
Knowledge Repositories for Multiple Uses

Keith Williamson, Patricia Riddle
Advanced Technology Center

Boeing Computer Services

Seattle, WA 98124-0346
P.O. BOX 24346, MS 7L-64

(206) 865-3281

January 22, 1991

Abstract 1 Problem

In the life cycle o f a complex physical device or part, f o r
example, the docking bay door of the space staiion, there
are many uses for knowledge about the device or part.
The same piece of knowledge might serve several uses.
Given the quantity and complexity of the knowledge that
must be stored, it is critical to maintain the knowledge in
one repository, in one form. At the same time, because
of the quantity and complexity of knowledge that must
be used in life cycle applications such as cost estimation,
re-design and diagnosis, it i s critical to automate such
knowledge uses. For each specific use, a knowledge base
must be available and must be in a fo rm that promotes
the eficient perfomance of that knowledge base. How-
ever, without a single source knowledge repository, the
cost of maintaining consistent knowledge between multi-
ple knowledge buses increases dramatically; as facts and
descriptions change, they must be updated in each indi-
vidual knowledge base.

W e have developed a use-neutral representation of
an hydraulic system f o r the F - I l l airplane. W e demon-
strated the ability to derive portions of four diflerent
knowledge bases from this use-neutral representation: one
knowledge base is for re-design of the device using a
model-based reasoning problem solver; two knowledge
bases, at diflerent levels of abstraction, are for diagno-
sis using a model-based reasoning problem solver; and one
knowledge base is for diagnosis using an associational rea-
soning problem solver. W e have shown how updates issued
against the single source use-neutral knowledge reposito y
can be propagated to the underlying knowledge bases.

In the life cycle of a complex physical device or part
(e.g., the docking bay of the space station) there are
many uses for knowledge about the device or part,
about its structure, function, materials, component
parts and so on. Such uses might include product
definition (i.e., design and manufacturing process
planning), testability analysis and test construction,
cost estimation, producibility studies, diagnosis of
breakdowns, and re-design of features. In an effort
to become more competitive, corporations are au-
tomating such knowledge uses. For each particular
use, a knowledge base must be available and must be
in a form that promotes efficient performance of that
system. This has resulted in duplicate knowledge in
multiple knowledge bases, where a particular piece
of knowledge serves multiple uses.

Given the quantity and complexity of the knowl-
edge that must be stored, it is critical to maintain the
knowledge in one repository. Without a single source
repository, the cost of maintaining the knowledge
required by multiple knowledge bases is increased
dramatically; as facts and descriptions change, they
must be updated in each individual system. It is vir-
tually impossible to maintain synchronicity among
the knowledge bases that require the same knowl-
edge. Without a single source repository, the costs of
other maintenance tasks (e.g., knowledge verification
and validation) are not easily shared across knowl-
edge bases. Finally if there is no common knowledge
repository, the development of new knowledge bases

353

must essentially be done from scratch each time.

To establish a single source knowledge reposi-
tory, we cannot simply borrow representations from
today’s knowledge bases. In current knowledge base
technology, the use of the knowledge determines its
representation. The knowledge encoding is tailored
for efficiency in performing the particular task at
hand. However, once the knowledge representation
is customized for a single use, it is difficult or impos-
sible to apply it to some other use.

In order to maintain knowledge about a complex
device in one knowledge repository for multiple uses,
a use-neutral representation is required. In order to
automate the use of that knowledge, it must be made
available to many different problem-solvers and must
be put in a form that promotes their efficiency. The
need to manage and access single source information
for multiple uses places critical requirements on the
kind of knowledge that must be captured and the
way the knowledge is represented in the repository.

Section 2 gives an overview of the objectives of
our project. In section 3 the more detailed issues
which arise from this research are discussed. Section
4 gives a survey of related research. In section 5 the
initial focus of our project is given. Section 6 gives
the progress made to date. In section 7 the future
research directions are given. Section 8 concludes.

2 Project Objectives

The overall objective of this project is to develop a
methodology for sharing knowledge between several
knowledge bases which have different uses (e.g., de-
sign and process planning). This methodology con-
sists of a single source use-neutral knowledge repos-
itory, and the ability to down-load this knowledge
into different knowledge bases tailored for specific
tasks. Specific objectives of the project include:

1. Demonstrate tools for transforming and down-
loading repository knowledge into knowledge
bases that can be used by multiple problem
solvers, that support the pre-defined range of
life-cycle uses.

2.

3.

4.

5.

6.

3

Allow the knowledge repository to be updated,
and demonstrate the capability of automati-
cally propagating these updates to the pertinent
knowledge bases so as to preserve correctness.

Develop a methodology for creating a single
source, use-neutral knowledge repository from
a set of related use-specific knowledge bases.

Demonstrate the ability to automatically gen-
erate a first cut at a brand-new knowledge base
from the knowledge repository.

Evaluate and establish knowledge represen-
tation principles for modeling physical de-
vices/parts that support a pre-defined, but
extensible, set of uses throughout the de-
vice/part’s life cycle.

Establish requirements on the completeness
and consistency of the single source, use-
neutral knowledge repository imposed by the
pre-defined range of life-cycle uses and develop
tools to ensure those requirements are met by
the single source model.

Issues Raised

The major benefits of such an approach are de-
rived from three sources: from physically sharing
knowledge, from updating the repository, and from
adding new knowledge bases. From physically shar-
ing knowledge, the knowledge bases have increased
consistency with each other and a lower combined
management cost and verification and validation
(V&V) cost than if supported separately. From up-
dating the repository and propagating the updates
to the individual knowledge bases, the knowledge
bases have a lower combined update maintenance
cost and it is easier to maintain correctness and con-
figuration control of the system. From adding new
knowledge bases, this approach enables the identifi-
cation of inconsistencies in pre-specified KBs and the
partial automation of the generation of new KBs.

In this section, the issues raised in achieving
these benefits are explored. In later sections, the

354

focus of our project within these issues and our ini-
tial progress will be described. The global struc-
ture of the ultimate system is shown in Figure 1.
One important aspect of this structure is that it al-
lows the transformations (i.e., the gateway) to access
knowledge from several different knowledge stores.
This is very important with regards to the Boeing
Company. There are knowledge stores for Boeing
Corporate Standards which are accessible by ven-
dors and proprietary knowledge stores which are
not. These knowledge stores might be stored and
accessed separately for security reasons, but their
knowledge might need to be combined to create use-
ful knowledge base rules to be used within Boeing.
To a system accessing the knowledge repository, the
knowledge should appear seamless. Even with non-
proprietary knowledge stores, the information might
be stored separately (e.g., some in Auburn, Wash-
ington and some in Wichita, Kansas). This infor-
mation must be accessed directly from these differ-
ent sources so as to maintain the single source model.
The ultimate goal is a distributed single source use-
neutral knowledge repository.

Figure 1: Single Source Repository

Another aspect of this model is that the lan-
guage used in the use-neutral knowledge repository
should have a sufficient expressive adequacy to al-
low new knowledge bases and their related trans-
formations to be added to the repository later on.
The knowledge in the single source repository is not
use-neutral in the broadest sense. The knowledge
must be represented to serve the “use” of transmit-

ting the pertinent knowledge to multiple knowledge
bases. But the knowledge representation used in the
single source repository is independent of the specific
uses of those knowledge bases, so it will be referred
to as use-neutral throughout this paper.

Transformations which down-load knowledge
must preserve the aspects of the model which are
important for this knowledge base use (Le., they
must be behaviorally equivalent). In certain cases
when a knowledge base requires all the details of
the model this transformation will be the standard
notion of equivalence (;.e., an isomorphic transfor-
mation). But in other cases transformations will ei-
ther abstract away certain knowledge which is not
necessary for this knowledge base or approximate
knowledge for efficiency reasons. In these cases the
transformation will only be behaviorally equivalent.
The transformation will be equivalent only with re-
spect to the desired behavior (Le., a homomorphic
transformation). For instance, if stress analysis is
done, certain knowledge about the color of the paint
or the smoothness of the finishes are not relevant
knowledge with respect to the stress analysis.

The ultimate transformational system we envi-
sion is a partial-order of transformations (Le., most
likely a forest) from one representation to another.
The reformulation from any one representation into
another representation (i.e., either the use-neutral
representation, a user representation, or the repre-
sentation associated with a specific problem solver)
is a path through this partial-order of transforma-
tions. This will allow a maximal amount of reuse of
the transformations. Figure 2 illustrates this idea.

The KRMS (Knowledge Repository Manage-
ment System) must deal with issues of V&V
(e.g., consistency and redundancy) and configura-
tion management across multiple knowledge stores.
Configuration management includes keeping a his-
tory of any updates to the use-neutral knowledge
repository so that the version of the knowledge given
to a certain knowledge base or person at a cer-
tain time can be reconstructed. There is a tradeoff
between applying V&V directly to the knowledge
repository and applying it to each knowledge base
separately. Some tests (e.g., consistency checking)
might be best applied to the knowledge repository

355

Ip~efll. gender)

/ \ /
J I J

t 1

Shell rcformulaiion
Rolog 5) Ops5

Knowlcdgc baxi

Figure 2: The Gateway Transformations

to assure synchronicity between all the knowledge
bases and to avoid the cost of testing each knowl-
edge base separately. 0 ther tests (e.g., functionality
testing) might be best applied to the task-specific
knowledge base. It is not clear how to test the func-
tionality of the knowledge repository directly.

The knowledge down-loaded to the task-specific
knowledge bases must be consistently updated when
an update is performed on the knowledge repository.
There could be problems with this updating process
within either the knowledge repository or the trans-
formations. The representation of the knowledge in
the knowledge repository might not be expressive
enough to handle the update. The transformations
might no longer be applicable to the updated knowl-
edge in the repository or might transform the knowl-
edge such that the knowledge in the knowledge bases
is inconsistent with the knowledge in the repository
(i.e., the transformation might not be correctness
preserving on the updated knowledge). In a similar
vein when a new knowledge base is connected to the
knowledge repository, two analogous problems can
occur. Either the repository does not contain the
information necessary for the new knowledge base or
the transformations cannot transform the knowledge
into the form that the new knowledge base needs.

Updating the knowledge repository could be
done using knowledge acquisition techniques. These

can be seen as another type of transformation. These
types of transformations must be handled differ-
ently because there is a person at one end of the
transformation instead of a computer, but the ba-
sic structure of transforming one representation (a
user language) into the use-neutral representation is
the same. For instance a dialogue apparatus can
be used to elicit knowledge from a person, but a
dialog apparatus is difficult to use in a transforma-
tion between two computers. Transformations may
also connect the use-neutral representation to peo-
ple so as to give them direct access to the knowl-
edge in the repository. Several different transfor-
mations (in each direction) may be necessary since
the language used 3y different people (i.e., designers,
manufacturers, maintainers) may not necessarily be
the same. Transformations between people and ma-
chines might involve a form (possibly simplified) of
natural language understanding and text generation.

Gateway security will also be an issue. Vendors
must be allowed access to non-proprietary knowledge
while users within Boeing must be allowed greater
access. Even within Boeing there might be separate
grades of accessibility, a factory shop-floor might not
be allowed the same access rights as other areas.

4 Survey

In the last few years much work has concerned devel-
oping and maintaining large knowledge bases. Very
little of this has focused on developing and main-
taining large knowledge bases which support multi-
ple uses. There has been some research involved in
deriving a “shallow” model from a “deeper” one but
not for systems with more than two models. Davis
[2] has a system which can derive a sequence of mod-
els for use in troubleshooting digital circuits, but it
cannot generate different models for different uses.

Rich Kellerl has demonstrated the multiple use
capability of the Stanford modeling project. Keller’s
[5] system derives two sequences of models, one
for diagnosis and one for re-design. This research
demonstrated the multiple use capability of the
Stanford modeling project. He took approximately

‘Previously on the Stanford project, now at NASA Ames.

356

20 diagnosis rules from a 150 rule Lockheed expert
system for diagnosis of the Reaction Wheel Assembly
(RWA) for the Hubble Space Telescope. Discussions
with domain experts derived approximately 5 plau-
sible redesign rules for the RWA. Both of these sets
of rules were represented in the expert system shell
Strobe. Given these two sets of rules a use-neutral
represen tat ion was formulated and transformations
for connecting these two specific rule sets with the
use-neutral representation were derived.

A representation language/s must be chosen for
the single source repository. As was stated earlier
a single language may not be capable of express-
ing all the types of knowledge which must be stored
in the repository. This language must be capable
of representing both deductive and heuristic infor-
mation and in a form which is independent of its
intended use. There are several efforts which deal
with creating representation languages which are ca-
pable of representing “all” knowledge regardless of
use: CYC at MCC [7] and modeling of scientific
and engineering device knowledge at Stanford [4].
These representation languages and their associated
tools might be suitable for representing the knowl-
edge in our single source repository. The domain
representation within these languages must also be
determined. It is possible that none of these projects
have a representation which will suit our purposes.
The Stanford project, since i t is also dealing with en-
gineering devices, is more likely to have a predefined
problem representation which will suit our purposes.
The MCC project is trying to represent “all” knowl-
edge. We are, as is Stanford, trying to solve the
easier problem of representing “relevant engineer-
ing” knowledge. We have purposefully not spent a
lot of time exploring these representation languages.
We feel that the possible choice of a representation
language should be driven by the needs of the use-
neutral representation. We plan to have a first cut
of what the requirements of the representation are
before we explore these representation languages in
depth. This will help to avoid a preconceived bias
on our parts.

Research in reformulating knowledge has also
been pursued in the last few years. There has been
work on abstraction transformations and to a lesser
extent on approximation abstractions [6, 3, 14, 151.

Within correctness preserving transformations there
has been work on both shifting between expert sys-
tem shells (i.e., analogous to compilers) [lo, 13, 11)
and shifting between problem representations (i.e.,
traditional reformulation) [l, 8, 12, 91. None of this
work has been based on large knowledge bases and
therefore not explored certain relevant issues (e.g.,
knowledge base management, knowledge base main-
tenance, and version control).

5 Focus

Previously we gave an overview of all the issues re-
lated to a single source knowledge repository. It is
important at this point to emphasis which of these
issues this project is emphasizing. These aspects of
the system were chosen to allow the system to have
a functional value to Boeing within 5 years while re-
search on the other issues continues. The following
four issues are the focus of this project.

A representation language is needed which is
capable of expressing the information necessary to
handle all the different desired uses of the knowl-
edge. This is a tall order. The approach we take
is to try and circumscribe the uses to which we will
expect this knowledge to be put. The goal is to
represent sufficient knowledge to achieve this set of
uses as opposed to any use defined later on . This
representation language should be flexible enough to
allow extensions to the set of pre-defined uses. It is
also apparent that one pre-existing representation
language may not be suitable for handling all the
different type of knowledge necessary (i.e, deductive
knowledge versus heuristic knowledge). Portions of
multiple pre-existing representation languages may
have to be used within the knowledge repository.
Bear in mind that this does not necessarily dictate
that redundant knowledge will be represented.

Transformations are necessary to down-load the
knowledge in the repository to multiple knowledge
bases. We plan to explore three basic types of trans-
formations: abstraction, approximation, and cor-
rectness preserving. Frequently the full model of a
system is too complex to analyze, due to computa-
tional restrictions. In these circumstances a simpler

357

model of the system must be used for the analysis.
The transformation from the full model to a sim-
pler one is an abstraction. These are used frequently
in engineering domains where the complexity of the
full system is often overwhelming. Approximations
are a similar type of transformation. An abstracted
model is correct and must just be refined to arrive
at the original full model. An approximate model
is actually incorrect to some allowed degree of error
(i.e., the approximate model cannot be refined into
the original full model). These types of transforma-
tions are also used frequently throughout engineer-
ing domains (i.e., the simplex method). The above
two types of transformations are homomorphisms.
Correctness preserving transformations change one
model into an equivalent model (i.e., it is an isomor-
phism). Two examples of when this type of transfor-
mation is important is a shift between the problem
solvers’ associated language (Le., OPS5 to Prolog)
or a problem reformulation. A problem reformula-
tion is a shift from one representation of a problem
to another within the same representation language.
For instance the shift between a model containing
gender and parent to a model containing mother
and father. It turns out that this last type of trans-
formation is very important in achieving a model of
the problem which is computationally efficient for a
particular problem solver.

The ability to update the single source knowl-
edge repository such that the transformations to the
knowledge bases are still applicable and correctness
preserving is very important. Note that a transfor-
mation between two representations could trivially
be A+B. But this type of representation is not very
general and therefore will not be applicable if A is
updated to A’. It is very difficult to create trans-
formations which allow all possible types of updates.
We plan to circumscribe the set of updates for which
the transformations are guaranteed to still be appli-
cable. This allows the system to actually be used
with production level knowledge bases and thus sim-
plify a class of their update problems and lower their
maintenance costs while research on broadening the
class of guaranteed updates is continued.

The ability to decide later on to connect a new
knowledge base to the knowledge repository is also
important. Analogous to the problem with updat-

ing, it is very difficult to allow the easy connection of
any new knowledge base. We plan to circumscribe
the set of knowledge bases for which the transforma-
tions are guaranteed to connect. This allows the sys-
tem to actually be used with production level knowl-
edge bases and thus simplify the creation of a class of
new knowledge bases and lower their start-up costs
while research on broadening the class of connectable
knowledge bases is continued.

6 Progress

The progress made by this project in slightly un-
der 3 person-months was a feasibility study using a
knowledge base for the F-111 hydraulics system. We
established a use-neutral knowledge repository for
the F-111 hydraulics system and a set of transfor-
mations from this knowledge repository to multiple
knowledge bases each for a specific task. In this feasi-
bility study there were four knowledge bases derived:
one knowledge base for design using a model-based
reasoning problem solver2; two knowledge bases (at
different levels of abstraction) for diagnosis using
a model-based reasoning problem solver; and one
knowledge base for diagnosis using an associational
reasoning problem solver. The derived associational
diagnosis rules were more precise than person de-
rived rules. We demonstrated the connection of
a pre-specified knowledge base to the use-neutral
knowledge repository; in doing this we discovered
inconsistencies in the pre-specified knowledge base.
We demonstrated the propagation of updates, which
were made to the use-neutral knowledge repository,
down to the pertinent knowledge bases. We also
demonstrated a partially automated methodology
for the derivation of a use-neutral knowledge repos-
itory and its associated transformations from a set
of related use-specific knowledge bases.

6.1 F-111 Hydraulic Models

The hydraulic system of the F-111 aircraft is shown
in Figure 4. The hydraulic system is

‘The use of model-based reasoning problem
sign is just beginning to be explored[l6].

broken into

solvers for de-

two sub-systems; a primary and a utility subsystem.
Within both of these subsystems, there are redun-
dant modules (i.e., left and right modules) and a
pressure indicator. Each of these modules consists
of a pump and a pressure indicator. The right mod-
ules of each subsystem share an engine, as do the left.
The system is assumed to be given the flow-demand
and throttle settings for each of the engines.

ipl
ipr

ur
iu
iul
iur

I Abbreviations
primary
primary.left
primary.right
intermediate.primary
intermediate. primary.left
intermediate.primary.right
utility
utility.left
utilit y.right
intermediate.utility
intermediate.utility.left
intermediate.uti1ity.right
left .engine
right .engine

Constants -
Trcf
Rtfcc
Ec
Ku
KP
Kul
Kur
KPl
KPr -

thrott1e.rpm.conversion.factor
rpm. t 0. flow.conversion.constant
Engine constant
utility pipe constant
primary pipe constant
utility left pipe constant
utility right pipe constant
primary left pipe constant
primary right pipe constant

Status Variables
p.pressure.status u.pressure.status
pl.pressure.status pl.status
pr.pressure.status pr.status
ul.pressure.status ul.status
ur.pressure.status urstatus
1e.status re.status

Figure 3: Abbreviations and Constants

In the models for the knowledge bases and
repository, there are some constant values and com-
mon abbreviations used in specifying variable names.
The models also contain references to boolean sta-
tus variables that are assumed to indicate the op-

erational status of certain components. These are
shown in Figure 3. In each of the task-specific mod-
els, we indicate which of the model variables are as-
sumed to be instantiated prior to use of that model.
There were four constraints which were common to
all the derived models (see Figure 5) . The relation-
ships between the models are shown in Figure 6. The
use-neutral model has 17 constraints on the compo-
nents; these are shown in Figure 7. These models are
used to illustrate the technology involved with a use-
neutral knowledge repository; there is no claim that
they precisely reflect the actual physics involved.

In the Diagnosis I model (see Figure 8), the ar-
eas of the pipes are fixed and the resistance of the
pipe has been abstracted (i.e., the pipe resistance is
0). In the Diagnosis I1 model (see Figure 9), the ar-
eas of the pipes are fixed but the resistance of the
pipe is not abstracted. The Design model (see Fig-
ure 10) also abstracts the resistance of the pipe but
does not fix the areas of the pipes (i.e., while during
diagnosis the pipes should not be allowed to change
size, this is desirable in a design model).

Chronology These models were derived as fol-
lows. Diagnosis I was chosen as our initial model;
it was previously developed by another research
project in the Advanced Technology Center. Using
this model, high-level descriptions of the Diagnosis I1
(by adding the notion of pipe resistance) and Design
(by adding the notion that pipe radii can change)
models were hypothesized. Using these three models
(two of which were only high-level descriptions) and
knowledge of basic physics, the use-neutral model
was hypothesized. Using the use-neutral model, the
assumptions made by the various models, and a set
of general transformations; the exact set of con-
straints specified in Diagnosis I and a plausible set
for Diagnosis I1 and Design were derived.

6.2 Transformations

The transformations used in deriving the task-
specific models will now be discussed. The refor-
mulation of the use-neutral into Diagnosis I is not
shown here; it is a combination of the transforma-
tions used to reach the other two models.

359

Right
engine

primary utility utility
pressure pressure

OFF OFF , OFF OFF
pressure

I

Figure 4: Hydraulic System for F-111

1 flow-demand-rule
if T then u.flow.demand = sys.flow.demand/2
if T then p.flow.demand = sys.flow.demand/2

2 flowlarge-rule
if T then u.flow = ul.flow+ur.flow
if T then p.flow = pl.flow+pr.flow

16 reading-rule
if u.pressure.status=O then

if p.pressure.status=O then
u.pressure.indicator = u.pressure

p. pressure.indicator = p. pressure

17 pressure-indicator-constraint
if pl.pressure.status=O then

if pl.pressure>1300 then pl.pressure.indicator=l
else pl.pressure.indicator=O

if pr.pressure.status=O then
if pr.pressure> 1300 then pr.pressure.indicator=l

else pr.pressure.indicator=O
if ul.pressure.status=O then

if ul.pressure>1300 then ul.pressure.indicatort1
else ul.pressure.indicator=O

if ur.pressure.status=O then
if ur.pressure> 1300 then ur.pressure.indicator=l

else ur.pressure.indicator=O

Figure 5: Rules common to ALL Models

Figure 6: Relationships between Models

Use-Neutral to Diagnosis 11 This is a fairly
straight forward set of transformations. First the
assumptions are added (i:e., that the radii are con-
stant). This allows the use-neutral constraints
(UNC) 4 and 10 in Figure 7 to become coristants
(;.e., the pipe areas are now constants). The interme-
diate results computed in UNC 5 ciLn be folded into
UNC 3 since no other constraint refers to them and
they are not tested by a sensor. This gives the set of
constraints shown in Figure 9, This highljghts two
general transformation techniques: compiling con-
straints into constants ahd folding constraints into
each other.

360

9 flow-small-rule
if ulstatusr0 then I

if ur,status=O then

if pl.status=O then

if pr.status=O then,

ul.flow 3 u1,areaxfluid.densityxul.velocity

ur .flow = ur .areax fluid.densit y x ur .veloci ty

pl.flow T pl.areax fluid.densityx pl.velocity

pr.flow = pr.areax fluid.density x pr.velocity

4 area-small-rule
if T then ul.area = n%ul.radius2
if T then ur.arett = nxur.radius2
if T then pl.area c nxpl.radius2
if T then pr.area = nxpr.radius2

5 velocity-ale
if ul.statusz0 then ul.velocity = Ecxle.rpm
if ur.statusr0 then ur.velocify = Ecxre.rpm
if pl.statusr0 then pl.velocity = Ecxle.rpm
if pr.statusc0 then pr.velocity = Ecxre.rpm

6 rpm-rule
if le.status=O then le.rpm 2 Trcfx 1e.throttle
if re.status=O then re.rpm = Trcfxre.throttle

7 final-pressure-rule
if u.flowzu.flow,demand then u.pressure=2930

if p . flow z p .flow. demand then p . pressure= 2930
else u.pressure=2930x (u.flow/u.flow.demand)

else p.pressuret293Q x (p.flow/p.flow.demand)

8 intermediate-large-pressure-wle
if ul.status=O & ur.statusz0 then

if pl.status=O & pr.status=O then
iu.pressure = u.pressure+(u.resistancex u.flow2)

ip.pressure == p .pressure+(p xesistancex p .flow2)

9 resistance-large-rule
ifT then u.resistance =
if T then p.resistance =

Ku/ (2 x 3uid .density x u.area2)
Kp/(2 x fluid .density x p.area2)

10 area-large-rule
if T then u.area = r x u.radius2
if T then p.area = nxp.radius2

11 force-large-rule
if ul.status=O & ur.status=O then

u.force = iu.pressurex u.area
if pl.status=O & pr.status=O then

p.force = ip.pressurexp.area

12 force-small-rule
if ul.status=O & ur.status=O then

if pl.status=O & pr.status=O then
u.force = ur.force+ul.force

p.force = pr.force+pl.force

19 intermediate-small-pressure-rule
if ul.status=O then iul.pressure = ul.force/ul.area
if ur.statuss0 then iur.pressure = ur.force/ur.area
if pl.status=O then ipl.pressure = pl.force/pl.area
if pr.status=O then ipr.pressure = pr.force/pr.area

1.4 pressure-small-rule
if ul.status-0 then ul.pressure =

if ur.status=O then ur.pressure =

if pl.status=O then pl.pressure =

if pr.status=O then pr.pressure =

iul.pressure+(ul.resistancex ul.flow2)

iur.pressure+(ur.resistancex ur.flow2)

ipl.pressure+(pl.resistancex pl,flow2)

ipr.pressure+(pr.resistancex pr.flow2)

15 resisfance-small-rule
if T then ur.resistance=Kur/(2 xfluid.densityx ur.area2)
if T then ul.resistance=Kul/(2xfluid.densityx ul.area2)
if T then pr.resistance=Kpr/(2 x fluid.density x pr.area2)
if T then pl.resistance=Kp1/(2 xfluid.densityx pl.area2)

Figure 7 Continued: Use-Neutral Model

Figure 7: Use-Neutral Model

361

3 flow-small-rule
if ul.status=O then ul.flow = Rtfccxle.rpm
if ur.status=O then ur.flow = Rtfccxre.rpm
if pl.status=O then pl.flow = Rtfccx le.rpm
if pr.status=O then pr.flow = Rtfccxre.rpm

9 flowsmall-rule
if ul.status=O then ul.flow = Rtfccx le.rpm
if ur.status=O then ur.flow = Rtfccxrexpm
if pl.status=O then pl.flow = Rtfccxle.rpm
if pr.status=O then pr.flow = Rtfccxrexpm

4 rpm-rule
if le.status=O then le.rpm = Trcfx 1e.throttle
if re.status=O then re.rpm = Trcfxre.throttle

5 final-pressure-rule
if u.flow2 u.flow.demand then u .pressure=2930

if p.flow2p.flow.demand then p.pressure=2930
else u.pressure=2930 x (u.flow/u.flow.demand)

else p.pressure=2930x (p.flow/p.flow.demand)

6 pressure-small-rule
if ul.status=O then

if ul.flow< u. flow .demand12 then
ul.pressure=O else ul.pressure=u.pressure

if ur .st at us=O then
if ur.flow<u.flow.demand/2 then

ur.pressure=O else ur.pressure=u.pressure
if pl.status=O then

if pl.flow<p.flow.demand/2 then
pl.pressure=O else pl.pressure=p.pressure

if pr.status=O then
if pr.flow<p.flow.demand/2 then

pr.pressure=O else pr.pressure=p.pressure

Figure 8: Diagnosis I Model

4 rpm-rule
if le.status=O then le.rpm = Trcfx 1e.throttle
if re.status=O then re.rpm = Trcfxre.throttle

5 finabpressure-rule
if u.flow2 u.flow .demand then u .pressure=2930

if p.flow>p.flow.demand then p.pressure=2930
else u.pressure=2930 x (u.flow/u.flow.demand)

else p.pressure=2930 x (p.flow/p.flow.demand)

6 intermediate-large-pressure-rule
if ul.status=O & ur.status=O then

if pl.status=O & pr.status=O then
iu.pressure=u.pressure+(u.resistancex u.flow2)

ip.pressure=p.pressure+(p.resistancex p.flow2)

7 resistance-large-rule
if T then u.resistance=Ku/(2 xfluid.densityxu.area2)
if T then p.resistance= Kp/(2 x fluid .density x p. area2)

8 force-large-rule
if ul.status=O & ur.status=O then

iu.pressure = u.force/u.area
if pl.status=O & pr.status=O then

ip.pressure = p.force/p.area

9 force-small-rule
if ul.status=O & ur.status=O then

if pl.status=O & pr.status=O then
u.force = ur.force+ul.force

p.force = pr.force+pl.force

Figure 9: Diagnosis I1 Model

362

10 intermediate-smalbpressure- le
if ur.status=O then iur.pressure = ur.force/ur.area
if ul.status=O then iul.pressure = ul.force/ul.area
if pr.status=O then ipr.pressure = pr.force/pr.area
if pl.status=O then ipl.pressure = pl.force/pl.area

11 pressure-small-rule
if ul.status=O then dpressure =

if ur.status=O then ur.pressure =

if pl.status=O then pl.pressure =

if pr.status=O then pr.pressure =

iul.pressure+(ul.resi.;t ancex ul.flow2)

iur .pressure+(ur. resistance x ur .flow2)

ipl. pressure+(pl.resistancex pl.flow2)

ipr .pressure+ (pr .resistance x pr .flow2)

re.throttle
ul.radius ur .radius

3 flow-small-rule
if ul.status=O then

if ur.status=O then

if pl.status=O then

if pr.status=O then

ul.flow = ul.areaxfluid.densityx ul.velocity

ur .flow = ur . area x fluid .densi t y x up. veloci t y

pl.flow = p1.areaxfluid.densityx pLvelocity

pr.flow = pr.areax fluid.densityx pr.velocity

12 resistance-small-rule
if T then ur.resistance=Kur/(2 x fluid.densityx ur.area2)
if T then ul.resistance=Kul/(2xfluid.densityxul.area2)
if T then pr.resistance=Kpr/(2xfluid.densityxpr.area2)
if T then pl.resistance=Kpl/(2xfluid.densityxpl.area2)

Figure 9 Continued: Diagnosis I1 Model

Use-Neutral to Design This is a more complex
set of transformations; the intermediate constraints
are shown in Figure 11. First the assumptions are
added (i.e., that the pipe resistances are 0). This
allows UNC 9 and 15 t o become constants; these
constants are replaced in UNC 8 and 14 to pro-
duce %' and 14'. Since 8' and 14' are now equalities,
they can be substituted into UNC 11 and 13 and
removed. This produces 11' and 13'. Notice that
this can only be done since the antecedents of con-
straints 8' and 14' are implied by the antecedents of
constraints UNC 11 and 13 (this type of requirement
occurs throughout these transformation sequences).

The assumptions that the left and right pipes
for each subsystem have equal sizes and that the
pipes out of each subsystem are twice the size of
these inflow pipes are added; transforming 13' into
13". The constraint 11' is now substituted into the
constraint UNC 12 and removed; producing 12'. The
constraint 12' is substituted into the constraint 13"
and removed; producing 13'". At this point UNC
10 can also be removed2. The assumption that the
forces through the left and right modules of each
subsystem are equal is added. This allows the in-

4 area-small-rule
if T then ul.area = axul.radius2
if T then ur.area = nxur.radius2
if T then pl.area = axpl.radius2
if T then pr.area = nxpr.radius2

5 velocity rule (small pipe)
if T then ul.velocity = Ecxle.rpm
if T then ur.velocity = Ecx re.rpm
if T then pl.velocity = Ecxle.rpm
if T then pr.velocity = Eexre.rpm

6 rpm-rule
if le.status=O then le.rpm = Trcfx le-throttle
if re.status=O then re.rpm = Trcfx re.throttle

7 final-pressure-rule
if u.flow>u.flow.demand then u.pressure=2930

if p.flow>p.flow.demand then p.pressure=2930
else u.pressure=2930 x (u.flow/u.flow.demand)

eke p.pressure=2930x (p.flow/p.flow.demand)

8 pressure-small-rule
if ul.status=O then

if ul.3ow<u.flow.demand/2 then
ul.pressure=O else ul.pressure=u.pressure

if ur.status=O then
if ur.flow<u.flow.demand/2 then

ur.pressure=O else ur.pressure=u.pressure
if pl . status=O then

if pl.flow<p.flow.demand/2 then
pl.pressure=O else pl.pressure=p.pressure

if pr.status=O then
if pr .flow< p .flow .demand12 then

pr. pressure=O else pr. pressure=p. pressure

Figure 10: Design Model

363

8' intermediate-large-pressure-rule
if ul.status=O & ur.status=O then

if pl.status=O & pr.status=O then
iu.pressure = u.pressure

ip.pressure = p.pressure

14' pressure-small-rule
if ul.status=O then ul.pressure = iuLpressure
if ur.status=O then ur.pressure = iur.pressure
if pl.status=O then pl.pressure = ipl.pressure
if pr.status=O then pr.pressure = ipr.pressure

11' force-large-rule
if ul.status=O & ur.status=O then

u.force = u.pressurex u.area
if pl.status=O & pr.status=O then

p.force = p.pressurex p.area

13' intermediate-small-pressure-rule
if ul.status=O then ul.pressure = ul.force/ul.area
if ur.status=O then ur.pressure = ur.force/ur.area
if pl.status=O then pl.pressure = pl.force/pl.area
if pr.status=O then pr.pressure = pr.force/pr.area

13'' intermediate-small-pressure-rule
if ul.status=O then uLpressure = (2*ul.force)/u.area
if ur.status=O then ur.pressure = (2*ur.force)/u.area
if pl.status=O then pl.pressure = (2*pl.force)/p.area
if pr.status=O then pr.pressure = (2*pr.force)/p.area

18' force-small-rule
if ul.status=O & ur.status=O then

if pl.status=O & pr.status=O then
u.pressurex u.area = ur.force+ul.force

p.pressurex p.area = pr.force+pl.force

13"' intermediate-small-pressure-rule
if ul.status=O then ul.pressure =

if ur.status=O then ur.pressure =

if pl.status=O then pl.pressure =

if pr.status=O then pr.pressure =

(2*ul.force) /((ur.force+ul.force)/u.pressure)

(2*ur.force)/((ur .force+ul.force)/u.pressure)

(2*pl.force)/((pr.force+pl.force)/p.pressure)

(2*pr.force)/((pr.force+pl.force)/p.pressure)

19"" intermediate-small-pressure-rule
if ul.status=O then ul.pressure = u.pressure
if ur.status=O then ur.pressure = u.pressure
if pl.status=O then pl.pressure = p.pressure
if pr.status=O then pr.pressure = p.pressure

Figure 11: Intermediate Constraints

termediate values computed in 12' to be removed3
and 13'" is transformed into 13"". The last two as-
sumptions added are that the flows for each mod-
ule in a subsystem are equal and that the pres-
sure for each module is either 0 or its maximum
value (Le., 2930) which alters 13'"' into constraint
8 of the design model (see Figure 10). It is im-
portant to note that for the task-specific knowledge
base to be consistent some of the assumptions have
to explicitly remain (i.e., they cannot be totally
compiled into the previous constraints). These as-
sumptions are not explicitly shown in our models.
For instance for the Design model the assumptions
which are not totally compiled are ul. areu=ur. urea,
pl.awa=pr.areu, ul. force=ur. force, pl. force=pr. force,
ul.pressure = 2930 V ul.pressure = 0, ur.pressure
= 2930 V ur.pressure = 0, pl.pressure = 2930 V
pl.pressure = 0, pr.pressuw = 2990 V pr.pressure
= 0.

Consistency versus Pre-defined KB If a pre-
defined knowledge base is added to the system a
choice must frequently be made. Either the trans-
formations are applied consistently given a specific
set of assumptions or they are partially applied so
as to retain the exact representation of the origi-
nal knowledge base. When the latter is chosen, the
inconsistent application of the transformations can
allow the knowledge base to be inconsistent. The
inconsistent application of transformations can be a
flag highlighting these inconsistencies and bringing
them to the attention of the creator of the knowl-
edge base. For instance in the Diagnosis I model
shown in Figure 8, constraints 5 and 6 are incon-
sistent with each other. This occurs because the
assumption that the pressure for each module is ei-
ther 0 or the maximum is compiled into constraint
6 but not into constraint 5. This inconsistency was
preserved so as to achieve the exact representation
of the original pre-defined set of constraints for Di-
agnosis I. The use of our technique highlighted this
inconsistency which was not noticed before. Even
if the transformations are applied consistently, the

3Since the force variables are not input or appear in any
other formulas, this formula can only be used to determine
values for these forces. And since these forces are never sensed,
there is no need to retain the constraints.

364

derived knowledge base is not necessarily consistent
with the original one. But it is consistent modulo its
initial input (i.e., the use-neutral knowledge reposi-
tory, assumptions made, and transformations used).

6.3 Associational Rules

An algorithm for generating an associational knowl-
edge base for diagnosis was demonstrated. Figure 12
shows a rule for the Diagnosis I model. The associ-
ational rules were derived using a back-propagation
algorithm over the results of a model-based reasoner.
For instance the previous rule was derived when the
symptom ur.pressure.status = I & ur.pressure.status
= 0 and fault ur.pressure. indicator were discovered
by a model-based reasoner. The symptom was back-
propagated over the constraints associated with each
component. When the result is totally in terms of
the primitives of the model-base reasoner, then the
back-propagation terminates and the resulting ex-
pression is the antecedent of the associational rule.
The rule in Figure 12 was more precise than the rule
derived for the same scenario by the person who cre-
ated the model-base reasoning model.

if ur.pressure.status.reading=l&ur.pressure.status=O&
le.status=O&re.status=O&ul.stat us=O&ur.status=O&
[(Rtfcc x n c f x (le.throttle+re.throttle))>

(Rtfcc x Trcfx re.throttle)>=.25 x sys.flow.demand
(0.22 x sys.flow.demand)]&

then faulty(ur.pressure.indicator)

Figure 12: Associational Diagnosis Rule

6.4 Updates

This methodology is most beneficial when updates
are performed on the use-neutral knowledge repos-
itory and then propagated to the pertinent knowl-
edge bases. We explored the propagation of updates
by running the entire updated knowledge repository
through the same transformations again to derive
the changes to the knowledge bases. Two specific
updates were explored in depth. The first adds the
notion of work to the knowledge repository in terms

of its relationship to force. The transformations de-
termine that this concept is irrelevant for these tasks
and derive the same set of knowledge bases as before.
Then a second update removes force. After this up-
date the transformations produce knowledge bases
which use work divided by distance as a replacement
for force in all the pertinent constraints.

There are several problems with this method of
updating. The transformations should be applied in-
crementally after an update. Instead of reprocessing
the entire knowledge repository, only the pertinent
subportions are reprocessed. This is very difficult,
because an update may cause another piece of knowl-
edge in the repository to be transformed differently.
Also transformations might be applicable where they
were not applicable before the update. Even more
difficult is the requirement that no other transfor-
mations (outside the set which were applied before
the update) are applicable now. Further a change to
the repository might make the old transformations
invalid. When this happens the knowledge reposi-
tory might no longer be able to reach the existing
representation of the knowledge base anymore.

Handling updates is a hard problem, but classes
of updates can be defined which are guaranteed to
transform correctly. We must explore updates in
many domains so as to define this class.

6.5 Creating a Knowledge Repository

The research done in this area was very prelimi-
nary in nature. Given several pre-exis ting knowledge
bases which contain overlapping knowledge, the gen-
eration of a knowledge repository can be partially
automated. Their knowledge is compared and the
most primitive components of the knowledge bases
are used to create the knowledge repository. This
can be done via partial matching as follows. Given
two knowledge bases, all those rules which are an
exact match are automatically placed in the use-
neutral repository. For pairs of rules which score
high on the partial match, assumptions are hypoth-
esized which allow one of the rules to be trans-
formed into the other. At this point user inter-
vention could avoid nonplausible assumptions. The
use-neutral repository is constructed from the knowl-

365

edge base rules to which assumptions were added to
reach other rules. The complexity of this technique
increases with the number of knowledge bases, but
the number of high scoring partial matches increase
inversely.

Notice that this technique relies on one rule be-
ing an abstraction of another. This methodology will
not work when none of the knowledge bases have the
most primitive knowledge, but instead are all slightly
different abstractions of this knowledge. For in-
stance, assume the primitive knowledge is A=Bx @.
If one knowledge base had A=U and the other knowl-
edge base had A-lUOxB, then the system will not
be able to hypothesis the primitive knowledge on
its own. It assumes that A=BxC was the primi-
tive knowledge using the assumptions that C=U or
C=1UU. There is no reason for it to choose the
more complex (and in this case correct) set of as-
sumptions. Either a person must aid the derivation
of the knowledge repository or another knowledge
source containing general purpose primitive knowl-
edge (e.g., a fluid dynamics knowledge seed) must
be brought to bear. If the knowledge bases repre-
sentations are too different the system also fails. For
instance comparing the notion of equalitaral-triangle
and triangle-where-all-the-sides-are-equal-length.

We must explore more domains, to determine
what techniques will be useful in which situations.

7 Future Research

Exploration of this technology's capacity for gener-
ating new knowledge-based systems is needed. First
cuts at totally new knowledge bases can be gen-
erated. For instance assume that a design knowl-
edge base for a device A and a diagnosis knowledge
base for a device B are presently connected to the
knowledge repository, we need to derive a diagnostic
knowledge base for device A. The same knowledge
about the device used in deriving the design knowl-
edge base should be used, but it should now be trans-
formed for a diagnostic task. To derive a first cut at
this knowledge base the knowledge concerning device
A can be run through the set of transformations pre-
viously used on device B. Some transformations are

likely not to fire and other necessary transformations
are likely to be missing, but the hypothesis is that a
good first cut at a knowledge base is generated.

The next logical step in this research is to im-
plement these ideas so as to test them in several
domains. To explore the update question in depth,
a more complex domain is necessary. We are look-
ing for a NASA domain which meets these require-
ments. More work is needed on the initial derivation
of the knowledge repository and on transformations
between multiple problem solvers. Transformations
based on approximations (as well as abstractions)
and the handling of inverse updates (i.e., updating
a knowledge base which is then propagated up to
the knowledge repository and then back down to the
other pertinent knowledge bases) should be explored.

8 Summary

In the life cycle of complex devices (i.e., the docking
bay door of the space station) , there are many pro-
cesses (e.g., design, process planning, and diagnosis)
that can be partially automated by knowledge-based
systems. As these knowledge-based systems prolif-
erate, the overlap of knowledge amongst these sys-
tems leads to increased knowledge management costs
(e.g., consistency and configuration management).
A knowledge repository capable of feeding multi-
ple knowledge-based systems is one solution. How-
ever, it is critical that knowledge in the repository be
stored in a use-neutral format and then transformed
into representations that are tailored for specific uses
(e.g., design). This explicit decomposition of knowl-
edge into a use-neutral corpus, knowledge transfor-
mations on that corpus, and use-specific knowledge
that is not shared by multiple systems, is useful not
only in maintaining existing knowledge-based sys-
tems, but also in generating initial versions of en-
tirely new systems.

We have developed a use-neutral representation
of an hydraulic system for the F-111 airplane. We
demonstrated the ability to derive portions of four
different knowledge bases from this use-neutral rep-
resentation: one knowledge base is for re-design of
the device using a model-based reasoning problem

366

solver; two knowledge bases, at different levels of
abstraction, are for diagnosis using a model-based
reasoning problem solver; and one knowledge base is
for diagnosis using an associational reasoning prob-
lem solver. The use of our technique highlighted
inconsistencies which were not noticed before. The
associational rules derived were more precise than
the rules derived for the same scenarios by the per-
son who created the model-base reasoning model.
We have shown how updates issued against the sin-
gle source use-neutral knowledge repository can be
propagated to the underlying knowledge bases. We
have also shown a plausible methodology for gener-
ating the knowledge repository given a set of pre-
existing knowledge bases.

References

[7] D. Lenat and R.V. Guha. The world accord-
ing to cyc. Technical Report ACA-AI-300-88,
MCC, 1988.

[8] M.R. Lowry. Category Theory and Homomor-
phic Abstraction. In Proceedings of the Change
of Representation and Problem Reformulation
Workshop, Price Waterhouse, 1990.

[9] P.J. Riddle. Automating Shifts of Representa-
tion. In P. Benjamin, editor, Change of Repre-
sentation and Inductive Bias. Kluwer, 1989.

[lo] P. Rothman. Knowledge Transformation. AI
Expert, 1988.

[ll] R.A. Stachowitz and J.B. Combs. Validation of
Expert Systems. In Proceedings of the Twenti-
eth Hawaii International Conference on System
Sciences, Kona, Hawaii, January lW7.

[12] D. Subramanian. A Theory of Justified ltcfor- ['I J' Van Automated Of mulations. In Proceedings of the Change of Rep-
ized In Proceedings O f the resentation and Problem Reformulation Work-
Change of Representation and Problem Refor-
mulation Workshop, Price Waterhouse, 1990.

shop, Price Waterhouse, 1990.

[13] B. Thuraisingham. From Rules to Frames and
[2] R. Davis. Diagnostic Reasoning Based on Struc-

ture and Behavior. Artificial Intelligence, 24,
1984. [14] A. Unruh and P.S. Rosenbloom. Abstraction

in Problem Solving and Learning. In Proceed-
ings of the Eleventh International Joint Confer-
ence on Artificial Intelligence, Detroit, Michi-
gun, pages 681-687. IJCAI, Morgan Kaufmann,
August 1989.

Frames to Rules. A I Expert, 1989.

[3] N.S. Flann. Learning Appropriate Abstractions
for Planning in Formation Problems. In Pro-
ceedings of the Sizth International Conference
on Machine Learning, Ithaca, New York, pages
235-239. Morgan Kaufmann, 1989. [15] D.S. Weld. Discrepancy Driven Selection of

Approximation Reformulations. In Proceedings
of the Change of Representation and Problem
Reformulation Workshop, Price Waterhouse,
1990.

[4] T. Gruber and U. Iwasaki. How things work
Knowledge-based modeling of physical devices.

[5] R.M. Keller. Model Compilation: An Ap-
proach t o Automated Model Derivation. In Pro- [16] B.C. Williams.
ceedings of the Change of Representation and
Problem Reformulation Workshop, Price Wa-
terhouse, 1990.

Interaction-based invention:
Designing novel devices from first principles. In
Proceedings of the Eighth National COnfernce
on Artificial Intelligence, 1990.

[6] C.A. Knoblock. Learning Problem-Specific Ab-
straction Hiearchies. In Proceedings of the
Change of Representation and Problem Refor-
mulation Workshop, Price Waterhouse, 1990.

*US. GOVERNMENTPRWTINGOFFICE: 1 9 9 1 - 5 27- 0 6 6 2 6 0 1 7

367

