
L ME
L SY

Thomas Seamster, Ph.D
Mr. Clifford Baker

Carlow Associates Incorporated

ABSTRACT

This paper presents lessons learned during the
development of NASA's Systems Test and
Operations Language (STOL) Intelligent
Tutoring System (ITS), being developed at
NASA Goddard Space Flight Center with
support by Carlow Associates Incorporated
and Computer Sciences Corporation. The
purpose of the intelligent tutor is to train
STOL users by adapting tutoring based on
inferred student strengths and weaknesses.
This system has been under development for
over one year and numerous lessons learned
have emerged. These observations are
presented in three sections, as follows. The
first section addresses the methodology
employed in the development of the STOL
ITS and briefly presents the ITS architecture.
The second presents lessons learned, in the
areas of:

* intelligent tutor development
documentation and reporting

* cost and schedule control
0 tools and shells effectiveness

The third section presents recommendations
which may be considered by other ITS
developers, addressing: access, use and
selection of subject matter experts; steps
involved in ITS development; use of ITS
interface design prototypes as part of
knowledge engineering, and; tools and shells
effectiveness.

BACKGROUND

This paper presents lessons learned during
development of the STOL ITS, which is
being developed to assist NASA control
center personnel in learning STOL.

Mr. Troy Ames
NASA Goddard Space Flight Center

The STOL ITS is currently being designed to
provide the Gamma Ray Observatory (GRO)
Flight Operations Team (FOT) with
introductory and refresher traininghutoring
on STOL and its main applications. The
initial orientation of this effort was to provide
intelligent tutoring in the context of complex
dynamic systems. This initial effort was
concerned with the application of ITS
technology to improve system performance
and safety in supervisory control. The
emphasis was on the modeling of operator's
intentions in the form of goals, plans, tasks,
and actions. More recently, this research has
expanded to include a review of ITS
technology as it may be applied to the
tutoring of command and control languages
(Eike, Seamster, & Truszkowski, 1989).

A related effort is taking place at NASA
Johnson Space Center (JSC) through the
development of PD/ICAT, an ITS to train
Mission Control Center Flight Dynamics
Offices to deploy a specific type of satellite
for the Space Shuttle (Loftin, Wang, Baffes,
& Hua, 1988). PD/ICAT is part of a larger
effort to develop a general architecture for
intelligent tutoringltraining systems to train
controllers i n the performance of mission-
critical tasks. This architecture consists of a
blackboard that serves as a communications
interface for the following system's
components: user interface, expert module,
trainee model, training scenario generator,
and a training session manager. The
developing STOL ITS design utilizes the
NASA/JSC general architecture with several
modifications that will allow for expanded
capability and additional flexibility (Seamster,
1 990).

327

ose

The purpose of the STOL ITS is to facilitate
understanding, development and application
of STOL directives and procedures. Since
this project is primarily a research effort (as
opposed to a development effort), several
research questions are being addressed,
including:
1. the feasibility of developing a general

purpose STOL tutor which can be
effectively utilized in a wide range of
POCC environments;

2. evaluation of the relative effectiveness of
alternative knowledge representat-ions
for tutoring a command and control
language;

3. evaluation of the relative effectiveness of
alternative user interface modes for
students with varying skill levels.

A major element of this project is to
demonstrate the effectiveness of ITS
technology in a NASA control room
environment by selecting a set of
representative STOL tasks which have
application across a wide range of POCCs.

Project Phases

STOL ITS development is proceeding in
three main phases, as follows.

Feasibility Stage - The focus of this stage
involves evaluating the feasibility of
developing a general command language ITS.
Two aspects to feasibility have been
addressed: technical and cost. Technical
feasibility refers to reasonableness of
developing an ITS to tutor STOL. In this
context, feasibility is determined by the
availability of Domain Experts @E's) capable
of expressing the nature of their expertise in a
form which can be translated into an expert
system.

Cost feasibility refers to the probability that
the costs incurred in developing the ITS can
be recovered through improvements in POCC
STOL training. In order to justify the
development costs associated with an ITS,
there must be a relatively high number of
students processed through the system.

Since no individual POCC is likely to have a
sufficiently large number of students to
justify the cost, the ITS must be applicable
across several operating environments. In
order to meet this objective, the operational
version of the STOL ITS is being designed to
be portable and modular, emphasizing a
decomposition where specific command
language functions are separated from the
general command language tutoring
functions.

ResearchEx ten si bili ty S tw - The object-ive
of this stage is to expand the rule set to
encompass a relatively complete set of DE
cognitive functions. One of the main
objectives of this stage has been to develop
the various ITS modules to the point that they
can interact (i.e., exchange data) to perform
the functions of an intelligent tutoring
system. Consistent with the objective to
reduce costs, these modules operate under a
common operating system, and, where
possible, are developed with existing NASA
data, rule sets and development tools. The
general ITS architecture developed at
NASA/JSC (Loftin et al., 1988) has been
used. A parallel effort has been to develop
and validate the user interface for the ITS.
This effort consists of an iterative series of
develop-ment / demonstration / revision
cycles, in which potential users of the ITS
evaluate and comment on the user interface.
The focus of this effort has been directed at
investigating the relative efficacy of
alternative forms of problem/knowledge
representation for students with varying
levels of experience and expertise.

FieldDemonstration S tw - The objective of
this phase is to demonstrate/evaluate the
viability of the STOL ITS. As part of field
demonstration of the GRO STOL ITS, the
STOL ITS provides the trainee with several
aids to facilitate learning. The first aid is an
alternative representation of STOL which is
graphically oriented, and which consists of
dynamic icons and graphics representing the
various elements of the GRO environment.
This representation is used to facilitate
learning STOL and is treated a$ an
intermediate step between the trainee's
current way of thinking about the system and
the way he or she will use STOL in the

328

control room. Another aid is a hypertext
glossary of STOL directives, containing
semantics, syntax and examples. Finally, a
STOL Certification tool has been developed
which measures a students STOL/GRO
proficiency and provides practice in use of
the STOL language as applied to GRO.

Knowledge Acquisition Process

The STOL ITS is designed primarily for the
mission analysts of the GRO FOT. There are
to be 9 individuals serving in this capacity.
In addition, the STOL ITS, in its initial
version, may be used by spacecraft engineers
and guest scientists. With some
modification, the ITS may also be used by
Multi-Satellite Operations Control Center
(MSOCC) operators, and by analysts on
other missions. As was mentioned in the
introduction, STOL ITS is being developed
to ultimately serve a number of different
missions, and a number of its modules may
be used as the basis for tutors of other NASA
command and control languages.

The OR0 FOT mission analysts include the
Operations Controllers (OCs) and the
Command Operators (COS). The OC is the
senior person who directs the activities in the
GRO Missions Operation Room (MOR), and
the CO executes the specific STOL
commands. The OC is the senior person
who directs the activities in the MOR, and the
CO executes the specific STOL directives. In
addition to these two Operators, there is a
mission planner present during the day shift
and a group of engineers who will be in the
GRO MOR when required. This paper
concentrates on the tasks of the two primary
operators, the OC and GO. The OC evaluates
the status of GRO related systems and
subsystems. The OC uses at least three
CRTs to monitor the different types of status
data. The OC also interacts with a number of
people in the execution of his job. In
addition to the C'O, the OC interacts with
other network operators via a voice link
communication, making the communication
system an important part of the OC job.
Given this background, the ten steps of the
STOL ITS Knowledge Acquisition Process
are presented in Table 1.

Table 1. Ten Steps in the STOL IT§
Knowledge Acquisition Process

1.

2.

3 .

4 .

5.

6.
7 .

8 .

9 .

10.

Extract STOL and MSOCC terms from
documentation

Sort and cluster analysis of STOL
elements

Identify key directives and SMEs for
the project

Identify the key concepts and potential
tutor problems

Rate and select key problemholutions
for the demonstration tutor

Develop problem representations

Gather SME protocols for set of
problems and transcribing
Analyze first set of protocols and
developing pseudo-code rules

Expand and refine first set of pseudo-
code rules and provide novice
miseoncep tion s
Translate rules into CLIPS

A collateral step to the knowledge
Zngineering (KE) process was the
development of the STOL ITS user interface.
This interface, developed in Hypercard,
controls the presentation of information to the
STOL ITS students, and interfaces with the
CLIPS module which house the ES portions
of the ITS.

STOL ITS Tools and Interfaces
STOL Certification Tool. The purpose of this
tool was threefold. First, it was developed to
refine and verify STOL user error
classifications, such as error tendencies of
students as a function of STOL experience
and spaced based platform experience.
Secondly, it was developed to measure the
progress of students as they used the STOL
ITS. Finally, it has been used as method to

329

extensively practice issuance of STOL
commands to GRO, with feedback provided
to students as to the efficiency of their
command operations. The Certification tool:

collects error data on STOL users
(commands, arguments, syntax)
provides a basis for developing and
validating STOL ITS student models
provides a tool for certification of
STOL users after and during training
(including STOL ITS training)
practices student issuance of STOL
commands to GRO

0

0

0

0

The certification tool has a simple interface
and architecture. Four sections are provided
for student testing/practicing of STOL
commands for GRO major mission sections.
These are: Introductory; Prepass; On Pass,
and; Post Pass.

Within these sections, there are approx-
imately 200 questions which can be posed to
students, with one to three answers being
considered correct for each question. In the
course of a session, the Certification toll
poses a problem, and the student responds,
after which the tool determines whether the
response is correct, logs the data, and poses a
subsequent problem. Figure 1 shows a
certification tool screen with a student
response.

Hypertext STOL Glossary. The student may
also access a detailed Hypertext STOL
glossary, which presents:

0 STOL directives
0 Aliases
0 Required and optional arguments for

directives
0 Descriptive information related to

directives
0 Modal use of directives

The glossary is used in the course of a
session when a student has difficulty i n
responding to a posed question. Figure 2
presents the basic interface for the STOL
Glossary.

STOL ITS Interface. Development of the
STOL ITS has placed considerable emphasis

330

the design of the interface. This has been for
the following reasons:

ITS development matured to the point
of becoming user-cen tered
complex, relational information to be
presented
the use of the interface to gather student
data
the use of the interface to evaluate
different tutoring strategies
the use of the interface in knowledge
aequisition
The interface provides a point of
convergence for the various STOL ITS
modules

Figures 3 and 4 present example of STOL
ITS interface screens.

LESSONS LEARNED

Lessons learned in the development of this
ITS are related to: intelligent tutor
development in general; documentation and
reporting; Cost and schedule control, and;
Tools and shells effectiveness.

General Lessons

Subject Matter Expert Access. It was
estimated that the development of the STOL
ITS would involve a number of interactions
with the user community. This community,
the GRO FOT, consists of 20 individuals
who would serve as Subject Matter Experts
(SMEs) and novice users. The SMEs were
to serve as the main source of STOL
information during the knowledge acquisition
phase. Novices would be used to evaluate
the prototype user interface as well as the
prototype STOL ITS. A total of 200 hours
was requested from the GRO FOT. The
GRO FOT's initial reaction was that it would
be difficult to provide that many hours. Part
of the difficulty was that the GRO FOT
would be in the middle of End-to-End (ETE)
tests in preparation for launch. It became
evident that if the GRO FOT had to provide
200 hours, it would not be able to participate
in the STOL ITS development process.
Because of this, the SME and novice trainee
needs were reevaluated, and a

STOL CERTlFlCflTlON AID
Question 4 of 61 :
You need to change only the yellow high l imi t fo r "CTRAT" t o 70. Whet
one-liner directive would you use t o make that change?

Figure 1.
Certification Tool Interface with Student Response

Current Search Term: CFGMON 1 I _ _ _ _ _ I _ r

0 JAC
,IDiectives ~ Semantics I conversi onr I

0 DIRECTIVE KEYWORD: CFGMON I I ACOURE
ALIAS: CFGM

ACCESS: MC, CC, FC

INPUT MODE : ONE LINER ONLY

SUBSYSTEM: TELEMETRYSTANDARD: YES

Remarks 8
None

Figure 2
Basic Interface of the STOL Glossary

33 1

GRO OPERATIONAL ENVIRO~HENT

\ Orientation

Click on the element that you
want information on or press
the "Auto" button for an
automatic lesson]

I " ,

(Auto)

-
I
A
S
C

M

[HefpllTransferllpz-
Figure 3

GRO Orientation Screen of the STOL ITS

;TO'' ACOUIRE ON HlSD --> (ACOUIRE ON HISDR) 1-

1. Please check HlSD and
following arguments.

2. Consider using the Glossary
tolook up the arguments for
ACQUIRE.

3. The argument for ACQUIRE
is HISDIR.

EXPLAIN There is 1 error i n
your entry. You entered "HISD
i n position 3 of the command.
The correct term for that
position i s "HJSDIR".

(G)

Figure 4
Advanced Prepass Test/Tutoring Screen of the STOL ITS

332

new approach was developed in order that the
tutor could be developed with a reduction in
GRO FOT time. By providing the GRO FOT
with a Glossary and Certification Tool,
addition contact time was provided outside
the formal structure of the knowledge
engineering process.

Based on the experience of STOL ITS
development, particular missions may be
most willing to provide expert hours if they
benefit directly from the ITS. The experts for
a particular mission are in great demand, and
it can be difficult to justify their time on non-
mission related projects. If the ITS project
can directly benefit mission training, then the
FOT may be more likely to get involved.

FOT/SME Training: Cvcle Coincidence with
ITS Development Cvcle, There is a general
mismatch between the development cycle of
an ITS and the training cycle of an FOT. In
addition to the actual number of hours
required of a mission, it has proved important
to consider when those hours are needed, and
how the entire ITS development process will
fit into the FOT's training needs. A
persistent problem was the KE's need for
specific types of experts or novices which do
not coincide with their availability within the
FOT. At the beginning of the FOT training
cycle, there are usually several analysts who
are spending up to six months gaining
expertise on the specific spacecraft, but who
are not sufficiently knowledgeable to serve as
SMEs. The lesson here is that, for a new
ITS, sufficient domain expert knowledge
may not be available to develop an ITS which
meets or precedes the needs of the FOT
training cycle.

When it became evident that the STOL ITS
would not be delivered until after the FOT
had been certified, the STOL ITS
development team decided to meet the needs
of the GRO FOT by providing them with a
certification tool that could be used in the
normal FOT training cycle. That certification
tool provides the STOL ITS development
team with substantial information on trainee
errors. In general, the ITS development
teams needs to take a flexible and
opportunistic approach to the development
process.

Phase Activities. In developing an expert
system, one approach, such as that
recommended by the Expert System
Development Methodology (ESDM), is to
start with a key concept or cognitive function
and develop a small system to evaluate the
feasibility of the system. This is a useful first
stage for some systems, but in the case of
ITS development, it proved more efficient
and compelling to first develop a prototype of
the user interface. The prototype user
interface is a much less abstract
representation of the final system when
compared with a small rule set that models
some expertise. The prototype user interface
can clearly demonstrate to users the intended
functionality of the system and can provide
early feedback on the proposed tutor
capabilities.

Project Reporting Lessons

The STOL ITS development project has
generated a subset of the Expert System
Development Methodology (ESDM)
reporting requirements (CSC, 1989). ESDM
structures expert systems development as an
iterating process made up of the five stages
shown in Table 2.

In general, ESDM has provided a good
framework for the development of expert
systems including ITSs. The STOL ITS
development process spanned only three of
the ESDM stages, and as such could not
provide a complete evaluation of the ESDM
process. This limited evaluation of ESDM
has pointed out a number of issues. ESDM
has been selectively employed for about nine
months of the STOL ITS development cycle
including most of the research prototype and
a partial field prototype development. If the
ESDM process had been fully implemented,
approximately 10 to 12 reports would have
been prepared. A significant amount of the
development time is required to generate
reports. One approach is to take the
following ESDM recommended reports and
consolidate them into two reports per stage
preceded by a project initiation report and
terminated with a final project report. The
reports shown in bold were the most useful
for the STOL ITS development cycle.

333

e

es
Feasibility prototype
Research prototype
Field prototype
Production prototype
Operational prototype

STOL ITS Development Cycle
User interface development
Research prototype
Partial field prototype

(Asterisked reports are due for every stage of
ESDM development):

Concept and Project Initiation Report
* Stage Project Management Plan*

Prototype Design Report*
* Prototype Operations Guide*
* Prototype T & E Report*
* Knowledge Engineering Report"

Technology Transfer Report
Project Termination Report

In conclusion, ESDM provided a valuable
framework, and its modification and partial

Phase - Task

Phase I: Prototype
Task 1 : User Interface
Task 2: Expert System
Task 3: Integration

Phase II: Evaluation & Port
Task 1 : ITS Evaluation
Task 2: ITS port

automation would provide an extremely
valuable tool for the management of KE
processes.

Project Cost and Schedule Control
Effectiveness Lessons

Use of an Existing: ITS Architectures. Tools,
jlnd Prototypers . One of the objectives of the
STOL ITS project was to promote ways to
reduce the development costs of the ITS.
Use of an existing ITS architecture helped to
greatly reduce the time of the STOL ITS
development effort. The development costs
for the STOL ITS were reduced by using
NASA/JSC's general architecture. The use
of that architecture reduced the ITS control
coding requirements. Next, the user interface
was prototyped i n Hypercard which
provided substantially reduced development
times when compared with coding in C or
some other programming language. Finally,
CLIPS provided a more efficient expert
system development environment than AI
languages such as LISP or Prolog.

Figure 5 shows the estimated development
type for the STOL ITS prototype to be about
1.5 man years. It was estimated that it would
take about one-half a man year for each of the
following three tasks: 1) Develop a prototype
user interface, 2) Develop the CLIPS rules,
and 3) Integrate the user interface with the
rules .

Start 6 months 12 months 18 months 24 months
1 I

I
I
I
1 >

/ I
J
1
1
I
1
1
I

I
1
I 3

Figure 5. Estimated STOL ITS Schedule in Man-Months (Seamster, 1989)

334

The actual development time for the STQL
ITS demonstration prototype came close to
that, and is substantially shorter than the
estimated 6 man years that it took to develop
an operational version of NASA Johnson
Space Center's Payload-assist module
Deploy sfintelligent Computer Aided Training
(PDfiCAT). There are some difficulties in
comparing estimates for developing a
prototype versus estimates for an operational
system, but it is evident that the project costs
were greatly reduced through the used of a
general architecture and development tools.
An even greater savings could be realized
when using STQL ITS'S modules and the
general ITS prototyper in developing other
ITSs for NASA command and control
languages.

Tools & Shells Effectiveness Lessons

The STOL ITS development process has
brought together a number of existing tools
and architectures to form a general ITS
prototyper. This ITS prototyper has allowed
for the relatively rapid development of an
ITS. The general ITS prototyper is based on
the following tools and applications:
Hypercard, CLIPS, HyperCLIPS, and
PD/ICAT. With some modification, the
domain independent PD/ICAT rules were
used as the basis of the control of the ITS
pro to typer.

General Need for Knowledge Acquisition
Tools. During the KE process, a number of
different software applications were utilized
to perform the required data analyses. For
example, a spreadsheet program was used to
build the proximity matrices, and a statistical
analysis program was used to run the cluster
analysis. This process resulted in a large
number of steps and substantial time spent
entering and verifying data. As has been
noted by other knowledge engineers, there is
a great need for knowledge acquisition tools
that can simplify the data collection and data
an a1 y si s process .
In the early phases of the STQL ITS
development, a brief review was made of
existing knowledge acquisition tools with the
conclusion that they are either too specialized
or do not provide sufficient flexibility so that

their results can be easily imported to other
tools. This points out the strong need for a
flexible and integrated set of knowledge
engineering tools that can be used for
collecting, analyzing, and reporting KE
results.

Hypercard V. 1.2.5. Hypercard, a
Macintosh prototyping tool, was used to
develop STOL ITS interfaces. It allowed for
the rapid development of user interface
prototypes by facilitating the design of
buttons, dialogs, and interactive graphics,
and it allowed for quick evaluation and
modification of interfaces after review by
potential STOL ITS end users. The major
limitations of the 1.2.5 and earlier versions of
Hypercard (screen surface size, graphics
limitations) have been overcome by version
2.0 of Hypercard. SuperCard also provides
these capabilities and may be a more flexible
tool for ITS user interface prototyping.

CLIPS V 4.3 and HyperCLIPS V 1.0.2.
The C Language Integrated Production
System (CLIPS) was developed at the
Johnson Space Center by the Artificial
Intelligence Section for use in developing
systems for the NASA Mission Control
Center. CLIPS uses a forward chaining rule
system with a syntax allowing free form
patterns as well as single and multi-field
variable bindings across patterns. CLIPS,
implemented in the C language, is highly
portable. The primary method of
representing knowledge in CLIPS is a rule, a
collection of conditions and the actions to be
taken if the conditions are met. The expert
system developer defines the rules which
describe how to solve a problem, and the
entire rule set makes up the knowledge base.
CLIPS provides the inference engine which
matches the rules to the current state of the
system and applies the actions or
consequents.

HyperCLIPS permits the execution of CLIPS
rules from Hypercard. By integrating
Hypercard and CLIPS rapid prototyping of
knowledge-based expert systems may be
accomplished. HyperCLIPS includes a
number of programs which implements a
specialized version of an XCMD. The
CLIPS XCMD is named "ClipsX" and is

335

designed to be as similar to the command line
version of CLIPS. For this version of
HyperCLIPS, the commands implemented
are: clear, load, reset, and run. Data returned
from CLIPS may be retrieved through the
HyperTalk function, the result, after calling
the run command. HyperCLIPS proved very
useful in integrating the STOL ITS
Hypercard user interface with the CLIPS
rules. The primary limitation is the reduced
number of CLIPS commands that are
implemented. For example, it would be very
useful if the CLIPS command unwatch all,
could be passed prior to loading the CLIPS
rules. This would save a substantial amount
of time during the loading process. For
prototyping purposes, HyperCLIPS V 1.0.2
has been very effective.

PD/ICAT. The STOL ITS architecture is
based on a subset of the PD/ICAT rules
which were subsequently modified into a
general ITS prototyper. PD/ICAT was
developed for NASA/JSC (Loftin, Wang,
Baffes, & Hua; 1988), and was designed
around a general ITS architecture that could
be used for a number of different procedural
training tasks. Based on the analysis of the
PD/ICAT modules, the STOL ITS project
utilized the rules from ERROR.CLP,
LINKRULE. CLP, MANAGER. CLP, and
SUPPORT.CLP as the primary control rules
for the CLIPS portion of the general
prototyping ITS architecture. These four
modules were selected because they are
relatively domain independent, and could
provide the basic control for the ITS
prototyper. The major form of modification
of the PD/ICAT rules has been the
replacement of the external functions that
handle the output of the rules back to the user
interface. The use of the PD/ICAT general
architecture reduced the STOL ITS
development time substantially and inspired
the idea to develop a general ITS prototyper.

CONCLUSIONS AND
RECOMMENDATIONS

Subiect Matter Expert Access. Missions may
provide SMEs to support the KE process if
they benefit directly from ITS development.
The experts for a particular mission are in
great demand, and it can be difficult to justify

their time on non-mission related projects.
Also, provision of development tools (Such
as the Certification Tool) can increase SME
contact time, and provide immediate support
to the mission training program.

Prototyping. It proved efficient to develop
early on a prototype of the user interface.
This provides at least two strong advantages.
First, the resulting prototype can be used to
demonstrate the ITS to potential users and
gain SME support and feedback. Secondly,
it can be used in the early stages to more
clearly define the requirements and
capabilities of the system. Starting with a
prototype of the ITS is a user-centered
approach which can ensure that the final
system will meet the needs and requirements
of the trainees.

Documentation and Reporting. By consol-
idating ESDM reports, duplication of effort
can be reduced, and the time spent preparing
reports can also be reduced. For example,
the management plan and design report could
be combined to form an initial report for each
stage. The operations guide and test and
evaluation could be combined for a stage
termination report. The knowledge
engineering report proved to be a very useful
report, but it is not clear that it is needed at
every stage.

Cost and schedule control. Project costs
were greatly reduced through the used of a
general architecture and development tools.
Greater savings could be realized when using
STOL ITS'S modules and a general ITS
prototyper in developing other ITSs for
NASA command and control languages.

s. A major part
of the development of most expert systems,
including Intelligent Tutoring Systems (ITS),
is the prototyping phase. The development
of knowledge-based systems requires
prototyping for most of the stages, and
consequently, the prototyping environment is
critical to the success of such efforts.
Prototyping has proven central to the
development of the STOL ITS, and in the
same way that STOL ITS benefited from
N A S A/J S C PD- ICAT development , future
NASA ITS development could benefit from

336

TS KE process and tools. A
general ITS prototyper could serve as a
foundation for the development of future
ITSs.

During the current STOL ITS effort, a
number of general ITS prototyper
requirements have been identified. That
process could be expanded by the preparation
of a formal requirements analysis for a
NASA general ITS prototyper. These
requirements would be extended to meet the
needs of the NASA ITS community
emphasizing the development of a prototyper
which would allow for the quick
development of ITS prototypes i n the
microcomputer environment. The new
requirements wouId be analyzed to identify
modifications and additions that need to be
made to the STOL ITS prototyper. These
modifications could then be implemented
resulting in a general ITS prototyper to serve
the ITS development needs of NASA.

~. The
current structure of the trainee model is based
on that used in PD/ICAT, but the STOL ITS
would be greatly improved if it were to adopt
a more sophisticated model. The current
trainee model has been developed as a

REFERENCES

database containing information about the
trainee's understanding of specific
productions. The STOL ITS tutoring relies
on providing the trainee with practice of
specific productions, and the trainee model
keeps track of the productions' status. As the
trainee makes mistakes with underlying
productions, the trainee model database keeps
sack of those productions, and that data base
can anticipate when the trainee might make an
error on an advanced problem containing that
production.

The STOL ITS demonstration prototype
would make a good testbed for hypermedia
application. The current version of STOL
ITS is limited to the display of still pictures
and text, and could be expanded to include
voice, moving video images, and other
interactive capabilities of hypermedia. For
example, the STOL ITS Orientation Lesson
shows all major elements of the GRO control
system. In its current implementation, when
the trainee selects an object, a static picture
and/or text is presented to give additional
detail. This type of tutoring would be
enhanced if hypermedia were available to
present a more realistic and animated view of
the GRO operational environment.

Anderson, J. R. (1987). Production systems, learning, and tutoring. In D. Klahr, P. Langley,
and R. Neches (Eds.), Production system models of learning and development (pp. 437-458).
Cambridge, MIT Press.

Anderson, J. R., Conrad, F. G., & Corbett, A. T. (1989). Skill acquisition and the LISP tutor.
Cognitive Science, 13,467-505.

CSC (1989). Expert System Development Methodology User Guide. Prepared for NASA
Goddard Space Flight Center, August 1989.

Eike, D, R., Seamster, T. L., & Baker, C. C. (1989). Applying Intelligent Tutoring System
Technology to NASA Control Centers. (Draft) White Paper Report prepared for NASA
Goddard Space Flight Center, May, 1989.

Eike, D. R., Seamster, T. L., & Truszkowski, W. (1989). Functional description of a command
and control language tutor. Proceedings of SOAR'89: Third Annual Workshop on Space
Operations Automation and Robotics (585-592). Houston, Texas.

Loftin, R. B., Wang, L., Baffes, P., & Hua, G. (1988). An intelligent training system for Space
Shuttle flight controllers. Proceedings of the 1988 Goddard Conference on Space Applications
for Artificial Intelligence (pp. 3-15). Greenbelt, MD.

Mitchell, C. M. (1 989). Human-Computer Interaction in Distributed Supervisory Control. Semi-
Annual Report prepared for NASA Goddard Space Flight Center, August, 1989.

Seamster, T. L. (1989). Cognitive Task Analysis: Techniques for the Development of Airborne
Weapons Training. Final Report prepared for the Data Systems Engineering, Oak Ridge
National Laboratory.

337

Seamster, T. L. (1989). Functional Requirements Document: Systems Test and Operations
Language (STOL) Intelligent Tutoring System (ITS). (Draft) Technical Report prepared for
NASA Goddard Space Flight Center, August, 1989.

Seamster, T. L. (1990). Architecture Review: General Intelligent Tutoring System (ITS)
Prototyper. Draft Report prepared for NASA Goddard Space Flight Center, April, 1990.

Seamster, T. L. (1990). Systems Test and Operations Language (STOL) Intelligent Tutoring
Systems (ITS) Knowledge Engineering Report, (Draft) Technical Report prepared for NASA
Goddard Space Flight Center, July, 1990.

Seamster, T. L. (1990.). Architecture Review: General Intelligent Tutoring System (ITS)
Prototyper. (Draft) Technical Report prepared for NASA Goddard Space Flight Center, April,
1990.

338

