ANy 1091 R UILU-ENG-91-2230
e r—————; ' : CRHC'91'20

‘i

antgr for Reliable and ngh—Petformance Computing

SAnGley GrRAT
M-/ =/
/3936

=

=0F GARBAGE COLLECTION
~AND DYNAMIC REORDERING
IN A LISP SYSTEM

== s T
= =

= = = -
- Rene le Llames
- Coordinated Science Laboratory
College of Engineering
- UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

€.

TR

g

..

u«w) ‘4‘.‘“‘4‘

oy

}Mwm ﬂ‘“H‘ "1‘")' 1“ l“l‘ o

Sy

JENWUNI L N — - e
: ! REPORT DOCUMENTATION PAGE e et
1 la. REPORT SECURITY CLASSIFICATION . 1b. RESTRICTIVE MARKINGS
, Unclassified B None
- Ta. SECURITY CLASSIFICATION AUTHORITY 1 DISTRIBUTION/ AVAILABILITY OF REPORT
LF». OECLASSIFICATION / BOWNGRADING SCHEDULE ' Approved for public release;
distribution unlimited
f "4, PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
T UILU-ENG-91-2230 CRHC-91-20
: “6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
= Coordinated Science Lab (1F applicable)
7 University of Illinoi N/A NASA NSF
+ 6c ADORESS (City, State, and 2IP Code) 7b. ADDRESS (City, State, and 2IP Code)
< 1101 W. Springfield Ave. NASA Langley Research Center, Hampton, VA
T Urbana, IL 61801 23665
. - _NSF, 1800 G St, . Washin
& g:g‘AENIoZFA %«:mc/spousonms Sb.uc')FFlekSLM,GOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
applicatie NASA NAG-1-61
1_NAsa/Ns ®13: NsF (ocT) MIP-8604893
¢ "8 ADORESS (City, State, and ZIP Codle) 10. SOURCE OF FUNDING NUMBERS
» PROGRAM PROJ
NASA Langley Research Center, Hampton, VA ELEMENT NO. RO o LC2E8sioN NO.
| NSF, 1800 G St., Washington, DC_ 20552 23663
;_‘1 1. TITLE (Incluce Security Clasufication)
Performance Analysis of Garbage Collection and Dynamic Reordering in a Lisp System

" 71, PERSONAL AUTHOR(S)

T Rene Lim Llames -
13a. TYPE OF REPORT 11b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) |15. PAGE COUNT
Technical FROM TO May 1991 82

J

(16. SUPPLEMENTARY NOTATION

17 COSAT! CODES 18. SUBJECT TERMS (Conunue on reverse if necessary and denufy by block number)

FIELD GROUP SUB-GROUP | virtual memory, garbage collection, dynamic reordering,
perforjmance measurement and modeling, object management,
Tocality of reference, Lisp, dynamic memory allocation.

IRRL

' 19. ABSTRACT (Continue on reverse if necessary and identify by biock number)

Ll

T

Generation-based garbage collection and dynamic reordering of objects are two techniques
for improving the efficiency of memory management in Lisp and similar dynamic language

gystems. An analysis of the effect of generation configuration is presented, focusing on the effect

—

of the number of generations and generation capacities. Analytic timing and survival models
are used to represent garbage collection runtime and to derive structural results on its behavior.

The survival model provides bounds on the age of objects surviving a garbage collection at a

L —

particular level. Empirical results show that execution time is most sensitive to the capacity of

-

'20. OISTRIBUTION / AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
CuncuassiFeounumiTed [SAME AS RPT J oTiC USERS Unclassified
[22a NaME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (inciude Area Coge) | 22¢. OFFICE SYMBOL
. .
-JDForm 1473, JUN 86 Previous editions are obsoiete. SECURITY CLASSIFICATION OF THIS PAGE i

o _ UNCLASSIFIED

the youngest generation. The existence of a range of optimum values demonstrates the potential

for the tuning of garbage collection.

A new memory management system integrating dynamic reordering with garbage collection

is described. The system supports schemes for preserving object order in virtual memory during
garbage collection, both approximately and exactly. ,

We present a technique, called scanning for transport statistics, for evaluating the effective-

ness of reordering, independent of main memory size. Reordering oldspace is scanned for the

pumber of pages containing the transported objects and statistics on their sizes, from which is

computed the reduction in working set gize due to reordering. The relative reduction in work-

ing set size is a measure of the de
the technique can be applied gelectively in space, the portions of memory which

pages. Since
ethod can also be used to measure locality

are suitable for reordering can be identified. The m

improvement due to garbage collection.

Results from two experiments, one involving an extensive interactive session and the other a

show overall reductions in working set size of 48% and 58% due to reordering,

large application,
et size was found

with up to 93% for individual memory areas. Relative reduction in working s

to be greater for list space than structure space, by a factor of about three overall. The large

disparity between list and structure object fragmentation in certain areas suggests that the

memory management system should be able to treat list and structure space differently.

nsity with which the actively used objects are packed into

B 1N

Wil

f

I

il

1y
i

i

g

vt

BB

(r

HERIS

I

(

e

SRR itk

riy

!

T

il

[

|'M‘l\‘ I
il

PERFORMANCE ANALYSIS OF GARBAGE COLLECTION
AND DYNAMIC REORDERING IN A LISP SYSTEM

BY
RENE LIM LLAMES

B.S., University of the Philippines, 1982
M.S., University of Illinois, 1985

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering
in the Graduate College of the
University of lllinois at Urbana-Champaign, 1991

Urbana, linois

(e

cir

(i

¢

e f

i

amm

(reT

! |

ﬂ

e

t

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

THE GRADUATE COLLEGE

DECEMBER 1990

WE HEREBY RECOMMEND THAT THE THESIS BY

RENE LIM LLAMES

ENTITLED PERFORMANCE ANALYSIS OF GARBAGE COLLECTION

AND DYNAMIC REORDERING IN A LISP SYSTEM

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

DOCTOR OF PHILOSOPHY

f%@m

THE DEGREE OF

. Head of Department

/7 /7Dircctor of Thesis Research
V/M%Q)% /Aé/

Committee on Figal Examinagiont
Ly
L_) ,@__—— Chairperson

A~

PV (Wi

+ Required for doctor’s degree but not for master’s.

0517

1
ik |

I
§i ik

B

emr

e

PERFORMANCE ANALYSIS OF GARBAGE COLLECTION
AND DYNAMIC REORDERING IN A LISP SYSTEM

) Rene Lim Llames, Ph.D.
Department of Electrical and Computer Engineering
University of Dlinois at Urbana-Champaign, 1991
' Ravi Iyer, Advisor

Generation-based garbage collection and dynamic reordering of objects are two techniques
for improving the efficiency of memory management in Lisp and similar dynamic language
gystems. An analysis of the effect of generation configuration is presented, focusing on the effect
of the number of generations and generation capacities. Analytic timing and survival models
are used to represent garbage collection runtime and to derive structural results on its behavior.
The survival model provides bounds on the age of objects surviving a garbage collection at a
particular level. Empirical results show that execution time is most sensitive to the capacity of
the youngest generation. The existence of a range of optimum values demonstrates the potential
for the tuning of garbage collection.

A new memory management system integrating dynamic reordering with garbage collection
is described. The system supports schemes for preserving object order in virtual memory during
garbage collection, both approximately and exactly.

We present a technique, called scanning for transport statistics, for evaluating the effective-
ness of reordering, independent of main memory size. Reordering oldspace is scanned for the
number of pages containing the transported objects and statistics on their sizes, from which is
computed the reduction in working set size due to reordering. The relative reduction in work-
ing set size is a measure of the density with which the actively used objects are packed into
pages. Since the technique can be applied selectively in space, the portions of memory which
are suitable for reordering can be identified. The method can also be used to measure locality
improvement due to garbage collection.

Results from two experiments, one involving an extensive interactive session and the other a
large application, show overall reductions in working set size of 48% and 58% due to reordering,
with up to 93% for individual memory areas. Relative reduction in working set size was found

to be greater for list space than structure space, by a factor of about three overall. The large

" disparity between list and structure object {ragmentation in certain areas suggests that the

memory management system should be able to treat list and structure space differently.

&

e

(o

)

i)

(e

¢

.

(

Al

enrgme gy

1!

g

(rm

Acknowledgments

The author would like to thank Professor Ravi Iyer for the advice, guidance, financial
support, encouragement, patience, and good humor he provided during this research. The
author also wishes to thank Professors Kenneth Forbus, W. Kent Fuchs, and Janak Patel for
serving on his dissertation committee. ° ‘

The support of NASA grant NAG-1-613 and NSF Grant (DCI) MIP-8604893 is gratefully

acknowledged.
The author thanks his friends and colleagues for helping to make his stay a memorable one.

Finally, the author thanks his parents for making his education possible and for their love and

support.

iv

{r

(17

"

{17

o

e

gre

R

e

"

t

Table of Contents

Chapter Page
1 Introductiono oo oo ii e 1
1.1 Backgrounld . . .« v v ie e 2
1.1.1 Memory organizationo s oo e e o s 2

1.1.2 Incremental copying garbage collectiono oo oo 3

1.1.3 Approximately depth-first copying ¢ v oo e 5

1.1.4 Generational garbage collection v v v i 5

1.1.5 Tagged architecture and barrier hardware v oo v o 6

2 Memory Monitoring Tools« .« oo ve e 8
9.1 Instrumentation and Analysiso oo oo 9
2.1.1 Monitoringt c e e e e e e e e 9

2.1.2 Analysis h e e e e 13

2.2 Graphical Representations v o v v e 16
23 SUWMMATY .+« « ¢ v v v v v oo oo v s oo m oo s 22

3 Analysis of Generation-based Garbage Collection« .. 24
31 Timing Model . . . v v v vttt e 25
3.2 Survival Model v i it i e e 27
3.3 Experimental Results« c o v v v i o i e 29
3.3.1 One ephemeral level configurationo 30

3.3.2 Two ephemeral level configuration 38

3.4 SUMIATY . o« v v v v v v o n v e e 40

4 Dynamic Reordering0: e e e e e e e e e e 41
41 Previous WOrK . . v v v o v v v v o v oo e e e e e 42
4.2 Issues in an Integrated Memory Management Systemo v v - 43
4.2.1 Simultaneous garbage collection and reordering 43

4.2.2 Preserving object order under garbage collection 43

4.2.3 Multiple reorderingso oo 16

4.3 System Description v v v v i i 46
4.3.1 FUPPET . . ¢ o v i vt e e e e 47

4.3.2 SCAVENEET . o . v v v v v e e e 48

4.3.3 Single-object transporter e e 49

4.3.4 Bulk transporter o oo v e e e 30

4.3.5 Reclaiming oldspace oo 50

4.3.6 Ephemeral root set table maintenance 30

4.4 FEvalUation . « -« v v v v e e e e e e e e e e e e 31
4.4.1 Scanning reordering oldspace for transport statistics - 32

(o

(i

tl

(I

¢

A

Qi

gny e

i

LRI

Jid

E3

C

I

1!

{

[

4.4.2 The density and working set reduction measures~ 54
4.4.3 Computation vs. measurement of number of copyspace pages - 55
4.4.4 Generalization to multiple reorderings« oo oo e e 56
4.4.5 Parsingoldspace R I 57
4.4.6 Application to trueoldspace.o oo e 59
4.5 Experimental Results ¢ oo v vvv v v 59
451 Systemworkloadot vt 60
4.5.2 SRWPIOGIAIML . « v v o = o v oo n oo oo o oo m o me e o e 66
4.6 SUMIMATY .« v v o o v v o s o v oo s o on e mos oo e o 74
Conclusions . . . v v v v vt vt e 76
5.1 Symmetries Between Garbage Collection and Dynamic Reordering 77
5.2 Suggestions for Future Work oo o v 77
ReferemCeS . . o« ¢ v o v e st e s vt m oo e i s e 79
D ¥ 1 7 N L IR SN LR 82
vi

'
i

gnr 1

t

{0

¢

(]

g

e

g

it

e U

e

Ll

g

ne

4

¢

il

¢

List of Tables

Table Page
3.1 Frequency of collection of each generation and expected survival. 28
41 Read DarTier stateB. . . « . « o v v v v v o s e s a et e e e 48
4.2 Transport statistics for pre-existing objects under system workload. 61
4.3 Transport statistics for pre-existing structure objects under system workload. 62
4.4 Transport statistics for pre-existing list objects under system workload. 63
4.5 Other transport statistics for pre-existing objects under system workload. 64
4.6 Transport statistics for pre-existing objects ander SRW. « v v v v v v v v e e 68
4.7 Transport statistics for pre-existing structure objects under SRW. 69
4.8 Transport statistics for pre-existing list objects under SRW. o v o oo 70
4.9 Other transport statistics for pre-existing objects under SRW. 71
4.10 Transport statistics for new objects under SRW.o vv v oo e 71
4.11 Transport statistics for new structure objects under SRW..o 71
4.12 Transport statistics for new list objects under SRW. v oo ve v s 72
4.13 Other transport statistics for new objects under SRW.o oo e e 72
4.14 Time variation in transport statistics under SRW.o v v 73
vii

¢

R DR
€

11

i

(CHRTT I (A (I

{1

GRH|

oy gur

6

i

{0

jo
|
|

List of Figures

Figure Page
9.1 Virtual memory organization in the Symbolics Lisp system. 11
2.2 Block diagram of dynamic monitoring and analysis facility.« ..o 12

2.3

24

2.5
2.6
2.7
2.8
2.9

2.10

2.11
2.12

3.1

3.2
3.3

3.4
3.5
3.6
3.7

4.1

Performance summary for SRW running on a Symbolics 3650 under Genera 7.2, 3
Mwords RAM, default generation configuration of two ephemeral levels with capac-
ities of 200 x 103 (youngest level) and 100 x 10 words. el 14
Performance summary for QPE running on a Symbolics 3650 under Genera 7.2, 3
Mwords RAM, default generation configuration of two ephemeral levels with capac-

ities of 200 x 103 (youngest level) and 100 x 103 words. 15
Global view of memory usage for Boyer, default generation configuration. 17
Area view of WORKING-STORAGE-AREA for Boyer. ¢« ¢ v v v v oo v v v v oo 17
Global view of memory usage for Boyer (magnified). 19
Area view of WORKING-STORAGE-AREA for Boyer (magnified).. 19
Global view of memory usage for Boyer under a generation configuration of one level

with capacity 2.4 X 108 words. 20
Area view of WORKING-STORAGE-AREA for Boyer under a generation configuration of

one level with capacity 2.4 x 108 words. 20
Boyer chroma at a resolution of 50 x 103 words.y 21
SRW chroma at a resolution of 50 x 103 words. e e e e 23
SRW total execution time vs. first-level capacity for a generation configuration of one

ephemeral level. v v v i i 31
Breakdown of SRW total execution time. oo 32
Breakdown of SRW total garbage collection time (Tye,mn+ Tye,peg) into scanning and

transporting cOmpORents. . . . v v v v e o i v e e e e 33
SRWpage famlts. . . . o v v v v v v e 34
SRW root set words scanned and words transported per garbage collection cycle. . . . 35
SRW total execution time vs. memory growth tradeoff. e e 36
SRW total execution time vs. second-level capacity for a generation configuration of

two ephemeral levels. 39
Example evaluation of reordering performance. oo 53

e
Wil

o

HH

11

1

11

C

He

¢

(r

il 1

me-

il

ot

e

L

anr

Qe

111

Chapter 1

Introduction

One of the characteristics of systems which implement dynamic languages such as Lisp, in
contrast to static languages such as C or Pascal, is the pervasiveness of runtime allocation and
deallocation of “heap” memory. The resulting problem of efficient management of memory is
compounded in a virtual memorj' environment, where it is important to maintain locality of
reference. In such object-oriented, dynamically allocated, virtual memory systems, users rely
on a garbage collector to reclaim unused storage to avoid the exhaustion of address space,
as well as, and sometimes more importaatly, to reduce working set size by compacting the
accessible objects in memory. Modern generation-based ga.fba.ge collectors can perform these
functions less disruptively and more efficiently than the original techniques which often required
suspending user computation and scanning all memory. However, the possibility or necessity of
tuning or performance debugging of these collectors under particular program characteristics
remains.

In generation-based garbage collection systems (14, 2, 15, 18, 19, 25, 30], objects are classified
into age groups or generations, and younger generations are collected more frequently than older
ones. This technique concentrates collection effort on the youngest objects since it has been
empirically shown that the objects created most recently are the ones most likely to become
garbage. The issues in such schemes are the number of generations to maintain, the threshold
size of a generation (which determines its collection frequency), and the policy for promoting
objects to older generations and eventua.lly' to tepured status. In general, time and space
tradeoffs exist between these various configuration choices, and the optimum configuration
depends on program characteristics.

Recently, it has been suggested that existing garbage collection functionality can be em-

ployed to dynamically reorder objects in memory, in effect compacting the subset of accessible

objects which is being actively used [7]. The potential gain in performance or reduction in
main memory requirements has been demonstrated to be quite substantial. However, appro-
priate measurement and analysis methods for this new memory management function remain
to be developed.

This thesis is concerned with analyzing the performance implications of generations in a
generation-based garbage collection system, and in dynamic reordering. The effects of varying
the generation parameters are studied. The design of a new, integrated garbage-collecting and

reordering memory management system is presented as well as a method for evaluating the

intrinsic effectiveness of reordering, independent of main memory size.

1.1 Background

The particular Lisp system used in our study is the Symbolics Lisp machine. A detailed de-
scription of the this architecture and garbage collection system can be found in other references

(15, 16]. Here, we summarize the relevant specific features and terminology.

1.1.1 Memory organization

Virtual memory is organized into areas, spacés, and levels. The address space for a given
combination of area, space, and level is allocated in one or more blocks of contiguous addresses
called regions. Specific kinds of objects are placed by default in their own areas, such as
compiled functions, symbols, symbol property lists, and symbol print names. However, most of
the objects created by an application are placed in an area named WORKING-STORAGE-AREA. An
area may contain several kinds of spaces. Objects are created in newspace; regions to be garbage
collected are atomically relabelled as oldspace during the flip phase of collection; during the
ensuing scavenging phase, accessible objects in oldspace are copied into copyspace. Scavenging
can occur incrementally, allowing user and other system processes to run simultaneously, or
nonincrementally, in which case other processes are locked out. Static space is intended to
contain objects not normally subject to collection.

An area, notably WORKING-STORAGE-AREA, may contain several levels, which implement
the generations or age groups for generation-based garbage collection. Levels [> 0 are the

ephemeral or nontenured levels, while level 0 contains tenured objects. An ephemeral garbage

€l | | | t L { g L N

"

c"’ T
L kil

t

g

al.}
il
i

t £

it

gy
ki

il

Ll

ao

e

i

"ow
l.

| =]

collection collects one or more ephemeral levels. It is normally triggered when the top (youngest)
level in an area containing ephemeral levels exceeds a gpecified capacity; any other lower
ephemeral levels which have also exceeded their respective capacities are then also simulta-
neously collected; surviving objects are copied to the next older level. A dynamic garbage
collection collects all the ephemeral levels as well as level 0 new and copyspace. It is typically
invoked infrequently to reclaim memory taken by objects which have been tenured but have
become garbage (tenured garbage). A full | ga.rba;ge c;ﬂ;a;:tion collects all that a dynamic garbage
collection collects including selected static spaces.

1.1.2 Incremental copying garbage collection

Garbage collection in our measured system employs the incremental copying technique,
based on modified versions of the Cﬁeney (5] and Baker [4] algorithms. The Cheney algorithm
performs breadth-first copying of linked structures without requiring an explicit stack. The
Baker algorithm interleaves collection with normal processing, avoiding long, unpredictable
delays to the user that would result if garbage collection were to be performed without inter-
ruption. In the Baker algorithm, the heap is divided into two spaces of equal size, fromspace and
tospace. A garbage collection involves copying all accessible objects in fromspace to tospace.
An object is accessible if it can be reached starting from some set of root objects, called the
root set or base set. After all accessible ob jects"ha.vé been copied, fromspace can be reused. To
begin another garbage collection, the labels of the two spaces are interchanged or flipped. The
copying technique enhances locality by remiﬁ;ring interspersed garbage.

In the Symbolics system, the heap is divided into static a.nd. dynamic areas. Only dynamic
space (or some portion of it)ris garbage co]lected, static space is assumed to contain objects
that are unlikely to become garbage. During a collection, three kinds of dynamic space become
meaningful: i

e The portion of dynamic space to bé garbage collected is turned into oldspace.

o Objects in oldspace discovered to be nongarbage, by a procedure to be described shortly,

are copied to copyspace.

o New objects created during the collection are allocated in newspace.

After all aéceséible objects in oldspar.c;}'ia.ve been copied, oldspace may be reclaimed. Another
collection may then begin by flipping copyspace and newspace into oldspace, and allocating a
fresh copyspace a;nd ne\;rsb:‘:;fHence, oldépace corréfsfp?i&:té fromspace in the Baker algo-
rithm, and copyspace/newspace corresponds to tospace. Unlike the Baker algorithm, the three
spaces are not fixed in size or location. Whatever portion of dynamic space is desired to be
collected is turned into oldspace, and copyspace and newspace are allocated as necessary from
free virtual address space.

The garbage collector consists of two threads of control, the scavenger and the transporter,
which are interleaved with the user program and other system processes, collectively called the
mutator. The scavenger’s job is to scan through memory containing all possible references to
oldspace from nongarbage objects not in oldspace. Initially, the only place where such references

can exist is the root set, by definition. When the scavenger encounters an oldspace reference,

the transporter is called. The transporter

(1) copies the oldspace object to copyspace and installs a forwarding pointer (in the oldspace

object pointing to the version in copyspace); and
(2) changes the oldspace reference to point to the copyspace version.

If the transporter is called due to a reference to a previously copied object, it has to do only (2),
i.e., use the forwarding pointer to redirect the oldspace reference. As nongarbage objects are
transported, copyspace will potentially contain references to oldspace. Thus, after scanning the
root set, the scavenger needs tc; gcan copyspace as well, to “pull in” any accessible structures
still in oldspace. The root set and copyspace together constitute scavenge space, and after both
have been scavenged, no references to oldspace exist and oldspace can be reclaimed.

Besides the scavenger, the mutator could also attempt to reference ob jects in oldspace, which
will also trigger the transporter. Transporter calls can therefore be either scavenger-induced,
or mutator-induced.

The scavenger is allowed to run if the system is idle. Otherwise, the rate of performing
collection work (scanning and tramsporting) is constrained to be proportional to the rate of

allocation, i.e., the garbage collector is allocation-driven, to ensure that consumption does not

outpace production of free space.

(

(i

U

(R

(l

1.1.3 Approximately depth-first copying

Since the garbage collector can copy objects in whatever order it chooses, this degree of
freedom can be exploited to improve spatial locality of the surviving objects. The Symbolics
garbage collector modifies the Cheney algorithm such that an approximately depth-first order
ig realized. Whenever it is likely to result in the discovery of oldspace references, the scavenger
temporarily suspends its normal linear scan of the root set and copyspace to scan the partially
filled page at the growing end of copyépa.ce. This “last page” scavenging of copyspace tends
to pla.ce‘ objecta on the same page as their parent. Another technique suggested by Courts [7],
in which objects evacuated by mutator-induced transporting are separated from those evacu-

ated by scavenger-induced transporting, is also possible but not implemented in our measured

system.

1.1.4 Generational garbage collection

The system provides two forms of garbage collection—the original dynamic, and the more
recently developed ephemeral collector. In dynamic collection, all dynamic space is garbage
collected and the root set is taken to consist of all objects in static space. The policy for
initiating collections is safety-based: a collection is begun when the system decides it has
reached the latest time at which a coﬂection, if begun, could safely complete without running
out of free memory space.

A dynamic collection typically requires much runtime and paging time due to the enormous
size of static space and the large amount of objects that have to be transported. Although
collection is interleaved with the user program, response time increases considerably due to
paging. Consequently, most users turn off the dynamic collector during interactive usage.

The ephemeral garbage collector is an implementation of generational collection, which is

based on two heuristics about objects:

e younger objects are more likely to become garbage than older objects (infant mortality);

and

s there are many fewer references from older to younger objects than from younger to older

objects.

The first heuristic suggests that we stratify dynamic space into several independently collectible
generations or levels; place newly created objects in the first generation; advance surviving ob-
jects to the next higher generation; andr:ga.rbage collect the younger ge;xerations more frequently.
Collecting the younger generations will be more efficient since effort is expended on reclaiming
areas with a high percentage of garbage, and thus little transporting work is required. When
collecting all generations younger than a given level, the root set must include all references
from older generations to the generations being collected. The second heuristic greatly reduces
the size of the root set and suggests that it is not impractical to keep track of these backward
intergenerational references.

In ephemeral collection, ephemeral (assumed to be short-lived) objects are created in the first
lev.e.l. The policy for initiating collections is capacity-based: a collection is begun when the first
level exceeds its prespecified capacity. The first level is flipped simultaneously with higher levels
that have also exceeded their capacities. Ob jects that survive a garbage collection graduate to
the next level. Those surviving a collection of the last level become normal, “tenured” dynamic
objects and may be collected by dynamic collection. Two tables remember the pages into which
ephemeral object references have been written. These tables determine the root set for garbage

collecting a particular level. The tables are called
e the Garbage Collector Page Tags (GCPT) for in-main-memory pages, and
o the Ephemeral Space Reference Table (ESRT) for on-disk pages.
A greater effort is made to minimize the size of the ESRT to avoid unnecessarily fetching on-disk

pages during scavenging.!

1.1.5 Tagged architecture and barrier hardware

To allow the above techniques to be implemented with acceptable overhead, the Symbolics

computer relies on its tagged architecture and special hardware. The processor detects in

hardware

e an attempt to read into the processor a pointer to oldspace (the read barrier); and

!In other generational collection schemes, the entity serving the function of the GCPT and ESRT has been
called entry vector, remembered set, and indirection cells.

oo s wm e 4 i u] all v | ul i

vl

et
l |i\!1 i

i

e

I "o
i i

C

-

e an attempt to write to memory a pointer to an ephemeral space (the write barrier).

The read barrier is required for incremental garbage collection, Whereas the write barrier is
required for generation-based garbage collection. ‘

The implementation of these hardware barriers between the processor and memory relies
primarily on a table for mapping a virtual address to a space type and ephemeral level. Also,
the GCPT is implemented in hardware. Such support avoids the performance degra.da.tidn that
would result from performing address checks in microcode or Lisp.

Chapter 2

Memory Monitoring Tools

To support the analysis work, a number of software tools have been developed, including
tools for providing descriptions of virtual memory usage, for collecting statistics on main mem-
ory occupancy, intergeneration references, and object populations, and for page fault tracing.
The largest of these tools is a facility for dynamically collecting, analyzing, and visualizing
memory usage and performance data. In this chapter, we describe the dynamic monitoring
facility, discuss the salient features of the instrumentation and analysis capabilities, and show
examples of its use in cha.ra.éterizing Lisp program behavior and tuning garbage collection. We
also demonstrate how the facility can be used to observe object lifetimes as a function of the
time the objects are created.

Recent papers involving measurements on Lisp programs have been concerned with proces-
sor architectures for high Lisp performance [22, 23, 18]; cache performance [17]; and garbage
collection algorithms [18, 31]. These studies involved the simulation of traces at the instruction,
memory reference, or object reference level. Because of the large number of events simulated,
there is a practical limit on the length of programs measure;i, with CPU times on the order
of tens or hundreds of seconds. Wilson [29] discusses the design of a memory system capa-
ble of recording a history of detailed changes made to it over a very long period of time, and
reconstructing a previous state.

Our instrumentation is based on sampling memory system activity timers, event counters,
and memory occupancy at epochs defined by and synchronized with garbage collection. While
the data does not contain high resolution information, such as an instruction or address trace,
the relatively low frequency of sampling and low data rate make it possible to monitor pro-
grams with minimal overhead for long periods of time, e.g., many hours. The long duration

enables time-varying characteristics, such as program phase behavior, to be observed. The

Wil

@ W el e el K W il

(

(!

TR S 1 (

{

{

primary program and system characteristics measured are object allocation, lifetime, paging
characteristics, and collector performance.

The facility described here is useful in evaluating and experimenting with different gener-
ation configurations and in guiding other tuning efforts, such as user management of objects

and user control of paging policies.

2.1 Instrumentation and Analysis

The software monitor collects data which makes it possible to (1) evaluate various perfor-
mance measures, such as page fault rates and garbage collection efficiency over any specified
portion of a measured program; and (2) to construct two views of memory: a global (or non-area-
specific) view showing the time variation in the usage of the various spaces and distinguishing
only between ephemeral (level | > 0) and tenured (level 0) spaces; and a by-area view, showing
the time variation in the usage of each space-level combination within one or more selected
areas.

At a minimum, by “usage” we mean the amount currently used (in words), distinguishing
between list objects (also called conses) and structure objects. This information is inexpensively
available from the system. Additionally, for the by-area view, the monitor is capable of recording
statistics on the types of objects present. This more detailed usage data is obtained by scanning
the regions constituting each space-level combination; the overhead in scanning for object-level
information is reduced by caching the statistics obtained for a region and, where possible,
scanning only the portion of a region that has been used up by new objects since the last time

the region was scanned.

2.1.1 Monitoring
The requirements for the monitor are summarized as follows:

e Low time overhead. The execution time of monitored programs should not be unduly

lengthened as a result of data collection activity.

e Low space overhead. The rate at which data is collected should be low enough to make
it possible to monitor for long periods of time, e.g., programs running for many hours,

without requiring the storage of overwhelming amounts of data.

o Flexibility. This refers to being able to select the areas of memory to be monitored for
producing by-area views, and the level of detail in the nsage data collected for those
areas. In the case where statistics on the types of objects in memory are being collected,
it should be possible to specify how objects are classified into types. This would make it

poesible to map objects into meaningful, application-level data types, rather than, or in

addition to, language-level types.

e Generality. Monitoring and analysis should be able to handle the occurrence of all types

of garbage collections: ephemeral collections (the most frequent), dynamic collections of

all or some areas, and full garbage collections.

The approach adopted was to sample information at th.reer distinguished epochs during a
garbage collection cycle. These are: before the flip (BF), which defines the start of a cycle;
after the flip (AF), which is after all the regions to be collected have been turned into oldspace
and scavenging is about to begin; and after oldspace has been reclaimed (ARO), which is when
scavenging has finished, no pointers to oldspace exist, and all oldspace regions have been turned
into free regions. Basically, garbage collection is “in progress” during the BF-AF-ARO portion
of a cycle, and not in progress during the period from ARO to the next BF.

The information sampled at these epochs includes a time stamp; selected paging and garbage
collection counters; and data on memory usage as contained in the area and region tables, and,
oﬁtiona.lly, as obtained by scanning regions for object-level statistics. The paging and garbage
collection counters can be classified as either activity timers (e.g., page fault time, scavenging
time), event counters (e.g., page fetches), or work counters (e.é.,‘ words consed, words scanned,
words copied) relative to some arbitrary time in the past. These counters are accessible as
Lisp global variables and are maintained by the system. The area and region tables are also
maintained by the system; they implement the memory organization shown in Figure 2.1. Not
all the information is collected at all three epochs. For example, the garbage collection-related
counters are sampled only at ARO, when they reflect the collection just completed. As another
example, the sizes of oldspace regions are noted only at AF, since oldspace does not exist at
the other epochs.

Figure 2.2 depicts the overall organization of the monitoring and analysis facility. Data

logging is accomplished by three functions corresponding to the three interesting epochs; these

10

a

v L LI N & | al i u

{
ephemaral

Leveis

tenured

>>> ~

WORKING-STORAGE-AREA

(
Zz
2
Yy
2
o
a
7))

tatic >

Spaces Areas

A

Figure 2.1 Virtual memory organization in the Symbolics Lisp system.

L

fanctions are hooked onto the garbage collector to be run at their respective times. The raw

data is stored in an object called a runlog, which also serves as a repository of all information

ol

on the context of a measurement session.

Runlogs can be saved and restored from disk files, and multiple runlogs can exist in memory

g

for comparative analyses. Unlike a trace file, a runlog contains data in structured form, so it is

|

not necessary to “parse” the raw data to uncover its structure. A runlog contains:

= o Identification of self (e.g., a name), and the relevant details of the system environment

(e.g., main memory size, generation configuration) in effect during the measurement.

e Parameters for effecting user control over the monitoring process, such as for specifying
the termination condition, which areas of memory (if any) to monitor, and what kind of

memory usage data to collect.

e State variables.

g

A global log, which contains the samples of the activity timers, event and work counters,

and usage data on all memory (non-area-specific).

g

e A set of area logs, one for each area being monitored. An area log contains usage data

¢

on each space-level combination present in the area.

11

U

— -
Paging and GC timers Area and region tables
and event counters (augmented) -
i
. Data collection .
-
Before flip | | After flip After reclaim
logging logging || oldspace logging —
— -
Region scanning Object typing
and checkpointing -
‘ JE—
Runlog %
« [dentification « Giobal log
* User control « Area logs
« State variables + Milestone log —
-
Analysis =
Dynamical equations for memory under -
» aphemeral gc ==
» dynamic gc of all areas -
* dynamic gc of some areas
« full ge T
Performance Global (compasite) plots Other ;
reports Area-space-level plots analyses -
Meter piots
Figure 2.2 Block diagram of dynamic monitoring and analysis facility. L
-
%
.-

12

(1

{1

|t

IR S T |

e

1w

(r

mn

i

o
!

]
l aki

"

e A set of “milestones,” which are essentially time-stamped samples of the counters taken
at instants meaningful to a user, such as immediately before and after execution of a
top-level function and at major program state changes. This data allows performance to
be characterized over an interval whose endpoints are defined at other than the epochs
associated with a collection cycle.

2.1.2 Analysis

" Analysis of data in a runlog can occur concurrently with monitoring. This is possible since
no conflicts arise in writing and reading the daf#. }f\.rtrivia.l kind of analysis involves taking the
difference between two counter values, yielding the total amount of time 'spent in an activity
(for example) in the interval between sampling instants.

An example of the kind of performance summary generated is given in Figures 2.3 and
2.4, which result from the monitoring of two l;l.rge programs. The SRW program is a parser
written in REFINE which is then compiled into Lisp. The program was measured while parsing
five mainframe assembly language files into a knoivledge base. It incurs a modest amount of
garbage collection time. The QPE program is a simulator for qualitative process theory. Garbage
collection overhead is negligible, but paging is a signiﬁca.nf problem.

Oﬁtions to the reporting function can request that analysis be confined to the the interval
from cycle i to j >= i, or between any two recorded “milestones.”

The sample reports in Figures 2.3 and 2.4 also illustrate an interesting kind of analysis
involving the global memory space data. Consider the tables bordered by vertical bars, which
provide a breakdown of the memory flipped into oldspa.ce,- a breakdown of the amount of
surviving objects, and a breakdown of new object allocation. The values in these tables are
not directly contained in the raw data, but are derived by solving a system of linear equations
involving the samples of memory space usage at the three epochs in a cycle, and some counters,
notably the total number of words flipped into oldspace, copied during garbage collection, and
consed during a cycle. In general, if Stg, Sa, and Saro denote the sizes of a given tenured or
ephemeral space at each of the three epochs, the equations for a particular cycle ¢ are of the
form

Saf = Sup — flippeds + surviveds pi_ag + CONSEDs bf —af

Saro = Sai + SUrviveds af —aro + Comeds,ai—uo

13

‘spIom 0T X 001 pne (19aa] 1s9dunok) 01 X 007, Jo. soneded ym spadj friowaydo omy Jo nonRinduoy
101RIAULS NP ‘W VY SPIOMI € ‘3’ L BISUIN) 1APUN (GYE SAOGUIAG U0 FUTHNNT NYS JOJ ATRWUINS IUTNIOND] €' aand,
. — .— ﬁ —2 ‘M— —u E 0 — A,— T - .‘ .- .— > G ._.—

(98)ouv 1®

B6S LY T

ORIGINAL PAGE IS

OF POOR QUALITY

2278 WA XPR

Z91°950°9 abueyns wa 12
| tio‘eve’Lt TTIT'SEB LY 0BT 69Y tB9’vI PYECI9E’ LT Tedor |
| SS6’'SEB’LY TTO’9EB’LY DOE LYY [TASFAL Tv6°5SSE LT aw-ouv |
f owv'eL ozL’e 08Z°1 005°T ove'y ouv-av |
_ 12 Y 0 0 141 av-aq m
1wa0l teyor EY &L AT] mou A1 mou oydy
PeINETOH poyndwo) 47 postoD SRIOM buyang LIv'EYR LY pasuUoD
FADYSN KUOHIAH
. (prom/erun—nI0oM 189 ET) 3Ifun-yI0Mm/epIom ELO°0 Kousyo1339 YI0M
(pxom/ovew 060°0) oéw/epaom $OL° 15011 Aouayotrizo auyy,
suywos juepunper ot ‘18t ’‘0f Buypnioxe 86Tz’ 191 8ITUN HIOM
(eg1°BY) SSZLBL'TT obeqien
905'VLY’LY PES'SML'S O vL6’BZE'Y - 1vioy |
09L'699°ET ZYE'INL'S O pYR’LZE’Y - 92|._.2_
"'y (14241 o 9z1’1 - av-aq
1v3I0% Adoo gaw mou QAD] Adoo eydsz mou eydxy
ojuy sovdepio wox3 Butataine spiom Buyang _ (s18°15) 908°¥L9°21 paataang
ACTASE 124 2 20N] o LET'D06°9 POR'YNS LT AY-JaW =+
w01 Kdoo paw] meu gae] Adoo eyda meu eydzy _ -
woi3 sowduplo ojut peddyy) eprom Bugang | (e00-00T) TRL TIV P2 soedepio
, ADNIIDIAIT OO
poltodsuezy 905 9L ZT (vs6°95) s (s95-2¢) €Ls°0OFI9DI0 Buyjzodsuery
pouuwos 18L°696°'8LT (v10°€y) 09 (e49y°79) re¢-sort1:0 Buyuueog
(Bt) ¢ ({%¢0°0) tee°o0r00:0 “deuwry xolelnH)
(a0t) v10'009’2t (yr-c9) 65 (%08°SZ) ¢BI°SE*P01D seed teurs
(s59°%) 6to’zze’s (sse 61 } o1 (ag9-9t) 1209t 1Z00 swed 39173
(rvor"1) oze'sze’e (sse'y)y (ST) S#9°8110070 1u83
(vi6°99) Bt zve’sst (wse s) s (a0c-LS) o s1101t0 a0
(vo0°001) 182°696°64T (ez9°vs) BB (ec6°66) rTRSPIL1t0 buybuasess
peuUToe epIoM syney obvd oo ewyy {eex Do SISXTYNY DO
(ses-c5) 6vv’se (ve0°2y) ¢oe’os - - {v00°001) 96L’6T1 suojiears abrg
(ezy°"56)} BSZ'S (ves*y J oy (v9s6'0) €5 (v20°65) €09'6 (v00°001) ZOL'SE s3ne] ebra
(w95°z) esp-eczeor0 (vex*t) 656 vertoto - - {voL°c) ®IP-BO'S0O:0 ECELT)
(vze'0) ¢sc-so110t0 (ezs°r) L¥s-ezrEoto - - (epe"€) ves-Levprp wopiwnad ebeg
(av9-y) rso0-9zrsoto (wver-Z) veé-tsizoto (e90°0) 909°50t00!0 = (8TL°9) vés-sitento » § (vec°9) 100°9Zré0?0 wi1ney obeg
(vsS 9L) cez-rutovey (vz9°¢) sys-orrerro (epL°Zt) 6PT 1934120 o (9SP €L) T66°950tPrT » | (v61-98) 19T BE?65:T swyauny
(e6s-v8) ogr-czresst (a1p°St) Ler-tErIltO (818°21) SSS 9prLTt0 (e61°¢9) BE6- 10210t (300°001) CEP BYIDTIIT AR RE 0]
4d—-0OuY ouv-Av-a4 oD IOININH 0L SISATYNY HALSAS

11N 0 ’otweudkp ¢ ‘tvrcwayde 98 :eetoko ob 9a
(9g)ouvY or (1)3g TYAWIINT

"SpIom (01 X 00T pue (A9 1s0dunok) 01 X 007 Jo sentrded (um spaaf [esdwdtda omy jo uoneIngdipnoy
ol RI2u3 J[Nejep ‘W VY SPIOMN € ‘7L BIDURY) 1opun g9 SOOqUIAG ® 1o Fuinuni 74b 10§ Arewsuims eounio)d | P17 2Ny

(t9tiodv Iw OEL’E9U'6X

PZI® WA XPH

|44 M FAA abuvyn wa 12n
| oBz’sPO’EE PLOLYO'EE B9L'BOT 681’20 t1v'96e’ze teog |
T1€°LEO’EE 686" 9E0’EE 9L6°902 17248 U BEL’BBL ZE JA-OMY “
568 L L89’¢ 6Lt 1 201 186°9 ouv-J3v¥
. " 134 0 o .11 av-aq |
1303 w0l o13Iw1g mou QAT meu ouday “
poimevey poandwoy Uy pesuod spIoM Buyang 00Z°S¥D €€ pasuo)
AOVSN XHOWTH
{piom/e3fun-3I0M 66Z°¢) 2ATUN-NIOM/EPIOM [ET1°0 AouatoyI)a NIOM
{prom/ooww ¢80°0) Ses/epIOn ZPT 66071 A>uayo7))s Wyl
suwos Juwpunpex BgY’ 1SS 0r Buypnioxe ez’ 706 50T SITUN HTOM
' (4ZT°29) 9¥9°69v ST sbeqiey
PITTES ST POL’2S6°L O osé’‘eLs’L - te101L
6¥£79ZS ST PIE'MIS‘L O© SL0’9LE‘L - oyv-aY '
s’y ose’t 0 S8 - av-aq
1v30L Adoo ga9q mou QAW Adoo eoudy mou eudz _
ojuy soedepro wox) Bujayazne spiop butang | (v88-LE) PRI TS ST peATATNG
TIL'000’'TY © 1] ¥61°v00°'8 B9S'966°ZE AV-J€
o Adoo paet meu paol Adoo eudz mou eydzm
w13 eowdspro ojuy peddyyy espiom Buyang | (voo-oot} E9L 000’ 1Y soedepio

XONA1D14343 0D

15

pelrodsuway PIT TES’ST toLz-st) TS0’ (vor-9¢) oOv@ ESrZItO futarzodeuery,
pouuwos Fz2°zz6°01Z (veL"ve) BEE’S (wvz-e9) ger 11220 Buyuuros
» {voB°C) €61 (vez-0) ov6-so:00t0 ~deuway JOIeITH
(e9g-¢) €v0 2eS’'ST (vso'vE) BoE’2 (v99°0¢) ot¥-Sviorro esed TRUTI .
(s29°c) zzo'tee'eL (voz 9t) 911’1 {vié-zz) ste-zoreoro wred 3In1T3
(a92°6) 9sz’6Lv’ 61 (wercot) eve (sev o1) @®9-v0:50t0 1453
(vaz 6z) Zie’69z’o9T (est1°9¢) T6¥’T (s89°TE) 08" 90:1110 1409
(200-001) €Lz’'zz6'0Tz {(v0T 26) L69°9 (vzz 66) gET1-65:vE10 Buybusaess
poUuYds $pIOM eatnwy ebed o ewyy 1®OX DD SISXTYNY OD
(s L9) nez'ezy (vgz ze) zes'te - - (s00°001) 08061 suorienan obrg
(299°66) ZEE 9tT’Y (spe’0) TRE’RY (v91"0) ogm’y (s98°66) tRL'EVT’Y (voo-o0t) €L9°0SZ'Y vitney obeg
(szs°c) sce-estoest (ws1°0) coi-evitoro - - (v99-¢t) ees erverl 10420
(v60-0) 900°cztzoto (vZi°0) €6€°ZOTEOO - - (v1z'0) ¢6t°5z:5010 vuoyIweIo sbeq
(sco°es) ¢99°0otzotsz (819°0) $90°0vtO1tO (8600) 911°¢Ztzot0 = (9se°8s) €1e-c1r01rsz » | (vev-os) ote-ovezirce o3 ney obey
(yn5-9¢) TEE sStevsst (W0T°T1) vee-eTrOLrO (esz 1) t96-cerzeso » (azv-9t) oze-cvrzvrst » | (ve9-Lk) 99T szIgtreY ooyIuny
(szz°86) veo-ertzeeze (v0L"T) veo°TOTINIO (e9c"1) 6L0°S0?5€20 (999°06) 6OYI"STTEEIXY (so0 001) ®R1-DZ:ROLEY emyl TPy
J9-ouvY ouv-av-aq » JOYIEINH "ol SISXTYVNY HIAISXS
1103 0 ’orweuip o *yearuayde g9t tee1oko ob fet
(zot)ouv or (1)ag "TVANIINI
VRS R b1}) Yoo . b)

total flipped = 3 flippeds
]

total copied = E(surm'veds,bf-g + surviveds af—aro)
3

total consed = Z(COMCds'bf_.f + conseds af —aro)
S

where flipped refers to the unknown amount of the given memory space flipped into oldspace,
and survived and consed refer, respectively, to the unknown number of words copied and allo-
cated into the given space. Some of the terms may be zero, depending on the particular memory
space and kind of garbage collection. A’set of these “dynamical equations for memory” can be
written for each kind of garbage collection and solved to derive information that is otherwise

not directly maintained by the system.

2.2 Graphical Representations

We now present some examples of graphical representations of the memory usage data.

Figure 2.5 is a global plot of memory usage for the workload consisting of 60 iterations of
the Boyer benchmark under the default configuration of two ephemeral levels with capacities
of 200 x 103 (youngest) and 100 x 10° words. This plot is obtained by stacking up, in order

from top to bottom:
¢ ephemeral oldspace
e ephemeral newspace
e ephemeral copyspace
e level 0 oldspace

level 0 copyspace

level 0 newspace

level 0 static space

level 0 stack space

16

Y
b

8 ® W

@ el W

B o
5° os]
53 2 g 2
c > — 2 2 1]
e - mw
d
©
e}
m
0 .
o B
"B 9 &
w m
.n.w [
| £
o B
e)
) -
o t
:@.. (23]
d 3
-9 = MW € @
E & E 5
@ m @ n_u
E 4 E =
3 e 3 X >
§ g g 8
—_— w Feyd Yt
w = w 5]
& 2
- 0. .
- m g
3] &
w5 <
S @
.W o~y
I
3 :
= 20
» lo G 1] F
o ' w b}
- 20 (=]
- Zw 1M o, o2
> > e >n
m i3 33 33 iz
m.. (spiom 401) ebesn Auowen

Jamo an EEY O dmy o oG Gl S R B 17 B 1 " BV

Figure 2.7 shows a magnified view of the global plot in the vicinity of 10 elapsed minutes.
Here, the horizontal axis is calibrated in cycles, to make it somewhat easier to “read.” The thick
line represents the boundary between the ephemeral and level 0 layers. Only the ephemeral
layers are shown in their entirety. The changes in a given layer are highlighted by triangles—
shaded medium gray for ephemeral newspace and black for both copyspace layers. Note that
newspace changes represent object allocation while changes in copyspace represent survival (and
garbage collector copying work). Almost all collections of level 1 result in no survivors, with the
exception of a few cycles (e.g., cycles 36, 38, and 40) during which some objects are tenured.

Figures 2.6 and 2.8 are area plots for WORKING-STORAGE~AREA. The shading indicates that
all the objects created by Boyer in this area are lists (conses).

Figures 2.9 and 2.10 show the global and area plots for Boyer under a configuration of only
one lével with a capacity of 2.4 x 108 words. Execution time is significantly reduced from 38 to
about 15 minutes. However, a larger amount of tenuring (and tenured garbage) occurs.

By having a large number of ephemeral levels, and changing the collection policy such that
every level flips when the youngest level flips,! we effectively configure the ephemeral levels as
a shift register, with the population of objects created during a cycle being moved down by one
level on each successive cycle. This configuration will explicitly show the lifetime distribution
of each object population. We call the resulting memory uﬁage plot a chroma.?

The chroma for the first 10 iterations of Boyer is shown in Figure 2.11. It shows that all the
objects created during a single iteration become unreachable by the end of the iteration. The
generation configurations in Figures 2.5-2.10 are therefore suboptimal with respect to memory
utilization because they allow some objects which will soon become garbage to be tenured.
The reason for this leakage is that neither configuration provides a sufficient minimum age for
objects tenured. In the two-level configuration, the minimum age is 200 x 103 words (measuring
time in words allocated); an object with this age that survives a collection of level 1 during cycle
¢ will have been created just before cycle ¢ —1. In the one-level configuration, the minimum age
is 0 words. To avoid any tenuring, Boyer requires a generation configuration which guarantees

a minimum age of 28338 ~ 450 x 10° words.

! This policy is accomplished easily by setting the capacity of each ephemeral non-top level to zero.
3By analogy with the technique of chromatography which analyzes an unknown substance by cbserving how
far each component propagates along a medium. Here we are interested in measuring an object’s lifetime by

observing how many generations it survives before becoming garbage.

18

(] | e @@ Wi o§ 7 8 a

Memory usage (10 words)

,.
¢

i

_

)

4

g

{t

Memory usage (10° words)

'

Static

('

"

¢!

_____oldspace

11.5°

ephemeral
3 ; (level > 0)
3 Il e
i 1 .
x‘ iy —
=i |]
; tenured
) . (level 0)
11.0° I ¥ 1 Ll ' [Ll 1 ' ; 1 * 1 ’ 1 1 v ' ' +]
25 30 35 40 a5
Garbage collection cycle

Figure 2.7 Global view of memory usage for Boyer (magnified).

1 0.1'3
0.0‘:

. lists
o O.S'E-
0.0‘:

-
H
Q
—
beocabean

o

Garbage collection cycle

Figure 2.8 Area view of WORKING-STORAGE-AREA for Boyer (magnified).

19

structures

Memory usage (10? words)

Elapsed time (min)

Figure 2.9 Global view of memory usage for Boyer under a generation configuration of one
level with capacity 2.4 x 10® words.

Lev 1

Copy

‘§ N .
3 20 - . 30
3
B

Z Lev O

2 Copy

bl 20 30
] .

£ N

Q -

2 Lavo 7

Stltlc:

0- T
20 30

Elapsed time (min)

Figure 2.10 Area view of WORKING-STORAGE-AREA for Boyer under a generation configuration
of one level with capacity 2.4 x 10 words.

W u N L

&

=
=
L

e

(e

{

Memory usage (10° words)

Lev 31
Naw

Lav 28
Copy

Lev 27
Copy

Lav 26
Copy

Lev 23
Copy

Lov 24
Copy

Lav 23
Copy

Lav 22
Copy

o A i f HAps Agaad B
Db TP ”l;' ninnl RN GIANARAARARANAN ALt RANN 1Ji REANAJRERRRAH ARANN
. P
LRELEEEDEE ML ERGEGERPREDERERBOIS bR EESEERELE b B EERERTE sdadadddaaaadadag o HEqRHa A A d 8
. (HAEREARHERHRARRRRE HuRHuA ABHE RS AHEREE AR HH AR AU AR PUPEEERERREE BBk R RERRERb I ERRRRELY.
: shily shifatalatal PRI U] 3 ils R shil2lalaal:)Y [tk
-
olllll.llll'lll. 0|l||||-n|ll|||luv||vnv-|||||

3
1 !
0 10 20 30 40 50 a0 " 70 80

o=, L e A

1 e
0 10 2 30 40 50 80 70 80

- . f
- < i
1 S

s 3

. N a :,. 2 A ; . ;B ;,:,,‘ il 3
- fied_titn 3é.5}:5\ é-.‘.fi §=33§?§ 3? ~§§fﬁf§ 3aididRisaiss
° "l"lll.lll.lll.""'l'lll'l'

i
0 10 20 30 4 %0 80

D ; : 21 1. 35
LR ittt didi et e A A A A S RO A S R IR

0 10 20 30 40 S0 80 70 80 fele]

P S T T SR T T R R B B

0 10 20 30 40

e e e A A R AR R IR

1}
10 20 30 40 50 60 70 80 90

E T W R

Q 10 70 80 90

S N U B |

e T R R .. e

0 10 20 30 40 S0 70 80 90

PN N N PO S I Ny

0 10 20 30 40 50 80 70 80 90

||-;‘t;'-|-|n-.-|-.-|,‘...|--..|v',»'..--l

Q 10 20 30 40 50 60 70 80 S0

Garbage coliection cycie

Figure 2.11 Boyer chroma at a resolution of 50 x 10° words.

21

The chroma for SRW is shown in Figure 2.12. The results show the presence of objects of
long lifetime, medium lifetime (created during the second half), and short lifetime (reclaimed
after one cycle). Furthermore, we observe a high percentage of long-lived data at the start of
reading in each input file. This data consists of the text in the file and is a good candidate for
creation in tenured space, so that collection work will not be wasted in copying it.

2.3 Summary

A software facility for collecting, ana:lyzing, and visualizing memory usage and performance
data on the Symbolics Lisp system has been developed. The facility records a history of mem-
ory usage and performance by drawing on existing sources of data, in particular, the various
counters maintained by the system for performance metering purposes, and the memory tables
maintained by the system for memory management purposes. Data collection is synchronized
with garbage collection so that the abrupt transitions in the state of memory and the peaks
of memory usage associated with the distinguished epochs during a collection cycle are al-
ways detected. The low time and space overhead of the instrumentation makes it suitable for
nonintrusive moni;:;)ring of applications Vnmning for long peﬁods of time.

Many current Lisp systems provide a function profiler, to help in identifying the most time-
consuming pieces of code. A facility for memory usage profiling and performance evaluation,
such as has been described in this chapter, is a useful addition to the set of performance
measurement tools available to the user. While our instrumentation is specific to the Symbolics

memory organization and garbage collector, it should be possible to add a similar data collection

and analysis facility to other Lisp implementations.

1
&

i

T

e e e e

g

[

gl

' il

(R

il

(e

g

nro

o

gricoogor

({ { !

(

TR RN

Memory usage (10° words)

= wuumunmu! . “mm
Recsauimiiy mmmt!ilmummlillli Ll

Garbage coilectxon cycle

Figure 2.12 SRW chroma at a resolution of 30 x 10° words.

ORIGINAL p
AGE s
OF _POOR WAL’T$:

Chapter 3

Analysis of Generation-based

Garbage Collection

A generation-based garbage collector in a virtual memory system, such as the ephemeral

garbage collector, works because of the high mortality among newly created objects and because
references from older to newer objects are created relatively infrequently (14, 24, 15, 7, 18, 25,
19, 2, 27, 28].

An important problem is that of optimizing such a collector to match the characteristics of
the application to improve its efficiency and overall system performance. In the terminology
of ephemeral garbage collection, the optimization problem, in its most general (and of course
intractable) form, involves determining the number of ephemeral levels, and deciding which
levels to collect, when to collect them, and to which level to move surviving objects. Collectively,
these decisions determine the space-time configuration of the collector and represent a choice
of policy.

An “optimal” policy is a.rcqmpromise between conﬂictiné considerations. For example,
consider the ephemeral garbage collector. Unless manipulated otherwise, the normal behavior
of this collector is to follow a ﬁmt-levd—tﬁggued, capacity-based initiation and unconditional

promotion policy. By this we mean

(1) collections are started when the occupancy of the youngest level exceeds a threshold value,

called its capacity;

L J

(2) all levels from the youngest through level [are then collected, where / is the oldest level

such that all levels from the youngest through ! inclusive have exceeded their respective

capacities; and

t

[1] | o @ el

(T

ﬂ‘ﬂ T nr

[

e

e

v

o

il

i

0t

(

(3) surviving objects are promoted to the next older level or tenured in normal dynamic space

if already at the oldest ephemeral level.

The degrees of freedom we can exercise within this policy subspace are the number of levels,
and the capacity of each level. Increasing the number of levels reduces the rate of creation of
tenured garbage (objects that become garbégé after graduating past all levels), thereby further
postponing a time-consuming full garbage collection, but increases the amount of copying work
for long-lived objects. Increasing the ca.pa.&ty of the first level allows more time for new objects
to die, thefeby increasing the efficiency of collection and reducing tenured garbage, but reduces
locality of reference by caunsing memory to be compacted less frequently.

The best balance among these constraints depends on program and system characteristics
and on our performance objectives. For example, we may be interested in minimizing the total
execution time for a particular program. We may be interested in postponing a full ga.rbage
collection for as long as possible. We may be interested in maximizing the average execution
rate for an “infinite” program spanning many full garbage collections.

In this chapter, we describe analysis and measurements which have been conducted to

understand the various factors involved for the circumscribed policy subspace described above.

3.1 Timing Model

Given a benchmark program which executes over many garbage collection cycles, the total
execution time for the program is the sum of the time taken by the mutator and the time taken
by garbage collection. Mutator time and garbage collection time can each in turn be divided

into a runtime (nonpaging) and a paging component,

Ttotal = Tmutntor,mu + Tmﬂator,pay + Tgc,nn + Tgc.pag (31)

We assume Tnatator,ran t0 be invariant with respect to garbage collector parameters. Over-
head due to garbage collection runtime is represented by Tc,run- Program characteristics af-

fecting this overhead are
e lifetime of objects,

o allocation rate, and

e connectivity of objects.

Allocation rate influences the frequency with which garbage collection will have to be invoked.
Object lifetime inﬂﬁeicee the amount of copying work (a.nd therefore part of the scanning work)
which the garbage collector needs to perform. Object connectivity, in particular, the frequency
(in space) of pointers from older to younger objects, influences the size of the ephemeral root
set, and hence the amount of scanning work which needs to be done.

The runtime component of garbage collection Tye,ran can be modelled in terms of the scan-
ning and transporting work performed. -Assume that the program allocates a total of M words
over its execution. For simplicity, assume that we have only one ephemeral level, i.e., any ob-
jects surviving a garbage collection of this level will be tenured. Let the capacity of this level
be Cy. What is the optimum value of Co?

A model for the total garbage collector runtime is

Tyeun = o lbven (Wt + Wirenp) + Kirnss Wisn) (3.2)
where
M/Cq number of garbage collection cycles
Wrootset average size of the ephemeral root set (in words), which
is scanned on each cycle
Wiransp average number of wofds transported on each cycle

Kecany Ktranap machine-speciﬁc constants representing the average time

per word scanned and transported, respectively.

Note that the objects which are transported also have to scavenged, since they could contain
pointers to oldspace. Also, it is important to keep in mind the distinction between total variables
such as Ty, ~nn and per cycle variables such as Wyotger- This model for Ty ~n does not express
the complexities associated with the way the ephemeral root set is maintained and scanned nor
does it account for overhead in the scanning and transporting routines, except by amortizing it
over the actual number of words scanned and transported. However, the model is simple and
sufficient for our purposes.

The number of words transported per cycle, Wirgnsp, can be expressed in terms of program

characteristics (lifetime and allocation rate) and garbage collector configuration (Cp). The next

section discusses the relationship.

el 4« a

[

Il

@il W e e

il

LT

Tl

ey 7wl

{ R

ey (T

kb

AT

bhig

o

T

3.2 Survival Model

Let S(z) = P(X > z) be the distribution of object lifetime X. The lifetime of an object is
the time from its creation to the instant that it becomes inaccessible (garbage). Note that §(z)is
the survival function and is equivalent to other forms of specifying distribution, e.g., probability
density function or cumulative distrib.ution function. While it is possible to assume some average
allocation rate, or to assume a distribqtion for the allocation rate, we find it convenient instead
to assume tl'nt time, for purposes of expféssing object lifetime X, is measured not in terms
of seconds, but in words allocated. Heénce S(z) is a joint description of object lifetime and
allocation characteristics.

Consider the set of all objects created during the time (measured in words allocated) interval
(z1,22). At some later time Z.,u 2 3, W€ wouid like to know the state of this population of
objects. It is easily shown that the expected number of words surviving at time Z.v. is given

by the function
U(a,b) = f S(z)dz (3.3)

where @ = Z.pa; — 22 and b = Tyq — Z1. Thus, U(a, b) has the meaning of the expected amount
of words surviving from the allocation tﬁat <::tccurred during the interval between a words ago
and b words ago.

This result can be applied to determining the expected amount of objects surviving garbage
collection. Consider the general case in which we can have an arbitrary number of ephemeral
levels. For mathematical convenience, we will number these levels starting from 0 for the
youngest level and using successive integers to represent older levels. To avoid confusion with
the actual numbering system for levels in the Symbolics system (which is the reverse, i.e., level
0 is the oldest), we will use the term generations to imply the youngest-is-0 numbering system.

If the capacity of generation iis C;, then generation 0 will be garbage collected every Co
words allocated, and the expected amount surviving each such collection is Lo = U(0,Co).
Hence, generation 1 receives an input of Lo words from genera.tion 0 every Cy words allocated.
Generation 1 will be garbage collected on average every [C1/Lo| such inputs. The amount
of words that generation 1 will promote to generation 2, and similar quantities for higher -

generations can also be derived in terms of the U(a,b) function (See Table 3.1

Table 3.1 Frequency of collection of each generation and expected survival.

Gen. Time between Input periods Amount promoted on each GC
inputs between GCs
0 continuous alloc. Lo=U(0, T1)
1 T, =Co = %: L= U(T1, (1 + nl)T1)
2 Ty =nTh iy = % Ly = U((l + n1)T1, (1 +n + n1n-;)T1)
: T=T —1 ,=.C' L: = U(T -1 17k ' T, 5 k
3 $ 1 H.Jr=l Ty ny Z._:] (1():1.-_-0 Hm=1 nm)’ 1 Zk:o Hm:l nm)

While the development up to this point has not assumed a particular form for $(z), e.g.,
exponential, expressing the expected amount of survival from a particular generation in terms of
the U(a, b) function already provides useful information. The arguments a and b define bounds
on the age of the objects surviving a particular generation. For example, the amount surviving
a garbage collection of generation 0 is U(0, Co). This means that the minimum age for surviving
objects is 0 and the maximum age is Cl, a8 can be verified by a little thought. This suggests that
a one-ephemeral-level configuration may tenure short-lived objects prematurely (in particular,
the ones created just before the flip) since it does not provide a (nonzero) minimum guarantee
of age. A two-ephemeral-level configuration guarantees that tenured objects will have an age
of at least Cp.

Returning to the timing model for Tye,run for the case of a one ephemeral level configuration
(Equation (3.2)), the number of words transported per cycle can therefore be expressed in terms
of program characteristics (lifetime and allocation rate) and garbage collector configuration (Co)
simply a8 Wiransp = U(0, Co). o

The behavior of Tye,rea i8 nOW clear.

o Since U(0,Co) = [§(z)dz and since §(z) is a survival function (i.e, 0 < 5(z) < 1

and S(z) is monotonic nonincreasing with z), Wiransp can grow no faster than Cg. More
specifically, if @ is the fraction of allocation which is long-lived (i.e., lim; .o S(2) = @),

then Wiransp will grow no faster than aCo.

e A first-level capacity of Cy effectively defines a cut across the object graph, with objects in

the first level on one side of the cut, and tenured objects on the other side. The ephemeral

| L {0N |

'

(

]

i

(m

v

€

rww- '

'

root set consists of the pages in tenured space containing pointers into the first level. As

Co increases,

— the amount of newly allocated objects in the first level at garbage collection time
increases,

— the amount of tenured garbage decreases,

— the contribution to Wetset due to pointers from tenured garbage objects decreases,
and

— the contribution to Wigetset due to painters from tenured nongarbage objects could

increase. This increase could be proportional to Cp in the worst case.
In our experiments, Wotset in fact decreases with Cg (Section 3.3, Figure 3.5).

Hence, T;c,~n 18 a DONincreasing (and, practically speaking, a decreasing) function of Co. That
is, according to the timing and survival modei é.bove, total garbage collector runtime decreasés
with increasing first level capacity. The lowest Tyge,ren should be realized at infinite (o, i.e.,
when garbage collection is turned off.

This analytical conclusion is indeed verified experimentally. However, the total execution
time also includes paging, which we have herefbfore ignored. As the following section will show,
paging can increase with Cp and if so, ther resultmg tradeoff between decreasing Ty ,run and

increasing paging time defines an optimum range of values for Co.

3.3 Experimental Results

To determine the effects of number of ephemeral levels and level capacities, we ran several
programs under controlled conditions using various generation configurations. The configura-
tions used were: one level with various first-level capacities; and two levels with various first-
and second-level capacities. A Symbolics 3650 with 3 Mwords of main memory was used. Some
experiments were also run under reduced main memory sizes of 2 and 1 Mword, but the essen-
tial observations remained unchanged. The test programs included the Boyer benchmark {12],
short- and long-running versions of GQPE, and SRW (described in Section 2.1.2).

The following observations can be made from the results.

Execution time is most sensitive to the capacity of the first level. Thus, the decision of
how many ephemeral levels to have beyond the first, and what capacities to specify for these
levels, is more important from the point of view of guaranteeing minimum tenuring age (thereby
avoiding tenuring of intermediate lifetime ob jects), rather than of execution time performance.
For a given generation configuration, bounds on tenuring age can be computed easily from the
arguments to the U function as shown in Table 3.1.

The various programs exhibited a variety of behaviors. At one extreme, the small programs,
Boyer and QPE-short, were similar in that both had negligible pagmg time, and hence total
execution time was pnma.nly the sum of mutator runtime and ga.rba.ge ‘collector runtime, i.e.,
Tiotal = Tmutator,run + Tge,run- Furthermore, increasing the capacity of the first level resulted
in decreasing Ty ~n (and thus Ttotel), and this trend continued indefinitely, such that the best
performance (lowest execution time) was achieved at infinite first-level capacity—effectively,
when garbage collection was turned off. It is perhaps no accident that garbage collection is
often inhibited when running small progra.ms for benchmarking purposes.

At another extreme, QPE-long was seen to have a very lugh amount of Trmytator,pag, a0d
tuning generation configuration did little to improve performance. For paging-bound workload
such as this, in which mutator locality is the primary problem, the appropriate course of action
is to consider other techniques such as statically or dynamically reorganizing objects within
pages (Chapter 4), modifying the algorithms or data structures employed, or increasing main
memory size.

The SRW program was observed to lie between these extreme categories and to exhibit
interesting tradeoff characteristics. In the remainder of this'dia.pter, we examine the results

from this program in greater detail to understand the reasons for the observed behavior.

3.3.1 One ephemeral level configuration

First, consider the one ephemeral level case. Figures 3.1-3.6 all pertain to this configuration.

The plot of total execution time vs. capacity (Figure 3.1) shows the existence of an optimum
capacity which is some fraction of main memory size. The range of near-optimum values is seen
to depend on main memory size, with a larger size affording a broader range.

At small capacities, when collections are very frequent, the rise in Tyyq is caused by a rise

in TQC,HH! and in Tmuta!or,pag (Flgure 32)

30

Wit € @ I] ;. L) o il o« 0 | t .

170 7 .0 3 Mword RAM
- j’ e 2Mword RAM
s 7 Minimum Co = 50 x 10% words
1
= 160 -
- Total 150
execution
i time @
o Ttotal «
(min) 140
130 —
- 120 -
l 1] ' 1] 1 Al 1 L]] R |) T T l L]
B 0. 1000 2000 3000
- _ Capacity Cy (10° words)
- Figure 3.1 SRW total execution time vs. first-level capacity for a generation configuration of
-— one ephemeral level.

Mutator
runtime

Tm-tatar,mn

(min)

Mutator
paging
time
Tmutator, pag

(min)

GC
runtime
Tgc, run

GC
paging
time
TQC pog

140

130 4

120

110

100

QO 3 Mword RAM
e 2 Mword RAM

_
0

1 i ¥ 1 T 1 I 1

T 1] ¥ T 1 T
1000 2000 3000

Capacity Co (10 words)

Figure 3.2 Breakdown of SRW total execution time.

|

ol

ul

i

L)

(]

(am:

U

i

o 14

"

(wrl \ i

O 3 Mword RAM
¢ 2 Mword RAM

40
GC time 30 -
due to
scanning
(min)
GC time 30 1
due to .

transporting 20 -

(min) 10 4
0 -
S E ¥ [1 | ¥ i 1) H] 1 T 1 11 | T
0 1000 2000 3000

Figure 3.3 Breakdown of SRW total garbage collection time (Tyc,ren+ T4e,pey) into scanning

and transporting components.

Capacity C, (10® words)

80,000 O 3 Mword RAM
e 2 Mword RAM

Total
page faults 40,000

Page faults 94 500
in mutator ’

-

0 -

60,000

40,000

Page faults
in GC while .
scanning
20,000 ~

Page faults
in GC while .
transporting

' l 1 T i 1 T

| A S
0 1000

Capacity Co (103 words)

Figure 3.4 SRW page faults.

H 1
2000

I
I

a0l ai

L TH

i} |

Qi

[

il

(11—

wi

[

I S

{

kil

‘”

i | IR

€

g

(o

2000 -
Root set 4
scanned 4
per gc cycle]
WNG“C‘ 1000
(102 words) .
J O 3 Mword RAM
] o 2 Mword RAM
0 -
r T L] L) + ‘ 3 1] 1 l T 1 1 1 l LI
2000
Transported T
per gc cycle E
Wtrmup 1000 <
(10® words) :
0 -
I 3 L) L) ¥ , 1 T 1 L] l) 1] T l L]
0 1000 2000 3000

Capacity Co (103 words)

Figure 3.5 SRW root set words scanned and words transported per garbage collection cycle.

Co = 50 x 10° words |

1709 g 3 Mwoid RAM
e 2 Mword RAM
_ s
160 Co=24 ><l 10° words r
Total 150 Co = 3.2 x 108 words
execution 1
time j !
Ttotal
(min) 140
130
120
T T T T T T T T T T T i 1 '
2 4]

Net growth in memory usage (10° words)

Figure 3.6 SRW total execution time vs. memory growth tradeoff.

36

ol u | REPE] ¢ s ® &

.
i H ! |
ali |

!

L

i

(1

(i

("

(e

¢

R (LR AR

(-

f

The behavior of Tye,un i8 explained by the discussion in Section 3.2. To restate the expla-
nation using the empirical results, consider the timing model (Equation (3.2)) and the observed

relationships of Weotset a0d Wirensy to Co a8 shown in Figure 3.5.

o Since Wiransp < Co, the total transporting time component of Tye,runs (M/Co)ktranep Wiransp

is constant with respect to Co.

o Since Woposer decreases (slightly) with Co, the total scanning time component of Tye,run,
in particular, the total time scanning the root set, (M/Co)kscanWrootset, decreases at least

as fast as 1/Cl.

Therefore, Tye ~n decreases at least as fast as 1/Co. Note that Figure 3.3 verifies the above
assertions regarding the scanning and transporting terms of Tye,mn- In rea;ding this figure, note
that, at small capacities, the total scanning and transporting times plotted therein consist pri-
marily of runtime rather than paging time—since there is practically no paging during garbage
collection (from Figure 3.2 or 3.4).

Essentially, at small capacities, Tgc,~a 18 high because collections are frequent and each
collection has to scan the root set, whose size is relatively invariant with respect to Co.

Possible causes for the rise in Tmetator,pay at small capacities are
(1) displacement of the mutator’s pages due to more frequent scanning of the root set, and

(2) reduced locality of the program’s objects in tenured space as a result of an increased

proportion of tenured garbage therein.

At large capacities, when collections are infrequent, the rise in Tio¢q is caused by a rise in

paging activity (Figures 3.2 and 3.4). The causes for the larger working set are as follows:

(1) Since Cp is the amount allocated between garbage collections, as Cj increases, the mutator,
in the process of initializing created objects, references a proportionately larger amount

of virtual memory.

(2) The number of words transported (and therefore having to be scanned) per cycle, Wirsnsp,
increases as aCq (Figure 3.5) where lim ; oo S(z) = @ = 0.31 is the fraction of allocation
which is long-lived. The number of root set words scanned per cycle, Wrgou,er, decreases

only about half as fast, thus providing only a partial cancelling effect. Further, since

37

each object transported requires touching two pages—one in oldspace and the other in

copyspace—the rate of increase in page working set size with Cg due to transported objects

is effectively doubled.

(3) The locality of the objects in the first level could be reduced as a result of an increased

proportion of garbage therein.

Figure 3.4 shows that the increased page fault rate is experienced primarily by the garbage
collector during scanning, and to a lesser extent by the mutator.

Figure 3.6 shows the space-time tradeoff. The minimum increase in virtual memory re-
quired over the execution of the program is achieved at the highest capacity (lowest collection
frequency) since that configuration minimizes tenured garbage, but the cost is paid in execu-
tion time as a result of paging. Minimum execution time incurs a moderate growth in memory
usage.

Finally, it should be mentioned that the difference in the curves for root set scanned per
cycle, Wgotset, for different main memory sizes (Figure 3.5) is a consequence of the way the

ephemeral root set is maintained.!

' 3.3.2 Two ephemeral level configuration

The results for the two ephemeral level case are shown in Figure 3.7. Each curve in this
graph represents execution time vs. second-level capacity C; for a fixed first-level capacity Co.
For comparison, the dotted lines indicate the execution time for a one-level configuration with
the same capacity Co. o

The two-level curves are observed to be “fatter” than the one-level curves (Figure 3.1),
which implies the relative insensitivity of Ti1e to second-level capacity as stated earlier.

The curves can be regarded as offsets from the corresponding one-level execution time, where

the offset indicates the cost of having the second level. The rising characteristic of this offset as

In the Symbolics system, separate tables are maintained to keep track of ephemeral root set pages which
ate in main memory (GCPT) and which are on disk (ESRT). When a virtual page which is tagged as part of
the root set by the GCPT is ejected from main memory, checks are performed to determine whether the page is
really a root set page before creating an entry for it in the ESRT. Hence, as root set pages in main memory are
more frequently removed from main memory, such as would be more likely to happen at smaller main memory
sizes, the total number of root set pages could decrease, as more GCPT-tagged pages are found not to be part

of the root set.

w e | 41 | e o & ek e

€1l

il

Wil

LIIn

|

|

g

¢

e
(RIS

fe

(T

|
I

eI

o

.l

o

(

I

nr.

e

Total
execution
time
T:otal

(min)

Figure 3.7 SRW total execution time vs. second-level capacity for a generation configuration of
two ephemeral levels. Dashed lines indicate Ttotai for a one-level configuration with the specified

capacity.

170

160

First level capacity Cq (10° words)

o 200

A 400

o 800
3 Mword RAM

Minimum C; = 0 words

Second-level capacity C; (10° words)

39

One-level case
Co (10 words)

| = 200

~ 400
~— 800

C, increases is similar to that in the one-level case and is also caused by increased paging, but
the rise is less rapid because of the lower frequency (in real time) of flips of the second level.
(“Allocation” into the second level occurs at a lower rate—and at discrete instants—than into
the first level.)

However, unlike in the one-level case, the curves do not exhibit the rapid rise as Cy decreases
to zero. This is explained by noting that the frequency of first-level flips imposes an upper bound
on the frequency of second-level flips. At C, =0, the second level flips every time the first level
flips, rather than infinitely frequently.

The jaggedness in the curves at large values of C, is due to boundary effects, i.e., over the

program execution, the exact number of times that the second-level flips becomes significant.

3.4 Summary

An analysis of the effect of generation configuration in a generation-based garbage collector
was conducted. In particular, the effect of the number of ephemeral levels and level capacity was
studied. Analytic timing and survival models were used to represent the runtime component
of garbage collection time and to derive structural results on the behavior of garbage collection
runtime in the case of a one-level configuration. The survival model provides bounds on the
age of objects surviving a garbage collection at a particular level.

Through controlled experiments with different generation configurations, it was found that
execution time is most semsitive to the capacity of the first level. For SRW, the existence of a
range of optimum values for first-level capacity demonstrates the potential for the tuning of
garbage collection. The data suggests that, as main mérﬁo& size increases, the optimum range
broadens, i.e., the choice of capacity becomes less, critical.

The factors contributi_ﬁg to suboptimal execution time performance were discussed. For
the one-level case, at small capacities, more frequent scanning of the ephemeral root set and
possible degradation in locality due to tenured garbage led to increased mutator page fault
rate and garbage collector runtime. At large capacities, the increased amount of allocation per

cycle, the increased amount of objects transported and scanmed per cycle, and poésibly the

degradation in locality due to garbage in the ephemeral level led to an increased page fault .

rate.

\]w
i

i

a (AR (I R INNEE NG

« €T W e

W

[l

€l

R

L I A I (A

!

(!

e

Chapter 4

Dynamic Reordering

In this chapter, we discuss a memory management system which integrates garbage collec-
tion and dynamic reordering, and we present a method for measuring the intrinsic effectiveness
of reordering. The method is used in two experiments, one involving system workload and the
other a large application, and the results are discussed.

Dynamic reordering is an attempt to improve locality of reference by reorganizing objects
within pages so as to group together objects which are being actively used. The motivation
for reordering is the following set of empirical observations: (1) object sizes are usually much
smaller than a page, and (2) usually only a small fraction of all accessible objects is accessed
during a given interval of time. Together thé;;éﬂ&a;cteristics create the potential for a kind of
fragmentation in which the accessed objects are scattered about many pages. The evaluation
technique we propose quaatifies the degree of fragxﬁentation.

The basic idea in reordering, as developed by Courts (7] and originally proposed by White
[26], is to exploit existing garbage collector functionality to correct the fragmentation problem,

assuming that it exists. Specifically, the existing capabilities which are relevant are
o detection of accesses to objects, and
o copying of accessed objects.

Recall that, to garbage collect some specified part of memory, that part is flipped into
oldspace and the read barrier is raised for (or sensitized to) that portion of address space.
When the barrier detects an attempt to reference an object in oldspace, the object is copied.
All possible pointers to objects in oldspace are then found by scavenging other appropriate

parts of memory. (Basically, scavenging involves reading memory locations sequentially with

41

the intention of causing barrier faults.) At the end of scavenging, all reachable objects in
oldspace have been evacuated, and oldspace can be made free for new allocation.

A similar procedure can be used for reordering purposes. We flip the part of memory to be
reordered into oldspace and raise the read barrier as for garbage collection. However, scavenging
is not performed; we simply allow the mutator to execute normally. In the process, the objects
in oldspace which are accessed will be copied.

In other words, the same mechanisms used during garbage collection to determine reacha-
bility of objects (ﬂ1ppmg and rea.d barrier sensxtxza.tlon) and to copy them (transporting) can
be applied during reordenng to detenmne “activeness” of objects and to copy them. Garbage
collection is interested in copymg all accessible objects, in the order that scavenging discovers
them. Reordering is interested in copying only the subset of all accessible objects which are in

the mutator’s working set, in the order that they are first accessed.

‘The existence of common mechanisms used by garbage collection and reordering suggests the
possibility and desirability of an integrated garbage-collecting/reordering memory management
system. We have develobed s;uch a system for the Symboiics computer, which is described in
Section 4.3. A similar system is the temporal garbage collector (TGC) developed by Courts (7]

for the Texas Instruments Explorer Lisp computer.

4.1 Previous Work

Strategies for static reorganization to improve locality have been the subject of several
previous investigations. Ferrari [9, 10, 11] and Hatfield [13] developed program restructuring
techniques in static language systems (FORTRAN) based on reference traces. Stamos [20]
studied graph-based algorithms for reordering system objects in a Smalltalk system. Andre [1]
developed many techniques for ordering system objects in the Srymbolics Lisp system, based

on metering dynamic references and on detailed knowledge of the referencing characteristics of

certain critical system operations.

The only work on dynamic reorganization which we are aware of prior to Courts’ garbage
collector [7] and White’s proposal [26] is that of Baer (3] who simulated a memory system in

which pages were dynamically grouped within larger units of disk transfer.

42

e @ Wil oen Wi e

I

ol

Wi i

e

g

(TN

(!

{me

tre

!

LIS

{!

4.2 Issues in an Integrated Memory Management System

Before describing our memory management system in detail, we first discuss the issues facing

such a system and outline the approaches taken.

4.2.1 Simultaneous garbage collection and reordering

~ In an integrated system, it should be possible to garbage collect some parts of memory
while simultaneously reordering other parts. Therefore, it is necessary to distingunish between
oldspace which is being collected and oidbpa.ce which is being reordered. Our system, as well
as the TGC, defines two types of oldspace corresponding to the two possible usages, called true
oldspace and reordering oldspace.! The memory management system needs to recognize these
two types of oldspace and treat them accordingly.

While garbage collection and reordering share the same mechanisms, the timing of their
associated events is different. Garbage collection involves a definite control sequence—{lip,
scavenge, reclaim oldspace, wait, flip, Reordering begins with a flip, but the ensuing
muta.tor-induced transporting action should be able to continue indefinitely until the next flip
which either begins another round of reordering or begins a normal garbage collection sequence.

The memory management system needs to be able to handle these disparate scenarios.

4.2.2 Preserving object order under garbage collection

Although reordering can continue indefinitely, eventually, we will want to garbage collect

memory which is being reordered, to reclaim space taken up by
e any objects in reordering oldspace or copyspace which have become unreachable, i.e.,
garbage, and
o forwarding pointers in reordering oldspace, which may or may not be garbage depending

on whether there exist pointers to them which have just not yet been “snapped.”

We will also want to garbage collect before saving an image of virtual memory on disk for
future use, or for release to other users. The problem with performing a normal copying

garbage collection is that it will destroy the order of objects in memory, negating any benefit

!The corresponding types are from-space and train-space in the TGC.

43 A}

from reordering, since the reaclié.ble objects are copied in an order determined only by graph
connectivity (e.g., depth-first order), without regard to their current placement.

The approach taken by the TGC is to preserve order approzimately by defining a new
(horizontal) dimension in the virtual memory organization. The vertical dimension represents
generations (levels) as before. Within each generation, objects are divided into activity cate-
gories. Essentially, during garbage collection, surviving objects in a given activity category are
copied together to the next (less active) category. Hence, order is maintained approximately
in the sense that the survivors remain together, although their relative ordering could change.
Since the survivors are added to any existing objects in destination category, a subsequent
garbage collection will flip the union of the added and added-to objects. Because of this coa-
lescing, and the few number (four) of activity categories—such that inactive objects eventually
and quickly migrate to the least active category under repeated garbage collection—any object
“togetherness” established by reordering can deteriorate ovex; time.

Of course, object togetherness can be re-established by reordering, but it would be desirable
to have a scheme in which togetnhernesa does not deteriorate under repeated garbage collection.

We propose two non-mutually-exclusive approaches to the problem of preserving order.

4.2.2.1 Preserving togetherness through lineages

The first approach is similar in spirit to the TGC. The objective is to keep together the
objects which have been copied as a result of reordering. To this end, a keep bit in the region
table is set for each copyspace region R which is to receive gb jects to be transported out of
reordering oldspace. This bit indicates that, when region Ris later flipped into oldspace for
garbage collection, the surviving objects must be copied to their own unique copyspace region
R’ (rather than into a common region with other survivors), and the set state of the keep bit
must be passed on to R’. (The oldspace region R will be reclaimed and its keep bit reset.)

Thus, by setting the keep bit for a copyspace region during reordering, a lineage is established
for the objects in that region. An object can leave its lineage only by becoming garbage and
passing from existence, or if it is copied during reordering, in which case, it joins a new lineage.
Objects in a lineage will remain together when garbage collected (although their relative order
could change). A lineage implicitly defines an activity category unique to a set of objects

placed together by reordering. Unlike activity categories in the TGC, there can be any number

4

L

|

i

e W e el IR | f" ¢ €« e s &

[T

Cr

cr

oy
&

i

i i

R 1

(It

I

Lt

(I

1

™

g

(r

of lineages existing at a time, and there is no coalescing among different lineages except when
explicitly requested (e.g., during compaction, explained below, or when the region table is
almost full due to the existence of many lineages).

4.2.2.2 Preserving exact order through compaction

The second approach, which has no counterpart in the TGC, is an operation called com-
paction. Essentially, compaction is a garbage collection of reordering oldspace which preserves
garbage. To do this, reordering oldspace is ﬂipped into true oldspace as if to start a normal
garbage collection. However, before scavenging, all nonforwarded objects in (the now true)
oldspace are transported in their current meﬁofy order. We call this operation bulk trans-
portation. Scavenging is then performed as usual, but its purpose now is simply to redirect
outstanding pointers to oldspace; no objects can possibly be transported out of oldspace.

Compaction can optionally honor or ignore lineage. When bulk transporting nonforwarded
objects out of an oldspace region whose keep bit is set, the copies of the objects can be placed in
their own descendant copyspace region, or in a common copyspace region (effectively coalescing
lineages). |

Since compaction reclaims space taken up by forwarding pointers but not other garbage,
it is ideal when reordering oldspace is knovﬁi to have little or no garbage, e.g., an area of
memory containing permanent objects which has been flipped for reordering, subjected to
some representative workload, and now is ready to be “set.”

Is there any advantage to preserving exact order rather tha.n just togetherness? Although
we have not had any actual experience with this idea, one situation in which it would be useful
to preserve order exactly through compaction, is when using dynamic reordering to induce
sequentiality in the mutator’s page reference string. One scenario is if it is known that the
mutator references objects in a cyclic manner. Another scenario is if reordering is intended to
optimize memory in a “production environment,” in which it is known that the workload used
to effect the reordering is very similar if not identical to the production workload. In both
cases, reordering objects may result in a pattern of page references which may be amenable to

prefetching.

We have implemented compaction in our system. However, implementation of togetherness-
preserving garbage collection using the lineage concept as outlined above requires some modifi-
cations to the microcode (which determines the region to which an object will be transported)

to which we did not have access.

4.2,3 Multiple reorderings

Suppose we begin a reordering of some part of memory. A.ft@t soxﬁe time, due to the buildup
of garbage among the objects in copyspace, or due to shifts in the mutator working set, the
set of objects in use in copyspace niéy become fragmented. It would be desirable to begin
a new round of reordering without terminating the current one by a garbage collection (or
compaction). For example, a garbage collection could take a very long time, and we may prefer

to do it only overnight or on weekends.

The memory management system should make it possible to terminate a reordering and be-
gin a new one, without requiring an intervening garbage collection, by Vsimply flipping copyspace
into reordering oldspace and allocating a fresh copyspace to receive the currently used objects.
After this is done a number of times, reordering oldspace will consist of regions belonging to
different lineages, which can be visualized as being ranked in order of time of formation, i.e.,
the time at which the constituent objects were placed together. At any one time, there can be
any number of existing lineages. The granularity with which objects are assigned to lineages is

controlled simply by the times at which new reorderings are begun.

4.3 System Description

We discuss the design of a new memory management system for the Symbolics Lisp com-
puter, which integrates garbage collection with dynamic reordering, and compaction, an oper-
ation supplementary to reordering (Section 4.2.2.2).

It is useful to view the garbage collector not as a monolithic system procedure, but as a
collection of components, which, when invoked according to different rules, can perform a variety
of object management tasks, namely, garbage collection, reordering, and compaction. These

components are now described. The following presentation is oriented towards emphasizing the

€

tl

0

e

e
i

gro e

W

SO |

Ci!

ln‘\l I
T

modifications or additions made to functions in the existing memory management system, as

developed by Moon [15].

4.3.1 Flipper

The changes to the functions for flipping enable them to handle requests to begin a normal
garbage collection, a compaction of reordering oldsba.ce, or a reordering. Also, if a compaction
is requested, the flipping operation performs a bulk transportation of objects in the appropriate
regions. .

Flipping of ephemeral space (level > 0) is performed by the function
GC-FLIP-EPHEMERAL-SPACES-NOW which can be given a specification of which ephemeral levels
to flip for ephemeral garbage collection, which levels to flip for compaction, and which levels to
flip for reordering. '

Flipping of dynamic space (level 0) is performed ‘by GC-FLIP-NOW which can be given a spec-
ification of which areas to flip for dynamic garbage collection, which areas to flip for compaction
of reorderix-xg oldspace, and which areas to flip for reordering.

The task of either flipper is to

(1) Determine whether it is permissible to flip. The previous garbage collection or compaction

ghould have been completed.

(2) Relabel the regions constituting newspace, copyspace, or reordering oldspace in the re-
quested levels (or areas) as oldspace, setting their reorder bit in the region table accord-
ingly. The reorder bit distinguishes a true oldspace region from a reordering oldspace
region.

(3) Raise the read barrier in the processor for all oldspace regions, whether true or reordering

oldspace.

(4) If one or more levels (or areas) were flipped for garbage collection, or compaction, prepare
to scavenge the regions which should be scavenged. This involves primarily setting the

regions’ respective scan pointers to either zero or the current free pointer.

(5) If one or more levels (or areas) were flipped for compaction, transport all nonforwarded

objects in the oldspace regions constituting those levels (areas).

47

Table 4.1 Read barrier states.

Scavenging Scavenger Read barrier should be raised for
process True oldspace Reordering oldspace

In progress Running Yes No
In progress Not running Yes Yes
Not in progress — Nonexistent Yes

4.3.2 Scavenger

The changes to the functions for scavenging are

o To lower temporarily the read barrier for reordering oldspace while the scavenger is run-
ning.
e To make it possible to scavenge a page or region in reordering oldspace. '

Scavenging is performed by the function ¥GC-SCAVENGE and involves scanning all appropriate
regions as prepared by the flipper. The objective is to find all pointers to true oldspace by
reading memory locations sequentially so as to induce read barrier faults. When a barrier
fault occurs, the referenced object is copied if necessary (by the transporter), and the faulting
pointer is redirected to the copy. The scavenger’s linear scan through memory is occasionally
suspended in order to scavenge the “last page” in a copyspace region which has just grown due
to transportation. This technique is to achieve an approximately depth-first copying order [15].

The first change in our system is to “hide” the existence of reordering oldspace from the
read barrier during scavenging. Note that scavenging can be performed incrementally, i.e.,
interleaved with other processes (the mutator). While the sca.veﬁéer is running, the read barrier
should be raised for true oldspace but not reordering oldspace, i.e., the barrier should be sensitive
to pointers to true oldspace only (Table 4.1). Any pointers to reordering oldspace encountered
during the scan should be ignored—reordering oldspace is not being garbage collected. When
other processes are running, the read barrier for reordering oldspace should be raised so that
the usual faulting of objects out of reordering oldspace can occur.

In the new system, every time control passes to the scavenger process, we temporarily lower
the read ba.rrief for reordering oldspace. (The barrier remains raised for true oldspace.) The

overhead for this manipulation is very low since the scavenger process runs for a relatively long

time before allowing itself to be pre-empted.

]
t

ol € g I a4 all

a0

1

o g ¢noooqreoore U7

L

i e

¢

The second change makes it possible to scavenge reordering oldspace by “hiding” the pres-
ence of forwarding pointers. This change is essentially a solution to a problem caused by the
existing behavior of one machine instruction. Before explaining this change, we first note that
pages or regions in reordering oldspace can be part of the memory to be scavenged.

o If an ephemeral garbage collection is in progress, the memory to be scanned consists of the
ephemeral root set—the pages remembered by the GCPT (in-main-memory) and ESRT
(on-disk) tables—followed by the portions of copyspace which appear after the flip. It
is possible for a page in reordering oldspace to be part of the root set, e.g., reordering
oldspace in an ephemeral level not being garbage collected or in level 0.

e If a dynamic garbage collection is in progress, the memory to be scanned consists of all
regions which are not in true oldspace. If a dynamic garbage collection of some areas is in
progress, it is possible for reordering oldspace regions in other areas to be present. These

regions must be scavenged; they could have pointers to true oldspace.

In principle, scanning a page in reordering oldspace is no different from scanning a page in
any other space, except that we can encounter forwarding pointers. These pointers are irrelevant
and should have no effect since they cannot point to true oldspace. Sca.nnihg a range of addresses
for pointers to oldspace is efficiently implemented via the function ¥%BLOCK-GC-TRANSPORT
which compiles into a single machine instruction. Unfortunately, this instruction signals an
error when it detects a forwarding pointer. To avoid the occurrence of this error, during
scavenging, we search for forwarding pointers and call 4BLOCK-GC-TRANSPORT only on address
ranges not containing forwarding pointers. This effectively “l:'.id;és” forwarding pointers from

%BLOCK-GC-TRANSPORT.

4.3.3 Single-object transporter

Transporting a single object from oldspace to copyspace and installing forwarding pointers
is performed by the function TRANSPORT-TRAP. The change introduced here concerns the level to
which an object is copied. The destination level is determined differently depending on whether
the object is in true or reordering oldspace, i.e., whether the object was discovered as a result

of garbage collection or as a result of reordering.

49

¢ If the object is in true oldspace, the destination level is the next older level (or zero if the

object is already at level 0).2

e If the object is in reordering oldspace, the destination level is the same level.

4.3.4 Bulk transporter

As explained earlier, compaction of reordering oldspace is done by performing a normal
garbage collection of the reordering oldspace, except that immediately after flipping the con-
stituent regions into true oldspace, we transport all nonforwarded objects therein. The desti-
nation level for copying objects is the same level. Bulk transportation of objects is performed
by %GC-TRANSPORT-EPHEMERAL-SPACE or ¥GC-TRANSPORT-AREA, depending on whether t];xe re-

ordering oldspace is in an ephemeral level or in (level 0 of) an area being compacted. These

are new functions, with no counterparts in the existing system.

4.3.5 Reclaiming oldspace

Oldspace reclamation is performed by the function GC-RECLAIM-OLDSPACE. It is run after
scavenging is completed, at which time no pointers to true oldspace exist. Its responsibility
is to reclaim true oldspace regions by relabeling them as free space, thereby making them

available for future allocation. The change we introduce is simple: Ounly true oldspace regions

are relabelled as free space. Reordering oldspace regions are not reclaimed.

4.3.6 Ephemeral root set table maintenance

The system keeps track of the ephemeral root set, i.e., the pages into which the processor
has written pointers to ephemeral space, by means of two tables, one for in-main-memory pages
(GCPT), the other for on-disk pages (ESRT). The GCPT consists of a single bit for each page
frame in main memory; the processor sets the bit associated with a main memory page when
a write of an ephemeral pointer occurs to the that page. The ESRT is a sparse table which is

maintained in cooperation with the virtual memory management system as follows.

2Promotion to the next level is the normal case. The mechanism for implemeating the promotion policy for
true oldspace objects is a look-up table, specifying, for each ephemeral level, the destination level. Jence, other
policies are easily effected. For example, an ephemeral level [could be made “sticky” by setting the destination

level for L to be L.

. CRIGINAL PAGE |s
OF POOR QUALITY

i

Qi

i gl |

I

..
T
w: u

N (! oo

0

LG
[P

{

i

mi

QT

{

I

1

(

ET

When the virtual memory management software ejects a page from main memory, it calls
the function GC-PAGE-OUT for the purpose of maintaining the ESRT. In the existing system,
this function checks if the page is in oldspace.

o If the page is in oldspace, any existing ESRT entry for the page is unconditionally deleted,

since oldspace is not part of the root set and should not be scavenged.

e If the page is not in oldspace, an entry for the page in the ESRT is created if necessary,
or the existing entry is updated or deleted as appropriate. The appropriate action to take
is determined by scanning the pa.ée to see whether it contains any pointers to ephemeral
space. If there are any, the ESRT entry consists of a bit mask indicating the ephemeral
levels referenced by the pointers. If there are no such pointers, any existing ESRT entry
is deleted.

The change required in the new system is to make the check described above more specific. We
check if the page is in true oldspace. A page in reordering oldspace can be part of the root
set for ephemeral garbage collection. Its ESRT entry must not be unconditionally deleted, but

must be maintained like that for a non-oldspace page.

4.4 Evaluation

One way to evaluate the effectiveness of reordering is to compare the time (or page faults) it
takes to run a workload with and without reordering. Courts {7] used a “system benchmark,”
consisting of a script of typical user interactions (e.g., editing, compiling), to show reduction in
execution time by a factor of about four under constant main memory size due to reordering.
By experimenting with different main memory sizes, he also showed a reduction by a factor of
about two in main memory size required for constant execution time.

Clearly, the amount by which reordering can reduce execution time (and paging time in
paiticula.r) is dependent on main memory size. For example, if main memory is much larger
than the threshold at which thrashing begins to occur for a particular workload, reordering will
be of little benefit in reducing paging time.

It is not our main intention in this thesis to provide similar measurements of execution

time or page faults, but rather to propose a method to evaluate a reordering in a way that is

51

ORIGINAL PAGE IS
GF POOR QUALITY

independent of main memory size. The method measures the reduction in page working set
size. This measurement is more reflective than execution time of the intrinsic potential benefit
from reordering. It can be used, as we show later, for determining which areas in memory are
good candidates for reordering, and which are not. Since the evaluation is not affected by main
memory size, it can also provide useful information in a situation in which one is developing
an application or system to be run on other machines. The development machine may have
a large main memory such that reordering has little effect on execution time, but the delivery
machine may have less memory. .

The measurement technique, called scanning for transport statistics, is now described. The
evaluation is analogous to that for file compression, in which the performance of the compression

algorithm is measured by the absolute and relative reduction in file size.

4.4.1 Scanning reordering oldspace for transport statistics

Suppose a reordering of an area begins at time igip. For simplicity, assume that this is the
first time that the area is being reordered. (This assumption is unnecessary and will be removed
shortly.) At some arbitrary time teval > tfip, We would like to evaluate the reordering that has
occurred. Let & be the set of objects in recrdering oldspace which have been accessed during
the interval (¢gip, tever). These objects will have been transported to copyspace, and forwading

pointers will have been installed in their former locations in reordering oldspace (Figure 4.1).
Define the following sets:
wo¢ Set of pages in reordering oldspace containing ¥
Wepy Set of pages in copyspace containing -!P
Thus, over the interval (tfip, teset), ¥ i8 the partial object working set. “Partial” refers to the
fact that ¥ is a subset of the full object working set, i.e., all objects accessed during (s, teval)-
It is the subset that we happen to know about because of the object faulting action. Similarly,
Woig and w.,py are partial page working sets. They are disjoint, nonexhaustive subsets of the
full page working set. Henceforth, by “working set,” we will mean partial working set.
By scanning reordering oldspace at t.yq/, looking for objects which have been forwarded to
copyspace, we can obtain in one pass the following transport statistics:

PAG ,3 = |wog| Number of pages in reordering oldspace containing ¥

WOR Total size of ¥ in words

52

t

L

(-

R

o

881

1

—
E:
L4
B

o

i

e

>
Forwarding' pointers

Objects accessed
during reordering
interval

PAGoId- 4
PAGCOP)’ =1

_ PAG,ld - PAGcopv
p= PAG o1

Reordering Oldspace Copyspace

Figure 4.1 Example evaluation of reordering performance.

=0.7

)

Other data can also be collected during the pass, such as would enable us to characterize the

distribution of object sizes. However, only the above is essential. We then compute

PAGupy = |Weopyl = [;M-QE——.I Number of pages in copyspace containing ¥

PAGESIZE
A = PAG . — PAG copy Reduction in page working set size
- 4 : . .
P = PiCuma Page working set compression ratio

where PAGESIZE is the size of a page in words and |z| denotes the number of elements in a
set z. For the Symbolics Lisp computer, PAGESIZE = 256.

4.4.2 The density and working set reduction measures

The compression ratio p is the relative reduction in working set size due to reordering. It

also measures the fragmentation of the objects in ¥. To see this, note that, ignoring the ceiling

operator,

~P = PAG,s _ PAG.s PAGESIZE
which is the density with which the objects are packed into pages. A value of p <« 1 implies
that the objects are densely packed, while p ~ 1 implies that the they are scattered over many

1

pages, intermixed with much garbage or with accessible but unused objects.

To be precise, the “pages saved” measure A should be defined as the reduction in working
set size over the interval (taip, tevai) Which would have been realized had the objects in ¥ been
compactly laid out in virtual memory at time tgi,.

This hypothetical savings A will indeed be realized if reordering is intended to optimize
memory in a “production environment.” This usage is analogous to the use of program re-
structuring techniques in static systems (e.g., Hatfield (13} and Ferrari [11]). In this usage, a
terminating compaction operation is performed, reordering oldspace is reclaimed, and the new
layout is subjected to similar workload. Similarity between the workload used to effect the re-
ordering and the “production” workload requires only similarity in the set of objects referenced,
not in the sequence of references.

When reordering is used in a more dynamic sense, i.e., to continually tailor object layout to
usage characteristics, A provides an approximate measure of the savings. In this usage, we are
interested in performance as reordering occurs, rather than during a future “production run.”

By the strict definition of a working set (8], namely, the set of unique pages accessed during

54

(an

(il

kS

a

m'!

(e

e

¢

o'

cm

a specified interval, the working set size over (Zfi, teval) 18 actually larger than it would have
been had reordering not been initiated at tg;,. Without reordering, only PAG . pages would
have been accessed; with reordering, an additional PAG sy pages are accessed since the active
objects have to be copied. It would appear that reordering has actually degraded locality!

To understand this paradax, note that the period during which a round of reordering takes
place will usually be very long. During this interval, an attempt to reference an object O in
reordering oldspace will create a copy O’ of the object in copyspace. After transportation, the
oldspace version O, and therefore the page on which it resides, will again be touched if there
exist other pointers to it and if those poxix;ers are exercised (a.nd as a result, permanently
redirected). Clark [6] has shown that, most of the time, there is only one pointer to an object.

Thus, due to this connectivity property of the object graph, the probability that O will be
rereferenced is low. Due to the long duration of a reordeﬁng interval, the probability that O’
will be rereferenced is high. It is therefore reasonable to expect that the average working set
gize over an arbitrary subinterval of (tgip, teva) Will be smaller as a result of reordering, with
the decrease from the unreordered case being approximately given by, or at least proportional
to, A. We adopt this interpretation of & a.nd present some experimental results consistent with
it (Sectlon 4.5.2), but suggest for future work that actual traces of object references be analyzed
to venfy it. An object-level simulation system such as developed by Zorn [31] would be useful

in this regard.

4.4.3 Computation vs. measurement of number of copyspace pages

As an alternative to computing PAGcpy = [WOR/ PAGESIZE] as shown above, it may
also be possible to measure it easily. During the interval (tgi, tevel), if there is no reason
for growth in copyspace other than transportation of objects from reordering oldspace, we can
simply note the increase in the number of pages of copyspace. The measured value should equal
the computed value exactly.

However, in general, there could be other reasons for expansion of a copyspace region, most
plausibly, objects surviving a garbage collection of a higher (younger) ephemera.l level and being

copied to the level being reordered.? In this case, the computed PAG copy Should be interpreted

3 Another possibility is a Lisp system which does not have separate newspace and copyspace, but simply
allocates new objects in the same space as objects copied from oldspace.

55

as the theoretical minimum number of copyspace pages needed to contain ¥. The actual number
of pages could be greater due to objects copied during garbage collection being interspersed
with the objects in &. ' -

In using the computed (theoretical minimum) PAG copy to derive the A and p metrics, we
are evaluating the “intrinsic” effectiveness of reordérihg, independent of whether there are any

sources of input to copyspace other than reordenng oldspace.
If it is desired to evaluate the actual rather than intrinsic benefit from reordering when

copyspace is being simultaneously “polluted” from another source, an inexpensive way to mea-
sure the actual number of copyspace pages containing ¥ is as follows. Modify the single-object
transporter to maintain a count of copyspace pages receiving objects from reordering oldspace.

This will require storage, on a per-region basis, for a counter and for the virtual page number

of the “last page marked.”

4.4.4 Generalxzatlon to multiple reordenngs

As defined above, the method of scanning for transport statistics does not require the
assumption that we are reordering an area (or ephemeral level) for the first time. In general, a
reordering of an area can be initiated more than once before garbage collecting or compacting
it.

Suppose reordering has been initiated at times tgips , taipss - - s {flipN without any intervening
garbage collection or compaction, where tgin i8 the time at which the most recent reordering
began. When scanning reordering oldspace for transport statistics at l.eai > Ifipn, We cCal
encounter objects which are forwarded several times within reorciering oldspace before possibly
being forwarded to copyspace.

During the scan, we make an object contribute towards PAG 44 and WOR only if the object
is forwarded directly to copyspace. The set of such objects is precisely the set % of objects which
have been accessed duﬁng the most recently initiated reordering interval, (tgipn, tevas)- In other
words, at evaluation time, we are interested only in the last link in a chain of forwarded ob jects
terminating in copyspace. The statistics so obtained will be an evaluation of the most recently

initiated reordering interval.

56

AR D1 /TR LI |

|

{1

g

e

{mn

Ul

0!

i

!,

I

t

B

e

{

!

v

4.4.5 Parsing oldspace

Scanning oldspace (reordering as well as true oldspace—see Section 4.4.6) to collect trans-
port statistics involves “parsing” memory to determine object boundaries, i.e., starting ad-
dresses and sizes. This parsing is complicated by the presence of forwarding pointers. In
particular, the p;oblem of noninvariance of object representation with respect to forwarding
arises. We describe this problem and the solution adopted.

Objects in memory are self-identifying by virtue of the tagged architecture and the Lisp
system’s conventions for representing objects [16]. Hence, it is easy to determine the virtual
memory extent of a nonforwarded obje& glven any address in its representation. This simple
determination is done by the single-object transporter when called to evacuate a previously
untransported object in oldspace, and by the bulk transporter (Section 4.3.4) while evacuating
all untransported objects in oldspace.

However, when scanning oldspace for transport statistics, we are interested only in the
objects forwarded to copyspace. In particular, we would like to know about a forwarded object
as it existed just before forwarding. A problem arises because, when an object is forwarded,
its existing representation is overwritten with forwarding pointers. At scanning time, only the
new representation can be examined for size and other information, and the new representation
can be different from the pretransport one.

The nature of the possible difference depends on whether the object is 2 list object or a
structure object. Lists are built from list cells, also called cons cells or simply conses. Structure
objects refer to all other types of data (e.g., arrays, symbols, compiled functions) which are
represented by a header word followed by one or more words of information. Structures and
lists are stored in separate regions. Given a particular region of oldspace to be scanned, the
parsing algorithm appropriate for the region’s type is applied.

4.4.5.1 Noninvariance of structure size across forwarding

Immediately after a structure object is transported, the sizes of the oldspace and copyspace
representations are equal, of course. However, in order to support such Common Lisp language
features as adjustable arrays [21], an object may grow in place or, if this is not possible, the

system may forward an object to a new and larger representation. Because of the possibility

57

of in-place expansion of an object, and of fonfa.rding when an object cannot expand in place,
the size of an object before forwarding is not necessarily the size of the object to which it is
forwarded. That is, the size of a structure object is usually, but not always, invariant with
respect to forwarding.

To correctly determine object boundaries in structure oldspace, we use an algorithm that
“looks ahead” by one object and resorts to a less efficient word-by-word scan in the rare event
that a size discrepancy is detected.

This algorithm maintains a scan pointer P which always points to the first word of an object
whose size is as yet unknown. Call this object O. If O is not forwa.rdé&, its size S is easily
determined from system conventions, and the scan pointer is incremented by the size. If O has
been forwarded, the chain of forwarding pointers is followed to the real (unforwarded) object
O', whose size S’ is then determined. In the vast majority of cases, S’ is the correct amount by
which to increment the scan pointer. However, if a size change has occurred over any link in
the forwarding chain, it would be erroneous to use §’ as the size of 0. We detect the occurrence
of a size change by checking whether P + S’ contains the start of an object (after following
any forwarding pointers). If so, S’ is accepted as the size of 0. Otherwise, a word-by-word
search beginning with location P + 1 is made for the first location P,.+ which contains (or is

forwarded to) the start of an object. The size of O is then Prest — P.

4.4.5.2 Non-invariance of list representation across forwarding

For lists, the difference between oldspace and copyspace representations arises from the use
of cdr-coding to make more efficient use of memory. Ina Lisi: system which does not use cdr-
coding, the size of a cons is always two words—one each for the car and cdr—and there is no
poesibility of this size ever changing. In a cdr-coding system, some conses may be represented
normally (two words) while others may be cdr-coded (one word for the car, with the cdr being
implicit).

Transformations on the representation of lists can occur at any time due to the use of the
RPLACD function and during transportation. When RPLACD is performed on a cdr-coded cons,
the cons must be forwarded to a normal cons.

The transporter (both single-object and bulk) can also change.list representation. Trans-

porting a normal cons out of oldspace is straightforward; the two words are simply copied and

58

1

'

{l

|

]

NN IR

i

.

|

(!

nr

(mn @

v

ey

il

!

o

there is no cha.née. However, when transporting a cdr-coded cons C1y, there are two approaches.
One is to create a normal cons in copyspace. Doing so eventually converts all accessible lists to
anencoded form. The other approach, which is taken in the Symbolics system, is to preserve
the cdr-coding by transporting the cdr-coded segment surrounding Cy, where the segment is
terminated either by the end of the list or by an RPLACD-forwarding pointer. If the segment
is terminated by an RPLACD-forwarding pointer (to a normal cons Ca,), then the copy of the

segment will be different in one of two ways:

(1) The forwarding pointer to Cz will be replaced by C3 iteelf, i.e., C; is also transported and
reattached to the segment. In this case, the copy of the segment will be one word larger.

(2) The forwarding pointer to C3 and the cdr-coded cons preceding it are converted into a

normal cons.

Similar to the structure parsing algorithm, the algorithm for parsing list oldspace uses
knowledge of the possible changes in representation that can occur as described above and

performs any necessary “look ahead” tests to infer the changes that have occurred and correctly

maintain transport statistics.

4.4.6 Application to true oldspace

Finally, it is should be noted that the technique of scanning reordering oldspace for transport
statistics, which we use to quantify the locality-improving effect of reordering—increasing the
density of active objects—can also be used without modification for another purpose. We can
and have applied the same scanning procedure on true oldspace, after scavenging is completed
but before oldspace is reclaimed, to quantify the locality-improving effect of garbage collection—
increasing the density of reachable objects.

4.5 Experimental Results

The method discussed above to measure the effect of reordering was applied to system

workload and to the SRW program.

59

4.5.1 System workload

The first workload considered was an interactive session. The session lasted several hours
and involved editing files, compiling, reading mail, issuing many Command Processor com-
mands, and exercising many interactive utilities, such as the File System Editor, Document
Ezaminer, Flavor Ezaminer, Inspector, Terminal, Peek, Namespace Editor, Notifications, and
80 on. Basically, this workload consists of “gystem” prdgra.ms rather than user applications.

The parts of memory considered for reorder§ng consisted of level 0 of WORKING-STORAGE-AREA
and 20 other selected areas, totalling about 65% of the total initial virtual memory usage. The
areas not considered included small areas (less than about 10,000 words) and unreorderable
areas, e.g., areas containing stacks, non-Lisp-objects, and areas specifically prevented from
being flipped. An important area not considered for reordering was COMPILED-FUNCTION-AREA,
since Andre found that the best strategy was to preserve (or, after many redefinitions, restore)
source-file ordering of compiled function objects {1]. This conclusion is similar to that of Ferrari
[9] for a static langnage system. '

Since the selected areas were flipped for reordering at the start of the session, we refer to the
objects contained therein as pre-ezisting, to distinguish them from objects created during the
session. In most of these areas, among the pre-existing objects, there is very little or no garbage
since they consist primarily of system objects present in virtual memory when the system is
booted. Because of the low percentage of garbage, it is mainly through reordering rather than
garbage collection that we can hope to improve locality among these objects.

Tables 4.2—4.5 present transport statistics taken at the end of the interactive session. Ta-

ble 4.2 shows, for each area,
e the size of reordering oldspace;

e the total size of the objects accessed during the session, expressed in number of words

(WOR) and as a percentage of reordering oldspace;

e the number of oldspace pages (PAG,i4) and copyspace pages (PAGcopy) occupied by the

objects accessed during the session; and
e the reduction in working set size (A), and the compression ratio (p).

The areas are ranked in order of decreasing A.

60

I

r L [HER |

| N | IIAE EE . (N

v F
|

¢ G

(1

CIE T

(T

vl auirofur o e @EH\”‘

!

o

(IR

{mmr

{m

Table 4.2 ’I&a.nsport sta.tmtxcs for pre-exmtmg ob Jects under system workload.

Pre-mntmg ob)ects All obJects
in area Flipped Accessed Percent | PAGoia PAGeopy A
(words) (words) accessed | (pages) (pages) (pages) (percent
sFLAVOR-AREA#» 1846875 315199 17.1 2131 1233 898 42.1
WORKING-STORAGE-AREA 1544846 255215 18.5 1544 998 546 35.4
PNAME-AREA 487163 9481 1.9 561 38 523 93.2
DEBUG-INFO-AREA 1113525 61775 5.5 607 242 365 60.1
PROPERTY-LIST-AREA 174742 13568 7.8 324 53 271 83.6
sWHO~-CALLS-DATABASE-AREA®| 100287 23609 23.5 282 93 189 67.0
*SAGE-COMPLETION-AREA# 171894 98765 57.5 575 387 188 32.7
PATENAME-AREA 438160 86206 19.7 508 338 170 33.5
PERMANEXT-STORAGE-AREA 32244 12383 38.4 101 49 52 51.5
EDITOR-LINE-AREA 521039 110430 21.2 481 432 49 10.2
PRESENTATION-AREA 222889 3553 1.6 47 15 32 68.1
»PRESENTATION-TYPE-AREA#* 15416 7093 46.0 57 28 29 50.9
«JAMESPACE-OBJECT-AREL» 12883 5395 41.9 50 22 28 56.0 E
«HANDLER-DYNAMIC-AREA* 118249 89763 75.9 373 352 21 5.6
SHEET-AREA 41354 12514 30.3 70 50 20 2865 W
+HANDLER-TABLE-AREA= 11198 5780 51.8 41 23 18 43.9 M
EDITOR-HODE-AREA 20590 12948 62.9 66 52 14 21.2
sFONT-AREA» 56919 17955 31.5 84 71 13 15.5
PRKG-AREA 375300 347032 92.5 1366 1356 10 0.7
DISE~-ARRAY-AREA 74786 42412 56.7 i71 166 5 29
EI—MY-LREL 498651 402052 80.6 1575 1571 4 03
Total 7879010 1933128 24.5| 11014 7569 3445 31.3 M
61

ORIGINAL PAGE I3
OF POOR QUALITY

Table 4.3 Tra.nsport statistics for pre-emtmg structure objects under system workload.

Pre-existing objects " Structures 7
in area Flipped Accessed Percent | PAG.i4 PAGcpy 4 p
(words) (words) accessed | (pages) (pages) (pages) (percent)
*FLAVOR-AREA= 1266200 283690 22.4] 1551 1109 442 28.5
WORKING-STORAGE-AREA 1411164 250756 17.8 1457 980 477 32.7
PEAME-AREA 487163 9481 1.9 561 38 523 93.2
DEBUG-INFO-AREA 115303 42439 36.8 205 166 39 19.0
PROPERTY-LIST-AREA
#WHO-CALLS-DATABASE-AREA=| 49098 19515 39.7 88 77 11 12.5
#SAGE-COMPLETION-AREA* 108474 65283 60.2 401 256 145 36.2
PATENAME-AREA 372659 85304 22.9 476 334 142 29.8
PERMANENT-STORAGE~AREA 10447 8121 7.7 37 32 5 13.5
EDITOR-LINE-AREA 482130 104402 21.7 450 408 42 93
*PRESENTATION-AREA# 215815 3517 1.6 46 14 32 69.6 |
*PRESENTATION-TYPE-AREA= | 15416 7093 46.0 57 28 29 50.9 1N
»NAMESPACE-OBJECT-AREA+ 4531 2229 49.2 18 9 9 50.0
*HANDLER-DYNAMIC-AREA# 107318 89147 83.1 359 349 10 2.8
SEEET-AREd 39604 12326 311 63 49 14 222 N
sHANDLER-TABLE-AREA*
EDITOR-NODE-AREA 12070 12070 100.0 48 48 0 0.0
*FONT-AREA» 56919 17955 31.5 84 71 13 155 1
PKG~-AREA 374598 346869 92.6| 1362 1355 7 05
DISK-ARRAY-AREA 74786 42412 56.7 171 166 5 29
BIT-ARRAY-AREA 408651 402052 80.6| 1575 1571 4 0.3
[Total 5702346 1804661 31.6] 9009 7060 1949 21.6 W
ORIGINAL PacE 15
OF POOR QUALITY
62

[

1IN

.

1
I

o won o s €0 g A

{] |

N AR LR ¢ A (LIRS L e s a

{3

{me

¢ny

Table 4.4 Transport statistics for pre-existing list objects under system workload.

" Pre-existing objects Lists
in area [Flipped Accessed Percent | PAGoa PAGeopy O P
(words) (words) accessed (pages) (pages) (pages) (percent)
sFLAVOR-AREA# 580675 31509 5.4 580 124 456 78.8
WORKING-STORAGE-AREA 133682 4459 3.3 87 18 69 79.3
PYAME-AREA
DEBUG-IFFO-AREA 998222 19336 1.9 402 76 326 81.1
PROPERTY-LIST-AREA 174742 13568 7.8 324 53 271 83.6
»WHO-CALLS-DATABASE-AREA#| 51189 4094 8.0 194 16 178 91.8
*SAGE-COMPLETION-AREA# 63420 33482 52.8 174 131 43 24.7
PATHNAME-AREA 85501 902 1.4 32 4 28 87.5
PERMANENT-STORAGE-AREA 21797 4262 19.8 64 17 47 734
EDITOR-LINE-AREA 38909 6028 15.5 31 24 7 22.6
sPRESENTATION-AREA® 7074 36 0.5 1 1 0 0.0
*PRESENTATION-TYPE-AREA#
«EAMESPACE-OBJECT-AREL» 8352 3166 37.9 32 13 19 59.4
»HANDLER-DYNAMIC-AREA* 10931 616 5.6 14 3 11 78.6 Ml
SHEET-AREA 1750 188 10.7 7 1 6 85.7 1
sEANDLER-TABLE-AREA* 11198 5780 51.8 41 23 18 43.9 I
EDITOR-HODE-AREA 8520 . 878 10.3 18 4 14 77.8 |
sFONT-AREA* _ :
PKG~AREA 702 163 23.2 4 1 3 75.0
DISK-ARRAY-AREA l
BIT-ARRAY-AREA
Total 2176664 128467 5.9] 2005 509 1496 74.6 I
CRIGINAL PAGE iS
OF POOR QUALITY
63

Table 4.5 Other transport statmtlcsfor pre-existing ob Jects under system workload.

OF POOR QUALITY

" Pre-existing objects Structures Lists
in area Count Min size Max size Mean size Std. dev.|Normal
 (words) (words) (words) (words) | conses
FLAVOR-AREA= 3716 1 3095 76.3 309.9 90
WORKING-STORAGE-AREA 6594 1 10404 38.0 327.9 777
PYAME-AREA 2085 2 16 4.5 2.2
DEBUG-INFO-AREA 109 2 41568 389.3 3980.7 73
PROPERTY-LIST-AREA 226
»WHO-CALLS~-DATABASE-AREA* 24 11 8437 813.1 1845.2 2013
SAGE-COMPLETION-AREA 6784 2 10993 9.6 182.0 70
PATHNAME-AREA 1128 2 42887 75.6 1348.2 11
PERMANENT-STORAGE-AREA 602 1 4005 13.5 163.0 92
EDITOR-LIRE-AREA 4224 11 123 24.7 15.4 0
#PRESENTATION-AREA* 428 3 130 8.2 10.4 18
«PRESENTATION-TYPE-AREA*» 173 41 41 41.0 0.0
«HAMESPACE-OBJECT-AREA®* 332 2 17 6.7 4.1 12
»HANDLER~-DYNAMIC-AREA#* 166 7 20437 537.0 2413.7 b}
SHEET-AREA 168 5 186 73.4 57.3 57
*HANDLER-TABLE-AREA+ 0
EDITOR-NODE-AREA 710 17 17 17.0 0.0 67
*«FONT-AREA» 108 5 1389 169.4 177.2
PKG-AREA 143 1 33058 2425.7 5112.6 17
DISK-ARRAY-AREA 68 15 1165 623.7 547.4
BIT-ARRAY-AREA 2 749 25439 19145.3 10050.1
[Total 27581 1 42887 65.4 860.8| 3528
CRIGINAL PAGE IS
64

L L . ()

QU

Qi

[| | 0! [T i

LN

(o

m |

3 il

@

eo

am!

The results show that, for many areas, only a small fraction of all reachable ob jects was refer-
enced: of the total amount flipped mto oldspa,ce, only 24% was transported. However, the frac-
tion transported varied considerably among the different areas. For example, in PNAME-AREA,
which contains the print names (strings) of symbols, only 2% was transported, while in PKG-AREA,
which primarily contains package objects, 92% was transported.

Reordering resulted in a reduction of working set size by 31%. However, this percentage is
biased upward by a few “bad” areas. Signiﬁca.nﬁ reductions in working set size were achieved in
almost all areas. In PNAME-AREA, the 93% reduction is particularly dramatic, and indicates high
fragmentation among symbol print names. However, there are five areas with p < 10% and
which are therefore unsuitable for reordermg (The spec:ﬁc reasons will be discussed shortly.)
If we remove these five areas from the a.na.lysm, the overall fraction of oldspace transported
drops from 24% to 15%, and the compression ratio rises from 31% to 48%. That is, over the
areas which are reasonable candidates for 7ré'<7)rdering, a decrease in the wofking set size by
one-half was realized.

The next two tables, Tables 4.3 and 4.4, present the same information as the first, but
broken down into structure and list objects.

For most areas, as well as overall, list ob jects are more fragmented than structure objects.
Over all the areas, the compression ratio p for lists was 75% while for structures it was 22%.
However, the absolute reduction A in working set size due to reordering of structures was
greater (1949 pages) than that due to reordering of lists (1496 pages) because of the much
larger number of structure pages referenced.

The difference between structure and list objects in the effectiveness of reordering sug-
gests that the memory ma.na.gemexﬁ ;ysiem should be capable of reordering only the re-
gions of an area containing lists. Currently, our system does not distinguish between list
and structure regions and flips both types when requested to reorder an area (or ephemeral
level). Good examples for which such a flexibility would be useful are DEBUG-INFO-AREA and
*WHO-CALLS-DATABASE-AREA=. In these areas, reordering lists yields significant benefit, while
reordering structures yields little benefit but has significant cost (as measured by the number

of words transported) and is therefore andesirable. Note that selectively flipping list or struc-

“The areas are EDITOR-LINE-AREA, <HANDLER-DYNAMIC-AREAs, PKG-AREA, DISK-ARRAY-AREA, and
BIT-ARRAY-AREA.

ture regions of an area applies not only to reordering but to garbage collection as well. As in
generation-based ga.r‘ﬁa.ge collection, the underlying theme is that of improving efficiency by
expending memory management effort only on selected portions of virtual memory.

Table 4.5 shows other statistics on the objects accessed during the interactive session. For
structure objects, the distribution of object size is indicated. For list objects, the number of
normally coded conses is shown.

The size distribution for structures is helpful in understanding the reordering results of the
various areas. Four of the five “bad” areas mentioned earlier (p < 10%) are seen to have mean
structure sizes much larger than the size of a page (256 words). This is also true for the two
areas DEBUG-INFO-AREA and *WHO-CALLS-DATABASE-AREA* mentioned as good candidates for
list reordering but not structure reordering. For these areas, the potential for fragmentation,
which is predicated on objects being smaller than a page, is therefore greatly diminished. The
fifth “bad” a.rea.; EﬁITDR-LINE—AREA, has sma.ll objects (a mean of 25 wbrds), but is apparently
not fragmented. This behavior is explained by noting that this area contains the text of editor
buffers, and the ob jecfs (strings) a.fera]rea.dy well-ordered (sequentially)”in memory.

4.5.2 SRW program

The effectiveness of reordering was also measured while running the SRW program. The
same 2] areas as in the system workload experiment were flipped for reordering at the start of
execution; these areas contain the pre-existing objects.

However, we also considered the objects created in WORKING-STORAGE-AREA during execu-
tion. These objects are normally created in the ephemeral p'a.rt of WORKING-STORAGE-AREA.
Assuming that WORKING-STORAGE-AREA is configured to have two ephemeral levels, one way to
evaluate reordering performance for (some of) these objects is to initiate a reordering of the

second level at some arbitrary time into the execution.

Instead, a more systematic approach was taken. We group the objects created during each
well-defined phase of execution and reorder the groups separately. In general, this method
makes it possible to relate any interesting results to the phase of execution. The grouping was

done as follows.

The SRW program goes through six phases, called Load, Filel, . , File5. The first phase con-

sists of loading the program into virtual memory and performing any initializations; the remain-

66

11
N}

(DN U AR I

oy o

N

'\ |
[

1 [
'Hl\ JII ‘i

T

(

LTI

(i

L=

(

@nr

g]

&

L

ol o

el

g

ing five phases correspond to processing each of five input data files. WORKING-STORAGE-AREA
was configured to have 6 + 2 ephemeral levels, with the lower six levels reserved for the objects
from each phase, and with the highest two levels serving as the normal “screening levels.” The
lower of these screening levels was made to be “sticky” so that any objects surviving a garbage
collection of this level would remain at the igyel. All levels were initially empty, having been
garbage collected before starting the application, with surviving objects being transported to
level 0 (and therefore contributing to the population of pre-existing objects).

During execution, the screening levels were garbage collected as usual at some reasonable
frequency, but at the end of phase i, both screening levels were garbage collected, with surviving
objects being transported to the level reserved for phase i. That reserved level was then
immediately flipped for reordering.’ T

The measurements taken at the end of the last phase (and of the program) are presented
in Tables 4.6—4.9 for the pre-existing ob jects and in Tables 4.10—4.13 for the objects created
during execution.

In general, the results for SRW are similar to those for the system workload, and even more
striking. The application references a far sﬁ#ller percentage of the accessible objects, and the
objects referenced are more widely scattered among pages. For the pre-existing objects, over
all areas, only 7% of all memory flipped into reordering oldspace was accessed (Table 4.6).
The compression ratio achieved was 43%. Several areas were completely untouched, since the
application did not involve the use of the editor, windowing system, or Document Ezaminer.
As expected, because they contain large objects, the areas which were unsuitable for reordering
under the system workload remained unsuitable for the same reason. Discounting their effect,
the remaining areas have p = 58%.

As in the system workload, lists were more fragmented than structures, but the reduction in
working set size due to structures was greater because of the larger number of structure pages

referenced (Tables 4.7 and 4.8). For lists, A = 890 pages and p = 88.4%, while for structures,

SAn alternative to copying the objects which survive a particular phase into a unique ephemeral level in
VORKTHG-STORAGE-AREA, is to copy them to a unique (nonephemeral) ares. This alternative will negate the
possibility of later garbage collecting them efficiently using the ephemeral garbage collector. However, it may
be the better alternative if the objects are long-lived anyway, and if maintaining large populations in many
ephemeral levels results in a large number of inter-level pointers—and a corresponding increase in the size of the
ephemeral root set tables, and degradation in ephemeral garbage collector performance.

67

Table 4.6 I}mﬁért ‘statistics for pre-enstmg objects under SRW.

" Pre-existing objects ' All objects
in area Flipped Accessed Percent | PAGoy PAGeopy A P
(words) (words) accessed | (pages) (pages) (pages) (percent
WORKING-STORAGE-AREA 2796059 172676 6.2] 1607 676 931 579
PYAME-AREA 577180 7353 1.3 300 29 271 90.3
*WHO-CALLS-DATABASE-AREA=| 162883 28385 17.4 345 112 233 67.5
sFLAVOR-AREL» 2093542 57211 2.7 436 225 211 48.4
DEBUG~INFO-AREA 1583483 43055 2.7 279 169 110 39.4
PROPERTY-LIST-AREA 218901 1817 0.8 116 8 108 93.1
PATHNAME-AREA 649074 54388 8.4 256 213 43 16.8
sNAMBESPACE-0BJECT-AREA# 18275 5368 29.4 61 22 39 63.9
PERMANENT-STORAGE-AREA 40475 1355 3.3 40 7 33 82.5 NN
PEG-AREA 600872 250566 41.71 1006 980 26 2.6]
«EANDLER-DYNAMIC-AREA* 134557 37052 27.5 170 146 24 14.1
#PRESENTATION-AREA® 438659 1087 0.2 23 -5 18 78.3
«PRESENTATION-TYPE-AREA* 15539 2378 15.3 28 10 18 64.3
«HARDLER-TABLE-AREA» 11332 1433 12.6 20 6 14 70.0
SHEET-AREA 39360 1421 3.6 16 7 9 56.3
*FONT-AREA» 73150 3148 4.3 18 13 5 27.8)
DISK~ARRAY-AREA 74786 33225 44.4 134 130 4 3.0
SAGE-COMPLETION-AREA# 200320 0 0.0 -0 0 0 -
EDITOR-LINE-AREA 4809 0 0.0 0 0 0 -
 BIT-ARRAY-AREA 430730 0 0.0 0 0 0 -
Total 10163986 701918 8.9 4855 2758 2097 43.2 W
68

0l

g i

L
|

[[

i
f

I

L AT | | U

4/

qnr

R [

Table 4.7 Transport statistics for pre-e:nstmg structure objects under SRW.

Pre-existing objects ~Structures
in area Flipped Accessed Percent | PAGod PAGeopy O
(words) (words) accessed (pa. es) (pages) (pages percent
WORKING-STORAGE-AREA 2281090 161812 71] 1304 633 671 51.5
PEAME-AREA 577180 7353 1.3 300 29 271 90.3
SWEQ-CALLS-DATABASE-AREA*| 85707 25526 29.8 107 100 7 6.5
*FLAVOR-AREA» 1329596 52315 3.9 319 205 114 35.7
DEBUG-INFO-AREA 135652 41572 30.6 164 163 1 0.6
PROPERTY-LIST-AREA
PATHENAME-AREA 549509 54258 9.9 242 212 30 12.4
sEAMESPACE-OBJECT-AREA* 6178 2481 40.2 24 10 14 58.3
PERMANERT-STORAGE~-AREA 14200 60 0.4 8 1 7 87.5
PKG-AREL 599166 250380 41.8 999 979 20 2.0
EANDLER-DYNAMNIC-AREA 125325 36985 29.5 164 145 19 11.6
*PRESENTATION-AREA# 418657 1087 0.3 23 5 18 78.3]
»PRESENTATION-TYPE-AREA* | 15539 2378 15.3 28 10 18 64.3 |
HANDLER-TABLE-AREA
SEEET-AREA 37688 1393 3.7 14 6 8 57.1
*FONT-AREL# 73150 3148 4.3 18 13 5278
DISK-ARRAY-AREA 74786 33225 44.4 134 130 4 3.0
#SAGE~COMPLETION-AREA® 113328 0 0.0 - 0. 0 0o -
EDITOR-LIRE-AREA 4809 0 0.0 0 0 0 -
BIT-ARRAY-AREA 430730 0 0.0 0 0 0 -
Total 6872290 673973 9.8] 3848 2641 1207 314 W
69

Table 4.8 Transport statistics for pre-existing list objects under SRW.

Pre-existing objects “Lists
in area _F-lipp_ed Accessed Percent | PAG,14 PAG copy A p

(words) (words) accessed | (pages) (pages) (pages) (percenmt)

WORKING-STORAGE-AREA 514969 10864 2.1 303 43 260 85.8 :

PYAME-AREA

YE0-CALLS-DATABASE-AREA| 77176 2859 3.7 238 12 226 35.0

»FLAVOR-AREA* 763946 4896 0.6 117 20 97 82.9

DEBUG-INFO-AREA 1447831 1483 0.1 115 8 109 94.8

PROPERTY-LIST-AREA 218901 1817 0.8 116 8 108 93.1

PATENAME-AREA 99565 130 0.1 14 1 13 92.9

sNAMESPACE-OBJECT-AREA# 12097 2887 23.9 37 12 25 67.6

PERMANENT-STORAGE-AREA 26275 1295 4.9 32 6 26 81.3

PRG-AREA 1706 186 10.9 7 1 6 85.7

»HANDLER-DYNAMIC-AREA# 9232 67 0.7 6 1 5 83.3 N

PRESENTATION-AREA 20002 0 0.0 0 0 0 -

PRESEXNTATION-TYPE-AREA

»HANDLER-TABLE-AREA#* 11332 1433 12.6 20 6 14 70.0 =

SHEET-AREA 1672 28 1.7 2 1 1 50.0

sFONT-AREL»

DISK-ARRAY-AREA

SAGE-COMPLETION-AREA= 86592 0 0.0 0 0 0 -

EDITOR-LINE-AREA

_B_IT-LB.RLY-LRBA

Total 3201696 27945 0.8] 1007 117 890 88.4 M

70

L

N €

an

qan

v
il

g

{

0% 7

{/mr

llid

Iy

i

e

€

"

{1 e

|
4l

tnne

anm

R

Table 4.9 Other transport statistics for pre-existing objects under SRW.

~ Pre-existing objects Structures Lists
in area ount Min size Max size Mean size Std. dev.| Normal
(words) (words) (words) (words) | conses
WORKING-STORAGE-AREA 3589 1 656537 45.1 1130.1 3670
PNAME-AREA 1739 2 14 4.2 1.8
*WHO0-CALLS-DATABASE-AREA+ 12 11 11437 21272 38148 1400
sFLAVOR-AREL* 624 1 3095 83.8 241.9 23
DEBUG~-INFO-AREA 2 4 41568 20786.0 29390.2 8
PROPERTY-LIST-AREA 61
PATHNAME-AREA 64 2 42887 847.8 5438.1 20
sNAMESPACE-UBJECT-AREA* 316 2 236 7.9 13.6 7
PERMANENT~-STORAGE-AREA 10 2 7 6.0 2.1 36
PKG~AREA 89 1 93214 2813.3 11046.0 27
sHANDLER-DYNAMIC-AREA® 116 T 11437 318.8 1338.2 0
»PRESENTATION-AREA® 174 5 21 6.2 2.0 0
#PRESENTATION-TYPE-AREA# 58 41 41 41.0 0.0
»HANDLER-TABLE-AREA* 0
SHEET-AREA 13 5 186 107.2 683.2 8
«FONT-AREA* 17 5 573 185.2 153.7
DISK-ARRAY-AREA 55 15 1165 604.1 555.9 :
*SAGE-COMPLETIQN-AREA® 0 - - - - 0
EDITOR-LINE-AREA ' 0 - - - -
BIT-ARRAY-AREA 0 - - - -
Total 6878 1 93214 98.0 1710.2] 5260
Table 4.10 Transport statistics for new objects under SRW.
Objects created All objects
during phase |Flipped Accessed Percent | PAG,u PAG.py A 2
(words) (words) accessed | (pages) (pages) (pages) (percent)
Load 374847 5667 1.5 60 24 36 60.0
Filel 94480 1111 1.2 56 6 50 89.3
File2 139670 14126 10.1 162 . 56 106 65.4
Filed 820323 22405 2.7 360 89 271 75.3
File 1242786 31679 2.5 409 125 284 69.4
Total 26721086 74988 2.8] 1047 300 747 71.3 R

Table 4.11 Transport statistics for new structure objects under SRW.

jects created Structures
during phase [Flipped Accessed Percent PAGaa PAGcopy A P
(words) (words) accessed | (pages) (pages) (pages) (percent)
Load 271782 4871 1.8 42 20 22 524 MR
Filel 89382 587 0.7 46 3 43 93.5 W
File2 131503 13001 9.9 149 51 98 65.8 ;
Filel 784826 20249 2.6 344 80 264 78.7 |
File4 1186954 27746 2.3 385 109 276 T1.7 2
Total 2464447 66454 2.7 966 263 703 72.3 EE
71

Table 4.12 Transport statistics for new list objects under SRW.

Objects created ‘Lists
during phase |Flpped Accessed Percent | PAG.u PAG copy

(words) (words) accessed | (pages) Lages) Mes) gpercent)
Load 103065 796 0.8 18 4 778
Filel 5098 524 10.3 10 3 7 70.0
File2 8167 1125 13.8 13 5 8 61.5
Files 35497 2156 6.1 16 9 7 43.8
File{ 55832 3933 70| 24 16 8 33.3
otal 207659 8534 4.1 81 37 4 543 IR

Table 4.13 Other transport statistics for new ob jects under SRW.

[Objects created Structures Lists
during phase |[Count Min size Max size Mean size Std. dev. | Normal
(words) (words) (words) (words) | conses
Load 177 2 1304 275 100.7] 196
Filel 188 2 66 - 3.5 5.2 25
File2 323 2 12037 40.3 669.6 125
Filed 858 2 17677 23.6 603.0 51
File4 635 2 25837 43.7 1025.2|. 670
Total 2162 7 25887 304 721.5] 1067

A = 1207 pages and p = 31%. The data also clearly shows the desirability of reordering lists
but not structures in DEBUG-INFO-AREA and *WHO-CALLS-DATABASE-AREA=*.

Fpr the objects created during execution, an overall p of 71% was realized, and each of the
object populations corresponding to the execution phases had p 2 60% (Table 4.10).

Transport statistics were collected not only at the end of the program but also at the end
of each phase to observe the time variation in the measures. In particular, we were interested
in testing the assumption made in Section 4.4.2, namely, that A is indicative of the reduction
in the average working set size over an arbitrary subinterval of (Zaip, teval), because of the long
duration over which reordering occurs and the consequent high probability of rereferencing.
From Table 4.14, we see that the amount of objects transported in each population grows only
very slowly after the first measurement of the population. This behavior suggests (but does
not prove) that a significant amount of repeated accessing of objects is occurring, which is

consistent with the assertion regarding A.

'
'

[

e oem

Q!

U

0

!

i

|

(

1
1

[

Table 4.14 Time variation in transport statistics under SRW.
Measured All objects
at end of | Flipped Accessed Percent [PAGod PAGeopy O P
phase | (words) (words) accessed | (pages) (pages) (pages) (percent)
; Pre-existing objects _ .
= Load 10163986 657385 8.5 4307 2580 1727 40.1
B Filel 688396 6.8 4699 2704 1995 42.5
= File2 690454 6.8 4724 2712 2012 42.6
= File$ 694705 6.8] 4786 2728 2058 43.0
File4 896439 6.9 4800 2735 2065 43.0
File5 701918 6.9 4855 2758 2097 43.2
Objects created during phase Load
. Filel 374847 5200 1.4 56 21 35 62.5
= File2 5617 1.5 57 23 34 59.6
= File$ 5651 1.5 58 24 34 58.6
Filed 5664 1.5 60 24 36 60.0
=5 File§ 5667 1.5 60 24 36 60.0
-
Objects created during phase Filel
- File2 94480 945 1.0 53 5 48 90.6
z File3 ’ 961 1.0 54 5 49 90.7
Filed 1099 1.2 56 6 50 89.3
. Fileb 1111 1.2 56 6 50 89.3
< ‘Objects created during phase File2
File$ 139670 13245 9.5 88 - 53 35 39.8
= File4 13946 10.0 153 56 97 63.4
- Files 14128 10.1 162 56 106 65.4
e Objects created during phase Filed
g Filed 820323 20960 2.6 240 83 157 65.4
Files 22405 2.7 360 89 271 75.3
é Objects created during phase Filef
B (File | 1242786 31679 3.5] 409 125 284 69.4]
-

73

¢

4.6 Summary

Dynamic reordering is an attempt to improve the locality of reference by grouping together
objects which are being actively used. The basic architectural support required for its realization
is the same as that for incremental copying garbage collection, namely, the read barrier and

efficient handling of invisible pointers.
A new memory management system has been designed and implemented for the Symbolics

Lisp computer, which integrates generation-based garbage collection with dynamic reordering.
The problem of preserving object order when gafba.ge collecting is solved approximately by a
scheme for maintaining togetherness, and exactly by an operation called compaction. Com-
paction reclaims memory taken up by forwarding pointers created during reordering, but not
by other garbage.

The new system requires no changes to hardware, and in particular, to the read barrier.
The only change made to the existing virtual memory organization is to define and allow the
simultaneous existence of two types of oldspace: true oldspace serves the traditional role as
memory being garbage collected; reordering oldspace consists of memory being reordered.

A method, called scanning for transport statistics, was presented for measuring the intrinsic
effectiveness of reordering. The method provides an evaluation which is independent of main
memory size and allows the reorderability of different memory areas to be determined. Reorder-
ing oldspace is scanned for objects which have been transported. The scan yields the number of
oldspace pages containing the transported objects and statistics on their sizes, from which can
be computed the reduction in working set size due to reordering, and the density with which
the objects are packed into pages. The algorithm for parsing oldspace solves the problem of
noninvariance of object representation with respect to forwarding.

The results from two experiments, one involving interactive system workload and the other
a large application, show a significant reduction in working set size due to reordering, or equiv-
alently, a significant amount of fragmentation among the populations of objects considered.
Different memory areas exhibited varying reordering performance. Most areas considered were
suitable for reordering; the exceptions were areas containing many large objects or which were
already initially well-ordered. Over the suitable areas, a compression in working set of 48% and

58% was measured for the two workloads.

74

!

(i ewm W o e € q

¢l

| 4! «a] I L) L D .

List space exhibited a greater relative reduction in working set size than structure space by
a factor of about three, but the absolute reduction due to structure space was greater because

of the larger number of structure pages being accessed.

-

(i

1

(i

=

@i

"
i

i

75

i

-
il

0

Chapter 5

Conclusions

-

Dynamic reordering has been incorporated into an existing generation-based garbage-collecting

memory management system. The new system supports schemes for preserving object order in
virtual memory during garbage collection, both approximately and exactly.

We have presented a technique, called scanning for transport statistics, for evaluating the
effectiveness of reordering, independent of main memory size. In this method, a scan of re-
ordering oldspace yields the number of oldspace pages containing the transported objects and
statistics on their sizes, from which can be computed the reduction in working set size due to
reordering. The relative reduction in working set size is also a measure of the density with which
objects are packed into pages, and the extent to which the problem that reordering attempts to
address actually exists. Our algorithm for parsing oldspace solves the problem of noninvariance
of object representation with respect to forwarding.

While motivated by reordering, scanning for transport statistics can be viewed as a general
technique which can be used to evaluate locality improvement in any situation in which objects
are dynamically reorganized, including normal copying garbage collection.

Two experiments, one involving interactive system workload and the other a large applica-
tion, have been conducted and the results show reductions in working set size of 48% and 58%
due to reordering, or equivalently, a significant amount of fragmentation among the populations
of objects considered. The use of the technique to measure the reorderability of selected por-
tions of memory has been demonstrated. Memory areas suitable for reordering were identified.
Relative compression in working set size was greater for list space than structure space, by a
factor of about three. Results for certain areas suggest differential treatment of list space and

structure space.

76

|t
I

L

€ «ii

greooart et

(e

e

gy

AT

ainr

ami

,‘
|
|

Cin

e

il

g

{nl

5.1 Symmetries Between Garbage Collection and Dynamic
Reordering

Generation-based ga.rb‘age collection and dynamic reordering are two techniques for improv-
ing the efficiency of memory management in Lisp and similar dynamic language systems. Both
are based on empirical characteristics of objects; the former exploits the phenomenon of short-
lifetime and the infrequency of pointers from older to younger objects; the latter exploits the
phenomenon of active object fragmentation. Both require similar mechanisms in the underlying
memory management system. Garba.gei collection improves locality by compacting the acces-
gible objects, while reordering improves locality by compacting the actively used objects. For
the younger and smaller generations, garbage collection is an efficient management technique,
while for the older, larger, and stable generations, reordering may be the preferred technique

to avoid the expense of garbage collecting the gigantic virtual memory systems of today and of

the future.

5.2 Suggestions for Future Work

The experimental results on the tuning of generation parameters suggest the possibility
of adaptive control of level capacity. Since the conditions associated with nonoptimality in
capacity have been identified and are easily measured, and since the range of good values for
capacity can span a fairly broad fraction of main memory size, rather than have a fixed, user-
specified capacity, an allowable range of capacity values could be specified, and the system
could dynamically adjust the current value using some appropriate adaptive algorithm.

Dynamic reordering, like incremental garbage collection, is currently prohibitive on systems
without processor support for the read barrier and invisible pointer handling. Strategies for
efficiently providing these or alternative mechanisms on conventional architectures should be
investigated.

After an arbitrary number of reorderings of a given part of memory without any intervening
garbage collection or compaction, reordering oldspace will contain a history of accesses made
during each reordering interval. In collecting transport statistics, we have been concerned only

with the objects forwarded directly to copyspace, and have ignored other internal forwardings.

Doing so yields an eva.lua.trivon of the most recently initiated reordering interval. However, by
considering statistics for other transport internal to reordering oldspace, it is possible to evaluate
previous reordering intervals, and to evaluate various other possible scenarios, e.g., not having
initiated some specified subset of previous reorderings. The utility of this extension is an open
question.

Policies for the automatic initiation of reordering, the counterpart of threshold-based policies
for automatic initiation of garbage collection, are an area for future research. With reference to
preserving object order under copying gg.rbage collection, the related issues of when to maintain

order approximately or exactly, and for how long, remain to be addressed.

78

I
i

{1

i .

[l

| L] | { u

[

L I (1 @

¢ 1

s

"
I

Ll

1k

1

(il o3 g al

i

.
i?s

G

CH

References

(1] David Lewis Andre. Paging in Lisp programs. Master’s thesis, Department of Computer
Science, University of Maryland, 1986.

[2] Andrew W. Appel. Simple generational garbage collection and fast allocation. Software—
Practice and Ezperience, 19(2):171-183, February 1989.

[3] Jean-Loup Baer and Gary R. Sager. Dynamic improvement of locality in virtual memory
systems. IEEE Transactions on Software Engineering, SE-2(1):54-62, March 1976.

[4] Henry G. Baker, Jr. List processing in real time on a serial computer. Communications of
the ACM, 21(4):280~294, April 1978.

[5] C.J. Cheney. A nonrecursive list compacting algorithm. Communications of the ACM,
13(11):677-678, November 1970.

[6] Douglas W. Clark and C. Cordell Green. An empirical study of list structure in Lisp.
Communications of the ACM, 20(2):78-87, February 1977.

[7] Robert Courts. Improving locality of reference ina gubagecoﬂectmg memory management
system. Communications of the ACM, 31(9):1128-1138, September 1988.

(8] Peter J. Denning. Working sets past and present; IEE’E’ Transactions on Software Engi-
neering, SE-6(1):64-84, January 1980.

[9] Domenico Ferrari. Improving locality by critical working sets. Communications of the
ACM, 17(11):614-620, November 1974.

{10] Domenico Ferrari. Tailoring programs to models of program behavior. IBM Journal of
Research and Development, 19(3):244-251, May 1975.

[11] Domenico Ferrari. The improvement of program behavior. Computer, 9(11):39-47, Novem-
ber 1976.

[12] Richard P. Gabriel. Performance and Evaluation of Lisp Systems. The MIT Press, Cam-
bridge, MA, 1985.

[13] D. J. Hatfield and J. Gerald. Program restructuring for virtual memory. IBM Systems
Journal, 10(3):168-192, October 1971.

[14] Henry Lieberman and Carl Hewitt. A real-time garbage collector based on the lifetimes of
‘objects. Communications of the ACM, 26(6):419-429, June 1983.

[15] David A. Moon. Garbage collection in a large Lisp system. In Proceedings of the 1354
ACM Symposium on Lisp and Functional Programming, pages 235-246, August 1984.

(16] David A. Moon. Architecture of the Symbolics 3600. In Proceedings of the 12th Annual
International Symposium on Computer Architecture, pages 76-83, July 1985.

(17] Chih-Jui Peng and Gurindar S. Sohi. Cache memory design considerations to support
languages with dynamic heap allocation. Technical Report 860, Computer Sciences De-

partment, University of Wisconsin, Madison, W1, July 1989.

[18] Robert A. Shaw. Empirical analysis of a Lisp system. Technical Report CSL-TR-88-351,
Computer Systems Laboratory, Stanford University, February 1988.

[19] Patrick G. Sobalvarro. A lifetime-based garbage collector for Lisp systems on general-
purpose computers. B.S. thesis, Department of Electrical Engineering and Computer Sci-
ence, Massachusetts Institute of Technology, 1988.

[20] James W. Stamos. Static grouping of small objects to enhance performance of a paged
virtual memory. ACM Transactions on Computer Systems, 2(2):155-180, May 1984.

[21] Guy L. Steele Jr. Common Lisp, The Language. Digital Equipment Corporation, 1984.

[22] Peter Steenkiste and John Hennessy. Lisp on a reduced-instruction-set processor: Charac-
terization and optimization. Computer, 21(7):34—45, July 1988.

(23] George S. Taylor, Paul N. Hilfinger, James R. Larus, David A. Patterson, and Benjamin G.
Zorn. Evaluation of the SPUR Lisp architecture. In Proceedings of the 13th Annual
International Symposium on Computer Architecture, pages 444-452, June 1986.

[24] David Ungar. Generation scavenging: A non-disruptive high performance storage recla-
mation algorithm. ACM SIGPLAN Notices, 19(5):157-167, May 1984.

[25] David Ungar and Frank Jackson. Tenuring policies for generation-based storage reclama-
tion. ACM SIGPLAN Notices, 23(11):1-17, November 1988.

[26] Jon L White. Address/memory management for a gigantic Lisp environment or, GC
considered harmful. In Conference Record of the 1980 Lisp Conference, pages 119-127,

August 1980.

[27] Paul R. Wilson. A simple bucket-brigade advancement mechanism for generation-based
garbage collection. ACM SIGPLAN Notices, 24(5):38-46, May 1989.

(28] Paul R. Wilson and Thomas G. Moher. A “card-marking” scheme for controlling inter-
generational references in generation-based garbage collection on stock hardware. ACM

SIGPLAN Notices, 24(5):87-92, May 1989.

(29] Paul R. Wilson and Thomas G. Mobher. Demonic memory for process histories. In Proceed-
ings of the 1989 ACM Conference on Architectural Support for Programming Languages
and Operating Systems, pages 330-343, 1989. Published as ACM SIGPLAN Notices, Vol.

24, No. 7, July 1989.

(30] Paul R. Wilson and Thomas G. Moher. Design of the opportunistic garbage collector. In
OOPSLA’89 Conference Proceedings, pages 23-35, 1989. Published as ACM SIGPLAN

Notices, Vol. 24, No. 10, October 1989.

80

RN

Q!

1

Qi

| Ql | a ai Wi«

[31] Benjamin Zorn. Comparing mark-and-sweep and stop-and-copy garbage collection. In
Proceedings of the 1990 ACM Conference on Lisp and Functional Programming, pages

87-98, June 1990.

(

L

L

oy
ludlily

¢

(.

|
i i

(

81

Vita

Rene Llames was born in _, on _ He received the B.S. degree in

Electrical Engineering (summa cum laude) from the University of the Philippines in 1982 and
the M.S. and Ph.D. degrees in Electrical Engineering from the University of Ilinois, Urbana,
Nllinois, in 1985 and 1991, respectively. °

While pursuing graduate studies at the University of Illinois, he was a teaching assistant
in the Department of Electrical Engineering in 1982, a research assistant in the Department
of Computer Science in 1983, and a research assistant in the Coordinated Science Laboratory
from 1984 to 1990. He was with the Computer Sciences Center of Honeywell, Bloomington,
Minnesota in the summer of 1984, where he developed a simulator for a dataflow implementation
of the OPS5 production system language. He was with ESL, Sunnyvale, California, in the
summer of 1985, where he helped design a parallel systolic array computer.

Mr. Llames will now join IBM Corporation in Austin, Texas.

82

|

€

aut

&

&

[N

