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Abstract
The key elements in the first year (1990-91) of our project were:

e Investigate the effects of modeling on distributed system performance
predictions.

e Look at possible graphical interfaces to the proposed distributed pro-
totype and simulator system.

e Conduct preliminary studies towards the design of a generalized dis-
tributed system.

In the second year of the project (1991-92), we propose to

o Develop detailed designs for the prototype.
e Implement and test the system.

¢ Conduct further studies on modeling distributed systems.



1 Introduction

In the 1990-91 proposal, we discussed the need for building a modeling tool
for both analysis and design of distributed systems. To this end, we have
been considering different design architectures for the modeling tool. Since
many of the research institutions have access to networks of workstations, we
have decided to build a tool running on top of the workstations to function
as a prototype as well as a distributed simulator for a computing system.

In addition, we have been investigating the effects of system modeling
on performance prediction in distributed systems. While some performance
measures such as the average number of participating node set size of a
distributed transaction is not very sensitive to the underlying model, mea-
sures such as transaction commutativity measures are quite sensitive to the
evaluation models.

We have also considered the effects of static locking and deadlocks on the
performance predictions of distributed transactions. While the probability
of deadlock is considerably small in a typical distributed system, its effects
on performance could be significant.

In this report, we summarize our progress in these three areas and de-
scribe the details of the proposed work.

2 Distributed System Model: Prototype/Simulator

The main goals of our efforts in building a general tool for simulation and
prototyping of distributed systems are:

e A framework to experiment with distributed algorithms/systems.

Implement in terms of basic primitives (e.g., RPC, reliable communi-
cation).

o A good user interface - preferably with graphic and mouse functions.
e Provisions to include user specific code for different components.

A library of procedures representing typical options for components
(e.g. two-phase locking).

e A base for distributed simulation as well as prototyping.

Efficient mechanisms to monitor and display the activities.



e Powerful performance analysis tools.

To this end, we started looking at a transaction oriented distributed
system. Since our aim is to provide a general framework rather than to
provide a solution to a particular model, our goal is to provide some of
the basic primitives at the bottom layer, and let the user build the needed
upper level software. To make the prototype usable for a novice user, we
propose to provide a graphic interface through which a user can specify the
system configuration. As an example application, we considered distributed
database system modeling. As shown in Figure 1, we identified seven ma-
jor components. Each of these components can be further described in a
detailed model. For example, the local manager can be modeled as a coor-
dinator of local concurrency control manager and the transaction resource
manager. Given a set of components, the control structure of the system
can be represented through directional links. Figure 2 illustrates one such
control structure.

After considering several alternates, we decided to base the graphic inter-
face on the lines of the MIT Network simulator. The MIT simulator is devel-
oped at Massachusetts Institute of Technology with funding from DARPA.
Even though it is intended for simulating communication networks, we have
decided to adopt its graphic interfacing routines for our distributed simula-
tor. Since the source code (in C) is available, we are modifying this code
to suit our needs. Some of its distinguishing characteristics of the network
simulator are:

o Internetwork simulator

e Components include gateways, network links, hosts, TCPs and users.
e Network configuration is displayed on the screen.

e User can control the simulation.

e Network configuration can be modified with the mouse.

e Other simulation parameters can be changed on-line using the mouse.
o Network configuration can be saved for later use.

e Several performance measures may be printed.



Figure 1
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Since process communication is a basic primitive needed in distributed
systems, we have decided to provide this as a basic mechanism in our system.
Currently, we are experimenting with the Sun RPC system calls to design a
high-level primitive. RPC has several advantages including:

e Hiding details of network programming
e Availability of library routines
o Hiding the operating system dependencies

e Availability of the standard data representation using XDR format
which allows a simple way of transferring data.

3 Effects of Modeling on Performance Predic-
tions

As a second part of our study, we have conducted investigations to deter-
mine the impact of modeling on distributed system performance. Here, we
summarize the results of two such studies:

Study 1: Effect of Data Distribution Models on Transaction Com-
mutativity [2]. Recognizing commutativity among transactions appears
to reduce the number of rollbacks (at the time of merge) in a partitioned
distributed database system [1]. The main objective of this study is to de-
termine the impact of data distribution modeling on the evaluation of the
benefits due to commutativity. We studied the effects of six distinct data
distribution models on the evaluation of the number of rollbacks. We de-
rived closed form expressions for five of the six models, and used simulation
for the sixth model. The conclusions from this study are summarized as
follows.

¢ Random data models that assume only average information about the
system result in conservative estimates of system throughput.

e Adding more system information does not necessarily lead to better
approximations. In this paper, the system information is increased
from model 6 to model 2. Even though this increases the computa-
tional complexity, it does not result in any significant improvement in
the estimation of the number of rollbacks.



Transaction commutativity appears to significantly reduce transaction
rollbacks in a partitioned distributed database system. This fact is
only evident from the analysis of model 1. On the other hand, when
we look at models 2-6, it is possible to conclude that commutativity is
not helpful unless it is extremely high. Thus, conclusions from model
1 and models 2-6 are contradictory.

The replication distribution (i.e., the actual number of copies for each
object) seems to effect the evaluations significantly. Thus, accurate
modeling of this distribution is vital to evaluation of rollbacks.

Study 2: Effect of Data Distribution and Reliability Models on
Transaction Availability [3]. In this study, we selected three abstractions
for data distribution modeling and three for node reliability modeling, and
constructed six system models. Here, transaction availability is defined as
the probability with which all data copies required by a transaction are
available at the beginning of its execution. As before, we could derive closed
form expressions with five of the six models (using probabilistic analysis),
and used simulation for the other model. A transaction was characterized
by the number of data objects that it accesses, s. The conclusions derived
from this study are summarized as follows.

By choosing a proper distributed database model, the computational
complexity of transaction availability evaluations can be significantly
reduced.

For values of s < 10, all models result in almost the same transaction
evaluation.

The degree of replication of individual (or group) data ob jects seems
to have a significant effect on transaction availabilities. Thus, when
different data objects have different copies, adopting average degree of
replication at the system level may not result in accurate availability
evaluations.

The actual distribution of data object copies has some, if not signifi-
cant, impact on availability evaluation.

In a heterogeneous environment where different nodes may have dif-
ferent reliabilities, it is sufficient to represent each node by the average
node reliability, without affecting the availability evaluations.
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Having conducted these studies, we conclude that

¢ Adopting simple models may drastically reduce the complexity of met-
ric evaluations.

e Choosing analytically tractable models enables easy interpretation of
functional dependencies.

¢ By choosing inappropriate models, for either analytical tractability or
conceptual simplicity, it is possible to arrive at incorrect conclusions.

¢ Model choice is highly dependent on the metric. While a simple model
serves well for one metric, it may be insufficient for another metric.

4 Determining the Effects of Locking on Distributed
Transactions

Deadlocks are known to deteriorate performance in both centralized and
distributed database systems [4,5]. In spite of this, several performance
studies have ignored the deadlock problem in their analyses [6]. In [4], Shyu
and Li proposed an elegant technique to evaluate the response time and
throughput of transactions in a non-replicated DDS. Assuming ezclusive
locking (i.e., only write operations), they model the queue of lock requests
at an object as a M/M/1 queue. This results in a closed-form for the waiting
time distribution at a node, expressed in terms of the average rates of arrivals
of requests and the average lock-holding time.

In general, a database transaction reads from a set of data objects (the
read-set) and writes on to a set of data objects (the write-set). In this
paper, we consider both the the read and the write operations of database
transactions, and propose a technique for performance evaluation.

We make the following observations from evaluations made with our
technique.

o As expected, the presence of shared locks has a substantial impact on
the probability of deadlock occurrence. When only 1/3 of the accessed
data objects are updated, the probability of deadlock is considerably
small as compared to when all objects are updated.

o The observations about the deadlock probabilities are also valid for
restart probabilities.
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o Transaction response times are also quite sensitive to the ratio of
shared locks. Here, we compare the response times when deadlocks
are ignored with those obtained when deadlocks are considered. The
effect of deadlocks is more predominant at higher transaction loads
and with smaller values of read ratio. When 1/3 of the accessed ob-
jects are updated, the effect of deadlocks is not significant on response
time.

o The effect of deadlocks on response time is decreased with the increase
in the number of data items. Obviously, this is due to the decrease in
probability of conflicts and hence a decrease in deadlock occurrence.
When only 1/3 of the accessed data are updated, this effect is almost
insignificant. When 2/3 of the accessed data are updated, deadlocks
seems to have a noticeable effect on response time.

e When a small number of data objects are accessed, the probability of
deadlock is negligible, and hence its effect on response time is small.
When more data objects are accessed, the effect of deadlocks on re-
sponse times is significant.

Summary of Accomplishments in 1990-91

We have published the results of our research (since August 1990) in two
conferences. In addition, two papers are submitted for publication in inter-
national journals. These are:

1. Y. Kuang and R. Mukkamala, “Performance Analysis of Static Lock-

ing in Replicated Distributed Database Systems,” Proc. Southeastcon
1991, pp. 698-701.

2. Y. Kuang and R. Mukkamala, “A Note on the Performance Analysis of

Static Locking in Distributed Database Systems”, Submitted to IEEE
Trans. Computers, December 1990.

3. R. Mukkamala, “Effects of Distributed Database Modeling on Evalu-

ation of Transaction Rollbacks,” Proc. WSC’91, December 1990, pp.
839-845.

4. R. Mukkamala, “Measuring the Effects of Distributed Database Mod-

els On Transaction Availability Measures,” Submitted to Performance
Evaluation Journal, March 1991.



In addition, our current work on building the prototype for a distributed
system should result in several conference and journal papers in 1991-92.

6 Proposed Research Efforts in 1991-92

During the next grant period (August 1991 to July 1992), we propose to
continue the study and development of the distributed prototyping and sim-
ulator system. The main main problems that we need to solve in this period
are:

e Complete the graphic interface design and implement it on Sun work-
stations.

o Investigate efficient means of offering flexible as well as efficient means
of specifying interfacing between system components. We expect this
phase to consume considerable time.

o Design, build, and test a specific system using the primitives offered
by the system. Experiences from building a specific system should aid
us in developing a generalized prototyping tool.

e We propose to use the prototype to evaluate the performance of several
distributed mutual exclusion policies. Such a study may result in the
development of new policies.

e We propose to do further investigations in modeling of distributed
systems and determine their impact on predictive analysis tools.
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ABSTRACT

Data distribution, degree of data replication, and transaction
access patlerns are key factors in determining the performance
of distributed database systems. In order to simplify the evalua-
tion of performance measures, database designers and researchers
tend to make simplistic assumptions about the system, In this
paper, we investigate the effect of modeling assumptions on the
evaluation of one such measure, the number of transaction roll-
backs, in a partitioned distributed database systein. We develop
six probabilistic models and develop expressions for the number
of rollbacks under each of these models. Ussentially, the models
differ in terms of the available system information. The analyti-
cal resnlts so obtained are compared to resnlts from sitnulation.
Irom here, we conclude that most of the probabilistic models
yield overly conservative estimates of the number of rollbacks.
The effect of transaction commutativity on system throughput is
also grossly undermined when such models are employed.

1. INTRODUCTION

A distributed database system is a collection of cooperating
nodes each containing a set of data items (In this paper, the
basic unit of access in a database is referred Lo as a data item.).
A user transaction can enter such a system at any of these nodes.
The receiving node, somnetimes referred to as the coordinaling or
initiating node, undertakes the task of locating the nodes that
contain the data items required by a transaction.

A partitioning of a distributed database {DDB) occurs when
the nodes in the network split into groups of communicating
nodes due to node or commuuication link failures. The nodes
in each group can communicate with each other, but no node in
one group is able Lo communicate with nodes in other groups. We
refer to each such group as a partition. The algorithms which al-
low a partitioned DD B to conlinue functioning generally fall into
one of two classes [Davidson ct al. 1985}, Those in the first class
take a pessimistic approach and process only those transactions
in a partition which do not conflict with transactions in other par-
titions, assuring mutual consistency of data when partitions are
reunited. The algorithms in the second class allow every group
of nodes in a partitioned DDB to perform new updates. Since
this may result in independent updates to items in different par-
titions, conflicts among transactions are bound to occur, and the
databases of the partitions will clearly diverge. Therefore, they

require a strategy for conflict detection and resolution. Usually,
rollbacks are used as a means for presevving consistency; con-
[!!(It.lllg transactions arc rolled back when partitions are reunited,
Since coordinating the undoing of transactions is a very diflicult
task, these methods are callch oplinustic since they are useful
p~r|mar|ly in a situation where the number of items in a par-
ticular database is large and the probability of conllicts among
transactions is small,

In general, determining if a transaction that snccessfully ex-
ecuted in a partition is rolled back al the time the database
is merged depends on a number of factors. Data items in the
read-set and the write-set of the trausaction, the distribution of
these data items among the other partitions, access palterus of
transactions in other partitions, data dependencies among the
transactions, and semantic relation (if avy) Fotween these trans-
actions are some examples of these factors, ioxacl evaluation of

rollback probability for all transactions i a database (aud hence
the evaluation of the number of rolled Lack transactions) gen-
erally involves both analysis and simulation, and requires large
exceution times [Davidson 1982, Davidson 1981]. To overcome
the computational complexities of cvahiation, designers and re-
searchers generally resort to approximation techignes {David-
son 19825 Davidson 1986; Wright 19334 Wiiglt 1usih]. These
technigues reduce the compntation time by making sitnplifying
assumptions to represent the underlying dist ributed system. The
time complexity of the resulting technignes greatly depends on
the assumed model as well as evaluation tedhinigues,

Ins this paper we are interested mdetenmining the effect of the
distobuted database models on the computational complexity
and aceuracy of the rollback statistios e pan Gitioned datihase.

The balance of this papet is ontlined as follows. Seetion 2 for-
mally defines the problem under consideration. T Section 3, we
discuss the data distribation, replication, and transaction model-
ing. Section 4 derives the vollback statistics for vne distribution
model. In Section 5, we compare the analysis methods for six
models and simnlation method for one model based on computa-
tional complexity, space complexity, and accuracy of the measure.
Finally, in Section 6, we snmmarize the obtamed vesults.

2. PROBLEM DESCRIPTION

Even though a transaction 7} in partition /% may be rolled
back (at merging time) by another transaction Ty in partilion I
due to a number of reasons, the following (wo cases ave found to
be the major contributors [Davidson 1982].

i. Py # Py, and there is al least one data item which is up-
dited by both 7y and T Thisis veferred to as a wrile-wrile
conthiet.

i, Pyo= Py, Tyos rolled back, and it is a dependency parent of
Ty (e, Ty has read at least one dada item updated by T3,
and 7T} occurs prior to Ty in the serialization sequence).

The above discussion on reasons for rollback only considers
the syntax of transactions (i.c. read- and write-sets) and does
not recognize any semantic relation between them. To be more
specific, let us consider transactions Tj and Ty executed in two
different partitions P, and P, respectively. Let us also assume
that the intersection between the write-sets of Ty and 73 is non-
empty. Clearly, by the above definition, there is a write-write
conflict and one of the two transactions has to be rolled back.
However, il Ty and 1, comnte with cach other, then there is no
need to rollback either of the transactions at the time of partition
merge [Garcia-Molina 1983, Jajodia and Speckman 1985; Jajodia
and Mukkamala 1990 lostead, 77 needs to be executed in £,
and Ty needs to be executed in Py, The analysis in this paper
take this property into account.

In order to comnpute the nuniber of rollbacks, it is also nec-
essary to define sone ordering (O(£)) on the partitions. For
example, if Ty and 7} correspond to case (i) above, and do not
commute, it is necessary to determine which of these two are
rolled back at the time of merging. Partition ordering resolves
this atbiguity by the following rule: Whenever two conllicting
but nom-commuting trausactions are executed in two different
partitions, then the transaction execnted in Lhe lower order par-
tition is rolled back.
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... Since a transaction may be rolled back due to either (i) or
{i1), we classify the rolltbacks into two classes: Class 1 and Class
2 respectively. The problem of estimating the number of roll-
backs at the time of partition nerging in a partially replicated
distributed database system may be formulated as follows.

Given the following parameters, determine the number of
rolled back transactions in class 1 (1) and class 2 (#7,).

o 1, the number of nodes in the database;

d, the number of data items in the database;

p, the number of partitions in the distributed system (prior
to merge);

t, the number of transaction types;

G D, the global data directory thal contains the location of
each of the d data items; the G maltrix has d rows and n
columnns, cach of which is either 0 or 1;

o NSy, the set of nodes in partition k, Yk = L2,

¢ RS, the read-set of transaction Lype j, j = 1,2,...,¢;

o WS, the write-set of transaction lype j, 7 = 1,2,...,¢(;

e Ny, the number of transactions of type j received in par-
tition & (prior to merge), y = L2000k = 1,2,

o CM, the commulalivity matrix that defines transaction
commutativity. If CAM,, .. = true then transaction types j,
and j; commute. Otherwise they do not conunute.

The average number of total rolibacks is now expressed as R =
Rl -+ R].

3. MODEL DESCRIPTION

As stated in the introduction, the primary objective of this
paper is to investigate the eifect of data distribution, replication,
and transaction models on estimation of the number of rollbacks
in a distribuled dalabase system.

To describe a data distribution-transaction model, we char-
acterize it with threc orthogonal paramcters:

L. Degree of data item replication {or the number of copies).
2. Distribution of data item copies.
3. Transaction characterization

We now discuss cach of these parameters in detail.

For simplicity, several analysis techniques assume that each
data item has the same number of copics (or degree of replica-
tion) in the database system [Coffman et al. 1981]. Some other
techniques characterize the degree ol replication of a database by
the average degree of replication of dala items in that database

[Davidson 1986]. Others trcat the degree of replication of ecach
data item independently. i ]
Some designers and analysts assume some specific allocation
schemes for data ilem (or group) copics (e.g., [Mukkamala lS)S»T)).
Assuming complete knowledge of data copy distribution (/1))
is onc such assumption. Depending on the type of .}IIocaLmn,
such assumplions may simplify the performance analysis. Others
assume that cach data item copy is randomly distributed among
the nodes in the distributed system [Davidson 1986]. _
Many database analysts characterize a transaction by the size
of its read-set and its write-set. Since diflcrent transactions may
have different sizes, these are cither classified based on the sizes,
or an average read-set size and average write-set sizc are used to
represent a transaction. Others, however, classily transactions
based on the data items that they access (and not necessarily on
their size). In this case, transaction types are identified with their
expected sizes and Lhe group of data items from which these are
accessed. An extreme example is a case where each transaction in
the system is identified completely by its read-set and its write-

840

set.

With these three parameters, we can describe a number of
models. Due to the limited space, we chose to present the results
for six of these models in this paper.

We chose the following six models based on their applicability
in the current literature, and their close resemblance to practical
systems. In all these models, the rate of arrival of transactions
al cach of the nodes is assumed to be completely known a priori.
We also assuine complete knowledge of the partitions (i.e. which
nodes are in which partitions) in all the models.

Model 1: Among the six chosen models, this has the max-
imum information about data distribution, replication, and
transactions in the system. [t captures the following infor-
mation.

e Replication: Data replicalion is specified for each data
item.

e Data distribution: The distribution of data items among
the nodes in the system is represented as a distribution
matrix {as described in Section 2).

e Transactions: All distinct Lransactions executed in a
system are represented by their read-sets and write-
sets. Thus, for a given transaction, the model knows
which data items are read, and which data items are

updated. “T'he comimutativity inflormation is also com-
pletely known and is expressed as a matrix (as de-
scribed in Section 2).

Model 2: This model reduces the number of transactions
by combining them into a set of transaction types based on
commutativity, commonalities in data access patterns, etc.
Since the transactions are now grouped, some of the indi-
vidual characteristics of transactions ‘Se,g the exact read-
set and writes-set) are lost. This model has the following
information.

o [eplication: Average degree of replication is specified
at the system level.

o Data distribulion: Since the read- and write-set infor-
mation is not retained for each transaction type, the
data distribution information is also summarized in
terms of average data items. It is assumed that the
data copies are allocated randomly to the nodes in the
system.

e Transaclions: A transaction type is represented by
its read-set size, wrile-set size, and thie number of
data itemns {rom which sclection for read and write
is made. Sinee two transaction types might access the
same data item, it also stores this overlap information
for every pair of transaction types. The commutativ-
ity information is stored for cach pair of transaction

types.

Model 3: This model further reduce the transaction types
by grouping them based only on commutativity character-
istics. No consideration is given Lo commonalities in data
access pattern or differing read-sct and write-sct sizes. It
has the lollowing information.

o Nteplication: Average degree of replication is specified
al the system level.

o Data distribution: As in model 2, it is assumed that
the data copies are allocated randomly to the nodes
in the system.

o Transaclions: A transaction type is represented by
the average read-set size and average write-set size.
The commutativity inforination is stored for all pairs
of transaction types.

Model 4: This model classifies transactions into three
types: read-only, read-write, and others. Read-only trans-
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actions commute among themselves. Read-write transac-
tions neither commute among themselves nor commute with
others. The others class corresponds to update transactions
that may or may not comnmute with transactions in their
own class. This fact is represented by a commute probabil-
ity assigned toit.

o Replication: Average degree of replication is specified
at the system level.

e Data distribution: As in model 2, it is assumed that
the data copies are allocated randomly to the nodes
in the system.

o Transactions: Read-only class is represented by aver-
age read-set size. The read-write class is represented
by average read-set and write-set sizes. The others
class is represented by the average read-sel size, aver-
age write-scl size and the probability of commutation.

Model 5: This model reduces the transactions to two
classes: read-only and read-write. Read-only transactions
commute among themselves. The read-write transactions
corresponds to update transactions that may or may not
commute with transactions in their own class. This fact is
represented by a commute probability assigned to it.

o Replication: Average degree of replication is specified
al the system level.

e Data distribution: As in model 2, it is assumed that
the data copies are allocated randomly to the nodes
in the system.

o Transactions: Read-only class is represented by aver-
age read-set size. The read-write class is represented
Ly average read-set and write-set sizes, and the prob-
ability of commutation.

Model 6: 'This model identilics read-only transactious and
other update transactions. But these two types have the
same average read-set size. Update transactions may of
may not commute with other update transactions.

o Replication: Average degree of replication is specified
at the system level.

o Data dnslmbullwns As in model 2, it is assumed that
the data copies are allocated randomly to the nodes
i the system.

e Transactions: The read-set size of a transaction is de-
noted by its average. For update transactions, we also
associale an average wrile-set size and the probability
of comnutation.

Among these, model 1 is very general, and assumes complete
information of data distribution (G D), replication, and transac-
tions. Other models assume only partial (or average) information
about data distribution and replication. Model 1 hias the most
information and model 6 has the least.

4. COMPUTATION OF THE AVERAGES

Several approaches offer potential for computing the average
number of rollbacks for a given system environment; the most
prominent methods are simulation and probabilistic analysis.

Using simulation, one can generate the data distribution ma-
trix (G D) based on the data distribution and replication policies
of the given model. Similarly, one can generate different trans-
actions (of different types) that can be received at the nodes in
the network. Since the partition information is completely spec-
iliedd, by scarching the relevaut colimmms of the (20 mad rix, 10s
possible to determine whether o given transaction lras been sue
cessfully executed in a given partition. Once all the successful
transactions have been identified, and their data dependencies
are identified, it is possible to identily the transactions that need
to be rolled back at the time of merging. The generation and
evaluation process may have to be repeated enough number of
times to get the required confidence in the final result.

Probabilistic analysis is especially useful when interest is con-
fined to deriving the average behavior of a system from a given
model. Generally, it requires less compulation time. In this pa-
per, we present detailed analysis for model 6, and a sumimary of
the analysis for models 1-5.

4.1 Derivations for Model 6

This model considers only two transaction Lypes: read-only
(Type 1) and read-write (Type 2). Both have the same average
read-set size of r. A read-write Lransaction updates w of the data
items that it reads. Ny and Nyx represent the rate of arrival of

types 1 and 2 respectively at partition k. The average degree
of replication of a data item is given as ¢. The system has n
nodes and d data items. The probability that two read-write
Lransaction comtnute is m.

Let us cousider an arbitrary transaction Ty reccived at one
of the nodes in partition k& with 1y nodes. Since the copies of
a data itemn are randomly distributed among the n nodes, the
probability that a single data item is accessible in partition k is
given by

)

a, = 1 - ——(“)—- (1)
Since cach data item is independently allocated, the expected
number of data items available in this partition is doy. Similarly,
since Ty accesses » data items (on the average), the probability
Lhat it will be successfully executed is af. From here, the number
of successful transactions in ki3 estinated as af ¥V, and af Nk
for Lypes | and respectively
Ln computing the probability of rollback of T due to case (i),
we are only interested m transactions that update a data item in
the write-set of £y and not commnting with 7). The probability
that a given dataitem (updated by Ty) is not updated in another
partition A" by a nun-commuting transaction {with respect to T})
is given by

) w |I-vn)n;,N",
b = (1- =) (2)

day

Given that a data item is available in &, probability that it is
not available in k' is given as

(_> (n_n._n.,)

YNSRI SR S (3)
ac(?)
From here, the probability that a data item available in & is not

updated any other transaction in higher order partitions is given
as

o= I b))+ @ -akENBel (1)

Yk Ok} > O(k)

The probability that transaction Ty is not in write-write con-
flict with any other non-commuting transaction of higher-order
partitions is now given as
(da;é.)
w

e = (da.) (5)
From here, the number of transactions rolled Lack due to category
(i) may be exprossed as Iy = = o N
To compute the rollbacks of category (i1}, we need 1o deter-
iine the probability that Ty is rolled back due to the rotlback of
a dependency parent in the same partition. 11 T, is a read-write
transaction in partition k, then the probability that T} depends
on Ty (i.e. read-write conflict) is given by:
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(da.'w)
(-ln.)
The probability that 7} is not rolled back due to the roll back of

any of its dependency parents is now given by:

N o= 1 -~ (6)

" ‘\”l ut
A T R Y .
T (M)
=1 My iV

where No = Nk 4 Now and = N/ (Ve + V).

The total number of rolled back transactions due to category
(i) is now estimated as fi; = Y (1= \)oj (N + ueNaw). The
total number of rolled back transactionsis it = Ity + R,.

5. COMPARISON OF THE MODELS

As mentioned in the introduction, the main objective of this
paper is to determine the effect of dala distribution, replication,
and transaction models on the estimation of rollbacks. To achieve
this, we evaluate the desired measure using six different data
distribution and replication madels. The camparison of these
evaluations is based on computational tinme, storage requirement,
and the average values obtained.

Due to the Limited space, we could not present the detailed
derivations for the average values for models 2-6. The final ex-
pressions, however, are presented in [Mukkamala 1990].

5.1 Computational Complexity

We now analyze cach of the evaluation methods {for models
1-6) for their computational complexity.

o In model 1, all ¢ transactions are completely specified, and
the data distribution maltrix s also known. To determine
il a transaction is successful, we need to the scan the dis-
tribution matrix. Similarly, deteriining il a transaction in
a lower order partition is to he rolled back due to a write-
write conflict with a transaction of higher order partition
trequires comparison of write-sets ol the two transactions.
Determining if a transaction needs to be rolled back due to
the roliback of a dependency pareul also requires a search.
All this requires O(ndt + p2t? + pt? N}, where ¢ is the num-
ber of transaction types and N is the maximum nnmber of
transactions executed in a partition prior to the merge.

o Models 2-6 have a signilar computation structure. The num-
ber of transaction L€pes (t) is high for model 2 and low for
model 6. Bach of these models require O(p*te + pt?N)
time. As before, t is the number of transaction types and
N is the maximum number of transactions executed in a
partition prior to the merge.

Thus, model 1 s the most complex (computationally) and model
6 is the lcast complex.

5.2 Space Complexity

We now discuss the space complexity of the six cvaluation
methods:

o Model | requires O(dn) to store the data distribution ma-
trix, O(n) to store the partition information, O(dt) to store
the data access information, and O(nt) to store the trans-
action arrival information. It also requires O(t?) to store
the commutativity information. Thus, it requires O(dn +
dt + nt + t?) space to store model information.

e Models 4-6 require similar information: O(t) to store the
average size of read- and write- sets of transaction types,
O(nt) for transaction arrival, O(n) for partition informa-
tion, and O(t) for commutce information. Thus they require
O(nt) space.

e Model 3, in addition to Lhe space required by models 4-
6, also requires O02) for commutativity matrix. Thus it
requires O(nt + t*) space.

o Model 2, in addition to the space required by model 3,
also requites U2 space Lo slore the data overalp information.
Thus, it requires O(nt + £?) storage.

Thus, model 1 has the largest storage requirement and model 6
has the least.

5.3 Evaluation of the Averages

In order to compare the eflect of cach of these modeis on
the evalnation of the average rollbacks, we hiave run a number of
experiments. In addition to the analytical evaluations for models
1-6, we have also run simulations with Model 1. The results
from these runs are summarized in Tables 1-7. Basically these
tables describe the number of transactions successfully executed
before partition merge (Before Merge), number of rollbacks due
to class 1 (1)), rollbacks due to class 2 (R;), and transactions
considered Lo be successful at the completion of merge (After
Merge). Obvionsly, the last term is computed from the carlier
three terms. In all these tables, the Lotal nmmber of transaction
arrivals into the system during partitioning is taken to be 65000.
Also, each node is assumed to receive equal share of the incoming
Lransactions,

e Table 1 sumnarizes the effect of number of partitions as
measured with Models 1-6. Here, it is assumed that each
of the data items in the system has exactly ¢ = 3 copies.
The other assumiptions in models 1-6 are as follows: ~

1. Model 1 considers 130 transaclion types in the sys-
tem. Eachis described by its read- and write-sets and
whether it commutes with the other transactions. 90
of the 130 are read-only transactions. The rest of the
40 are vead-write, Among the read-write, [5 comumule
with each other, another 10 conmute with cach other,
and the rest of the 15 do not commute at all. The sim-
ulation run takes the same inpuls but evaluates the
averages by simulation.

2. Model 2 maps the 130 transaction types into 4 classes.

"To make the comparisons simple, the above four classes
(904154+10415) are taken as four types. The data

overlap is computed from the information provided in
model 1.

3. Model 3, to facilitate comparison of results, considers
the above 4 classes. This model, however, does not
capture the data overlap information.

4. Model 4 considers three types: read-only, read-write
that commute among themselves with some probabil-
ity, and rcad-write that do not commute at all.

i

_ Model 5 considers read-only transactions with read-set
size of 3 and read-write transactions with read-sct size
of 6. Read-wrile Lransactions commute with a given
probability.

6. Model 6 only considers the average read-set size (com-

puted as 4 in our case), the portion of read-write trans-

actions (=45/130), and the average write-set size for

a read-write {= 2). Probability that any two transac-

tions conunute is taken to be 0.4.

From Table 1 it may be observed that:
o The analytical results from analysis of Model 1 is a

close approximation of the ones from simulation.

e The evaluation of number of successful transactions
prior to the merge is well approximated by all the
models. Model 6 deviated the most.

e The difference in estimations of Ry and R is signif-
icant across the models. Model 1 is closest to the
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simulation. Model 6 has the worst accuracy. Model
5, surprisingly, is somewhat better than Models 2,34,
and 6.

The estimation of R; from models 2-6 is about 50
times of the estimation from Model 1. The estima-
tions from Model 1 and the simulation are quite close.
From here, we can see that, Models 2-6 yield overly
conservative estimates of the number of rollbacks at
the time of partition merge. \While Model 1 estimated
the rollbacks as 1200, Model 2-6 have approximated
them as about 13000.

This dillerence in estimations seems 10 exist even when
the number of partitions s increased.

o Table 2
evaluation accuracies of the models.
that

summarizes the effect of number of copies on the
It may be observed

The difference Letween evaluations from Model 1 and
the others is significant at low (¢ = 3) as well as high
(¢ = 8) values of c. Clearly, the difference is more
significant at high degrees of replication.

The case py = 4,p2 = 6,c =8 corresponds Lo a case
where each of the 500 data items is available in both
the partitions. This is also evident from the fact that
all the 65000 input transactions are successful prior to
the merge.

The results [rom the analysis and simulation of Model
1 are close to those [rom simulation.

o Table 3 shows the effect of increasing the number of nades
from 10 (in ‘lable 1) to 20. Tor large values of 1, all the six
models result in good approximations of successful trans-
actions prior Lo merge. The differences in estimations of
and R, still persist.

o Table 4 compares models 5 and 6. While model 6 only re-
Lains average read-set size information for any transaclion,
model 6 keeps this information for read-only and read-wnite
transactions separately. This additional mformation cu-
abled model 5 to arrive at better approximations for /4
and R;. luaddition, the ellect of connmulativity on /1, and
R, is not evident until m > 0.99. This is counterintuitive.
The simplistic nature of the models is the real cause of this
observation. Thus, even though these models have resulted
in conservative estimates of R, and f;, we can’t draw any
positive conclisions about the cifect of commutativity on
the systen throughput.

e The comments that were made about the conservative na-
ture of the estimates from models 5 and 6 also applies to
model 2. These results are summarized in Table 5. Even
though this model has much more system information than
models 5 and 6, the results (/¢; and Hy) are not very differ-
ent. However, Lhe effect of commutativity can now be seen
at m > 0.95.

o Having observed that the effect of commutativity is almost
lost for smaller values of m in models 2-6, we will now look
at its effect with model 1. These results are surmmarized
in Table 6. Even at small values of m, the effect of com-
mutativity on the throughput is evident. In addition, it
increases with m. This observation holds at both small
and large values of c.

e In Table 7, we summarize the effect of variations in num-
ber of copies. In Tables 1-6, we assumed that each data
item has exactly the same number of copies. This is more
relevant to Model t. ‘Thus we only consider this model in
determining the effect of copy variations on evaluation of
and 1t;. As shown in this table, the effect is signilicant. As
the variation i number of copies is increased, the nember
of successful transaclions prior to merge decreases. Henee,
the number of conflicts are also reduced. This results in
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a reduction of R, and R, AS long as the varigtic_pns are
not very significant, the differences are also not significant.

6. CONCLUSIONS

In this paper, we have introduced the problem of estimating
the number of rollbacksin a partitioned distributed database sys-
tem. We have also introduced the concept of transaction commu-
tativity and described its effect on transaction rollbacks. For this
purpose, the data distribution, replication, and transaction char-
acterization aspects of distributed database systems have been
modeled with three parameters. We have investigated the effect
of six distinct models on the evaluation of the chosen metric.
These investigations have resulted in some very interesting ob-
servations. This study involved developing analytical equations
for the averages, and evaluating them for a range of paramecters.
We also used simulation fos vne of these models. Due Lo lack
of space, we could not present all the obtained results in this
paper. In this section, we will summarize our conclusions from
these investigations.

We now summarize these conclusions.

o Random data models that assume only average information
about the system result i very conservative estimates of
system throughput. One has to be very cautious in inter-
preting these results.

Adding more system inflormation does not necessarily lead
to better approximations. In this paper, the system infor-
mation is increased from model 6 to model 2. Even though
this increases the computational complexity, it does not
result in any significant improvement in the estimation of
number of rollbacks.

specific systemn. lHere, we define the
transactions completely. Thus it is closer to a real-life sit-
uation. Results (analytical or simulation) obtained from
this model represent actual hehavior of the specified sys-
temn. However, results obtained from such a model are too
specilie, and e’ be extended for other systeins.

Model 1 represents a

Transaction comntalivity appears to significantly reduce
trausaction rollbacks mn a partitioned distributed database
system. This factis only evident from the analysis of model
1. On the other haud, when we look at models 2-6, it is
possible to conctude thal commutativity is not helpful un-
less it is very very high. Thus, conclusions from model 1
and models 2-6 appear to be contradictory. Since mod-
ols 3.6 assmne average transactions that can randomly se-
lect any data item to read (or write), the evaluations fram
these models are likely to predict higher conflicts and hence
more rollbacks. ‘The benefits due to commulativity seem Lo
disappear in the average behavior. Model L, on the other

hand, describes a specific systemn, and hence can accurately
compute the rollbacks. It is also able to predict the benefits
due to commutativity more accurately.

The distribution of number of copies seems ta affect the
evaluations significantly. Thus, accurate modeling of this
distribution is vilal to evaluation of rollbacks.

In addition to developing several system models and evalua-
tion techniques for these models, this paper has one significant
contribution to the modeling, simulation, and performance anal-
ysis community.

If an abstract system model with average information is
employed to evaluate the effectiveness of a new technique
or a new concept, then we should only expect conservative
estimates of the effects. In other words, if the results from
the average models are positive, then accept the results.
If these are negative, then repeat the analysis with a less
abstracted model. Concepts/techniques that are not ap-
propeiate for an average system may still e apphcable Tor
soine specific syslems,
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Table 1. Elfect of Number

of Partitions on Rollbacks

p=dp=6c=1 m=Apm=pr=3c=3
Model | Belore ) It, Alter || Belore I Ity After
# Mege Merge || Merge Merge
Sim. 50200 1000 205 X995 31450 0 0 31450
1 K200 1o 199 19001 31400 0 0 1150
2 ARILS 3597 10422 34397 27069 3460 8945 11664
3 48315 3464 10191 31657 27069 2798 9410 14861
4 48618 3667 10243 34708 27657 3255 9444 11958
5 47276 2679 10238 34360 24207 1507 9106 13594
6 46593 3R52 8570 BT 22356 2937 6673 12747
Table 2. Efleet of Number of Copies on Rollbacks
m=Adp,=06c=2 m=4p=06c=8
Model || Before I, £, After || Before Ry 1, Afler
# Merge Merge | Merge Merge
Sin. 31600 200 15 34385 || 65000 4000 4970 56030
1 31600 200 0 34100 65000 4000 4981 56019
2 J10GY 1998 511y 23982 65000 8OO0 17777 39223
3 31069 160 5331 2110 65000 ROOU 17786 39214
4 31505 JTUS L4200 2377 63000 8000 17786 39214
5 23203 1568 2326 19309 65000 SgUg  JTRTS 39125
6 27138 3413 1701 22024 65000 R000  ITRG0 39140
Table 3. Eilect of Number of Nodes on Rollbacks
m=10p, =1, c=H m=10,p,=10,¢e=12
Model || Before  #, I, Alter || Belore 1, I, After
# Merge Merge || Merge Merge
Sim. [ 612607 1000 G240 51010 || 65000 5000 6231 53769
U [ 61250 4000 6231 51019 || 65000 5000 6231 53769
2 61024 9090 21183 30751 65000 10000 22277 32723
3 61021 8992 21286 30746 | 65000 10000 22286 32714
4 61100 9031 20326 30743 || 65000 10000 22286 32714
5 60968 BOGH 21292 3UGI3 || 65000 10000 22375 32625
6 GURTG U363 20036 30077 65000 10000 22360 32640
ACKNOWLEDGEMENT Garcia-Molina, 11. {1983), “Using semantic knowledge for trans-

This rescarch was sponsored m part by the NASA Langley
Research Center under contract NAG-1-1154.

REFERENCES

Coffman, E. G., E. Gelenbe, and B. Plateau (1981), “O[)‘%illli"/.fl-‘
tion of Number of Copies in a Distributed I);\inlmsv, 1R
Transactions on Software Engincering 7,1, 78-84.

Davidson, S.B. (1982}, “An optimistic protocol _for partitioned
distributed database systems,” Ph.D. thesis, Department
of EECS, Princeton University.

Davidson, S.B. (1984), “Optimism and consistency in partitioned
distributed database systems,” ACM Transactions on data’
systems 9, 3, 456-481.

Davidson, S.B., Il. Garcia-Molina, and ). Skeen (lf)S_S), 'iCousis-
tency in parlitioned networks,” ACM Compuling Surveys
17,3, 341-370.

Davidson, S.B. (1986), “Analyzing partition fatlure protocols,”

Technical Report MS-CIS-86-05, Departinent of Computer
and Info. Sci., Univ. of Pennsylvania.

action processing in a distributed system,” ACM Trans. on
Database Systems 8, 2, 186-213.

Jajodia, S. and P. Speckinan (1985), “Reduction of conflicts in
partitioned databases,” In Proceedings of the 19th Annual
Conference on Information Sciences and Systems, 349-355.

Jajodia, S. and R. Mukkamnala (1990), Measuring the Effect of
Commutative Transactions On Distributed Database Per-
Jormance, To appear in Computer Journal.

Mukkainala, R.(1987), “Design of Partially Replicated Distributed
Database Systems,” Technical Report 87-04, Department
of Computer Science, Universily of lowa.

Mukkamala, R. (1990), “Measuring the Effects of distributed
database models on transaction rollback measures,” Tech-
nical Report Y0-38, Department of Computer Science, Old
Dominion University.

Wright, D. D. (1983a), "Managing distributed databases in par-
titioned networks,” Ph.D. thesis, Department of Computer
Science, Cornell University, (also TR 83-572).

Wright, D. D. (1983b), “On merging partitioned databases,” ACM
SIGMOD Record 13, 4, 6-14.

844




Effects of Distributed Database Modeling on Evaluation of Transaction Rollbacks

Table 4. Eifect of 1 on Rollhacks (Models 5 and 6: py =4, p, =6.¢= 3

Model 5 Model 6

m i Before ' It,  Alter |[ Defore Iy R, After
Merge Merge || Merge Merge
0.00 47276 2679 10238 31360 16593 4852 BH70  311TI
0.50 47276 2679 10238 31360 16593 3852 8470 41171
0.80 47276 2679 U248 39360 16593 3852 8570 31171
0.90 47276 2679 T0230% 0 1360 16593 384X 2574 31T
0.95 47276 2673 10239 41300 46593 377 RTTY 34175
0.99 AT276 2208 10GGS 31103 16593 2182 10109 34301
1.00 46720 0 0 46726 16593 0 U 16593

Table 5. Effect of 1 on Rollbacks {(Maodel 20 py =4, py = 6)

c=13 c=8

m || Before It i, After || Before 1ty I,  After
Merge Merge || Merge Merge

0.0 | 48315 3597 10422 31397 | 65000 8000 17973 39027
0.27 || 48315 3597 10322 31397 || 65000 8000 17973 39027
0.40 || 48315 3597 10022 44307 | 65000 8000 17973 39027
0.77 || 48315 3597 10322 31397 | 65000 3000 17973 39027
0.95 || 48315 3205 10TUS 302 ) 65000 TGGU IX312 0 39028
0.99 || 48315 986G 2882 BT 65000 4321 21642 39037

1.0 || 48315 0 0 N3L15 | 65000 0 0 65000

Table 6. Elfect of v on Rollbacks (Model 1 py = 1, py = 6)

c=3 ¢ =N

m || Before 12y Ry After | Before Ity 1, Alter

Merge Merge | Merge Merge
0.0 50200 1000 1199 45001 65000 8000 6379 500621

0.27 50200 1004 199 900l 65000 4000 1981 36019

0.40 50200 sU0 1949 19201 65000 1800 2793 60407

0.77 || 50200 0 0 50200 || 65000 0 ¢ 65000
1.0 50200 0 0 s0200 65000 0 0 65000

Table 7. Effect of Variations in #

ol Copies on Rollbacks

(Model 11 py = a4, py = Gwfe:m =027, wofc:m = 0.0)

pr=Ap,=6,c=13

Copy Before I I, After
Distribution Merge Merge

dy = 500 w/c¢ 50200 1000 199 49001

wo/fc 50200 4000 1199 45001

dy = dy = 100,dy = 300 w/c 48300 1000 Y97 46303
wo/c 48300 4200 1793 42307

dy = dy = 167,dy = 166 w/eo 400 200 0 41200
wofc ALH00 2000 597 38803

dy =dy=dy =dy =dy = 100 ) w/e 10400 200 0 40200
wofc 40100 1600 TUT 48003

4 = ds = 250 w/c 28700 0 0 28700
wofc 28700 1200 199 27301
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Abstract

Data distribution, data replication, and system reliability are key fac-
tors in determining the availability measures for transactions in distributed
database systems. In order to simplify the evaluation of these measures,
database designers and researchers tend to make unrealistic assumptions
about these factors. In this paper, we investigate the effect of such assump-
tions on the computational complexity and accuracy of such evaluations. We
represent a database system with five parameters related to the above fac-
tors. Probabilistic analysis is employed to evaluate the availability of read-
only and read-write transactions. We consider both the read-one/write-all
and the majority-read/majority-write replication control policies. We con-
clude that transaction availability is more sensitive to variations in degrees
of replication, less sensitive to data distribution, and insensitive to reliabil-
ity variations in a heterogeneous system. The computational complexity of
the evaluations is found to be mainly determined by the chosen distributed
database model, while the accuracy of the results are not so much dependent
on the models.

Keywords and phrases: Availability, Database models, Distributed
Systems, Distributed Database Systems, Performance Evaluation, Proba-
bilistic Analysis, Reliability, Transaction Availability



Measuring the Effects of Distributed Database Models
On Transaction Availability Measures

1 Introduction

A distributed database system is a collection of cooperating nodes each
containing a set of data objects 1A user transaction can enter such a
system at any of these nodes. The receiving node, some times referred to
as the coordinating or initiating node, undertakes the task of locating the
nodes that contain the data objects required by a transaction.

When we consider systems that require high guarantees for successful
execution of transactions (especially for read-only transactions), it is impor-
tant to consider transaction availability. Even though there are a number
of availability (and reliability) metrics defined for computer systems (2,9],
in this paper we choose two metrics: Start availability (TSA) and finish
availability (TFA).

Transaction start availability (TSA) defines the probability with which
a transaction can successfully start its execution. By our definition, a trans-
action is said to have a successful start when it can access all the required?
copies of the data objects that it needs for its execution. For simplicity, we
consider a data copy at a node to be available for access when that node
is up and it is accessible from the node that is currently coordinating the
execution of the transaction. A transaction can start its execution as soon
as all the required data object copies are available.

Transaction finish availability (TFA) defines the probability with which a
transaction can complete its execution, given that it has started its execution
successfully. If execution times for transactions are negligible (as compared
to the mean-time-to-fail of the components), then this reliability will be
close to 1. However, since transactions take a finite but significant amount
of time to execute, it is quite possible that the nodes that are involved in
the execution of a transaction (and available at the start of execution) may

'In this paper, the basic unit of access in a database is referred to as a data object.

2The number of copies of an object that are required to be accessed by a transaction
depends on the operation (read or write) and the replica copy control (e.g. read-one/write-
all, majority) [3,18].



fail during its execution. In this case, the transaction is said to be aborted.
In such cases, the execution needs to be restarted.

Formal definitions and evaluation of these two metrics (TSA and TFA)
depend on several factors such as the fault model of the system (including the
reliabilities of the system components), the transaction execution policy, the
data distribution policy, the degree of data replication, the concurrency and
commit protocols, and the characteristics of the given transaction [4,7,9]. In
addition, TFA depends on the execution times of transactions.

Even though it is theoretically possible to formulate equations expressing
the two metrics in terms of the above mentioned factors, the evaluation of
these equations is extremely cumbersome and requires unreasonably high
computation times. The evaluation of the exact values for these measures
generally involves both analysis and simulation. Evaluation tools with such
large execution times are certainly not acceptable to a database designer
who needs to evaluate a number of such possible database configurations
before arriving at a final design.

To overcome these problems, designers and researchers generally resort
to approximation techniques [7,3,16]. These techniques reduce the compu-
tation time by making simplifying assumptions regarding data distribution,
data replication, and transaction execution. The time complexity of these
techniques primarily depends on the underlying model as well as the evalu-
ation technique.

The effect of data distribution and replication models on evaluation of
transaction response time has been measured in earlier studies {13]. These
studies indicate that the computational complezity of a selected database
model does not necessarily reflect the accuracy of the resulting performance
evaluations. In fact, a model requiring computational time of 3 0(n?) has
yielded results very close to those from a complex model with O(n™) com-
plexity.

In this paper, we study the effect of data distribution, data replication,
and fault models on the accuracy of transaction availability evaluations. We
employ probabilistic analysis to arrive at the estimates for the desired values
for six typical models.

The balance of this paper is outlined as follows. Section 2 formally

3Here, n denotes the number of nodes in a distributed system.



defines the problem under consideration. In Section 3, we describe a clas-
sification scheme for data distribution and replication policies. Section 4
illustrates the advantages of probabilistic analysis over simulation, and em-
ploys this technique to evaluate the measures for two different models. In
Section 5, we compare the analysis methods for six models based on com-
putational complexity, space complexity, and the accuracy of the measures.
Finally, in Section 6, we summarize the obtained results, and suggest a
general approach for design and analysis of these systems.

2 Problem Description

In this paper, a read-only transaction is characterized by the average number
of data objects that it reads (i.e., its read-set size). Similarly, a read-write
transaction is characterized by the number of data objects that it reads
(read-set size), and the number of data objects that it updates (write-set
size).

The problem of estimating the availability of a read-only transaction

may be formulated as:

Given the following parameters, estimate TS A, and T F A, for a read-
only transaction that requires s data objects for read access.

e 7, the number of nodes in the database?

e N, the index set for the nodes in the database; N =1{12,...,n}

o d, the number of data objects in the database

o D, the index set for the data objects in the database; D =
{1,2,...,d}

¢ GD, the global data directory that contains the location of each of
the d data objects; the GD matrix contains d rows and n columns,
each of which is either a 0 or a 1; i.e,, GD;; = 0 or 1, Vi €
DandVjeN

e the reliability of the nodes in the network.

The problem of estimating the metrics for a read-write transaction can

be similarly defined.

4Table 1 summarizes the notation used in this paper



Description

Ay, Az
By, B,
C1,Co
Dy, D,
Ey Er

GA
GD
N
TSA,

TSA,

TSA"

The number of data objects accessed from the ith group
The average number of copies of a data object

Ith class

The number of copies of a data object in the
The number of data objects in the database
The number of data objects in the i** class
The number of data object groups

Number of live nodes

Number of nodes

The number of nodes in the i** class

The number of copy classes

The number of reliability classes

The average node reliability

The reliability of a node in the i** class
The size of the read-set

Policies representing the data grouping
Policies representing limits on the data objects per node

Policies representing the degree of replication

Policies representing the copy distribution

Policies representing the component reliability

The index set for the data objects in the database

Group access vector representing the number of objects accessed
from each class or group

Global data directory (or dictionary)

The index set for the nodes in the database

Transaction start availability of a read-only transaction with
read-set size s (read-one/write-all policy)

Transaction start availability of a read-write transaction with
read-set size z + y and write-set size y (read-one/write-all policy)
Transaction start availability of a transaction with

read-set size s (read-majority/write-majority policy)

The size of the read-only ob ject set

The size of the read-write object set

Table 1: Notation

4



3 Model Description

As stated in the introduction, the primary objective of this paper is to in-
vestigate the effect of data distribution, replication, and fault models on
availability estimations and the computational complexity of these evalua-
tions.

To describe a data distribution, replication, and fault model, we charac-
terize it with five orthogonal parameters:

A - Object grouping (or clustering)

B - Limits on the number of data objects per node

C - Degree of object replication (or the number of copies)
D - Constraints on distribution of object copies

E - Constraints on component reliability

We now discuss each of these parameters in detail.

Some distributed database systems allocate individual data ob jects (3,
10]. We categorize this strategy as A;. In other systems, data objects
are first partitioned into disjoint groups, and then the resulting groups are
allocated [12,16,17]. Thus, the copies of all the data objects in a given group
are allocated to the same set of nodes. We refer to this strategy as As.

Some database designers place no explicit limit on the number of data
objects that may be placed at a node {7}. This strategy is named as B;.
Others restrict the number of data objects that may be placed at a given
node. This may be attributed to storage limitations or for security reasons
[11]. We refer to this strategy as Bs.

For simplicity, several analysis techniques assume that each data object
has the same number of copies (or degree of replication) in the database
system [6,16]. Some other techniques characterize the degree of replication
of a database by the average degree of replication of data objects in that
database 7). In this paper, both these categories are referred to as Ci.
Others treat the degree of replication of each data object independently.
We refer to this as strategy C,.



Some database designers and analysts assume that each data object (or
group) copy is randomly distributed among the nodes in the distributed
system {7]. We refer to this as D;. Others assume some specific allocation
schemes for data object (or group) copies [11]. Assuming complete knowl-
edge of data copy distribution (GD) is one such assumption. Depending
on the type of allocation, such assumptions may simplify the performance
analysis [13]. This category is referred to as D.

Again for simplicity, some database designers and analysts assume that
all components (nodes and links) in a distributed system have the same
reliability factor {1]. In this paper, we only consider node failures and node
repairs®. We let E; denote a policy where all nodes are assumed to have
the same reliability characteristics, and E, denote a poficy where nodes are
classified based on their reliability characteristics.

Using this classification, any known data distribution, replication, and
reliability policies may be categorized by these five parameters. For example,
< Ag, B1,C1, D2, Ey > represents a policy where

1. Data objects are first grouped and then allocated.

2. There is no ezplicit limit placed on the number of data objects (or
groups) allocated to any node.

3. Each group has the same average degree of replication.

4. The copies of a group are distributed in some systematic manner
among the nodes in the system.

5. All nodes in the system have identical reliability characteristics.

With these five parameters, we can describe thirty two basic policies.
Several variations of these basic schemes are possible due to variations in
systematic distributions (D), variations on the limits of data objects per
node (B;), and the types of grouping (A2). Due to space limitations, in this
paper we chose to present the results for six of these policies. Interested
reader may refer to [14] for an analysis of other policies.

5That is, the underlying network structure almost always facilitates communication
among live nodes.



We chose the following six policies to study the effect of the above men-
tioned parameters on availability computations:

Model 1: < A,,B,,C1, Dy, Ey >
Model 2: < Az, By,C1, D1, Ey >
Model 3: < A4y, B,,C1, D1, E1 >
Model 4: < A1, B1,C2, D1, E1 >
Model 5: < Ay, By, C1, D2, E1 >

Model 6: < Al,Bl,Cl,Dl,E2 >

Among these, Model 1 represents a simple system that is computation-
ally attractive (as shown in Table 2). Model 2 reflects the effect of data
grouping on the evaluation. Similarly, Model 3 reflects the effect of placing
limits on number of data objects. Model 4 represents the effect of varia-
tions in number of copies of data objects on availability evaluation. Model
5 shows the effect of biased or non-random distributions of data objects
on the evaluation. Finally, Model 6 reflects the effect of non-homogeneous
environment (i.e., different node reliability characteristics) on transaction
availability evaluation.

In the following section, we derive closed-form expressions for the average
transaction availabilities for Models 1 and 2.

4 Probabilistic Computation of the Availabilities

There are several approaches for computing the availability of a given trans-
action in a database. These computations assume a given data distribution,
data replication, and fault models. We now look at two such methods:
simulation and probabilistic analysis.

Using simulation, one can generate the data distribution matrix (GD)
based on the data distribution and replication model. One can also generate
the reliabilities for each of the nodes in the system 6, Similarly, one can gen-
erate all possible transactions (with different read-sets and write-sets) that

8Here, we ignore the possibility of network partitioning, and thereby ignore link relia-
bility factor.



can be received at each of the nodes in the network. For each such transac-
tion received by the system, the data distribution matrix can be searched,
and its ability to access all the required data objects may be verified. In
addition to generating transactions, we should also generate node failures
and node repairs in the time domain. Thus, some transactions may not be
successful due to the inaccessibility of one or more data objects that they re-
quire (due to node failures). With such statistics (of successful/unsuccessful
transactions) in hand, we can obtain the average availability of a transaction
of a given size. This average corresponds to a single distribution matrix. The
generation and evaluation process may have to be repeated sufficient times
to get the required confidence in the final result. Since there are d data ob-
jects, there are (':) possible transactions with read-set 7 size s, and there are
n nodes where each of these may be received. Given a transaction, and the
node where it is received, determining the state (successful/unsuccessful) of
a transaction takes at least O(nd) computations (i.e., to scan the columns of
the G D matrix corresponding to available nodes). If the distribution matrix
is generated k times, then the evaluation of the desired average set size for a
transaction of size s takes O(and(‘:)) time. In general, & is a function of the
number of copies, the number of data ob jects, the number of nodes, and the
data distribution model, and it could be very high. Suppose d = 100, s = 10,
and n = 10, then this method requires approximately 10"k computations.
Even for reasonable values of k, this is an unreasonably high computation
time.

To avoid this large evaluation time, we adopt probabilistic analysis. In
this analysis, we essentially study the given data distribution and reliability
model and arrive at an expression for the average transaction availability
for a given read-set (or write-set) size. With probabilistic analysis, some
data distribution models (e.g., Models 1 and 3) may require insignificant
amounts of computation. Some may need moderate computation times (e.g.,
Models 2 and 6), whereas others may need large computation times (e.g.,
Models 4 and 5). Regardless of the model, all these need considerably less
computation time (with more accuracy of results) than the corresponding
simulation methods.

We now illustrate the probabilistic method of analysis by applying it for

"The corresponding term for write-sets of update transactions may be easily written.



Models 1 and 2. Expressions for other models may be derived in a similar
manner. Interested reader may find the details of these derivations in {14].

4.1 Derivation of Reliability Metrics for Model 1

Model 1, designated as < Ay, By, C1, Dy, By > assumes the following about
the data distribution and replication:

[R1] The data objects are allocated individually (i.e. not grouped) to the

nodes.

[R2] There are no limits placed on the number of data objects that may be

placed at each node.
(R3] The average degree of replication (c) of a data object is given.
[R4] The copies of a data object are allocated randomly.
[R5] Each node in the system has identical reliability (= r).

Further, to simplify the illustration of the current analysis, we make the
following assumptions regarding the distribution of groups, and the partici-
pating node set determination:

[R6] Each transaction is equally likely to access any data object.

[R7] The transactions that enter the distributed system are coordinated
by a set of reliable servers that search the distributed database system
(i.e., the availability of nodes and their dictionaries) for the availability
of the required data objects.

Due to Rule R7, we will not distinguish transactions that are received
at different locations in the system. Thus, we will disregard the originating
node as a parameter in this analysis®.

8The analysis can easily be extended to a situation where transactions received at an
unavailable node are automatically considered as unsuccessful.



4.1.1 Derivation of Availability for Read-only Transactions

Let us consider a read-only transaction Tj with s objects in its read-set and
received at one of the servers. Let us also assume that the copy control
algorithm follows a read-one/write-all policy. Thus 7} needs to access any
one of the ¢ copies of a data object that it requires.

Given that exactly & of the n nodes are available (i.e., up), the probability
that at least one copy of a given data object is available is given by:

n—k
(")
()
By definition of the read-one/write-all policy, Pk, represents the probability
that a data object is available for read access in the system. Since each data
object is allocated independently to the nodes in the system (by Rules R1

and R2), the probability that all s data objects required by T) are available
for read access within these k nodes can then be expressed as:

n—-ky1°3
Pow= Py = [1 , (T)‘)} @)

Assuming the reliability of any given node to be r (from Rule R5), the
probability that Ty has successfully started is:

TSA, i (:) r*(1 - ) kP,
n n—ky]?®
=Y (Z)rk(l — )k [1 - ((3))] (3)

[

Pk,l = 1-— (1)

Given that T; has successfully started, we will now compute the prob-
ability with which it can be successfully completed. Let us assume that n,
nodes are involved in the execution of Ty, and that it has an execution time
of t units. Now, in order for Tj to be successful, all these n, nodes have to
be available for at least ¢t units of time, given that they were available at the
start of execution. Assuming an exponential distribution for time between
node failures with a failure rate of A, the probability that a node which is
available at time zero is available throughout time t is given by:

Ay = e (4)
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From here, the probability that none of the n, nodes have failed during time

t is given by:

TFA, = A}

—_ e—n,t,\ (5)

Estimating n, for transaction Ty is a complex problem. This problem has
been well investigated and the details of the solutions may be found in (15).
In this paper, we assume that n, for T, has been obtained a priori for a
given data distribution and fault model.

4.1.2 Derivation of Availability for Read-write Transactions

Let us now consider a read-write transaction T, with s objects in its read-
set and y objects in its write-set. Let us assume that for a given read-write
transaction write-setCread-set [3,7]. Thus, among the s data objects, y
objects are both read and written, while z = s — y data objects are only
read. (Note that the intersection of the read-only and the read-write sets of
the data objects is empty.) Since the replication control algorithm follows a
read-one/write-all policy, T; needs to access all ¢ copies of the y data objects
and any one copy of the r data objects.

Given that exactly k of the n nodes are available (i.e., up), the probability
that all ¢ copies of a given data object are available is given by:

Py = ‘('E—) (6)
' (2)
Since each data object is allocated independently to the nodes in the system
(by Rules R1 and R2), the probability that all y data objects required by
T, are accessible for update is expressed as:

, (_’S)]y
Py = [(:)

Similarly, the probability that all z data objects are available for read access

may be computed as:

n-k\1%
P, = [1_(_(;171] (®)

11



From here, the probability that T, is successfully started may be computed

as:

n n e
TSA,, = Z(k>rk(l—r) kP,z’yPk.z

j ky1¥ n-ky17%
] o e I

The finish availabilities for T2 may be similarly computed using Equa-
tions (4) and (5) where n, is now replaced by nz [14].

4.1.3 Derivation of Availability for Transactions with Majority

Consensus

In the above two sections, we dealt with read-one/write-all replication con-
trol policy. The majority consensus protocols [18] which require the acces-
sibility of at least a majority of the total copies of a data object for both
read and write operations are very attractive in a failure prone environment.
Since both read and write operations require the same number of copies of
a data object, in this analysis we do not distinguish between read-only and
update transactions. Here, we simply refer to 7\ as a transaction.

Let m = [%] represent the majority of copies. Then the expression for
start availability for Ty is given as:

" (n J GHeIn)

TSA" = S |ra-n" Y (10)
k=m k il=m (C)

Similarly, the expression for the finish availability for T, may be expressed

as:

TFA, = A}
= et (11)

where n, now represents the average number of nodes accessed for executing
T, with the majority consensus protocol [15].

12



4.2 Derivation of Transaction Availability for Model 2

Model 2, designated as < Aqg, B,.Cy, Dy, Ey > is similar to Model 1, except
that the data objects are now grouped, and the groups are then allocated
to nodes in the system. This may be described as:

R9] The data objects are first grouped and the groups are then allocated,
g

to the nodes. Let the d data objects be partitioned into ¢ distinct

groups. Let di represent the number of data objects in group k. Thus,

Zf=1 d; =d.

[R10] There are no limits placed on the number of groups that may be placed
at each node. .

[R11] The degree of replication is the same for each group (c).
[R12] The copies of a group are allocated randomly.

(R13) Each node in the system has identical reliability (r).
Again, to simplify analysis, we make the following assumptions:
[R14]) Each transaction is equally likely to access any data object.

[R15] The transactions that enter the distributed system are coordinated
by a set of reliable servers that search the distributed database system
(i.e., the availability of nodes and their dictionaries) for the availability

of required data ob jects.

4.2.1 Derivation of Availability for Read-only Transactions

Once again let us consider transaction T; executing under a read-one/write-
all policy. Given that k of the n nodes are available (i.e., up), the probability
that at least one copy of group k is available is given by:

)

1 — —5—= (12)
@

If the vector GA =< ay,as,...,a; > represents the number of data objects

accessed by T from each of the t groups, then the probability that Tj is

13



successfully started may be computed as:

n t (= ]/®
TSA, = Zpr(G.A)Z(”>r'(1_r)"-‘H [1—+] (13)
GA =1 ! k=1 (c)

@)@ .. ()

Pr(GA) = 2 (14)
()
1 ifag>0
k) = 15
f(k) {0 otherwise (15)
GA = <aj,az,...,a >,

t
Sar=s and Vk1<k<t0<ap <di (16)

k=1

When data objects are equally distributed among the groups (ie,dy =dy =
ce.=dy = %), then this expression may be further simplified as:

dk

n ot nel\1k [ /n=fh1t—k
TSA, = n‘rl —Tn_1<t>[—(fl)] [(;)] (i
,Z<l> =) | T T
(1

)
)

)

The expression for TF A, is the same as in Equation (5).
4.2.2 Derivation of Availability for Read-write Update Transac-
tions

Let us consider transaction T5 which requires z ob jects for read-only oper-
ations and y data objects for read and write operations (s =z +y). Thus
we need to define two GA vectors for read-only and read-write data object
sets:

GA' = <ad},d,...,a0;>
t
Zak:x and Vk1<k<t0<ad <ds

1
GA" = < a'l',a'z',...,a',' >

t
Y a{ =y and Vk1<k<t0<a’ <di—ag

14



In computing TSA;, we should recall that if a data object is write
accessible under a given node availability conditions, it is also read accessible.
However the reverse is not true. These two facts are made use of in deriving
the following expression for TSA7

TSAL, = Y 2 Pr(GA’)Pr(GA”)zn: (7) ri(1 = r)™!

GA'GA" =1
t (n—l) k) ¢ l) f”(k)
1-—= - 18)
dy\ (d2 de
Pr(GA") = GG (a'z_)d' -G
(%)
(dl;’;";)(d?;'a"z) . (dra—"a:)
Pr(G’A') = ! Z_r :
“39)
1 ifa?=0Aa,>0
! k = k k
(k) { 0 otherwise
1 ifaf >0
" k — k
(k) { 0 otherwise

As before, when data objects are equally distributed among the groups
(ie. dy=dy=...=d = %), this expression may be simplified as:

not o t=ky /o L Ik
TSA,, = >3 (I)rl(l—r)n—l (Zl) (t k:I) [((_fl))']

1=1 k1=1 k2 =0 c
[1 _ (n:l) + (‘{:)]kz [(nc_l)]t—kl—kg (%L) (d(klj:z)—y)
() (@) G

(19)

The finish availability TFA,,, may be computed using Equation (5)
where n, is now replaced by n., which is assumed to be known a priori in
this paper.
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4.2.3 Derivation of Availability for Transactions with Majority

Consensus

As described in Section 4.1.3, under the majority consensus protocol both
the read-set and read-write set are treated in the same way for access prob-
ability computations. Thus, we only consider a read-only transaction with
a read-set size of 5. The expression for TS A’ can now be written as:

n n t c (l')(n—l’) fk)
TSAY = Y Pr(GA)Y (1>r‘(1 -] [Z _'(T)—‘_] (20)
GA =1 k=1 U/'=m [+
m = [”;11 7 (21)

where Pr(GA) and f(k) are as defined in Equations (14) and (15).
Once again, when data ob jects are equally distributed among the groups
(ie.dy=dp=...=dy = %), this expression may be written as:

" LIS AN nt {0 min(te) (lll)(:——li) ‘
TSA] = § E T (1-r) L E T
{=m k=1 ¢

li=m

e ()] 7 )
]G 2

ll =m

5 Comparison of the Availabilities for the Six
Models

As mentioned in the introduction, the main objective of this paper is to
determine the effect of data distribution, replication, and fault models on
the estimation of transaction availability. To achieve this, we evaluate the
desired measure using six different models. The comparison of these evalua-
tions is based on computational time, storage requirement, and the average
values obtained.

Due to space limitations, we cannot present the detailed derivations for
the average values for Models 3-6. The final expressions, however, are sum-
marized in the appendix.
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5.1 Computational Complexity

We now analyze each of the evaluation methods (for Models 1-6) for their
computational complexity.

e Let us refer to Model 1. From Equations (3) and (9), it is clear
that computation of TSA, and TSA;, take O(cn?) time S,
larly, from Equation (10), it is clear that the computation of TSAY

Simi-

requires O(¢?n?) time.

e We now derive this complexity term for Model 2. Let us first look
at the computation of TSA,. From Equation (14), we derive that
the computation of Pr(GA) requires O(s) time. The number of G As
generated is approximately O(s*) where t represents the number of
data object groups. Given a GA vector and Pr(GA), computation of
TS A, requires O(nct+n?) arithmetic operations (from Equation (18)).
Thus the evaluation of TS A, requires O(st (nct + n? + s)) time. Sim-
ilarly, we can conclude that TSA , requires O(z'yt(nct + n® + s))

time (Equation (19)), and TSA{ requires O(st(nc*t + n* + s)) time

(Equation (20)).

e For Model 3, the computational complexity for TS A, is O(n?+n(s+c))
(Equation (23)). Similarly, TSAZ , and TSA” require O(n? +n(c+s))
and O(n? + n(c? + s)) respectively (Equations (24) and (25)).

o The computational complexity for Model 4 depends on the number
of copy categories. Assuming that s < d for k = 1,2,...p, we can
generate approximately s? different C'A vectors. Thus the computation
of TS A, requires O(sP(n?®+npc+s)) time. To compute TSA’, we need
to compute the number of possible CA’ and C A" vectors. There are
approximately zP C A’ vectors and y? CA” vectors. Thus, TSAL
requires O(zPy?(npc + n? + 8)) time. Similarly, we can conclude that
TS A" requires O(sP(npc? + n? + s)).

e In Model 5, we assume that the entire data dictionary information
is available to us. Given a GD matrix and a node status vector S,

®Here, we are assuming that the evaluation of the terms (Z) and p? takes O(gq) and

O(1) time respectively.
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computation of f(S), f'(S), and f(S) require O(nd) time to search
the matrix. Given n, there are 2" possible S vectors. Thus the com-
putations of TSA, TSA’, and TSA” require O(2"(nd + s)) time.

e In Model 6, the number of N A vectors generated is (n; + )(n2 +
1)...(ng+1). For simlification, we approximate it as (% + l)q. Given
a N A vector, the computation of TSA, TS A’, and TS A” require O(s+
c+q) , O(s+c+q) and O(sc+c?+qc) time respectively. Thus the three
metric evaluations require O(({"— +1)¥(s+c+4q)), O((% +1)(s+c+q)),
and O((2 +1)%(es + c? + ¢q)) time respectively.

These complexities are summarized in Table 2. From this table it may be
observed that models 1 and 2 are computationally very attractive. The
complexity of evaluations with models 2,4, and 6 depend on the number of
groups, the number of copy variations, and the number of reliability vari-
ations respectively. For systems with a large number of nodes, evaluations
with model 5 are very expensive.

5.2 Space Complexity

We now discuss the space complexity for the six models:

e Models 1 and 3 just require the values of d,c,s,r and n. Thus the
storage requirement is O(1)

e Since Model 2 requires that the d; values be stored, and that the GA
vectors be generated, it requires O(t) storage, where t is the number
of data groups.

o Model 4 requires O(p) storage to contain the p copy classes.
o Model 5 requires O(nd) storage for the GD matrix.

¢ Model 6 requires O(q) storage to contain the node reliability class
information.

Thus, Model 5 has the largest storage requirement. These complexities are
summarized in Table 3.
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Model Computational Complexity
Read-only Read-write Majority
1 O(cn?) O(cn?) O(c*n?)
2 O(s(nct + n? + s)) O(z'y'(nct + n® +5)) | O(s'(nc?t + n? + s))
3 O(n? + nc + ns) O(n? + nc+ ns) O(n? 4+ nc? + ns)
4 O(sP(npe + n? +3)) O(zPy?(npe + n? + s)) O(sP(npc? + n? + s))
5 O(2™(nd + s)) O(2™(nd + s)) O(2"(nd + s))
6 O((;—‘+1)‘7(s‘+c+q)) O((%+1)q(s+c+q)) O((§+1)q(cs+c‘2+cq))

Table 2: Computational Complexities for the Evaluation of Availabilities

Model

Space
Complexity

S UV e W N

0(1)
O(t)
o(1)
O(p)
O(nd)
O(q)

Table 3: Space Complexities for the Evaluation of Availabilities
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5.3 Comparison of the Availabilities

In order to compare the effectiveness of each of these models, we have evalu-
ated availabilities for a wide range of parameters. Due to space limitations,
in this paper, we only present a small subset of these results. Similarly,
since TFA,, TFAL ,,
in models, we are not presenting these results here. We only present the

and TFA” are found to be insensitive to variations

results for the transaction start availabilities. These results are summarized
in Figures 1-7.

Figures 1-3 compare the availabilities obtained from the six models. The
following assumptions are made for models 1-6:

1. In Model 2, we assume that the d data objects are grouped into n
data groups each containing d/n data objects. This is similar to the
assumptions in [13].

2. In Model 3, we assume that each of the n nodes in the system is
allocated ezactly the same number of data objects (equal to de/n).

3. In Model 4, we assume that d/2 data objects have ¢ copies, d/4 data
objects have ¢ + 1 copies, and the rest have ¢ — 1 copies. This keeps
the average copies the same (i.e., ¢) but brings a copy variation factor
into consideration.

4. In Model 5, we assume that the d data objects are allocated system-
atically so that the copies of the ith data object are allocated, in a
circular manner, to the nodes starting from (¢ @ n) + 1.

5. In Model 6, we assume that n/3 nodes have reliability r — 0.1, n/3
have reliability = + 0.1 and the rest have a reliability r. 10

Figure 1 summarizes the results for read-only transactions with read-one/write-
all policy. Figure 2 presents these results for transactions (read-only or
read-write) with majority-read/majority-write protocol. Finally, Figure 3
summarizes the results for read-write transactions with read-one/write-all
policy. From these results, we make the following observations:

19When r = 0.95, we assume that n/3 nodes have reliability r —0.5, n/3 have reliability
r + 0.05 and the rest have a reliability r.
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e For read-only transactions (with read-one/write-all policy),

(i)

(if)

(iii)

(iv)

Evaluations with models 1 and 3 are close over the entire range

of sand r.

Evaluations with models 2 and 5 are also close over the entire
range of s and r. This may be explained by the fact that the
number of groups ¢ = n = 10 for model 2 and the systematic
distribution for model 5 implicitly results in 10 groups. However,
they do differ in the manner in which these groups are distributed.

For r > 0.95, evaluations with all models, excepting model 4, are
quite close.

Evaluations with model 4 appear to significantly deviate from
all other models for > 0.75. This implies that modeling of
the degree of replication is a very important task in availability

evaluations.

e For transactions with majority-read/majority-write policy,

(v)

(vi)

(vii)

(viii)

Evaluations with models 1 and 3 appear to be close. Similarly,
evaluations with models 2 and 5 are close. In addition, evalua-
tions with model 6 are close to evaluations with models 1 and
3.

For s > 25, the availabilities appear to be independent of the
read-set size. This implies that computations for s > 25 are
redundant.

The evaluations with models 2 and 5 seem to differ at higher
values of n. The evaluations with the other four models are close
for n = 20. This is an interesting observation.

Once again, the variations in degree of replication of individual
data objects appears to have a dominating effect on availability

evaluations.

e For read-write transactions with read-one/write-all policy,

(ix)

The availabilities for s > 5 are significant only when 7 > 0.99.
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(x) Since the availabilities are generally low, the effect of the differ-
ences in the models seem to be insignificant. At high reliabilities
(i.e. r > 0.99), the evaluations with model 4 seem to deviate
from the evaluations with the other models.

We will now study the effect of the individual model parameters.

e Models 1 and 3 are very simple, and need no further investigation.

Evaluations with model 2 represent the effect of data object group-
ing on availability (Figure 4). As the number of groups is increased,
the availability seems to be decreasing. This effect seems to dimin-
ish for ¢ > 25. This effect is insignificant for read-write transactions.
Similarly, this effect seems to vanish at high node reliabilities.

Evaluations with model 4 represent the effect of variations in degrees
of replication of data objects (Figure 5). The effect of these varia-
tions seem to be insignificant on read-write transactions. The effect
of copy variations seem to be more apparent at high node reliabilities.
Similarly, this effect seems to be more pronounced on read-only trans-
actions (with read-one/write-all policy) than the other two classes.

Model 5 represents the effect of data distribution on the availability
evaluations. From Figure 6, it may be observed that the distribution
effect is only evident at s > 10. In addition, the effects are more
significant for read-only transactions than the other two classes. The
effect is less evident at high node reliabilities.

Model 6 represents the effect of node reliability variations on avail-
abilities. From Figure 7, it may be observed that the variations have
almost no effect on availability evaluations.

Conclusions

The current investigations on measuring the effect of data distribution, repli-
cation, and fault models on transaction availability evaluation have resulted
in some very interesting observations. As part of this study, we chose six
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models representing six different parametric assumptions that researchers
and designers generally tend to make in their analysis. Using probabilis-
tic analysis, we derived expressions for transaction availability for three
classes of transactions: read-only (read-one/write-all policy), transactions
with majority-read/majority-write policy, and read-write transactions (with
read-one/write-all policy). The effect of the six parameters is measured by
evaluating availabilities (for different read-set sizes). From here, we conclude
that:

¢ By choosing a proper distributed database model, the computational
complexity of transaction availability evaluations can be significantly
reduced.

e For values of s < 10, all models result in almost the same transaction

evaluation.

e It is not necessary to evaluate transaction availabilities for values of
s > 25.

o Evaluations for the read-only transactions (with read-one/write-all
policy) are more sensitive to database modeling than the other two
classes of transactions.

o The degree of replication of individual (or group) data ob jects seems
to have a significant effect on transaction availabilities. Thus, when
different data objects have different copies, adopting average degree
of replication to represent ant object in a system, may not result in
accurate availability evaluations.

e The actual distribution of data object copies has some, if not signifi-
cant, impact on availability evaluation.

o In a heterogeneous environment where different nodes may have dif-
ferent reliabilities, it is sufficient to represent each node by the average
node reliability, without affecting the availability evaluations.

o Data object grouping (logical or physical) does not seem to effect the
accuracy of availability evaluations as long as the number of groups is
not too small (e.g. When d = 1000, g > 25 is sufficient).
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Distributed database designers and researchers can utilize these results in
choosing appropriate parameters that would result in reduced computational
requirements without sacrificing the resulting accuracy of the design and
analysis of these systems. '
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Appendix

Model 3 < Ay, B, Ci, Dy, Ey >
Here, we assume that each node has exactly the same number ofdata objects

(= £2).
TSA, = i() (1-71)"" ((Ik)) (23)
>

TSA,, =

TSA" = zn: ( ) 1-1-)""‘%)- (25)
k=

TFA, = e’"’“ (26)
TFA,, = e (27)
TFA! = e ™t (28)

o _(";k)]
. = d[l R

_ L0
vo= "[(’:)]

m = 7

Model 4 < Al,Bl,Cz,Dl,El >

Here, each data object may have its own degree of replication specified.
For an efficient computation, we classify the data objects into p categories
(1 < p < n) based its degree of replication. d; denoted the number of data
objects in the [** category where each object has ¢; (1 < ¢; < n) copies.

™
T5A, zPr CA)Z( ) (1=r)"" *H {1 - ((C*))} (29)
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TSAL, = Y Pr(CA") Zprm“ > (k) Fa—r)nF

CA' CcA" k=1
(e e (B
[Mir-—| II|# (30)
=1 [ (C() } =1 {(Cl)
n n P ¢y (k;)(n_f’) LN
TSA] = Pr{CA) D (k) r*(1 - r)"'kH ‘_Zf]_l)‘__ (31)
CA k=m =1 l':m[ Ccy
P
CA = <apap,...,ap> 2 ag=8Yk1<k<p0<ar<dy
k=1
) P
CA' = <d,dy...,a,> Y ap=z, Vk1<k<p0<a<d;
k=1
p
CcA" = <af.dj,... a5 >. Za'é:y, Vk1<k<pO0<al<di-aj
k=1
@) (®) ... ()
Pr(CA) = _1)<n_d__P_
(3)
@ -G
PricaA) = St %
)
(e () . (7)
PrCA"y = —2 o %
(35
[Cl + 11
m =
2

The expressions for TFA,, TFA, ,, and TFA{ are the same as in Equa-
tions (26) - (28).

Model 5 < Al,Bl,Cl,DQ,E1 >

Here, we assume that the entire data distribution is available as a dictionary,

GD.

(1)

TSA, = ZPr (S)~—4—= & (32)
719) y

TSA,, = ZP(S)( ) 5™ (33)

O
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(/19
TSAY, = > Pr(S)—%— (34)
3 )

Pr(S) = P15 (1 - r)"'fm(s)

where

S - Node status vector; S; = 1 = Node j is up; S; =0 = Node j is down.
f(S) - The number of data objects available for read with the given node
status vector (S). This is computed by scanning the columns of the GD
matrix corresponding to the live nodes (as given by S).

f'(S) - The number of data objects available for update (i.e. all ¢ copies
of these data objects are available at the live nodes) with the given node
status vector (S). This is also computed by scanning the columns of the GD
matrix corresponding to the live nodes (as given by 5).

f"(S) - The number of data objects available with a majority of copies
among the available nodes. As before this is computed by scanning the
columns of the GD matrix corresponding to the live nodes (as given by S).
£”(S) - The number of nodes available (or up) as indicated by the vector
S.

Model 6 < Al,Bl,Cl,Dl,EQ >:

Here each node may have its own reliability. For computational purpose, we
categorize the nodes based on their reliability. We assume that there are ¢
(1 € g < n) such categories. We let n; to represent the number of nodes
with reliability r;, and a; to represent the number of currently active (or up)
nodes with this reliability.

[ "‘Z?:x e ! 9 n
TSA, = S Pr(NA)|1- L—n——)} 11 K ">r;* (1- rk)"*w%)
NA L (2) k=1 L\%F

[+

11 KZ:) ra* (1 - rk)"*‘“*] (36)

k=1

Ts4, . Epme i)
"= STPr(NA)| Y _
NA (C)

k=m

TSA,, = 3 Pr(NA) ————(Z'E'a') 1-—————(%2,{:’&‘)
' " () ()
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Figure 1. Transaction Start Availabilities for Read-Only Transactions (with Read—one/Write-all policy)
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Performance Analysis of Static Locking in Replicated Distributed Database Systems

Abstract

Data replications and transaction deadlocks can severely al-
fect the performance of distributed databasc systems. Many
current evaluation techniques ignore these aspects, because it
is difficult to evaluate through analysis and time-consuming to
evaluate through simulation. In this paper, we use a technique
that combines simulation and analysis to closcly illustrate the
impact of deadlock and evaluate performance of replicated dis-
tributed database with both shared and exclusive locks.

1. Introduction.

A distributed database system (DDS) is a collection of co-
operating nodes each containing a sct of data items. A user
transaction can enter such a system at any of these nodes. The
receiving node, often referred Lo as the coordinating node, un-
dertakes the task of locating the nodes that contain the data
items required by a transaction.

In order to maintain databasc consistency and correctness
in the presence of concurrent transactions, several concurrency
control protocols have been proposed (1}. Of these, the most
commonly used are time-stamping and locking protocols. Lock-
ing protocols have been widely used in both commercial and
research environments. In static locking, prior to start of exe-
cution, a transaction needs to acquire either a shared-lock (for
read operalions) or an exclusive lock (for update operations) on
cach of the relevant data items.

Data replication is used to improve the performance of local
Lransaclions and the availability of databascs. In replicated
databascs, one data itemn may have more than oune copy in
the system. Replica control algorithms arc used to maintain
the consistency among these copies. One of these is the rcad-
one/write-all protocol. With this protocol an exclusive lock
need to acquire an exclusive lock from every copy of the data
item . For a shared lock to succeed, any one copy of the data
itern has to be share locked. When transactions with conflicting
lock requests are initiated concurrently, they conld he possibly
blocked due to a deadlock.

There are two major ways to evaluate the performance of
distributed systems: simulation and analysis. Simulation is a
conceptually tractable technique, but requires large computa-
tion time. On the other hand, analysis is computationally faster
but may not be tractable for all problems. in {4], Shyu and Li
proposed an elegant analysis model to cvaluate the response

time and throughput of transactions in a non-replicated DDS.
Assuming ezclusive locking (i.e., only write operations), they
model the queue of lock requests at an object as an M/M/1

VThis rescarch was supported in part by the NASA Langley Research
Center under contracts NAG-1-1114 and NAG-1-1154.

Yinghong Kuang
RRavi Mukkamala
Department of Computer Science
Old Dominion University
Norfolk, Virginia 23529.

queue [3]. This results in a closed-form for the wailing time
distribution at a node, expressed in terms of the average rates
of arrivals of requests and the average lock-holding time. With
shared lock and replications added into the picture, it is very
difficult to have a close model for it. Because of the limita-
tions of simulation and analysis, we develop a technique that
combines simulation and analysis.

This paper is organized as the follows. In Section 2, we de-
scribe the model used in our performance evaluation. In Section
3, we propose an evaluation technique. In Section 4, we illus-
trate the results. Finally, Section 5 has the conclusions.

2. Model -

Our model has the following parameters:
o There arc n nodes.
e There are d data items in a DDS.

o A data item may be located at exactly ¢ number of nodes.
"The dc data copies are uniformly distributed across the n’
nodes.

o Each transaction accesses k data items.

e ris the read ratio. So among k data items to be accessed,
+k are accessed only for read operations, and the rest
are for read-write operations. Due to the read-one/write-
all replica control policy, a transaclion thust procure rk
shared locks for rk read operations and (1 —r)kc exclusive
locks for the (1 — r)k read-write operations.

o Each data item is equally likely to be accessed by a trans-
aclion.

e ‘Transaction arrivals into the system is a Poisson process
with rate A

e The communication delay between any two nodes is ex-
ponentially distributed with mean i

e The average execution time of a transaction, once the
locks are obtained, is 3.

e The deadlock mechanism is invoked every 7 seconds.

o After an abortion of a transaction, it takes an average of
w seconds for this transaction to be restarted.

o 4 is the service rate of transactions.
e bis the lock-holding time.

e J)c is the arrival rate at each data copy.
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3. Performance Evaluation Technique

Our technique consists of two stages. In the first stage, the
average Lransaction response time and throughput are caleu-
lated by ignoring the deadlock. This is an iterative step imvolv-
ing simulation and analysis. In the second stage, the proba-
bilities of transaction conflicts and deadlocks are computed by
probability models. These probabilities are used, in turn, to
compute the response time and throughput in the presence of

deadlocks.

Stage 1:
Initially, we assume that there are no lock conflicts between
transactions. Each transaction has to procure rk shared lock
on data copies and (1 — r)ke exclusive locks on data copies.
When a transaction has got all the lock grants from these data
objects, it can go ahead with execution.

This procedure is summarized in the following 6 steps.

1. Initialize lock-holding time(b) to be 1/

2. Given the total rate of transaction arrival(A), the shared
lock ratio(r), the number of data items{d), the number of
data items required by each transaction(k) and the nnm-
ber of replications(c), derive the arrival rate at each data

copy(Ac).

3. With the arrival rate at each data copy(\c), the average
lock-holding time(b), and the transmission time(£) we can
simulate the queue at a dala copy to arrive wait-time(w)
distribution. With this distribution we can calculate the
response time of transactions.

4. With the average service time of transactions{!/), and
the transmission time, we can derive a new lock-lolding
time(b').

5. Set b to this new lock-holding time V.

6. If the old and new lock-holding time are sufficiently close,
stop the iteration. Otherwise, go back to step 3.

At the end of stage 1 the response time without the considera-

tion of transaction deadlocks is obtained.

Stage 2:

This stage considers transaction conflicts and computes the

deadlock probability. Here the probabilities of transaction dead-

lock and restart are computed. These are then used to compute

response time and throughput in the presence of deadlocks.
Assume there are two transactions T1 and T2. Let RS, WS

be the read and write sets of transactions respectively.

1. Let fs; be the probability that the readset of T1 has i data
items overlapping with the writeset of T2, i.e. JRS{T1)N
WS(T2)| = 1.

2. Let fe;; be the probability that given |R5(T NWS(T?2)| =
i, the writeset of T1 has j data items overlaping with
the readset and writeset of T2, te. the probabihty that

WS N (s(r2)uWs(r2)| = J.

Clearly,

H

(k-rk) (d—k+rk)
' rk—1
fs, = ——T;)—— (1)
k
k=) [d-rh—k4s
( J )( k-rk-;) 9
feo = ——7om (2)
(k~rk)
It can also be noted that fs; fe; is the probability that:
[Read-set{ T1)NWrite-set('T2)]=1
A I\Vriteset('l‘])ﬂ(\\’rite-sct('l‘?)uRead-set(T?))|=j.
If PV, is the probability that T1 waits for T2,

PW, = pl+p2—plsp2 {3}
pl = 1-{1=(/2)) (1)
p2 o= (1-(1/2)7) (5)

where pl is the probability that T1 waits for T2 for shared locks

in readset

and p2 is the probability that T1 waits for T2 for exclusive locks
i writeset.

Probability that T1 waits for T2 is now given by

nun{c .k -1} min{k—x,k-1}

Pw = Z Z

1=0 1=0

fs,fe, PW,; (6)

With this probability of waiting and the formulas in [4] we can
calculate the probability of a transaction deadlock, the prob- -
ability of a transaction restart and the probability of a trans-
action to be blocked by other transactions. And with these
probabilitics and the time hetween deadlock detection(r), we
can calenlate the response time with consideration of deadlock.

(Details are ometted here.)

4. Results
Using this technique, we obtained a number ol interesting
results that illustrate the effect of deadlocks and number of
replications on database performance. These are summarized
in Figures 1-5. We make the following observations.

o Transaclion response Limes are quile sensitive to the ratio
of shared locks (Figure 1 and 2). Here, we compare the re-
sponse times when deadlocks are ignored (DI, computed in
Stage 1) with those obtained when deadlocks are consid-
ered (DC, computed in Stage 2). The effect of deadlocks
is more predominant at higher transaction loads and with
smaller values of r. When r = 2/3, the effect of deadlocks
is not significant on response time.

e If we compare Figure 1 and 2 with Figure 3 and 4, it can
be observed that the increase in replications results in the
larger response time when read ratio is smaller than 1/3.

o Fig. 5 shows the response times with different replication
numbers. [lere we can see that with both cases when
read ratio is 2/3 and 1/3, the response time increases as
the number of replications increases. But with read ratio
equals 1/3, the increasing rate is much smaller than that
with read ratio cquals 2/3.

5. Conclusions
In [4], Shyu and Li presented an elegant technique to eval-
nate the performance of distributed database systems in the
presence of deadlocks. Their technique assumed only exclusive
Jocks and thus representing the worst-case effects of deadlocks.
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In this paper, we have extended their technique to combine sin
ulation and analysis. And with this extended technique we allo
both shared and exclusive locking and also replications in o
model. We evaluated the the effect of number of data items, tl
number of data items accessed by cach transaction, the ratio
read operations on transaction response time and the number
replications. These results show the importance of considerin
both shared and exclusive lock requests, the deadlock prob:
bilities as well as the number of replications of database [
response Lime evaluations.
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Abstract

Even though transaction deadlocks can severely affect the perfor-
mance of distributed database systems, many current evaluation tech-
niques ignore this aspect. In [4], Shyu and Li proposed an evaluation
method which takes deadlocks into consideration. However, their tech-
nique is limited to exclusive locking. In this paper, we extend their
technique to allow for both shared and exclusive locking. Using this
technique, we illustrate the impact of deadlocks, in the presence of
shared locking, on distributed database performance.

Index Terms: Distributed databases, exclusive locking, performance mod-
eling, shared locking, static locking, two-phase locking.



1 Introduction

A distributed database system (DDS) is a collection of cooperating nodes
each containing a set of data objects. A user transaction can enter such a
system at any of these nodes. The receiving node, often referred to as the
coordinating node, undertakes the task of locating the nodes that contain
the data objects required by a transaction.

In order to maintain database consistency and correctness in the pres-
ence of concurrent transactions, several concurrency control protocols have
been proposed [1]. Of these, locking protocols have been widely used in both
commercial and research environments. In static locking, prior to start of
execution, a transaction needs to acquire either a shared-lock (for read op-
erations) or an exclusive lock (for update operations) on each of the relevant
data objects. When transactions with conflicting lock requests are initiated
concurrently, they could be possibly blocked due to a deadlock. Deadlocks
are known to deteriorate performance in both centralized and distributed
database systems [4,6]. In spite of this, several performance studies have
ignored the deadlock problem in their analyses [2,5].

In [4], Shyu and Li proposed an elegant technique to evaluate the re-
sponse time and throughput of transactions in a non-replicated DDS. (In the
rest of the paper, we refer to this as the S-L technique.) Assuming exclusive
locking (i.e., only write operations), they model the queue of lock requests
at an object as a M/M/1 queue [3]. This results in a closed-form for the
waiting time distribution at a node, expressed in terms of the average rates
of arrivals of requests and the average lock-holding time. This technique
consists of two stages. In the first stage, the average transaction response
time and throughput are calculated by ignoring the deadlock. This is an
iterative step that uses the known properties of the M/M/1 queue [3]. In
the second stage, the probabilities of transaction conflicts and deadlocks are
computed. These probabilities are used, in turn, to compute the response
time and throughput in the presence of deadlocks.

In general, a database transaction reads from a set of data objects (the
read-set) and writes on to a set of data objects (the write-set). Assuming
that all accesses are write-only (as in S-L) results in the worst-case per-
formance (with respect to deadlocks and response time) of a DDS. In this
paper, we propose to extend the S-L technique to consider both the the read
and the write operations of database transactions. Using the extended S-L,
we evaluate the effect of deadlocks on distributed database systems.



2 Model

Except for the inclusion of read operations, our model is the same as in S-L.
For the sake of completeness, we summarize the DDS model here.

e There are N nodes and D data objects (or data granules in S-L) in
a DDS. The D data objects are uniformly distributed across the N
nodes. A data object may be located at exactly one node.

o FEach transaction accesses K data objects. Among these, r - K are
for read-only purpose, and the rest are for read-write. (Obviously,
0 < r < 1.) In other words, a transaction must procure r - K shared
locks and (1 — r) - K exclusive locks.

e Each data object is equally likely to be accessed by a transaction.
e Transaction arrivals into the system is a Poisson process with rate A.

o The communication delay between nodes is exponentially distributed
with mean {.

e The average execution time of a transaction, once the locks are ob-
tained, is S.

3 Evaluation Procedure

Since we are only proposing extensions to the S-L model, we do not intend to
repeat the description of their procedure. Instead, we will discuss only the
salient features of their procedure that are relevant to describe the proposed
extensions.

In Stage 1 of the S-L technique, an iterative procedure is used to eval-
uate the response time and throughput of a DDS ignoring the possibility
of deadlocks. In each iteration, the average waiting time (for exclusive lock
requests) at each of the data objects is computed using estimates of the av-
erage lock-holding times from the previous iteration. By definition, no two
exclusive lock requests can have lock grants on the same object simultane-
ously. Also, assuming that the lock-holding time is exponentially distributed
(with mean 1/y) and that the lock request arrivals form a Poisson process
(with rate A, = A - K/D), the distribution of waiting time W; at an object
i is expressed as (M/M/1 queueing formula [3])

fw(¥) = (1—p)-po(y)+ Ar(1 = p)-e7#1=pl (1)



where po(+) is the impulse function and p = A./p. Using the waiting time
distribution, the waiting times at the K" data objects are randomly gener-
ated. These are used, in turn, to derive new estimates for the lock-holding
times (1/u). The iterations stop when two successive computations of aver-
age waiting time estimates are very close.

When we consider both shared and exclusive locks, the problem of es-
timating the waiting time distributions becomes difficult. Since two shared
lock grants on the same object may exist simultaneously, and an exclusive
lock may not be granted while another shared or exclusive lock is already
granted, the queueing discipline at a node is complex. Such complex queue-
ing disciplines are analytically intractable [3]. For this reason, we propose to
use simulation to solve the queueing model. Given the total rate of arrival
of lock requests A, the shared lock ratio (), and the average lock-holding
time (1/u), the queue at an object may be simulated. From here, the waiting
time distribution may be obtained in the form of a table. Once the waiting
time distribution is obtained, the same iterative procedure as in Stage 1
of S-L may be adopted to compute the response time when deadlocks are
ignored. As in S-L, transaction response time is defined as the time between
the instance the lock requests are sent and the time the last grant request
is received by the coordinating node.

In Stage 2, the probabilities of transaction deadlock and restart are com-
puted. These are then used to compute response time and throughput in
the presence of deadlocks. When we assume that transactions only make
exclusive lock requests, the expression for the probability of conflict between
any two transactions is given by,

)

(®)
However, when we consider both shared locks and exclusive locks, the prob-
ability of conflict is reduced. In this case the probability of conflict is given

by,

P = 1- (2)

O SO GR-CEET g
() (®) - (&)
where K’ = r.K and represents the average number of shared locks; (A — K')
is the average number of exclusive locks per transaction. Clearly, when
r =0, P. = P!; when r = 1, P} = 0; and in all cases, P > P
By replacing P. with P!, the procedure suggested in S-L may be applied
to obtain the desired performance metrics.

P = 1-

[+




4

Results

Using the extended S-L technique, we obtained a number of interesting
results that illustrate the effect of deadlocks on database performance. These
are summarized in Figures 1-5. We have verified our results with those
obtained in [4] for the all exclusive locks case (r = 0). We make the following
observations.

As expected, the presence of shared locks has a substantial impact on
the probability of deadlock occurrence (Fig. 1). When only 1/3 of
the accessed data objects are updated (i.e., r = 2/3), the probability
of deadlock is considerably small as compared to when all objects are
updated (r = 0).

The observations about the deadlock probabilities are also valid for
restart probabilities (Fig. 2).

Transaction response times are also quite sensitive to the ratio of
shared locks (Fig. 3). Here, we compare the response times when
deadlocks are ignored (computed in Stage 1) with those obtained when
deadlocks are considered (computed in Stage 2). The effect of dead-
locks is more predominant at higher transaction loads and with smaller
values of r. When r = 2/3, the effect of deadlocks is not significant on
response time.

The effect of deadlocks on response time is decreased with the increase
in the number of data items (Fig. 4). Obviously, this is due to the
decrease in probability of conflicts and hence a decrease in deadlock
occurrence. For r = 2/3, this effect is almost insignificant. Forr = 1/3
and r = 0, deadlocks seems to have a noticeable effect on response
time.

Fig. 5 summarizes the effect of the number of locks per transaction on
response time. When K is small, the probability of deadlock is negli-
gible, and hence its effect on response time is small. At higher values
of K, the effect of deadlocks on response times is significant. Similarly,
at smaller values of 7, the effect of dedalocks is more apparent.



5

Conclusion

In [4], Shyu and Li presented an elegant technique to evaluate the perfor-
mance of distributed database systems in the presence of deadlocks. Their
technique assumed only exclusive locks and thus representing the worst-case
effects of deadlocks. In this paper, we have extended their technique to al-
low both shared and exclusive locking. Using the extended technique, we
evaluated the the effect of number of data objects, the number of data ob-
jects accessed, and the ratio of read operations on transaction response time.
These results also indicate the importance of considering both shared and
exclusive lock requests for response time evaluations.
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