


PREFACE 

This S t a ~ ~ d a r d ,  first published in October 1988, was prepared as an aid t o  scientists, engineers and 
nlaliagers who are responsible for identifying and interpreting trends in NASA programs. 

In this first revision to  the original Standard, material covering common trending errors and tests of 
significance has been expanded. Sections 4.4.9 on Normalization of Trend Data, 4.6 on Potential 
Problems in Determining and Analyzing Trends, as well as paragraphs on R2 values and signifi- 
cance of' fir have been included in this revision. It is hoped that this additional material will 
improve the understanding and use of trend techniques throughout NASA. 

Data and exar?lples in this doctrrnent have been developed to aid in iflustrating analytic techniques 
and sh~lrld not be construed to represent actual data or trends unless specificalIv noted. 

Questions should be addressed to NASA Headquarters, Systems Assessment and Trend Analysis 
Division (Code QT), Office o f  the Associate Administrator for Safety and Mission Quality, Wash- 
ington, DC 20536. 

Michael A; Greenfield 
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Chapter 1 

PURPOSE AND SCOPE 

This Standard presents descriptive and analytical techniques for NASA trend analysis applications. 
Trend analysis is applicable in all organizational elements of NASA connected with, or supporting, 
developmental/operational programs. Use of this Standard is not mandatory; however, it should be 
consulted for any data analysis activity requiring the identification or interpretation of trends. 

Trend Analysis is neither a precise term nor a circumscribed methodology, but rather connotes, 
generally, quantitative analysis of time-series data. For NASA activities, the appropriate and appli- 
cable techniques include descriptive and graphical statistics, and the fitting or  modeling of data by 
linear, quadratic, and exponential models. Usually, but not always, the data is time-series in nature. 
Concepts such as autocorrelation and techniques such as Box-Jenkins time-series analysis would 
only rarely apply and are not included in this Standard. 

The document presents the basic ideas needed for qualitative and quantitative assessment of trends, 
together with relevant examples. A list of references provides additional sources of information. 



Chapter 2 

BACKGROUNI) 

2.1 REPORTS BY ROGERS COMMlSSlON A N D  SLAY COMMISSION 

The Rogers Commission was appointed by the President t o  investigate the Challenger Space Shuttle 
accident. The Commission's mandate was t o  determine the probable cause@) of the accident; and, 
based on its investigative findings, t o  provide recommendations for improvements in space program 
safety. The committee's consensus was that sealing failure of O-rings in the Shuttle's right Solid 
Rocket Booster was the specific failure leading to  the accident. Investigation of the circumstances 
surrounding the accident revealed that data on O-ring anomalies in previous shuttle flights showed a 
hazardous trend beginning in January 1984. However, no quantitative trend analysis was conducted 
prior to mission 51-L to  reveal and substantiate this trend. Thus, the developing trend in O-ring 
erosion/blowby went unnoticed. 

I11 response to the Committee recommendations, the Office of Safety, Reliability, Maintainability 
and Quality Assurance was established. (As of October 1990, the name was changed to  the Office 
of Safety and Mission Quality.) The Office functions in a policy determination and .-oversight 
capacity for all NASA SRM&QA activities, and has responsibility for ensuring that trend analysis 
techniques are applied, where appropriare, in NASA programs. 

In September of 1986, the committee on Shuttle Criticality Review and Hazard Analysis Audit, 
known as the Slay Commission, was established in response to a recommendation by the Rogers 
Con~mission. The Committee's purpose was to evaluate NASA efforts in reviewing safety-critical 
shuttle components and identifying components needing improvement. The Committee's report was 
more broadly focused, evaluating the entirety of STS risk assessment and risk management proce- 
dures. 

The Slay Commission recommended that NASA employ more quantitative methods and measures in 
assessing STS risks, and in supporting NASA management decisions regarding the STS. Trend 
analysis is one quantitative technique to identify potentially hazardous conditions based on past 
empirical data. 

2.2 RK1,EVANT NASA G U I D A N C E  

NASA Management Instructions 8070.3 and 8070.4 pertain to specific trend analysis requirements 
and risk management policies, respectively. NASA Handbook 8070.5 is a companion document to  
NMI 8070.3 and further defines the responsibilities, classifications, and overall guidelines for the 
conduct of trend analysis for manned spacecraft and associated payloads. 

2.3 MOTIVATION FOR T R E N D  ANALYSIS - BASIC OBJECTIVE AND BENEFITS 

In assessing system (or component) reliability and safety, the most complete quantitative knowledge 
would be in a reliability function (or equivalently, a risk function). The reliability of a system (or 
component) is a real-valued function with range in the interval [0,1]; it is a probability funcrion, 
giving the probability of adequate performance under specified conditions up to  a time, t .  Usually 
this reliability function, denoted R, is a function of a time variable and certain parameters. For 
example, a wear-out time-to-failure model widely used is the Weibull model R =exp(-atb), where a 



and b arc. parameters to be estimated. More generally, sometimes the parameters of the reliability 
I'unct ion are themselves functions of other variables, such as pressure and temperature. 

Detcrmir~ing the reliability distribution and estimating its parameters may be very difficult, costly, 
and perhaps intractable. Trend analysis is an alternative or  companion approach. Specifically, we 
know that the values of certain variables will directly impact on a component or  system's reliability, 
even though the exact quantitative relationship or  risk has not been determined. Those measurable 
variables (parameters) that directly affect system or  component reliability are sarnpied over time. 
The variable values are examined to see if there is a pattern of deviation over time (i.e., a trend) 
from acceptable performance limits. In this manner, one may be able to  predict future parameter 
values, or at least estiniate the long-term range of values of these influential variables. In turn, if 
these paranieters are trending towards hazardous or unacceptable levels, the potential problem could 
be identi fied prior to  the occurrence of high-risk situations. 

Tiit. preceding trending approach is termed performance trending. In other applications, the focus 
may be less on detecting a deviation from an acceptable limit than on detecting an overall upward 
or downward mo\fenlenr o f  a set of observed values over time. This general trending could apply to  
programmatic or  reliability concerns: for example, significant problem reports; workmanship de- 
fects; cannibalizations; relative risks and failure rates. Trending applied to management indicators is 
tern~ed programmaiic trending. When applied to frequency of occurrence, .it is termed problem 
Irending. Supportabilily trending focuses on specific subject matter,, namely logistics in formation. In 
all of these domains, a trend analysis can reveal a movement towards unacceptable, undesirable or 
dangerous reliability, safety, or quality assurance levels. Also, if the particular trending model has a 
significant quantitative fit (e.g., linear, quadratic, exponential), future predictions can be made. 

Froni a management or reliability point of view, there are cases where a distinct trend should exist. 
For example, there should be an increasing trend in reliability with successive design changes and a 
decreasing trend in open significant problem reports as time-to-launch decreases. 

Thus, measurable variables will impact, directly or indirectly, system reliability, safety, and quality 
assurance. Even though the exact or approximate quantitative relationship to  reliability may not be 
known, following the trending of these variables may identify porentiaily significant reliability/ 
safety problems. This prou~~rive posture is both the objective and tangible benefit of the trend 
analysis approach. 



Chapter 3 

TREND ANA1,YSIS - OVERVIEW 

3.1 FOUR CLASSES OF TREND TYPES 

NASA Handbook 8070.5 provides the definitions for the four types of Trend Analysis: Perfor- 
mance, Problem, Programmatic, and Supportability. The following summarizes these definitions: 

a.  Performance Trending. This trend analysis is used to measure a condition(s) that is 
changing over time in a manner that eventually will cause the part/system t o  fail. This 
technique can be considered a simple reliability model. A simplified example of a perfor- 
mance trend would be the decline in electrical output of a deployed solar panel over time. 

b. Problem Trending. This trend analysis tracks and categorizes problems over time. The 
problems may be for an entire system, subsystem, or  any other appropriate level of 
aggregation. This technique allows managers to  focus on the problems that are occurring 
with the most frequency. 

c. frogrammatic Trending. This trend analysis quantitatively monitors program-related indi- 
cators such as overtime, critical schedule elements, and manpower resource availability, 
which relate to or reflect a potential impact on safety or  mission/operational success. 

d. Supportabilitjr Trending. This trend analysis quantitatively examines dver time logistic 
support elements. The trending areas for supportability would include such issues as 
servicing, repair, spares, overhaul and refurbishment, etc. 

3.2 BASIC l).Kk'INITIONS OF STATISTICAL TERMS 

Abscissa X coordinates in a rectangular coordinate system. 

Alpha Error ( a )  The probability of rejecting a true population parameter or 
average. Also called Type 1 error or  Producer's Risk (re- 
jected a good lot). 

Beta Error ( p )  The probability of accepting a false or incorrect population 
parameter or average. Also called a Type I I  error or  Con- 
sumer's Risk (accepted a bad lot). 

Confidence Interval The interval computed around an estimated parameter, which 
expresses the probability of including the true population 
value within its bounds. 

Correlation 

Extrapolation 

The degree of relationship between two variables. 

A prediction of a Y value using an X value outside of the X 
range from which the model was derived. 



FrequencyDistribution

Independence

!ntercept

Interpolation

LeastSquares

Mean

NormalDistribution

Ordinate

Parameters

Pareto

Pareto Diagram

Population

Projection

Range

Residuals

Risks

Sample Size

A tabular or graphical arrangement of data by classes, along

with the corresponding class frequencies.

if the occurrence or nonoccurrence of one event does not

affect the probability of occurrence of a second event, then

these are independent events.

The Y value when X = 0 for a line plotted in the X-Y coordi-

nate system.

Estimating a Y value between two known (X,Y) pairs.

In cases where a linear relationship is known to exist, or may

be reasonably assumed to exist, the principle of minimizing

the square of the residuals is called least squares. Fitting a

regression line through data points by minimizing the sum of
the squares from the fitted line to the observed points.

The term used to describe a population or sample average.

For a variable X, the mean is usually denoted by X or #.

A type of symmetrical or bell-shaped frequency curve charac-

terized by the fact that observations equidistant from the

mean have the same frequency.

Y coordinates in a rectangular coordinate system.

The term applied to population or sample characteristics such
as the mean and standard deviation.

The concept that a relatively large percentage (80-90°7o) of

problems will be caused by a relatively small percentage (10-
20%) of related factors.

A rank ordering of problem causes by their contribution,
usually in decreasing order.

Any group of items. A universe.

An expansion of sample results to population values.

The difference between the largest and smallest item in a set
of data.

Also known as random disturbance. The error in fitting a

line/curve through a set of data points.

The term applied to either or both the alpha or beta error.

The number of items selected from a population that will be

used to make inferences about the total population.
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Significance Level

Slope

Standard Deviation

Universe

Variability

Variance

Same as alpha error. Computed as 1 - (confidence levei).

The rate of change in Y per unit change in X for a line
plotted in the X-Y coordinate system.

A measure of variability used in common statistical tests. It
is the square root of the variance and is usually denoted by
0".

Same as population. The total group of items possessing a
certain characteristic(s).

A term expressing the spread of items around a sample aver-
age.

A measure of the spread or variability in a set of data. The
average of the sum of squares of individual deviations from
the mean and is usually denoted by a2.
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Chapter 4

ANALYTIC AND DESCRIPTIVE TREND TECHNIQUES;
APPLICABILITY; EXAMPLES

4.1 DESCRIPTIVE STATISTICS

Descriptive statistics refers to raw data frequencies and tabulations, and simple measures such as the

mean (average), median, and percentiles. While these quantifications are the most fundamental and
elementary, they are probably the most important approaches in the NASA efforts for trend

analysis. More sophisticated analyses should be preceded by the generation and examination of

basic descriptive statistics. In many cases, a descriptive statistics approach, coupled with a graphical
portrayal of the data, will be sufficient for trending purposes.

4.1.1 Frequencies and Tabulations

The frequency of a variable is simply a numerical count of the distinct values (or groups of values)
for the variable. A standard application would be the number of problem reports from the PRACA

Database on components of a subsystem (e.g., the STS ET) for a given time period; or the number

of occurrences of each failure mode for a specific STS hardware component. In many cases, the

first analysis step will be a frequency for the highest failing or highest problem-related criticality l/
1R/1S components (usually the top 10-25).

A 2-way tabulation is an n x k frequency table. Tabulations of this type are useful in investigating

and portraying the frequency of occurrence for a pair of classifications or variables. In the trending
effort, tabulation for the highest .problem-related criticality 1/1R/IS parts for the current STS

prelaunch period, and their respective counts for past periods, is useful to see if there is any
developing trend. Such a tabulation would be of the form:

Highest Problem-Related CRIT 1/1R Components for Current Prelaunch Period
Subsystem =

Component Criticality Current

Launch Periods

-1 -2 -3

Note: Highest Problem-Related Components are determined for current period and historical fre-
quencies are traced for previous periods to display possible trends.

4-1



4.2 GRAPHICAL TECHNIQUES

The purpose for any collection of data is to convert data into information. This information is then

used in support of management decisions. Graphical techniques provide simple, yet clear and

concise means to transform raw data into information. A representative sample of the most

commonly used techniques for quality assurance and reliability are presented in the following

paragraphs. These techniques may be easily modified or combined to portray information.

4.2. I Scatterplots

As emphasized throughout this Standard, one of the first steps in analyzing any set of data is to

plot it. The first type of plot considered for trend data is a scatterplot. This plot is simply a
bivariate plot with time on the x axis and the corresponding values on the y-axis. Additional

information such as the regression line, moving averages or other smoothing procedures, and
additional sets of y values, can be overlaid on this plot.

Figure 4.2A is a sample scatterplot that shows the percent of welds failing inspection over a 16-
week time period.

2O

r is

s

(%)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

WEEK

Figure 4.2A. Scatterplot (Sample)
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4.2.2 Control Charts

Control charts are the basic graphical tool used in quality control. They are an extremely efficient

way to present a large amount of information. There are numerous types of control charts, several

of which are listed in Chapter 4, Section 4.5.1. Figure 4.2B is a sample control chart that is

applicable for the thickness of an item such as an orbiter tile or wall thickness of a heat exchanger.

OL

U÷3u

],[ (MEAN)

u-3a

1 2 3 4 5 6 7 8 9 10

LOT

Figure 4.2B. Control Chart (Sample)

4.2.3 Bar Plots

Bar plots are commonly used to portray changes over time, and to compare more than one set of

data on the same graph (paired bar graphs). Through the use of desktop computer software
packages, three-dimensional bar plots provide further resolution to the graphical data.

Figures 4.2C through 4.2E are examples of bar plots.
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Figure 4.2E. Three-Dimensional Bar Plot (Sample)

4.2.4 Pareto Charts

Pareto charts place emphasis on the type of defect responsible for the most problems. As with all
graphical techniques, there are many variations. In its simplest form, the Pareto Chart is a sor[ed

bar chart. However, by using segmented bars (see figure 4.2D) and/or time period comparisons (see
figure 4.2G), much more information can be conveyed than through a simple bar graph. Note that
when using pareto charts for a before and after comparison, actual data rather than percent must
be plotted to provide an accurate picture of the comparison (i.e., if welds are 50°7o of 100 problems
and you reduce the number of problems to 30, with 15 being welds, a percentage pareto chart will
show no improvement for weld errors when, in fact, they have decreased from 50 to 15).
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4.2.5 Histogram (Stem and Leaf)

A histogram is a chart that displays frequency of occurrence. Such charts are essential when
determining a probability distribution for the data. Histograms are developed by dividing the range
of the data into equal intervals, counting the number of data points in each interval, and plotting
these counts. A stem and leaf plot provides more information than a histogram from the same

data. Instead of plotting points, the actual numerical data values are used to graphically represent
the frequencies. For example, suppose that we want to determine if the distribution of a particular
process is approximately normal. Figure 4.2H shows shaft diameters ranging from 1.016" to 1.070".
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Figure 4.2H. Histogram (Sample)

The same data shown is figure 4.2.H also can be displayed as a stem and leaf plot as shown beloxv:

1.0116

1.021011234
1.02[6688899
1.03101122333444
1.03155667777788899
1.04:0000011112233334444
1.04 5556677777888999999
1.05 01111112233333333344
1.05 5555566667778888999
1.06 0000011122233334
1.06 56668899
1.07 0

The first line represents 1.016, the second line 1.020, 1.021, 1.021, 1.022, 1.023, and 1.024.

4-7



- ~..

4.2.6 Smoothing

Smoothing is a technique used to adjust time-series data for characteristic movements or variations.

These techniques are usually classified into four main types: long-term or secular, cyclical, seasonal,

and irregular or random. The methods that are used to smooth data include moving averages,

moving medians, moving midpoints, and exponential smoothing. The exponential and moving
average techniques are the most applicable and are developed in the next section.

Figure 4.21 shows how smoothed data allows one to visually discern long-term trends and data
patterns that are obscured by fluctuations in the raw data.
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Figure 4.21. Smoothed Data (Sample)
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4.2.7 Box Plots

Box plots are an effective means of summarizing information from a large amount of data. When

done with time on the x-axis, they are useful in visually presenting trend data. The construction of

a simple box plot without the x-axis is shown in figure 4.2J.

MAXIMUM

4_ UPPER QUARTILE

MEDIAN

LOWER QUARTILE

MINIMUM

Figure 4.2,1. Box Plot (Sample)

More sophisticated box plots include: notching the box around the median in proportion to the

median's variability; varying the width to indicate sample size; and plotting outliers more than 1.5

times the interquartile distances from either quartile as asterisks.
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4.2.8 Location Plots

Location plots graphically represent the location and the type of error/defect occurring in a

process. These charts are maintained over time; therefore, certain trends usually can be observed as
they develop. For example, a circuit card may exhibit the pattern of solder defects, as shown in
figure 4.2K.

r a \

x x

gmi=aeeg

X .XMM .
: XM X :
|maielal|

X = DEFECT

M = MULTIPLE
DEFECTS

Figure 4.2K. Circuit Card Solder Defects

The area surrounded by the dotted line is a candidate for a thorough investigation. Redesign may

be necessary to enable this soldering to be achieved with higher quality. The chart also may be

drawn using more descriptive and multiple indicators for defects, such as defect type, machine
operator shift, and day of week.

4.2.9 Examples

4.2.9.1 Example 1: Goddard Satellite Missions - 1986 Anomalies. There have been 49 Goddard

satellite missions since 1970. The following Pareto charts aid in classifying the anomalies for
satellites in orbit in 1986, and hence, the possible general failure modes. These satellites are:

ERBS NOAA-6

GDES-4 NOAA-9

GDES-5 NOAA-10
GDES-6 SMM

LANDSAT-5 TDRS-l
NIMBUS-7

The Pareto chart approach is used to globally ascertain the problem areas and rank problems by

frequency. Figures 4.2L through 4.20 identify satellite anomalies by: satellite subsystem; criticality
of the failure; type of failure mode; and impact of the failure on satellite functioning.
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4.2.9.2 Example 2: Distribution of SSME UCRs/HPOT; FMEA Attributable UCRs. The follow-
ing pie chart shows the distribution of Unsatisfactory Condition Reports (UCRs) written against
shuttle main engines from January 1981 through December 1987. UCRs report both failures and
other unsatisfactory conditions or potential problems; the reports follow SSME components from
manufacturing acceptance tests throughout the component life-cycle. During the January 1981
through December 1987 period, 6,002 UCRs were written against SSMEs, which encompassed 25
shuttle launches, 764 engine tests, and 219,311 seconds of engine operation.

Restricting attention to the High Pressure Oxidizer Turbopump (HPOT), 730 UCRs were written,
217 of which could be directly related to FMEA/CIL failure modes. (Other UCRs referenced

design/development, fabrication/quality, non-failure condition, etc.) The table summarizes the type
of failure (referenced by FMEA code) on a quarterly basis. Turbine blade cracking/damage, bearing
problems, and turbine disk failures accounted for 38.2°70, 21.2°70, and 17.5°/0 of the FMEA applica-
ble UCRs, respectively. No increasing or decreasing trends are evident with respect to these kinds of

HPOT problems.
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ENGINE SYSTEMS (3.57,)
LINES. DUCTS. JOINTS (.6.1%)

IGNITERS & SENSORS (8.0_)__

HARNESSES (2.67,

FASCOS (0.6_,)

CONTROLLER (I 1.3X)

ACTUATORS (3.,7,)

PROPELLANT VALVES (4..OX)

PNEUMATIC CONTROLS (1.17,)

OXIDIZER TURBOPUMPS (14.9_)

COMBUSTION DE_ACES (22.8X)

NON-ENGINE UCRs (2.97.)

FUEL TURBOPUMPS (19.5_)

UCRs

Combustion Devices i 370

Fuel Turbopumps 1173
Oxidizer Turbopumps 894
Pneumatic Controls 66

Propellant Valves 243
Actuators 205
Controller 680
Harnesses 159
Igniters and Sensors 462
Lines, Ducts, Joints and Orifices 305
Fascos 35
Engine Systems 213
Non-Engine UCRs 177

Figure 4.2P. All SSME Components Proportion of UCRs (January 1981 - December 1987)

Remark: In general, bar charts are preferable to pie charts. When using pie charts, the relative
percentages (or absolute frequencies) of each segment should be given.
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Table 4.2-1

SUMMARY OF FMEA MODES AND OTHER UCRs

HPOT (B400) - DISTRIBUTION OF UCRs

1981 1982 1983 1984 1985 1986 1987

FMEA MODES UCRs/CRIT*

02B Nozzle Vane Damage/IR
03A Turbine Blade Cracks/I

03C Honeycomb Retainer
Failure. / I

03D Turbine Blade Impact

Damage/I

03F Loss of Damper Function/I

04C Blade Shroud Chipping/IR

05A Interstage Seal Damage/IR

06B Bending, Cracking of
Turbine Vanes/l R

07F Turbine Disk Failure,:l

08A Fracture, Distortion of

Inlet Vane/I R

09B Impeller Blade Damage/IR

09C Balance Cavity Leakage/IR

13A Bearing Failure/I

13E Loss of Bearing Nut
Preload/1

16A Excessive Primary

Secondary Turbine Seal

Leakage/I R

17A Labyrinth Seal Leakage/3

20A Fracture/Blockage of
Coolant Circuits/1

20B Coolant Passage Cracks/I

21A Weld, Parent Metal, or

Drain Line Failure/I

23A Turbine Piece Part

Structural Failure/I

25A Leakage Past the Inboard

OPB/HPOTP Seal/3

I 234

I 4

I 234

I 4 2 1

6 8 2 3

I 234

222 3

I

2 I I 5

2

2 1 3

1

I I

1 3 1

1234

I I

1

2 3

4 3 3 1

1

2232

I

I 2

2

2 3

i 234

1

1 2 2

I 2 2

4 5 6 I

I

I 6 2

1

I 234

I I

I I 1

1 I

l

I 3 l 2

I

2

2 !

1

1 I

I

1

I I

1 234

4 3 2

I I

I 3

TOTAL

6

14

I

II

54

2

I

38

6

6

I

45

1

2

2

I

7

11

4

* "WORST CASE" CRITICALITY
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4.3 SMOOTHING TIME-SERIES DATA TO PREDICT NEXT-EVENT FREQUENCY

Frequencies or number-of-events from past time periods are often used as predictors of the fre-
quency (or value) for the next time period. For example, the number of cannibalizations for
previous shuttle flights should be reliable predictors for cannibalizations in the next flight, assuming
conditions remain the same.

Two methods are given for forecasting the next-event value based on past values. These methods
are exponential smoothing and moving averages. With exponential smoothing, past event values are

weighted by varying powers of a constant u, 0<_< 1; more recent past events are given more
weight than events occurring further back in time. The moving averages method has two purposes:
(l) as a predictor of the next-event value, a simple average of the previous k events is computed
and used as the forecast; and (2) time-series data can be smoothed so that an overall upward or
downward trend becomes more apparent. Both methods are described in more detail in the follow-
ing paragraphs.

4.3.1 Exponential Smoothing

Exponential smoothing is a method used to average past quantities to predict the value or quantity
for the next (future) time period. The prediction or forecasted value for the next time period is
simply a weighted average of the actual observed value for the current time period and the
previously forecasted value for the current time period. The method is defined as follows:

Let X n denote the actual value for the time period, n. By convention, the subscript n will denote
the current time period, n-I will denote the previous time period, and n+ 1 will denote the next
time period. Then,

Fn+l = °tXn + (1-°t) Fn (1)

where 0<o_<1, Fn is the value forecasted for period n, and Fn+ 1 is the projected forecast for the
next time period.

Since Fn is itself a weighted sum of the previous period actual value, and the previous period

forecasted value, it follows that an alternative expression for the projected forecast, Fn+ 1 is:

Fn+ 1 = otXn + t_ (l-et)Xn_ 1 + o_ (1-o0 2 Xn_ 2 + ... (2)

Thus, the next-period forecast gives a weight to each past observed value, with decreasing weights
for observations in the more distant past. Observations in more recent time periods are weighted
more heavily (i.e., have a greater contribution to generating a forecast).

Remarks: (1) One problem in using exponential smoothing is to determine a suitable weighting
value, _. Note first that a small value for ct implies a slow response to change, and
that a large value of _ (i.e., a value close to I) gives extreme weight to the most
recent event(s). One way to choose a value for a is a retrospective simulation:

consider all time periods before n; compute a forecasted value for the time period n
for different values of o_; then choose that value, c_0, which gives a forecast (Fn) that
is closest to the observed actual value Xn; use this value, s0, as the weighting
coefficient for forecasting the next time period value, Fn+l.
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(2) Sincetheforecastedvaluewill lie on thelinesegmentbetweentheactualvalue,Xn,
and the previouslyforecastedvalue, Fn, the next forecastwill lag behind any
continuingtrend. Usingthe trendslope,the previousforecastcanbemodifiedto
offset the lag: letting b denotethe slopeof the trend line, then

Fn+I = olX n + (1-o0 [Fn+bl (3)

gives an exponential smoothing adjusted for trend.

(3) There are several different conventions or variations in the calculation of the trend

slope, b. Exponential smoothing adjusted for trend is a specific case of the
ARIMA (autoregressive integrated moving average) technique. Standard texts on
time-series analysis will provide more details on this method.

4.3.2 Moving Averages Method

Given past time-period measurements, the moving-averages method can be used to forecast the
value for the next time-period. The forecasted value is simply the average of a fixed number of past
values. For time-series data, the choice of the number of fixed values, k, to average is usually a

year or a fixed, cyclical period.

Let x l, x2..... x n denote past time periods with measured/observed values Yl, Y2 ..... Yn" In this
notation, Yn is the current or most recent time period. Using the last k measurements, the predicted
value Yn+l for the next time period, Xn+ 1, is given by:

k-1
1

= ]_ Y(n-j) (4)
Yn+l --_ j=0

(i.e., a simple average over the last k time periods.)

A more important use of a moving averages technique is to smooth data fluctuations, thereby
accentuating a trend. Each data value is replaced by the average of itself and surrounding values. In
this way, extreme fluctuations are minimized and an overall trend is displayed.

Computationally, let k be the number of samples on either side of a data value that will be used in

averaging_ When, for example k=2, then 5 values are averaged to give the averaged value at Yi,
denoted Yi. In this case,

Yi = Yi-2 + Yi-I + Yi + Yi+l + Yi+2 (5)

In general, the new averaged value is computed by:

2k

1 E Y[(i-k) + j] (6)Yi = 2k+ 1 .
j=O
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Remark: Each Yi in Equations 5 and 6 is a centered-average. Problems will occur at the end points

because there will not be enough values to extend out or back k-values for averaging
purposes. These points can be dropped if there are a sufficient number of other data

points in the sample. Otherwise, a modified average can be computed by repeating the
end point values (i.e., extending them) up to k time-periods.

4.3.3 Examples

4.3.3.1 Moving Average: Estimated Reliability of Vehicle Launch. An overall quantitative esti-
mate of the reliability and the trends in reliability of vehicle launch for Atlas/Centaur, Scout, and

Delta rockets can be made easily. The estimated reliability, in this context, means the crude ratio of

successes to total launches (hence, the probability of success).

Design changes and preflight testing procedures have occurred in the 1960-1988 time period. A
simple ratio of total successes to total launches (for each vehicle type) would not reveal the

reliability in later years, affected by such changes. Therefore, the data are presented by year.
Figures 4.3A through 4.3C give the launch records for: Atlas/Centaur, Delta, and Scout rockets,
respectively, in the 1960-1988 time frame.
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In orderto minimizethe fluctuationof reliability in a givenyeardueto a smallsetof launches,a
5-yearmovingaverageon yearlyreliabilitiesis used.Thereareseveralwaysto computetheaverage
yearlyreliability.Onemethodwouldbeto averagethereliabilitiesaroundthegivenyear.However,
sucha methodgivesequalweight to the reliability for a year with few launchesand to the
reliability for an adjacentyear, which (by comparison)has many launches.To avoid this, a
weighted moving average is computed. A weighted moving average is a modification of the moving
average method described in section 4.3.2. The average value at Yk, rather than being

Yk = Yk-2 + Yk-I + Yk + Yk+l + Yk+2 (7)

is computed as

Yk =Wk-2Yk-2 + Wk-lYk-I + WkYk + Wk+lYk+l + Wk+2Yk+2 (8)
I_Wi

Here, W i are the weights, with the standard moving average having all weights equal to 1. Letting

^ Wjwj = (9)
YW i

note that an equivalent expression for Yk is

A A

Yk = Wk-2Yk-2 + Wk-lYk-l + -..

A

+ Wk +2Yk+2 (lO)

where

A
EWj = 1 (ll)

For the reliability of vehicle launch, the weighting system will be the number of launches attempted
in that year. Then, reliabilities determined from a large number of launches will have significant
weight and, conversely, reliability values from a small number of launches will have less significant
weight. Figure 4.3D gives the weighted moving average launch reliabilities for Atlas/Centaur, Scout,
and Delta.
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Figure 4.3D. Launch Vehicle Reliability (Five Year Moving Average)

As an example, for a specific computation, the moving average Scout reliability at t= 1965 is

computed as follows: the reliabilities for 1963 through 1967 are 5/9, 10/l l, 5/5, 9/9, and 7/9,

respectively. Since there was a total of 43 launches during this period, the weights are 9/43, 11/43,

5/43, 9/43, and 9/43, respectively. Therefore, the computed moving average is given by:

Y1965 = 9/43(5/9) + 11/43(10/11) + 5/43(5/5) + 9/43(9/9) + 9/43(7/9)

= 36/43 = .837 (12)
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4.4 FITTING TREND LINES - REGRESSION

4.4.1 Overview and Distinction Between a Trend Line Fit and Regression

4.4.1.1 Overview. Intuitively, suppose at a set of points x l, x2..... Xn, we are given a set of

measurements/experimental values/observations Yl, Y2..... Yn" One can display these data points
(xi, Yi) graphically as shown in figure 4.4A:

! ' ' ' S_ " X
XI X 2 X 3 X 4 Xn

Figure 4.4A. Plot of Rectangular Coordinates {(xi, Yi)}

We suspect that there is a relationship between the observation points {Xi} and their corresponding
observables {Yi}. The simplest case is when the relationship is linear, so that graphically-we have,
approximately, a line as shown in figure 4.4B:

Figure 4.4B.

' ' . . SS . x
Xl X z X 3 X 4 X n

Approximate Linear Relationship Between the Observation Points or Times {xi} and
the Observed Values {Yi}
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When the points {xi} are time values, this linear relationship, should it exist, is called a lin'ear
trend; and the process of finding the best line to fit the data is called fitting or determining a trend
line. Fitting a trend line can be regarded as relatively simple, or somewhat sophisticated, depending
upon the point of view. The main subtleties and complexities arise, not from determining the
equation of the trend line, but rather in interpreting how accurately this line fits the data. In the
remainder of this section both the simpler (more practical) viewpoint and a more in-depth presenta:
tion are given.

An overview of the process for fitting and evaluating the accuracy of a trend line proceeds as
follows:

a. Find the equation of the trend line.

b. Determine whether the trend line, as the best fitting line, adequately models or fits the
observed data. If there is a significant lack of fit, then there is no identifiable linear
trend.

C° Assuming that the trend line adequately fits the data, test to see if there is a positive or
negative (i.e., upward or downward) trend. This requires a statistical test, using what is
known as a t-distribution. Briefly, the reason one employs a statistical test is because
there is rarely a perfect fit - that is, the {Yi} values rarely lie directly on a line. In
assuming that a true linear relationship holds between {xi} and {Yi}, the deviations
between each observed Yi and its corresponding point on the trend line are, therefore,
considered errors in the measurement of the Yi, or necessary variations in y for a given xi.
These errors, in turn, mean that the actual coefficients of the computed trend line have
some error or variation in them. The question then becomes: can one rule out the
possibility that the trend line is flat (i.e., no trend), taking into account the errors in
estimating the coefficients of the trend line?

d: Finally, assuming that there is a non-zero trend, use the trend line to predict future
values and the confidence limits or probable errors surrounding these predicted values.

4.4.1.2 Distinction Between a Trend Line and Regression. Strictly speaking, fitting a trend line is
slightly different from the statistical method known as regression analysis. Determining the equation
of the best fitting line is the same in both cases; the methods differ in how one interprets holy
accurately this line fits the data, and how one interprets the errors or deviations from the observedA
values {Yi} and the predicted, fitted values {Yi}"

In fitting a trend line, the assumption is usually made that for a given x i the corresponding Yi is an
exact value. For example, if one is trending the number of significant problems reported by months
prior to launch, the number of significant problems is a constant value for a given month. No error
in measurement is postulated. In turn, any deviations between the observed values and the trend
line values is attributed solely to lack of fit of a linear model.

The regression analysis viewpoint is more subtle. Note that for each xi there is a measured or
observed value Yi" There could be errors in measuring the value Yi precisely. For example, in a
performance trend, if Yi is a continuous variable (e.g., temperature), there will be some variation in

measurement. Also, it may be the case that for a given xi there is not a fixed Yi, but a range of vi
values.
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xi, there is a rangeof valuesfor y. And that in fitting a line, calledthe regressionline, oneis
fitting eachxi to the mean value of the corresponding observable y. Therefore, at a given xi there
corresponds a distribution of values. The usual assumption is that each measured Yi comes from a
normal distribution; and the variance of each distribution, denoted 02, is the same (see figure 4.4C).

observed Y _

Y value

' , l-x
Xl X z );n

EACH OIISERVED VALUE IS ASSUMED TO COME FROM A NORMAL OISTRIBUTION

CENTERED VERTICALLY AT A GIVEN x,. THE VARIANCE OF EACH NORMAL
DISTRIBUTION IS ASSUMED TO 8E THE SAME.

Figure 4.4C. Regression Line

The important point with the regression assump_ons is that differences between the observed values
{Yi} and the corresponding predicted values {Yi} can be attributed to the necessary randomness
(i.e., the distribution) of each Yi" Assuming that a line fits the data, the distributional properties of
y at each xi allow for quantitative statements about the confidence limits, or bands, in the estimated
slope coefficient, and in values predicted by the fitted line.

4.4.2 Determining a Trend Line by the Least Squares Method

It is evident, from a geometric viewpoint, that there may be many candidates for the best fitting
line. For a given line that seems to best approximate the data, a slight perturbation of the line can
also be regarded as a good fit. Therefore, a precise notion of the best fitting line is needed.

By definition, the line that best fits the data point {Xi, Yi} is that one where the sum of the squares
of the deviations between the line at each xi and Yi is a minimum. Figure 4.4D illustrates this
concept.
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I I I _ Ixl x2 x3 , x.

The "best*' line is _:8,,bx such thst the sum of Ill 8qultred

deviations is • minimum.

Figure 4.4D. Trend Line (Least Squares Method)

To specify the least squares requirement algebraically, note first that the equation of a line is:

y = a + bx (13)

where a is the y-intercept and b is the slope.

Thus, the equation of the fitted line will be of form:

A
y = a + bx (14)

where _x denotes the predicted or fitted values.

Requiring that the sum of the square deviations is a minimum, means that

(Yi-_i) 2 (15)

i

A A
is a minimum, where Yi is the value of the fitted line at x i (i.e., y i = a+ bxi).

Since

(Yi-_i) 2 = _ [Yi - (a+bxi)]2 (16)

i i
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theminimizationrequirementreallymeans:find thevaluesfor a andb to makethesumof squares
thesmallest.By standardcalculusmethods(takethepartialderivativeswith respectto a andb, and
setto zero),the solutionsfor the slopeb and intercepta are:

b
n V.xiYi - _xi_Y i = _(xi-x)(yi-y)

n r.xi2 - (I;xi) 2 _(Xi-X) 2

(17)

a = _xi 2 _Yi - _xiYi_Xi = _ _ bx

n _xi 2 - (_xi)2

where x and y denote the means of the {xi} and {Yi}; i.e.,

= Exi _ = _Y__.__i (18)
n n

To summarize the above, the trend line is that line _=a+bx, which will minimize the sum of

squared deviations between the trend line and the observed values {Yi}- There is a unique solution
for this line, given by:

A
y =a+bx

b = E(xi-x)(Yi-'_)

I:(xr_,)2

a = y--bx

(general form)

(19)

Section 4.4.8 gives an example demonstrating the actual calculation of a trend line.

4.4.2.1 Indepth/Theoretical Point-of-View. (This section is not needed for the basics of obtaining

a trend line, and consequently may be bypassed.) The focus is to present a more rigorous founda-
tion for the least squares method (and hence, trend line fitting). Such ideas give a greater under-
standing of the least squares method as an estimation method. In turn, generalizations beyond a
linear model, and questions about the accuracy of fit, are more easily approached and understood.

The least squares principle is an estimation method, for which the basic principle is: at the

observational points xp x2..... x n we have measured values AVl, Y2..... Yn" These measured
values may not be the exact true observable values _l, _x2..... Yn" This could be due to errors in
measurements, or the fact that the true, unknown, _"i are really mean values for a fixed xi. But we
assume that a theoretical model exists, which gives the true {_"i} given {xi}. This model is expressed
as a functional dependence:

A
y = f(O I, 02 ..... Ok; Xl, x2..... Xn) (20)

where the 0 i are the parameters of the model.
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By the leastsquaresmethod,the bestchoices(i.e., estimates)for theunknownparameters{Oi} are
thosethat minimizethe quantity:

X2 = r. [Yi- f(Ol, 02 ..... Ok; xl, x2..... Xn)]2 (21)
i

In the case of a line (as the model we want to fit),

A
Y = O1 + O2x (22)

Since we want the parameter values (O I..... Ok) that minimize X 2, view the O i as variables and
minimize by equating all partial derivatives to zero. In the case of fitting a line:

then

A
Y = O1 + O2x (23)

Then

n n

X 2 = v, (Yi- _)2 = _ (Yi - Oi-O2xi) 2

i=l i=l
(24)

OX2 n

-_-l= i=l
(-2) (Yi- OI-O2xi) = 0

(25)
#X2 n

002 i= 1
-2xi (Yi - O1-O2xi) = 0

Solving for the parameters Of, and 0 2 gives:

A

O 1 =
_Xi 2 _Yi - _xiYi V'Xi

nV.xi2 - (_xi)2

(26)
A n_xiY i _ Zxi_Y i
0 2 =

n_xi2 - (Zxi)2

trictly speaking, note that _l, and _2 are functions solely of the observations (xi, el)- Thus, _1 and

2 are estimators of the true, but unknown,/Apar_meters O l and 0 2. This means that, for each set of
{(xi, Yi)} observations, from the estimators t91, ¢02 one can compute an estimated value of each true
parameter O l and 02. In general, the distribution of these estimates about the true parameter values
have certain optimal properties called unbiasedness and minimum variance.

The final point is that, with _=O I+O2x , the equation is linear in the parameters. In general, when

y_rying to estimate the coefficients (i.e., parameters) of a higher order polynomial,
=O l +Ozx+...+Ok+iX k, the parameter dependence is also linear, even though the equation is

not linear in x. It will follow that the same methods used in estimating the parameters for a line
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apply, and exact solutions exist. Thus, fitting a parabola or higher order polynomial can be viewed

as a linear regression or estimation, as opposed to a non-linear problem.

In summary, the least squares method is a technique for estimating parameter values of a model.

One assumes that there is a functional model of observational points {xi} and unknown parameters

that predicts the true values associated wit_each x i. By minimizing the sums of squared deviations

(least squares principle), estimators (O l ..... O k) of the true parameters (O l..... Ok) are obtained. For
a given set of measurements {(xi, Yi)}, using the estimators will give an estimated value of the

parameter. These estimated values are then used in the function f(Oi, 0 2..... Ok.Xl,X 2 ..... Xn) tO
obtain a predicted value y for a given set of observational points xl,x 2..... xn. '

4.4.3 Determining Whether the Estimated Trend Line Fits the Data - Use of R 2 and X2 Goodness'
of-Fit Test

4.4.3.1 Intuition. Having determined the equation of the trend line, the next issue involves the

degree to which a line adequately describes the data. Put another way, how good a fit is the line.'?

To clarify the question of fit, figure 4.4E gives two different sets of data; both sets, however, have
the same least-squares-derived trend line.

y •

j • •

• • •

X

(a) (b)

Figure 4.4E. Trend Line -- Fit of Sample Data

X

It is intuitively clear that the line in figure 4.4E(a) describes the data almost exactly. In turn,
qualitatively, there is a high degree of fit. With reasonable confidence, the estimated trend line can

be used to predict future values based on future time (i.e., larger x) values. In contrast, the data

points in figure 4.4E(b) move up and down around the trend line, with large deviations. Intuitively,
the trend line does not adequately model the data, and there is little confidence in prediction of
future values.

4.4.3.2 R 2 as a Measure of Fit. The preceding section and figure show that a quantitative

measure is needed to measure the precision, or accuracy, of a fitted trend line. One such measure is

4-28



called the R-square value, denoted R2. This measure is also known as the coefficient of determina-
tion.

To m/_tivate the derivation of R 2, let _x= a + bx denote the fitted line. An obvious measure of how

well y matches the obserxed Yi values is to look at the difference between the observed and
predicted values: _i= Yi - Y i" If there is a close fit, these differences, called residuals, are small.
Since only the magnitude, not the sign of each _i is important, we consider _i2 = (Yi - Y'i) 2; and as a
measure of total fit, sum up the squared residuals, _Ei 2.

Now, a small (large) _Ei 2 would indicate a good (poor) fit. The problem with this measure is that
there is no relative scale. That is, if the Yi are large values, and y fits well, then ei could still be
large, in contrast to the case when the Yi are small, and ei is still comparatively large relative to Yi.

The way to normalize and evaluate the magnitudes of the ei relative to their corresponding Yi, is to
divide r_ei2 by the quantity _(yi-x_) 2. This quantity is called the variation about the mean, and is the

sum of squared deviations about the constant line y=y, where y denotes the mean of {Yi}"

Consider the identity:

(Yi-Y) = (Yi-_i) + (_i-Y)

Squaring both sides, and summing over the n observations i= 1, 2 ..... n, we get:

A -2(yi-_)2 = r. (yi-_Xi)2 + ]2 (Y i-Y)

A - A
The cross-product term 212(yi-y)(yi-Yi) can be shown to vanish.

(27)

(28)

The measure, R 2, follows immediately from the above identity. Note that the variation about the

mean A r_(yi-y)2, has been partitioned into two sums of squares -- the sum of residuals squared
_(Yi-Yi) 2 and the variation of the regression line about the mean, _(yi-x_) 2.

By definition,

R2 = Z (_i-y) 2 (29)

(yi-y) 2

It follows from equation (28) that when R2 is close to 1, then Eei 2= _(Yi - _i) 2 is close to zero. This
is the desired criterion, since then the deviations between the observed Yi and the fitted values, yi,
are small; i.e., there is a good fit. In contrast, when R 2 is close to 0, most of the variation about

the mean (a fixed quantity) is not explained by the fitted line, but to the fact that most Yi do not
lie close to the fitted trend line.
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To summarize:

R 2 (the coefficient of determination) measures how accurately
the trend line fits the data.

R 2 = _ (_i-.V) 20<R2<I

(yi-.y) 2

R 2 close to 1 means there is a better fit

(30)

Remark: The quantity R 2 derives from the identity _ (yi-y) 2 = _ (yi-_i) 2 + v. (_i_v)2 by dividing
bolh sides by E (yi-y) 2. Thus,

l = E (yi-_i)2 + R2
(31).

E (yi-.V) 2

An equivalent expression for R2 is:

R 2 = ei 2i -

Y_ (yi-.V) 2
(32)

4.4.3.3 Minimum Values of R 2 for Concluding that the Trend Fit is Significant - The Distribution

of R 2. The R2 statistic gives a measure of how well the trend model fits the data. With regard to

quantification of fit, we have previously noted that R 2 ranges between 0 and 1, with 1 indicating a
perfect fit.

A more precise quantititative criterion for fit using R2Acan be established. Such a criterion uses
distributional assumptions for the error terms, ei=Yi-y i and for the form of the model. The

following table gives the minimum values for R 2 to conclude that the fitted model is an adequate
description of the data. The table is based on the number of sample points and confidence level
(i.e., 100 (i-c_)% where o_ is the significance level), it is important to note that the table is valid

only for two-parameter models; i.e., models with 2 unknown variables a and b such as in y = a +
bx or y = ae bx.

4-30



MINIMUM R-SQUARE VALUES FOR SIGNIFICANT TRENDING FIT

NUMBER OF

DATA POINTS

iN)

4

5

6

7

8

9

10

11

12

13

14

15
20

25

30

ct = .01 a = .025

.98

.92

.84

.76

.70

.64

.59

.54

.50

.47

.44

.41

.31

.26

.21

.95

.85

.75

.67

.59

.54

.49

.44

.41

.38

.35

.33

.25

.20

.17

ot = .05

.90

.77

.66

.57

.50

.44

.40

.36

.33

.31

.28

.26

.20

.16

.13

To use the above table, locate the number of observational values (N) and the desired level of

significance (almost always use o_= .05). The corresponding table entry gives the minimum R 2 value

to conclude that the fit is significant. For example, where N = 8, then R 2 should be at least .5 (here

o_=.05) to conclude that the trend model is an adequate description of the data.

4.4.4 Testing for a Non-Zero Trend -- t-Test on the Slope Coefficient

Assume that a trend line has been fit to the data. Therefore, one has the best linear approximation
or fit:

A
y = a + bx (33)

where a and b are constants that have been determined by the least squares method.

it is important to note that we assume that there is a reasonable degree, or accuracy, of fit. This
determination could follow from inspection of the data, the R 2 value, or other methods noted in

section 4.4.3. If a linear model (i.e., a line) suffers from lack of fit, there is no point in proceeding
further to determine quantitatively whether there is a linear trend.

With the above assumptions, the next question is: does the fitted trend line imply a non-zero trend;
i.e., is there a statistically significant upward or downward movement exhibited over time? This

question has both a simple and a more complex answer.

in the less rigorous, simpler approach, note that the constant b gives the slope of the trend line.

Assuming the model is correct (i.e., an accurate fit), then when b=0, there is no trend; and for
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b>0 (b<0) there is an increasing (decreasing) trend over time. For each unit of time, the amount
of increase (decrease) in the variable y is b. Graphically, this is depicted in figure 4.4F.

Y A

X = time
Xl X2 X] X 4 Xn

FOREACHUNITOFTIME x, THEREIS ACONSTANTINCREASEOF b UNITSIN y.

Figure 4.4F. A Non-Zero Increasing Trend

Prior to a more indepth approach to testing for trend, an important distinction or clarification

should be made. Concerning the meaning of the statement: the data does not indicate a (linear)
trend; or there is no trend. This statement has two distinct meanings. Figure 4.4G graphically
illustrates the distinction. For both cases, no trend exists, but the reasons are entirely different. In
figure 4.4G(a), no trend is exhibited because there is no adequate fit of a trend line to the data. In

4.4G(b), there is also no trend or zero-trend, but here a linear model does adequately fit the data;
however, the line is flat (i.e., has 0 slope).
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X X

(a) NO TREND DUE TO LACK-OF-FIT

Figure 4.4G.

(b) MODEL FITS; BUT NO TREND BECAUSE

OF 0-SLOPE TREND LINE

Two Examples of Zero-Trend Lines

4.4.4.1 More Rigorous Basis in Testing for Non-Zero Trend. In determining the trend line
coefficients a and b, no assumptions were made concerning the distributional properties of the
observations {Yi}" To determine how reliable these estimated coefficiencies are, assumptions are

Fade about the probability distributions of each Yi, or equivalently about each error term q = Yi -

Yi- The aim is to determine certain bands or confidence limits around the estimated trend line slope
b - to judge whether one can conclude that there is a statistically significant non-zero trend. Put
another way, is b, in all probability, different from zero?

More rigorously, one needs to determine the standard deviation of the slope b, and confidence

intervals. TAhe standard assumption is that the observables, Yi, are each normally distributed about
this mean Y i and that the Yi are independent. These conditions are equivalent to requiring that the
error terms (also called residuals) are normally distributed with mean 0. Thus, in the linear model:

Yi = a + bx i + q for i = 1, 2..... n (34)

These assumptions are shown geometrically in figure 4.4C.

Based on the distribution assumptions for the measured values Yi (or equivalently the q), it can be
shown that 90°70 confidence intervals for b are given by:

b _+ t(n-2, .95) " S
[r. (xi-_)2] ½ (35)

where s is the estimated standard deviation of the residuals. The value t(n_2, .95) is the 95070 point of
a t-distribution with (n-2) degrees of freedom.
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The estimated standard deviation of 6i denoted s, is given by:

V.,

(36)

and the quantity

IA

[--. (xi-_):l "-
(37)

is called the estimated standard deviation or standard error of b. Letting 3' denote

t(n-2, +95) " S

[_: (x_-._):] v_,
(38)

we can say with 90% confidence that the true trend line slope, /3, lies in the interval

[b- % b + Y] (39)

Note that if the above interval does not include 0, then there is a statistically significant trend (at

the 90°70 confidence level). Hence, there is a non-zero trend. When the interval lies completely to

the right of 0, there is a 90070 confidence that the true slope is positive. Therefore, there is an

increasing trend. For an interval to the left of 0, there is a 90070 confidence that the slope is

negative, and therefore a decreasing trend. The key point here is that having the slope estimate b,

we can construct an interval [b - y, b + y], for which we have a 90070 confidence that the true (but

unknown) slope lies in this interval. Based on the above discussion, we cannot attach any confi-
dence level to what the actual value of the true slope is. The following test gives a method for
testing whether the true slope is equal to zero (hence no trend exists).

An equivalent way to test whether b is significantly different from zero (and hence, a non-zero
trend) is as follows:

_ II//2.>

the variable t = ,_r,-,,,,otz,txi_x)2l has a t-distribution.

s

When there are n data points, there are (n-2) degrees of freedom. This number, n-2, characterizes
the distribution completely.

First compute t for the data sample in question. Next locate Jtl (or the nearest value <_ Itl) in the

statistical table of t-values for n-2 degrees of freedom. (See Table 4.4-1 at the end of this section.)
The column that It I appears in (labeled F in the table) gives the percentage (divided by 100) of the

distribution that would have this t-value or less - while having b equal to 0. This number is labeled

i-a. Therefore, o+ gives the probability to get the computed t-value or greater and still have no

trend. (Technically since we are considering [tl, the actual probability is _/2.) Thus, when o_ is

small (say .025), there is little chance of getting the computed t-value without a positive or negative
trend. For o_ _< .025, we conclude that the true value of the slope is, in fact, different from zero;
hence there is a trend. Note that, in general, the higher the t-value, the greater the likelihood that
the trend slope is different from zero.
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To further clarify the above procedure, suppose that there are 10 data points and the computed

value of t is 2.15. Then, there are 8 degrees of freedom (i.e., n-2, when n-- 10). This computed t-
value is between the table t-values of 1.860 and 2.306. The percentage point of the distribution for

a t-value of i.86 is .95. Therefore, there is only a 5o70 chance of getting a t-value of 1.86 or greater
(and hence of 2.15) while having no trend. Since we are considering both t and -t, more techni-
cally, the actual probability is .05/2= .025 or 2.5%.

The above test is used to test the hypothesis that the true trend slope is zero. When the [t I is large

(i.e., exceeds the 95th percent point), we can conclude that the true slope, b, is not zero. However,
when the t value does not exceed the 95°7o point, we cannot rule out the possibility that the true

value is zero. (This does not mean, however, that we accept the hypothesis that the value is zero--
only that we cannot rule it out).

This test can be generalized easily to provide a method for testing the hypothesis that the slope is

equal to any number b0. Such a test would be necessary to ascertain whether the trend slope could

be a certain, specific value. Recall that we have an estimated slope b (derived from the least squares
method). Analogously to the variable

b[E (xi-x)2] v:
t = 140)

having a t-distribution, we have that the variable

(b-bo)[E (Xi-X)2] t :
t =

S
(41)

also has a t-distribution. Using the same procedure as given above, one computes t and locates It[
in the table. For the corresponding percentage point, denoted l-oc, we have that oc is the probabil-

ity of obtaining this Itl value (or higher) and having the true slope be b 0. When _ is small (less

than .05), we conclude that there is less than a 5% chance that the true slope could be b 0.

For practical purposes, whenever the probability of no-trend is 10% or less with the computed
t-value, we will assume that there is a trend (i.e., b w 0). Consequently, to test for a non-zero
trend the following procedure can be used:

(1) Compute t-value.

(2) When there are n data points, there are n-2 degrees of free-
dom.

13) Read down the .95 column of the t-distribution table to the row

corresponding to n-2 degrees of freedom.

(4) If the computed t-value is greater than or equal to the located

table value, there is a significant non-zero trend.
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4.4.5 Prediction of Values Using the Trend Line

The fitted trend line is given by:

A
y = a + bx (42)

However, both estimated coefficients, ^a and b, are subject to error. This error, in tu_xn, will
influence the predicted value variable, y. If we ignore these errors, then the prediction^of y for a
given value of x is straightforward. By simple substitution, when x equals x0, then Yo=a+bxo .
Usually xo represents a future time for prediction purposes.

Simple substitution in the trend line equation give_ a predicted value. To ascribe confidence limits
to this predicted value, the standar_ deviation of y0 at a given x0 is needed. It can be shown that
the estimated standard deviate of Y0 is:

estimated standard deviati°n (_o) s [1+ (Xo__) 2 ]V2= (43)
(Xi-X)2

where,

S2 = _ (yi-_i) 2

n-2
(44)

A
The 90°7o confidence limits for a predicted value Y0 are:

A ['Y0 -+ t(n-2, .95) " s -- +

n _(xi-x)2 ]

(45)

Here, t(n_2, .95) is the t-value corresponding to the 95th percentage point, with n-2 degrees of
freedom.
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Table 4.4-1

PERCENTAGE POINTS OF THE STUDENT'S t-DISTRIBUTION

The. table gives values of t_, for different degrees of freedom v such as to produce specified values
F(tc_;v), where

r[l/2(v + 1)] 1

x/_rv r'(v.,v) [l + rot2 ] V2(v+ 1)
U

dt = l-a

F(-t_;v) = 1 - F(t,_;v), v = oo corresponds to the standard normal distribution.

F .60 .70 .80 .90 .;s .975 .990 .995 .9q9 .99q5

.325 .727 1.376 3._70 -.31_ 12.706 31.821 63.657 318.31 _b3.62

.28q ._17 [.Obl 1.886 ?°920 _.303 b.965 q.925 22.327 31._g8

.277 .586 ._7B I.h]8 ?.]53 3.1B2 _.561 5.R_I 10.215 12.gZ6

.271 ,Sbq ._61 1.533 ?.132 _.116 3.7_7 _.b06 7.173 8.hlO

.267 .559 ._20 I,_76 ?.015 2.571 3.365 -._3_ S.893 b. Sb_

• 265 .553 .gO_ I._A I.g6] 2._1 ],16] 3.70? 5.208 5.gS9

• 263 .5_q .sqb l._l_ 1.895 2.369 2.998 3.69q 6.785 $._08

.262 .5_6 ._8q |.3q? 1.8_0 2.306 2.896 3.35_ 6.501 5.061

• 261 .S63 .88] 1.]_? 1._33 2.2_2 2.821 3.250 6.297 _.781

• 2bO .5_2 .879 1.372 1.81_ 2.22e 2.766 3.169 _.|_6 _.587

.2bO .5_0 .876 I.]h] 1.796 2.201 2.7|_ 3.|06 6.025 _._37

.259 .539 .873 1.3S_ 1.782 2.179 2.681 3.0S5 3.930 _.318

.25q .538 .870 1.3S0 1.771 2.1bO 2.650 3.012 3.852 _.221

• 2SB .537 .868 1.3_$ 1.761 2.1_5 2.62& _.9?7 3.787 _.|_0

• 2S8 .536 .866 1.3_1 1.753 2.131 _.602 2.9k7 3.733 6.073

• 25_ .535 .865 1.337 1.766 2.|_0 2.583 2.9_| 3.686 _._lS

.257 .53, .863 1,33] 1.760 2.110 2.567 _.898 3.6_6 ].9bS

.257 .53_ .862 1.330 1.736 2.101 2.552 2.878 3.610 3._2

.257 .533 .Sbl 1.3_8 1.729 2.093 _.53q 2.861 3.$79 3.8R3

.257 .533 .860 1.325 1.725 2.08_ 2.528 2o86S 3.55_ 3.850

.257 .532 ,8sq 1.3_I 1.721 2.080 2.SIB 2._31 ].SZ7 3._19

• 256 .532 .85e 1.371 1,717 2.076 2.508 2.819 ].SOS 3.792

• 256 .53_ .8_E 1.3|_ 1.71_ 2.0bq 2._00 2.807 3._85 3.767

.256 .531 .BS7 |.lIP 1.711 2.066 2.692 2.?_7 3e&b7 3eT&S

• 256 .531 .SS6 1.316 1.708 2.060 2.685 2.787 3.6S0 ].725

.256 .531 .856 1.31_ 1.706 _.056 2._79 2.779 3.635 ].707

• 256 .531 .aSS 1o316 1.703 2.05_ _.673 2.771 3.62| 3°_90

• 256 .530 .855 1.31] 1.701 2.0_8 2.667 2.763 3._08 3._7_

• 256 .530 .85_ 1.311 1.699 2.06S 2._b2 _.TSb 3.396 3.659

.256 .530 ._S_ 1.310 1.697 2.062 _._57 2.7S0 3.385 3.b_6

• 25S .529 .851 1.303 1.686 2.0_1 2.k_3 2.706 3.307 3.551

• 2SS .52B .8_q 1._99 1.676 2.009 2.k03 2.678 3.261 3._q6

.256 .527 .868 |._q6 1.671 2.000 2.390 2.660 3.232 3._60

.25_ .5_7 *8_7 1._96 _.667 1.996 2.381 2.6_8 3.211 3._35

.2Sk .5_7 .866 |.29_ l.bb_ 1.990 2.37_ 2.639 3.195 3._|6

• 25& .5_6 o866 1.291 1.662 1.987 2.369 _.632 3.18] 3._02

• 25_ .526 .SkS l._gfl 1.660 1.986 2.36_ 2.626 3.17_ 3.391

.25_ .5_6 .SkS 1.289 1.659 1.982 2.361 _.621 3.166 3.381

.25_ .5_6 .8,5 1.2_q 1.658 1.980 2.358 2.617 3.160 3.37]

.253 .526 .B_ |-_8_ 1.6_5 1.960 2.3_6 2.$76 3.090 3o29l
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The 90% con./)dence limit means thal there is a .9 probability that the true value of y at xo will lie
in tile interval

A
1_'o-3', Y,, + 71

(46)

where,

"Y = t(n-2..95) " S "

To SLII11111_,|I'iZC :

1 + (Xo-X)2
n _(×i-,_) 2

½

(47)

The trend line equation is

A
y =a+ bx,

A .

where y is tile predicted value.

A

The predicted value Yo at a point x0 is found by simple substitution.

Confidence limits around the predicted value can be computed - see text and

figure 4o4H. These limits or bands represent the most reasonable range for the true
value of y at xo.

ACTUAL

oe _

• ......! /
".. ... ,_/

_e I 8eIiIlIl,

iiiioe* eeSeII
eei II°e*ee

o _

e o

oe °

• • • • • • | | I • |

tl t2 _ t4 t5 t6 t7 t8 _ tlO

PREDICTED . -
o

o

" ° " _ 90% CONFIDENCE

LIMITS

Figure 4.4H. Filled Trend Line and Extrapolation of Trend Line Io

Future Time Values (with 90% Confidence Limits on Predicted Values)
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4.4.6 Extension of Linear (Line) Fit to Polynomial and Exponential Cases

The linear (line) model represents the simplest trend. However, data may be described more aptly

by a quadratic (polynomial of degree 2) or exponential model. These models are given by:

3' = a_) + alx + a2x2 (quadratic)

Y = aeh' (exponential)

Graphically, these models produce the curves shown in figure 4.41.

(48)

QUADRATIC TREND

x x

EXPONENTIAL TREND (b<0) EXPONENTIAL TREND (b>O)

Figure 4.41. Quadratic and Exponential Models

With regard to trending, a linear trend means that the variable of interest y increases (decreases) by
a constant amount for each unit of time. Hence, the rate of change of y is constant:

dY= k]dt
(49)

In a quadratic trend, y increases (decreases) by an anaount that is proportional to the time. Thus,
the rate of increase (decrease) is not constant; but, the rate of change of the rate itself is constant:

__= kt;__ = k
dt dt

(50)
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Wiih an exponentialtrend tile amountof increase(decrease)in y per unit time is proportionalto
tile magnitudeof y:

dy ]
_= ky
dt (51)

Therefore,the percentage of change per unit time is constant:

dy/dt = k ]
Y

(52)

Overall, then, the progression of trend models is:

linear --,

(increase/decrease

is constant)

4.4.6.1 Polynomials of Order >_ 2.

f(x) = a,, + alx + a,x 2 +... +

where the a i arc constants.

quadratic
(increase/decrease

is linear)

---' exponential
(°7'o increase/decrease

is constant)

A polynomial of order n has an equation of form:

a,,x" (53)

Seldt)m, in a trending examination, is it useful to consider, any polynomial of degree greater than 2.

Polynomials of higher degree (n>3) usually have local maxima and minima; and, hence, are not

very useful for discerning global upward or downward movements. Additionally, use of higher

degree polynomials can be misleading, because given (n+ 1) data points, a polynomial of degree n
can be found that exactly fits the data (e.g., if there are 4 y-values corresponding to 4 distinct times
x t through x4, then _ cubic polynomial will exactly fit the data).

For the above reasons, polynomial trending fitting should usually be limited to second-degree

(quadratic) polynomials. However, the methods described below for quadratics are equally applica-
ble for polynomials of greater degree.

A quadratic polynomial has an equation of form:

f(x) = a,, + alx + a2x2 (54)

The least squares method can be used to determine the best estimates for coefficients at), al, and a,.

Strictly speaking the polnomial is linear in the parameters to be estimated (the ai); therefore, the
estinaation process is a linear regression (not a non-linear regression problem).

Notationally, the fitted quadratic is written:

A
y = a o + alx + a-,x 2- (55)

where y is the predicted value for a given x, and the a i are the estimated coefficients.
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The leastsquaresestimationmethodyields3 equations in the 3 unknown parameters at), a I, a-;.

The_e equations are soh, ed simuhaneously for a 0, a I, a 2. The equations are:

V.y i = aon + a I _xi + a 2 ]_xi2

._YiXi = a o _2xi + a_ _xi2 + a2 _xi 3

_YiXi2 = at, _'.xi2 + a I _xi3 + a 2 _xi4

(56)

4.4.6.2 Exponenlial Trend Model.

f(x) = ae b'

where a and b are conslanls.

An exponential model is of form:

(57)

in a trending context, when b>0, the model will approximate a trend where the response variable y

rapidly increases in relation to increasing values of x; (when b<0, the response variable y rapidly
decreases in relation to increasing values of x).

The above equation is non-linear in the parameter, b; however, the equation can be transformed

into an equation that is linear in b .and in In a; thus, the parameter,_ (and a) can be estimated
using the least squares method. Writing the predicted or fitted value as y and taking the natural log

yields:

A aeh\y = :_

(58)
/x

In i; = In a +. bx

Regard In a as a new variable, a to give:

In Ay = a + bx (59)

Sin_e tl_ observed value {Yi} are to be fitted by {_i}, it follows that In Yi will be modeled by

In _,'i=a + bx i. The least squares method yields two equations in the two unknowns a" and b:

Ein Yi = wn + bF, x i

(60)

•_xiln Yi = a'_xi ÷ b'_xi2

Solving these equations simultaneously gives exact solutions for a and b. The estimate for a is
found from a by transforming back:

a = Ii1 a

e t' = a

(61)
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Havingthe least squares estimates, a and b, the best fitting exponential trend equation, _=aebx I is
then determined by simple substitution.

4.4.6.3 Basic Trend Models. Based on past experience in trending Shuttle hardware failure modes
and hardware performance, the most useful trend models are:

Linear: fix) = a + bx

Exponential: fix) = ae bx or In(fix)) = In(a) + bx

Logarithmic: fix) = a + bin(x)

Power: fix) = ax b or In(fix)) = In(a) + bin(x)

Quadratic: fix) = (a + bx) 2

4.4.7 Applicability

The fitting of lines, polynomials of order ->2, and exponentials are basic techniques in trend

analysis. The methods described in the preceding sections apply to all types of trending: program-
matic, performance, problem, and supportability. In particular, the methods discussed should be

used for performance trending, since the variables measured are continuous and usually have an
uncertainty in measurement.

To determine which trending model, if any, is most applicable, the suggested first step is to plot the

data. Inspection will often suggest the most reasonable analytic model. A quantifiable method to

determine whether a linear, polynomial of degree 2, or exponential model is more appropriate is as
follows:

The more closely a model fits the observed data, the smaller will be the squared deviations

between the predicted and observed values. Therefore, the smaller the quantity

(yi-_i)2

n - L (62)

called the estimated variance about regression, the closer the fit.

The constant L equals the number of unknown parameters in the model. The model with the
smallest estimated variance about regression should be used.

4.4.8 Examples

4.4.8.1 Programmatic Trends on Orbiter/Orbiter Tile Wad Closures. Figures 4.4J and 4.4K dis-

play the number of Work Authorization Documents (WADs) at KSC in the weeks prior to shuttle

launch. The tile WADS and the remaining orbiter directives are followed separately. There should

be a declining number (hence decreasing trend) in open WADs as the time-to-launch approaches. A
display of the magnitude of open WADs and the rate of decrease provide decision-makers with
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infornlalion on workloads, scheduling, projected overtime, manpower resource allocations, and
general suimbilily of launch dale.
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4.4.8.2 Multiplexer/Demultiplexer (MI)M): Problem Trends in Design, Manufacturing, and

Electrical/Electronic/Electromechanical (EEE) Failures. Multiplexer/demultiplexers in the Space
Shuttle Orbiter act as data acquisition, distribution, and signal conditioning units. The units accept

digital inlk_rmation I¥om their controlling units (lOP, PCM, or GSE) and convert or reformat the

digitized information into analog, discrete, or series digital signals for shuttle subsystems. Con-

verscly, the MI)Ms can receive analog, discrete, or digital information from shuttle subsystems,
digitize these signals, and transfer this information to their controllers.

There have been 776 failures in the 1976 through 1986 timeframe. Table 4.4-2 summarizes these
failures by nlanufacturing, design, and EEE in terms of where failures occurred.

Table 4.4-2

MDM FAILURES FOR 1976-1986 PERIOD

Where Occurred

(No. of Failures) Manufacturing Design EEE Parts

Acceptance (442) 53 60 329

Certification (12) 0 6 6

Field (318) 8 69 241

Fligh/ (4) 0 2 2

TOTALS (776) 61 137 578

The following graphs (figures 4.4L through 4.40) depict the frequencies and trends in manufactur-

ing, design, and EEE failures during the 1976 to 1986 timeframe. (The rate of MDM manufacturer

acceptance and field tests are essentially constant; hence, no normalization is necessary.)
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Remarks: General conclusions based on the above trend charts are:

(!) MDM maturity has leveled off at about 50 failures per year, with the majority of

failures being EEE. The EEE anomalies have been constant at about 40 per year.

(2) There is no significant trend in manufacturing failures; but the low level of manu-

facturing failures indicates a maturity in MDM manufacturing.

(3) Design anomalies show a decreasing trend and are low in number.

(4) Despite a large number of failures, only 4 failures have occurred in-flight. Accept-
ance, certification and field testing have identified nearly all anomalies.

4.4.8.3 Ga As Solar Array Power Supply - Hypothetical Performance Trend. In future long-term

manned missions, regenerative H_/O_ fuel cell systems may be used. The power producing cells will

consume H_ and O__; these reactants, in turn, will be created from electrolysis units (power consum-
ing cells) using H20, created as a product from the original fuel cell reaction. Solar arrays will

drive the water electrolysis units. (Currently, solar cell arrays serve as a power source on the
TDRSS and can reach 36 w/kg.)

Hypothetically, assume that a Gallium-Arsenic solar array functions as part of a regenerative power

supply system. One kw of continuous power is required from the solar cell, Based on the orbit-sun

plane orientation (hence, sunlight exposure), the solar array will produce a peak output of 2 kw,

with excess power over i kw diverted to storage batteries. Particulate and optical radiation, among

other factors, will decrease array lifetime. A 1.6 kw peak output (during an orbit) is deemed a

lower bound for adequate power output; and the solar array has a projected lifetime of 2 years,

with declining output from 2 to 1.6 kw. The objective is to determine if the declining array output

is consistent with a 2-year lifespan (with 1.6 kw the minimum required peak output).

in Figure 4.4P, peak output on a weekly basis was plotted over the initial 40 weeks of the mission.

A linear regression (trend line) was fitted to the data and extended beyond the 40-week duration for

predictive purposes. Inspection of the trend line shows that the minimal required peak output (I.6

kw) will be reached in less than 104 weeks (approximately 80 weeks).
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ARRAY PEAK OUTPUT WATTAGE

Week Watts Week Watts

1 1998 21 1900

2 1997 22 1910

3 1997 23 1902

4 1996 24 1898

5 1994 25 1892

6 1992 26 1880

7 1994 27 1885
8 1990 28 1880

9 1970 29 1877

I0 1977 30 1876

11 1967 31 1870

12 1960 32 1870

13 1950 33 1867

14 1940 34 1850

15 1944 35 1830

16 1940 36 -1820

17 1930 37 1809

18 1920 38 1804

19 1926 39 1803

20 1910 40 1800

2.1

1.9

1.8

1.7

1.6

1.5

1.4

1 11 21 31 41 51 61 71 81

WEEK

Figure 4.4P. Solar Array Power Output

91 101
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A more complete analysis is as follows:

Basic Statistics

No. of Observations = 40

Degrees of Freedom = 38
R 2 = .977

Slope (b) = -5.24

Std. Error of Slope = .13

Std. Error of Residuals = 9.61

Equations Used

m

(29)

(17)

(38)

(37)

Since the R 2 value is very close to 1, there is a significant fit of the trend line to the data. To

oNain the value of peak kilowatt output after 104 weeks, one substitutes x = 104 in the equation:

A
y = 2020.3 - 5.239X (63)

to give

A
y = 1473.4 (64)

Thus after 2 years of use, the peak output will be below the 1600 watts needed. Solving equation
(63) for x 11600 = 2020.3 - 5.239x) gives the predicted time when 1600 watts will be available.
Here x = 80 weeks.

A
The question is: how accurate is the predicted value; i.e., _hat are the confidence limits on y at 80
weeks? The 90% confidence limits for a predicted value Y0 are given by:

I 2

n !2 (xi-x)2

where,

s2 = £ (yi-_i)2

n-2
(66)

Here, tin_2, .95) is the t-value corresponding to the 95th percentage point with n-2 degrees of
freedom.

A
The predicted value at 104 weeks is y m4 = 1475.4 watts; and at 80, the predicted value is 1600
watts (the nainimum wattage required). We have:

s = 9.61

E (xi-x)2 = 5330 (67)

tIn-2, .95) = !.68
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Substitutingthesevaluesinto expression(65) yields:

A
Ym4 -+ 39.7
A
Ysu - 28.6

(68)

Thu.,,, from expression (68), the 90% confidence interval for the peak output after 104 weeks is:

11435.7, 1515.21 (69)

Since this interval does not include 1600, it is not probable that the peak output will be at or above
1600 watts after 2 years.

At 80 weeks (the predicted lifetime using the fitted trend line), from expression (68) the 90°7o
confidence interval is:

11572.6, 1629.81 (70)

If that time, xcj, is desired where the lower confidence limit is at or aboveAI.6 kw with x0 as large as
_os.sible; the confidence interval formula (65) can be used. Substituting Y0 + 2020.3 - 5.239x o for
y_) m.(65), equating to 1600 and solving for xo will give this lower limit bounded below by 1600.
The calculations give xo = 75 weeks. Thus, up to 75 weeks, there is only a 10070 likelihood that the

solar array will deteriorate below 1600 watts peak output.

The Figures 4.4Q and 4.4R graphically depict these results. Both charts show the data, trend line,
and 90% upper and lower confidence limits.
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Figure 4.4Q. Solar Array Power Output (with 90% Confidence Intervals)
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4.4.8.4 High Pressure Turbopump Efficiency: Trend in RPM Levels Using Telemetry Data. The

high pressure fuel turbopump (HPFT) operates at approximately 30,000 rpm and boosts the LH 2

pressure from 276 psia (from LPFT discharge) to approximately 6500 psia. Pressure boost is

necessary to prevent cavitation in the main combustion chamber.

The following examples use hypothetical telemetry data on HPFT discharge pressure and rpms. The

analyses are of two types: one tracks HPFT rpms during a single flight; the other tracks the

maximum HPFT rpms over a set of past flights. SSME controllers will maintain constant fuel flow

pressures for the required thrust levels, adjusting turbine shaft rpms. Trending rpm values for fixed

thrust levels will help identify turbopump efficiency declines. (For a declining efficiency, due

perhaps to seal leaks, the rpms must be increased above nominal values to maintain required

discharge pressures.)

Table 4.4-3 gives HPFT nominal discharge pressure and rpm levels for three SSME-rated power

levels:

Table 4.4-3

HPFT PRESSURE AND RPM LEVELS

Power

Levels

6507o

100%
104%

HPFT

Pressure-Discharge

3953
6110

6443

rpm

27,157

34,386

35,361
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Telemetrydatacanbeusedin severalways.This example uses data on a single flight to check for

trends in HPt'T rpms at fixed SSME power levels. As noted previously, increasing rpm levels to
maintain constant discharge pressure can be indicative of pressure seal problems.

Table 4.4-4 gives observed (hypothetical) rpm levels for the three SSMEs during ascent phase from
1.1 minutes into launch to main engine cutoff. During this period the engines are throttled at 1040/0

of rated power. It is assumed that HPFT discharge pressure was maintained at 6443 psia.

Table 4.4-4

SSME RPM LEVEI.S (HYPOTHETICAL)

Elapsed Time
(minutes)

i.I

!.5

1.9

2.3

2.7

3.1

3.5

3.9

4.3

4.7

5.1

5.5
5.9

6.3

6.7

7.1

SSME I
(rpm/lO 3)

35.32

35.33

35.31

35.4

35.36

35.51

35.40

35.49

35.81

35.89

35.70
35.67

35.4

35.82

35.77

35.91

SSME 2
(rpm/10 3)

35.37

35.41

35.47

35.51

35.59

36.12

36.08

36.22

36.24

36.37

36.31
36.30

36.19

36.22

36.25

36.17

SSME 3
(rpm/lO 3)

34.75

35.29

35.56

35.88

35.97

36.40
36.41

36.80
37.10

37.12

37.12

37.20

38.60

.38.65
38.70

39.10

By inspection it can be seen that SSME I and SSME 2 rpm levels at 104% power are constant and

within the nominal value, it is clear that rpm levels for SSME 3 are consistently above the nominal
value. Fitting a trend line for SSME 3 rpm levels yields the following statistics_
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Regression Statistics

R 2 = .956

a = 34161.84

b = 671.66

Standard error (b) = 38.52

Standard error (y) = 284.11
Number of Observations

Degrees of Freedom

16

14

Equations Used

(29)

(17)

(17)

(38)

(37)

39.5

39

38.5

38

A 37.5

_g
a. _ 37
er

36.5

36

35.5

35

34.5
i i i ] i l i i i i i i i i

1.1 1.5 1.9 2.3 2.7 3.1 3.5 3.9 4-.3 4.7 5.1 5.5 5.9 6.3 6.7 7.1

ELAPSED TIME (MINUTES)

Figure 4.4S. HPFT RPM Levels (at 104% SSME Rated Power)

The trend line slope coefficient is positive (+671.66, hence increasing trend) and the 95% confi-

dence interval for the estimate of /3, the true trend line slope, does not include zero. Therefore,

there is a statistically significant systematic trend, indicating a problem with maintaining the re-

quired turbopump discharge fuel pressure.
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4.4.9 Normalization of Trend Data

In the most basic trend applications, we usually have a set of raw data values corresponding to

times or time periods. Notationally, these are referenced as the y and x values, respectively. A trend

line (or other model) is then fitted to the data. Such a method assumes that the magnitude of all

observational y-values can be treated equivalently--so that no scaling of y-values by some factor is

necessary; however, this is usually not the case. For example, let the x-axis represent three month

periods during the years 1986 through 1989 and let the y-axis represent the number of problems

occurring (by date of detection) for a given component. A plot of the raw data and subsequent

fitting of a trend line implicitly assumes that all time periods are equal with regard to the possibility

of problems occurring. However, it may be the case, for example, that during some time periods

extensive testing was carried out, while during other periods, little testing of flight experience was

accrued. Consequently, during testing periods, the number of problems occurring may be high (in a

relative sense), even though there may be no real difference in the actual rate of problem occur-
rence. Figures 4.4T and 4.4U illustrate the above example.

#.of
Failures

# of

Failures

per 1000
hours
of Test

I I I t
1986 1987 1988 1989

1986 I98,7 1988 1989

Figure 4.4T. Regression Fit with Raw Data Figure 4.4U. Regression Fit with Data Normalized

By definition, this scaring of the observational values is called normalization. The choice of a

scaling factor or unit is largely a matter of judgement and application. Some typical normalization

factors would be: per 1000 direct labor hours (for nonconformance data), per 1000 seconds of test

(for SSME component failures), and per vehicle in flow (for supportability issues). The key point is

that in trying to determine whether a trend exists, normalization of the data may be necessary to
factor out inherent differences (over time) that will unduly influence the magnitude of the observa-

tional points. As an example, Figure 4.4V depicts Engine Interface Unit (EIU) Problem Reports

(PRs) over a 15-year period. The raw trend line (i.e., line based on nonnormalized data) is plotted.
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However, to draw valid conclusions as to whether the actual occurrence of EIU problems is

decreasing, approximately constant, or increasing, the amount of test and operational time for the

units for each of the years must be known and the number of PRs must be scaled accordingly.

30

25

20

15

10

0

NUMBER OF PRs

27

14
15

6

O

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

YEARS

---_-- Raw Trend line

SOURCE:PCASS

Figure 4.4V. EIU Problem Reports Over Time
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4.5 SMAI,I, SAMPI,E METHODS

ill some applications, the sample size may be small. Consequently, the uncertainty for any inference

estimate will be large (or equivalently, the accuracy or confidence in the estimate is low). in cases
where the data is sparse, non-parametric methods are often used.

Non-paramelric methods refer to tests that do not depend on assumptions about the underlying
distribution from which the sample comes. These tests apply to small samples because no popula-

tion parameters need be estimated from the sample data. The methods presented are quality control

charts and two non-parametric tests: a run-test for systematic trends and a modified Koimogorov-

Smirnov lest. These tests can be used to attach a numerical measurement to trend hypotheses;
however, in dealing with small data samples, judgement should remain the most important criteria
in the data analysis.

4.5.1 Acceptable Level-of-Performance Charts

One of the key ideas in analysis is to compare data to a standard or specification. This standard

should be developed during equipment design and verified during prototyping and testing. A simple

example might be the diameter tolerance for a rotating shaft; a complex example might be the

tolerances on the flow rate of fuel to the SSME. While small data samples often do not provide
enough points to conduct a regression analysis, a control chart can quickly reveal trends in their

infancy. Also, a regression line may indicate an acceptable mean, yet every point is out of specifica-
tion, as shown in the following chart:

PARAMETER

Upper Spec.

......................................................................... Mean

Lower Spec.

Time

The mean is well within specification, but the process is not!

The most common method of statistical process control is the use of control charts. Although the

charts are statistically more effective with large sample sizes or production runs, they can be used
for relatively small sample sizes with minimal loss of effectiveness.

Most control charts are developed using __.30 control limits, which for a normal distribution

includes 99.73% of the population. This results, in an average of 27 cases out of every 10,000 cases

giving an erroneous error signal that the process is out of control, when in fact it is not (producer's

risk). Although the 30 standard partly resulted from the limited (by today's standards) computa-
tional tools available in the 1920's, it has withstood the test of time and has proven to have been

an effective trade-off between producer's (c_ error) and consumer's (13 error) risk.
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Table4.5-1 is an exampleof the fraction defective (np) chart, it is applicable to virtually any
quality control process. (Refer to figure 4.5A for a graphical representation).

Table 4.5-1

DEFECTS IN SAMPLE LOTS

Sample I,ot Number Sample Size Number of Defects (np)

I 30 3
2 30 2

3 30 4

4 30 2

5 30 6

6 30 1

7 30 3

8 30 5

9 30 5

! 0 30 2

300 33

nP= 33

iO

_= 33

300

__= 3.3 (average number of defectives)

= .il (average fraction defective)

o= V'3.311-.11) = 2x/_.937 = 1.71 (standard deviation)

UCk = nP + 30 = 3.3 + 3(1.71) = 8.43

I.CI_ = nP - 30 = 3.3 - 3(I.71) = -!.83 (less than zero and therefore is set to zero).
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Figure 4.5A. Graphical Representation of the np Chart

Since all of the data points are within the control limits, the process is "in-control." It is extremely
important to note that in-control does not necessarily indicate within-specification. A machining
process could be producing a product as indicated by the np chart in the example (in control) where
the process specification is 2.5 +_1%. The product is in control, but not within specification.

In summary, control charts can be designed to fit almost any quality control (or performance
trending) application. With the on-line, computer-based power available today, real-time control
chart type analyses can be of enormous benefit.

4.5.2 Run Test to See if Observations are Free of Systematic Trends

A Run Test can be used to test whether two samples, {Xn} and {Ym} come from the same
population. The basic idea is to combine or mix the two samples, and then order them, by
magnitude. On the assumption that both samples come from the same parent population, the
ordered sequence of x's and y's should be reasonably mixed. It should not be the case, for

example, that most of the xi appear at the lower end (in order of magnitude) and the Yi appear at
the upper end.

By definition, a run is a sequence of the same symbol or type. For example, in the sequence x3 xl
Y4 Yl x2 Y2 Y3 there are 4 runs: a run of 2 x's, a run of 2 y's, a run of 1 x, and a run of 2 y's.
When there is a reasonable mix, the number of runs for the (n+ m) observations will be large.

When the number of runs is small, it is more probable that samples {Xn} and {Ym} do not come
from the same population.

The run test technique can be modified for data obtained sequentially over time to see if the data is
free from systematic trends. This is the modification that will apply to trending questions. The basic
assumption is that all the observations, obtained at different points in time, measure the same
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constant quantity, c o. in performance trending, c0 is the desired mean performance value, in

general, % can be any value, but usually is taken to be the median of the observations {xn}. To test
whether the values have a constant zero-trend at a specified value, c o is taken to be that value.

Now, if all tile observations ostensibly measure the quantity Co, then the observations should hover

close to %, with equal probability of an observation being above or below c 0. Let A denote an

observation above %; and let B denote an observation below c0. Since the observations {xn} are
ordered by time, a sequence of As and Bs results. If there is no trend of observations consistently
above or below th.e constant co, then the number of runs will be high. However, if the measured

values are consistently above (or below) Co, or consistently below for awhile and then above for

awhile, the number of runs will be small. Thus, a small number of runs would indicate that there
are systematic trends.

The number of runs, denoted r, has a distribution based on the sample size n and the assumption

that the set {x,_} consistently measures %. This distribution has a mean equal to (n+ 1) and variance

_-_-1( n-I )- -2- ) (71

n-!

The following statistical table gives the critical r-value (denoted r.05) at the .05 confidence level.

This means that when the number of runs is less than or equal to r.05, - there is only a .05

probability that the set {xn} consistently measures the constant, c0. In the trending context, there is
only a 5% chance that there is not a systematic trend. Therefore, whenever the computed number

of runs, r, is such that r_<r.0_, we conclude that there is a systematic trend.

n/2

r.o5

Crilical Values for the Run Statistic*
= .05

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

- - - 2 3 3 4 5 6 6 7 8 9 10 11

*Comparing against a constant trend value, c0

Remark: The above run test may be viewed as a quantitative measure to accompany the visual
inspection of a control chart.

4.5.3 Kolmogorov-Smirnov Tes! for Trends

The Kolmogorov-Smirnov test is a goodness-of-fit test used to measure whether a given sample {xn}
could come from a certain theoretical model. First the basic ideas in the test will be noted; then

modifications that place the test in the context of trend analysis will be given.
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A sampleof size n, {xn}, can be reordered according to magnitude. Assume that the x i have been

so ordered and thus, xi_<x,_< ... _<x,v A cumulative distribution function (cdf) Sn(x) is then
defined by:

Sdx) =
0 if x<x t

i
if Xi_X<×i+ I

1 if x_>x n

(72)

The function S,a(x) is thus a step function that increases by 1 at each of the observational points.

The idea of the test is to examine the differences between Sn(x), the cumulative distribution for the

sample, and any theoretical cumulative distribution function, F(x). If the sample {Xn} comes from a
population with cumulative function F(x), then one would expect that the difference

D n = max { I S,_(x)- Fix) I }
(73)

over all points is not too large.

Under very general conditions, D n has a distribution that is independent of any theoretical cumula-

tive distribution. Moreover, the distribution of D n is sensitive for small samples (n usually _ 10).
This allows testing to determine if the sample could come from a certain distribution or whether
that hypothesis can be ruled out.

The Kolmogorov-Smirnov test can be adapted to test for a non-zero trend (or for any specific

trend). To illustrate, let {Yl, Y2..... Yn} be the observed values corresponding to times {xl, x2, . .

., x,_}. The {Yi} corresponds to the ordered set {xi} and, in this manner, is already ordered; each Yi
is viewed as a frequency at the corresponding time x i. Therefore, there is a cumulative distribution
function, Sn(xi). S,_ is defined as follows:

S o = 0 x<x I

S; = _Yl x;_x<x 2

ZYi

S, Yl + Y2_ = x2_x<x 3
_Yi

(74)

Sn_ I = YI+Y2+'"+Yn-I

_Yi

S n = 1 X,a<x

NOTE: The cdf for the sample of n points is simply the cumulative sum of the frequencies, {Yi},
normalized by the total frequency, _Yi.

We want to compare the cdf Sn(xi) with the theoretical cumulative distribution function determined

from a constant set of frequencies. The comparison is illustrated in figure 4.5B.
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Figure 4.5B. Plot of Observed Values Against a Constant Frequency Distribution

The theoretical cdf F(x) from the uniform distribution of c o at each point x i is representative of a

zero-trend, because the values are constant over time. Assuming that the x i are equally spaced, then

F(x) may be defined at the observation points {xi} as:

i
F(xl) = _

n

2
F(x2) = _

n

(75)

i
F(xi) = _

n

F(x.) = 1

Assuming the times are equally spaced for any constant function at the x i, the cdf for a zero-trend

is independent of the specific constant. The value of F(x) at x i is simply i/n, where n is the total
number in the sample.
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To usethe Kolmogorov-Smirnovtest in the trending context, the test statistic is

D,, = max { [ S. (x) - F(x) [ } (76)

where S, and F(x) are as defined previously. The critical values of D n for various sample sizes,

n, appear in Table 4.5-2 at the end of this section. In principle, the differences ]Sn(x ) - F(x)[

are examined for all points x. Since Sn(x ) is a step function, only the differences at the jump
points, xi, need be computed. Thus, for a sample of size n, 2n differences need to be

examined and the maximum taken. The 2n values are {[Sn(xi) - F(xi) ] , [Sn(Xi-l) _ F(xi)[ } over
the observation points {xi}.

For example, suppose the sample size is 5 and a 90°70 confidence level is adequate. The K-S value,

d.o 5, is .5095. Therefore, at the 10% significance level, if the largest deviation between Ss(xi) and
F(x i) exceeds .5095, then the assumption of a zero trend can be rejected.

As a final point, the table of K-S values shows that for small sample sizes, rather large differences
between the cumulative distribution functions must exist for one to conclude that the data must
deviate from a constant zero-trend hypothesis.

To summarize the Kolmogorov-Smirnov Test:

Test statistic is D,1 = max { I Sn(x) - F(x) I } ,

where

S,(x) is cdf of observed data and

F(x) is cdf of uniform (constant) distribution.

Sn(x ) = Yl + Y2 + -.. + Yi, F(x) = i

_Yi n

{for xi_.<x<xi+ I}

A large difference, Dn, indicates that the observed

data does not come from a uniform or zero-trend
distribution.

(77)
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Table 4.5-2

PERCENTAGE OF POINTS OF THE KOLMOGOROV-SMIRNOV STATISTIC

The table gives values d. for specified values of ot such that

P(D n < dc_) = 1- ot

where the Kolmogorov-Smirnov test statistic, Dn, for the sample of size n is the largest deviation
between the observed cumulative distribution and the theoretical cumulative distribution.

_ .05 .02 .01
Q_0

Q _ 0

1 .9000 .9500 .9750 ,99n0 .9950
,683_ ,776_ .A_lg .gO00 .9_g3

3 .5_B ,_3_0 o707& ,78_b .82g0

._9_7 .5652 ,67_g .6BAg .73_2
5 ._70 .5095 ._6_3 .6272 .6685

6 ,blO_ ,_680 ._193 ,577_ ,6166
7 .3M15 ,_3_I ._A3_ ,53_ .575B

8 .3583 ._OQ_ ._543 ,5065 ,5_18

g .3391 ,3B75 ._3no ._79_ ,5133
10 .32_6 ,3687 ._Og3 ._566 ,_SRg

II o30B] .35P_ ,3_I_ ._367 ._677
i2 .2958 ._342 .17_ ._lq2 ,_91

1] ,2847 .3255 .361_ ,aO]6 ,_3_5

15 ._6_g .30_0 .3_76 o3771 ._0_2

16 ._578 ._g_? .3_7] .3657 .]9_0

17 ._S0_ .2A63 ,3180 .3553 .3809
18 ,_436 .27a5 .]ng_ .3_57 .3700

19 .237_ ,_71_ .301_ .336g .3612
20 ,2316 .26_7 ,29_1 .]_A7 .35_

21 ,2_6_ .25_6 ._87_ .3210 ,3_3

22 .2212 ,25_8 ._SOg ,313_ .3367

2] .2165 .2_75 ._?_g .3073 .]295

25 .207g ,£377 ,_6aO ._q5_ .3166

_6 ._0_0 ,2332 .2591 ,_8q6 ,3106

27 ,2003 .2_aO ,_5_ ._8_ .30S0
28 .1968 ,2_50 ,_9g ,_Tg_ ,_qg7
_9 ,1935 ,2_1_ ._57 ,_7_7 ._q_7
30 .1903 .2176 ._17 o270_ ,2899

35 .1766 ,_oI_ ._3 ._5o7 ._690

_0 .1655 ,18gl ,_I01 ._3ag ,_521

_S ,156_ ,1786 ,19_; ,_18 ,2380
50 .l_8k .1696 .leB_ ._lO _ ,_60
55 ,I_16 ,161g .1798 ._Oil ,2157

60 .1357 .IS51 ,1773 ,19_7 .2067
65 .1305 ,l_gl .I_57 ,1853 .1988
70 .l_S9 .I_38 .1598 .|7R6 ,1917

75 .1217 .1390 .15a_ .17_7 .1853
80 ,llTg ,13_7 ,l_g6 .1673 .1795

85 ,II_ .1307 .I_5_ ,16_ .17_
gO .II13 ,I_71 .I_I_ .157g .169a

g5 .I083 .I_38 .1375 .1537 .I6_g

I00 .I056 ,1207 .13_0 .l_g_ .1608

1.07 1.22 1.36 _.52 l.b3
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4.5.4 Examples

4.5.4.1 Example 1: Elevon Servo Actuator - Performance Trend. The elevon servo actuator is
used in the shuttle hydraulic system to control orbiter aerosurfaces (elevons). Current applied to the

servo linearly increases the secondary delta pressure for hydraulic elevon displacement. The nominal

servo breakaway pressure is 50 psia.

Figure 4.5C displays secondary delta pressure as a function of input amperage (in millivoits). The
normal operating curve is linear. Post-flight tests on actuator performance shows a decline in
secondary delta pressure for a fixed input current level. In general, there is a decreasing trend in
performance. (The trend techniques covered in this Standard do not include methods for comparing ......
several curves. A sample of pressures at a fixed current should be used to quantify a trend).

1.1

1

0.9

0.8

ffl

_ 0.7

7 0.6

_ 0.5
),..l:

0 0.4-
Z
O

0.3

0.2

0.1

0

NORMAL TREND

............... . • ' i .........

0 10 20 30 40 50

SERVE) CURRENT

+ FLT I o FLT 2 & FLT 3

Figure 4.5C. Elevon Servo Actuator (Single Channel Ramp Test)

Figure 4.5D displays simulated data on servo actuator breakaway pressures. Prior to flight, the
breakaway pressure in a given actuator is measured. At a breakaway pressure of >450 psi, silting
or other problems are occurring; a breakaway pressure of > 850 psi requires removal of the unit. In
the following control chart, tests 1 through 3 indicate a decreasing level of performance (increasing
trend in breakaway pressure). Once the unit reached >450 psi breakaway pressure (test 4), the unit
was desilted. Performance is monitored again for subsequent flights. The increasing trend in break-

away pressure is evident. After seven flights, the unit should be replaced.
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Figure 4.5D. Performance Trend Monitoring (Elevon Servo Actuator)

4.5.4.2 Example 2: Transducer Calibration/Beam Momentum Constancy. The run test can be
used to test for systematic deviations or trends from a constant value. This example presents actual
data for calibration checks on a shuttle air data transducer assembly (ADTA) probe unit. It also
presents a hypothetical example on time variation of an ostensibly constant beam momentum used
for a high-energy bubble chamber experiment.

a. ADTA - Calibration Trending.

The air data transducer assembly is part of the guidance, navigation, and control system. Among
other functions, the air probe unit is used in determining the angle and acceleration at reentry.
Calibration checks on an ADTA-1 were made throughout the 1982 - 1984 period. Figure 4.5E plots
the observed alpha pressures and a fitted trend line to the data.
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Figure 4.5E. Air Data Transducer Assembly Calibration Check (ADTA-I)

It is evident that there is a declining trend in calibration from the baseline of 0.0 inches of mercury
(in. Hg.). The fitted trend line will give a numerical measure of the decline in calibration (slope =
-.00083, standard error of slope = .000076, R2 = .952). In addition, a run test can be used to give
the probability for having the systematic trend of all sampled values below the baseline while still
having a calibration distribution that randomly fluctuates above and below the baseline.

The measured 0-baseline calibration values are:

Time Alpha Pressure (in. Hg.)

Month Year

9 1982
10 1983
2 1984
5 1984
7 1984

10 1984
3 1985

10 1985

-0.002
-0.003
-0.003
-0.005
-0.008
-0.01
-0.015
-0.023
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Since all observed points lie below the prescribed calibration baseline of 0.0 in. Hg., the series
yields a run sequence (with I run):

BBBBBBBB

where B denotes below the line y = 0.0. Using the run statistic table in section 4.5.3, the critical

value at the significance level ct=.05 and n/2=4 is r05=2. (Note that there are eight points, with

equal probability, of being above or, below the constant line; hence using previous notation, for
{xn' } and {y,, } as samples, n = m = 4.) Therefore, the probability of having only one run and

no systematic trend is less than .05. Hence, there is a statistically significant declining trend.

However, there is always transducer error, so slight deviations from the 0.0 in. Hg. baseline can be

considered errors in measurement rather than true calibration error. Although all measured values

are below 0.0, they may fluctuate about the median and cancel out any systematic trends. The run

test then can be used to check for systematic trends from the median. This approach also minimizes
the error measurement, since the baseline is taken to be the observed median.

The sample median is -.0065. A run sequence about the median is given by:

AAAABBBB

where A denotes above the median and B denotes below. The sequence has a high degree of order,
with only two runs among eight symbols. From the run statistic table, the critical value for n/2=4

is r05 = 2. Hence, the probability of having as few as two runs with no systematic trend is smaller
than .05. The conclusion, already seen intuitively, is that the deviations in the ADTA calibration

are not due to random errors, but represent a systematic declining trend from the prescribed
calibration value. _ _,

b. Beam Momentum Constancy

The following example illustrates how, in small samples, the run test can be used to quantify non-
random deviations or trends from a prescribed constant level of functioning. No significant linear

trend need exist. Practical applications would include instrument calibrations (as above), sets of

tests for leaks prior to flight (i.e., constant pressure to be maintained), and alignment accuracies
(e.g., HST fixed head stargazer).

The following data are based on measurements of beam momentum in a bubble chamber experi-

ment. The average momentum of the incident tracks on 20 rolls of film, ordered according to the
time of exposure, are:

GeV/C Units

[rolls I-7] 18.61 18.59 18.72 18.69 18.75 19.05 19.06

[rolls 8-14] 19.03 19.04 19.13 19.16 19.19 19.15 19.07

[rolls 15-201 19.08 19.01 18.91 18.81 18.90 18.89
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Figure 4.5F. Time Variation of Beam Momentum

Figure 4.5F illustrates that the momentum appears to increase and then decrease during the expo-
sures. A run test is used to determine analytically whether the hypothesis of constant momentum

can be rejected. The median value for the observations is 19.02 [(19.03 + 19.01)/2 due to even

number of data points]. The classificatio_ of values in relation to the mean, where A means above
and B means below, yields the series:

BBBBBAAAAAAAAAAABBBBB

This series has 3 runs among the 20 symbols. The table for critical values of the run statistic (here
n/2 = 10) shows that less than 6 runs would occur only 5°10 of the time with a constant momentum

beam and measurements deviating randomly about the median. Therefore, the hypothesis that the
momentum remains constant is rejected.
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4.6 POTENTIAl, PROBI,EMSIN DETERMINING AND ANALYZING TRENDS

There are a number of subtle and not so subtle errors to avoid in investigating trends. Some of
these arc noted below.

a. The Data is not Normalized. In this case, a trend may appear to exist (or not to exist);
however, if differences in time periods (that should be factored out) are taken into

account, there is only an apparent but not a real trend. Figure 4.4T provides such an
example.

b.

Trend Models Become Negative for Future Time Values. Data may indicate a declining
trend and a trend line (or other model) may have a significant fit; however, at extended

time values (i.e., extended x-axis values), the model may take on negative values, in this

case, it should not be inferred that the raw values must necessarily decline to zero. Also,

in this case, as with any future value prediction, the confidence limits surrounding the
predicted value should be computed and reported.

C. The Raw Data Contains Numerous Disparate Groupings for Each Time Period. By way
of example, the observational y-values may be the number of problems associated with a

given subsystem. However, these raw numbers represent problems of varying criticality,
component, failure mode, or problem. In turn, any conclusions regarding trends at such

a top, general level, are probably meaningless. Such a global cut, however, may be
valuable in suggesting areas to investigate more closely.

do The Model Has a High Enough R 2 for a Significant FitmBut the Confidence Interval for
the Slope Contains Zero. With the above conditions, one cannot conclude that the trend

is increasing or decreasing. For example, suppose one is trending SSME component
contamination, a linear model has a significant fit, and the slope, b, is positive. Asst_me

further that a 90% confidence interval about b is given by [b - 7, b + 7]. One can
conclude (prior to actually constructing the interval) that there is a 10070 chance that the

true slope lay outside of this interval. If the confidence interval does not include zero,

one concludes that the trend is increasing. However, if the interval contains zero, there is

more than a remote likelihood that the true slope could be flat or decreasing.
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Chapter 5

SELECTION OF PARAMETERS (VARIABLES) FOR PERFORMANCE TRENDING

5.1 OVERVIEW/BASIC APPROACH

In performance trending, the values of variables (or synonomously, in this section, parameters) that
either directly or indirectly indicate system/component performance and reliability are examined for
trends. Therefore, variables that are measurable and related to component performance need to be
determined. In analyzing a criticality 1, IR, or IS component, it may be the case that no suitable
physically measurable variables exist. However, in many cases such parameters and the capability to
measure the parameter values over time does exist. The subsequent sections present several methods
and criteria for identifying and selecting candidate parameters for performance trending.

The selection of the parameters to be measured and trended is based, in large part, on engineering
judgement. There are, however, statistical methods which can be used to select the most highly
correlated parameters when suitable raw data on performance is available. A simple correlation
coefficient can be computed to see if the parameter and component risk or performance are linearly
related. Contingency tables can be used to see if there is any degree of association between risk/
performance and the potential parameter. And in the case where there are several candidate

parameters, and one wants to select those that are the most significant in predicting risk/
performance, a stepwise regression technique can be used. Each of these methods is covered in
subsequent subsections.

As an overview, determinations for identifying performance parameters should be based on: compo-
" nent criticality; availability of sensor/performance data; trendability of sensor/performance data;

and failure/problem history. The FMEA/CIL documents will provide criticality classifications.
These documents, together with system assurance and assessment documents, should be examined

for failure mechanisms and indicators that can be detected by flight monitoring instrumentation
and/or ground checkout and testing. The trendability of data is related to: (1) the establishment of

redlines or norms of performance; (2) the accuracy and timeliness of sensor data; and (3) the degree
of correlation of the possible parameter with actual component performance.

5.2 SIMPLE CORRELATION

In the case where a performance characteristic or the risk of failure of a component is linearly
related to another more easily measured variable, a simple correlation test can be used to quanti_'
the degree of linear association. If data is available for correlation, and if a test of association or

correlation is high, then the more easily measured variable is a reasonable candidate as a perfor-
mance trending parameter. This section presents the computational aspects of testing for a simple
linear correlation.
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By del'inition,the sample correlation coefficienl r, for a sample of size n,

{(xtyl). (x>y2). .(xn.y,)}

is given by:

r

n

(xi-x) (Yi-Y)
i=l

"= 1 (xi-x)2 (Yi-y)2i !

(78)

(79)

The sample correlation coefficient measures the strength of a linear relationship between the ran-
dom variables X and Y, even when the data does not come from a bivariate normal distribution:

The values of r range between -l and l, with r close to 0 implying no correlation and JrJclose to l
implying a high linear correlation.

Since r is based on a sample, it is customary to perform a test of significance on the computed
sample correlation coefficient. This will give the probability of obtaining the r value (or higher) and
having no linear relationship between the random variables. In order to perform such a test of

significance, the assumption is made that the samples come from a bivariate normal population.

The significance test is based on the fact that the variable Z, defined by

Z __.

(80)

is approximately normally distributed (with mean 0 and variance 1).

A table of the standard normal distribution can then be used to test whether the r value obtained
implies that a linear relationship exists.

Suppose, for example, a sample of size 12 is taken, and a correlation coefficient of r=.7 is
computed.

Then

4iiz3
2 _/ (81)

= 2.60

Using a table of the standard normal distribution, there is less than a 1°70 chance of obtaining this
z-value and thus this sample correlation coefficient, while having no correlation. Hence, the sample
shows a high degree of correlation.
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5.3 STEPWISE LINEAR REGRESSION

Tile stepwise linear regression method can be used when there are several candidate variables for
performance trending and where the aim is to choose one or a subset of these variables. More

specifically, the aim is to isolate a subset of variables that will yield an optimal prediction equation

with as few variables as possible. In performance trending the dependent variable y usually repre-

sents levels of risk of failure (however, y can be any output parameter). The prediction equation is
of the form

Y = ao + alx I + a2x 2 +...+ a,x,,. (82)

Many statistical packages (e.g., SAS, SPSS) will perform a stepwise regression and sources in the

References section describe the computational method in detail. The key point in the method,
however, is as follows:

The aim in any regression is to find the coefficient estimates ao, a I..... a n that will m_nimize the
sum of squared differences between the observed value, y, and the predicted value, y (over the

values of the variables {xi}). As noted in section 4.4.3 for the single variable case, the total
variation or sums of squares can be partitioned into two sums:

(y__)2 = Zty__)2 + Z(___)2 (83)

This identity leads to the definition of R 2 as a measure of fit, where R 2 ranges between 0 and

I, and where R2 measures the amount of total variation that is explained by the regression fit.

In a stepwise regression (forward method) the variables are included one-by-one into the

predictive equation in the order of highest contribution to explaining the total variance (i.e.,

those that make R 2 close to I). In this way, the most significant predictor variables can be
isolated. " "

5.4 TWO-WAY CONTINGENCY TABLES - TESTING FOR INDEPENDENCE BETWEEN
TWO CLASSIFICATIONS

A two-way contingency table can be used to measure the degree of association between two

variables or classifications. The relevance to parameter selection for performance trending is: (1) the
risk of failure can be tested for association with a measurable performance variable; (2) two

possible performance parameters can be tested against each other to determine if, in fact, they are

independent; if they are highly dependent, only one needs be considered for performance trending;
and (3) if a variable is known to be a reliable indicator of risk or performance, but is not easily

measurable, another variable may be tested for its degree of association with the original perfor-

mance variable; a high degree of association (dependence) suggests that the more easily measured
variable may be used.

The following discussion presents the basic concepts used in a contingency table analysis. For each
observation, one has values for two different variables (e.g. temperature and pressure). The aim is

to determine if the values are statistically independent of each other, or whether the value of one

variable is associated with the value of the other. A matrix (contingency table) of the values is set
up and a chi-square test is used to measure whether any association between variables exists.

in general +terms, suppose that two variables or attributes, A and B, are classified into 1 categories

for A, (A I, A 2 ..... AI) and J categories for B, (Bi, B 2 ..... Bj). Variable A categories could be risk

5-3



levels (or failure frequencies) for a component and variable B categories could be measured down-
line pressure levels.

The counts for observations with combined characteristics A i and Bj are denoted nij and can be
written as a contingency table:

Contingency Table for Two-Way Classification

A t

A2

As

Bn Bz B3 Bj ni.

nIl n12 nl3 .... nIj n_.

n21 n22 n23 n2j n 2.

n31 n32 n33 n3j n 3

AI nil n12 nl 3 nlj

n.j n. I n.2 n. 3 .... n.j

n i

n

The row and column marginal totals are denoted ni. and n.j, respectively.

The cell probabilities are estimated by Pij = nij/n. If the cell counts are independently distributed
• ._ It

(i.e., there is no assocmt_on between variables A and B), then the probability for having properties

A i and Bj simultaneously is the product Of the probabilities for separate occurrences. Thus, Pij =

Pi" " Pj. and the proportion in row i and column j, nij/n , should be

nij = n i. .n.j

, n n n (84)

Put another way, if the probability of attribute Bj is independent of any attribute Ai, then the

conditional probability P(BiIAi) is the same for any Ai, with P(BjIAi)=P(Bj) , and vice versa. The
probability for having both attributes A i and Bj is

P(A_ f') Bj) = P(Ai) • P(Bj) (85)

Assuming the variables A and B are independent, the difference between an observed cell count nij
and an expected (based on independence) cell count,

n-Pi. "P.j = n( ni" .-n.j)n n (86)
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should be small, it can be shown that, under the assumption of independence,

I J - .

X2 = _ _ (nij- n"n'J) 2

i=l j:l
n i. • n.j

(87)

is approximately chi-square distributed. The number of degrees of freedom is (l-l)(J-1).

Thus, the more the actual values, nij , differ from what would be the expected value if the value for
row i is independent of being in column j

n i. • n.j
(88)

the larger the difference

2

( i ni" n'J)nni - . . (89)

The summation over all such differences would then be large. Consequently, a larger chi-square
value indicates a high degree of association. Conversely, a chi-square value close to zero indicates
that the variables are independent.

The example in the next section demonstrates the use for and computations in a contingency table/
chi-square test of association.

5.5 EXAMPLE: LUBRICATION FLUID PARTICULATE CONCENTRATION AS AN INDI-
CATION OF TURBINE SHAFT WEAR

Turbine shaft play in a shuttle component is thought to be associated with the metal particulate
concentration of the component's lubrication fluid. In general, analysis of used lubricant can be

used to detect unusual wear and to predict impending failures. A spectrometer (based on emission/
absorption principles) is used to determine the amounts of wear-metals or elements in a lubrication

fluid sample.

To ascertain whether lubrication particulate concentration may be used as a performance indication

of shaft wear, data on shaft wear and particulate concentration were obtained. The following
contingency table summarizes this data.
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ShaftWear
Particulate Concentration (mg/ml)

10-4<x

Excessive Shaft Wear I

Minor Shaft Wear 5

No Shaft Wear 15

21

lO-4_<x< I0 -3 10-3 <x< 10-2 10-2< x< 10-1 x_ 10-1

6

11

4 10

14 6

10 4

20 23 28 20

The "expected" cell counts, assuming there is no association, are:

25

38

49

112

4.69 4.46 5.13 6.25 4.46

7.12 6.79 7.8 9.5 6.79

9.19 8.75 10.06 12.25 8.75

Carrying out the computation for the measurement of the difference between observed and expected
values by equation (87), the chi-square value is:

X2 = 22.12
(90)

with (3-1)(5-1)=8 degrees of freedom. Using a chi-square table, the probability for no association is

less than .5%. Therefore, the metal particulate concentration of lubricant fluid would be a strong
indication of performance/reliability. The particulate concentration parameter would be a good
candidate for performance trending of the component's turbine shaft wear.
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Chapter 6

TECHNIQUE SELECTION

The graphical, descriptive statistics and analytical techniques described in this document should be
employed to identify and evaluate potentially hazardous or otherwise significant trends. In many
cases, simple descriptive statistics and graphical representations of the data will suffice in trend
identification/evaluation. When a numerical measurement of trend is needed, the analytical regres-
sion and small sample techniques apply. The accompanying flowchart depicts the general progres-
sion in selection of techniques for a trend analysis.

6-1



_'REND DATA_

PERFORMANCE _ PROBLEM/PROGRAMMATIC4, 4,
SCATTER AND/OR

PLOT GRAPHICAL METHODS
(OAR. PARETO. BOX)

ANALYSIS _ _ CONTROL

CHART

N

iusE u., s,I IF'TFOR K-S TEST; TREND
FIT TREND LINE LINE/CURVE

USE MOVING !

AVERAGE OR
EXPONENTIAL
SMOOTHING

J_

T

J TEST FOR

NON-ZERO
TREND

4,

PREDICT

FUTURE
VALUES

J INTERPRET
DATA

ANALYSISJ

i CALCULATE Ra I

CHECK FOR J
SIGNIFICANT i

FIT I

I "
i

6-2



REFERENCES

1. Bury, K., Statistical Models in Applied Science; John Wiley, New York; dated 1975.

2. Chou, Y.; Statistical Analysis; Second Ed., Holt, Rinehart and Winston; dated 1975.

3. Draper, N.R. and Smith, H., Applied Regression Analysis; Second Ed., John Wiley, New York;
dated 1981.

4. Halpern, S., The Assurance Sciences - An Introduction to Quality Control and Reliability;
Prentice-Hall, New Jersey; dated 1978.

5. Snedecor, G.W., and Cochran, W.G., Statistical Methods; Sixth Ed., The Iowa State University
Press, Ames, lowa; dated 1978.

6. Wadsworth, H. Jr., Stephens, K.S., and Godfrey, A., Modern Methods for Quality Control and
Improvement; John Wiley, New York; dated 1986.

7. Natrella, M.G., Experimental Statistics, National Bureau of Standards Handbook 91, U.S.

Government Printing Office, Washington, D.C.; dated 1963.

R-I




