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the youngest generation. The existence of a range of optimum values demonstrates the potential

for the tuning of garbage collection.

A new memory management system integratingdynasticreorderingwith garbage collection

iadescribed.The system supportsschemes forpreservingobjectorder invirtualmemory during

g_rbage collection,both approximately and exactly.

We presenta technique,cMled scanning fortransportstatistics,forevaluatingthe effective-

ness of reordering,independent of main memo_ size.Reordering oldspace isscanned for the

number of pages containingthe transportedobjectsand statisticson theirsizes,from which is

computed the reductionin working set sizedue to reorderi_. The relativereduction in work-

ing set sizeisa measure of the densitywith which the activelyused objects are packed into

pages. Since the techniquecan be appliedselectivelyin space,the portionsof memory which

are suitablefor reorderingcan be identified.The method can alsobe used to measure locality

improvement due to garbage collection.

Resultsfrom two experiments,one involvingan extensiveinteractivesessionand the other a

largeapplication,show overallreductionsin working setsizeof48% and 58% due to reordering,

with up to 93% forindividualmemory areas.Relativereductionin working setsizewas found

to be greaterfor listspace than structurespace,by a factorof _bout threeoverall.The large

disparitybetween Listand structureobjectfragmentation in certainareas suggests that the

memory management system should be ableto treatlistand structurespace differently.
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Generation-based garbage cone_ion and dynamic reordering of objects are two techniques

for improving the efficiency of memory management in Lisp and similar dynamic language

8yst_. An analysis of the effect of generation configuration is presented, focusing on the effect

of the number of generationJ and genm'ation capacities. Analytic timing and survival models

are used to represent garbage collection runtime and to derive structural results on its behavior.

The survival model providesbounds on the age of objectssurvivinga garbage collectionat a

particularlevel.Empirical resultsshow thatexecutiontime ismost sensitiveto the capacityof

the youngest generation.The existenceofa rangeofoptimum valuesdemonstrates the potential

forthe tuning of garbage collection.

A new memory management system integratingdynamic reorderingwith garbage collection

isdescribed.The system supports schemes forpreservingobjectorderin virtualmemory during

garbage collection,both approximately and exactly.

We presenta technique,calledscanningfortransportstatistics,forevaluatingthe effective-

ness of reordering,independent of main memory size.Reordering oldspace isscanned for the

number ofpages containingthe transportedobjectsand statisticson theirsizes,from which is

computed the reductionin working set sizedue to reordering.The relativereductionin work-

ing set sizeisa measure of the densitywith which the _ctlve/yused objectsaxe packed into

pages. Since the technique can be appliedselectivelyin space,the portions of memory which

are suitableforreorderingcan be identi_ed.The method can a/sobe used to measure locality

improvement due to garbage collection.

Resultsfrom two experiments,one involvingan extensiveinteractivesessionand the other a

largeapplication,show overallreductionsin working setsizeof48% and 58% due to reordering,

with up to 93% forindividua/memory areas.Relativereductionin working set sizewas found

to be greaterfor listspace than structurespace,by a factorof about threeoverall.The large

disparity between list and structure object fragmentation in certain areas suggests _ha_ the

memory management system should be able to treat list and structure space differently,
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Chapter 1

Introduction

LJ

One of the characteristics of systems which implement dynamic langaages such as Lisp, in

contrastto staticlanguagessuch as C or Pascal,isthe pervasivenessofrunthne allocationand

deallocationof "heapn memory. The resultingproblem of e_cient management of memory is

compounded in a virtualmemory environment, where itisimportant to mainta_ localityof

reference.In such object-oriented,dynamically allocated,virtualmemory systems, usersrely

on a garbage collectorto reclaim unused storageto avoid the exhaustion of address space,

as well as, and sometimes more importantly,to reduce working set sizeby compacting the

accessibleobjectsin memory. Modern generation-b_sedgarbage collectorscan perform these

functionslessdisruptivelyand more efficientlythan the originaltechniqueswhich oftenrequired

suspending usercomputation and scanning allmemory. However, the possibilityor necessityof

tuning or performance debugging of thesecollectorsunder particularprogram characteristics

remains.

Ingeneration-basedgarbage collectionsystems[14,2,15,18,19,25,30],objectsare classified

intoage groups orgenerations,and younger generationsare collectedmore frequentlythan older

ones. This techniqueconcentratescollectionefforton the youngest objectssinceithas been

empiricallyshown that the objectscreatedmost recentlyare the ones most likelyto become

g_rbage. The issuesin such schemes are the number of generationsto maintain, the threshold

sizeof a generation(which determinesitscollectionfrequency),and the policyfor promoting

objects to older generationsand eventuallyto tenured status. In general, time amd space

tradeoffsexistbetween these variousconfigurationchoices,and the optimum configuration

depends on program characteristics.

R_cently,ithas been suggested that existinggarbage collectionfunctionalitycan be em-

ployed to dynamically reorderobjectsin memory, in effectcompacting the subsetof _ccessible

1



objects which isbeing activelyused [7].The potentialgain in performance or reduction in

mart memory requirements has been demonstrated to be quite substantial.However, appro-

priatemeasurement and analysismethods forthisnew memory management functionremain

to be developed.

This thesisisconcerned with analyzingthe performance implicationsof generationsin a

generation-basedgarbage conectionsystem, and in dynamic reordering.The effectsof varying

the generationparameters are studied.The designof a new, integratedgarbage-collectingand

reorderingmemory management system is presented as wellas a method for evaluating the

intrinsiceffectivenessof reordering,independent of main memory size.

U

I

Q

m

1.1 Background

The particularLisp system used inour study isthe Symbolics Lisp machine. A detailedde-

scriptionofthe thisarchitectureand garbage collectionsystem can be found inother references

[15,16].Here, we summarize the relevantspecificfeaturesand terminology.

1.1.1 Memory organization

Virtualmemory isorganizedinto areas,spaces,and le,Jets.The address space for a given

combination of area,space,and levelisallocatedin one or more blocksofcontiguous addresses

calledregions. Specifickinds of objectsare praced by defaultin theirown areas,such

compiled functions,symbols, symbol propertylists,and symbol printna_nes.However, most of

the objectscreatedby an applicationare placedinan areana_ned WOP_IN_-STORAGE-AKEA. A_z

areamay containseveralkindsofspaces.Objectsare createdinnewspace; re_ons tobe garbage

collectedare atomicallyre,belled as oldepa_e during the flip phase of collection;during the

ensuing sca,Jengingphase,accessibleobjectsin oldspaceaxe copiedintocopyspace. Scaven_ng

can occur incrementally,_owing user and other system processesto run simultaneously,or

nonincrementally,in which case other processesaxe locked out. Staticspace isintended to

containobjectsnot norm_y subjectto collection.

An area, notably NORKING-STORAGE-AREA, may contain severallevels,which implement

the generationsor age groups for generation-b_sedgaxbage collection.Levels I > 0 axe the

ephemeral or nontenured levels,whilelevel0 containstenured objects.An ep/_erneralgaxbage
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collectioncollectsone ormore ephemeral levels.Itis normally triggeredwhen the top (youngest)

levelin _u area cont_g ephemerM levelsexceeds a specifiedcapacity;any other lower

ephemeral levels which have also exceeded their respective capacities are then also simulta-

neously collected;survivingobjects aJm copied to the next older level.A dynamic garbage

conectioncollectsallthe ephemeral levelsas wellas level0 new and copysp_e. Itistypically

invoked infrequentlyto reclaimmemory taken by objectswhich have been tenured but have

become garble (tenuredg_rba_). A _I garbage collectioncollectsallthat a dynamic garbage

collecZion collects including selected stat/c spaces.

1.1.2 Incremental copying garbage collection

Garbage collectionin our mezaured system employs the incremental copying technique,

bared on modified versionsof the Cheney [5]and Baker [4]algorithms.The Cheney _igorithm

performs brea_ith-ftrstcopying of linkedstructureswithout requiringan explicitstack. The

Baker algorithm interleavescollectionwith normal processing,avoiding long, unpredictable

delaysto the user that would resultifgarbage collectionwere to be performed without inter-

ruption.In the Baker a2gorithm,the heap isdividedintotwo spacesofequal size,.h'omspace_nd

tospace.A garbage collectioninvolvescopying all_cessibleobjectsin f_omspace to tospace.

An objectisaccessibleifitcam be resched startingfrom some set of root objects,calledthe

rootsetor baseset.After allaccessibleobjectshave been copied,fromspace cam be reused. To

begin amother gaxbage collection,the labelsof the two spacesaxe interchangedor flipped.The

copying techniqueenhances localityby removing interspersedgarbage.

In the Symbolics system,the heap isdividedintostaticand dynamic areas.Only dyna_mic

space (or some portion of it)isg_rbage collected;staticspace k a_umed to contain objects

that axe unlikelyto become gxrbage. During a collection,threekinds of dyna_nicspace become

meaningful:

• The portionof dynamic space to be gaxbage collectedisturned into oldspace.

• Objects in oldspace discovered to be nongaxbage, by a procedure to be described shortly,

axe copied to copyspace.

• New objects created during the collection axe allocated in newspace.

3



After all accessible objects in oldspace have been copied, oldspace may be reclaimed. Another

collection may then begin by flipping copyspace and newspace into oldspace, and allocating a

fresh copyspace and newspsce. Hence, oldspace corresponds-to fromspace in the Baker algo-

rithm, and copyspaee/newspa_:e corresponds to tospace. Unlike the Baker algorithm, the three

spaces are not Fixed in size or location. Whatever portion of dynam/c space is desired to be

collected is turned into oldspace, and copyspaee and newspaee are allocated as necessary from

free virtual address space.

The garbage collectorconsistsof two threadsof control,the scavengerand the tr_nspo_er,

which are interleavedwith the userprogram and other system processes,collectivelycalledthe

mutator. The scavenger'sjob isto scan through memory containingallpossiblereferencesto

oldspacefrom nongarbage objectsnot inoldspace.Initially,the onlyp1_e where such references

can exististhe root set,by definition.When the scavengerencounters an oldspace reference,

the transporteriscalled.The transporter

(1) copiesthe oldspaceobjectto copysp_e and installsa forwardingpointer(inthe oldspace

objectpointingto the versionin copyspace);and

(2) changes the oldspacereferenceto point to the copyspa_:eversion.

Ifthe transporteriscalleddue to a referencetoa previouslycopiedobject,ithas to do only (2),

i.e.,use the forwarding pointerto redirectthe oldspace reference.As nongaxbage objects axe

transported,copyspace willpotentiallycontainreferencesto oldspace.Thus, afterscanning the

root set,the scavengerneeds to scan copyspace as well,to _pu!lin" any accessiblestructures

stillinoldspace.The rootsetand copyspace togetherconstitutescavenge space,and afterboth

have been scavenged,no referencesto oldspaceexistand oldspacecan be reclaimed.

Besidesthe scavenger,the mutator couldalsoattempt toreferenceobjectsin oldspace,which

will also trigger the transporter. Transporter calls can therefore be either scavenger-induced,

or mutator-induced.

The scavenger is allowed to run if the system is idle. Otherwise, the rate of performing

collection work (scanning and transporting) is constrained to be proportionaJ to the rate of

allocation, i.e., the garbage collector is allocation-driven, to ensure that consumption does not

outpace production of free space.
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1.1.3 Approximately depth-first copying

Since the garbage collector can copy objects in whatever order it chooses, this degree of

freedom can be exploited to improve spatial locality of the surviving objects. The Symbolics

garbage collector modifies the Cheney algorithm such that an approximately depth-first order

isrealized.Whenever itislikelyto result_n the discoveryofoldspacereferences,the scavenger

temporarilysuspends itsnormal linearscan ofthe rootsetand copyspace to scan the partially

filledpage at the growing end of copyspace. This _lastpagen scavenging of copyspace tends

to placeobjectson the same page aa theirparent.Another techniquesuggestedby Courts [7],

in which objectsevacuated by mutator-induced transportingare separated from those evacu-

ated by scavenger-inducedtransporting,isalsopossiblebut not implemented in our measured

system.

1.1.4 Generational garbage collection

The system providestwo forms of garbage collection--theoriginaldynamic, and the more

recentlydeveloped ephemeral collector.In dynamic collection,alldynamic space is garbage

collectedand the root set is taken to consistof allobjectsin staticspace. The policy for

initiatingcollectionsis safety-bmsed:a collectionis begun when the system decides it has

reached the latesttime at which a collection,ifbegun, could safelycomplete without running

out offreememory space.

A dynamic collectiontypicallyrequiresmuch runtime and paging time due to the enormous

sizeof staticspace and the la.'geamount of objectsthat have to be transported. Although

collectionisinterleavedwith the user program, response time increasesconsiderablydue to

paging. Consequently,most usersturn off"the dynamic collectorduring interactiveusage.

The ephemera/garbage collectorisan implementation of generationalcollection,which [s

based on two heuristicsabout objects:

• younger objectsare more likelyto become garbage than olderobjects(infa.utmortality);

and

, thereaxe many fewerreferencesfrom olderto younger objectsthan from younger to older

objects.



The firstheuristicsuggeststhatwe stratifydynamic space intoseveralindependently collectible

generatior_or [ese_ placenewly createdobjectsin the firstgeneration;advance survivingob-

jectsto the next highergeneration;and garbage collectthe younger generationsmore frequently.

Collectingthe younger generationswillbe more ellicientsinceeffortisexpended on reclaiming

areas with a high percentage of garbage,and thus littletransportingwork isrequired.When

collectingallgenerationsyounger than a given level,the root set must include allreferences

from oldergenerationsto the generationsbeing collected.Thesecond heuristicgreatlyreduces

the sizeof the root set and suggeststhatitisnot impracticalto keep trackof these backward

intergenerationalreferences.

Inephemeral collection,ephemeral (assumed tobe short-lived)objectsarecreatedinthe first

level.The policyforinitiatingcollectionsiscapacity-based:a collectionisbegun when the f_st

levelexceeds itsprespeciliedcapacity.The firstlevelisflippedsimultaneouslywith higherlevels

that have alsoexceeded theircapacities.Objects that survivea garbage collectiongraduate to

the next level.Those survivinga collectionofthe lastlevelbecome normal, "tenured" dynamic

objectsand may be collectedby dynamic collection.Two tablesremember the pages intowhich

ephemeral objectreferenceshave been written.These tablesdetermine the root setforgarbage

collectinga particularlevel.The tablesare called

• the Garbage CollectorPage Tags (GCPT) forin-main-memory pages,and

• the Ephemeral Space ReferenceTable (ESILT) foron-diskpages.

A greatereffortismade to minimize the sizeofthe ESKT to avoidunnecessvxilyfetchingon-disk

pages during scavenging._

1.1.$ Tagged architecture and barrier hardware

To allow the above techniquesto be implemented with _cceptableoverhead,the Symbolics

computer relieson itstagged architectureand specialhardware. The processor detectsin

haxdware
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• an attempt to read intothe processora pointerto oldspace (the read barrier);_nd m

tin other generational collection schemes, She entity serving the function of the GCPT and ESRT ha_ been

called entry uector, remembered set, a.nd indirection cells. D
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an attempt to write to memory a pointer to an ephemeral space (the write 6artier).

The read barrier is required for incremental garbage collection, whereas the write barrier is

required for generation-based garbage collection.

The implementation of these hardware barriers between the processor and memory relies

primarilyon a tableformapping a virtualaddressto a space type and ephemeral level.Also,

the GCPT isimplemented inhardware. Such support avoidsthe performance degradationthat

would resultfrom performing addresschecksin microcode or Lisp.
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Chapter 2

Memory Monitoring Tools

To support the analysis work, a number of software tools have been developed, including

tools for providing descriptions of virtual memory usage, for collecting statistics on main mem-

ory occupancy, intergeneration references, and object populations, and for page fault tracing.

The largest of these tools is a facility for dynamically collecting, analyzing, and visualizing

memory usage and performance data. In this chapter, we describe the dynamic monitoring

facility, discuss the salient features of the instrumentation and analysis capabilities, and show

examples of its use in characterizing Lisp program behavior and tuning garbage collection. We

also demonstrate how the facility can be used to observe object lifetimes as a function of the

time the objects are created.

Recent papers involving measurements on Lisp programs have been concerned with proces-

sor architectures for high Lisp performance [22, 23, 18]; cache performance [17]; and garbage

collection algorithms [18, 31]. These studies involved the simulation of traces at the instruction,

memory reference, or object reference level. Because of the large number of events simulated,

there is a practical limit on the length of programs measured, with CPU times on the order

of tens or hundreds of seconds. Wilson [29] discusses the design of a memory system capa-

ble of recording a h/story of detailed changes made to it over a very long period of time, and

reconstructing a previous state.

Our instrumentation is based on sampling memory system activity timers, event counters,

and memory occupancy at epochs defined by and synchronized with garbage collection. While

the data does not contain high resolution information, such as an instruction or address trace,

the relatively low frequency of sampling and 10w data rate make it possible to monitor pro-

grams with minimal overhead for long periods of time, e.g., many hours. The _ong duration

enables time-varying characteristics, such as program phase behavior, to be observed. The
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primary program and system characteristicsmeasured are object allocation,Ufetime, paging

characteristics,and collectorperformance.

The facilitydescribedhere isusefulin evaluatingand experimenting with differentgener-

ation configurationsand in guiding other tuning efforts,such as user management of objects

and asercontrolofpaging policies.

2.1 Instrumentation and Analysis

The softwaremonitor collectsdata which makes itpossibleto (I) evaluatevariousperfor-

mance meatuses, such as page faultratesand garbage conectionefficiencyover any specified

portionofameasured program; and (2)toconstructtwo views ofmemory: a global(ornon-area-

sped_c) view showing the time variationin the usage of the vzxiousspaces and distinguishing

only between ephemeral (levelI> 0) and tenured (level0) spaces;and a by-area view, showing

the time variationin the usage of each space-levelcombination within one or more selected

_.reas.

At a minimum, by _usage" we mean the amount currentlyused (inwords), distinguishing

between listobjects(alsocalledcon.sea)and structureobjects.This informationisinexpensively

availablefrom the system. Additionally,forthe by-areaview,the monitor iscapableofrecording

statisticson the typesof objectspresent.This more detailedus_e data isobtained by scanning

the regionsconstitutingeach space-levelcombination;the overhead in scanning forobject-level

information is reduced by caching the statisticsobtained for a region and, where possible,

scanning only the portionof a regionthat has been used up by new objectssincethe lasttime

the regionwas scanned.

2.1.1 Monitoring

The requirements for the monitor are summarized as follows:

• Low time overhead. The execution time of monitored programs should not be unduly

lengthened as a result of data collection activity.

• Low space overhead. The rate at which data is collected should be low enough to make

it possible to mouitor for long periods of time, e.g., programs running for many hours,

without requiring the storage of overwhelm Jag amounts of data.



• Flexibility.This refersto being able to selectthe areas of memory to be monitored for

producing by-area views, and the levelof detailin the usage data collectedfor those

areas.In the casewhere statisticson the types ofobjectsin memory are being collected,

itshould be possibleto specifyhow objectsare classifiedintotypes.This would make it

po6sible to map objects into meanin_ul, appllcation-level data types, rather than, or in

addition to, language-level types.

• Generality. Monitoring and analysis should be able to handle the occurrence of all types

of garbage collections: ephemeral _:ollections (the most frequent), dynamic collections of

all or some areas, and full garbage collections.

The approach adopted was to sample informationat three distinguishedepochs during a

garbage collectioncycle.These are: beforethe flip(BF), which definesthe startof a cycle;

afterthe flip(AF), which isafterallthe regionsto be collectedhave been turned intooldspace

and scavengingisabout to begin;and afteroldspacehas been reclaimed(ARO), which iswhen

scavenginghas futished,no pointerstooldspaceexist,and alloldspaceregionshave been turned

intofreeregions.Basically,garbage collectionis"in progress"during the BF-AF-ARO portion

ofa cycle,and not in progressduring theperiod from ARO to the next BF.

The informationsampled at theseepochsincludesa time stamp; selectedpa_ug and garbage

collectioncounters;_ud data on memory usage as containedinthe areaand regiontables,and,

optionally,as obtained by scanning regionsforobject-levelstatistics.The pa_ng and garbage

collectioncounterscan be classifiedas eitheractivitytimers(e.g.,page faulttime, scaven_ug

time),event counters(e.g.,page fetches),or work counters(e.g._words consed,words scanned,

words copied) relativeto some arbitrarytime in the past. These counters are accessibleas

Lisp globalvariablesand are maintained by the system. The area and regiontablesare also

maintained by the system; they implement the memory organizationshown in Figure 2.1..Not

allthe informationiscollectedat allthreeepochs. For example, the garbage collection-related

countersare sampled only at ARO, when they reflectthe collectionjustcompleted. As a_uother

example, the sizesof oldspace regionsare noted only at AF, sinceoldspace does not existat

the other epochs.

Figure 2.2 depicts the overallorganizationof the monitoring and anaJysisfacility.Data

lo_ing isaccomplished by threefunctionscorrespondingto the threeinterestingepochs; these
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Figure 2.1 V'trtualmemory org_n_ation in the Symbolics Lisp system.

functionsare hooked onto the garbage collectorto be run at theirrespectivetimes. The raw

data isstoredin an objectcalleda run/og,which alsoservesas a repositoryof allinformation

on the contextof a measurement session.

Run.logscan be saved and restoredfrom diskfiles,and multiplerun.logscan existin memory

forcomparative analyses.Unlikea tracefile,a runlogcontainsdata in structuredform, so itis

not necessaryto "parse" the raw data to uncover itsstructure.A runlog contains:

• Identification of self (e.g., a name), and the relevant details of the system environment

(e.g., main memory size, generation configuration) in effect during the measurement.

• Parameters for effectinguser controlover the monitoring process,such as for specifying

the terminationcondition,which areasof memory (ifany) to monitor, and what kind of

memory usage data to collect.

• Statevariables.

• A globallog,which containsthe samples ofthe activitytimers,event and work counters,

and usage data on aJlmemory (non-axea-specific).

• A set of area logs, one for each area being monitored. An area log contains usage data

on each space-level combination present in the area.
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E • A set of "milestones," which are essentially time-stamped samples of the counters taken

at instants meaningful to a user, such as immediately before and after execution of a

top-level function and at major program state chauges. This data allows performance to

be characterizedover an intervalwhose endpoints are definedat other than the epochs

associated with a collection cycle.

F_

E_

w

2.1.2 Analysis

Analysis of data ina runlogcan oc.cgrconcurrentlywith monitoring. This ispossiblesince

no coaflicts arise in writing and reading the data. A trivial kind of analysis involves taking the

difference between two counter values, yielding the total amount of time 'spent in an activity

(forexample) in the intervalbetween sampling instants.

An example of the kind of performance summary generated is given in Figures 2.3 and

2.4,which resultfrom the monitoring of two largeprograms. The SRN program isa parser

writtenin l_zIl_Z which isthen compiled intoLisp.The program was me_ured while parsing

fivemainframe assembly language fdesintoa knowledge base. Itincursa modest amount of

garbage collectiontime. The _PZ program isa simulatorforqualitativeprocesstheory.Garbage

collectionoverhead isnegligible,but paging isa significantproblem.

Options to the reportingfunctioncan requestthat analysisbe confined to the the interval

from cycleito j >- i,or between any two recorded "milestones."

The sample reportsin Figures 2.3 and 2.4 alsoillustratean interestingkind of analysis

involvingthe globalmemory space data. Consider the tablesbordered by verticalbars,which

provide a breakdown of the memory Ripped into oldspace,a breakdown of the amount of

survivingobjects,and a breakdown of new objectallocation.The valuesin these tablesare

not directlycontainedin the raw data,but are derivedby solvinga system oflinearequations

involvingthe samples ofmemory space usage at the threeepochs in a cycle,and some counters,

notably the totalnumber of words flippedintooldspace,copied duringgarbage collection,and

consed during a cycle.In general,ifSty,Sat,and S_ denote the sizesof a given tenured or

ephemeral space at each of the threeepochs, the equationsfora particularcyclec are of the

form

S_ = Sbf - flippeds + surviveds,bf__f + conseds,bf_af

S_ro = S_t + surviveds,_t__-o + cortseds,a__o

13
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total flivved = __, fllpVeds
S

total copied = _, (snrriveds ja_a + sun, ireds,a__ )
$

total consed= Cconse ,bf_a + conseds,a_... )
S

where flipped refers to the unknown aanount of the given memory space ttlpped into oldspace,

and survived said eonsed refer, respectively, to the unknown number of words copied aad allo-

cated into the given space. Some of the terms may be zero, depending on the paa-ticulax memory

_aee and kind of g'arb_e collection. A'set of these adynamie._l equations for memory" caa be

written for each kind of garbage collection and solved to derive information that is otherwise

not directly madntained by the system.
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2.2 Graphical Representations

We now present some exaanples of graphical representations of the memory usage data.

Figure 2.5 is a global plot of memory usage for the worldoa_l consisting of 60 iterations of

the Boyer benchmark under the default configuration of two ephemeral levels with capacities

of 200 x 103 (youngest) and 100 x 103 words. This plot is obtained by stacking up, in order

from top to bottom:

• ephemeral oldspace

• ephemeral newspaa:e

• ephemeral copyspaee

• level 0 oldepaee

• level 0 copyspace

• level 0 newspace

• level 0 staticspace

• level 0 stack space
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Figare 2.7 shows a magnified view of the global plot in the vicinity of 10 elapsed minutes.

Here, the horizontal axis is calibrated in cycles, to make it somewhat easier to _read. _ The thick

line represents the boundary between the ephemeral and level 0 layers. Only the ephemeral

layersare shown in theirentirety.The char_ in a given layerare higlRightedby triangles--

shaded medium gray forephemeral newspace and blackfor both copyspace layers.Note that

newspace changes representobjectallocationwlfiiechangesin copyspacerepresentsurvival(and

garbage collectorcopying work). Almost allcollectionsoflevelI resultinno survivors,with the

exceptionof a few cycles(e.g.,cycles36, 38,and 40) during which some objectsare tenured.

Figures 2.6 and 2.8 are are_ plots for g0RKIMG-STORAGE-AREA. The shawling indicates that

an the objects created by Boyer in this area are lists (conses).

Figures 2.9 and 2.10 show the _lobal and area plots for Boyer under a configuration of only

one level with a capacity of 2.4 × 106 words. Execution time is si_ificantly reduced from 38 to

about 15 minutes. However, a larger amount of tenuring (and tenured garbage) occurs.

By having a large number of ephemeral levels, and chang].ng the collection policy such that

every levelflipswhen the youngest levelflips,I we effectivelyconfigurethe ephemeral levelsas

a shiftregister,with the populationofobjectscreatedduring a cyclebeing moved down by one

levelon each successivecycle.This configurationwillexplicitlyshow the lifetimedistribution

ofeach objectpopulation.We callthe resultingmemory usage plota chrorna.2

The chroma forthe firstI0 iterationsofBoyer isshown in Figure 2.11.Itshows that allthe

objectscreatedduring a singleiterationbecome unreachableby the end of the iteration.The

generationconfigurationsin Figures2.5-2.10are thereforesuboptimal with respectto memory

utilizationbecause they allow some objectswhich willsoon become garbage to be tenured.

The reason forthisleak_e isthatneitherconfigurationprovidesa sufficientrninirnurnage for

objectstenured. In the two-levelconfiguration,the _|_|mnm age _ 200 X 10 3 words (measuring

time in words _Llocated);an objectwith thisage thatsurvivesa collectionofleveli during cycle

c willhave been createdjustbeforecyclec- 1. In the one-levelconfiguration,the minimum age

is0 words. To avoid any tenuring,Boyer requiresa generationconfigurationwhich guarantees

a minimum age of 2e_sgo,_'6o _ 450 X 103 words.

IThis policy is accomplished easily by setting the capacity of each ephemeral non-top level to zero.

_By analogy with the technique of chromatography which _nMyze_ an unknown substance by cbserving how

far each component prop_ates along a medium. Here we are interested in measuring an object's lifetime by

observing how many generations it survives before becoming g_rbage.
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The chroma for SRN isshown in Figure 2.12. The resultsshow the presence of objectsof

long lifetime,medium lifetime(createdduring the second half),and shortlifetime(reclaimed

afterone cycle).Furthermore, we observe a high percentageof long-liveddata at the startof

reading in each input Rle.This data consistsof the textin the fileand isa good candidate for

creationin tenured space,so thatcollectionwork willnot be wasted in copying it.

2.3 Summary

A softwarefacilityforcollecting,analyz/ng,and visualizingmemory usage and performance

data on the Symbol/cs Lisp system haz been developed.The facilityrecordsa historyof mem-

ory usage and performance by drawing on existingsourcesof data, in particular,the various

countersmaintained by the system forperformance metering purposes,and the memory tables

maintained by the system formemory management purposes. Data collectionissynchronized

with garbage collectionso that the abrupt transitionsin the stateof memory and the peaks

of memory usage associatedwith the disting_zishedepochs during a collectioncycle axe al-

ways detected.The low time and space overhead ofthe instrumentationmakes itsuitablefor

nonintrusivemonitoring of applicationsrunning forlong periodsoftime.

Many currentLispsystems providea functionprofiler,to help inidentifyingthe most time-

consuming piecesof code. A facilityformemory usage profilingand performance ev'_luation,

such as has been describedin this chapter,is a usefuladdition to the set of performance

measurement toolsavailableto the user.While our instrumentationisspecificto the Symbolics

memory organizationand garbage collector,itshouldbe possibleto add a similardata collection

and analysis facility to other Lisp implementations.
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Chapter 3
m

Analysis of Generation-based

Garbage Collection

g

w

A generation-baaed garbage collector in a virtual memory system, such as the ephemeral

garbage collector, works because of the high mortality among newly created objects and because

references from older to newer objects are created relatively infrequently [14, 24, 15, 7, 18, 25,

19, 2, 27, 28].

An important problem is that of opt_g such a collector to match the characteristics of

the application to improve its efficiency and overall system performance. In the terminology

of ephemeral garbage collection, the optimization problem, in its most general (and of course

intractable) form, involves determining the number of ephemeral levels, and deciding which

levels to collect, when to collect them, and to which level to move surviving objects. Collectively,

these decisions determine the space-time configuration of the collector and represent a choice

of polic .

An %ptimal" policy is a compromise between conflicting considerations. For example,

confider the ephemeral garbage collector. Uale_a m_pulated other_se, the normal behavior

of thiscollector isto followa first-level-triggered,capacity-basedinitiationand unconditional

promotion policy.By thiswe mean

(I) collectionsare startedwhen theoccupancy ofthe youngest levelexceedsa thresholdvalue,

calleditscapacity;
@

(2) alllevelsfrom the youngest through levellare then collected,where l isthe oldestlevel

such"that alllevelsfrom the youngest through Iinclusivehave exceeded theirrespective

capacities;and

24

D

g

M

m

U

g

- mm

I

U

g

i



=

i

F_

(3) surviving objects are promoted to the next older level or tenured in normal dynamic space

if already at the oldest ephemeral level.

The degrees of freedom we can exercise within this policy subspace are the number of ievels,

and the capacity of each level. Increasing the number of levels reduces the rate of creation of

tenured garbage (objects that become garbage after graduating past all levels), thereby further

postponin_ a time-consuming full garbage collection, but increases the amount of copying work

for long-lived objects. Increasing the capacity of the first level allows more time for new objects

to die, thereby increasing the efficiency of collection and reducing tenured garbage, but reduces

locality of reference by causing memory to be compacted less frequently.

The best balance among these constraints depends on program and system characteristics

_ud on our performance object3ves. For example, we may be interested in miR/m/zing the total

execution time for a particular program. We may be interested in postponing a full garbage

collection for as long as possible. We may be interested in maximizing the average execution

rate for an "_ffmite _ pro_ spanning many full garbage collections.

In this chapter, we describe analysis and measurements which have been conducted to

understand the various factors involved for the circumscribed policy subspace described above.

r_

_===#

3.1 Timing Model

Given a benchmark program which executesover many garbage collectioncycles,the total

executiontime forthe program isthe sum ofthe time taken by the mutator and the time taken

by garbage collection.Mutator time and garbage collectiontiznecan each in turn be divided

intoa runtime (nonpaging) and a paging component,

We assume T._.t.:o.,_. to be invariantwith respectto garbage collectorparameters. Over-

head due to garbage collectionruntime isrepresentedby Tg_,,_,.Program characteristicsaf-

fectingthisoverhead are

• lifetimeofobjects,

• allocationrate,and
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• connectivityof objects.

Allocationrateinfluencesthe frequencywith which garbage collectionwillhave to be invoked.

Object lifetimeinfluencesthe amount ofcopyingwork (and thereforepartof the scanning work)

which the garbage collectorneeds to perform. Object connectivity,inparticular,the frequency

(in space)of pointersfrom olderto younger objects,influencesthe sizeof the ephemeral root

set,and hence the amount ofscanning work which needs to be done.

The runtime component of garbage collectionTe_,,_mcan be modelled in terms of the scan-

Ring and transportingwork performed.-Assume that the program allocatesa totalof M words

over itsexecution. For simplicity,a_mme thatwe have only one ephemeral level,i.e.,any ob-

jectssurvivinga garbage collectionof thislevelwillbe tenured. Let the capacityof thislevel

be Co. What isthe optimum value ofCo?

A model forthe totalgarbage collectorruntime is

where

r,°,..= + w,...,)+
u,0

M/Co

WT'oot°et

number of garbage collection cycles

average size of the ephemeral root set (in words), which

is scanned on each cycle

average number of words transported on each cycle

machine-speciflc constants representing the average time

per word scanned and transported, respectively.

(3.2)
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Note thatthe objectswhich are transportedalsohave toscavenged,sincethey could contain

pointerstooldspace.Also,itisimportant tokeep inmind the distinctionbetween totalvariables

such as Tgc,,_,,and per cyclevariablessuch a_ W_oto,_.This model forTgc,,_ does not express

the complexitiesaLsociatedwith the way the ephemeral rootsetismaintained and scanned nor

does itaccount foroverhead in the scanning and transportingroutines,except by amortizing it

over the actualnumber of words scanned and transported.However, the model issimple and

sufficientforour purposes.

The number of words transported per cycle, W_,,,_, can be expressed in terms of program

characteristics (lifetime and a/location rate) and garbage co/lector configuration (Co). The next

section discusses the relationship.
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3.2 Survival Model

.-._

m_=m

rkJ

T

ra=_

Let S(x) --P(X > z) be the distributionof objectlifetimeX. The lifetimeof an objectis

thetime from itscreationtotheinstantthatitbecomes inaccessible(garbage).Note thatS(z) is

the survi,Jalfunction and is equivalent to other forms of specifying distribution, e.g., probability

densityfunctionor cumulativedistributionfunction.IVl_e itispossibleto assume some average

allocationrate,or to assume a distributionforthe allocationrate,we linditconvenientinstead

to assume that time, for purposes of expressingobjectlifetimeX, ismeasured not in terms

of seconds, but in words allocated,fiance..¢(_:)isa jointdescriptionof object lifetimeand

allocationcharacteristics.

Consider the setofallobjectscreatedduringthe time (measured in words allocated)interval

(ml,z2).At some latertime me,,1>_z2, we would liketo know the stateof thispopulation of

objects. It is easily shown that the expected number of words surviving at time z e_.l is given

by the function
_L

U(a,b) -/_6 S(z)dx (3.3)

where a -- z_,ai -z2 and b = z_,ol-zl. Thus, g(a,b) has the meaning of the expected amount

Of words surviving from the allocation that occurred during the interval between a words ago

and b words ago.

This result can be applied to determining the expected amount of objects surviving garbage

collection. Consider the general case in which we can have an arbitrary number of ephemeral

levels.For mathematical convenience,we willnumber these levelsstartingfrom 0 for the

youngest leveland using successiveintegersto representolderlevels.To avoid confusionwith

the actualnumbering system forlevelsinthe Symbolics system (which isthe reverse,i.e.,level

0 isthe oldest),we win u_e the term generationstoimply the youngest-is-0numbering system.

Ifthe capacity of generationi isCi' then generation0 willbe garbage collectedevery Co

words allocated, and the expected amount surviving each such collection is Lo = U(0, Co).

Hence, generation1 receivesan input of Lo words from generation0 every Co words allocated.

Generation l willbe garbage collectedon average every _CI/L0] such inputs. The a_nount

of words that generation 1 willpromote to generation 2, and similarquantitiesfor higher

generationscan _Isobe derivedin terms of the U(a,b)function(See Table 3.1).
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Table _.i Frequency of collectionofeach generationand expected survival.

Geu. Time between Input periods Amount promoted on each GC

inputs between GCs

0 continuous alloc.

: : :

Lo= u(0,TI)
•i= u(TI,(i+ .I)T_)

L== u((i+ .I)T_,(i+ ._+ -I-_)ri)

Z;_=ol-l,=i "-,)

Wltilethe development up to thispoint has not assumed a particularform for S(z), e.g.,

exponential,expressingthe expected amount ofsurvivalfrom aparticulargenerationin terms of

the U(s, b)functionalreadyprovidesusefulinformation.The arguments a and b definebounds

on the age of the objectssurvivinga particulargeneration.For example, the amount surviving

a garbage collectionofgeneration0 isU(0,Co). This means thatthe minimum age forsurviving

objectsis0 and the maximum age isCo, a_ can be verifiedby a littlethought. This suggeststhat

a one-ephemeral-levelconfigurationmay tenureshort-livedobjectsprematurely (inparticular,

the ones createdjustbeforethe/lip)sinceitdoes not provide a (nonzero) minimum guarantee

of age. A two-ephemeral-levelconfigurationguarantees that tenured objectswillhave an age

of at least Co.

Returning to the timing model for Tgc,_ for the case of a one ephemeral level conJ_guration

(Equation (3.2)), the number of words transported per cycle can therefore be expressed _n terms

of program characteristics (lifetime and alloc_ttion rate) and garbage collector configuration (Co)

simply as _r_,_.p = U(O, Co).

The behavior of Tgc,.,. is now clear.

• Since U(0,Co) = j'oc° S(z)dz and sinceS(z) isa survivalfunction (i.e.,0 < S(z) < I

and S(z) ismonotonic nonincreasingwith z),Wtr,,,vcan grow no fa_terth_n Co. More

specifically,ife isthe fractionof allocationwhich islong-lived(i.e.,lhn:._.ooS(z) = a),

then I_r,r,_,_willgrow no fasterthan aCo.

• A first-levelcapacityofCo effectivelydefinesa cut acrossthe objectgraph,with objectsin

the firstlevelon one sideof the cut,and tenuredobjectson the other side.The ephemera_
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root set consists of the pages in tenured space containing pointers into the first level. As

Co increases,

- the amount of newly allocatedobjectsin the firstlevelat garbage collectiontime

increases,

- the amou.u_ of tenured garbage decreases,

- the contributionto Wroo_,._due to pointersfi-omtenured garbage objectsdecreases,

and

- the contributionto W_#_,_ due to pointersfi_m tenured nongarbage objects could

increase.This increasecould be proportionalto Co in the worst case.

In our experiments,W_,oue_ in factdecreaseswith Co (Section3.3,Figure 3.5).

Hence, T0c,_,,isa nonincreasing(and,practicallyspeaking,a decreasing)functionof Co. That

/s,accordingto the timing and survivalmodel above,totalgarbage collectorruntime decreases

with increasingfirstlevelcapacity.The lowestTee,,, should be realizedat infiniteCo, i.e.,

when garbage collectionisturned off.

This analyticalconclusionisindeed verifiedexperimentally.However, the totalexecution

time alsoincludespaging,which we have heretoforeignored.As the followingsectionwillshow,

paging can increasewith Co and ifso, the resultingtradeo/Tbetween decreasing Tgc,,.,,,and

increasingpaging time definesan optimum range of valuesforCo.

3.3 Experimental Results

To determine the effectsofnumber ofephemeral levelsand levelcapacities,we ran several

programs under controlledconditionsusingvariousgenerationconfigurations.The configura-

r2onsused were: one levelwith variousfirst-levelcapacities;and two levelswith variousfirst-

and second-levelcapacities.A Symbotics 3650 with 3 Mwords ofmain memory was used. Some

experiments were alsorun under reduced main memory sizesof2 and I Mword, but the essen-

tialobservationsremained unchanged. The testprograms included the Boyer benchmark [12],

short-and long-runningversionsof qPE, and SRW (describedin Section2.1.2).

The followingobservationscan be made from the results.

29



Execution time is most sensitive to the capacity of the first level. Thus, the decision of

how many ephemeral levels to have beyond the first, and what capacities to specify for these

levels, is more important from the point of view of guaranteeing minimum tenuring age (thereby

avoiding tenuring of intermediate lifetime objects), rather than of execution time performance.

For a given generation configuration, bounds on tenuring age can be computed easily from the

arguments to the U function as shown in Table 3.1.

The various programs extdbited a variety of behaviors. At one extreme, the small programs,

Boyar and QPE-ehor_, were similar in .that both had negligible pa_ug time, and hence total

execution time was primarily the sum of mutator run_e and Earbage collector runtime, i.e.,

Ttot6_ _ T._lCa_or,_n + Tgc,,_u. Furthermore, increasing the capacity of the first level resulted

in decreasing T0e,,_s (and thus Trot,d), and this trend continued indefinitely, such that the best

performance (lowest execution time) was achieved at hLrmite first-level capacity--_ffectively,

when garbage collection was turned off'. It is perhaps no accident that garbage collection is

often inhibited when running small programs for benchmarking purposes.

At another extreme, QPE-Zong was seen to have a very high amount of T._l_to_,pae, and

tuning generation configuration did little to improve performance. For pagiug-bound workload

such as this, in which mutator locality is the primary problem, the appropriate course of action

is to consider other techniques such as statically or dynamically reorganizing objects within

pages (Chapter 4), modifying the algorithms or data structures employed, or increasing main

memory size.

The $RW program was observed to lie between these extreme categories and to exhibit

interesting tradeofr characteristics. In the remainder of this chapter, we examine the results

from this program in greater detail to understand the reasons for the observed behavior.

3.3.1 One ephemeral level configuration

First, consider the one ephemeral level case. Figures 3.1-3.6 all pertain to this configuration.

The plot of total execution time vs. capacity (Figure 3.1) shows the existence of an optimum

capacity which is some fraction of main memory size. The range of near-optimum values is seen

to depend on main memory size, with a larger size affording a broader range.

At sm_.l capacities, when collections _e very frequent, the rise in T_o_,1 is caused by a rise

in Tgc,_, and in T,_t,,_o,.,p,e (Figure 3.2).
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Figure 3.1 SRN totalexecutiontime vs.flrst-levelcapacityfor a generationconfigurationof

one ephemeral level.
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The behavior of Tgc,,_, is explained by the discussion in Section 3.2. To restate the expla-

nation using the empirical results, consider the timing model (Equation (3.2)) and the observed

relationships of W_o_,_ and W.u._ to Co as shown in Figare 3.5.

• Since W_s_ Qc Co, the total transporting time component ofTec,._, (M/Co)k_,=,L.pW_,.4,_,_,

is constant with respect to Co.

• Since W_ot._ decreases (slightly) with Co, the total scanning time component of T0c,,._,L ,

in particular, the total time scanning the root set, (M/Co)ko_,,W,.oo_,,_, decreases at least

fast as 1�Co.

Therefore, T0c,_ _ decreases at least as fast as 1/Co. Note that Figure 3.3 verifies the above

assertions re_arding the scanning and transporting terms of crec,_,,. In readlng this figure, note

that, at small capacities, the total scanning and transporting times plotted therein consist pri-

marily of runtime rather than paging time--since there is practically no paging during garbage

collection (from Figure 3.2 or 3.4).

Essentially, at small capacities, T0c,r, _ is high because collections are frequent and each

collection has to scan the root set, whose size is relatively invariant with respect to Co.

Possible causes for the rise in T,_,_,tor.p_t at small capacities are

(1) displacement of the mutator'spages due to more frequentscanning of the root set,and

(2) reduced localityof the program's objectsin tenured space as a resultof an increased

proportionof tenuredgarbage therein.

At largecapacities,when collectionsare infrequent,the risein T_o_,l is caused by a risein

pa_u_ activity(Figures3.2and 3.4).The caulmsforthe largerworking setare as follows:

(I)SinceCo isthe amount allocatedbetween garbage collections,asCo increases,the mutator,

in the processof initializingcreatedobjects,referencesa proportionatelylargeramount

of virtualmemory.

(2) The number of words transported (and therefore having to be scanned) per cycle, W:r_,°p,

increases as _Co (Figure 3.5) where lim=_.co s(z) = _ _ 0.31 is the fraction of allocation

which is long-lived. The number of root set words scanned per cycle, W, oo_°,,, decreases

only about half as fa_t, thus prodding only a partial cancelling effect. Further, since
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eachobject transported requires touching two pages--one in oldspace and the other in

copyspace--the rate of increase in page working set size with Co due to transported objects

iseffectivelydoubled.

(3) The localityof the objectsin the firstlevelcould be reduced as a resultof a_ increased

proportionofgarbage therein.

Figure 3.4 shows that the increasedpage faultrateisexperiencedprimarilyby the garbage

collectorduring scanning,and to a lesserextentby the mutator.

Figure 3.6 shows the space-time tradeoff. The min|mnm increase in virtual memory re-

qu/red over the execution of the program is achieved at the highest capacity (lowest collection

frequency)sincethat comqguration _es tenured garbage, but the costispaid in execu-

tiontime as a resultof paging. ]Vl'_nlmnmexecutiontime incursa moderate growth in memory

usage.

Finally,itshould be mentioned that the differencein the curves forroot set scanned per

cycle,W_eo_e_, for differentmain memory sizes(Figure 3.5)is a consequence of the way the

ephemeral root set ismaintained,i

3.3.2 Two ephemeral level configuration

The resultsfor the two ephemeral levelcase are shown in Figure 3.7. Each curve in this

graph representsexecutiontime vs.second-levelcapacityCI fora fixedfirst-levelcapacityCo.

For comparison, the dottedlinesindicatethe executiontime fora one-levelconfigurationwith

the same capacityCo.

The two-levelcurves are observed to be _flatter"than the one-levelcurves (Figure 3.1),

which impliesthe relativeinsensitivityof Ttot_#to second-levelcapm:ityas statedearlier.

The curvescan be regarded asoffsetsfrom the correspondingone-levelexecutiontime,where

the offsetindicatesthe costofhaving the second level.The risingcharacteristicofthisoffsetas

l_n the Symbolics system, separate tables axe maintained to keep track of ephemera/ root set pages which

axe in main memory (GCPT) and which axe on disk (ESRT). When a virtualpage which is tagged as paxt of

the root set by the GCPT is ejected from main memory, checks axe performed to determine whether the page is

reallya root set page before creating an entry for itin the ESRT. _lence, as root set pages in main memory axe

more fi'equen_ly removed trom m_ memory, such as wouJd be more likely to happen a_ smaller main memory

sizes, the total number of root set pages could decrease, as more GCPT-tagged pages axe found not to be pa_t

of the root set.

g

I

m

m

m

U

U

u

m

U

g

g

U

J

D

38
-I

g

g



w

_J

w

=

w

_a=.#

Total
execution

time

_'tot_

170

160

150

FinttlevelcapacityCo (10'words)

.. o 200
A 400

800

3 Mword RAM

Minimum CI = 0 words

I
140 IOne-levelcase

Co (10.words)

• ,- 200

130
400

................................................ _ _ 800

I120
, , i , [ , _ i _ [ , , i i ] ,

0 1000 2000 3000

Second-levelcapacityCt (10"words)

Figure 3.7 SRW totalexecutiontime vs.second-levelcapacityfora generationconfigurationof

two ephemeral levels.Dashed LinesindicateT_o_,_fora one-levelconfigurationwith the specified

capacity.

w

w

39



C1 increases is similar to that in the one-level case and is also caused by increased paging, but

the rise is less rapid because of the lower frequency (in real time) of Rips of the second level.

("Allocation _ into the second level occurs at a lower rate--and at discrete instants--than into

fu-st level.)

However, unlike in the one-level case, the curves do not exkibit the rapid r/se as C'1 decreases

to zero. Tkis is explained by noting that the frequency of ftrst-level Rips imposes an upper bound

on the frequency of second-level Rips. At C1 -- O, the second level Rips every time the first level

flips, rather than infinitely frequently..

The jaggedness in the curves at larse values of C1 is due to boundary effects, i.e., over the

prod'am execution, the exact number of times that the second-level Rips becomes significant.

3.4 Summary

An analysisof the effectof generationconfigurationin a generation-basedgarbage collector

was conducted. In paxticulax,the effectofthe number ofephemeral levelsand levelcapacitywas

studied. Analytic timing and survivalmodels were used to representthe runtime component

of garbage collectiontime and to derivestructuralresultson the behavior of garbage collection

runtime in the case of a one-levelconfiguration.The survivalmodel provides bounds on the

age of objectssurvivinga garbage collectionat a particularlevel.

Through controlledexperimentswith di_erentgenerationconfigurations,itwas found that

execution time ismost sensitiveto the capacityof the firstlevel.For SRN, the e.xJstenceof a

r'-mgeof optimum valuesfor _rst-levelcapacitydemonstrates t_hepotentialfor the tuning of

garbage collection.The data suggeststhat,as main memory sizeincreases,the optimum range

broadens,i.e.,the choiceofcapacitybecomes lem.critical.

Tltefactorscontributingto suboptimal execution time performance were discussed. For

the one-levelcase,at small capacities,more frequentscanning of the ephemeral root set and

possibledegradation in localitydue to tenured garbage led to increasedmutator page fault

rateand garbage collectorruntime. At largecapacities,the increasedamount of _.locationper

cycle,the increasedamount of objects transportedand scanned per cycle,_ud possibly the

degradation in localitydue to garbage in the ephemeral levelled to am increasedpage fault

rate.
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Chapter 4

= ,

Dynamic Reordering

_J

w

In this chapter, we discuss a memory mLnagement system which integrates garbage collec-

tion mxd dynamic reordering, mad we present a method for measuring the intrinsic effectiveness

of reordering. The method is used in two experiments, one involving system workload and the

other a large application, and the results are discussed.

Dynamic reordering is an attempt to improve locality of reference by reorganizing objects

within pages so as to group together objects which are being actively used. The motivation

for reordering is the following set of empirical observations: (1) object sizes are usually much

smaller than a page, and (2) usually only a small fraction of all accessible objects is accessed

during a given interva/of time. Together these characteristics create the potential for a kind of

fragmentation in which the accessed objects are scattered about many pages. The evaluation

technique we propose quantifies the degree of fragmentation.

The basic idea in reordering, as developed by Courts [7] and originally proposed by White

[26],isto exploitexistinggarbage collectorfunctionalityto correctthe fragmentation problem,

assuming thatitexists.Specifically,the existingcapabilitieswhich are relevantare

• detection of accesses to objects, and

• copying of accessed objects.

Recall that, to garbage collect some specified part of memory, that part is flipped into

oldspace and the read barrier is raised for (or sensitized to) that portion of address space.

When the barrier detects an attempt to reference an object in oldspace, the object is copied.

All possible pointers to objects in oldspace axe then found by scavenging other appropriate

parts of memory. (Basically, scavenging involves reading memory locations sequentially with
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the intention of causing barrier faults.) At the end of scavenging, all reachable objects in

oldspace have been evacuated, and oldspace can be made free for new allocation.

A similar procedure can be used for reordering purposes. We _Jp the part of memory to be

reordered into oldspace and ra/se the read barrier as for garbage collection. However, scavenging

is not performed; we simply allow the mutator to execute normally. In the process, the objects

in ol_psce which are accessed will be copied.

In other words, the same mechanisms used during garbage collectionto determine reacha-

bilityof objects(flippingand read barriersensitization)and to copy them (transporting)can

be appliedduring reorderingto det_e _activeness"ofobjects_d to copy them. Garbage

conectionisinterestedin copying allaccessibleobjects,in the order that scavenging discovers

them. Reordering isinterestedin copying only the subsetof allaccessibleobjectswhich are in

the mutator's working set,in the order thatthey are firstaccessed.

The existenceofcommon mechanisms used by garbage collectionand reorderingsuggeststhe

possibilityand desirab_ty ofan integratedgarbage-collecting/reorderingmemory management

system. We have developed such a system forthe Symbolics computer, which isdescribedin

Section4.3.A similarsystem isthe temporal garbage collector(TGC) developed by Courts [7]

forthe Texas Instruments Explorer Lisp computer.

4.1 Previous Work

Strategiesfor staticreorganizationto improve localityhave been the subject of several

previousinvestigations.Ferrari[9,I0, ii] and Hatfield[13]developed program restructuring

techniquesin staticlanguage systems (FORTRAh;) based on referencetraces. Stsmos [20]

studiedgraph-based algor2tlunmforreorderingsystem objectsin a Smalltalksystem. Andre [IJ

developed many techniquesfor orderingsystem objectsin the SymboUcs Lisp system, based

on metering dynamic referencesand on detailedknowledge of the referencingcharacteristicsof

certaincriticalsystem operations.

The only work on dynamic reorganizationwhich we axe _ware of priorto Courts' garbage

collector[7]and White's proposal [26]isthat of Baer [3]who simulated a memory system in

which pages were dynamically grouped withinlargerunitsofdisk tr_usfer.
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4.2 Issues in an Integrated Memory Management System

Before describing our memory management system in detail, we first discuss the issues facing

such a system and outline the approaches taken.

4.2.1 Simultaneous garbage collection and reordering

In an integratedsystem, it should be possibleto garbage collectsome parts of memory

while simultaaeouslyreorderingother parts.Therefore,itisnecessaryto distinguishbetween

oldspace which isbeing collectedand oldspace which isbeing reordered.Our system, as well

as the TGC, definestwo types ofoldspacecorrespondingto the two possibleusages,calledtrue

oldspaceand reorderingo/gspace.I The memory management system needs to recognizethese

two types ofoldspace and treatthem accordingly.

While garbage collectionand reorderingshare the same mechanisms, the timing of their

associatedevents is different.Garbage collectioninvolvesa definitecontrol sequence--flip,

scavenge, reclaim oldspa£e,wait, flip,.... Reordering begins with a flip,but the ensuing

mutator-induced transportingactionshould be able to continueindefinitelyanti]the next flip

which eitherbeginsanother round ofreorderingorbeginsa normal garbage collectionsequence.

The memory management system needs tobe ableto handle thesedisparatescenarios.

4.2.2 Preserving object order under garbage collection

Although reorderingcan continueindefinitely,eventually,we willwant to garbage collect

memory which isbeing reordered,to reclaimspace taken up l_y-

• any objectsin reorderingoldspaos or copysp_e which have become unreachable, i.e.,

garbage, and

• forwarding pointersin reorderingoldspace,which may or may not be garbage depending

on whether there existpointersto them which have justnot yet been "snapped."

We willalso want to garbage collectbefore saving an image of virtualmemory on disk for

future use, or for releaseto other users. The problem with performing a normal copying

garbage collectionisthat itwilldestroythe order ofobjectsin memory, negating any benefit

ZThe corresponding types are frorn._pace and train.space m the TGC.

43



from reordering,sincethe reachableobjectsare copiedin an order determined only by graph

connectivity(e.g.,depth-_rstorder),without regardto theircurrentplacement.

The approa_ taken by the TGC/s to preserve order appro_mately by defininga new

(horizontal)dimension in the virtualmemory orgs_tization.The verticaldimension represents

_,_nemtions(levels)as before.Within each generation,objectsare divided intoactivitycate-

gories.Essentially,during garbage collection,survivingobjectsin a given activitycategory are

copied together to the next (lessactive)category.Hence, order ismaintained approximately

in the sense that the survivors remain together, although their relative ordering could change.

Since the survivors are added to any existing objects in destination category, a subsequent

g_rbage collection will flip the union of the added and added-to objects. Because of this coa-

lescing, and the few number (four) of activity categories--such that inactive objects eventually

and quickly migrate to the least active category under repeated garbage collectionmany object

_ogetherness" established by reordering can deteriorate over time.

Of course, object togetherness can be re-established by reordering, but it would be desirable

to have a scheme in which togetherness does not deteriorate under repeated garbage collection.
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We propose two non-mutually-exclusive approaches to the problem of preserving order.

4.2.2.1 Preserving togetherness through lineages

The firstapproa_ issimilarin spiritto the TGC. The objectiveisto keep together the

objectswhich have been copiedas a resultof reordering.To thisend, a/ceepbit in the region

tableisset for each copyspace regioni_which isto receiveobjectsto be transported out of

g

reorderingoldspace. This bit indicatesthat, when region__islaterflippedintooldspace for

_4rbage collection,the survivingobjectsmust be copied to theirown unique copyspace region

R S (rather than into a common region with other survivors), and the set state of the keep bit

must be passed on to R I. (The oldspace region R will be reclaimed and its keep bit reset.)

Q

B

Thus, by setting the keep bit for a copyspace region during reorderLug, a Hr_eage is established

for the objects in that region. An object can leave its Lineage only by becoming garbage and

passing from existence, or if it is copied during reordering, in which case, it joins a new lineage.

Objects in a lineage will remain together when garbage collected (although their relative order

could change). A lineage implicitly defines an activity category unique to a set of objects

placed together by reordering. Unlike activity categories in the TGC, there can be any number
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of lineages existing at a time, and there is no coalescing among different lineages except when

explicitly requested (e.g., during compaction, explained below, or when the region table is

almost full due to the existence of many lineages).

4.2.2.2 Preserving exact order through compaction

The second approach, which has no counterpart in the TGC, is an operation called corn-

tx_z_. Essentially, compaction is a garbage collect/on of reordering oldspaee which preserves

object order ezactly,and reclaimsspace taken up by forwarding pointers but not by other

garbage. To do this,reorderingoldspace isflippedinto trueoldspace as ifto starta normal

garbage collection.However, before scavenging,allnon[or_arded objectsin (the now true)

oldspace are transportedin theircurrentmemory order. We callthisoperation bu/k trans-

portation. Scavenging is then performed as usual,but itspurpose now issimply to redirect

outstandingpointersto oldspace;no objectscan possiblybe transportedout of oldspace.

Compaction can optionallyhonor or ignoreLineage.When bulk transportingnonforwarded

objectsout ofan oldspaceregionwhose keep bitisset,the copiesofthe objectscan be placedin

theirown descendant copyspace region,or ina common copyspace region(effectivelycoalescing

lineages).

Since compaction reclaimsspace taken up by forwarding pointersbut not other garbage,

it isideal when reorderingoldspace isknown to have littleor no garbage, e.g.,an area of

memory containingpermanent objects which has been Ripped for reordering,subjected to

some representativeworkload,and now isready to be "set."

Isthere any advantage to preservingexact order rathertha_ just togetherness?Although

we have not had any actualexperiencewith thisidea,one situationin which itwould be useful

to preserve order exactlythrough compaction, is when using dynamic reorderingto induce

sequentialityin the mutator's page referencestring.One scenarioisifitis known that the

mutator referencesobjectsin a cyclicmanner. Another scenarioisifreorderingisintended to

optimize memory in a _productionenvironment,"in which itisknown that the workload used

to effectthe reorderingis very similarifnot identicalto the production workload. In both

cases,reorderingobjectsmay resultin a patternofpage referenceswhich may be amenable to

preferching.
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We have implemented compaction/n our system. However, implementation of togetherness-

preserving garbage collection using the lineage concept as outlined above requires some modifi-

cations to the microcode (which determines the region to which an object will be transported)

to which we did not have access.

4.2,3 Multiple reorderings

Suppose we begin a reorderin 8 of some parr of memory. After some time, due to the buildup

of garbage among the objects in copyspace, or due to shifts in the mutstor working set, the

set of objects in use in copylrpace may become fragmented. It would be desirable to beg_n

a new round of reordering without terminating the current one by a garbage collection (or

compaction), For example, a garbage collection could take a very long time, and we may prefer

to do itonly overnightor on weekends.

The memory management system shouldmake itpossibleto terminatea reorderingand be-

gin a new one,without requiringan interveninggarbage collection,by simply Ripping copyspace

intoreorderingoldspace and allocatinga freshcopyspace to receivethe currentlyused objects.

After thisisdone a number of times,reorderingoldspacewillconsistof regionsbelonging to

differentlineages,which can be visuMized as being ranked in order of time of formation,i.e.,

the time at which the constituentobjectswere placedtogether.At any one time, therecan be

any number of existinglineages.The grauulaxitywith which objectsaxe assigned to lineagesis

controlledsimply by the times at which new reorderingsare begun.
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4.3 System Description

We disc_8 the designof a new memory management system for the SymboUcs Lisp com-

puter,which integratesgarbage collectionwith dynamic reordering,and compaction, an oper-

ation supplementary to reordering(Section4.2.2.2).

Itis usefulto view the garbage collectornot as a monolithic system procedure, but as a

collectionofcomponents, which,when invoked accordingto differentrules,can perform a v'axiety

of objectmanagement tasks,namely, garbage collection,reordering,and compaction. These

components axe now described.The followingpresentationisorientedtowards emphasizing the
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modi_cations or additions made to functions in the existing memory management system, as

developed by Moon [15].

4.3.1 Flipper

The changes to the functions for flipping enable them to handle requests to begin a normal

garbage collection, a Compaction of reordering oldspace, or a reordering. Also, if a comp_tion

requested, the flipping operation performs a bulk transportation of objects in the appropriate

re_ons.

Flipping of ephemeral space (level > 0) is performed by the function

_-FLIP-EPHE_IE_LL-SPA_F.S-NOW which can be given a specification of which ephemeral levels

to flip for ephemeral garbage collect/on, which levels to flip for compaction, and which levels to

flip for reordering.

Flipping of dynamic space (level 0) is performed by GC-FLIP-NOW which can be given a spec-

i/ication of which areas to flip for dynamic garbage collection, which areas to flip for compaction

of reordering oldspace, and which are_ to flip for reordering.

The task of either flipper is to

(1) Determine whether it is permissible to flip. The previous garbage collection or compaction

should have been completed.

(2) l%elabel the regions constituting newspace, copyspace, or reordering oldspace in the re-

quested levels (or areas) as oldspace, setting their reorder bit in the region table accord-

ingly. The reorder bit distinguishes a true oldspace rc_gion from a reordering oldspace

rt_ion.

(3) Raise the read barrier in the processor for all oldspace regions, whether true or reordering

oldspace.

(4) Ifone or more levels(orareas)were flippedforgarbage collection,or compaction, prepare

to scavenge the regionswhich should be scavenged. This involvesprimarilysettingthe

re_ions'respectivescan pointersto eitherzeroor the currentfreepointer.

(5) "Ifone or more levels(or axesz)were Ripped forcompaction, transportallnonforwaxded

objectsin the oldspaceregionsconstitutingthose levels(axeas).
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Table 4.1 Read barrier states.

Scavenging Scavenger
process,

In progress Running

In progress Not running

Not in progress

Read barriershould be raisedfor

True oldspace Reordering oldspace

Yes No

Yes Yes

Nonexistent Yes

g

4.3.2 Scavenger

The changes to the functions for scavenging are

• To lower temporarily the read barrier for reordering oldspace while the scavenger is run-

ning.

• To make itpossibleto scavenge a page or regionin reorderingoldspace.

Scavengingisperformed by thefunctionZGC-SCAVF.JGEand involvesscanning allappropriate

regionsas prepared by the Ripper. The objectiveisto find aJlpointersto true oldspace by

reading memory locationssequentiallyso as to induce read barrierfaults. When a barrier

faultoccurs,the referencedobjectiscopiedifnecessary(by the transporter),and the faulting

pointerisredirectedto the copy. The scavenger'slinearscan through memory isoccasionally

suspended in orderto scavenge the "lastpage" in a copyspace regionwhich has justgrown due

to transportation.This techniqueistoachievean approximately depth-firstcopying order [15].

The firstchange in our system isto "hide" the existenceof reorderingoldspace from the

read barrierduring scavenging. Note that scaven_ug can be performed incrementally,i.e.,

interleavedwith other processes(themutator). While the scavengerisrunning,the read barrier

shouldbe raisedfortrueoldspacebut not reorderingoldspace,i.e.,thebarriershouldbe sensitive

to pointersto true oldspaceonly (Table4.1).Any pointersto reorderingoldspace encountered

during the scan should be ignored--reorderingoldspaceisnot being garbage collected.When

other processesare running, the read barrierfor reorderingoldspace should be raisedso that

the usual faultingof objectsout ofreorderingoldspacecan occur.

In the new system,every time controlpassesto the scavengerprocess,we temporarilylower

the read barrierfor reorderingoldspace.(The barrierremains raisedfor true oldspace.) The

overhead forthism_Lipulation isvery low sincethe scavengerprocessruns fora relativelylong

time beforeaJlowingitselfto be pre-empted.
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The second change m_kes it possible to scavenge reordering oldspsce by "hidins," the pres-

ence of forwarding pointers. This change k essentially a solution to & problem caused by the

exis6ng behavior of one machine instruction. Before expl_g this change, we first note that

pages or regions in reordering oldspace can be part of the memory to be scavenged.

I Ifan ephemeral gerbage collectionisinprogress,thememory to be scanned consistsofthe

ephemeral root set--thepa_es remembered by the GCPT (in-ms/n-memory) and ESItT

(on-d/ek)tables--followedby the portionsof copyspace which appear a_'terthe Rip. It

k posm_ble for a page in reordering oldspace to be paz_ of the root set, e.g., reordering

oldspa_ in an ephemeral level not being garbage collected or in level O.

Ifa dynamic garbage collectionisin progress,the memory to be scanned consistsof all

resionswhich are not in trueoldspace.Ifa dynamic garbage collectionofsome areasisin

progress,itispossibleforreorderingoldspaceregionsin other axe_ to be present.These

regionsmust be scavenged;they could have pointersto trueoldspace.

In principle,scannin_ a pa_e in reorderin_oldspaceisno df_erentfzom scanning a page in

any o_her space,except thatwe can encounterforwardinKpointers.These pointersaxeirrelevant

and shouldhave no e_ectsincetheycannotpointtotrueoldspace.Sca4_Rng a range ofadd.teases

for pointers to oldspace is efficientlyimplemented via the function ZBL/_CK-GC-TRANS!_0RT

which compiles into a sin_e machine instrnc_ion.Un/ortunately,thisinstructionsignalsa_u

error when it detectss forwarding pointer. To avoid the occurrence of thiserror,during

scsvengfng,we searchforforwszdin_pointersand _ ZBLOCK-CtC-TRANSP(_RTonly on _ddress

ranges not conta_zingforwarding pointers.This effectively_]_des"forwaxding pointersfrom

_BLOCK-C.,C-TR_SPORT.

4..3.3 Single-object _ransporter

Transportin_ a singleobjectfrom oldspaceto copyspaceand instal_g forwardin_ pointers

isperformed by the functionTRANSPORT-TRAP. The chan_e introducedhereconcerns _l_elevelto

which a_uobjectiscopied.The destinationlevelisdetermined differentlydepending on whether

_he objectisin _rueor reorder/ngoldsp_ce,i.e.,whether _he objectw_s discovered_ _ resul_

ofg_rbage collectionor _s s resultofreordering.



• If the object is in true oldspace, the destination level is the next older level (or zero if the

object is already at level 0). 2

• If the object is in reordering oldspace, the destination level is the same level.

4.3.4 Bulk transpo_er

AJ explained earlier, compaction of reordering oldapace is done by performing a normal

garbage collection of the reordering oldspace, except that immediately after flipping the con-

stituent r_o_ into true oldspaca, we _nsport all nonforwazded objects therein. The desti-

nation level for copying objects h the same level Bulk transportation of objects is performed

by ZC.,C-TIL_SP0R'I'-EP_-SPACg or %¢.,C-TIL_SP0KT-ARF.A, depending on whether the re-

ordering eldspace is in aa ephemera_ level or in (level 0 of) aa _ea being compacted. These

axe new functions,with no counterpartsin the existing system.
I

4.3.5 Reclaiming oldspace

01dspace reclamation is performed by the function C.,C-ILECL_tIM-0LDSPAC¢. It is run _fter

scavengingis completed, at which time no pointersto true oldspace exist.Its responsibility

is to recladm true oldspace regions by relabeling them a_ free space, thereby maAing them

availableforfutureallocation.The change we introduceissimple: 0nly true oldspace re_ons

axe relabeliedas freespace. Reorderingoldspaceregionsaxe not reclaimed.

4.3.6 Ephemeral root set table maintenance : :

The system keeps trackof the ephemeral root set,i.e.,the pages into which the processor

lma written pointers to ephemeral space, by means of two tables, one for in-main-memory pages

(GCPT), the other foron-diskpages (ESRT). The GCPT consistsof a singlebitforeach page

frame in main memory; the processorsetsthe bit associatedwith a main memory page when

a writeof a_ ephemera_ pointeroccursto the that page. The ESR.T isa spaxse tablewhich is

maintained in cooperationwith the visual memory management system a.sfollows.

_Promotion to the next level is the normal ca_e. The mechanism for implementing the promotion policy for

true oldspace objects Ls a look-up table, specifying, for each ephemera[ level, the destination levei. _ence, other

polities aze easily erTected. For example, _" ephemeral Ievel L could be made %ticky" by _ett/.ng :he destination

level for L to be L.
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When the virtual memory management software ejects a page from main memory, it calls

the function GC-PA_E-0UT for the purpose of maint_g the ESRT. In the existing system,
r

this function checks if the page is in oldspace.

• If the page is in oldspace, any existing ESRT entry for the page is unconditionally deleted,

since oldspace ls not part of the root set and should not be scavenged.

• If the page is not in oldspace, an entry for the page in the ESP_ is created if necessary,

or the existing entry is updated or deleted as appropriate. The appropriate action to take

is determined by scanning the page to see whether it contains any pointers to ephemeral

space. If there are any, the ESRT entry consists of a bit mask indicating the ephemeral

levels referenced by the pointers. If there are no such pointers, any existing ESR.T entry

isdeleted.

WrJ

R

LJ

The change requiredi, the new system isto make the checkdescribedabove more specific.We

check ifthe page isin trt_ oldspace. A page in reorderingoldspace can be part of the root

setforephemeral garbage collection.ItsESI_T entrymust not be unconditionallydeleted,but

must be maintained likethat fora non-oldspacepage.

4.4 Evaluation

One way to evaluatethe effectivenessofreorderingisto compare the time (orpage faults)it

takes to run a workload with and without reordering.Courts [7]used a "system benchmark,"

consistingof a scriptoftypicaluserinteractions(e.g.,editing,compiling),to show reductionin

executiontime by a factorof about fourunder constantmain memory sizedue to reordering.

By experimenting with differentmain memory sizes,he alsoshowed a reductionby a factorof

about two in main memory sizerequiredforconstantexecutiontime.

Clearly,the amount by which reorderingcan reduce execution time (and paging time in

particular)isdependent on main memory size.For example, ifmain memory ismuch larger

than the thresholdat which thrashingbeginstooccur fora particularworkload, reorderingwill

be oflittlebenefitin reducing paging time.

It is not our main intentionin thisthesisto provide similarmeasurements of execution

time or page faults,but ratherto propose a method to evaluatea reorderingin a way that is

i3,_,G;NAI. PAGE IS

OF POO QPJaUTY
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indepen'dent of main memory size. The method measures the reduction in page work/ng set

size. This measurement is more reflective than execution time of the intrinsic potential benefit

from reordering. It can be used, as we show later, for determining which areas in memory are

good candidates for reordering, and which are not. Since the evaluation is not affected by main

memory size, it _ also provide useful information in a situation in which one is developing

an appl/cationor system to be run on other machines. The development machine may have

a large main memory such that reordering has little erect on execution time, but the delivery

machine may have less memory.

The measurement technique, called scanning/or transport statistics, is now described. The

evaluation is analogous to that for me compression, in which the performance of the compression

algorithm is measured by the absolute and relative reduction in file size.

4.4.1 Scanning reordering oldspace for transport statistics

Suppose a reorderingof _ area beginsat time t_i_.For simplicity,azsume that thisisthe

Rrsttime thatthe areaisbeingreordered.(Thisassrnnptionisunnecessaryand willbe removed

shortly.)At some arbitrarytime t_,_> t_i_,we world liketo evaluatethe reorderingthat has

occurred. Let _ be the setof objectsin reorderingoldspacewhich have been accessed during

the interv_ (t_i_,t_.i).These objectswillhave been transportedto copyspace, a_udforwading

pointerswillhave been installedin theirformer locationsin reorderingoldsp_,ce(Fi_,.re4.1).

Definethe followingsets:

,I_ Set of pa_es in reorderingoldspaceconing

_o, Set ofpages in copyspace containing

Thus, overthe interval(t_ip,t_), @ isthepart/a]oI_ecttsorI_ngset._Paxtial"refersto the

fa_tthat _ isa subsetof the fun objectworking set,i.e.,allobjectsaccessedduring (t_#,t_.l).

Itisthe subsetthat we happen to know about becauseof the objectfaulting_ction.Sin_larly,

wot_ and _cop7 are partialpage worI_nq sets.They are disjoint,nonexhaustive subsetsof the

fullpage working set.Henceforth,by _working set,"we willmean partialworking set.

By sc_g reorderingoldsp_ce at tn_#,lookingforobjectswhich h_ve been forwarded to

copyspace, we c_n obtain inone pass the followingtransportstatistics:

PAGo_ = Ic#o_I Number of pages in reorderingoldspace containing

WOR Total sizeof _ in words
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Figure 4.1 Example evaluationof reorderingperformance.
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Other data can also be collected during the pass, such as would enable us to characterize the

distribution of object sizes. However, only the above is essential. We then compute

PAa ,, [ WOR ]
| PA GESIZE |

A = PAGoi_ - PAG_,_v

A
p =

PA G oi_

Number of pages in copyspace containing _P

Reduction in page working set size

Page working set compression ratio

where PAGESIZE is the size of a page in words and Izl denotes the number of elements in a

set z. For the SymboHcs Lisp computer, PAGESIZE = 256.

4.4.2 The density and working set reduction measures

The compression ratio p is the relative reduction in working set size due to reordering. It

also measures the fragmentation of the objects in _P. To see this, note that, ignoring the ceiling

operator,

PAG_o_y = WOR (4.1)
1 - p = PAG._ PAGo_d • PAGESIZE

which is the density with which the objects axe packed into pages. A value of p _ 1 implies

that the objects axe densely packed, while p _ 1 implies that the they are scattered over many

pages,intermixed with much garbage or with accessiblebut unused objects.

To be precise,the "pages saved" measure A should be defineda_ the reductionin working

setsizeover the interval(t_i_,teva)which would have been realizedhad the objectsin _Pbeen

compactly laidout in virtualmemory at time t/_i_.

This hypotheticalsavingsA willindeed be realizedifregrderingis intended to optimize

memory in a "production environment." This usage is analogous to the use of program re-

structuring techniques in static systems (e.g., Hatfield [.13] and Ferrari [11]). In this usage, a

terminating compaction operation is performed, reordering oldspace is reclaimed, and the new

layout is subjected to similar workload. SLm£1axJty between the workload used to effect the re-

ordering and the "production" workload requires only similarity in the set of objects referenced,

not in the sequence of references.

When reordering is used in a more dynamic sense, i.e., to continually tailor object layout to

usage characteristics, A provides an approximate measure of the savings. _ this usage, we are

interested in performance as reordering occurs, rather than during a future "production run."

By the strict definition of a working set [8], namely, the set of unique pages accessed during
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a specified interval, the working set size over (t/l_p, te,,i) is actu_y larger than it would have

been had reordering not been initiated at t_ip. Without reordering, only PAGoI_ pages would

have been accessed; with reordering, an additional PAG_,_y pages axe accessed since the active

objects have to be copied. It would appear that reordering has actually degraded locality!

To understand this paradox, note that the period during which a round of reordering takes

place willusuallybe very long. During thisinterval,an attempt to referencean object 0 in

reorderingoldsp_e willcreatea copy 0 _of the objecZin copyspace.After transportation,the

oldspa_.eversionO, and thereforethe p.ageon which itresides,willagain be touched ifthere

existother pointersto itand ifthose pointersare exercised(and, as a result,permanently

redirected).Clark [6]has shown that,most ofthe time,thereisonly one pointerto an object.

Thus, due to thisconnectivityproperty ofthe objectgraph, the probabilitythat O willbe

rereferencedislow. Due to the long durationof a reorderinginterval,the probabilitythat O'

willbe rereferencedishigh. It isthereforereasonableto expect that the average working set

sizeover an arbitrary8ubintersalof (t_, t_,l)willbe smalleras a resultof reordering,w/th

the decreasefrom the un.reorderedcasebeing approximately given by, or at leastproportional

to,A. We adopt thisinterpretationof& and presentsome experimentalresultsconsistentwith

it(Section4.5_2),but suggestforfuturework thatactualtracesofobjectreferencesbe analyzed

to verifyit.An object-levelsimulationsystem such as developed by Zorn [31]would be useful

in thisregard.

w

w

L_

w

4.4.3 Computation vs. measurement of number of copyspace pages

As an alternativeto computing PAGco_, = [WOR/PAGES[ZE_ as shown above, itmay

alsobe possibleto measure iteasily.During the interval(t_, t,,_),ifthere is no reason

for growth in copyspaco otherthan transportationof objectsf_m reorderingoldsp_e, we can

simplynote the increaseinthe number ofpages ofcopyspace.The measured v_ue should equal

the computed valueexactly.

However, in general,therecould be other reasonsforexpansion ofa copyspace re_ion,most

plausibly,objectssurvivinga garbage collectionofa higher(younger)ephemeral level_nd being

copied to the levelbeing reordered._ In thiscase,the computed PAG:o_ should be interpreted

_Another possibilityi_ a Lisp system which does not have separate newspa_:e and copyspace, but simply

allocatesnew objects in the same space as objects copied from oldsp_e.
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as the theoretical minimum number of copyspace pages needed to contain _'. The actual number

of pages could be greater due to objects copied during garbage collection being interspersed

With the objects in _,

In using the computed (theoretical minimum) PAG_,_, to derive the A and p metrics, we

are evaluating the "intrinsic" effectiveness of reordering, independent of whether there are any

sources of input to copyspace other than reordering oldepace.

If it k desired to evaluate the actm_ rather than intrinsic benefit from reordering when

copyspace is being simultaneously apolluted" from another source, an inexpensive way to mea-

sure the actual number of copyspace pages cont_g _ is as follows. Modify the single-object

transporter to maintain a count of copyspace pages receiving objects from reordering oldspace.

This will require storage, on a per-region basis, for a counter and for the virtual page number

of the _last page marked."

4.4.4 Generalization to multiple reorderings

As defined above, the method of scanning for transport statisticsdoes not require the

assumption that we are reorderingan axea(or ephemeral level)forthe firsttime. In general,a

reorderingof an area can be initiatedmore than once beforegarbage collectingor compacting

it.

Suppose reorderinghas been initia,ted at timest_ipl,t_i_,••.,t_i_Nwithout any intervening

T_rbage collectionor compaction, where t_i_#isthe time at which the most recentreordering

began. W'hen scanning reorderingoldspace for transportstatisticsat re,61> t_ipN,we can

encounterobjectswhich areforwarded severaltimeswithinreorderingoldspace beforepossibly

being forwarded to copyspace.

During the scan,we make an objectcontributetowards PAGotd and WOR only ifthe object

isforwarded directlyto copyspace. The setofsuch objectsispreciselythe set@ ofobjectswhich

have been accessedduringthe most recentlyinitiatedreorderinginterval,(t/ripN,te_t).In other

words,at evaluationtime,we axeinterestedonly inthe lastlinkina chain offorwarded objects

terminatingin copyspace. The statisticsso obtained willbe an evaluationof the most recently

initiatedreorderinginterval.
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4.4.5 Parsing oldspace

Scanning oldsp_ce (reordering as well as true oldspace--see Section 4.4.6) to collect trans-

port statistics involves _parsing" memory to determ£ue object boundaries, i.e., starting ad-

dresses and sizes. This parsing is complicated by the presence of forwarding pointers. In

part|eular, the problem of noninva,ianee of object representation with respect to forwarding

arises We describe this problem and the solution adopted.

Objects in memory are self-identifying by virtue of the tagged architecture and the Lisp

system's conventions for representing objects [16]. Hence, it is easy to determine the virtual

memory extent of a nonforwarded object given any address in its representation. This simple

determination is done by the single-object transporter when called to evacuate a previously

untransported object in oldspace, and by the bulk transporter (Section 4.3.4) wkile evacuating

all untransported objects in oldspace.

However, when scanning oldspace for transport statistics, we axe interested only in the

objects forwarded to copyspace. In particular, we would like to know about a forwarded object

as it existed just be/ore forwarding. A problem arises because, when an object is forwarded,

its existing representation is overwritten with forwarding pointers. At scanning time, only the

new representation can be exa_nined for size and other information, and the new representation

can be different from the pretransport one.

The nature of the possible difference depends on whether the object is a list object or a

structure object. Lists are built from list cells, also catled cons cells or simply conses. Structure

objectsreferto allother types of data (e.g.,arrays,symbols, .compiledfunctions)which are

representedby a header word followedby one or more words of information. Structuresand

listsare storedin separateregions.Given a particularregionof oldspace to be scanned, the

parsingalgorithm appropriateforthe region'stype isapplied.

4.4.5.1 Noninvariance of structure size across forwarding

Immediately aftera structureobjectistransported,the sizesof the oldspace and copyspace

representationsare equal,of course,l_0wever,inorder to support such Common Lisplanguage

features_ adjustableaxrays[21],an objectmay grow in place or,iftb_isisnot possible,the

system may forward an object to a new and largerrepresentation.Because of the possibility

L .

L_r_
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of in-placeexpansion of an object,and of forwardingwhen an objectcannot expand in place,

the sizeof an object beforeforwardingisnot necessarilythe sizeof the object to which itis

forwarded. That is,the sizeof a structureobjectis usually,but not always, invariantwith.

respectto forwarding.

To correctlydetermine objectboundaries in structureoldspace,we use an algorithm that

_looksaheadn by one objectand resortsto a lessefficientword-by-word scan in the rareevent

that a sizediscrepancyisdetected.

This algorithmmaintainsa scan poin.terP which alwayspointsto the firstword ofan object

whose sizeis as yet unknown. Call thisobject O. IfO isnot forwarded, itssizeS iseasily

determined from system conventions,and the scan pointerisIncremented by the size.IfO has

been forwarded, the chain of forwarding pointersisfollowedto the real(unforwarded) object

O _,whose sizeSpisthen determined. In the vastmajority ofcases,S_isthe correctamount by

which to increment the scan pointer.However, ifa sizechange has occurred over any linkin

the forwarding chain,itwould be erroneoustouse 3"_as the sizeofO. We detectthe occurrence

of a sizechange by checking whether P + S_containsthe startof an object (afterfollowing

any forwarding pointers).Ifso, SFisaccepted an the sizeof (9. Otherwise, a word-by-word

searchbe_nning with locationP + 1 ismade forthe firstlocationP_-n which contains (or is

forwarded to)the startof an object.The sizeof 0 isthen P_ - P.

4.4.5.2 Non-invariance of listrepresentation across forwarding

For lists,the differencebetween oldspaceand copyspace representationsarisesfrom the use

of cdr-codingto make more e_cient use of memory. In a Lisp system which does not use cdr-

coding,the sizeof a cons isalways two words---oneeach forthe car and c.dr--andthereisno

possibilityof thissizeever changing.In a cdr-codingsystem,some conses may be represented

normally (two words) whileothersmay be cdr-coded(one word forthe car,with the cdr being

_pHat).

Transformations on the representationof listscan occur at any time due co the use of the

RPLACI)functionand during transportation.When RPLACD isperformed on a cdr-coded cons,

the con, must be forwarded to a normal cons.

The transporter(both sing/e-objectand bulk) can _lsochange listrepresent&tion.Trans-

porting_ normal cons out ofoldspace isstraightforward;the two words are simply copied and
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thereisno change. However, when transportinga cdr-codedcons Ci, therearetwo approaches.

One isto createa normal cons incopyspace. Doing so eventuallyconvertsallaccessibleliststo

unencoded form. The other approach, which istaken in the Symbolics system, isto preserve

the calf-codingby transportin8 the calf-codedsegment surrounding C'I,where the segment is

terminated eitherby the end of the listor by an RPLACD-forwardin8 pointer. Ifthe segment

k terminated by an RPLAClY-forwardingpointer(to a normal co_ C2), then the copy of the

segment willbe differentin one of two ways:

(1) The forw_din_ pointerto 6'2willbe replacedby 6"2it's_f,i.e.,6'2isalsotransportedand

_attacAed to the segment. In thiscase,the copy ofthe segment willbe one word larger.

(2) The forwarding pointerto C2 and the cdr-coded co_ precedingitare converted into a

I].orlnalco_.

Similar to the structureparsing algorithm, the a_goritkm for parsing listoldspace uses

knowledge of the possiblechanges in representationthat can occur as described above and

performs any necessaryUlookahead" teststoinferthe changes thathave occurred and correctly

maintain transportstatistics.

4.4.6 Application to true oldspace

Finally,itisshouldbe noted thatthe techniqueofscanning reorderingoidspacefortransport

statistics,which we use to quantifythe locality-improvingeffectof reordering_increasingthe

densityof activeobjects---canalsobe used without modificationforanother purpose. We can

and have appliedthe same scanningprocedure on trueoldspace,afterscavenging iscompleted

but beforeoldspaceisreclaimed,toquantifythelocality-improvingeffectofgarbage collection_

increasingthe densityof reachableobjects.

4.5 Experimental Results

The method discussedabove to measure the effectof reorderingwas applied to system

workload and to the SRN program.
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4.5.1 System workload

The firstworkload consideredwas an interactivesession.The sessionlastedseveralhours

and involved editingfries,compiling,reading mail, issuingmany Command Processor com-

mands, and exercisingmany interactiveutilities,such as the File System Editor, Document

Ezaminer , Flavor F,zaminer , Inspector, Terminal, Peek, Namespace Editor, Notifications, a_ d

so on. Basically,thisworkload consistsof "system" programs ratherthan user applications.

The partsofmemory consideredforreorderingconsistedoflevel0 ofWORKING-STORAGE-AREA

and 20 other selectedareas,totallingabout 65% of the totalinitialvirtualmemory usage. The

areas not consideredincluded small areas (lessthan about 10,000 words) and un_eorderable

areas,e.g.,areas containing stacks,non-Lisp-objects,and areas specificallyprevented from

being flipped.An important area not consideredforreorderingwas C01@ILED-FUNCTION-AREA,

sinceAndre found that the beststrategywas to preserve(or,aftermany redefinitions,restore)

source-fileorderingofcompiled functionobjects[1].This conclusionissimilarto thatof Ferrari

[9]fora staticlanguage system.

Sincethe selectedareaswere flippedforreorderingat the staxtofthe session,we referto the

objectscontained thereinas pre-ezisting,to distinguishthem from objectscreatedduring the

session.In most of theseareas,among the preexistingobjects,thereisvery littleor no garbage

sincethey consistprimarilyof system objectspresentin virtualmemory when the system is

booted. Because ofthe low percentageof garbage,itismainly through reorderingratherthan

garbage coUectionthat we can hope to improve loca2ityamong theseobjects.

Tables 4.2-4.5presenttransportstatisticstaken at the end of the interactivesession.Ta-

ble 4.2 shows, foreach area,

• the size of reordering oldspace;

• the tot_ size of the objects accessed during the session, expressed in number of words

(WOR) and as a percentage of reordering oldspace;

• the number of oldspace pages (PAGotd) and copyspxce pages (PAG¢opy) occupied by the

objects accessed during the session; a_ud

• the reduction in working set size (A), and the compression ratio (p).

The areas axe ranked in order of decreasing A.
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Table 4.2 Transport statistics for pre-existing objects under system workload.
....... ,_ ........... .......... , ,,,

............ objectsPre-existing objecta [ All
in axea FHpped Accessed Percent PAGoij PAG_vv A p

(words) (words)a,cce_.. (p.ases) (pag.m) (pages) (percent)
*FLAVOR-AE_A*

gOEKIIG-STORAGE-EEEA

P|JLqE-LE_A

DE_UG-IIlFO-kEEA

P_0PERTT-LIST-EkEt

*_O-CMJ.S -DAT_A SE-kEEA*

*SAGE-COI(PLETIOII-_EEJk*

9AT_IkRE-kEE_

P_-STORAGE-kP_FA

EDXTOR-LI]E-kR2A

*PERS_TATIO|-A_A*

*PRESEFTA TIO]r- TTPE- AR.EA.*
*|M_SPA_-0B JEL_-_A*

*BAIDLER-D Y]IL_IC-kkFA*

SHEET-kREA

*_LF_-TABLE- L_A*

_ITOE-_E-MtEt

*FOFr-_A*

DISK-_",RAY-EREA

SIT-LUAY-_.A

1846875 315199 17.1

1544846 255215 16.5

487163 9481 1.9
1113525 61775 5.5

174742 13568 7.8

100287 23609 23.5

171894 98765 57.5

438160 86206 19.7

32244 12383 38.4

521039 110430 21.2

222889 3553 1.6

15416 7093 46.0
12883 5395 41.9

118249 89763 75.9

41354 12514 30.3

11198 5780 51.6

20590 12948 62.9

56919 17955 31.5

375300 347032 92.6

74786 42412 56.7

498651 402052 80.6

2131 1233 898 42.1 •

1544 998 546 35.4 II
561 38 523 93.2

I

607 242 365 60.1
324 53 271 83.6

282 93 189 67.0

575 387 188 32.7 |

508 338 170 33.5 •

I01 49 52 51.5 •

481 432 49 10.2 l

47 15 32 68.1
57 28 29 50.9 m
50 22 28 56.0 mm

373 352 21 5.6 I

70 50 20 28.6 m

41 23 18 43.9 •

66 52 14 21.2 m

84 71 13 15.5 1
1366 1356 I0 0.7

171 166 5 2.9

1575 1571 4 0.3

Total 7879010 1933128 24.5 11014 7569 3445 31.3 •
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Tabhe 4.3 Transport statistics for p're-ex_ting structure objects under system workload.

_g o_
hl _zea

*FLtVOIt-_.UA*

kq)B.IETG- STO1U,GE- tgF_

Pl_-iltgI
DI_BUG-I]"FU-LB,I_

PB.OPK_.TY-L_ST-LR._
*WHO-CLLLS-DI, T_B_tSE- LP,XA*

*SIGE-CDMPLETI01-AEEA*

PATHILME-tEE_

PERXXlEIT- STOEtGE-tEEt

EDITUR-LIIE-tEEt

*PK_rftT!Ol-tR_*

*PRKSEIITAT_ OI-TTPE- iXKA*

*ltMZSPACE-OB JECT-tARt*

*_J_LEIt-DYI_IC- fREt*

_T-tRKt
*_JJtDL_-TABL£-tREA*

EDITOE-NODE-tAEA

*FOIT-tRRt*

PgG-L_A

DISX-tEEtY-EEEt

BIT-t..ty-MtE£

Total

StruetureJ

PA G ola PA G covv A pFlipped Access_ Percent

(,,o,_,) (,,.ora,).._=_d
1266200 283690 22.4
1411164 260756 17.8
487163 9481 1.9
115303 42439 36.8

49098 19515 39.7

108474 65283 60.2
372659 85304 22.9l

10447 812i 77.7

482130 104402 21.7]

215815 3517 1.6

15416 7093 46.0

4531 2229 49.2

107318 89147 83.1

39604 12326 31.1

12070 12070 I00.0

56919 17955 31.5

374598 346869 92.6

74788 42412 56.7

498651 402052 80.6

570_ 1804_1

1551 1109 44228.5•
1487 980 477327 []
561 38 523 93.2
205 166 39 19.0|

88 77

401 256

476 334

37 32

450 408

46 14

57 28

18 9

359 349

63 49

48 48

84 71

1362 1355

171 166

1575 I571

11 12.5 I

145 36.2 •
142 29.8 l

5 13.5 I

42 9.3

32 69.6

29 5o.om
9 50.0 []

i0 2.8

14 22.2 |

0 0.0

13 15.5 1
7 0.5

5 2.9

4 0.3

31.6 9009 7060 1949 21.6 m
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Table 4.4 Transport statistics for pre-existing list objects under system workload.

Pre-eadethg objecta Lists

in area Flipped Acce_a.d Percent PAGoid PAGcopv A p

,(words) (words)accessed (pages) (pages) (pa_es) (percent)
*FLAVOR-_.EA*

WOIULTIQ-STOKAGE-_
PI/J_-_/.I

DUUG-ITF0-_/_k

P_PEELTT-KIST-_J_

*_a-c4zJ.S-DAT4_ASE-_EA,

*$AGE-COMPLETI 0l-Lg_k*

PATEIM4E-AEEA

PERR4EEF?- ST01U GE-/_EFA

EDITDR-LI_E-hAE£

*PRESE_TATI01-AREA*

*PKESEITATIOI-TTPE- t_2_,

*|Mq_SPA_-OB JECT-AR£A*

*EEWDLE_-DYWAMI C-M_EJL*

SEEET-ARE_

*BMrDLER-TJ_LE-LEEA*

EDITOR-EQDE-_Jk

,F01T-kS£A*

PKG-kIKA

DISK-AE_JEY-ERE£

BZT-AEE&Y-ARE&

580675 31509

133682 4459

998222 19336 1.9

174742 13568 7.8

51189 4094 8.0

63420 33482 52.8

65501 902 1.4

21797 4262 19.6

38909 5028 15.5

7074 36 0.5

8352 3166 37.9

10931 616 5.6

1750 I88 I0.7

11198 5780 51.6

8520 878 10.3

702 163 23.2

124 456 78.6

18 69 79.3

5.4 580

3.3 87

402

324

194

174

32

64

31

i

32

14

7

41

18

4

 0o5

76 326 81.1

53 271 83.5

16 178 gi.8 i

131 43 24.7 |

4 28 87.5

17 47 73.4 l
24 7 22.6 |

I 0 0.0

13 19 59.4 mm

3 11 78.6
1 6 85.7

23 18 43.9

4 14 77.8 '_I_

3 75.0

Total '2176664 128487 5.9 509 1496 74.6
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Table 4.5 Other tra_port st_Cics for pre-existing objects under system workload.

Pre-existing objects
in area Count

*gr.._V0R-kggk* 3716
h'0RKZ]iCr--STOILAGE-AggA. 6594
elrz._-Aggz 2085
DKBUG-ZIF0-LP..gl, 109
PB,QP KP.TY-LZ ST- AB,SA

*I/IIO-C_.LS-D,T_ASE- JLI_* 24 I i 8437
*SAGE-¢0I@_'rZ0]I-_* 6784 2 10993

PAI"mI_IE-kIL_ 1128 2 42887
PRgJSA,IgFI'- STOR£ GE- J,RgA 602 1 4005

EDITOIL-LI_E-AEFA 4224 11 123

i *PgRSgliTATI01- Aggl* 428 3 130

,PltgsgrrAT101-TTPE-kggI* 173 41 41
*ICl(ESPACE-OBJECT-_EE4* 332 2 17

!*BJLIrDLFA-D YI4M IC- APSE4* 166 ? 20437

SHEET-AAFA 168 5 186
.K_rDLEI-TABLE-AEEI.

EDITOR-10DE-MtE_ 710 17 17
*F01T-*_..I* 106 5 1389
PKG-_EA 143 1 33058
DISK-/Jt_AY-LqEA 68 15 1165
BIT-_¥-M_EA 21 749 25439

27581 I 42887Total

Structures Lists

Mia size Max size Mean size Std. dev. Normal

(wor ) co. 
1 3095 76.3 309.9 90
1 10404 38.0 327.9 777
2 16 4.5 2.2
2 41568 389.3 3980.7 73

226
813.1 1845.2 2013

9.6 182.0 70
75.6 1348.21 ii

13.5 163.0 92
24.7 15.4 0

8.2 10.4 18

41.0 0.0

6.7 4.1

537.0 2413.7

73.4 57.3

17.0 0.0
169.4 177.2

2425.7 5112.6
623.7 547.4

19145.3 lOO5O.1
S5.4 860.8
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The resultsshow that,formany areas,only a smallfractionofallreachableobjectswas refer-

enced:of the totalamount flippedintooldspace,only24% was transported.However, the frac-

tiontransportedv'_a-iedconsiderablyamong the differentareas.For example, in PNA_-MtF._,

which containsthe printnames (strings)ofsymbois,only2% was transported,whileinPKG-_F_A,

which primarilycontainspaclm_e objects,92% was transported.

Reordering resultedin a reductionof working setsizeby 31%. However, thispercentage is

biasedupward by a few _bad_ areas.Significantreductionsin working setsizewere achievedin

almost allareas.In PNA_-ARF_, the 93% reductionisparticularlydramatic,and indicateshigh

fra_nentstion among symbol printnames. However, thereare fiveareas with p _< 10% and

which are thereforeunsuitableforreordering.4 (The specificreasonswillbe discussedshortly.)

Ifwe remove these five areas from the analysis,the overallfractionof oldspace transported

drops from 24% to 15%, and the compression ratiorisesfrom 31% to 48%. That is,over the

areas which are reasonable candidatesfor reordering,_ decrease in the working set sizeby

one-halfwas realized.

The next two tables,Tables 4.3 and 4.4,presentthe same information as the first,but

broken down intostructureand listobjects.

For most areas,as wellas overall,listobjectsare more fragmented than structureobjects.

Over M1 the areas,the compression ratiop forlistswas 75% while forstructuresitwas 22%.

However, the absolute reduction A in working set sizedue to reorderingof structureswas

greater(1949 pages) than that due to reorderingof lists(1496 pages) because of the much

largernumber of structurepages referenced.

The differencebetween structureand listobjectsin the effectivenessof reorderingsug-

gests that the memory management system should be capable of reordering only the re-

gions of an area containinglists.Currently,our system does not distinguishbetween list

_ud structureregions_ud _Jps both types when requestedto reordera.uarea (or ephemeral

level).Good examples for which such a i_exibilitywould be usefulare DEBUG-INF0-AREA and

*_0'CALLS-DATABASE-ARF._*. In theseareas,reorderin_listsyieldssignificantbenefit,while

reorderin_structuresyieldslittlebenefitbut has significantcost (as measured by the number

of words transported)and isthereforeundesirable.Note that selectively_ipping listor struc-

_T]le areas are EDITOR-LI_E-_2.FA, ,,HA//DLER-D_AMIC-AREA-, PRO-AREA, DISR-A_h_/Y-ARE/, _nd

BIT-ARRAY- _EA.
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tare regions of an area applies not only to reordering but to garbage collection as well. As in

generation-based garbage collection, the underlying theme is that of improving ef_c/ency by

expending memory management effort only on selected portions of virtual memory.

Table 4.5 shows other statistics on the objects accessed during the interactive session. For

structure objects, the distribution of object size is indicated. For list objects, the number of

normally coded coase8 is shown.

The size distribution for structures is helpful in understanding the reordering results of the

various areas. Four of the five _bad" areas mentioned earl/er (p < 10%) are seen to have mean

structure sizes much larger than the size of a page (256 words). This is also true for the two

areas DEBUG-INF0-AREA and *WH0oCALLS-DATABASE-AREA* mentioned as good candidates for

1/st reordering but not structure reordering. For these areas, the potential for fragmentatlon,

which is predicated on objects being smaller than a page, is therefore greatly _shed. The

Fu_th _bad" area, EDITOR-LINE-AREA, has small objects (a mean of 25 words), but is apparently

not fragmented. This behaviorisexplainedby notingthat thisarea containsthe textofeditor

buffers,and the objects(strings)are alreadywell-ordered(sequentially)in memory.

4.5.2 5RW program

The effectivenessof reorderingwas alsomeasured while running the SRW program. The

same 21 areasas in the system workload experiment were flippedforreorderingat the startof

execution;theseareascontain the preexistingobjects.

However, we alsoconsideredthe objectscreatedin WORKING-STORAGE-_q_EA during execu-

tion. These objects are normally createdin the ephemeral part of WORKING-STORAGE-AREA.

Assundng that WORKING-STORAGE-AREA isconfiguredto have two ephemeral levels,one way to

evaluate reorderingperformance for (some of) these objectsisto initiatea reorderingof the

second levelat some arbitrarytime intothe execution.

Instead,a more systematicapproach was taken.We group the objectscreated during each

well-definedphase of execution and reorderthe groups separately.In general,thismethod

makes itpossibleto relateany interestingresultsto the phase of execution.The grouping was

done as follows.

The SRW program goes through six phases, called Load, Filei, ..., FileS. The _rst phase con-

sists of loading the program into virtual memory and performing any initializations; the remain-
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Lug five phases correspond to processing each of five input data Files. WORKING-STORAGE-AREA

was configared to have 6 + 2 ephemeral levels, with the lower six levels reserved for the objects

from each phase, and with the highest two levels serving as the normal %creening levels." The

lower of these screening levels was made to be "sticky" so that any objects surviving a garbage

collection of this level would remain at the level. All levels were initially empty, havin 8 been

garbage collected before startin 8 the application, with surviving objects being transported to

level 0 (and therefore contributing to the population of pre-existing objects).

During execution, the screening levels were garbage collected as usual at some reasonable

frequency, but at the end of phase i, both screening levels were garbage collected, with surviving

objects being transported to the level reserved for phase i. That reserved level was then

immediately flipped for reordering. 5

The measurements taken at the end of the last phase (and of the program) are presented

in Tables 4.6-4.9 for the pre-existing objects and in Tables 4.I0-4.13 for the objects created

dur/ng execution.

In general, the results for SlW are _ir_lar to tJ_ose for the system workload, and even more

striking. The application references a far smaller percentage of the accessible objects, and the

objects referenced are more _dely scattered among pages. For the pre-existing objects, over

all areas, only 7% of all memory flipped into reordering oldspace was accessed (Table 4.6).

The compression ratio ar.hieved was 43%. Several areas were completely untouched, since the

application did not involve the use of the editor, windowing system, or Document Ezaminer.

As expected, because they contain large objects, the areas which were unsuitable for reordering

under the system workload remained unsuitable for the same reason. Discounting their e_ect,

the remaining areashave p = 58%.

As in the system workload,l_tswere more fragmented than structures,but the reductionin

working set sizedue to structureswas _reaCerbecause of the largernumber of structurepages

referenced(Tables4.7 and 4.8).For lists,A = 890 pages and p = 88.4%, while forstructures,

SAn alternativeto copying the objectswhich survive_ particul_rphase into• unique ephemeral [erelin

NORKING-STORAGZ-AREA, k to copy them to zbunique (nonephemeral)ares. This alternstivewillnesate the

pcelibilityofl_terg_b_e collectingthem ei_cient|yusingthe ephemeral g_rbageco[lector.However, itmay

be the betteralternativeifthe objects_re long-livedanyway, and ifmalnt_d-_nglargepopulationsin many

ephemerallevelsresultsin_ la_rgenumber ofinter-|evelpointers_ancl_ correspondingincreaseinthesizeofthe

ephemeral rootsettz_bles,and degradationinephemeralg_rbagecollectorpefforma_uce.
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Table 4.6 Tra_port statistics for pre-ex/sting objects under SRW.

Pre-ex/st/ng ob_ect_ All objects
in Lrea Flipped Accessed Percent PAG.I_ PAG_pv A p

(,,o.d.) (pe,cent)
NORKIWG-STORAGE-AREA

P|ANE-_.EA

,_r_o-CALLS-DATABASE-_REA*

,FL4VOR-AREA,

D]_,UG-- Z]I'FO-4_d_,

PRQPERTY-LIST-AREA

PAT_I_-AREA

*I_PACX-OBJECT-kREA*

P_-STURAGE-AREA

PKG-LRE_

,RAIDLER-DY_AXZ C-AREA*

*PRESEFYATZOI-LREA*

*PRF._ENTATZ 0If-TYPE-AREA *

*ILk_LF._-TABLE- M_A*

SHP.BT-ARE_

*FOrr-kREA*

DISK-/RRAY-/REA

*SAGE-COMPLETI0|-EREA*

EDITOR-LI_E-AREA

BIT-ERRAY-AREA

2796059 172676 6.2

577180 7353 1.3
162883 28385 17.4J

2093542 57211 2.7

1583483 43055 2.7

218901 1817 0.8

649074 54388 8.4
18275 5368 29.4
40475 1355 3.3
600872 250566 41.7
134557 37052 27.5

438659 1087 0.2
15539 2378 15.3
11332 1433 12.6
39360 1421 3.6

73150 3148 4.3
74786 33225 44.4

200320 0 0.0
4809 0 0.0

430730 0 0.0

1607 676 931 57.9 BB
300 29 271 90.3 '_

[

345 112 233 67.5 BB
436 225 211 48.4 im
279 169 110 39.4 •
116 8 108 93.1
256 213 43 16.8

61 22 39 63.9 il
40 7 33 82.5

1006 980 26 2.6
170 146 24 14.1
23 5 18 78.3
28 I0 18 64.3
20 6 14 70.0

16 7 9 56.3

18 13 5 27.8 B
134 130 4 3.0

0 0 0 -

0 0 0

0 0 0

TO_ i01_986 701918 6.9 _55 2758 2097 43.2 m
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Tab|e 4.7 Transport statistics for pre-existing structure objects under SRW.

Pre-ex/sting objects Structua'es

in _rea Flipped Accessed Percent PAGoIj PAG,ot, v A p

(words) (words)a_:cessed (pages)(pages) (pages) (percent)
2281090161812 7.1 1304 633 67151.5

P|ANE-AEEt

*_0-C_.LS -DATABASE-AREAe

*FLAV0R-AEEA*

DEBUG-IFFO-MI.Et

PROPE_TT-LIST-EEEA

PATnA/rE-AREA

*|LtlESPACE-OB JECT-AREA*
P_-STOEAGE-Mt?_

PKG-AREA

*HL_LEE-D Y_AMI C-LEF,A*

*PRESEFrATI01t-ARE/t*

*PRESErTITX 0N-TYPE- AREA*

*_tlDLER-TABLE-MtEt*
S_T-AREA

*F0IT-LREA*

DISK-LP,RAY-_LEA

*SAGE-COMPLETI 0|-LREA*

EDITOR-LI_E-LP.F._

BIT-ARRAY-AREA

Total

577180 7353 1.3

85707 25526 29.8

1329596 52315 3.9

135652 41572 30.6

549509 54258 9.9

6178 2481 40.2
14200 60 0.4

599166 250380 41.8

125325 36985 29.5

418657 1087 0.3

15539 2378 15.3

37688 1393 3.7

73150 3148 4.3

74786 33225 44.4

113328 0 0.0

4809 0 0.0

430730 0 0.0

6872290 673973 9.8

J
300 29 271 90.3
107 I00 7 6.5

319 205 114 35.7

164 163 1 0.6

242 212

24 I0

8 I

999 979

164 145

23 5

28 10

14 6

18 13

134 130

•0. 0

0 0

0 0

3848 2641

30 12.4 1

14 58.3 mm

7 87.5
20 2.0 i

19 Ii.6 1

18 78.3 ,_
18 64.3

8 57.1 mm

5 27.8 ]l
4 3.0

0

0

0

1207 31.4 •
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Table 4.8 Trs_sport statistics for pre-existing list objects under SEW.

_=.

Pre-ex_/ng objects
in azes Flipped Accessed Percent

514969 10864 2.1

77176 2859 3.7

763946 4896 0.6

1447831 1483 0.i

218901 1817 0.8

99565 130 0.1
12097 2887 23.9

26275 1295 4.9

1706 186 10.9

9232 67 0.7

20002 0 0.0

11332 1433 12.6

1672 28 1.7

Lists

PA G .Id PA G cop'y A

(p, g )(gerce-t)
303 43 260 85.8

238 12 226 95.0

117 20 97 82.9 '_

115 6 109 94.8 i_

116 8 108 93.1

14 I 13 92.9

37 12 25 67.6

32 6 26 81.3

7 I 6 85.7 J

6 1 5 83.3
0 0 0 -

86992 0 0.0

20 6 14 70.0
2 I 1 50.0 m

0 0 0

Total 3291696 27945 0.8 1007 117 890 88.4
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Table 4.9 Other transportststisticsforpreexistingobjectsunder SRN.

Pre-existingobjects $tructttres Lists
inazea Count Min sizeMax sizeMean sizeStd.dev. Norm_l

(words) (.ords) (.ords). (.ords) co_=
muz.=-s=_as-_ 3889 I 65837 45.1 1130.1 3670

_=-_ 1739 2 14 4.2 1.8

*tl_O-CALI..S-DATA_ASE-AR_A* 12 11 11437 2127.2 3814.6

.FIAVOIt-_.IM,* 624 I 3095 83.8 241.9
]OZ[BO'_r,-ZZI'FO- J.,_.,l_ 2 4 41568 20786.0 29390.2

I:q_p_,TT-t'rST-LR_
PATUA_-AREA 64
*|AI_,SPACZ-d3B .,1CT-LRRA* 316
F_.M4]r/_T-$_GE-ARmt 10
m[a--ARmt 89
* EA,II_r.,_-DYI'LI(IC- IRKA.* 116
,PRESr_rrATIOI-IREA, 174
,PRRSI_rAT'J:01-TTPE-kR_Jt* 58

*HAJDLER-TMIL_-ARr_*
_F._-ARF_ 13
*F0rr-ARFA* 17
D'_SX-AAR£Y-AE,_i 55
,_JAGR-COKPLETZQN-ARRA* 0
la'_ITOR-LIIrE-ARF_ 0

BIT-ARRA¥-J.REA 0

1400

23

8

61

2 42887 847.8 5438.1 20

2 236 7.9 13.6 7

2 7 6.0 2.1 36

1 93214 2813.3 11046.0 27

7 11437 318.8 1338.2 0
5 21 6.2 2.0 0

41 41 41.0 0.0

5 186 107.2 63.2 08

5 573 185.2 153.7 i
15 1165 604.1 555.9

" " " 0

Total 6878 I 93214 98.0 1710.2: 5260

Table 4.10 Transport statistics

Objectscreated All objects

duringphaae

Load

F_lel

F(le_
F{Ie3
F_ZeJ
Total

F_pped Accessed Percent

(_ords)(words)_cce=ed
374847 5667 1.5

94480 1111 1.2
139670 14126 10.1
820323 22405 2.7
1242786 31679 2.5

2672106 74988 2.8

fornew objectsunder SRW.

PA G o_,_ PA G covv A p
(pag=) (pag=) (pag=) (percent)

60 24 36 60.0 ,1
56 6 50 89.3

162 . 56 I06 65.4

360 89 271 75.3 1
409 125 284 69.4 1;I
1047 300 747 71.3 1

Table 4.]

Object_crested

duringphase

Loa_
Fil.el
File_
File3

FiteJ
TotM

1 Tza._sportstatisticsfor new structureobjectsunder SRW.

Structures

Flipped Accessed Percent

(words) (words) _ccessed
271782 4871 1.8

89382 587 0.7
131503 13001 9.9
784826 20249 2.6

1186954 27746 2.3

2464447 66454 2.71

PA G otd PA _ovv A p
(pages) (p_ges)(pages) (percent)

42 20 22 52.4 i
46 3 43 93.5 !

149 51 98 65.8 1

344 SO 264 76.7
385 109 276 7!.7
966 263 703 72.8

71



Table 4.12 Transport statisticsfornew listobjectsunder SRW.

Objects created
during phase

'Load

Filet
FileP.
File3

Fiz j
Total 207659 8534

Flipped Accessed Percent

(words) (_or.d,)accessed
I0306S 796 0.6

5098 524 10.31
8167 1125 13.8[
35497 2 56 6.1
55832 3933 7.0

4.1

Lists

P,4G.I_ PAGco?v A p

(pages) (pages)(pages) (percent)

18 4 14 77.8 1
10 3 7 70.0 l

13 5 8 61.5 1
16 9 7 43.8 !
24 16 8 33.3 m
81 37 44 54.3 I

Table 4.13

Objects created
during phase

Load
Filel
Fil_
File3
F{leJ
iTot,_

Other transportstatiaticsfor new objectsunder SRW.

Structures Lists

_ount Min size Max size Mean sizeStd.dev. Normal

(_o,d_) (words)(words) (-ord_) co,_
177 2 1304 27.5 100.7 196
168 2 66 35
323 2 12037 40.3 669.8 125
859 2  7677 23.6 6o3o 51
635 2 25837 43.7 1025.2 670

'2162 " 2 25837 30.7 721.5 1067

A = 1207 pages and p = 31%. The data alsodearly shows the desirabilityof reorderinglists

but not structuresin DKBUG-INF0-ARF_ and *WH0-CALL$-D_tTABASE-ARF_*.

For the objectscreateddtu-ingexecution,an overallp of 71_0 was realized,and each of the

objectpopulationscorresponding to the executionphaseshad p _>60% (Table 4.10).

Transport statisticswere collectednot only at the end of the program but alsoat the end

ofeach phase to observe the time variationin the measures. In particular,we were interested

in testingthe assumption made in Sect/on4.4.2,namely, tha_ A isindicativeof the reduction

in the average working setsizeover an arbitrarysubintervalof (t/z/p,t,61),because of the long

duration over which reordering occurs and the consequent high probability of rereferencing.

From Table 4.14,we see that the amount of objectstransportedin each population grows only

very slowly asterthe firstmeasurement of the population. This behavior suggests (but does

not prove) that a significantamount of repeated accessingof objectsis occurring,which is

consistentwith the assertionregardingA.
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Table 4.14 Time v_ation in transport statistics under SRW.

Me_ured
_ end of

ph_

All objects
Flipped Accem_ Percent PAGotd PAG_y A p

(words) (wordJ) a_c.e_i_ (page) (pages) (pages) (percent)

Pm-eagsting objects
Zoad
/'/hi
Filet,
File3

File4
File5

10163986 857385
688396
690454
694705
696439
701918

6.5 4307
6.8 4699
6.8 4724

6.8 4786
6.9 4800
6.9 4855

2580 1727 40.1
2704 1995 42.5
2712 2012 42.6
2728 2058 43.0
2735 2065 43.0
2758 2097 43.2

Objectscreated during

IFilel 374847
File_
File8
File.i
File5

phsseLoad
5200 1.4
5617 1.5
5651 1.5
5684 1.5
5667 1.5

56 21 35 62.5 [
57 23 34 59.6 ]
58 24 34 58.61
60 24 36 60.0 [
60 24 36 6o.oI

Objects created during phase Filel
File_,

File3

Fite4
File5

94480 945 1.0
961 1.0

1099 1.2
IIII 1.2

53 5 48 90.5]

54 5 49 90.71
56 6 50 89.3
56 6 50 89.3

Objects createddurin$ phMeFile_ .....
Fih3 I 139670 13245 9.5 88

Fil_ [ 13946 10.0 153Fi_5 14126 i0.i 162

53 35 39.8 ]
56 97 63.4 [
56 106 65.4]

Objectscreatedduring phase Files

File5 22405 2.7 360 89 271 75.3

ObjectscreatedduringphaseFile4

1_Io5 I 1242r86 31679 2.sI 409 125 284 89.4i
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4.6 Summary

Dynamic reordering is an attempt to improve the locality of reference by grouping together

objectswhich are being activelyused. The basicarchitecturalsupport requiredforitsrealization

isthe same as that for incrementalcopying garbage collection,namely, the read barrierand

e_clent handling of invisiblepointers.

A new memory management system has been designed and implemented forthe Symbolics

Lisp computer, which integratesgeneration-basedgarbage collectionwith dynamic reordering.

The problem of preservingobjectorder"when garbage collectingissolvedapproximately by a

scheme for maint_g togetherness,and exactlyby an operation calledcompaction. Com-

paction reclaimsmemory taken up by forwarding pointerscreatedduring reordering,but not

by other garbage.

The new system requires no changes to hardware, and in particular, to the read barrier.

The only change made to the existingvirtualmemory organizationisto defineand allow the

simultaneous existenceof two types of oldspace:true oldspace servesthe traditionalroleas

memory being garbage collected;reorderingoldspaceconsistsofmemory being reordered.

A method, calledscanningfortransportstatistics,was presentedformeasuring the intrinsic

effectivenessof reordering.The method providesan evaluationwhich isindependent of main

memory sizeand aJlowsthe reorderabilityofdifferentmemory areasto be determined. Reorder-

Lugoldspaceisscanned forobjectswhich have been transported.The scan yieldsthe number of

oldspace pages containingthe transportedobjectsand statisticson theirsizes,from which can

be computed the reductionin working set sizedue to reordering,and the densitywith which

the objectsare packed intopages. The algorithmfor parsingoldspace solvesthe problem of

noninvariance of object representation with respect to forwarding.

The resultsfrom two experiments,one involvinginteractivesystem workload and the other

a largeapplication,show a significantreductionin working setsizedue to reordering,or equiv-

alently,a significant amount of fragmentation among the populations of objects considered.

Different memory areas exhibited varying reordering performance. Most areas considered were

suitable for reordering; the exceptions were areas containing many large objects or which were

already initially well-ordered. Over the suitable areas, a compression in working set of 48% and

58% was measured for the two workloads.
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List space exhibited a greater relative reduction in working set size than structure space by

a factor of about three, but the absolute reduction due to structure space was greater because

of the larger number of structure pages being accessed.
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Chapter 5

Conclusions

Dynamic reordering has been incorporated into an existing generation-based garbage-collecting

memory management system. The new system supports schemes for preserving object order in

virtual memory during garbage collection, both approximately and exactly.

We have presented a technique, called scanning for transport statistics, for evaluating the

effectiveness of reordering, independent of main memory size. In this method, a scan of re-

ordering oldspace yields the number of oldspace pages containing the transported objects and

statistics on their sizes, from which can be computed the reduction in working set size due to

reordering. The relative reduction in working set size is also a measure of the density with which

objects are packed into pages, and the extent to which the problem that reordering attempts to

address actually exists. Our algorithm for parsing oldspace solves the problem of noninvariance

of object representation with respect to forwarding.

Wltile motivated by reordering, scanning for transport statistics ca_ be viewed as a general

technique which can be used to evaluate locality improvement in any situation in which objects

are dynamically reorganized, including normal copying garbage collection.

Two experiments, one involving interactive system workload and the other a large applica-

tion, have been conducted and the results show reductions in working set size of 48% and 58%

due to reordering, or equivalently, a significant amount of fragmentation among the populations

of objects considered. The use of the technique to measure the reorderability of selected por-

tions of memory has been demonstrated. Memory areas suitable for reordering were identified.

Relative compression in working set size was greater for list space than structure space, by a

factor of about three. Results for certain areas suggest differential treatment of list space and

structure space.
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5.1 Symmetries Between Garbage Collection and Dynamic

Reordering

Generation-basedgarbage collectionand dynamic reorderingaxe two techniquesforimprov-

ing the efficiencyof memory management in Lispand similardynamic language systems. Both

axe based on empirica/chax_cteristicsofobjects;the former exploitsthe phenomenon of short-

lifetimeand the infrequencyof pointersfrom olderto younger objects;the latterexploitsthe

phenomenon ofactiveobjectfragmentation.Both reqRizesimilarmechanisms in the underlying

memory management system. Garbage collectionhnpmves localityby compacting the acces-

sibleobjects,while reorderingimproves Iocatltyby compacting the activelyused objects.For

the younger and smallergenerations,garbage collectionisan e_cient management technique,

while for the older,larger,and stablegenerations,reorderingmay be the preferredtechnique

to avoid the expense of garbage collectingthe g_gaaticvirtualmemory systems of today and of

the future.

5.2 Suggestions for Future Work

The experimental resultson the tuning of generationparameters suggest the possibility

of adaptive controlof levelcapacity.Since the conditionsassociatedwith nonoptima/ity in

c_padty have been identi_edaad axe easilymeasured, and sincethe range of good valuesfor

capacitycan span a fairlybroad fr_ctionof m_n memory size,ratherthan have a fixed,user-

sped_ed capacity,an allowablerange of capacityvaluescould be specified,and the system

could dynamically adjustthe currentvalueusing some appropriateadaptive a/gorithm.

Dynamic reordering,likeinczementM garbage collection,iscu_n'entlyprohibitiveon systems

without processorsupport for the read barrierand invisiblepointerhandling. Strategiesfor

e_ciently providingthese or a/tentativemechanisms on conventionalaxchitecturesshould be

investigated.

After an arbitrarynumber ofreorderingsofa _ivenpartofmemory without any intervening

garbage collectionor compaction, reorderingoldspacewillcontaina historyof accessesmade

during each reorderinginterv'_.In collectingtransportstatistics,we have been concerned ovJy

_th the objectsforwarded directlyto copyspace,and have ignoredother internalforwardings.
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Doing so yieldsan evaluationof the most recentlyinitiatedreorderinginterval.However, by

consideringstatisticsforothertransportinternalto reorderingoldspace,itispossibletoevaluate

previous reorderinginterv-_,and to evaluatevariousother possiblescenarios,e.g.,not having

initiatedsome specifiedsubsetof previousreorderings.The utilityof thisextensionisan open

question.

Policiesforthe _utomatic initiationofreordering,the counterpartofthreshold-basedpolicies

forautomatic initiationofgarbage collection,are an areaforfutureresearch.With referenceto

preservingobjectorder under copying garbage collection,the relatedissuesof when to maintain

order approximately or exactly,and forhow long,remain to be addressed.
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