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Abstract 

The Transformation expert system (TRANS) converts proposals for astronomical observations 
with the Hubble Space Telescope (HST) into detailed observing plans. It encodes expert 
knowledge to solve problems faced in planning and commanding HST observations to enable their 
processing by the Science Operations Ground System (SOGS). Among these problems are 
determining an acceptable order of executing observations, grouping of observations to enhance 
efficiency and schedulability, inserting extra observations when necessary, and providing 
parameters for commanding HST instruments. 

TRANS is currently an operational system and plays a critical role in the HST ground system. It 
was originally designed using forward-chaining provided by the OPS5 expert system language, 
but has been reimplemented using a procedural knowledge base. This reimplementation was 
forced by the explosion in the amount of OPSS code required to specify the increasingly 
complicated situations requiring expert-level intervention by the TRANS knowledge base. This 
problem was compounded by the difficulty of avoiding unintended interaction between rules. 

To support the TRANS knowledge base, XCL, a small but powerful extension to Common Lisp 
was implemented. XCL allows a compact syntax for specifying assignments and references to 
object attributes. X U  also allows the capability to iterate over objects and perform keyed lookup. 

The reimplementation of TRANS has greatly diminished the effort needed to maintain and enhance 
it. As a result of this, its functions have been expanded to include warnings about observations 
that are difficult or impossible to schedule or command, providing data to aid SPIKE, an intelligent 
planning system used for HST long-term scheduling, and providing information to the Guide Star 
Selection System (GSSS) to aid in determination of the long range availability of guide stars. 
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This paper describes the design and operation of the Trans 
which was originally built to interface between the Proposal En 
the Science Operations Ground System (SOGS). When observers submit proposals for use of 
NASA's Hubble Space Telescope (HST) for astronomical observations, these proposals are 
entered electronically into PEPSI for syntax checking and rudimentary semantic analysis 
[Jackson88a]. These proposals need to be processed by (SOGS) which is comprised of the 
Science Planning and Scheduling System (SPSS), which schedules observations within a week, 
Science Commanding System (SCS) which generates commanding instructions for an observation, 
Observation Support System (OSS) which monito * n of the telescope during the 
observation and Post Observation Data Processing Sys S) which receives and processes 
science data received from HST. Providing inputs to requires detailed knowledge that the 
proposer would not be expected to have. Such knowledge includes the best order in which to 
perform the observations, how the observations should be grouped to minimize telescope 
movement and instrument reconfiguration, what extra observations are necessary to support the 
science requested and attributes necessary to plan, schedule, command and process data for the 
observations. TRANS was designed to operate on the output of PEPSI, using expert knowledge 
to provide input to SOGS. The input to SOGS is provided in text form to allow override by an 
expert. 

The original purpose of TRANS has been expanded to allow greate se of its knowledge. It 
provides input to SPIKE, a knowledge-based long term scheduler fo 
determines the optimal assignment of observations to weeks. To aid 
generates requests for the Guide Star Selection System (GSSS) to determine long-range availability 
of guide stars, needed to insure the pointing accuracy of HST. Trans also generates diagnostic 
error message to identify observations which will cause trouble for SOGS, SPIKE, GSSS or 
HST. Figure 1 illustrates the data flow through TRANS. 

ion expert system 
essing System ( 

Transformation 
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2. The Knowledae Based Functionalitv of TRANS 

Proposers describe their observing program by dividing them up into exposures and entering them 
onto a fonn called an exposure logsheet [Space89a]. The TRANS knowledge base operates on 
these exposures taken from a database generated by PEPS1 based on the exposure logsheet. Trans 
performs five basic functions on the exposures it receives as input - ordering, merging, inserting 
extra exposures needed to support those requested, computing attributes and reporting its 
conclusions [GerbgOa]. 

2.1 Orderina Exposu rea 

Trans orders exposures based on user-specified constraints. This ordering can be modified (within 
limits) by SPIKE and SPSS, and is used primarily as a guideline for the grouping of exposures for 
efficiency purposes. The ordering phase of trans uses technology from the domain of constraint 
satisfaction problems to insure that all constraints specified by the observer’s proposal are 
satisfied. Details of this process will be made the topic of future publications. 

2.2 Meraina Exposures 

The process of dividing exposures into a hierarchical grouping is called Merging. During the 
process of merging, the ordered exposures are grouped into contiguous disjoint sets called 
alignments. Alignments are then grouped into observation sets (obsets) and finally, obsets are 
grouped into scheduling units. These groupings define the data structures used by SPSS to 
schedule HST observations[Miller87a]. 

Alignments are the tightest grouping of exposures. All exposures in an alignment must use the 
same HST pointing and orientation, must generate science or engineering data at the same rate and 
must have only small gaps or interruptions between successive members. Division of exposures 
into alignments is important for two reasons. First, exposures in the same alignment can be 
commanded for much more efficient use of spacecraft time. Second, alignments are the basic units 
of planning for SPSS; SPSS does not schedule on the exposure level. 

Obsets are groups of alignments which can be performed without a change in the operating mode 
of the pointing control system (PCS). HST usually depends on positional monitoring of pairs of 
stars (called guide stars) to maintain its pointing. A series of alignments can be in the same obset if 
they all can use the same guide star pair. Alignments which do not need guide stars, such as those 
that rely on gyros for their pointing control, can also be grouped into the same obset. 

Scheduling Units are groups of obsets that SPSS schedules together. When scheduling an obset 
requires the next obset to be scheduled immediately afterwards, both are placed in the same 
Scheduling Unit. 

TRANS first merges exposures into alignments. It marches down the exposures in the order 
determined by the ordering phase. For each exposure, it determines if there is an efficiency reason 
why it should be placed in an alignment with the previous exposure. If such a reason exists, 
TRANS then looks for a reason why it should not. If this search fails, the exposure becomes part 
of the alignment containing the previous. If not, a new alignment starts. This process is repeated 
for merging alignments into obsets, and again for merging obsets into scheduling units. 
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Once exposures are merged, extra exposures or alignments may need to be inserted. There are 
currently eight cases where this must be done: 

1. When the proposer has requested in the proposal that an exposure be performed multiple times, 
TRANS needs to copy the exposure. 

2. When an alignment needs special commanding or requires monitoring of engineering telemetry 
by a link to the ground or by tape recorder, an extra exposure is added to the beginning of the 
alignment to account for the time used in this process and to trigger the appropriate commanding. 

3. When an alignment uses the Fine Guidance Sensors (FGS) for science purposes, an exposure 
must be placed at the end of the alignment to trigger commanding to restore the FGS to its original 
state and to account for the time used in the process. 

4. When an obset uses the Faint Object Spectrograph (FOS), an extra alignment with a single 
exposure is placed at the end of the obset to trigger commanding to restore the FOS to its original 
state and to account for the time used in the process. 

5. When an alignment sends data to the ground in realtime for analysis, an extra alignment with a 
single exposure is inserted before the alignment which requires the analysis to allow time for the 
analysis to occur. It is not necessary to insert this alignment if there is already sufficient time to 
perform the realtime analysis. 

6. When an alignment sends data to the ground in realtime to determine the pointing of a later 
alignment for target acquisition purposes, a special alignment with a single exposure is inserted 
before the later alignment to trigger commanding for the position uplink and to account for the time 
used in this process. 

7. When an alignment with more than one exposure is found by TRANS to last longer than a 
reasonable viewing interval for the target requested, TRANS divides its exposures up into several 
smaller alignments. It marches through the exposures in the alignment, summing the total time. 
When the time exceeds the maximhm time allowed, a new alignment is created containing the 
remaining exposures. This process is continued until the remaining exposures comprise an 
alignment short enough to fit in the time allowed. This process could not occur during the merging 
phase since merging information is required to compute overhead times. 

8. If after the process described in step 7, an alignment containing a single exposure is still too 
long, that exposure is replaced by several shorter copies of itself, each in its own alignment. First 
an attempt is made to create two exposures, each roughly half as long as the original, and the 
ovEhea8 time is recomputed. If either is still too long, three are created. This process is continued 
until-either the individual exposures are short enough, or TRANS determines that it is not 
reasonable to create more exposures. 

The eighth example above is an especially complex process, as it is not always possible to break 
exposures evenly. Many of the instruments on HST require the length of their exposures be an 
integer multiple of some unit of time (often dependent on the parameters with which the exposures 
are created). It is up to TRANS to determine the apportionment of time among the new exposures 
to minimize the number of exposures needed to for all exposures to fit. 

48 



Once dl exposures, alignments, obsets and scheduling units have been created, there are numerous 
attributes that need to be computed for each. 

TRANS must compute overhead times for all exposures, alignments, obsets and scheduling units. 
Computing overhead for exposures involves computing the time involved to set up the 
observations (opening shutter, moving filter in place, etc.), commanding the observations, taking 
data, reading the data to tape or to the ground, and restoring the instrument to its original state. For 
some instruments, it is also necessary to determine whether routine calibrations are needed and 
how long these will take. To do this, TRANS must consider the length of time since the most 
recent calibration and opportunities for another calibration later in the alignment. 

Computing overhead times for an alignment involves summing the times for each of its exposures. 
If some are required to be parallel with (occurring at the same time as) others, time must be 
subtracted to take this into account. If the alignment requires a realtime contact with the ground, 
extra time must be added. Certain instruments require additional time be added to the beginning or 
the end of the alignment. 

Computing overhead times for obsets and scheduling units involve summing up the times for each 
of their alignments. TRANS determines the number of times the earth has occulted the targets and 
adds time to compensate. More time must be added to relocate guide stars at the end of each earth 
occultation. Whenever the target changes, time must be added to complete the Small Angle 
Maneuver (SAM) required to point at the new target, Also, at the beginning of each obset, time 
must be added to locate the guide stars used in the obset. 

2.4.2 TDR S Contact P r m  a a ete r $ 

If a proposal requires the uplink or downlink of data using the NASA Tracking and Data Relay 
Satellite (TDRS), TRANS must compute the request parameters. These determine whether the link 
is an uplink or downlink, whether the link involves science data, engineering data, or both, and the 
data rate and duration of the contact. 

2.4.3 E x ~ o s u  re Pointina Information 

TRANS records extensive data on the pointing of observations. TRANS decides whether guide 
stars are necessary, or whether gyros are sufficient to control pointing accuracy. Exposures are 
marked to be calibration, target acquisition or science exposures. TRANS determines whether the 
exposure needs to point at a specific target, and if so, whether the pointing can remain the same as 
the previous exposure. TRANS also computes whether a specific HST roll orientation is required, 
and exactly where on the HST field of view to position the target. 

2.4.4 ExDosure Schedulina Co nstraints 

TRANS gives SPSS information about scheduling constraints on alignments, obsets and 
scheduling units. TRANS determines whether they can be interrupted by the earth occulting the 
target, and what the maximum interruption duration is. TRANS determines, based on constraints 
from the proposal, whether internal alignments (those which do not point to an external target) can 
be executed when the telescope is changing its pointing. TRANS determines whether SPSS is free 
to interleave an obset’s alignments those of another. TRANS chooses how large an area to 
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exclude for each ali 
the southern hemisp 

2.4.5 Co mmandina Parameters 

TRANS computes many of the parameters necessary to command the telescope. The positions of 
the wheels which place filters, polarizer, gratings and apertures of the instrument field of view are 
computed by TRANS, determining if wheel motion is required. tracks of hundreds of 
commanding values, some specifically requested by the proposer it computes. TRANS 
also keeps track of the states of the instruments at the beginning and the end of each alignment and 
at what rate data is produced. 

TRANS computes timing constraints which exist between alignments, obsets and scheduling units. 
Such timing relationships arise when an exposure in one higher level object (alignment, obset or 
scheduling unit) constrains an exposure in another. TRANS computes the minimum and 
maximum separation of alignments and obsets based on these constraints. When one scheduling 
unit constrains another, these minimum and maximum separations are noted in the form of a link 
between the two. 

These timing constraints are computed using the same technology as ordering of exposures. 

TRANS computes a range of values required by PODPS to determine how to process data once 
observations are complete. These includes filter, grating, polarizer and aperture usage, as well as 
camera and spectrograph modes. Trans also performs computations on the target attributes 
provided by the proposer to make them suitable for use by S O G S .  

Figure 2 shows the stages TRANS goes through to build its internal structure. 

50 



0 

2 
Merging 

1 
Ordering 

I 
4 

5 Attribute 

O r t  

,align , air. ;lign , 

7 extra objects 
Reporting of Results 

I I 

U 

After this structure is build, TRANS outputs its conclusions. Though this is chiefly via text file, 
currently SPIKE is capable of operating in a mode where it can read results directly out of 
memory. 

The largest output product of TRANS is the assignmentfiZe. Assignment files contain instructions 
in a database language (IQL or SQL) for populating the Proposal Management Database (PMDB), 
the chief source of information for SOGS. The assignment file can be edited to override TRANS 
decisions. 

TRANS produces a record of its merging and ordering decisions in the ZeveZsJiZe. A levels file can 
be edited and reloaded into TRANS to change the ordering or merging for a second run. In this 
mode, called manual merge, TRANS processes exactly as if it had automatically ordered and 
merged as specified in the edited levels file. 

TRANS generates a guide star requestfile for each obset. Guide Star Requests can be fed into 
GSSS to determine whether guide stars are available for an obset. The output of GSSS is then 
used by SPIKE to determine schedulability of observations. 
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NS generates a proposal auxiliary file ( . When an exposure has been 
identified by a proposer as conditional, it is recorded in the PAF. This file can be edited when it is 
determined whether to execute the observation. 

TRANS generates a diagnostic file containing a list of problems. TRANS checks for cases it 
cannot handle and warns about observations that would be difficult or impossible to schedule (such 
as an alignment which could not be split, but is still too long for an orbit), observations that will 
present a problem for commanding and exposures that violate constraints of HST. 

A series of reports can be generated to allow users to determine what decisions were made. There 
are several reports that document complicated decisions (such as merging) [Gerb89a]. 

The outputs of TRANS and their uses are illustrated in figure 3. 

Trans was originally built in 1985 using the OPS5 expert system definition language 
[Lindenmayer87a, Rosenthal86a, Rosenthal86bl. Although it originally appeared that TRANS 
solved a simple enough problem to be amenable to the use of OPS5, its subsequent complication 
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and the difficulties inherent in the OPS5 language have forced the conversion of TRANS into 
Common LISP. 

OPS5 is a declarative language that allows the division of a task into rules [DEC89a]. Each rule 
consists of a left hand side containing conditions under which it should be executed, and a right 
hand side containing actions to be performed. Permissible actions involve the insertion or 
deletions of working memory elements (WMEs), the units of data used by OPS5, and the calling 
of outside functions. OPS5 uses a “bottom-up” order of execution, where a conflict set is 
accumulated of all rules whose left hand sides correspond with the current state of working 
memory. A disambiguation algorithm is used to determine which rule in the conflict set to execute. 
A new conflict set is then computed and the procedure repeats. 

3.1 .I. Problems with Declarative Properties o f OPS5 

The non-procedural nature of OPS5 made execution difficult to trace. When an undesired result 
(such as an output product not being correct) was encountered, it was very difficult to tell which 
rule caused the problem. Procedural languages allow for the placement of debugging output 
throughout the code to pinpoint the location of a problem. This approach does not work in OPS5, 
since it is impossible to look at a subset of the source code and determine which rule will execute 
next. It is necessary to understand the entire rulebase to predict the order of execution of rules. 
When the OPS5 version of TRANS had grown to over one hundred thousand lines in almost 1000 
rules, this became a hopeless undertaking. To debug TRANS, developers were often forced to 
monitor the execution of rules using the trace facility provided by the environment, stopping 
execution periodically to determine if the anomaly had occurred. As a side effect, this characteristic 
of OPS5 forced developers to rely on language specific debugging tools far more than in a 
conventional language. 

The syntax for defining the left hand side of OPS5 rules does not allow full context-free nested 
boolean syntax. The only condition allowed on the left hand side of an OPS5 rule is a conjunction 
of assertions of the existence or absence of a WME fitting certain specifications. For example the 
following condition could be expressed in a single OPS5 rule: 

Execute  i f  there e x i s t s  a WME s a t i s f y i n g  A and a WME s a t i s f y i n g  
B and  a WME s a t i s f y i n g  C .  

However, the following condition could not be expressed in a single OPS5 rule: 

E x e c u t e  i f  t h e r e  e x i s t s  a WME s a t i s f y i n g  A a n d  (a WME 
s a t i s f y i n g  B o r  a WME s a t i s f y i n g  D )  and a W s a t i s f y i n g  C .  

This condition would have to be implemented by creating two rules with identical right hand sides 
and the following two left hand sides: 

1. E x e c u t e  i f  t h e r e  e x i s t s  a WME s a t i s f y i n g  A a n d  a WME 
s a t i s f y i n g  B and  a WME s a t i s f y i n g  C .  

2 .  E x e c u t e  i f  t h e r e  e x i s t s  a WME s a t i s f y i n g  A and  a WME 
s a t i s f y i n g  D and a WME s a t i s f y i n g  C .  
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If a disjunction is desired in more than one element of the conjunction, there is a multiplicative 
proliferation in the number of rules needed. For example to express a conjunction of five 
disjunctions, each of which matched a WMTi of one of four different specifications, would require 
1024 rules! 

This scenario was played out over and over during TRANS development. Three major problems 
resulted from this. First, a requirement that was describable in English in a one line sentence, 
could translate into a dozen or more rules. Second, this problem often required TRANS 
developers to devote much time to figuring out the most efficient way to implement simple 
requirements. Often, no concise way could be found. Occasionally, shortcuts did allow fewer 
rules, but always at a cost of many hours of planning. Third, the abundance of nearly identical 
rules provided a constant temptation for developers to use cut-and-paste editing utilities to generate 
new rules. A minor typographical or logical error could be duplicated scores of times, creating 
future maintenance headaches. 

Because of these problems, it became increasingly difficult to scope work estimates for TRANS 
projects. Some enhancements took ten times longer than originally expected because a rule 
explosion was encountered. 

3.1.3. Lack of a Functional Capab ilitv 

OPS5 lacks the ability to define procedures and functions. There is not even a macro substitution 
facility. The normal software engineering activity of providing a library of convenient procedures 
became impossible when operating in OPS5. One workaround involves the creation of “utility” 
rules, that populate special WME fields whenever such an operation is desired. This has the 
unpleasant side effect of greatly increasing the size of WME’s and consequently the space required 
to run TRANS. This workaround does not give the capability within the execution of an OPS5 
rule to execute a second rule, returning execution to within the first rule when the execution of the 
second is complete. OPS5 utterly lacks subroutine definition found in almost all modern 
languages. 

The second workaround involved calling out to a functional language (in our case the C language) 
to execute function calls. The available interface between OPS5 and C was obscure and poorly 
documented and differed depending on whether the function was being called within the left hand 
side or right hand side of a rule and on what kind of data it processed. Calling C subroutines 
became such a frustrating and error-filled task, so that this workaround was chosen only as a last 
resort. 

The main deficiency in OPS5 utilities was the lack of a string manipulation capability, complicating 
any requirement which required the examination of text. 

3.2. The Implementation of TRANS in LISP 

Starting in the fall of 1988, TRANS was reimplemented in Common LISP [Steele90a]. Using the 
LISP macro facility, a small but powerful extension to LISP was written called the transformation 
command language (XCL). XCL supports a procedural rule syntax and allows abstraction for 
underlying data structures. A shorthand for using these data structures was developed and a 
facility for generating simple reports and diagnostic errors was added. 
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The data structures in XCL allow for different object t es. Each object type has a series of 
properties and keys defined for it [Johnston88a]. 

Objects were intended to model tuples in a relational database with properties corresponding to the 
fields of the relation. Definition of properties do not take up any memory space in the data 
structure unless they are populated with a non-null value. To this end, association lists were 
chosen to implement the underlying structures, instead of the existing LISP defstruct capability or 
an object-oriented system such as O S .  

Keys consist o€ sequences of properties. For each key, XCL maintains a hash table, matching 
lists of values (each of which corresponds to a property in the key) to instances of the objects 
which contain them. In this way it is quickly possible to locate an instance of an object if the 
values of properties comprising a key are known. 

XCL allows a shorthand to specify fields of data structures. It uses the LISP keyword package, 
choosing the period (.) to separate object instances from their properties. For example 
: a1 . version num would correspond to the version-num property of the object denoted by :al. 
Indirect property reference is also permitted. : a 1 . exposure . s i u sed refers to the si-used 
property of the object designated by the exposure property of the objecT:al. 

XCL provides forms that allow iteration over a series of exposures. For example: 

(FOR-EACH :qexposure :ex :do 
(assign :ex.pos - input - fg "N")) 

sets the pos-input-fg property to "N" for every object of type :qexposure. This capability also 
allows iterating over all objects that match a certain key or are elements in a certain list. 

XCL provides a type checking capability to make sure properties of objects are not referenced that 
do not exist. 

XCL provides a form for the definition of rules [Johnston89a]. A rule definition is very similar to 
the defun form in LISP, except that no arguments are necessary. The following rule executes the 
fragment of XCL code used in the previous section: 

(define-rule Set-position-inGut-flag 
"Sets pos input fg to N for each qexposure" 
(FOR-EACH-:qexposure :ex :do 

(assign :ex.pos - input - fg "N"))) 

This nile is called Set-position-input-flag. 

The body of a rule can contain any syntax legal in Common Lisp, as well as the syntactic extension 
provided by XCL. A facility also exists for defining functions with XCL object type arguments. 
The following function is an example. 

(define-function Actual-Alignment-Time ((:a1 :qalignment)) 
"Adds the time - require and acq - time fields of an alignment" 
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(+ :al.time - require :al.acq - time)) 

This function would take an XCL object type of :qalignment as an argument. Run time type 
checking is pe~ormed to insure that the argument is of the proper type. 

Rules are executed in the order that they appear in their source file. Source files are grouped into 
phases, which are a series of rules, usually executed together. When a phase is defined, the order 
of execution of its source files is provided. Phases can also be defined to contain subphases, so 
that the execution of a phase can involve the execution of one or more lower level phases. 
Typically, TRANS is executed by invoking a phase containing subphases with all the rules to be 
executed. 

Figure 4 illustrates the relations ship between phases, subphases, source modules and rules. 

XCL Rulebase 
Structure 

XCL allows a generator for custom-defined reports. Currently it allows an XCL developer to 
report over a given object type, outputing one record per instance. Records consist of output 
fields which corresponds to properties of the object, or computations on it, and may span more 
than one line. Report fields can be formatted using any of the capabilities available in the Common 
LISP format statement. Output can be ordered according to keys defined on the output object. 
Report headings can be specified and one or more title lines included. A planned future 
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ill allow the specification of selection criteria w h will exclude any objects from 

tables are included as part of the XCL source and 
e is also a flexible diagnostic enor generation facility 

XCL also provides a table lookup facilit 
can be referenced by one or more keys. 
which maintains statistics on the frequency of various problem types. 

Since the conversion of TRANS from OPS5 to XCL, the turnaround time for enhancements has 
been reduced greatly. As a result, numerous capabilities have been added. The generation of 
Guide Star Requests, the expanded ability to output diagnostics and the more complex 
transformations required to create the TRANS output structures are examples of capabilities that the 
XCL version of trans performs as a matter of course but would have caused major problems in the 
OPS5 version. Requirements which used to generate numerous rules with over hundreds of lines 
can now be implemented far more comprehensibly in one rule with only a few lines. 

Three major reasons exist for the improved turnaround time. First, the rulebase can be maintained 
in a modular hierarchical way, making it much easier to understand the order of execution of rules 
and phases. Second, its procedural nature facilitates debugging of the rulebase - an anomaly can 
be systematically pinpointed without lengthy tracing of execution. Third, the nature of XCL and 
its LISP underpinnings have allowed TRANS developers to create a rich functional base, 
providing all the software engineering benefits of code reusability. 

We are now finding that non-developers are occasionally able to peruse the TRANS rulebase and 
determine its functionality, reducing the need for developers to perform a user support function. 
This activity was strongly encouraged while the OPS5 version was being maintained, but did not 
occur in practice until TRANS was reimplemented using XCL. 

Three major lessons lessons were learned from this project. First, that as an expert system 
definition language, OPSS has deficiencies which intensify as the problems it is applied to become 
increasingly complex. Second, that it is worth considering a procedural knowledge representation 
- that such a representation is easy to build, comprehend and modify. Third, that Common LISP 
provides an ideal platform for such a procedural expert system shell because of its versatility, 
extensibility and wealth of predefined utilities. 

The successful re-implementation of TRANS has made it one of the most flexible elements of the 
HST ground software systems. Because it provides the “bridge” between observing programs and 
flight operations, it provides the key point of leverage when changes in observing strategies arise. 
Work is underway to define how TRANS can further optimize the efficiency of HST, which 
should make available hundreds of hours per year of valuable observing time that would otherwise 
be lost, Finally, because of the extensive observation checking performed by TRANS, plans are 
being mde to provide a distributable version of TRANS that could be used by astronomers at their 
home institutions to help prepare observing programs 
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