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Abstract

A new k — ¢ turbulence model that accounts for viscous and wall effects is
presented. The proposed formulation does not contain the local wall distance
thereby making very simple the application to complex geometries. The for-
mulation is based on an existing ¥ — ¢ model that proved to fit very well with
the results of direct numerical simulation. The new form is compared with nine
different two-equation models and with direct numerical simulation for a fully
developed channel flow at Re = 3300. The simple flow configuration allows a
comparison free from numerical inaccuracies. The computed results prove that
few of the considered forms exhibit a satisfactory agreement with the channel
flow data. The new model shows an improvement with respect to the existing
formulations.

1 Introduction

The Reynolds averaging of the Navier-Stokes equations (N — S) allows solving very
complex flow configurations with a manageable computer effort [1, 2]. A possible
alternative approach is the so called Direct Numerical Simulation[3], (DN ), that,
because of the current memory and speed limitations of supercomputers, is restricted
to simple flows and low Reynolds numbers (Re). So, the solution of the Reynolds
averaged N — S equations still represents the main possibility for flow simulation
in engineering applications. The well known drawback of the Reynolds averaging
technique lies in the introduction of further unknowns, the so called Reynolds Stresses,
stemming from averaging of the non-linear convective terms.

The Reynolds stress components are normally related to the mean flow quantities
through a set of additional equations that represent the turbulence model. It is
possible to carry out a further simplification following the Boussinesq assumption in
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which the Reynolds stress components are expressed in terms of the mean velocity

gradients as follows:
—_— ou; oU;\ 2,
e HER (c’)x,- + (?xj) - 3k6,J (1)

in which k = % ?=1 U, 4; is the turbulent kinetic energy, u; is the fluctuating velocity,

U; is the mean velocity, v, is the turbulent viscosity that represents the proportionality
parameter between the Reynolds stress and the mean strain rate, and the overbar
stands for the average operator. The turbulent viscosity v, is generally related to the
local velocity and length scale of turbulence.

Accordingly, it is possible to define two main model categories, with decreasing
complexity, that have an acceptable degree of generality:

o Full Reynolds Stress models. This approach does not use the Boussinesq
assumption and every component of the Reynolds stress tensor is computed
using a transport equation. Due to the high non-linearity usually connected
to the source terms of the differential system, this class of models requires
numerical methods which can effectively treat the stiffness introduced by the
source terms.

o Two-Equation models. In these lower order models the Reynolds stress com-
ponents are computed taking advantage of the Boussinesq assumption so that
the degree of complexity of the formulation is considerably reduced. The turbu-
lent viscosity is normally computed using two transported variables related to
the velocity and length scale of turbulence. The most popular choice of variables
is the turbulent kinetic energy & and the turbulence dissipation rate € defined
as € = VU, ;U 5.

In their early forms, both classes of models treat the solid boundary and molecular
viscosity effects by using the wall function approach[4]. In this method the viscous and
buffer layers in the wall proximity are modelled by an algebraic expression that relates
the turbulent quantities to the shear velocity under the hypothesis of local equilibrium
turbulence. While the assumption is valid for fully developed flow conditions, it is
the well known cause of inaccuracies in case of strong streamline curvature, adverse
pressure gradients or in stagnation regions that are often encountered in practical flow
configurations. The full Reynolds stress models have been applied to the study of an
impinging jet in a squared duct [5] with satisfactory agreement with experiments,
whereas two equation models have been used for the simulation of a much wider class
of flows[1]. Unfortunately, most of the applications have been carried out by the
high Re formulations that still retain the wall function approach in presence of solid
boundaries to avoid the difficulties connected to the simulation of the viscous and
buffer layers.

More recently, with the introduction of new forms, called low Re, (LR), of both the
full Reynolds stress and two equation models, it is possible to account for the molecu-
Iar viscosity and the wall effect[6, 7]. The LR forms differ from the standard high Re
forms insofar as they include further terms to model the influence of molecular vis-
cosity that is not negligible in wall regions, the normal velocity fluctuation damping
exherted by a solid boundary, and the presence of a nonisotropic contribution to the



dissipation rate of turbulence that becomes dominant in the viscous layer. The LR
models have been designed to maintain the high Re formulation in the log-law region
and further tuned to fit measurements in the viscous and buffer layers. Because of the
difficulties in measuring the turbulent stresses in the wall proximity the models have
been made to reproduce measurements with a very wide uncertainty range, thereby
making turbulence model refinement very unreliable. The recent availability of the
results of direct numerical simulation of turbulent flows, even if restricted to very
simple flow configurations and quite low Reynolds numbers, helps in understanding
the limiting behavior at boundaries of the turbulence quantities and provides a valu-
able data base for model testing and refinement. With this in mind, it is possible to
improve simple models making them consistent with the abovementioned data set.

In this paper the attention will be focused on lower order two-equation models in
their LR form. From a computational point of view, the modifications introduced to
model the wall effect often cause serious numerical problems so that the results of the
computations may be heavily affected by the adopted solver. A comparison of the
predictions given by the existing k — ¢ LR models obtained with a single solver able to
cope with all the formulations is definitely desirable and was one of the targets of the
present investigation, together with the development of a new general k£ — ¢ model.
This also allowed investigating the numerical behavior of the models.

2 k —e€LR models

In the current literature it is possible to find several wall effects modifications to the
standard high Re k— ¢ model. Among the various LR formulations nine of them were
considered for the comparison with the present model (pr) proposed in this paper:
Chien[8], (ch), Jones and Launder[9], (j!), Nagano and Hishida[10], (rnh), Coakley[11],
(co), Speziale et al.[12], (sp), Kim[13], (ki), Rodi[14], (re), Lam and Bremhorst{15],
(b), Shih[16], (sh). In parentheses are reported the letter codes with which the models
will be referred to. The selection was performed on the basis of the results of Patel
et al. [6] with the addition of more recent models.
The LR models may be expressed in a standard form in terms of the following

nondimensional variables (the overbar stands for a nondimensional quantity):

- k _ €L _ v = U _ i

k:—U—§- e=U§ Vt=7 U=U zi:—L—
in which U is a typical velocity, L is a typical length, and v is the molecular viscosity.
Accordingly, the flow Reynolds number is defined as:

_Lu
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Re

Hereinafter the variables will appear only in their nondimensional form so that the
overbar will be dropped for simplicity. The model transport equations may be written
as follows:
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in which

P= __1__1/ aU; oU; + oU;
T Re! Oz; O0z; Oz;
is the production rate, and
2

k
v = Rec, fu? (3)

is the Kolmogorov expression for the turbulent viscosity. The extra terms D, F, I
represent the corrections to the standard high Re formulation that, together with the
damping functions fi, f, f., allow balancing the transport equations (2) in the wall
region.

The term D represents the extra destruction rate in the wall region. The dissipa-
tion rate appearing in (2) may represent the total dissipation rate, ¢, or the so called
isotropic dissipation rate, €, that are related via the following expression:

ce=€+ D (4)

in which D is the dissipation budget in the wall region. Evidently, ¢ = € far from solid
boundaries where D — 0. A similar correction is generally made in the ¢ transport
equation. The extra term II is the pressure transport term for the trace of the
Reynolds stress tensor. Shih[16], analysing the DN S computations, observed that II
is o(y) in the wall region, but is generally neglected in all the existing two-equation
models although the turbulent transport is o(y>) and remains in the model equation.
This term is modeled as a turbulent kinetic energy diffusion.

In all the proposed formulations, the damping functions f;, f,, are related to the
Van Driest damping expression for the mixing length, L:

L=y (1 - e—Ay+)

in which A = 26 is an experimental constant, and y* is a nondimensional wall distance

defined as
y* =u, y Re (5)

The selected transported variables are k and ¢ with two exceptions:

o co. The transported variables are ¢ = vk and w = £. According to Coakley[11],
this choice ensures better numerical properties, as explained in ref.[17].

o sp. While maintaining k as the first variable, ¢ is replaced by 7 = % in order to

remove the inaccuracies connected with the solid wall boundary condition for
the dissipation rate, since 7 vanishes automatically to zero.

The ro two-equation and k¢ four-equation models are two-layer models in which
an inner layer is defined close to the wall (y* < 100) where, while using a transport
equation to compute the turbulent kinetic energy, the dissipation rate is computed
by algebraic expressions in function of the wall distance and k. This choice allows
removing most of the numerical problems since the cumbersome solution of the dissi-
pation rate equation together with the implementation of a proper boundary condition
are skept in the wall region. Moreover, no extra terms are needed in the transport



model | f, . fi f2
2
ch 1 — exp(—.0115y+ 1.0 1~ 0.22eap(— 5%
ji erp ﬁﬁ 1.0 1 — 0.3ezp(—R?)
50
nh (1- emp(—-zy(:—s)f 1.0 1 - 0.3ezp(—R?)
co 1 — exp(—.0065R,) 1.0 1.0
2
sp 1+ 73'7% -tanh(%)) 1.0 1- 0.22ezp(—-}—;g
ki 1 - exp(—.025vF; — 1075R%) | 1.0 1.0
ro 1 — exp(—.0198R,) 1.0 1.0
Ib (1- ezp(—.0165Rk))f I+ E) |1+ %)2 1 — ezp(~ R?) 2
sh 1-ezp(— T4, oyt) 1.0 1-0.22eap(-51)
- . 174
pro |1 =ReoRresp AR ) 1.0 1 - 0.22zp(—
Table 1: Damping functions in the LR forms
mode] | II D E
ch 0 —ﬁﬁ- R?s;"’ exp(—.5y")
- N y (22U)2
it o ~Re (%yc)? %4 (%%) 2
v 2
nho |0 ~ (%) | -0 - 1) (3¥)
co 0 0 -
sp 0 - -
ki 0 - -
TO 0 -~ -
lb 0 0 0
0.05 ) w_ (82U)\?
sh [f,. 1-exp(-y f:k'f],j 0 ~Re2 (Tyf)
0.0 R v U 2
pr [T‘QAf:ka],j 0 Qﬁéf (8y2)

Table 2: Extra terms in the LR forms




equations since the wall effects are supposed to be effective only within the range of
application of the algebraic expression for .

The damping function expressions selected in the various formulations may be
found in table 1, whereas table 2 gives all the selected forms for the extra terms D,
E, II. Most of the models have a set of damping functions based on the physical, y,
or nondimensional, y*, distance, and on the turbulent Reynolds number based on y,

R, = VkyRe, or R, = "2€R°. The exponential function f, introduced in (3) damps
the turbulent viscosity to zero in the viscous and buffer layers. It is interesting to
observe that nearly all the models retain the exponential function for the decay of
dissipation rate f, proposed by Hanjalic and Launder[18], according to which ¢, has
a finite value at the wall. The sp formulation needs an additional function to further
damp the value of ¢; in the wall region (see ref.[12]). The empirical constant ¢, is
left unchanged all the way down to the wall in all the formulations with the only
exception of /b where, since no extra terms are added in both % and ¢, the production
of dissipation rate must be damped to balance ¢ at the wall.

For any further detail about the models, the reader can refer to the original

bibliography.

3 A new form independent of wall distance

The results of DN § have shown the limiting forms of the turbulent quantities in the
wall region. A correct formulation should ensure that

U=o(y) k=o(y’) e=o0(1)

e=o(y?) m=o(y®) T =o(y?)

together with a negative slope of the dissipation rate in the wall region. The two-
equation mode] proposed by Shih[16] matches the flow variables limiting forms re-
markably well, but in its original formulation suffers from numerical problems stem-

ming from the selected form of both the dissipation rate decay term and turbulent
viscosity formula. In fact, the dissipation decay rate is

— ¢ fz%g (6)

that is o(1) at the wall, and the turbulent viscosity is computed as

k? ’
vi=cu fu RE—E_ (N

in which the damping function f, is based on a fourth order polynomial of y* designed
to match the DN S data. The isotropic dissipation rate is computed as

oK) ?

E=¢



This expression ensures that ¢ vanishes at the wall like y?, provided that a proper
boundary condition makes € equal to the negative term in (8). Even in the com-
putation of simple fully developed channel flows some convergence problems were
encountered, which were caused by the decay term given by equation (6). When
computing the isotropic dissipation rate with equation (8) the ratio of the first order
derivative of k and & in the wall region often gives overshoots that cause negative
dissipation rates and, through equation (7), negative v;.
Alternatively € may be defined as

E=¢fe (9)

where we have introduced a function f, which is a function of the turbulent Reynolds

k2 Re
€

number, R; = :
fe=f(R)=1-exp(~VRi)
At the wall, R; = o(y*) so that the function f. is o(y?). Equation (9) prevents any

negative dissipation rate, makes € = o(y?) at the wall, and is balanced by molecular -
diffusion and the extra production rate E. The f, function is designed to give é ~ ¢
for y* > 6.

Table 1 shows that all the LR forms except the j/ model use damping functions
for v, based on y or yt, while f, is based on R;. The use of y* as the exponent of the
damping functions gives unphysical results in the case of stagnation points. In fact,
the definition of the friction velocity u, appearing in equation (5) is:

Twall
Uur =,/
p

ou
Twall = Klam '3_7—1' "

where n is the direction normal to the wall. At separation and reattachment points

ou
(%) wall =0

and y* — 0 regardless of the value of y. This implies that f, is zero all along the
flow section making the viscous layer thickness unphysically unbounded. There are
several known tricks to overcome this problem, like relating u, to the k peak in the
viscous layer via the wall function for the turbulent kinetic energy:

Ur R \/v/Cu kmaz',

or replacing the velocity gradient by the maximum value of the vorticity w in the

cross flow direction:
(BU ) | '
o R Wmar
on wall

While these, and other, tricks remove the singularity, they are somewhat arbitrary
and represent sources of inaccuracy. Moreover, a general turbulence model should




not need information about the flow domain geometry, like the wall distance, the
determination of which is not straightforward in complex geometries. Unfortunately,
replacement of y* is not an easy task. In fact, while f, becomes constant for y* >
5 — 10, f,, related to the wall effects, vanishes gradually in the range 0 < y* < 100.
Figure (1) shows the R, profile as a function of y*: the turbulent Reynolds number
increases very steeply for 0 < y* < 50, reaches a peak at y* ~ 80 and decreases for
y*t > 100. When keeping as a benchmark the f, = f(y*) given in [16], which was
carefully designed to give the best fit with DN S, it has been impossible to replace y*
by R; even using complicated hyperbolic expressions because the turbulent Reynolds
number does not behave monotonically. After intense numerical testing we found
convenient to introduce a new damping function independent of y and based on
length scales. Figure (2) shows that the turbulence length scale, defined as

Lok
€
or
po K
€

has a monotonic behavior so that it may be conveniently used to replace y*. A new
nondimensional parameter,Ry,, based on L is introduced:

L

RL_-E; (10)
in which L Y
YU

| U | is the amplitude of the relative mean velocity in a frame fixed to the solid
boundary. This choice ensures the Galileian invariance of the model equations. Rp,
represents the ratio of the turbulence length scale L to the viscous length scale L,.

This ratio approaches zero at the wall because L — 0, L, — oo, and reaches asymp-
totically a maximum in the log-law region. In the wall region the following limiting

forms hold:
Lo }-» Rt = ols?)

Accordlngly, the exponent of the damping expression must be R‘ to give fu = o(y)
at the wall. The new damping function based on (10) has the followmg expression:

fu=1- . emp( Cu1 €TP (Cug RI/ )) 7(11)

ezp(—cu1)

in which ¢,; and ¢, are two empirical constants. The f, function given by Shih[16]

versus R} is shown in figure (3). The shape of the exponent of f,(= —In(1 - f.))



closely resembles an exponential: this was the reason why a double exponential func-
tion was selected.

Figure (4) shows that the differences between the original damping function[16]
and the new form are limited to the viscous layer (y* < 10), while in the buffer and
log-law region the new form independent of the wall distance quite closely resembles
the formulation based on the nondimensional wall distance.

With the substitution of equation(8) by equation (9) and the replacement of the
damping function for the turbulent viscosity by equation(11), a new model tuning
was necessary. In the present formulation II has the form given in table 2, ¢; = 1.45,
c2=20,0p =0.=13,¢,1 =04 1073, cy2 = 1.2. The boundary condition for the

dissipation rate is
(gk)2
: (12)

€wall = 2% Re

4 Fully developed turbulent channel flow

Patel et al. [6], while comparing some LR forms with experiments, stressed the data
unreliability in the wall proximity in the range 0 < y* < 100. In this region the
scatter in the turbulent kinetic energy k is of the order of +30%, and comparable
inaccuracies may be expected for the turbulent shear stress %o, defined in equation
(1), and the dissipation rate . Because of these uncertainties it was decided to use the
direct numerical simulation results of a fully developed channel flow by Mansour et
al.[3] at Re = 3300 based on the maximum velocity, or Re, = 180 based on the friction
velocity. All the derivatives in the flow direction are zero, with the exception of the
streamwise pressure gradient that is constant. This allowed studying the problem
by a one dimensional grid with 81 points in the cross flow direction and a geometric
stretching ratio of 1.05. With this grid it was possible to place the first grid point away
from the wall at y* ~ 0.15. The transport equations are nondimensionalized with
respect to half channel height and the friction velocity u,, while the turbulent viscosity
is made nondimensional with respect to the laminar viscosity v. The domain and the
solution are symmetric with respect to the centerline where the following boundary
conditions were imposed:

Under these assumptions continuity is automatically satisfied and the momentum
equation in the main flow direction, z, is simplified to:

ou 1—y

=~ =R

dy er (1 + Vt)
in which y represents the cross flow direction and U is the flow velocity. The transport
equations for & and ¢ become:

e (Z(1+&)8)+P-c+D+I=0
2
Rle,- 3—3!/ 1+§‘; g—; +le1i'P—CQf2£k—+E=0




in which the one dimensional production rate is expressed by:

1 (6U)2
Re, v 0y

The differential system is solved by a decoupled approach based on a simplified
approximate factorization algorithm described in ref.[2, 17]. The comparison of the
various models is done by plotting the mean velocity U, the turbulent kinetic energy &,
the dissipation rate €, the turbulent shear stress @w, the turbulent viscosity v;, and the
production rate P. The plots gather models that solve for the isotropic dissipation
rate &, (ch,jl,nh), models that use a different set of variables (co, sp), two-layer
models (ki,70), and models that solve for the total dissipation rate (Ib,sh,pr). The
sh results reported here have been obtained with a slightly modified version of the
model in which the original expression for € given in equation (8) was replaced by
equation (9).

Figure 5 shows the computed ve10c1ty profiles compared with DNS whereas fig-
ure 6 shows the comparison of the turbulent viscosity profiles. Among the models
that solve for the isotropic dissipation rate nh is the one in better agreement with
DNS. This is strictly related to the good reproduction of the turbulent viscosities
in the viscous and buffer layers. This produces the correct velocity gradient in the
buffer layer together with a slight overprediction of the centerline velocity. The good
agreement is obtained by nh despite the fact that, at the wall, v, = o(y*) because
fu = o(y?). jl gives a strong underestimation of the centerline velocity. This is
caused by the underestimation of the turbulent viscosity in the buffer layer that does
not ensure enough cross flow momentum diffusion. The reason for this is the damping
function for the turbulent viscosity f,. This function, designed to work for high Re
flows, in this case does not reach unity for y* > 100 and is still approximately 0.65
on the centerline. This exceedingly smooth behavior indicates that the selected form
of the damping function for the turbulent viscosity, while being based on R; and not
on yt, is not general. sp shows an excellent agreement with experiments (figure 5).
This is strictly linked with the good reproduction of the turbulent viscosity profile
(figure 6). In fact, DN S[3] and experiments[19] agree in locating the peak of turbu-
lent viscosity at 100 < y* < 150 and not on the centerline: this feature is correctly
reproduced by sp, while is completely missed by co in which the overestimation of
the turbulent viscosity causes a very smooth and overpredicted velocity. For the two-
layer models the influence of the matching point was investigated. For ro the two
computations carried out matching at y* = 50 and y* = 100 showed a considerable
change in the turbulent viscosity, but negligible changes in all the other quantities
including the velocity profile. The four-equation, two-layer k¢ model retains f, only
in the inner layer, while it assumes that in the outer layer f, = 1. The selected
form of the damping function seems to suffer the same problems encountered with j!
insofar as at matching (y* = 100) the damping function is still 0.7. This is shown in
figure 6 where ki refers to the original formulation by Kim([13], while in ki(fmu) the
damping function was retained in the outer layer. As it was found for ro, the velocity
profile is not affected by changes in turbulent viscosity taking place at y* > 100. The
three models that solve for ¢ give the best overall agreement with the DN S velocity
profile. The present formulation, pr, fits with DN S in the buffer layer, and predicts
the correct velocity at the centerline. The improvement with respect to jl, which is
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the only other model that does not use the wall distance, is quite remarkable. The
v; profile exhibits the correct trend, although the turbulent viscosity value is slightly
overpredicted on the centerline.

The turbulent kinetic energy profiles, reported in figure 7, show a quite wide scat-
ter in the computational results. For all the models k « y? at the wall. Nevertheless
the k peak is either misplaced or underpredicted. An accurate choice of the constant
in the pressure transport term together with a correct dissipation rate budget in the
wall region allows the sh and pr formulations to fit both the location and the mag-
nitude of the turbulent kinetic energy maximum value, although the k level in the
log-law region, which influences the turbulent viscosity distribution, is overestimated.
Both the two-layer forms do not seem to match the data not only in the region of
application of the algebraic expression for ¢, but also in the outer layer. sp, while
giving an exceedingly low k peak, predicts the correct level of turbulent kinetic energy
in the log-law region.

The turbulent shear stress profiles are given in figure 8. This quantity is critical
for the correct reproduction of the effect of turbulence on the mean flow field. Not
all the models satisfy the relation @o « y® at the wall. In particular, nh, co, and Ib
predict 0 « y*. Since all the models ensure U* o y* the disagreement is caused
by an improper slope of the turbulent viscosity induced by the damping functions.
When both k and ¢ are o(y?), f, must be o(y): the latter condition is not satisfied
by nh and co, in which f, = o(y?), while for b the inaccuracy comes from f, = o(1)
together with the use of the total dissipation rate € = o(1) to compute the turbulent
viscosity. sp and pr show the best fit with experiments. Nevertheless the present
formulation manages to give the proper uv shape. This has been accomplished by
optimization of the c,; and c,2 constants.

Both the two-layer models show a kink in the turbulent shear stress profile located
at the interface between the inner and the outer layers. The kink is caused by an
imperfect match between the inner layer, where an algebraic expression for ¢ holds,
and the outer layer where the standard high Re transport equation for ¢ is imple-
mented. The two layers are normally interfaced in such a way that the value of the
dissipation rate obtained by the algebraic expression equals the one obtained by the
transport equation. At the interface point the two layers may have the same € value,
but evidently have slightly different slopes that induce the kink. Different damping
functions, choice of constants, and matching criteria did not solve the problem, so
that it is reasonable to conclude that, up to now, it has been not possible to ensure
a C1 continuity for ¢ at the matching point, and it is actually questionable whether
it is possible. In the elliptic flow solver based on ti[2] the layers were matched where
vifv = 20 — 36. In the present low Re flow, this condition is never satisfied so that
the layers are matched according to the nondimensional wall distance y*. Part of
the inaccuracies shown by t/ may be attributed to this technique which brings the
matching point too close to the wall.

DN S shows that the ¢ peak is located at the wall and the slope of the dissipation
rate is negative in the viscous layer. These two results contradict what have been
found so far by experiments. The reason for this disagreement is largely attributed to
difficulties in measuring turbulent velocity gradients close to the wall with the result
of an extremely large experimental uncertainty. All the older formulations have been
tuned to have a positive or zero ¢ slope at the wall. The only models that took
advantage of DN S are sp, sh, and the present formulation: this should be kept in
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mind when looking at the results. Figure 9 shows the dissipation rate profiles for
the ten models. For the formulations that solve for € the plots refer to the isotropic
dissipation rate without the extra dissipation D (equation 4). This term, while being
dominant in the viscous layer, gives values of ¢ at the wall that are at most half of
what DN S prescribes, together with a positive slope. The local peak of dissipation
rate away from the wall takes place at y* ~ 12 and is not influenced by the extra
term D which decays very quickly and is not negligible in the range 0 < y* < 10. In
all the models, including sp, sh and pr there is a marked tendency to overestimate
this peak, with the exception of ch which fits very well with DNS in the range
10 < y* < 180, probably because of the selected form of the extra production term
E. The only two models that exhibit the correct dissipation rate slope at the wall are
sh and the present formulation pr based on the sh model. The correction adopted
to the isotropic dissipation rate formula in sh, based on an exponential damping
function, while removing numerical troubles, produces an overestimation of ¢ at the
wall of the order of 2.5 times the value given by DNS. Although ¢ is o(y?) at the
wall, it seems that it has been not possible to obtain the proper balance between the
molecular diffusion of dissipation and decay rate. The problem may be generated
by the difficulties in the implementation of a proper boundary condition for €. In
fact, the dissipation rate must reach a finite value at the wall which comes from the
balance of the abovementioned terms. The errors in computing first or second order
derivatives at the wall may be the primary source of inaccuracies in the treatment of
solid boundaries. The dissipation rate boundary condition given in equation (12) was
retained for both sh and pr. The overestimation of the wall value of € is reduced to
40% by the present formulation. It has to be observed that sh and pr are the only
models, among those considered in this comparison, that show a negative € slope at
the wall.

Figure 10 proves the close link between the velocity profiles, together with the
turbulent shear stress, and the production rate P. The plots show that the models
locating Ppqz at y* & 10 — 11 reproduce very well the velocity profile. If P,q, Te-
gardless of its value, is located at y* < 10 the velocity module on the centerline will be
underestimated, while shifting P4, further out generally produces an overestimation.

5 Conclusions

A new k — € LR mode] is presented. The formulation was obtained starting from
the LR form proposed by Shih[16]. The comparison of the new formulation together
with nine other LR forms shows an overall improvement in the fit with the direct
numerical simulation data. The lower order model generality is greatly improved by
introducing a new damping function for the turbulent viscosity which does not need
information about the flow geometry. This is done by a new form of f, based on the
ratio of the turbulent and viscous lenght scales Rj; that removes the uncertainties
and inaccuracies stemming from the need to define a geometrical distance from solid
boundaries. It is necessary to test the new formulation independent of y* for a wide
range of Reynolds number and geometries. Further work is on the way to extend the
comparison to elliptic flows, focusing the attention on those models that proved to
possess the necessary degree of generality.

Some of the models, like the two-layer formulations, showed a poor fit with ex-
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periments. This is not surprising since these, and other, models had been tuned to
fit high- Re flows using different data sets. Most of these formulations proved to give
satisfactory depictions of more complex flow patterns than the one investigated here.
Nevertheless, the comparison of the models in such a simple, and ideal, flow case al-
lowed highlighting some differences that would have probably been lost in a complex
flow configuration.
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