The Durra task /an encapsulates the internal structure of the LAN itself. This instantiation of a LAN
includes one gateway task and three simulator tasks, as well as three built-in Durra buffer tasks. The

buffer tasks implement the routing of message traffic between the component tasks of the LAN. Task
gate_merge merges local and remote messages intended for the local gateway. Task gate_mb
merges messages from the local simulators and then distributes them to both the gate_merge task
and the /an_mb task. The /an_mb task merges those local messages with the remote messages
forwarded from the gateway and distributes them all to each of the local simulators. Note that, given
this structure, each simulator will receive its own updates; these can either be ignored by the
simulator or used as a check to ensure that its own updates are being distributed property.

task lan
ports
inl : in message:
outl : out message;
structure
process
gate : task gateway attributes version = "2"; end gateway;
siml, sim2, sim3 :
task simulator attributes version = "2"; end simulator;
gate_merge : task merge

ports
from_lan, from wan : in message;
to_gate : out message;

attributes mode = fifo;
end merge;

gate_mb : task merge broadcast
ports
froml, from2, from3 : in message’
to_gate, to_lan : out message;

attributes mode = fifo;
end merge broadcast;

lan_mb : task merge_broadcast
ports
from gate, from lan : in message;
tol, to2, to3 : out message;

attributes mode = fifo;
end merge_ broadcast;

queues .
ggate_in[10] : gate_merge.to_gate >> gate.inl;
qggate_out [10] : gate.to_lan >> lan mb.from gate;
gsiml in[10] : lan mb.tol >> siml.inl;
gsim?2 in[10] : lan mb.to2 >> sim2.inl;
gsim3 in[10] : lan_mb.to3 >> 8sim3.inl;
gsiml out[10] : siml.outl >> gate_mb.froml;
gsim2 out[10] : sim2.outl >> gate_mb.from2;
gsim3 out[10] : sim3.outl >> gate_mb.from3;
gmb_to_gate[10] : gate_mb.to_gate >> gate merge.from lan;
qmb_to_lan[10] : gate mb.to_lan >> lan mb.from lan;

bind

inl = gate_merge.from wan;
outl = gate.to_wan;

end lan;

At the highest level of abstraction, the Durra task internet provides the view of the application as a
console process controlling two connected, but independent, local area networks. These LAN
simulators may be distributed to separate physical processors. Figure 3 shows a graphical view of

the structure of the application.

task internet
structure
process
lanl: task lan attributes processor = netl; end lan;
lan2: task lan attributes processor = net2; end lan;

uc : task console attributes version = "xterm": end console:;
uc_b : task broadcast
ports
from _uc : in message:

to_lanl, to_lan2 : out message;
end broadcast;

lanl_m, lan2 m :

task merge
ports
from uc, from lan : in message;
to_lan ! out message;
attributes mode = fifo;
end merge;
queues
quctob : uc.to_lan >> uc_b.from uc;
qucbtol : uc_b.to_lanl >> lanl_m.from uc;
qucbto2 : uc_b.to_lan2 >> lan2 m.from uc;
qgltom{10) : lanl.outl >> lan2 m.from lan;
g2tom[10] : lan2.outl >> lanl_m.from lan:

qmtol[10] : lan2 m.to_lan >> lan2.inl;
. qmto2([10] : lanl_m.to_lan >> lanl.inl;
end internet;

Only three of the aforementioned Durra tasks, the simulator, the gateway, and the console have
actual implementations associated with them. The /an task’s behavior is defined constructively from
the behavior of the simulator and the gateway, the three buffer tasks (whose behavior is implemented
in the Durra executive), and the connections between them all. Similarly, the behavior of the internet
task derives from the connections between its components, the two instantiations of the /an task and
the console.

5. Conclusions

Application-level programming, as implemented by Durra, separates the structure of an application
from its behavior. This separation provides developers with control over the evolution of an
application during application development as well as during application execution. During
development, an application evolves as the requirements of the application are better understood or
as they change.

This evolution takes the form of changes in the application description, moditying task selection
templates to retrieve alternative task implementations from the library, and connecting these
implementations in different ways to reflect alternative designs. During ex®cution, an application
evolves through mode changes or in response 10 faults. This evoiution takes the form of conditional,

console

commands
bcast
LAN LAN
local local
message v message
merge merge
simulators

gateway

gateway

merge
bcast

merge
bcasgt

simulators

Figure 3: Structure of the Application

dynamic reconfigurations, removal of processes and queues, and instantiation of new processes and
queues without affecting the remaining components. This approach to application-level programming
is similar in spirit to the constructive approach of CONIC [4]. We illustrated this method for
developing distributed applications by describing the implementation of a simple prototyping tool for
modelling various configurations of networked simulators. We wrote Durra task and application
descriptions and used them to control the evolution of the application, both during the development

and during the execution.

References

[1] M.R. Barbacci and J.M. Wing.
Durra: A Task-Level Description Language.
Technical Report CMU/SEI-86-TR-3 (DTIC AD-A178 975), Software Engineering Institute,
Carnegie Mellon University, December, 1986.

[2] M.R. Barbacci and J.M. Wing.
Durra: A Task-Level Description Language Reference Manual (Version 2).
Technical Report CMU/SEI-89-TR-34, Software Engineering Institute, Carnegie Mellon
University, September, 1989.

[3] M.R. Barbacci, D.L. Doubleday, C.B. Weinstock, M.J. Gardner.
Developing Fault-Tolerant Distributed Systems.
Technical Report, Software Engineering Institute Technical Review 1989, 1990.

[4] J. Kramer and J. Magee.
A Model for Change Management.
In Proceedings of the IEEE Workshop on Trends for Distributed Computing Systems in the
1990's, pages 286-295. IEEE Computer Society, September, 1988.

Session 3

Software Reuse

Chair: Robert Angier, /IBM Corp.

Session 3 10:15 - 11:45 a.m. Nov. 8

Research Directions in Software Reuse

November 8, 1990

Will Tracz

MD 0210
IBM Federal Sector Division
Owego, NY 13827
(607) 751-2169
net: OWEGO@I|BM.COM

Unclassified

Session 3

Software Reuse

Chair: Robert Angier, /BM Corp.

Session 3 10:15 - 11:45 a.m. Nov. 8

Research Directions in Software Reuse

November 8, 1990

Will Tracz

MD 0210
IBM Federal Sector Division
Owego, NY 13827
(607) 751-2169
net: OWEGO@|BM.COM

Unclassified

Overview Megaprogramming Motivation

“Currently, software is put logether one statement al

a lime. What we need is lo put software together , “Megaprogramiming is the type of thing you can go
one componenl al a lime.” — Barry Boehm, at the ! into a 3-star general’s office and use o explain what
Domain Specific Software Architechire (DSSA) . DARPA is going to do for them lo make their
Workshop, July 11-12, 1890. software less expensive and have better guality.” —

Barry Boehm, at the ISTO Software Technology
Community Meeting, June 27-29, 1990.

Topics

> Darpa/ISTO Megaprogramming ~Software productivity improvements in the pas!
e Domain Analysis and Modelling have been accidental because they aliow us o
¢ Rapid Prototyping “work faster”. DARPA wanlis peopie to "work
¢ Sofiware Understanding smarter’ or lo avoid work allogether.” — Barry
* Formal Methods Boehm, at the Domain Specific Software
Architecture (DSSA) Workshop, July 11-12, 1990.
= Recent Workshops

¢ Realities of Reuse - January 1990
s Metlhods and Tools for Reuse - June 1990

» 3-C Model for Software Components

Unclassihed IBM 1 Unclessified IBM
Megaprogramming Vision ‘ Megaprogramming Software Team
> Megaprogramming is a “giant step” toward “Configuration = Componenls + Interfaces +
increasing Documentation
*) productivity, Software Team = Configurstion + Process +
* maintenance productivity, - i he ISTO
o reliability Avtomation + Control.” — Bill Scherlis, at t
. ' Software Technology Community Meeting. June
availability,
27-29, 1990.
¢ security,
* portability,
¢ interoperability and
¢ operational capability .” Megaprogramming Software Team Goal

> Megaprogramming will incorporate proven, ,
t :

well-defined componenis whose quality will evolve. To create an environment to

1. “manage systems as configurations of components,

> Megaprogramming requires the modification of the intert iications. etc

Iraditional software development process.

» Domain-specific soflware architectures need to be
defined and implemented with open interfaces
according o software composition principles. and 3. increase the range of scates of units of soflware
open interface specifications. interchange (algorithms to subsystems) ™

2. increase the scale of unils of soflware construction
{to moduiles), and

* Additional environmental capabilities are needed to
provide software understanding

\

Key Elements of Megaprogramming Software

Team

-

Component sources — currently, components under
consideration are from reuse libraries (e.g.,
SIMTEL20 or RAPID) or COTS (Commercial
Ofi-The-Shelf) software (e.9.. GRACE or Booch
components). Application generator technoiogy is
desirable to provide for adaptable modules.
Re-engineered components (e.g9.. CAMP) could
provide additional resources.

interface definitions — currently,' there exists an ad
hoc standard consisting of Ada package
specifications and informal documentation. It is
desirable to develop a Moduie Interconnect
Formalism (MIF) with hiddeh impilementations
supported by formal analysis and validation tools.

System documentation — currently, simple hypertext
systems are supporting the textual documentation
associated with software components. It is desirable
to create a repository-based, hypermedia
environment that provides traceabilily between
artifacts and supports the capture, query, and
navigation of domain knowledge.

Unclassshed ‘BM s

Key Elements of Megaprogramming Software

Team

Megaprogramming Resources

STARS (Software Technology for Adaptabie Reliabie
Systems) SEE (Software Engineering Environment)

Arcadia

CPS/CPL (Common Prototyping System/Common
Prototyping Language)

DSSA (Domain Specific Software Architectures)
POB (Persistent Object Bases)

SWU (Software Understanding)

REE (Re-Engineering)

Inlerlace and architecture codification will be supported
by a Module Inlerconnect Formalism (MIF), which is an
outgrowth of the CPS/CPL program.

L 4

Process structure — currently, there exists no
predictable software deveiopment process. it is
desirable to deveiop an evolutionary development
iife cycle with support to domain engineering,
integrated requirements acquisition, and
reverse/re-engineering.

Process Aulomation — currently, CASE lools are
elther stand-alone or federated (e.g.. Unix). It is
desirable to integrate the tools and create a

meta-programming environment to support process
description and refinement.

Control/Asesssment — currently, only a priori
software metrics and process insirumentation exists.
It is desirable to integrate the measurcment process
with tool support and to create an cosl-estimation
capability.

' Uiz ta o irpdematk of ATRT Gel Laborsiories

Unclsssified

IBM

Goal of MIF

To adequately describe a software component such that
its selection and use can be accomplished without
looking at its impiementation.

Component interface

»

»

»

entry points,

type definitions

data formats (e.g. Ada package specification),
a description of its functionality,

side effects,

performance expectations,

degree and kind of assurance of consisiency
between specification and Impiementation
(reliability), and

appropriate test cases.

SWU Deslign Record

The design record will provide a “common data structure
for system documentation and libraries”.

The suggested data elements in a design record include:

> code,
test cases,
library and DSSA tinks,
» design structure,
* access rights,
» configuration and version data,
hypertext paths,
metric data,
requirement specification fragments,
POL texts, ’
interface and architecture specifications,
design rationale,
c"talog information, and
search points.

v vy v vy

v

Unciassilied IB } v{ 9

Elements of Megaprogramming Software
interchange

> Conveniionalization — currently, conventions are
emerging. il is desirable lo create a cooperative
decision and consensus mechanism thal supports
adaplable, mulii-configuration libraries, which
present a slandard search capability.

* Repository/inventory— currently, reposilories support
code storage only. It is desirable (o retain, assess,
and validale other software assets such as
architeclures, lesi cases, specifications, designs, and
design rationaies.

> Exchange/Brokerage — current intellectual property
nights and government acquisition regulations are
slifiing a soltware component induslry. It is
desirable lo populate certain application domains
{via DSSA) and lo supporl the creation of an
elecironic soflware component commerce by

¢ defining mechanisms for access control,
® authenticalion/certilication, and
® eslabiishing composition conventions.

Megaprogramming Software interchange

“Sofiware Interchange = Software Teamn +
Convention + Repository + Exchange.” — Bill
Scherlis, at the ISTO Software Technology
Community Meeting, June 27-29, 1990.

Megaprogramming Software Interchange Goal

To “enable wide-area commerce in sollware
components.”

Unclassified IBM 10

Realities of Reuse Workshop

January 4-5 1990
Syracuse, NY .

The goal of the workshop was lo
“... 88rve as a forum lor sharing praclical experiences
and methodologies

» for specifying and designing sollware for reuse,

> for defining the level and kinds of componenls that
can be reused, and

> for incorporaling reuse philosophies into
organizalions”.

Highlights

Sofiware Reuse: Representing a Reusable Soltware
Collection
William Frakes, Software Productivity Consortium

~ IR approach is the best way (o go about organizing
a hibrary.

> olher approaches (keyword, faceled. semantic nel,
hyperiext) raquire significant amounts of effort to set
up and lo catalog. s

.

Realilies of Language Support for Reuse: What we
desire - What we have.
Larry Latour, University of Maine

» Code and lype inherilance
* paramelerization
» granularily of change

= algorithm parameterization.

Unctassthed ‘fﬁ’v‘ 13

Highlights

Library-Base Soltware Design Methodology
David Musser, RPI

The following are myths:

1. generic software is not eflicient.

2. generic software is hard lo lind, and

3. software libraries only address the
imptementaltion level.

*» Rationale:

1. algorithms can be more compliex and efficient
than any simple ones that a programmer wouid
tend to wrile from scraich.

2. Library can be organized into a semanlic nel N
that a user could easily navigale io lind whal
was needed.

3. 80% of the effort to build a library is wriling the
specifications that could be reused al high level
design lime.

Highlights

Unclassiiied 18 H - H

ORIGINAL vAGE |5
OF POOR QuALTY

Rommhﬂmw
and System Construction
oomunumn,mm.nsmm

= Proto system that ISS/ built for RADC.

* Graphical input language for drawing dala flow
diagrams, (hen simuialing them (i the contents of
the nodes is real code).

> One can also walch the dala flow nodes fire.

Designing for Reuse: Is Ada Class Conscious?
Sholom Cohen, Software Engineering Institute

> Fealure Analysis

> Commonality Analysis (o develop a generic
architeclures.

Highlights THIRD ANNUAL WORI(SHOP:
METHODS & TOOLS FOR REIUSE

June 13-15 1890
Syracuse, NY

Highlights

If you are not teaching soflware reuse. you are not
teaching soliware engineering (Bob Cook -
Universily of Virginia)

The (throw everylhing into a) "Bag” approach was
the styie of soflware reuse in the 80's. he "Generic
Archilecture™ approach is the style for the 90's.

"Cloning” (a new-to-me lerm) 1s a form of unplanned
reuse (salvaging) popular at HP and other
companies.

What is needed lo stimulale soflware 1ouse are
handbooks that describe the aiciuteciirs of
applications along with their rlesiyn ralionale.

GOTO’s were found bad in the 70's i ihe same
reason that Top Down Decomposition wili be found
bad in the 90's -- failure o modiilarize comolexity

Highilights THIRD ANNUAL WORKSHOP:
METHODS & TOOLS FOR REUSE

» A good interface specification has enough
information so the (re-) user doesn’t have to look at
the code lo figure out whal it does and how to use
it.

» One (large) problem thal people have failed o
realize is that software reuse doesn’l stop at
retnieval.

= Dala fiow diagrams provide oo much information to
be included in the functional specification of a
reusable software component.

» Domain Analysis research projects are aclively
being addressed at TRW, Bell Labs, UNISYS,
ESPRIT, Magnovox, CONTEL, MCC and SPS.

Unclassthed IB }1{ 17

ORIGINAL PAGE IS
OF POOR QUALITY

Paper Summaries

KAPTUR: KNOWLEDGE ACQUISITION FOR
PRESERVATION OF TRADEOFFS AND UNDERLYING
RATIONALES
Sidney C. Bailin, CTA INCORPORATED

> Roll-your-own hypertext system for capturing design
decisions.

> An impressive domain analysis case siudy in tools

{o support reuse.

REUSE OF SOFTWARE KNOWLEDGE: A PROGRESS
REPORT
Prem Devanbu, AT&T BELL LABORATORIES

= Knowledge Base (o assis! in software reuse.

HYPERBOLE: A RETRIEVAL-BY-REFORMULATION
INTERFACE THAT PROMOTES SOFTWARE VISIBILITY
Patricia Carando, Schiumberger Laboratory for
Computer Science

{0 analyze well dala.

> Graphical workslation lool (500-600 classes).

Generic user interface and data analysis architeclure ’

Highlights THIRD ANNUAL WORI(SHOP:
METHODS & TOOLS FOR REUSE

» SPS (Software Productivily Solutions) speculated that

in 6 years they have increased their programmer
productivity an order of magnitude through

. simple black box reuse (function libraries)

paramelerized biack box reuse (Ada generics)

. large component reuse {modules/Ada packages)

. inheritance (required object-oriented
programming language)

5. paramelerized application generalors

AWN =

NOTE: they indicaled the swilch lo OOPL was the
grealest lacilitator of reuse.

» Best malaprop: “Generics ére somelling you use

when you can’l afford the name brand.”

Uncisssilied !B M 18

Paper Summaries

AN EMPIRICAL FRAMEWORK FOR SOFTWARE REUSE
RESEARCH
Bill Frakes, Software Productivily Consortium

> Determine the relationships beiween the dependent

variabies in model

1. quality,
2. productivily, and
3. reuse

THE 3C MODEL OF REUSABLE SOFTWARE
COMPONENTS
Stephen Edwards, Instilute for Defense Analyses

* Emphasis on the mainienance payback from using

the 3C model.

THE THREE CONS OF SOFTWARE REUSE
Wil Tracz, 1BM Corporalion

The gospe! according to Will,

‘¢ Y

Paper Summaries

DESIGNING FOR SOFTWARE REUSE IN ADA
Sholom Cohen, SEVCamegie-Melion University

Implementalion implications of using the 3C mode!
in regards lo hierarchies of parameterized models.

Coupling inversion — where context is fixed for
implemeniaiion efficiencies within the generic
architecture.

THE PRACTITIONER REUSE SUPPORT SYSTEM (PRESS):

A TOOL SUPPORTING SOFTWARE REUSE
Comelia Boidyreff, Brunel University

> ESPRIT 1094 Practitioner Project (one of many reuse

projects funded by ESPRIT).

= Caplure and reuse soltware concepls from designs

through code.

Guestionnaire was passed out o the inam company
{o assist in dornain analysis

“canonical” lorm for describing sollware componentis
developed

Unclassied IBM 21

Conceptual Model
Reusable Software Components

e Context
¢ Concepts
® Content
- Context
— Concepts

~ Content

Paper Summaries

REUSE AT HEWLETT-PACKARD LABORATORIES
Martin L. Griss, Hewiett-Packard Laboratories

» Hypertext tools.
> Object-Oriented Design.

BEYOND RETRIEVAL: UNDERSTANDING AND
ADAPTATION IN SOFTWARE REUSE
Karen Hull & Ronnie Thomson, GTE Laboiatories Inc.

> SATURN (Software Adapiation Througl
Understandable Reuse Nolation)

THE STARLITE INTELLECTUAL REUSE PROJECT
Robert P. Cook, University of Virginia

» Reusable operating sysiem. and sysicn modelling
componenls

Unciassitied IBM

22

Conceptual Model
Context

® "Language shapes thought”
= Inheritance
- Genericity/Parametcrization
~ Importation
* Binding time
— Compile time
— Load/Bind timc

= Run Time

Conceptual Model
Concepts

e Concept: — What

e Content: — How

¢ Context:
1. Conceptual — relationship
2. Operational — with/to what
3. Implementation — trade — offs

Context: what is nceded to complcte the
dcfinition of a concept or content within an
cnvironment. (Latour)

Software Components
Formal Foundations

¢ Horizontal Structure
1. type inheritance
2. code inheritance
o Vertical Structure
— implcmentation dependcencics
— virtual interfaces
] Ge.ncric Structure

— variations/adaptations

WIT-X Nadd 3 1990 Sep 18

WIT-3C Medel 4 1990 Sep 13

Conceptual Model
Example

e Concept: Stack
— Operational Context: Element/Type
— Conceptual Context: Dequc

= lmplementation Context: Sequence

Conceptual Model
Example

o Stack Implementation
1. Inherit Deque
2. Usc an array
3. Use a linked — list
® memory managemcnt
® no memory managcment

® concurrent access

Megaprogramming Example
Stack — > Deque

make Deque { Triv) is
Stack { Triv)
* (rename (Push = > Push_Right)
(Pop = > Pop_Right)
(Stack = > Deque)
* (add Push_Left, Push_Right)

end;

Hyperprogramming Example
Make with View

make Integer_Set is
LIL_Set (Integer_View}
end;

view Integer_View :: Triv = > Standard is
types (Element = > Integer):
end;

WIT-M Adeded 1999 Sep 18

WIT-IC hleded 1990 Sep 11

Megaprogramming Example
Make with Vertical Composition

make Short_Stack is

LIL_Stack
— — horizontal composition
needs (List_Theory = > List_Array)
- — vertical composition

end;

LILEANNA Example
Package Expressions

wshe New_Ade_Legic_interface (s
Tdentifier_Package «
Clause_tockoge*ihige Copy) «
Substitution_backage +
Dotatiase Pactage ¢+
Query_Packoge*{add fenction Query_Fail (C: Clause;
Lo List Oof Clauses)
retura Bootean)
S(romame (Query_Answer => Query Results))

Ada Net

John McBride
Planned Solutions

Paper not available at time of printing.

Session 4

Software Engineering: Issues
for Ada's Future

Chair: Rod L. Bown , University of Houston-Clear Lake

Assessment of Formal Methods
for Trustworthy Computer
Systems

Susan Gerhart
Microelectronics and Computer Technology Corp. (MCC)

Paper not available at time of printing.

Issues Related to Ada 9X

John McHugh
Computational Logic, Inc.

Paper not available at time of printing.

Session 4 1:30 - 3:00 Nov. 8

POSIX and Ada Integration In The
Space Station Freedom Program

Dr. Robert A. Brown
The Charles Stark Draper Laboratory, Inc.

This paper discusses the integration of real-time POSIX and
real-time, multiprogramming Ada in the Space Station Freedom
Data Management System. Use of POSIX as well as use of Ada
has been mandated for Space Station Freedom flight software.
However, POSIX and Ada assume execution models that are not
always compatible. This becomes particularly true once Ada
has been extended to support multiprogramming. This paper
points out the conflicts between POSIX and Ada multiprogramming
execution models and describes the approach taken in the Data
Management System to resolve those conflicts.

Session 5

Ada Run-Time Issues

Chair: Alan Burns, University of York (U. K.)

