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ABSTRACT 

Scheduling is a very complex 
optimization problem which can be 
categorized as an NP-complete problem. 
NP-complete problems are quite diverse, as 
are the algorithms used in searching for an 
optimal solution. In most cases, the best 
solutions that can be derived for these 
combinatorial explosive problems are near- 
optimal solutions. Due to the complexity of 
the scheduling problem, artificial intelligence 
(AI) techniques can aid in solving these types 
of problems. This paper examines some of 
the factors which make space application 
scheduling problems difficult and presents a 
fairly new AI-based technique called tabu 
search as applied to a real scheduling 
application. The specific problem is 
concerned with scheduling solar and stellar 
observations for the Soh-STellar Irradiance 
Comparison Experiment (SOLSTICE) 
instrument in a constrained environment 
which produces minimum impact on other 
instruments and maximizes target observation 
times. The SOLSTICE instrument will fly 
on-board the Upper Atmosphere Research 
Satellite (UARS) in 1991, and a similar 
instrument will fly on the Earth Observing 
System (EOS). 

INTRODUCTION 

As space applications become more 
operationally complex, automated scheduling 
systems are a necessity. Missions such as 
the Hubble Space Telescope, the Upper 
Atmosphere Research Satellite, and the Earth 
Observing System will require some level of 

automated scheduling in order for activities to 
proceed and resources to be used in a safe 
and efficient manner. Increasingly, 
prototyped and operational scheduling 
systems using artificial intelligence 
techniques to aid in search and optimization 
are proving to be successful. The difficulty 
is to apply these techniques in an efficient 
manner when solving scheduling problems. 

In space applications which have 
scientific goals, a scheduling system provides 
a bridge between the science environment and 
the resource environment. In the operational 
context it is important to maximize activities 
with respect to resources. At the same time, 
scientific objectives must be fulfilled. 
Coupling these contexts will allow for the 
maximizing of activities and scientific'return 
with respect to available resources and the 
resultant schedule will satisfy science 
objectives . 

Research to find good solutions for 
the scheduling problem includes studies of 
classical industrial problems involving tasks 
with predefined precedences and deadlines 
(such as the Flow-shop, Job-shop or 
Travelling Salesman problems). Such 
problems can be solved by general 
conventional techniques like Branch-and- 
Bound, PERT or Critical Path Method 
(CPM) [Wiest and Levy, 19691 [Kaufmann 
and Desbazeille, 19691. However, using 
conventional techniques to solve resource- 
based scheduling problems for space 
applications is not easily accomplished. 
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Scheduling in the space application 
environment is similar to the factory 
scheduling problem because it is concerned 
with the allocation of a limited amount of 
resources to specific operations over time. 
Large numbers of activities, resources, and 
interacting relationships complicate these 
problems. Procedures that guarantee an 
optimum solution to scheduling problems are 
either NP-complete or NP-hard [Ibaraki and 
Katoh, 19881, most frequently NP-hard in 
realistic cases. Combinatorially complex 
problems such as resource-based constraint 
scheduling are NP-hard. In theory, NP-hard 
problems have no polynomial algorithm for 
finding optimal solutions or the number of 
possible solutions increases so fast that there 
are no practical results. In most cases, the 
best solutions for these problems are near 
optimal. The difficulty of the problem 
remains mainly in the large number of 
constraints which have to be satisfied at the 
same time. 

In recent years, artificial intelligence 
techniques such as neural networks, 
simulated annealing and genetic algorithms 
have been prototyped and demonstrated to aid 
in the solution of resource-based constraint 
scheduling problems. Another technique 
gaining recognition is tabu search. Tabu 
search is a proven search technique for 
scheduling problems and offers advantages 
over other techniques with regard to ease of 
implementation and the flexibility to handle 
additional considerations not encompassed by 
the original problem. Some of the 
applications where tabu search has had great 
success in terms of performance and 
adaptability include employee scheduling, 
space planning and architectural design, 
travelling salesman problems, and job-shop 
scheduling problems [Glover, 19901. 

The first section of this paper 
describes factors which make the resource- 

based constraint scheduling problem difficult. 
The second section describes the UARS 
SOLSTICE scheduling problem, followed by 
a third section which discusses AI-based 
techniques examined for use on this flight 
project. The fourth section explains the AI- 
based tabu search methodology which has 
been selected for the UARS SOLSTICE 
scheduling application. And the fifth section 
discusses the current knowledge-based 
solution of the UARS SOLSTICE scheduling 
application and compares it to the tabu search 
implementation. 

FACTORS IN RESOURCE-BASED 
CONSTRAINT SCHEDULING 

Three predominant factors make the 
resource-based constraint scheduling problem 
difficult are constraints, optimization, and 
search methods. For example, in experiment 
scheduling, one technique is required to limit 
the search for all possible experiment 
schedules and another technique is needed to 
resolve conflicts that occur in resource 
assignment for the experiment. 

There are essentially two types of 
constraints in resource-based scheduling: 
absolute and relative (temporal) constraints. 
An absolute constraint is an activity or 
resource that is limited these limitations 
cannot be violated. For instance, due to the 
power considerations of the spacecraft, an 
instrument may only operate during 
spacecraft sunlight or an instrument may not 
observe a star when it is occulted by the 
Earth. A relative constraint describes the 
relation or relative position between two 
entities. An example of a relative constraint 
is when experiment A must be performed 
before experiment B or experiment A can 
occur only during experiment C. 
Collectively, absolute and relative constraints 
serve to delimit the space of suitable 
schedules that are generated. However, due 

84 



to the large number and different types of 
interacting constraints which can occur, this 
alone makes conflict resolution of constraints 
a dynamic and difficult problem. Thus, it is 
important to represent explicitly and 
understand constraints to effectively resolve 
conflicts during the generation of partial 
schedules. 

Since the scientific or operational 
context will vary from application to 
application, scheduling goals will also be 
different. These goals drive the criteria and 
selection of methods used to schedule 
activities and resources. Multiple criteria may 
require several different techniques to 
generate an optimal schedule. There may 
need to be compromises in determining 
whether a schedule is optimal when multiple 
criteria are used. The difficulty lies in 
determining the evaluation criteria required to 
judge the best schedule. Also, as the 
operational or scientific context of the 
application changes with time, scheduling 
goals may change, invalidating current 
optimization criteria. Therefore it is 
important to implement a scheduling system 
that is flexible and can be easily modified 
under changing conditions. 

Scheduling is searching. At each step 
in the scheduling process, some decision is 
made about which activities or resources to 
schedule and when to schedule them. 
Because of the large number of possible 
choices, the effort required to search the 
space of possible schedules is typically 
exponential. Effective search requires the 
early identification of good partial schedules 
which must be judged for their potential for 
being beneficial to the overall schedule. This 
is complicated by the fact that scheduling 
conflicts may not be detected until many steps 
into the search. It is desirable then to identify 
a minimal number of past decisions to resolve 

the conflict, backup, and fix instead of 
discarding the schedule. 

Constraints, optimization, and search 
methods inherent to resource-based 
scheduling do make solutions difficult. Since 
scheduling problems vary from one 
application to another and are rarely 
isomorphic to each other, each application 
will require different solutions and 
techniques. A solution depends on the 
characteristics of a given problem which 
involve: the type of activities (number, 
complexity, similarity, fixedness, 
fragmentability , co-dependencies ...), the type 
of resources, time requirements, and goals of 
the schedule ...[ Geoffroy et al., 19901. Also, 
when a solution is found it needs to be 
flexible, because most of the time the 
scheduling environment is constantly 
evolving from one state to another. 

THE UARS SOLSTICE SCHEDULING 
PROBLEM 

The scheduling application that is 
currently being examined is for the 
SOLSTICE instrument, a solar-stellar 
observing instrument scheduled for launch 
aboard the UARS (see Figure I )  in 
November 1991 and the EOS in 1997. The 
SOLSTICE resource-based constraint 
scheduling problem consists of coordinating 
SOLSTICE experimental activity with UARS 
spacecraft activity such as spacecraft attitude 
maneuvers or Tracking Data and Relay 
Satellite contacts, selecting experiments for 
solar and stellar observation periods and 
determining instrument platform slew periods 
and sharing SSPP (Solar Stellar Pointing 
Platform) resources with two additional 
UARS instruments. The SOLSTICE 
instrument has two prime scientific goals: to 
measure solar ultra violet irradiance with a 
long term accuracy better than 1% using a set 
of selected stars as the calibration source, and 
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to provide daily, high accuracy, solar spectra 
information for use with the atmospheric 
observing instruments. The SOLSTICE 
scheduling system must provide a solution 
for both long- and short-term scientific 
constraints. 

Figure 1 SSPP View from UARS Spacecraft 

Scheduling the daily solar spectra 
activities and coordinating with the other two 
solar experiments on the SSPP is 
accomplished during the sunlight portion of 
the orbits. These activities include calibration 
of instrument pointing, collection of data for 
the daily solar spectra and meeting the 
requirements of the two other solar 
instruments while remaining within the 
constraints imposed by the UARS. Because 
the other two instruments can only view the 
sun, they place a high priority on the solar 
viewing resource of the SSPP. Managing the 
solar viewing resource for all of the 
instruments is also accomplished by the 
scheduler. 

In scheduling stellar experiments, star 
observation statistics are used to select the 
experiments. Star observation statistics are 
the actual, scheduled and planned experiment 
data maintained on each star. A set of 
equations (see Figure 2) using star or target 
observation statistics is used to derive a star 
value or experiment priority. In addition, 
priorities for experiments are calculated based 
on the accessibility of the star, the success 
rate at which each star has been observed by 
the instrument, and an intrinsic star value 

assigned by the scientific investigator. After 
a priority is calculated, the experiment is 
scheduled by priority, star availability, and 
experiment duration. Stellar experiments are 
then selected to minimize slew time between 
stars, thereby optimizing the scientific return. 
This last step of optimization is to minimize 
slewing, which is very similar to the 
travelling salesman problem. It differs only 
in that the targets are moving with respect to 
each other over time. 

STAR VALUE - TARGET VALUE + ACCESSIBILITY + SUCCESS RATE; 

TARGET VALUE - V (PIS); 

where V - Initial target value assigned by prlncw investigator; 
S - total nunber of target cbsenralkns; 
P - nurrlber of attempted observations for a given target; 

ACCESSiBlLllY - K OM); 

whereK- AC - (RAP - 1); 
AC - total number of days for a given target availability period; 

D - total number of days in the nexi unavailability perbd for 

N - number of days to next unavailable perbd of given target 

RAP -number of remaining days in current target avallabiaty 
pew 

aehrsnmet; 

SUCCESS RATE . c v; 
where C - nu- of actual target observatlonsltotal number d 

V - Initial target value assigned by principal investigator; 
&tempted Wget observations; 

Figure 2 Star Selection Equations 

UARS spacecraft events influence the 
particular stellar or solar experiments 
scheduled. For instance, a spacecraft yaw 
around maneuver necessitates that only solar 
experiments be scheduled during this 
maneuver. The resulting schedule is an initial 
science plan with an optimal target acquisition 
sequence containing scheduled solar and 
stellar experiments. 

AI TECHNIQUES CONSIDERED FOR 
THE UARS SOLSTICE APPLICATION 

In the application of the scheduling 
problem for the SOLSTICE, several AI- 
based techniques were considered. There are 
several widely known AI-based techniques 
which have been applied in solving resource- 
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based constraint problems. These were 
examined and the following search-based 
techniques were found to be inappropriate for 
the UARS SOLSTICE scheduling 
application. These were neural nets, 
simulated annealing, and genetic algorithms. 
Neural networks have a reputation of 
working well in pattern recognition 
applications, but do not perform well in 
optimization problems. Simulated annealing 
and genetic algorithms are assured to produce 
good results provided appropriate 
assumptions are made. These two methods 
are theoretically interesting, but 
computationally intensive. These methods 
also select their solutions with some degree 
of randomness. These two approaches are 
suitable in certain areas of physics and 
biology, but not in resource-based scheduling 
problems for space applications. 

Another AI-based search technique 
named "tabu search" applied well to the 
UARS SOLSTICE scheduling problem. 
This search has two significant advantages 
over the above methods. First, tabu search is 
easier than the other methods in 
implementation, and second, it has the 
advantage of being flexible in handling 
additional constraints as the scientific or 
operational requirements change. 

TABU SEARCHMETHODOLOGY 

Tabu search is a proven method used 
for solving resource- based optimization 
problems. This methodology, as illustrated 
in Figure 3,  can be applied to any operation 
which moves from one state to another. Each 
move is selected from a set of available 
moves which create a solution state. This 
solution state is evaluated to measure its 
relative value in a local sense. The search 
provides a guiding framework for generating 
the best global optimal solution after most 
classical searches reach a dead end at a local 

maximum. Tabu search prevents revisiting 
solutions which have previously been tried 
and probes for better solutions even after 
reaching a local maximum. Tabu search does 
this by using what is called a tabu list. The 
tabu list contains information regarding past 
moves or states which could lead to a 
solution already visited. This list is 
dynamically updated as the search 
progresses. If a move under consideration is 
found to be tabu, criteria are used to decide 
whether the move is good enough to override 
the tabu status. The criteria uscd in making 
this decision are called aspiration criterion. 
The aspiration criterion encourage the search 
for globally superior solutions instead of 
locally best solutions. 

Tabu Search In The UARS SOLSTICE 
Application 

The UARS SOLSTICE scheduling 
problem has been prototyped using the AI- 
based tabu search. A description of the 
algorithm follows. Tabu search starts with 
an initial schedule or solution state. For this 
application, the initial schedule is empty. 
This is also the least desirable schedule. 
Next, a candidate list of moves is generated. 
There are three types of moves: inserting, 
retracting and shifting of an experiment. 
Only one of these basic moves is applied to 
the current schedule to obtain a new 
schedule. For instance, with an empty 
schedule the candidate list of moves consists 
of inserting all possible experiments. 
However, after evaluating each insertion, a 
new schedule will contain only one 
experiment or move. The best admissible 
move among the list of candidate moves is 
found by evaluating or scoring each move in 
the candidate list. 

An evaluation function scores each 
move in the candidate list and returns the 
score. This function is responsible for 
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Step 1 

Designate it the Current Best Solution 

- 
tential acceptance) 

/ step 4 

/ 1 / I Is the candidate move tabu? 

/ YES 

Step 7 

Check Sa molina C r m  L . .  
Should another move from 
Sample Set be examined? 

(e.g., is there a "good 
probability" of higher 

L evaluation moves left) I 

I 

4 

4 
- 1  . .  

Store as new 
current best move 

Step 8 - 
Record the resuiting solution 

as the new Current Best 
Solution if it improves on the 

previous best 

Does move satisfy 
biration criteria? 

I k in 

step 9 

Has a specified number of 
iterations elapsed in total or 
since the last Current Best 

Solution was found? 

YES .c 

Ster, 10 

Establish basis for new 

Figure 3 Tabu Search (used with author's permlssion: 
Glover, F., 1990) 
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ensuring that scientifk goals and operational 
constraints are satisfied. Currently, several 
factors are considered in computing the 
score. First, the average priority of 
experiments for each star is considered. It is 
better to select a higher average priority 
which is derived from one experiment, than 
opposed to a lower average priority which is 
calculated from three experiments. Second, 
the slew time for targets are compared to the 
total experiment or observation time for all 
targets. If total observation time is greater or 
equal to total slew time then the score is 
increased. A third factor is scheduling a 
specified experiment where the experiment 
duration exceeds the target availability time. 
A small penalty is assessed because valuable 
scientific data is lost if the instrument's target 
is suddenly no longer available and the 
instrument is viewing deep space. The 
penalty is small because the experiment may 
be valuable enough to be considered for 
scheduling at some other time within the 
target availability period, thus replacing 
another experiment of a lesser value. These 
three factors maximize scientific return by 
ensuring that priority science is performed 
and that solar and stellar observing time is 
maximal. A fourth factor is slew 
backtracking. This is when a slew from one 
target to another is performed in the direction 
opposite to the spacecraft's flight direction. 
This is an operational constraint of the 
instrument and a large penalty is assessed to 
the score when this occurs. 

After a move is evaluated, if the score 
is higher than any found admissible moves, 
then the next step is to check the tabu list. 
Checking the tabu list prevents moving to 
states already visited. If the move does not 
appear in the tabu list then it becomes the new 
current best move. However, if the move 
appears in the tabu list, the move is 
forbidden, or tabu, and cannot be inserted 
unless the aspiration criteria is satisfied. To 

satisfy the aspiration criteria the new value of 
the move must beat the one in the tabu list. If 
this is the case the move is permitted and 
becomes the new current best move. Each 
move inserted is evaluated until all moves in 
the list of candidate moves have been 
evaluated. If none of the moves evaluated is 
admissible or the schedule cannot be 
improved, the best schedule found so far is 
returned and the search is stopped. 

If a specified number of iterations has 
elapsed since the best schedule has been 
found, then the search is stopped. 
Otherwise, in order to generate a new list of 
candidate moves, the tabu list is updated as 
well as the aspiration level. To update the 
tabu list, the move opposite the one added 
becomes tabu, thus resulting in the previous 
schedule. The aspiration criteria is updated 
with the new score and becomes the new 
score to beat. If the move added was 
previously tabu, then it is deleted from the 
tabu list. Once all updates are complete the 
next list of candidate moves is generated. 

A Knowledge-based Approach Versus Tabu 
Search 

The UARS SOLSTICE scheduling 
problem has been prototyped using two AI- 
based techniques: a knowledge-based 
approach and tabu search. In this section 
they are compared and discussed based upon 
the three factors (constraints, optimization, 
and search) discussed earlier. 

The UARS SOLSTICE scheduling 
problem has been implemented using a 
knowledge-based approach. This prototype 
is operational and is currently being used in 
the Science User's Resource Expert (SURE), 
the AI-based scheduling component of the 
Science Users Resource Planning and 
Scheduling System (SURPASS). 
SURPASS is a software tool enabling 
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distributed planning and scheduling and is 
based on resource allocation and optimization 
[Thalman and Sparn, 19901. In this 
knowledge-based approach, an expert system 

%Ada (C Language Integrated 
Production ShewAda) was used to implement 
an expert scheduler. 

In the knowledge-based approach, 
constraints were easily represented by rules. 
Rules facilitate a natural representation of 
activities, resources, and constraints. CLIPS 
uses a LISP-like if-then language for rule 
construction. For example, an instrument 
operating constraint is to not make stellar 
observations which are within five degrees of 
the moon. This constraint easily translates 
into the English statement, "If a stellar 
observation is within five degrees of the 
moon, then do not observe". Rules can be 
inserted or removed as scientific objectives or 
mission constraints change. Scheduled 
activities such as solar or stellar observations 
were easily represented by templates or the 
more commonly known structure frames. In 
the tabu search methodology, constraints are 
represented in the evaluation function as 
variables. These variables are assigned a 
weight which influence the overall score. 
The difficulty is to derive an equation 
consisting of the various constraint variables 
to model a satisfactory solution. This takes 
time since a great deal of fine-tuning of the 
evaluation function is required in order to 
arrive at a practical solution. 

In the knowledge-based approach, 
search and optimization of instrument activity 
were implemented by using and capturing 
planning and scheduling heuristics in rules. 
Since the number of possible experiments or 
schedules are too large to be able to consider 
all of them, schedules were generated using 
rules. These rules reflect the requests of 
scientists, instrument engineers and 
operators, and instrument planners and 

schedulers. Searching which is iterative i s  
not naturally implemented using rules. For 
example, in selecting a stellar experiment 
where there were over 300 experiments 
possible, experiments were selected based on 
priority and duration. The CLIPS/Ada 
language provides the capability to implement 
looping using rules, but performance was 
somewhat slow. However, since the choice 
of implementation remains uncertain due to 
the continuing evolution of strategy and 
constraints, the rule-based looping might still 
be legitimate. Search and optimization are 
inherent to tabu search. These two criteria 
are the strengths of the algorithm. The tabu 
search prototype is implemented in Ada. 
Searching is based on creating a series of 
moves which consist of randomly selecting 
experiments and then evaluating the worth of 
the moves or current schedule. Since the 
generation of schedules was slow at first, 
heuristics were added to enhance 
performance. Each schedule is evaluated in 
order to arrive at the best global solution. No 
additional optimization need be built into the 
algorithm, except for tuning the evaluation 
function. 

Results 

Results of the tabu prototype have 
been successful in that it has allowed a 
detailed understanding of tabu search, the 
implementation was straight forward, and the 
results were good solutions. In terms of 
time, though, the performance of the 
prototype was slow. In comparing the 
results of tabu search to the knowledge-based 
methodology, it took approximately 30 
minutes to schedule one hour of stellar 
observations using tabu search as opposed to 
five minutes using rules. At the time of this 
writing, improvements continue to be 
implemented to increase efficiency as well as 
improving the results. One such 
improvement is to start with an initial 
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schedule that contains one experiment per 
availability period, instead of starting with an 
empty schedule and inserting an experiment 
one by one. Since it involves time to insert, 
performance will most likely improve. 
Another improvement includes refining the 
heuristics throughout the code. Refined 
heuristics are needed to restrict the set of 
moves or experiments considered in order to 
improve efficiency. Also, the evaluation 
function requires more thought such as 
adjusting the weights of the factors used in 
the function. A fine-tuned function gives 
improved scores, thereby reducing the 
number of moves to be evaluated and 
increasing performance time. 

CONCLUSION 

Similarities were noticed during the 
development the UARS SOLSTICE 
scheduling application using different AI 
methodologies. Our previous experience of 
knowledge-based systems and our recent 
experience with tabu search showed us that 
both methods allowed scheduling heuristics 
and constraints to be easily added or removed 
as the problem definition evolved. This is 
important since most applications are in a 
state of flux from the initial conception to the 
operational stage and beyond. Scheduling 
systems must be flexible to changing 
conditions and be kept current so that 
functionality is not lost and the system does 
not become obsolete. 

Traditionally, space scheduling 
applications have focused on scheduling in 
the operational context without considering, 
if applicable, the scientific goals. This 
concept is dated. Today, AI technology not 
only allows operational environments to be 
represented, but scientific objectives are 
easily represented and incorporated as well. 
Since the overall idea in scientific-oriented 
missions is to maximize scientific return, this 

should be the primary goal. Spacecraft and 
instrument performance should be maximized 
to satisfy and support scientific goals. 

'It is important to prototype realistic 
scheduling problems. Prototypes 
implemented using AI techniques provide 
valuable information in terrns of ease of 
implementation, performance, and 
correctness of results. However, it is only 
after these prototypes become operational that 
we can learn if techniques used are 
productive and effective throughout the 
lifetime of the application. 
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