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AERODYNAMIC PRELIMINARY ANALYSIS SYSTEM II1

PART I THEORY

By E. Bonner, W. Clever, K. Dunn

North American Aircraft Operations, Rockwell International

SUMMARY

An aerodynamic analysis system based on potential theory at subsonic/
supersonic speeds and impact type finite element solutions at hypersonic
conditions is described. Three-dimensional configurations having multiple
non-planar surfaces of arbitrary planform and bodies of non-circular contour
may be analyzed. Static, rotary, and control longitudinal and lateral-
directional characteristics may be generated.

The analysis has been implemented on a time sharing system in
conjunction with an input tablet digitizer and an interactive graphics
input/output display and editing terminal to maximize its responsiveness to
the preliminary analysis problem. Computation times on an IBM 3081 are
typically less than one minute of CPU/Mach number at subsonic, supersonic or
hypersonic speeds. Computation times on PRIME 850 or a VAX 11/785 are about
fifteen times longer than on the IBM. The program provides an efficient
analysis for systematically performing various aerodynamic configuration
tradeoff and evaluation studies.
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INTRODUCTION

Aerodynamic numerical analysis has developed to a point where
evaluation of complete aircraft configurations by a single program is
possible. Programs designed for this purpose in fact currently exist, but
are limited in scope and abound with subtleties requiring the user to be
highly experienced. Many of the difficulties are attributable to the
numerical sensitivity of the associated solution. In preliminary design
stages, some degree of approximation is acceptable in the interest of modest
turn-around time, reduced computational costs, simplification of input, and
stability and generality of results. The importance of short elapsed time
stems from the necessity to systematically survey a large number of
candidate advanced configurations or major component geometric parameters in
a timely manner. Modest computational cost allows a greater number of
configurations and/or conditions to be economically investigated.

One approach in this spirit is to employ panel approximations which
reduce the number of simultaneous equations required to satisfy flow
boundary conditions. Surface chord plane formulations, locally two
dimensional crossflow body solutions and non-interfering panel
simplifications are examples of approximations which can be used for this
purpose. An alternative approach is to use surface chord plane formulations
again for thin surfaces which can carry lift and surface panels for thick
body type regions.

Finite element analysis when combined with realistic assessment of
limitations and estimated viscous characteristics provides a valuable tool
for analyzing general aircraft configurations and aerodynamic interactions
at modest attitudes for subsonic/supersonic speeds and evaluation of
compressible non-linearities at high Mach numbers.



LIST OF SYMBOLS

A Projected oblique cross-section area

Aij Influence coefficient. Normalwash at control point i due
to vortex panel j of unit strength

Ai Area of quadrilateral panel i

b Reference span

c Local chord

c Reference chord

CAVG Average chord

Cd Section drag coefficient

CD Drag coefficient

CF Flat plate average skin friction coefficient

Ci Boundary condition for control point i

CB Section 1lift coefficient

C2’Cm’cn Rolling, pitching and yawing moment coefficients

CL Lift coefficient

Cn Section normal force coefficient

Cp Pressure coefficient (P-Pw)/q

C Net pressure coefficient (P,-P )/q and vortex panel strength
pNET 2 u

Cs Leading edge suction coefficient

CT Leading edge thrust coefficient

CX,C ,C Axial, side, normal force coefficient



(1]

o

* *
(B T )/ (B, T)
Force components

Axisymmetric outer solution to potential equation

Radius of curvature of cross-sectional boundary

Unit vectors in x,y,z direction respectively

Drag due to 1lift factor or skin friction thickness correction
factor

Equivalent distributed sand grain height or attainable suction

fraction
Effective length

Length of segment i, i+l of contour Cn

Equivalent body length or geometric length
Body fineness ratio
Mach number

Moment components

Unit normal

Rolling, pitching and yawing velocity about x, y and z

Nondimensional angular velocities pb/2U, qc/2U and rb/2U
Static pressure

Prandtl number

2
Free stream dynamic pressure, 1/(2pU )
Recovery factor
Unit Reynolds number or radius of curvature

Reynolds number based on [ ]

Gas constant



s Segment arc length

S Body cross-sectional area or surface area
a
SREF Reference are
0
T Static temperature , R, or tangent of quadrilateral panel

leading edge sweep

t/c Airfoil thickness ratio
u,v,w X,y,z nondimensional perturbation velocity components
u,v Freestream velocity
Vj Jet velocity
W Complex potential function
X,¥,2 Body axis Cartesian coordinate system
x,r,6 Body axis Cylindrical coordinate system
Z Complex number y+iz
a Angle of attack
a, Local angle of attack at surface control point i
B Angle of sideslip or [|1-M2|]1/2
v Vorticity strength per unit length or ratio of specific heats
r Horseshoe vortex strength in Trefftz plane
) Deflection or impact angle
n Lateral surface coordinate
aij Kroneker delta: 0 %#j
1 i=j
Sj Jet deflection angle relative to trailing edge
6jT Total jet deflection angle
sv/&x Body slope
6 Dihedral angle of quadrilateral panel or boundary layer momentum
thickness
A Sweep angle



7! Absolute viscosity

v Kinematic viscosity, p/p

p Density

o Source density

T Side edge rotation factor

¢ Perturbation velocity potential
& Total velocity potential

¥ See figure 4

Q Leading edge rotation factor
Subscript

c camber

CG center of gravity

e edge conditions

F friction

2 lower surface

LE leading edge

r recovery

t thickness

T tip

TRAN transition point

u upper surface

v vortex

w wave

© freestream condition
Superscripts

! first derivative or quantity based on effective origin
" second derivative

* Eckert reference temperature condition
- vector quantity



SUBSONIC/SUPERSONIC

The arbitrary configurations which may be treated by the analysis are
simulated by a distribution of source and vortex singularities. Each of
these singularities satisfies the linearized small perturbation potential
equation of motion

2

B o to +9, =0

XX yy zz

The singularity strengths are obtained by satisfying the condition that
the flow is tangent to the local surface:

3%/dn = 0

All of the resulting velocities and pressures throughout the flow may be
obtained when the singularity strengths are known. A configuration is
composed of bodies, interference shells and aerodynamic surfaces (wings,
canards, tails etc.). There are two alternative types of singularities used
to represent the configuration. Figure 1 shows the first type, which can be
used at all Mach numbers, and figure 2 shows an alternative method, which
can be used only at subsonic Mach numbers.

wing and vertical tail

- chord plane source and vortex panels -

fuselage and nacelles
-surface source line segments-

interference shell
- vortex panels -

Figure 1 A. Singularities Used to Simulate a Configuration.



In the first method, the first step in the solution procedure consists
of obtaining the strengths of the singularities simulating the fuselage and
nacelles, from an isolated body solution. The present analysis uses
slender-body theory to predict the surface and near field properties. The
solution is composed of a compressible axisymmetric component for a body of
revolution of the same cross-sectional area and an incompressible crossflow
component, ¢ , satisfying the local three dimensional boundary conditions in
the (y,z) plane. The crossflow is a solution of Laplace’s equation

¢yy + P,y = 0

A two-dimensional surface source distribution formulation is used to obtain
this solution. When the body singularity strengths are determined, the
perturbation velocities which they induce on the aerodynamic surfaces, or
other regions of the field, are evaluated.

The assumptions of thin airfoil theory allow the effects of thickness
and 1ift on aerodynamic surfaces to be considered independently. Therefore,
the effects of the aerodynamic surfaces can be simulated by source and
vortex singularities accounting for the effects of thickness and lift,
respectively. The source and vortex distributions used in this program are
in the form of quadrilateral panels having a constant source or vortex
strength. The vortex panels have a system of trailing vorticies extending
undeflected to downstream infinity. The use of a chordwise linearly varying
source panel is provided as an a option to eliminate singularities
associated with sonic panel edges at supersonic Mach numbers. The panels
are planar, that is they have no incidence to the free stream (although
dihedral may be included), since thin airfoil theory allows the transfer of
the singularities and boundary conditions to the plane of the mean chord.
These boundary conditions are satisfied at a single control point on each
panel. For thickness, the control point is located at the panel centroid
while the effects of twist, camber, and angle of attack are satisfied at the
spanwise centroid of each vortex panel and at 87.5 percent of its chord.

A cylindrical, non-circular, interference shell, composed entirely of
vortex panels, is used to account for the interference effects of the
aerodynamic surfaces on the fuselage and nacelles. The boundary conditions
on an interference shell are such that the velocity normal to the shell
induced by all singularities, except those of the body which it surrounds,
is zero. The boundary conditions are satisfied at the usual control points
for vortex panels.

The second alternative method uses constant doublet panels and constant
source panels to represent the body surface. These panels can be of an
arbitrary quadrilateral shape and may be inclined to the direction of flow.
The aerodynamic surfaces are represented by the same type of chord plane
source and vortex panels as were used in the first method.



Alternative method for subsonic flow only

wing and vertical tail
- chord plane source and vortex panels -

fuselage
- surface source and doublet panels -

Figure 1 B. Singularities Used to Simulate a Configuration (M < 1).

This second method can be used at subsonic Mach numbers only. At
supersonic Mach numbers, the doublet panels, which are equivalent to
quadrilateral vorticies, produce infinite perturbation velocities in certain
regions of the flow, and thus cannot be used. The body source and doublet
strengths are chosen to satisfy both an arbitrary normal velocity boundary
condition on the body,

ad/dn = Vn

and to have zero perturbation potential in the entire region interior to the
body surface.

=0

The following sections define the details of the solution procedure.
Included are discussions of the isolated body analysis, surface finite
element analysis considering edge effects, and evaluation of aerodynamic
characteristics including drag. References are cited for the reader
interested in further pursuing a particular point.



SLENDER BODY SOLUTION

1
According to slender body theory the flow disturbance near a
sufficiently regular three-dimensional body may be represented by a
perturbation potential of the form

¢ = o(y,z;x) + g(x) (1)

p(y,z;x) is a solution of the 2-D Laplace equation in the (y,z) cross flow
plane satisfying the following boundary conditions

-+ -+
Vo = jv + kw =0
d%/6n = 0, on C(x) (2)

C(x) and n are defined in figure 2. A general solution for ¢ may be written
as the real part of a complex potential function W(Z) with Z = y+iz.

o
-n
o = ReW = Re[ Ag(x)In Z + } An(x)Z ]
n=1
A useful alternative representation of ¢ and W is obtainable with the aid of

3
Green's theorem.

p = ReW - -2 Re § o(¢)1In(Z-¢)ds 3
C(x)

where o({) is a "source" density for values of { = Yo t izc, (yc,zc) being

coordinates of a point on the contour C(x).

The function g(x) obtained by matching ¢ of equation (1) which is valid
in the neighborhood of the body with an appropriate "outer" solution. g(x)
is then found to depend explicity on the Mach number M and longitudinal
variation of cross-sectional areas S(x)

X 1
g(x) = 1/(2w)[S'(x)ln(O.Sﬂ)-l/ZI S"(t)In(x-t)dt +1/2I S"(t)In(t-x)dt
0 X
-1/2 $'(0)1In x -1/2 S'(1)1In(1l-x%x)] M<1
(4)
X
g(x) = 1/(2x)[ S'(x)1In(0.58) - I S"(t)In(x-t)dt] M>1
0

The body axis perturbation velocities are obtained by differintiation
of equation (1)
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e - v
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§c=6v ei<9'“}2)

Figure 2. Body Slope and Cross-sectional Variables.

C(x+6%)




u = ¢x =e, t g’ (x)

At supersonic speeds, zone of influence considerations require that u = v =
w=0for x - 8 r<0.

Solution of the preceding equations is based on an extension of the
method of reference 3.

CROSS FLOW COMPONENT

The reduction of computations to a numerical procedure utilizes the
integral representation of ¢ given in equation (3) by discretization of the
cross-sectional boundary into a large number of short linear segments
(figure 3) over each of which the source density o is assumed constant at a
value determined by boundary conditions.

Computation of o(i,n) over the segment i, i+l proceeds by applying the

-+ -+ -
boundary condition equation (2) at each segment of Cn. If Vo = q = jv + kw

represents the velocity vector, the corresponding complex velocity in the
cross flow plane is obtained by differentiation of W in equation (3) with
respect to Z:

v - tw - -2§ 0(¢)/(Z-¢) ds (5)

The contribution by the sources located on segment i, i+l to the velocity at
?.,n is first evaluated. Noting that i, i+l makes an angle 6(i,n) with

J
respect to the horizontal axis, we have

d¢ = ds e10(1,n)

and the contribution ot the integral in equation (5) may be written:

¢

i+l,n
Alv(j,n) - iw(j,n)] = -2a(i,n)e'l”(1'“) J [zJ. -g]'ldg

n
g-]'.,n

11



Figure 3. Cross-section Boundary Segmenting Scheme.
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After integration of the last term and summation over all contributing
segments, the result may be written

v(j,n)-iw(j,n)--2§ a(i,n)e-ia(i’n){ln[R(i+l,j,n)/R(i,j,n)]+i&(i,j,n)} (6)
i
in which referring to figure 4, the quantities R(i,j,n) and 6§(i,j,n) are

defined by the relationships

R(i,j,nyePH1m) _ 5

§(i,j,n) = ¥(i,j,0) - ¥(i,§,n)
To insure uniqueness of the complex velocity, care must be exercised in

assigning values to the angles ¥(i,j,n) and $(i,j,n). Referring to figure
4, these are measured counter-clockwise from the positive y-axis so that

when facing Pi,n to Pi+1,n’ a point Pj,n just to the left of i,i+l shall

define an angle ¥(i,j,n) = #(i,n). As ﬁj n traverses a path around

Pi n to a point just to the right of i,i+1l, ¥(i,j,n) increases from #(i,n)

to §(i,n) + 2x. The same holds true for %(i,j,n) as §j n traverses a path

around
In consequence of these definitions §(i,j,n) becomes -7 when

Pivi,n
approaching i,i+1 from the right and n when approaching from the left. This
discontinuity reflects that exhibited by the stream function upon traversing
any closed path which encloses a distribution of finite sources.

From the boundary condition equation (2), we have

-(Bw/an)j = v(j,n)sinf(j,n) - w(j,n)cosé(j,n)

After substitution of v and w from equation (6), this last expression
becomes

-(i'kp/arl)j n " } a(j,i)o(i,n) (7)

i

where

a(j,i) = Z{Sin[ﬁ(j,n) - 8(i,n)] 1In[R(i+1,j,n)/R(i,j,n)]

+ 6(i,j,n) cos[6(j,n) - O(i,n)]}

13



R(i+1,j,n)

INFLUENCED POINT

Y(i,ji,n)

Figure 4. Details of Variables Pertaining to Segment i,i+l of Boundary Cn'
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The surface normal perturbation velocity - (ago/an)j o may be written in
terms of the body slope (6u/6x)j 0’ the angles of attack a, and sideslip B

and the angular velocities p,q,r as

- (aw/an)j,n - (8u/ax)j,n + [a + q(x-xcg)/U + py/U] cosf(j,n)

+ [B - r(X-xcg)/U + p(z-zcg)/U] sind(j,n)

Satisfying equation 7 at each of the points Fj qona given contour boundary

yields a set of equations for o(i,n).

AXISYMMETRIC COMPONENT

Differentiation of g(x) must be carried out with due concern for the
nature of the improper integrals appearing in equation (4). The result is

g'(xn) = 1/(4n) {S"(xn)ln[0.25(l-M2)] + In(xn) - Jn(xn)

-S'(O)/xn + S'(l)/(l-xn) - S;(O)ln X - S"(l)ln(l-xn)} M<1

g'(xn) = 1/(2x) {1/2 S"(xn)ln[O.ZS(Mz-l)] - Jn(xn) - S"(0)1n xn} M>1

where
1 n-1
I (x) = I In(x_-t) S’’’ (t)dt = } [Sp,1 - 8",) In(x -x )
Xn m=n
X n-1
n -
J (x ) = { In(x_-t) S’’’ (t)dt = } (8" pq- S",) In(x -x)
=0
*n T (Xm+1+ Xm)/2

To compute the second derivatives of the equivalent body cross-sectional

area required for g’ (x), the first derivatives at §m are found by finite

differences between X and X

E Second derivatives S (xm) at xm—(xm +

+1

§m)/2 are then found by finite differences between S’ at §m and §m+1'

Finally S"(xm) is determined by linear interpolation of S" ( im) between

X  and x .
m m+1

15



PERTURBATION VELOCITIES

The axial velocity u depends on 8¢/dx and the axisymmetric solution
g'(x). Jdp/3x is obtained by differentiation of the integral in equation (3)
to first obtain an exact expression which is then approximated by evaluating
the result over the segmented boundary.

The derivation of 8¢/dx must take into account the fact that the path of
integration in equation (3) is a function of x. Referring to figure 2
increments of a dependent variable taken along C(x) are denoted by d( ) and
increments taken normal to C are denoted by 6( ). Differentiation of
equation (3) then yields

dp/3x = -2 Re[ § (60/6x) 1In(Z-¢)ds - § a(£)/(Z-¢)(8¢/6%x)ds

+ § o($) In(Z-¢) (8(ds)/6x)] (8)

From figure 2
6(ds) = évdf = §v ds/h({) (9

where h({) is the radius of curvature of C(x) at ¢{. In addition, we have
from figure 2

§¢/6x = Su/sx er(f - 0.5m)

(10)
To evaluate 6o0/6x we note,

6o0/6x = lim [o(i,n+l) - o(i,n)]/6x (1)
§x-o0

Introducing equations (9), (10), and (11) into equation (8),

dp/dx = -2 Re{ §[(60/5X)0 + o/h §v/6x ] In(Z-¢)ds + i §[o(6u/8x)] d(/(Z-{)}

Again, assuming that quantities in the brackets of the integrands are
constant over i,i+l1,

(3¢/6x)j'n = 2 } {[(60/6}{)0 + a/h(6u/¢‘)'x)]i,n Ap(i,j,n)/o(i,n)
i

- o(i,n) (5u/5x)i n a(i,j.n)}
where

Ap(i,j,n)/o(i,n) = { R(i+1,j,n)+u(i,n) 1n R(i+l,],n)

- B(i,j,n)*u(i,n) 1n R(i,j,n)
- R(i,j,n)+n(i,n) 6(1,j,n) + £(i,n) }

The radius of curvature h(i,n) and the derivatives 8o/6x, Sv/6x are
approximated at the mid-points of the segments i,i+l as follows
16



§o/6x - the derivative at the mid-point in of the interval

X is set equal to the divided difference between

, X
n '‘n+l
o(i,n) and o(i,n+l). Linear interpolation between these
derivatives then yields §o/6x at L

Sv/6x - referring to figure 5, the displacement 6y is determined
by linear interpolation between 6§i’n and 6§i+1,n'
6n/(xn+l-xn) then represents §v/§x at X . Linear
interpolation between the stations x'n then yields 6v/6x
at x_.

n

1/h - @ at Pi n is determined by interpolation between values

?

of 6(i,n) at ﬁi n The curvature 1/h at ﬁi n is then set

equal to the divided difference between # at Pi+l n and 6

at P,
i

3

The lateral and vertical perturbation velocities, v and w , are obtained
from

v - iw = - 2 § o(t)Y/(Z-¢) ds
Integration over the boundary with constant segment source density yields:

v(j,n) - iw (j,n) = 2} a(i,n)eio(i'n){ln[R(i+1,j,n)/R(i,j,n)] - i5(i,j,n)}

i
Thus

v = ¢y =2 } a(i,n){ln[R(i+l,j,n)/R(i,j,n)]cos 6(i,n) - 6(i,j,n) sin G(i,n)}

i

W o= ¢Z =2 } a(i,n){ln[R(i+l,j,n)/R(i,j,n)]sin 6(i,n) - §(i,j,n) cos 0(i,n)}

i

17



l z bn N+l

Cn+l

Figure 5. Interpolation Procedure for Determination of (6v/6x)i .
,n
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SURFACE SOLUTION

CHORD PLANE SOURCE AND VORTEX PANELS

The wing, canard, vertical and horizontal tail are simulated by a
system of swept tapered chord plane source and vortex panels with two edges
parallel to the free stream. The coordinates of the panel corners are
specified with respect to an (x,y,z) system having its x-axis in the free
stream direction and its z-axis in the lift direction. The panel influence
equations are written in terms of a coordinate system having a z-axis normal
to the panel and an x-axis along one of the two parallel edges. A
coordinate transformation is necessary to obtain the coordinates in the
panel reference system. If the plane of the panel is inclined at an angle
ﬂp with respect to the y,z plane, a transformation into the panel coordinate

system (xp,yp,zp) is accomplished as shown in figure 6.
X = X
= cos § + z sin 8
y y P P

zZ = -y sin 0p + z cos ¢

P control
point
panel

y
X
z influencing w
p z c
panel ve

§§\‘~§““‘-~.

v = v cos (f -8 ) +w_sin (8 - 6 )
c P c p P P c

w =-v sin (§ - 8§ ) +w_cos (6 - 8 )
c P c Y [% P c

Figure 6. Coordinate Transformation in Panel Reference System.
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A transformation of the (up,vp,wp) velocities into the coordinate system of
the panel on which the control point is located (uc,vc,wc) results in the

axial, binormal and normal velocities induced on the panel.

For the image of the influencing panel, the signs of Yoo Gc and v, are

changed while using the same calculation procedure.

QUADRILATERAL SOURCE AND DOUBLET PANELS (PANELED BODIES)

For subsonic Mach numbers the body may be represented by a system of
planar quadrilateral constant source and constant doublet panels. - Since
four points arbitrarly selected on a surface may not lie in the same plane,
a mean surface through the four points is selected to represent the panel.

Let (Xi’yi’zi) represent the four points on the body surface,
and (fi,ni,gi) represent the four points on the mean surface.
<x2vY2vzz)

(52|ﬂ21€2)
(§1.n:1.¢y)

(xlsyz,zl)

(€3vﬂ3'§3)
(x3,¥3,23)

(XQIY4IZ‘)

(64'n4'§4>

This mean surface is chosen in the following manner.

1. The direction of the panel normal is found by taking the cross product
of the vectors representing the diagonals.

- - -
dg, X dg, dgy = ( X3-X; , Yg-¥; » 2Z3-2; )

| 45, ] | 4,.]

ad

a2 = (Rg-Rg , Y4¥g » 2425 )

20



2. The out of plane distance, §, is calculated using vectors determined by
pairs of points.

5

1 - - > Syj2 = ( Xy1-Xg , ¥1-Y2 , 21-Z5 )
6 = W ( sy, sg4) * n N
Sgq = ( Xg-Xyg , Yg-Yq » Z3-24 )

3. The coordinates of the mean surface are calculated by adding or

-
subracting 6 n from each of the corner points. 1i.e.

( 61, 71, §1) = ( X1y Y1 21) - 6 ( n,, n,, ns)
( 62: Na, gg) - ( X2y Yoo ZQ) + § ( n;, n,, na)
( 63; N3, gs) = ( X3, Y3, 23) - 6 ( n,, n,, na)

( E4r N4> 54) = Xgsr Ygo 24) + 6§ ( n,, n,, n3)

The normal computed for these four points is the same as the normal for the
original body points, since the diagonal vectors are the same. If a vector
determined by the line segment joining any two of the four points is normal

N
to n, then the four points must lie in the same plane. This is easily shown
to be true. From the above definitions,

N
- o - 12 = ( 61‘62 » N1=Ma » §1-C4 )
0 = (04, 05,) *n

;34 = 53'64 s Ma=Nyg 5> $3-C4 )

but
334 = (€3-€4 v m3ng » $3-C4 )
= [ (63'61) = (64'52) + (51'62)
’ (ﬂa'”1) - (ﬂ4'ﬂ2) + (nl’ﬂz)
v (§3761) = (€462 + (§,-¢,) 1 = dgy - dyp + 04,
or
(Gig+ Tgg) * D = 23,,o0 = 0
similarly 312- n = ;23- n = 334- n = 341~ n o= 0

and all four points must lie in the same plane.
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BOUNDARY CONDITIONS

Vortex Panels

At the vortex panel control points the resultant velocity along the normal
at a panel control point must be zero. Using a local coordinate system,
with perturbation velocities (uc,vc,wc) at the control points,

- -+ -
U = U(e+ae )
-] X z

>
e
n
A -
e
b

-+ o - - . -+ -+ -
Un=U[e +ue +(v+asinb )e + (w+acosf)e ]-n
X c X c c b c c n

- -
=T | (l+uc)ex-n + (wc+ a cos 60) ] =0

-

with @ = [6_ - (dz_/dx) 2 ]

For small perturbations (1+uc)gxoﬁ =~ - (dzc/dx)i and een = 1

Therefore w = (dz /dx)., - a cos #§
¢y c i c

Body Panels

The boundary condition on body panels will involve the normal component of
velocity. If we set the normal component equal to zero, we have the usual
flow tangency boundary condition. Nonzero normal components can be used for
jets or inlets. Given the boundary condition on the surface and the field

at infinity, the solution for the external flow is unique. It can be
satisfied by an infinite number of combinations of source and doublet
distributions on the surface. However each combination will result in a

different field inside the body surface. Specifying an internal boundary
condition will make the source and doublet distribution unique, and can have
a powerful effect on the numerical behavior of a solution involving a finite
number of elements. The internal boundary condition which we have chosen,
with these numerical considerations in mind, has zero perturbation potential
on the internal boundary, and therefore due to the nature of the governing
equation, zero perturbation potential inside. Below, we will show that by
first correctly choosing the surface source distribution, we can also
satisfy the external normal velocity boundary condition by satisfying the
internal surface boundary condition on ¢.

Consider a closed region determined by the surface S. Let the
surface have a distribution of sources and doublets with local strength ¢

and p. The surface, S, will divide the interior and exterior regions.
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exterior e

il

interior 1

o, p on S

Define e - the subscript denoting properties exterior to S
i - the subscript denoting properties interior to §
-
n - the external normal to S = (n, n n_ )
e x' 'y, z
-
u = V ¢ = perturbation velocities due to ¢ and 5.
s - . Y.
U - n, = Un = the prescribed normal velocity on S (exterior)
e

We can set the value of the surface source strengths to any value and still
satisfy the external boundary condition.
A g
We will set o = -T.n + U =
e wi ) o' T n 2 2 2 2 1/2
e g n.+ n_+ n
X y z

and adjust the value of u, and any other singulartity strengths, such that
everywhere on the interior surface of S,

# = O

Then in the entire region interior to S,

and G. = Vé¢. = 0

U v + U U
i ¢i
Since the p gives a continuous normal velocity across S, using Appendix C,

A

- -+ - - - -+ - -
u e n + u,* n, = u e n = o = - U n + U

e e i i e e L e n

e
or

=+ - - .

(U + u ) e n = U as required on S.
L e e n

e

Therefore the normal velocity boundary condition can be satisfied by
substituting a boundary condition for ¢ on the internal boundary surface.
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PANEL INFLUENCE COEFFICIENTS

Each of the panel types induces a perturbation potential everywhere in
space. If panel j has unit strength, we can say it will induce the
following velocities and velocity potential at the control point of panel i.

(A?., AY., AY., A?.) for vortex panels
1] 1] 1] 1]
(D?., DY , DY., D?.) for body doublet panels
1] 1] 1] 1]
u v W ]
(Sij' Sij’ Sij’ Sij) for body source panels
(T, T, T, T?.) for thickness source panels
1] 1] 1] 1]

Therefore, assuming there are ntv vortex panels and ntb body panels, and

Cp , pj, aj, Tj’ are the panel singularity strengths, the following set of
h

panel influence coefficients can be written:

ntv ntb ntb ntv
W - ) A, T ) siyop Y Tyt w
1 1} Pj 1] ] 1) ] 1] ) i
j=1 j=1 j=1 j=1
ntv ntb ntb ntv
v -ZA‘.’.C +ZDY.#.+ Zs‘.’.a.+ ZT‘.’.T.+ Vo
i 13 py ij 73] ij ] iy '3 i
j=1 j=1 j=1 j=1
ntv ntb ntb ntv
w, =ZA".’.C +ZDW.;1.+ Zs‘f’.a.+ ZTY.T‘FWO
i 1j p; i 7] i ] ij 'p i
j=1 j=1 j=1 j=1
ntv ntb ntb ntv
. = }:: A?. C + }:: D?. u_+ }:: S?. o+ T?. T+ ¢
1 1] Pj i ' p 1] P 1] P i
j=1 j=1 j=1 j=1
where (uy, , vg , Wy , $y ) refer to the perturbations induced by any other
i i i i

body or source singularities, e.g. slender bodies.
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PANEL SINGULARITY STRENGTHS

Source (Thickness) Panels

The source singularity strengths for thickness panels may be found
directly by equating each source panel strength to the slope of the
thickness distribution at its control point. For panel i

s = (dZt/dx)i

where Zt refers to the shape of the thickness distribution.

Body Source Panels

The source singularity strengths for body source panels are set to give
the correct normal velocity boundary condition when the internal
perturbation potential is zero. For panel i we set

; Uen, + U i
%1 T T Yt My n, 2 2 2 2 1 1/2
i B n + n_ + n,
i Vi i
where 3. =(n_,n ,n ) is the outward normal of panel i, and U is
t 500 Y1 % 0y

the normal velocity boundary condition for panel i,

Vortex and Body Doublet Panels

The determination of the vortex and doublet panel singularity strengths
is the final step in the solution procedure. They are obtained by solving a
set of simultaneous equations utilizing the panel influence equations to
relate the singularity strengths to the boundary conditions at control
points on the surface. For vortex panels the equation to be satisfied is,

ntv ntb
; w § W

Aij Cp + Dij pp - - - wooo- Wy F (dzc/dx)i
=1 j 5=1 i i i

and for body panels on the internal boundary it is,

ntv ntb

¢ ¢ - . . -

f1y %, )y - foy 7 Py ey
j=1 j=1

The known perturbations from others singularities have been placed on the
right hand side. Corresponding sets of equations may be written for
symmetrical or antisymmetrical loading.
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UNIT SOLUTION BOUNDARY CONDITIONS

Several types of basic and unit boundary conditions are considered and
can be classified as either symmetric or antisymmetric. Linearized theory
allows the superposition of these basic unit solutions. The p, q and r
rotary derivative boundary conditions are the result of placing the
configuration at @ = 0, 8§ = 0 in a flow field rotating at one radian per
second.

Symmetric:
la) Basic - vortex panels (dzc/dx) - Wy - Wy - W,
B T o
(dzc/dx) = surface slope due to twist and camber
Wo = normalwash induced by slender
B body thickness and camber
Wy = normalwash induced by thickness
T source panels
W = normalwash induced by body
o source panels
- -+ -+ -
¢ =-(Us+sn)+U =-(e*n)+ U =-n + U
© n X n pd n
1b) Basic - body panels (internal boundary) - $o - ¢o

T g

¢o = velocity potential induced by thickness
T source panels

.1 = velocity potential induced by body
o source panels
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s - _ _
2a) Unit alpha - vortex panels - 180 €°S ﬂc waB w i

6 = dihedral angle

w = normalwash induced by slender body
B at unit alpha

w = normalwash induced by body
% source panels at unit alpha
-+ - _m —D.—r -_1|'
o = - (Ugpm) =-Tg5 (& m) 180 "z
2b) Unit alpha - body panels - ¢a
o

¢ = velocity potential induced by

R

o body at unit alpha
3a) Unit q rotation - vortex panels .2 (x-Xx_) cos 8§ - w - w
c i ¢ 98 9
W = normalwash induced by slender body
9 undergoing unit q rotation
w = normalwash induced by body panels
1 undergoing unit q rotation
.3 2
o= - ( o 0 )y = - - (x-xcg) n - (z-zcg) n
3b) Unit q rotation - body panels - ¢q
g

¢ = velocity potential induced by body
9 panels undergoing unit q rotation

4a) Unit flap - vortex panel - Ton K

K = 1. for flap panel
K = 0. for others

4b) Unit flap - body panel 0 o =20
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Antisymmetric:

la)

1b)

2a)

2b)

s

Unit beta - vortex panels - 1go Sin HC - wﬂ - wﬂ
B o
ﬂc = dihedral angle
wﬂ = normalwash induced by slender body
B at unit sideslip
Wﬂ = normalwash induced by body
o source panels at unit sideslip
-+ - " -y.—) ==:_71-
o =-(Ue*¢n) =- 180 ( ey n ) 180 ny
Unit beta - body panels - ¢
ﬂa
¢ﬁ = velocity potential induced by
o body
Unit p rotation - vortex panels
.= [ (y-y ) cos 8 + (z-z ) sin ¢ ] - w -w
b cg c cg c Py P,
w = normalwash induced by slender body
Py undergoing unit p rotation
w = normalwash induced by body panels
Py undergoing unit p rotation

g = - ( ﬁ®~ n ) = - _%" [ (y-yc ) n, - (Z‘ch) ny ]

g

Unit p rotation - body panels - ¢p

g

¢ = velocity potential induced by body
o panels undergoing unit q rotation
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2

3a) Unit r rotation - vortex panels - (X-X_ ) sin 8 - w -w
b cg c r r
B o
w = normalwash induced by slender body
r . .
B undergoing unit r rotation
v, o= normalwash induced by body panels
o undergoing unit r rotation

-+ - 2
og=- (Ueen)=- _E_ [ (X-Xcg) ny - (y-ycg) n ]

(<]

3b) Unit r rotation - body panels - ¢r
g

¢ = velocity potential induced by body

o panels undergoing unit r rotation
. n
4a) Unit flap - vortex panel - 180 ©
K = 1. for flap panel
K = 0. for others
4b) Unit flap - body panel 0 o =0
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CONSTANT SOURCE AND CONSTANT VORTICITY PANEL INFLUENCE EQUATIONS

The source finite elements have a discontinuity in normal velocity
across the panel surface while the vortex finite elements have a
discontinuity in the tangential velocity in a direction normal to the panel
leading edge. The magnitude of the discontinuity, in each case, is constant
over the panel area. In addition the vortex panels have a system of
trailing vorticies extending undeflected to downstream infinity.

A constant pressure or constant source panel with a quadrilateral shape
can be constructed (figure 7) by adding or subtracting four semi-infinite

4
triangular shaped panels. These semi-infinite triangles, each determined
by a corner of the quadrilateral, can be assumed to induce a velocity
perturbation everywhere in the flow. However, each corner represents only
an integration limit, and all four corners must be included to make any
sense. These perturbation potential expressions are derived in Appendix A,

@(xvy»z) = ¢(X'X17 y-YIs Z’T21) - ¢(X'X2, Y'Yz, Z’Tzl)
- #(X-X5, y-ys, 2,T,5) + $(x-xy, ¥-y4, 2,T43)

Xo- Xy

X,,¥,,0 T -
(%1,¥,,0) 21 Ya- ¥,

(x-%;) - Tyy(y-y,) = 0

(X2IY2.0)
™
| ~
~
|- N
! ~
(x4,75.0) | _ | S
| -~ _ I
|- ~~ !
S—

| ~—_ |
' S\ Q(4,}’4.0)
I | T~
| |+
I Xy~ X3 [
I Tys = I
l 43 Ya- V3 |
I I

Figure 7. Constant Pressure or Constant Source Panel Construction.
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For one corner, having sides determined by y = 0 and x-Ty = 0:
2
2 2 2 2 2 2 2 1 >0 2 2 2 2 2
r=y+z , R=x+87r , k = 2 , B = l-Mm , B=T+ 8
2 B<O

constant source panel

2
ok 1 R+x 1, BR+(Tx+8 y)
b (x,y,2,T) = - — { y 7 log — + (x-Ty) — 5 log ————
bm R-x B BR-(Tx+8 y)
1 2R
+ =z tan S }
xy-Tr
2
ok 1, BR+(Tx+8 y)
u (x,y,z,T) = - — -3 log ————%—
4n B BR-(Tx+8 y)
2
ok 1 R+x 1, BR+(Tx+8 y)
v (x,y,2,T) = - — { z1log — - T—-7log————5— }
bm R-x B BR-(Tx+8 y)
ok 1 2R
ws(x,y,z,T) - - — tan 5
4 xy-Tr
constant vorticity panel
2
kCp 1 R+x P BR+(Tx+8 y)
¢V(x,y,z,T) - — { Tz 3 log — - zB — 37 log ————5—
8x R-x B BR- (Tx+8 y)
.1 2zR 2 1y
+ (x-Ty) tan 2z - (2-k) [ Tz 37 log r + (x-Ty) tan — ] }
xy-Tr z
kCp 1 zR 1y
u (XerzaT) = - { tan 2 - (Z'k) tan - }
v
8m xy-Tr z
kCp 1 zR zR 1y ZX
vv(x,y,z,T) =-- { T tan 5 + 35 - (2-k) [ T tan - - =1 }
8x xy-Tr r z r
2
kCp 1 R+x 2 1 BR+(Tx+8 y) yR
WV(X,Y.Z,T) = — { T 7 log — - B -3 log—mm— + —
8n R-x B BR-(Tx+8 y) r

1 2 yx
-(2-k) [ T3 logr - — }
r

Only the real (not imaginary), downstream, contributions are considered when
M >1
@KQ
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CONSTANT SOURCE AND CONSTANT DOUBLET PANEL INFLUENCE EQUATIONS

Source and vortex panels used to represent body shapes may have an
arbitrary quadrilateral shape, i.e. they need not have two streamwise edges.
The influence equations may be written in the z = 0 plane, and a coordinate
transformation used to obtain the perturbations of a panel having arbitrary
orientation (see Appendix C). A quadrilateral source panel of arbitrary
shape can be constructed by combining quadrilaterals with streamwise
parallel sides.

(x1yy110)

Xo- Xy
T = T T —
21 12 Y2 Y1
~ (x2'YQ'0)
>~
~
~
~
~
(X, ¥4,0)
Xg- X5
T = T -
| 32 28 Y3~ Y2
|
| 0
T,s T = N | | (%3,¥3,0)
Y3~ Ya | | |‘
| | | K
| | | I\
| | | [y
&(x,y,z) = ¢S(X‘X1’ y-yi, z,Tyq) - ¢S(X'X2» ¥-¥2, 2,Toy)
+ ¢s(x-x2, Y-¥2, 2,T35) - ¢S(x-x3, Y-¥3, 2,T32)
- ¢s(x-x4, Y-Y4r 2,Tg4) + ¢S(X'X3. Y-¥a3, 2,Tgy)
+ ¢s(x-x4, Y-Yei 2,T4y) - ¢S(x-x1, YY1, 2,T4y)
= ¢S(x-x1, y-¥Yi, 2,T5,) - ¢S(X‘x1: Y-¥1, 2,T41)
+ ¢S(X'X2’ Y-Y2. 2,Tgp) - ¢S(x-x2, Y-¥Y2, 2,T13)
¢S(X'X3, Y-¥s» z,T43) - ¢S(x-x3, Y-Y3, 2,T33)
+ ¢S(X'X4» Y-Ya>r Z:T14) - ¢s(x'x4’ Y-Y4» Z,T34)

Therefore each corner consists of the difference between the perturbations
induced by the two sweep angles. Therefore we can omit terms independent of
T, since they will cancel when the two contributions are combined.
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Therefore, ommiting terms independent of T, the perturbation velocities and
perturbation potential for an arbitrary quadrilateral constant source panel
are:

Constant source panel

2
ok ) BR+(Tx+8 y) 1 2R
¢S(x,y,z,T) - - — { (x-Ty) — 3 log ———— + z tan > }
4x B BR- (Tx+8 y) xy-Tr
2
ok 1, BR+(Tx+8 y)
us(x,y,z,T) - - — -7 log ———
4w B BR- (Tx+8 y)
2
ok T, BR+(Tx+8 y)
vs(x,y,z,T) - — -7 log ———————5—
47 B BR-(Tx+8 y)
ok 1 2R
ws(x,y,z,T) = - — tan 5
4 xy-Tr

A constant doublet panel is obtained by taking the z derivative of the
constant source panel,

pk 1 2R
¢d(xy)’,Z,T) - - - tan 2
4m xy-Tr
2
uk 1 z (Tx+8 y)
U.d(X,y,Z,T) - - - 2 2 2
4mr R [(x-Ty) + B z ]
2
pk 1 Tz (Tx+8 y)
Vd(X,y,Z,T) - - - - 2 2 2
4r R [(x-Ty) + B z ]
2
pk 1 (x-Ty)(Tx+8 y)
wd(xr}’ver) - - - - 2 2 2
4 R [(x-Ty) + B z ]
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Since the sweep angle could become infinite, we can write the above
equations in a different form. First, the sweep angle can be written as

AX ) 2 2 2
T = TAY ¢ then define B = AX + 8 AY
w