
A Hierarchical Distributed Coiitrol Model for Coordinating Intelligent Systeiiis

Richard M. Adler
Symbiotics, Inc.
875 Main Street

Cambridge, MA 02139

ABSTRACT

This paper describes a hierarchical distributed con-
trol (HDC) model for coordinating cooperative
problem-solving among intelligent systems. The
model was implemented using SOCIAL, an inno-
vative object-oriented tool for integrating hetero-
geneous, distributed software systems. SOCIAL
embeds applications in “wrapper” objects called
Agents, which supply predefined capabilities for
distributed communication, control , data specifi-
cation and translation. The HDC model is real-
ized in SOCIAL as a “Manager” Agent that coordi-
nates interactioiis among application Agents. The
HDC-Manager: indexes the capabilities of appli-
cation Agents; routes request messages to suitable
server Agents; and stores results in a commonly ac-
cessible “Bulletin-Board”. This centralized control
model is illustrated in a fault diagnosis application
for launch operations support of the Space Shuttle
fleet a t NASA, Kennedy Space Center.

Keywords: distributed artificial intelligence, sys-
tems integration, hierarchical distributed control,
intelligent control , cooperative problem-solving

INTRODUCTION

Knowledge-based systems are helping to automate
important functions i n complex problem domains
such as operations and decision support. Successful
deployment of intelligent systems requires: (a) in-
tegration with existing, conventional software pro-
grains and data stores; and (b) coordinating with
one another t o share complementary knowledge and
skills, much as people work together cooperatively

on related tasks. These requirements are dificult
t o satisfy given existing AI technologies. Current
knowledge-based systems are generally single-user,
standalone systems based on heterogeneous data
and knowledge models, developinen t languages and
tool shells, and processing platforms. Interfaces to
users, databases, and other conventional software
systems are typically custom-built and difficult to
adapt or interconnect. Moreover, intelligent sys-
tems developed independently of one another tend
t o be ignorant of information resources, problem-
solving capabilities, and access protocols for peer
systems.

SOCIAL is an innovative collection of ohject-
oriented tools designed to alleviate these pervasive
integration problems [AdSOb]. SOCIAL provides
a family of “wrapper” objects, called Agenls, that
supply predefined capabilities for distributed com-
munication, control, da.ta specification and transla-
tion. Developers embed programs within Agents,
using high-level, message-based interfaces to spec-
ify interactions between prograiiis, their embedding
Agents, and other application Agents. The rel-
evant Agents transparently manage the transport
and mapping of specified data across networks of
disparate processing platforms, languages, devel-
opment tools, and applications. SOCIAL’S parti-
tioning of generic and application-specific beliav-
iors shields developers from network protocols and
other low-1eveI complexities of distributed coniput-
ing. More important, the interfaces between appli-
cations and SOCIAL Agents are modular and non-
intrusive, minimizing the number, extent, and cost
of modifications necessary t o re-engineer esist ing

183

systems for integration. Non-intrusiveness is partic-
ularly important in mission-critical space and mili-
tary applications, where alterations for integration
entail stringent validation and verification testing.

This paper focuses on a specialized ”Manager”
Agent that realizes a hierarchical distributed con-
trol (HDC) model on top of SOCIAL’S basic in-
tegration services. The SOCIAL HDC-Manager
Agent coordinates the activities of Agents that em-
bed independent knowledge-based and conventional
applications relating to a common domain such as
decision or operations support. Such centralized
control models are important for managing dis-
tributed systems that evolve over time through the
addition of new applications and functions. Cen-
tralized control is also important for organizing
complex distributed systems that display not only
small-scale, one-to-one relationships, but also large-
scale structure, such as clustering of closely related
subsets of application elements.

The H D C- Manager Agent’s coordination func-
tionality derives from a set of centralized control
services including: maintaining an index knowledge
base of the capabilities, addresses, and access mes-
sage formats for application Agents; formatting and
routing requests for data or probleni-solving pro-
cessing to suitable server Agents; and posting re-
quest responses and other globally useful data to a
commonly accessible “Bulletin-Board” .

The next section of the paper reviews the over-
all architecture and functionality of SOCIAL. Sub-
sequent sections describe the structure and behav-
ior of the HDC-Manager Agent and illustrate its
application in the domain of launch operations sup-
port for the Space Shuttle fleet at NASA, Kennedy
Space Center. Specifically, a HDC-Manager Agent
coordinates the activities of standalone expert sys-
tems that monitor and isolate faults in Shuttle vehi-
cle and Ground Support systems. The cooperative
problem-solving enabled by the HDC-Manager pro-
duces diagnostic conclusions that the applications
are incapable of reaching individually.

OVERVIEW OF SOCIAL

The central problems of integrating heterogeneous
distributed systems include:

0 communicating across a distributed network of
heterogeneous computers and operating sys-
tems in the absence of uniform interprocess
communication services;

0 specifying and translating information (i.e.,
data, knowledge, commands), across applica-
tions, programming languages and develop-
ment shells with incompatible native data rep-
resentations;

0 coordinating problems-solving across applica-
tions and development tools that rely on dif-
ferent internal models for communication and
control.

SOCIAL addresses these issues through a uni-
fied collection of object-oriented tools for dis-
tributed communication, control, data (and data
type) specification and management. Develop-
ers access the services provided by each tool
through high-level Application Programining Inter-
faces (APIs). The APIs conceal the low-level com-
plexities of implementing distributed computing
systems. This means tha t distributed systems can
be developed by programmers who lack expertise in
areas such as interprocess and network communica-
tion (e g , Remote Procedure Calls, TCP/IP, ports
and sockets), variations in data architectures across
vendor computer platforms, and differences among
data and control interfaces for standard develop-
ment tools such as AI shells. Moreover, SOCIAL’S
high-level development interfaces to distributed ser-
vices promote modularity, maintainability, estensi-
bili ty, and portability.

The overall SOCIAL architecture is summa-
rized in Figure . l . SOCIAL’S predefined distributed
processing functions are bundled together in ob-
jects called Agents: Agents represent the active
computational processes within a distributed sys-
tem. Developers assemble distributed systems by:

184

(a) selecting and instantiating Agents from SO-
CIAL’s library of predefined Agent classes; and (b)

plications and their embedding Agents, as well as
among application Agents. Messages typically con-

embedding individual application elements such as
programs and databases within Agents. Embed-
ding consists of using the APIs for accessing SO-
CIAL’S distributed processing capabilities t o estab-
lish the desired interactions between applications,
their associated wrapper Agents, and other appli-
cation Agents. New Agent subclasses can be cre-
ated through a separate development interface by
customized or combining services in novel ways to
satisfy unique application requirements. These new
Agent types can be incorporated into SOCIAL’S
Agent library for subsequent reuse or adaptation.
The following subsections review the component
distributed computing technologies used to con-
s t r uc t S 0 CIA L Agent s.

I Library of Agent Classes (Managers, Gateways))

IDi
I Distributed Communications (MetaCourier) I

Network, Processor, and Operating System Platform

Figure .l: Architecture of the SOCIAL Toolset

Distributed Coitimunicat ion

SOCIAL’S distributed compu ng utilities are or-
ganized in layers, enabling c plex functions to
be built up from simpler ones. The base or sub-
strate layer of SOCIAL is th
which provides a high-level, ular distributed
communications capability for
between applications based o
guages , platforms, operatin
and network protocols [Sy90].

‘The Agent objects tha
based applications or resour
CIAL’s MetaCourier level.
MetaCourier API to pass messages between ap-

sist of: commands that Agent passes direct 1 y
into its embedded application, such as database
queries or calls to execute signal processing pro-
grams; data arguments to program commands that
an Agent might call to invoke its embedded appli-
cation; and symbolic flags or keywords that sig-
nal the Agent t o invoke one or another fully pre-
programmed interactions with its embedded ap-
plication. For example, a high-level MetaCourier
API call issued from a local LISP-based applica-
tion Agent such as:

(Tell :agent ’sensor-monitor :sys ’Symb
’(poll measurement-2))

transports the message contents, in this case a com-
mand to poll measurement-X, from the calling pro-
gram to the Agent sensor-monitor resident on plat-
form Syrnbl. The Tell function initiates a message
transaction based on an asynchronous communica-
tion model; the application Agent that issues such
a message can immediately move on to other pro-
cessing tasks. The MetaCourier API also provides
a s y n c h r o n ~ ~ ~ “Tell-and-Block” message function
for “wait-and-see” processing models.

Agents contain two procedural methods that
control the processing of messages, called in-filters
and out-filters. In-filters parse incoming messages

e argument list structure specified
is defined. After parsing the mes-

ter typically either invokes the Agent’s
rce or application, or passes the
t may modify) onto another Agent.

itic model entails a directed
utational graph of passed messages.

passes are required, the in-filter
gent runs to completion. This

ethod is then executed to pre-
ly, which is automatically re-
y modified) through the out-
e Agents back to the originat-
target Agent for the original

time kernel resides on each

185

application host. The kernel provides: (a) a uni-
form message-passing interface across network plat-
forms; and (b) a scheduler for managing messages
and Agent processes (Le., executing filter meth-
ods). Each Agent contains two attributes that spec-
ify associated Host and an Environment objects.
These MetaCourier objects define particular hard-
ware and software execution contexts for Agents,
including the host processor type, operating sys-
tem, network type and address, language compiler,
linker, and editor. The MetaCourier kernel uses
the Host and Environment associations t o manage
the hardware and software platform specific depen-
dencies that arise in transporting messages between
heterogeneous, distributed Agents (cf. Figure .2).

Agent4 Env-A Host-A Host-B Env-B Agent-B

Figure .2: Operational Model of MetaCourier

MetaCourier’s high-level message-based API is
basically identical across different languages such
as LISP or C. MetaCourier’s communication model
is also symmetrical or “peer-to-peer”. In p n t r a s t ,
client-server models based on remote procedure call
communication formalisms (RPCs) are asymniet-
ric: only clients can initiake communication and
while multiple clients can interact with a partic-
ular server, a specific client’proc
teract with a particular server.
recently, RPCs were restricted to
chronous (i.e., blocking) communic

,

A major difficulty in getting hete
tions and information resources
another is the basic incompatibi
lying models for representing da
commands. These problems are
applications are distributed across heterogeneous
computing platforms with different data architec-

Data Specif icat ion and Translation

186

tures (e.g., opposing byte ordering conventions).

SOCIAL’S Metadata subsystem addresses these
complex compatibility problems. MetaData prc-
vides an object-oriented da ta model for specifying
and manipulating data and da ta types across dis-
parate applications and platforms. Developers ac-
cess these tools through a dedicated API. Meta-
Data handles three basic tasks: (a) encoding and
,decoding basic da t a types (e.g., character, integer,
float), transparently across different machine ar-
chitectures; (b) describing data of arbitrarily com-
plex abstract types (e.g., database records, frames,
b-trees), in a uniform object-oriented model; and
(c) mapping across data models native to particu-
lar applicqtions and SOCIAL’S generic data model.
Like Metakourier, MetaData’s object-oriented API
is basically, uniform across different programming
languages. Also, MetaData allows new types to be
defined and manipulated dynamically at runtime.
Most alternative data management tools, such as
XDR, are static and non-object-oriented.

SOCIAL integrates MetaData with Meta-
Courier to obtain transparent distributed commu-
nication of complex data and da ta types across het-
erogene,ous computer platforms as well as across
disparate applications: developers embed Meta-
Data API function calls within the ip-filter and out-
filter methods of interacting Agents, using Meta-

ier messages to transport MetaData objects
applications residing on distributed hosts.

Data API functions decode and encode mes-
sage contents, mapping information to and from
the native representational models of source and
target applications and MetaData objects. SO-
CIAL thereby separates distributed communication
from data specification and translation, and cleanly
partitions both kinds of generic functionality from
application-specific processing.

Distributed Control and Informatioii Access

SOCIAL’S third layer of object-oriented tools estab-
lishes custom, high-level API interfaces for Agent
classes specialized for particular integra tion or co-
ordination functionality. Lower-level RlIetaCourier

and MetaData
these Agent API data an
high-level A P h largely
MetaData interfaces fr
developers of distribute
predefined specialized
building blocks for sat
tectural requirements, acc
each sudh Agent type thr
level API interfaces.

For example, app
often constructed usi
such as database manage
and AI shells. SOCIAL
edge Gateway Agent classes
application-indepen
data interfaces to
API interfaces. Si
Agents for coo
Gateways and
work together cooperatively. The HDC-Manager,
described in the following sections, defines one k
of centralized model for distributed control of

cessary, developers can a

and define corresponding n
ay, Manager, or fully custom

dge Gateway Agent class
defines standard
methods. The gen

quests initiated b

cation to pass on to

SOCIAL uses M

representation and t

Agents map between
unit objects. Meta-

to pass commands to

class, using its shell-specific API
ram the required interactions: the
the particular data or commands

interfaces. The strategy of modu-

for designing custom types of

ted using in-house, proprietary

MetaData, and Gateway Agents
support for integrating conven-

ams to clean and filter data
n t events. Database Gate-

187

while extracting and writing note-
on-line storage systems. Scientists

might then study the da t a through
is and visualization
intermediary User

The developer of such a system would embed the
constituent applications and databases in suitable
Agents and specify their direct, one-to-one interac-
tions in terms of the relevant Agent APIs.

Once autonomous knowlege-based systems are
incorporated into a distributed system, integration
tools alone are no longer fully adequate. First, the
sequencing or composition of behaviors both within
and across autonomous systems is typically deter-
mined dynamically, based on the content of incom-
ing data at run-time. A decentralized approach
to managing such data-driven behaviors quickly
becomes intractable. The problem is particularly
acute in distributed systems that evolve over an ex-
tended lifecycle, in which application elements are
enhanced, added, superseded, or reorganized (i.e.,
broken apart or consolidated), over time.

Second, complex organizational relationships
emerge among clusters of applications in large-scale
distributed intelligent systems. For example, pro-
grams that automate on-li
puter networks and other co stems are nat-
urally coupled more closely
to decision or maintenance su tools for the
same target domain. At the
actions regularly take place be
across functional groupings.
and scheduling tools (decisi
tem configuration activities
~ h i l e behavioral anomalies d
tems (operations support) tri
bleshooting, diagnosis, and
tenance support). Ideally, i
group interactions should be
ter level, to minimize sensiti
within functional groups.

In short, the intelligent
complex distributed systems
grated, but also coordinate

tion is necessary both to

188

teraction pathways and to
relationships among func-

DC-Manager is the first s

man manager large organization. The IID

its subordinates. The H

providing a centralized Index knowledge base
that specifies: each available information
source or problem-solving service; the subordi-
nate Agent that can provide that resource; the
Agent’s logical address; and a procedure for
converting data in a generic resource request
into a message format that is suitable for that
server Agent;

0 analyzing tasks requesting information or
problem-solving services based on the Index
knowledge base and routing suitable messages
t o the relevant subordinate Agents t o accoin-
plish those tasks;

0 mediating all interact ns with external (i.e.,
non-subordinate) Agents;

0 providing a cent ulletin-Board to store
nd other data of coni-
ccess by subordinat,e

es the advantages of
ure in a complex dis-

tion of individual

0 modularity;

0 extensibility and maintainability;

0 support for heterogeneity.

Modularity derives from the HDGManager’s
centralized Bulletin-Board and Index knowledge
base. Each Index entry identifies services avail-
able from subordinate Agents symbolically (e.g.,
find-fault-precedents). Each Bulletin-Board post-
ing identifies the item type, such as service request
or reply, the posting Agent, and the requesting
Agent (when appropriate). Subordinate Agents do
not need to know about the functionality, struc-
ture, or even the existence of any other application
Agents; they only require: (a) the generic high-
level API interface to the HDC-Manager Agent;
and (b) knowledge of the symbolic names used by
the HDC-Manager to index the resource types avail-
able within a specific distributed application. The
same minimal requirements hold for external ap-
plication and Manager Agents that need to inter-
act with an HDC-Manager to obtain information or
services from its subordinates.

Extensibility and maintainability follow from
the HDC-Manager’s modular architecture: new
subordinate Agents are incorporated simply by: (a)
updating the Index knowledge base with appropri-
ate entries to describe its services; and (b) extend-
ing other subordinate Agents, as needed, to be able
to request new capabilities and process the results.
Moreover, existing subordinate Agents can be re-
configured with minimal disruption. For example,
suppose that problem-solving functions in one sub-
ordinate Agent are reallocated to some other appfi-
cation Agent, old or new. Neither the Manager’s
other subordinates nor any external Agents have to
be modified; only the HDC-h4anager Index knowl-
edge base needs to be updated to reflect the config-
uration changes.

Heterogeneity follows from the modular nature
of SOCIAL Agents in general. The high-level API
to the HDC-Manager Agent’s coordination capa-
bilities is distinct from, but fully compatible with,
the API interfaces used to embed applications with
Gateways or other kinds of SOCIAL Agents. Thus,
the HDC-Manager Agent operates transparently

with respect to the physical distribution and inter-
nal architectures (i.e., communication, control, and
knowIedge structures), of subordinate and external
Agents with which it interacts. Consequently, an
HDC-Manager can subordinate standalone applica-
tion Agents, Gateway Agents, and other Manager
Agents, HDC or otherwise, with equal ease. In par-
ticular, HDC-Manager Agents can be organized i n
a nested hierarchy t o support large complex dis-
tributed systems, as illustrated in Figure .3.

Director I Manager Agent1

/ t \

Gateway Gateway
Agent Agent

planning and scheduling config. mgmt., fault detection, troubleshooting, repair,
8 y ~ t m 8 , databases end isolation ~yslems, inventory systems,

error-tracking databases databases

Figure .3: Hierarchy of HDC-Manager Agents

HDC-Manager Architecture and Operation

The HDGManager Agent was implemented using
SOCIAL and Common Lisp in a uniform, fully
object-oriented manner. The Agent is comprised
of a collection of state variables and utility meth-
ods (cf. Figure .4). The value for each state vari-
able consists of a list of MetaData objects, such
as Agent-Index-Items. Each such object type has
associated test predicate, instance creation, and
access functions (e.g . , Agent-Index-I ten1 P, Create-
Agent-Index-Item, Check-Agent-Index). These
low-level functions, written using the RletaData
API, are invoked through a higher-level HDC-
Manager API and are transparent to developers.
Five state variables store the static and dynamic in-
formation necessary for the HDC-Manager to fnnc-
tion :

189

0 a Task-Agenda for
dispatching service

0 a Bulletin-Board fo
other data items t

0 an Index knowledg
ordinate Agents, t h
capabilities, and fun for assembling data

ing the Agenda queue of pending Tasks t o be
routed by the Manager;

0 an Activity Log for tracing and debugging
Manager behavior during application develop-
men t ;

State Variables

Task Agenda
Bulletin-Board
Index of subordinate Agents
Task Priorities
Action Log

Procedural Methods

MetaCourier Methods:

Utility Methods:
in-filter, out-f ilter

HDC control model methods
access methods for Manager state variables

local Manager task handlers, ext. interfaces
Apptication-Specific Methods:

Figure .4: HDC-Manager Agent Structures

Currently, the Index knowledge base and the
Prioritization conditions represent static structures
that are specified once, when an HDC-Manager
Agent is first defined to coordinate a specific
set of applications. Typically, changes are made
during development, but infrequently thereafter,
when subordinate application Agents are added,
removed, or restructured. (Self-adapting systems
could modify Priority Conditions or even create
new server Agents dynamically; however, we have

not yet investi such possibilities.) The re-
maining three variables are more dynamic
structures: their contents change continually as the
HDC-Manager regulates an operational distributed
system.

four sets of supporting procedural methods:
The HDGManager Agent also incorporates

0 in-filter and out-filter methods for parsing and
responding t o incoming MetaCourier messages
and processing replies to outgoing messages;

0 auxiliary API utility methods that realize
the HDC-Manager’s global hierarchical control
model;

0 auxiliary API utility methods for creating and
modifying HDGManager da ta items, posting
them to and retrieving them froin the Agent’s
s ta te variables;

0 optional methods for handling application
Tasks within the HDGManager itsself. Such
methods may be called for when a Manager
Agent is configured as a subordinate to other
Manager Agents.

The HDGManager’s specialized coordination
functions and informatioil structures are accessed
through a dedicated API (cf. Figure .5). This
API is implemented via lower-level MetaData and
MetaCourier capabilities and APIs. The high-level
API shields SOCIAL developers from the underly-
ing mechanics of packaging, transporting, and de-
ciphering messages containing HDC-Manager com-
mands and data structures among heterogeneous
Agents. The API utility methods for accessing
HDC-Manager state variables and their contents in-
clude:

0 two methods for searching the Index Iinowl-
edge Base and Bulletin-Board. Both meth-
ods call a generic symbolic pattern-matching
function with application-specific search con-
di tions;

a a single Create-Item method, which dispatches
to the various functions that create instances

190

of HDC-Manager MetaData object types: In-
dex and Bulletin-Board entry items; Priority-
Conditions, and Tasks (Service Requests);

0 four parallel methods for modifying HDC-
Manager state variables : Task- Agen da, Index
Knowledge Base, Bulletin-Board, and Priority-
Conditions; Each method supports keyword
options for resetting the variables, posting and
deleting specific data items;

The HDGManager API is also used to invoke
the utility methods that implement the HDC con-
trol model. These methods are generally triggered
automatically, from the Manager’s predefined in-
filter and out-filter, but can be activated by other
Agents as required. HDC-Manager control meth-
ods include:

0 a Command-Manager method, which dis-
patches API command messages, either to in-
ternal HDC-Manager API methods or to the
Command-Manager of another HDC-Manager
Agent. This method also traps illegal coni-
mands;

0 an Initialize method for resetting the HDC-
Manager state variables and performing any
application-specific actions;

0 a Prioritize-Agenda method for sorting pend-
ing Tasks for the Manager to dispatch in ac-
cordance with the declarative ordering con-
ditions specified in the Priorities-Conditions
state variable. Each condition specifies a Task
Attribute (e.g., service-category, priority), and
a n optional list of Attribute values for ordinal
sorting;

0 a Task-Dispatcher method, which uses the In-
dex Knowledge Base to generate and send a
suitable command message to the relevant sub-
ordinate Agent requesting the service specified
in a Task;

0 a top-level Control-Cycle method that invokes
the Prioritize-Agenda and Task-Dispatcher
methods that ground the HDC model;

0 a Log-Utility method. A menu-driven
trace/debug facility can be used to toggle the
Activity Log, which tracks all messages pro-
cessed by the Command-Manager, and other
flags tha t trace of all runtime modifications to
Manager state variables.

Control Methods Data Structure Accessors
~

Command-Manager Check-Agent-Index

Control-Cycle Check-Bulletin-Board

Initialize Create-Item

Log-Utility Modify-Agenda

Prioritize- Agenda Modify-Agent-Index

Task-Dispatcher Modify-Bufletin-Board

Modify-Priority-Conditions

Figure .5 : HDC-Manager Agent Utility Methods

The Command-Manager enforces regulated hi-
erarchical control channels. A subordinate Agent
can communicate with any HDC-Manager Agent
within a Manager hierarchy; however, any such
message is processed first by the Agent’s immedi-
ate superior and then by all intervening Managers.
This design makes it possible to define and enforce
alternative organizational reporting policies. The
default policy is very flexible: messages are tracked,
but passed along the Manager hierarchy without fil-
tering. Thus, any subordinate Agent can access the
Bulletin-Board or request services from other Man-
agers through its immediate Manager. More or less
restrictive control architectures may be appropri-
ate under different conditions. For esample, mes-
sages from subordinates to higher-le\.el Managers
in time-critical applications could be screened or
prioritized. Parallel, antagonistic or competitive
models can also be explored. Finally, the HDC-
Manager architecture does not preclude a subor-
dinate reporting to multiple Managers, thus per-
mi t ti ng n on- h ier ar chical mode Is (e. g , mat r i s s t r u c-
tures), or elaborate hybrid organizational struc-
tures.

The HDC-Manager was designed i n a modu-
lar fashion to facilitate maintenance and esten-
sion. API accessor utility methods conform to uni-

191

form conventions for naming, argument call struc-
tures, and parallel behavior. For example, Tasks
or other data structures can be modified by adding
attributes (e.g., timestamps for First-In-First-Out
ordering), or changing attribute names. The devel-
oper merely changes the relevant Create-X function
(and possibly one of the API Check methods). New
HDGManager state variables and data objects to
populate them can be added by implementing ap-
propriate MetaData type-checking predicates, cre-
ation and accessor functions, adding a case to the
Create-Item API method, and extending the ta-
ble that drives the Command-Manager and Task-
Dispatcher control methods.

Similarly, the HDC-Manager API control meth-
ods share parallel argument call structures and can
be modified or extended selectively. For example,
the Initialize method can be customized to per-
form any actions required to load and initiate all
subordinate Agents and their embedded applica-
tions. Moreover, as noted above, alternative or-
ganizational policies can be implemented to cap-
ture logical relationships specific to particular dis-
tributed systems. All such modifications are im-
plementing by creating HDC-Manager Agent sub-
classes with custom methods that override tlie stan-
dard methods defined by the root Agent class.
For instance, the default initialization behavior can
be redefined simply by creating a subclass Agent
with a new Initialize method that calls a Custom-
Initialize function. Specialization preserves the
structure of the original HDGManager Agent class
for use in applications where it is suitable. At the
same time, inheritance and functional abstraction
(through method dispatching) promotes adaptabil-
ity and compact definitions for customized Manager
Agent sub classes.

USING THE HDC-MANAGER AGENT
FOR LAUNCH OPERATIONS SUPPORT

Over the past decade, NASA Kennedy Space Cen-
ter (KSC) has developed knowledge-based systems
to increase automation of operations support tasks
for the Space Shuttle fleet. Major applications in-
clude, operations support of the Shuttle Launch

Processing System, monitoring, control, fault isola-
tion and management of on-board Shuttle systems
and Ground Support Equipment. Prototypes have
been tested successfully (off-line) in support of sev-
eral Shuttle missions and are currently being ex-
tended and refined for formal field testing and val-
idation. Final deployment will require integrating
these applications, both with one another and with
existing Shuttle operations support systems.

KSC recently initiated the EXODUS project
(Expert Systems for Operations Distributed Users)
to prepare for this challenging systems int,egra-
tion task. As part of this effort, ILSC is funding
Symbiotics, Inc. to develop the SOCIAL toolset
to help validate, refine, and ultimately iniple-
ment the proposed EXODUS architecture [AdSOa].
Proof-of-concept prototypes have been constructed
to demonstrate central EXODUS design concepts:
distributed data transfer; non-intrusive physical
distribution of knowledge bases from existing in-
telligent system to facilitate resource control and
sharing; and integration of expert systems and
databases via Gateway Agents for CLIPS, KEE,
and Oracle development tools. This section de-
scribes a fourth EXODUS prototype, which used
a SOCIAL HDC-Manager Agent to coordinate the
fault isolation activities of two previously stan-
dalone intelligent systems.

B a c k g r o u n d on KSC L a u n c h O p e r a t i o n s

Processing, testing, and launching of Sliu ttle ve-
hicles takes place at facilities dispersed across tlie
KSC complex. Many activities, such as storing and
loading fuels and controlling the environments of
Shuttles on Launch Pads require elaborate elec-
tromechanical Ground Support Equipment. The
Launch Processing System (LPS) supports all Shut-
tle preparation and test activities from arrival a t
KSC through to launch. The LPS provides the
sole direct real-time interface between Shuttle engi-
neers, Orbiter vehicles and payloads, and associated
Ground Support Equipment [HeS7].

The locus of control for the LPS is the Fir-
ing Room, an integrated network of computers,

192

software, displays, controls, switches, data links
and hardware interface devices. Firing Room com-
pu ters are configured to perform independent LPS
functions through application software loads. Shut-
tle engineers use computers configured as Consoles
to remotely monitor and control specific vehicle and
Ground Support systems. Each such application
Console communicates with an associated Front-
End Processor (FEP) computer that issues coin-
mands, polls sensors, and preprocesses sensor mea-
surement data to detect significant changes and ex-
ceptional values. These computers are connected to
data busses and telemetry channels that interface
with Shuttles and Ground Support Equipment.

The LPS Operations team ensures that KSC’s
four independent Firing Rooms are available con-
tinuously, in appropriate error-free configurations,
to support test requirements such as Launch Count-
down or Orbiter Power-up sequences for the Sliut-
tle fleet. A dedicated Console computer is con-
figured for these Operations support functions in
each Firing Room. This computer displays mes-
sages triggered by tlie LPS Operating system that
signal anomalous events such as improper register
values or expiring process timers. The Operations
Console supports other conventional programs for
monitoring and retrieving Firing Room status data
as well.

OPERA (for Operations Analyst) consists of an
integrated collection of expert systems that auto-
mates many critical LPS operations support func-
tions [AdsSb]. OPERA taps into the same data
stream of error messages that the LPS sends to
the Operations Console. OPERA’S primary ex-
pert systems monitor the data stream for aiioma-
lies and assist LPS Operations users in isolating and
managing faults by recommending troubleshooting,
recovery and/or workaround procedures. In ef-
fect, OPERA retrofits the Operations Console with
knowledge-based fault isolation capabilities. The
system is implemented in KEE on Texas Instru-
ments Lisp Machines.

G P G X is a prototype expert system for iso-
Iating faults in the Shuttle vehicle’s on-board com-
puter systems, or GPCs. GPC-X monitors (sim-

ulated) PCM telemetry da t a t o detect and iso-
late faults in communications between Shuttle GPC
computers and their associated G P G F E P coiiipu t-
ers in LPS Firing Rooms. The GPC-X prototype
is implemented in CLIPS on a Sun M70rkstation.

Coordinating Fault Diagnosis with HDC-
Managers

One type of memory hardware fault in GPC coni-
puters manifests itself during switchovers of Launch
Data Buses. These buses connect GPCs to GPC-
FEPs until just prior to launch, when communica-
tions are transferred to telemetry links. Unfortu-
nately, the data stream available to GPC-X does
not provide any visibility into the occurrence of
Launch Data Bus switchovers. Thus, GPC-X can
propose, but not test certain fault hypotheses about
GPC problems. However, switchover events are
monitored by the LPS Operating System, which
triggers messages that can be detected by OPERA.

Typical of the current generation of knowledge-
based systems, OPERA and GPC-X were dei.el-
oped independently of one another, using different
representation schemes, reasoning and control mocl-
els, software and hardware platforms. More criti-
cally, neither system possesses internal capabilities
for modeling or communicating with (remote) peer
systems. The EXODUS prototype demonstrates
the use of SOCIAL Agents t o rectify these short-
comings (cf. Figure . G) . The distributed applica-
tion uses two Knowledge Gateway Agents to in-
tegrate OPERA and GPC-X. An HDC-Manager
Agent mediates interactions between the OPERA
and GPC-X Agents, coordinating their independent
fault isolation activities obtain enhanced diagnostic
results.

Specifically, GPC-X, a t the appropriate point
in its rule-based fault isolation activities, issues a
request via its Gateway Agent t o check for Launch
Data Bus switcliovers t o the HDC-Manager. The
request is triggered by adding a simple consequent
clause of the form (GW-Return LDB-Sn7itchover-
Check) to the CLIPS rule that proposes tlie mem-
ory fault hypothesis. GW-Return is a custom

193

C function defined in the SOCIAL API interface
for embedding CLIPS. When the rule fires, GW-
Return interacts with the GPC-X CLIPS Gate-
way Agent, causing it t o formulate a message to
the HDC-Manager containing a Modify-Agenda re-
quest to add a MetaData Task object for the LDB-
Switchover-Check service. The HDC-Manager's
Command-Manager dispatches this request, caus-
ing the Task t o be posted to the Task-Agenda.

Next, the HDC-Manager executes the Control-
Cycle method, which results in the Task being pro-
cessed via the Task Dispatcher. First, the Index
knowledge base is searched for a server Agent for
LDB-Switchover-Checks. The search identifies the
OPERA Gateway Agent as a suitable server. Task
data is then reformulated into a command message
using the procedure specified by the Index Knowl-
edge Base. The message is then passed to the
OPERA Gateway Agent, whose in-filter method
performs a search of the knowledge base used by
OPERA t o store and interpret LPS Operating Sys-
tem error messages. The objective is to locate error
messages (represented as KEE units) indicative of
LDB Switchover events. Search results are encoded
within a Manager Bulletin-Board MetaData object,
which the OPERA Gateway's out-filter method re-
turns as a message containing an API command to
post that object to the Manager's Bulletin-Board.
In this prototype, the OPERA Gateway contains
all of the task processing logic: OPERA itself is
a passive participant that continues its monitoring
and fault isolation activities without significant in-
terruption.

The GPC-X CLIPS Gateway Agent queries the
HDC-Manager to check the Bulletin-Board for a
response to its LDB-Switchover-Check request and
retrieves the results. The retrieved Bulletin-Board
item is decoded and the answer is converted into
a fact that is asserted into the GPC-X fact base.
Finally, the Gateway activates the CLIPS rule en-
gine to complete GPC fault diagnosis. Obviously,
n e ~ 7 rules have to be added to G P G X to exploit
the newly available hypothesis test data , However,
all of the basic integration and coordination logic is
supplied by the embedding GPC-X Gateway Agent
or the HDC-Manager.

I I + J C
response (to lest LDB

fauR hypothesis)
task to search for

Launch Data Bus info

1

Figure .6: Hierarchical Coordination in EXODUS

This EXODUS prototype illustrates non-
intrusive system-level coordination of distributed
applications that solve problems at the subsystem
level of Shuttle Operations: neither OPERA nor
GPC-X are capable of accomplishing the task of
confirming or rejecting the GPC memory fault hy-
pothesis individually. G P C X generates fault can-
didates, but lacks sufficient resources to complete
diagnosis, which requires Both generate and test ca-
pabilities. OPERA automatically detect LPS error
messages that are relevant t o GPC-X's fault test re-
quirements. However i t lacks contextual knowledge
about GPC computers - their architecture, behav-
ior, fault modes and symptoms - t o recognize the
significance of such data. OPERA also lacks the
capabilities t o communicate its interpretations of
LPS data back to GPC-X to complete diagnosis.

Together with the Gateway application Agents,
the HDC-Manager provides the links required to
combine and utilize the otherwise isolated or frag-
mented knowledge about Shuttle and Firing Room
systems and their relationships to one another. The
resulting coordination architecture is non-in trusive
in that neither application was modified to include
direct knowledge of the other system, its interfaces,
knowledge model, or delivery platform. The HDC-
Manager introduces an isolating layer of ahstrac-
tion; application Agents need only know how to
communicate with the HDC-Manager to request
services and retrieve responses for their embedded

1 94

applications.

The proposed design for the complete EXODUS
system specifies an extended HDC model to inte-
grate and coordinate all of KSC’s operations sup-
port applications across areas of functional over-
lap. A SOCIAL HDC-Manager Agent will support
architectural changes as EXODUS evolves through
its lifecycle of initial deployment, maintenance, and
enhancement. Initial EXODUS applications are
loosely-coupled and will interact relatively infre-
quently. Consequently, the HDC-Manager’s cen-
tralized control strategy does not entail serious per-
formance penalties. As new applications are added
and interaction traffic increases, bottlenecks will
be addressed by reorganizing the EXODUS con-
trol architecture in terms of hierarchies of HDC-
Manager Agents, much as growing human organi-
zations evolve.

RELATED WORK

The HDGManager generalizes and extends a hi-
erarchical distributed control (HDC) model orig-
inally developed for NASA’s Operations Analyst
(OPERA) system [Ad89a]. The OPERA version
of the control model was implemented using dis-
tributed blackboard objects [Ad89b]. OPERA re-
quires all applications to be co-resident and to be
implemented using KEE, and only supports a sin-
gle Manager and subordinate group. The extended
HDC model relaxes these restrictions using Meta-
Courier, MetaData, API tools, SOCIAL Agents.

Most research in Distributed Artificial Intelli-
gence (DAI) has focused on domains involving a
single complex problem, such as data fusion. Con-
trol schemes have emphasized purely local coordi-
nation methods to achieve cooperation among in-
telligent systems [Bo88,Hu87]. For example, [Le831
employs a homogeneous collection of blackboards
that interpret data from a (simulated) network of
spatially distributed sensors t o reconstruct vehicle
positions and movements. Data and hypotheses.
are shared across adjacent sensor regions. Solu-
tions emerge consensually, without global manage-
ment. Decentralized control entails significant per-

formance overhead from duplicated processing. As
argued earlier, localized coordination strategies can
be cumbersome and difficult to maintain for hetero-
geneous, evolving “multiple problem” DAI systems.

The MACE DAI tool [Ga86] incorporates man-
ager agents for centralized routing of messages
among agents, closely resembling the organizing
role played by SOCIAL HDGManagers. How-
ever, i t is not clear that MACE managers can
be configured in multi-level hierarchies. Moreover,
MACE managers do not provide shared memory
Bulletin-Boards. MACE and several other dis-
tributed system tools such as ABE [Ha881 and
CRONUS [SliSS] insulate developers from low level
distributed computing functions and support mes-
sage sending among processes across computer net-
works. However, unlike SOCIAL, these tools do not
implement generic distributed services in uniformly
object-oriented layered modules that are accessible
to developers for customizing. In addition, SO-
CIAL provides more extensive tools for integrating
across languages and software development shells.

FUTURE WORK

Future development will extend SOCIAL’S library
of Manager Agents. Alternative organizational
models will explore alternative types of nonhierar-
chical cooperative coupling. For example, we are in-
vestigating control behaviors based on group-based
tasking [Br89], as one approach to providing fault
tolerance in distributed systems: groups can be
used to define sets of application Agents that dupli-
cate support for given services. A group Agent that
could detect loss of an Agent configured to provide
a service (e.g., due to dropped network links or host
platform failures), could activate another member
Agent t o resume the service. Redundancy and re-
coverability are critical prerequisites for distributed
systems in mission-critical space and military ap-
plications. We also plan to implement C versions
of SOCIAL Manager and Gateway Agents that are
curreii tly Lisp- b s e d .

95

CONCLUSIONS Acknowledgments

Development tools for distributed intelligent sys-
tems must be modular and non-intrusive to: (a)
facilitate integration of existing, standalone sys-
tems “after the fact;” and (b) minimize lifecycle
costs for maintaining, enhancing, and re-verifying
systems. Tools for building distributed systems
must be able to coordinate as well as integrate
autonomous application elements. Coordination is
necessary t o manage large numbers of dynamic in-
teraction pathways and to capture complex organi-
zational relationships among application elements.
SOCIAL provides a unified set of object-oriented
tools that address all of these requirements. The
HDC-Manager Agent realizes a hierarchical dis-
tributed control model that adopts a highly cen-
tralized approach to coordination. Developers use
a high-level Application Programming Interface to
access the HDC-Manager’s coordination capabili-
ties. The API conceals lower-level SOCIAL tools
for transparent distributed communication, control,
and data management.

SOCIAL has broad applicability for distributed
intelligent systems that are being developed in
space-related domains. Knowledge-based and con-
ventional tools for managing and analyzing data
need to be coupled to help space scientists explore
and utilize NASA’s growing stores of astronomi-
cal and environmental information. Linking short-
and long-term scheduling and planning tools will
improve decision support capabilities for complex
space missions. EXODUS-like architectures can in-
crease automation of operations support by coor-
dinating autonomous tools across subsystems aiid
functional areas (e.g., configuration, anomaly de-
tection, diagnosis and correction). Example do-
mains include payload and Shuttle processing, com-
puter and communications networks, and vehicle or
Space Station subsystems (e.g., power generation,
power distribution, mission payloads, life support).
Finally, flight and mission control centers can en-
hance automation and safety in directing launches,
satellites, and space probes, by combining decision
and operations support tools into fully unified, co-
operating systems.

SOCIAL was designed aiid implemented by the au-
thor, Bruce Cottman and Rick Wood. Development
of SOCIAL has been sponsored by NASA Kennedy
Space Center under contract NAS10-11606. Astrid
Heard of the Advanced Projects Office a t Kennedy
Space Center has provided invaluable support and
suggestions for the SOCIAL effort. Ms. Heard also
initiated and directs the EXODUS project. Meta-
Courier was developed by Robert Paslay, Bruce
Nilo, and Robert Silva, with funding support from
the U.S. Army Signals Warfare Center under Con-
tract D A A B 10- 8 7- C- 0 0 5 3.

REFERENCES

[Adgoal Adler, R.M. and Cottinan, B.H. “EXO-
DUS: Integrating Intelligent Systems for Launch
Operations Support.” Proceedings, Space Op-
erations, Applications, and Research Symg~osium
(SOAR90). Albuquerque, NRl . June 26-21, 1000.

[Adgob] Adler, R.M. and Cottman, B.H. “A Devel-
opment Framework for AI Based Distributed Op-
erations Support Systems.” Proceedings Fifth Con-
ference on A I f o r Space Applications. Huntsville,
AL, May 21-23, 1990.

[Ad89a] Adler, R.M., Heard, A. , and Hosken,
R.B. “OPERA - An Expert Operations Analyst
for A Distributed Computer Network.” Proceed-
ings Annual A I Systems in Government Confer-
ence, Computer Society of the IEEE. \Yashington ,
D.C., March 27-31, 1989.

[AdSSb] Adler, R.M. “A Distributed Black-
board Architecture for Integrating Loosely-Coupled
Knowledge-Based Systems.” Intelligen*t Systems
Review. 1, 4, Summer, 1989, Association for In-
telligent Systems Technology, E. Syracuse, RY.

[Br89] I<. Birinan et. al. The ISIS System A!frzn,rlnl
VI.2. Department of Computer Science, Cornell
University, Ithaca, NY, June 1989.

[Bo881 Bond, A.H., and Gasser, L. (eds.) Rend-
ing s in Distrih uted A rtificia 1 Intel ligen ce. hlorga n-
Kaufinann, Sail Mateo, CA, 1988.

196

[Ga86] Gasser, L., Braganza, C., and Herman, N.
MACE: A Flexible Testbed for Distributed A I Re-
search. Distributed Artificial Intelligence Group,
Computer Sci. Dept. USC, 9-Aug-1986.

[Ha881 Hayes-Roth, F., Erman, L.D., Fouse, S.,
Lark, J.S., and Davidson, J . (1988). “ABE: A
Cooperative Operating System and Development
Environment.” in A.H. Bond and L. Gasser,
(eds.) Readings in Distributed Artificial Intellk
gence. Morgan-Kaufmann, San Mateo, CA, 1986.

[Hut371 Huhns, M.N. (ed.) Distributed Artificial In-
telligence. Morgan-Kaufmann, Los Altos, Califor-
nia, 1987.

[Le831 Lesser, V.R and Corkill, D.D. “The Dis-
tributed Vehicle Monitoring Testbed: A Tool for
Investigating Distributed Problem Solving Net-
n7orl~.’’ A I Magazine. Fall 1983 pp. 15-33.

[ShPG] Schantz, R., Thomas, R. and Bono, G . “The
Architecture of the Cronus Distributed Operating
System. Proceedings 6th International Conference
OTL Distributed Computing Systems. May, 1986.

[SygO] Symbiotics, Inc. Object-Oriented Hetero-
gerieous Distributed Computing with Meta Co urier.
Technical Report, Cambridge, MA, March, 1990.

197

