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ABSTRACT 

Neural networks trained using mass spectra data from the National Institute of Standards 
and Technology (NIST) are studied. The investigations also included sample data from the gas 
chromatograph mass spectrometer (GCMS) instrument aboard the Viking Lander, obtained from 
the National Space Science Data Center. We describe here the work performed to date and 
the preliminary results from the training and testing of neural networks. These preliminary 
results are presented for the purpose of determining the viability of applying artificial neural 
networks in discriminating mass spectra samples from remote instrumentation such as the Mars 
Rover Sample Return Mission and the Cassini Probe. 

INTRODUCTION 

Artificial neural networks are a form of artificial intelligence that may be useful in 
categorizing data, particularly data that have recognizable patterns as the basis for 
discriminating sets within a larger group. Successful applications include optical character and 
speech recognition. A properly trained neural network should be able to discriminate assays 
using mass spectrometry in conjunction with gas chromatography. Such sample analyses are 
being planned for automated instrument missions to Mars and Titan. There exists a requirement 
to develop a light-weight, rapid capability to discriminate sample analyses and provide a 
first order of magnitude recommendation for further Earth-based analysis for those craft which 
will return sample analyses via downlinks or actual return vehicles. 

The Mars Rover Sample Return vehicle will likely require its own ability to choose the 
samples that are returned to Earth. The Cassini probe instruments may suffer from limited 
transmission bandwidth thus requiring remote decisions as to what sample analyses should be 
transmitted back to Earth for further investigation. This preliminary investigation was 
undertaken to discover the feasibility of using artificial neural networks in the analyses of 
data and the decision making for determining the best prospects for further analysis. 

Chromatography itself is the separation technique by which a sample is distributed 
between two phases and is resolved based upon its differential adsorption between the two 
phases or media (Khandpur,l981). In gas chromatography, a gas is used to transport the sample 
through the chromatographic column. The detector at the end of the column is used to determine 
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the individual peaks that develop based on the time it takes for the constituents to pass 
through the column. Differences depend on the molecular adhesion to the column’s own 
molecular components. 

Gas chromatography is an excellent separation technique but suffers from poor 
identification of the constituents. Detection techniques are often used after separation in a 
chromatographic column to positively identify constituents of interest. The technique used to 
distinguish elements by their different mass to charge ratio of the ionic state is called mass 
spectrometry (Khandpur,l981). The sample is ionized and passed through a chamber with 
specific electric and magnetic fields. Detectors are placed so that peaks occur where ions are 
found and these peaks can tell the investigator the element which constituted the original 
sample (Khandpur,l981 and Message, 1984). When a mass spectrometer is used in conjunction 
with a gas chromatograph it is referred to as a single instrument, a gas chromatograph mass 
spectrometer (GCMS) . 

METHODOLOGY 

The Viking data is available from the National Space Science Data Center (NSSDC), 
located at Goddard Space Flight Center (GSFC) in Greenbelt, Maryland. The data at NSSDC, 
however, is currently only available from magnetic tapes which are binary-formatted for an 
IBM 1800. 

In attempts to locate the data in a more easily read format by a neural network, such as 
ASCII, contact was made with numerous members of the original MIT GCMS investigation 
team. The GCMS data from the Viking Lander was never converted to any alternative format 
which led to attempts to work with the original data as provided by NSSDC. 

The original six tapes sent to NSSDC were received from NSSDC by this investigation 
team as a single 1600 bpi tape. It contained 6 files corresponding to the original 6 tapes of data. 
Only the third and sixth files contains processed data from Viking Land 1 and Viking Lander 2 
respectively. 

There is an ongoing effort to convert this data to ASCII for the neural network, however at 
the same time, a limited amount of Viking Lander data was read from the microfilm archive 
and used for testing purposes. 

For training the neural network we acquired Version 3.0 of the National Institute of 
Standards and Technology (NIST) PC database of electron ionization mass spectra (NIST, 
1990). The search software provided with the PC mass spectra database could be used as a 
basis for comparison with the performance of trained neural networks. We describe two search 
functions which require the user to specify the peak abundances of an unknown compound. One 
search is by abundances of major peaks (“M” search) and the other is a search by the presence of 
any specified peak (“A” search). 

The ”M” search locates spectra in the database that display peak abundance 
characteristics for the largest peaks. These peaks searched are exactly the same as those of 
the spectrum of the unknown. This search only retrieves spectra for which the relative 
ordering of peak abundances that exactly match those specified. 

The “A” search, adapted from a spectral search developed by Heller (NIST, 1990) requires 
the user to enter the mass of a peak that appears in the unknown spectra and a relative 
abundance range. This search allows for entering up to 10 peaks with their respective masses 
and abundances. 
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Both NIST searches terminate with a list of structures and names of compounds which are 
plausible matches for the unknown spectra. It is then left to the investigator to examine those 
spectra to determine the most likely constituents. 

The back-propagation (BPI algorithm was selected as most the promising architecture for 
detecting the various organic molecules and their fragments. This choice was based on the need 
for a supervised pattern recognition algorithm that can be easily modified to accommodate 
different data collection scenarios. It is possible that the final architecture to be adopted for a 
GCMS application will benefit from having several BP modules trained independently to 
detect mass spectral fragments. 

All pattern recognition systems require some form of training. In traditional pattern 
recognition systems, training consists of statistical characterization of the data using 
mathematical representations. For the BP algorithm, however, training consists of repeated 
presentations of data samples selected to be typical of the data that will be encountered in the 
operational setting. Each sample (or fact) is a vector of measurements from the data which is 
accompanied by a desired characterization. The network responds to the error signals and 
attempts to find a non-parametric characterization of the data set that is consistent with the 
training data set. 

The selection of a training data set is a very important consideration. The number of 
samples in the training set should ideally be based upon the total number of spectra available, 
the a priori probabilities of occurrence for each spectra within Viking data, and the ability of 
the original data extraction techniques to present a pure spectrum. 

The first criterion was bounded by the total number of spectra in the NIST data base. The 
second criterion could not be determined for this first analysis. The third criterion was difficult 
to quantify, and based solely on investigator experience. Sampling theory may ultimately 
provide a modicum of guidance. 

The mass spectrometry technique causes the development of molecular fragments. This 
knowledge was used by the developers of DENDRAL, who decided to have the expert system 
search not for whole spectra but for fragments of ipectra. It then developed a list of molecules 
which could form the given fragments and use additional information for narrowing the 
possibilities to a single or chosen few. This fragmentary analysis approach is the one often 
used by mass spectra analysis experts, but was too complex for this preliminary neural network 
implementation. The approach taken was to train the network using complete mass spectra and 
discover if the network could then guess the molecular makeup of the unknown. 

In order to assess the performance of an artificial neural network it is necessary to apply it 
to one or more test sets of data having known categories (ground truth in neural network 
literature). If the system performance on the training and test sets is similar, the network 
should exhibit good generalization properties and its behavior, for example on a spacecraft on 
a distant planet, should produce few surprises. 

On the other hand, if the performance of the network on the test set is much worse that 
that of the training set, then the classifier design should be re-examined. In our study, the oiily 
case available for testing was the Viking data set. The Viking data sets theniselves might 
have been partitioned into training and testing sets. A shortage of training data may reduce 
the robustness of the network whereas a shortage of testing data may reduce the confidence in 
the measurement of the network’s performance. 
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Viking Mission GCMS Datasets 

On July 20th, 1976, the first Viking Lander descended upon the soil of Mars (Soffen, 1977 
and Snyder, 1977). The x-ray fluorescence spectrometer, which was on board to discover the 
inorganic composition (Clark et al, 1977) determined the Martian soil to be composed of between 
15-30 percent silicon, 12-16 percent iron, 3-8 percent calcium and 2-7 percent aluminum (Clark et 
al, 1977 and Toulmin et al, 1977). 

The gas chromatograph mass spectrometer was said to have given an indication of a little 
water but no organic compounds (Biemann et al, 1977). This conflicted with results from the 
biology experiments which indicated the existence of microbial life (Horowitz and Hobby, 
1977, Levin and Straat, 1 9 7 7 , O y h  and Bordahl, 1977 and Klein, 1977). 

All of the data transmitted by the two Viking Landers was ultimately deposited with the 
NSSDC. An example of a filtered mass spectra is presented in Figure 1. A sample of a mass 
spectrum from the Viking Lander is shown in Figure 2 illustrating substantial amount of 
filtering, and is just one stage where errors can be introduced in the analyses. 
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Figure 1 Mass Spectrum for 3-Octanone 
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Figure 2 Viking Mass Spectra Results 

RESULTS 

The neural network simulation software used in this investigation was the commercial 
package Brainmaker (CSS, 1990). The first attempts at training the neural network were done 
using a strict pattern recognition approach to the problem. The spectra are classically 
represented using a format whereby a list of ordered pairs represents the mass-to-charge ratio 
and a relative abundance figure. For example, if the highest abundance of fragmentary 
material from the mass spectrometer has a mass-to-charge ratio of 35, its peak would be 
represented by the order pair, (35,99). NIST used a scale ranging from 0 to 999 (maximum peak 
of 999) to represent relative peak abundances, and this was the scale adopted for this 
investigation. 

The first attempts at training a neural network were accomplished by using a pictorial 
representation of the mass spectra in which individual peaks of spectra were represented by 
"filled" pixels at the coordinates given by the ordered pair associated with the peak. These 
first attempts, although yielding a trained network, were disappointing because combinations 
of spectra would totally baffle the network. 

A different approach in the visualization on screen and the format of the data was then 
attempted. The on-screen visualization developed for this subsequent series used a 
thermometer type representation of inputs, outputs and neuron firings. Output neurons 
corresponded to the molecules in the training set and the higher the output neuron value, the 
longer the bar graph representation. 

Having decided that it was most prudent to limit the number of input neurons as much as 
possible, even pairs of numbers were too cumbersome for data entry. The final format used 
included a series of numbers corresponding to the abundance at the mass-to-charge ratio 
represented by the node. The nodes of the first layer were ordered to make a one-to-one 
correspondence to the mass-to-charge ratio value. 

31 1 

OR 
OF 



A subset of mass spectra from the NIST database was selected as the core training set by 
applying two criteria: 

1) The chemicals in the training set should have a history of being discovered 

2) The molecular weight of the compound should be less than 100 (to minimize 
in mass spectra from sources other than Earth 

the effort required for formatting the data) 

One source of GCNlS chemical compounds examined in extraterrestrial samples was derived 
from the analysis of organogenic compounds in Apollo 11,12, and 14 lunar samples (Flory, et al, 
1972). Additional compounds were derived from an analysis of amino acid precursors in lunar 
samples from Apollo 14 and earlier (Fox, et al, 1972). 

A list of the molecules used to train the preliminary neural networks can be seen in Figure 3. 
First a neural network using mass spectra of the chosen chemicals from the NIST database was 
trained. The network architecture used for the training was a 3-layer network with 100 input 
neurons, 9 hidden-layer neurons, and 14 output neurons. Associated with the 9 hidden-layer 
neurons is 909 weights while there are 140 weights associated with the 14 output neurons. 

The input neurons corresponds to a mass-to-charge ratio (1 to 100) and each output neuron 
corresponds to a single chemical compound (1 to 14). The learning parameters used for the 
training of the network were a learning rate of 1.0, a training tolerance of 0.1, a testing tolerance 
of 0.4, and a smoothing factor of 0.9. 

This network required 8 minutes 3 seconds to be successfully trained on a PC compatible 
During this training period the neural network had 386SX with no math co-processor. 

examined all 14 mass spectra 288 times, yielding a total reading of some 4032 spectra (14 x 288). 

To determine the usefulness of adding training data of other than individual compounds, a 
training set was developed which also included a combination of two spectra for identification. 
The combination included in the training set was 50% water and 50% serine. The reason for 
choosing this combination was that these compounds do not have any overlapping peaks 

The training of the neural network proceeded using the same network parameters and 
architecture. This network took 5 minutes 22 seconds and read all spectra 179 times. Each 
spectral set contained 15 spectra (14 individual spectra and one combination) for a total of 2685 
spectra read by the network. 

In comparing the weight matrices associated with these networks, we discovered that the 
weights for many nodes converged to the same value, although the second net converged much 
quicker. 

Investigations into the possible corruption of data by random noise across all m/e values 
were performed. Figure 3 represents the interpretation of a spectrum whose m/e values (1-100) 
were coupled with three digit pseudo-random generated numbers (0-999). 
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e: 

1 -Propene: 
Ethene: 
Propane: 
2-Butene: 
H ydrSulf : 
SulfDiox: 
Acetylene: 
Water: 
Serine: 
GI y ci n e : 
Alanine: 
CarbDiox: 

Figure 3. 3-Digit Random Values Throughout 

ethane: 
Ethan e: 
1 -Propene: 
Ethene: 
Propane : 
2-Butene: 
H yd rSu If : 
SulfDiox: 
Acetylene: 
Water: 
Serine: 
Glycine: 
Ai ani n e : 
CarbDiox: 

Figure 4. $Digit Random Values with 
Ethane Present 

Figure 4 represents the interpretation of a spectrum which was developed by filling all m/e 
values with three digit pseudo-random generated numbers except at the positions of the peaks 
corresponding to the compound ethane. 

Figure 5 represents the interpretation of a spectrum which was developed by filling all m/e 
values with two digit pseudo-random generated numbers except at the position of the peaks 
corresponding to the compound 1-propene. 

Met han e: 
Ethane: 
1 -Propene 
Ethene: 
Pro pan e : 
2-Butene: 
HydrSulf : 
Sulf Diox: 
Acet y ten e: 
Water: 
Serine: 
Glycine: 
Alanine : 
CarbDiox: 

Figure 5. 2-Digit Random Values with 
1-Propene Present 

Methan e: 
Ethane: 
1 -Propene 
Ethene: 
Propane : 
2-Bu tene: 
H ydrSulf : 
Sulf Diox: 
Acetylene: 
Water: 
Serine: 
Glycine: 
Alanine: 
Carb Diox : 

Figure 6. 1-Digit Random Values with 
Ethene Present 
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Figure 6 represents the interpretation of a spectnun which was developed by filling all m/e 
values with single digit pseudo-random generated numbers except at the position of the peaks 
corresponding to the compound ethene. 

These results indicate the difficulty that the trained neural network has with the presence 
of random noise in the m/e peak values. This difficulty should be investigated further to 
determine a network’s capability to identify spectra with noise similar to that which may be 
expected in actual remote sample analyses. 

Three mass spectra from the Viking Lander were hand entered from microfilm copies of the 
spectra sent to NSSDC. One spectrum contained the raw data Spectra such as this represented, 
had to have peaks renormalized in order to mask the peaks caused by carbon dioxide and 
water. When we presented the raw data to the trained network, it identified carbon dioxide 
(as the predominant constituent) and water (as a trace constituent) as depicted in Figure 7. 

Methane: 
Ethane: 
1 -Propene 
Ethene: 
Propane: 
2-Butene: 
HydrSulf: 
SulfDiox: 
Acetylene: 
Water: 
Serine: 
Glycine: 
Alanine: 
CarbDiox: 

Figure 7. Viking Lander Spectrum with 
All m/e Peaks Present 

Figure 8. Tighter Tolerance Network 
of Same Spectrum (Figure 7) 

Methane: 
Ethane: 
1 -Propene: 
Ethene: 
Propane: 
2-Butene: 
H ydrSulf : 
S u If Diox: 
Acetylene: 
Water: 
Serine: 
Glycine: 
Alanine: 
CarbDiox: 

Testing continued with a trained network set to a tighter training tolerance (0.050 vice 
0.100). The second net did not do as well as the first in the identification of the constituents as 
can be seen in Figure 8. 

Recall that the Viking data was entered by reading off values from a graph derived from a 
microfilm hardcopy whose error was determined to be plus or minus 1 m/e value . This error led 
the team to investigate the ability of the neural network when test spectra were corrupted in a 
similar manner. 

First, the spectra for all compounds were shifted one m/e value down. That is, the first m/e  
ratio was dropped and substituted with the second, the second with the third and so forth until 
the 100th m/e value was filled with a 0 level peak value. Next, spectral peak values were 
shifted one m/e value upwards, in a similar manner as described. 

Results from these shifted spectra were mixed. When tested with the spectra of the 
compounds down-shifted by one m/e value, the neural network was still able to positively 
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identify (within testing tolerance) 8 of the 14 compounds. However, when all spectra were up- 
shifted by one m/e value, the network identified correctly 6 of the 14 compounds. 

CONCLU~IONS AND RECOMMENDATIONS 

We have sought to demonstrate the feasibility of using artificial neural networks in the 
discrimination of GCMS samples for the purpose of a fast and simple means for choosing 
interesting samples to be further analyzed in a laboratory when such analysis is not available 
in-situ. To this end the investigators have demonstrated the following: 

1) A neural network can be trained to identify individual mass spectra of 
chemical compounds 

2) A neural network can identify molecules whose data has been corrupted by 
shifts in spectral peaks 

3) A neural network trained with combinations of mass spectra can accomplish 
its training in a shorter timeframe than one with only individual mass spectra 

4) A neural network trained for identifying individual mass spectra has 
difficulty in interpreting mass spectra with a large amount of randomly 
generated data throughout the spectra 

This investigation has concentrated on the second portion of the GCMS, namely the mass 
spectrometry. However, information on the effluent could be used in the training of the neural 
network which would benefit the discrimination of the sample to a finer degree than without 
the GC data. Separation techniques themselves are prone to certain errors as well (Silverstein 
and Geller, 1974). The accuracy of the Viking Lander GCMS has at least one critic, and doubt of 
the sensitivity of the instrument lingers to this day (Levin and Straat, 1988). 

We believe that using an artificial neural network in the analysis of complex chemical 
data sets may yet prove to be beneficial in the future unmanned exploration of Mars, Titan and 
other solar system bodies. Further investigations are warranted. 

Acknowledgements: The authors would like to acknowledge all of those that played a part 
in the development of this investigation and the attempts to demonstrate a viable alternative 
for remote analyses. Those we wish to thank include Glenn Glover (SAIC), Michael Martin 
(NASA JPL), Klaus Biemann (MIT), Tom Ryan (SAIC), Mary Lawler-Covell (SAIC), Hasso 
Niemann (NASA GSFC), Ralph Post (STX) and the National Space Science Data Center. The 
authors also wish to acknowledge the financial sacrifices made by Harold Geller which 
contributed to the success of this effort. 

REFERENCES 

Biemann, K., Oro, J., Toulmin,P., Orgel, L., Nier, A., Anderson, D., Simmonds, P., Flory, D., 
D i u ,  A., Rushneck, D., Biller, J. & Lafleur, A. (September 1977). The Search for Organic 
Substances and Inorganic Volatile Compounds in the Surface of Mars. Journal of Geophysical 
Research 82(28), 4641-4658. 

31 5 



Clark,B., Baird, A., Rose, H., Toulmin, P., Christian, R., Kelliher, W., Castro, A., Rowe, C., 
Keil, K. & HUSS, 6. (September 1977). The Viking X Ray Fluorescence Experiment: 
Analytical Methods and Early Results. Journal of Geophysical Research 82(28), 4577-4624. 

CSS (December 1990) Brainmaker User's Guide and Reference Manual 5th Edition Grass Valley: 
CaIifornia Scientific Software 

Flory, D., Wikstrom, S., Gupta, S., Gibert, M., & Oro, J. (1972) Analysis of Organogenic 
Compounds in Apollo 11, 12, and 14 Samples. In Heymann, D (Ed.) Proceedings of the Third 
Lunar Science Conference (pp.2091-2108). Cambridge: MIT Press. 

Fox, S., Harada, K., & Hare, P. (1972) Amino Acid Precursors in Lunar Fines from Apollo 14 and 
Earlier Missions. In Heymann, D (Ed.) Proceedings of the Third Lunar Science Conference 
(pp.2109-2129). Cambridge: Mi" Press. 

Horowitz, N., Hobby, G. and Hubbard, J. (September 1977) Viking on Mars: The Carbon 
Assimilation Experiments. Journal of Geophysical Research 82(28), 4659-4662. 

Khandpur, R.S. (1981) Handbook of Analytical Instruments. Philadelphia, Tab Books, Inc. 
Klein, H. (September 1977) The Viking Biological Investigation: General Aspects. Journal of 

Geophysical Research 82(28), 4677-4680. 
Levin. G. & Straat, P. (September 1977) Recent Results From the Viking Labeled Release 

Experiment on Mars. Journal of Geophysical Research 82(28), 4663-4667. 
Levin, G.V. & Straat, P. (1988) A Reappraisal of Life on Mars. In Reiber, D. (Ed.) The N A S A  

Mars Conference Volume 71 (pp.187-207). San Diego: American Astronautical Society. 
Message, G.M. (1984) Practical Aspects of Gas ChromatographylMass Spectrometry. New 

York, John Wiley & Sons. 
NIST (June 1990) NIST/EPA/MSDC Mass Spectral Database PC Version 3.0 User's Guide 

Gaithersburg: US Department of Commerce. 
Oyama,V.I. & Bordah1,B.J. (September 1977) The Viking Gas Exchange Experiment Results 

From Chryse and Utopia Surface Samples. Journal of Geophysical Research 821281, 4669-4676. 
Silverstein,E. & Geller,H. (December 1974) Studies on the Nature of Non-Specific Staining in 

Nitro-Blue Tetrazolium Detection of Dehydrogenases in Polyacrylamide Gel Electrophoresis 
JournaZ of Chromatography 101(4), 327-337. 

Snyder, C.W. (September 1977) The Missions of the Viking Orbiters. Journal of Geophysical 
Research 82(28), 3971-3983. 

Soffen,G.A. (September 1977) The Viking Project. Journal of Geophysical Research 82(28), 3959- 
3970. 

Toulmin, P., Baird, A., Clark, C., Keil, K., Rose, H., Christian, R.P., Evans, P.H. & Kelliher, 
W. Geochemical and Mineralogical Interpretation of Viking Inorganic Chemical Results. 
Journal of Geophysical Research 82(28), 4625-4634. 

31 6 


