
o
c_

©

o

©

DEPARTMENT OF COMPUTER SCIENCE

COLLEGE OF SCIENCES

OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23529

BUILDING A GENERALIZED DISTRIBUTED SYSTEM MODEL

By

Ravi Mukkamala, Principal Investigator

Progress Report
For the period ended July 31, 1991

Prepared for
National Aeronautics and Space Administration

Langley Research Center

Hampton, Virginia 23665

Under

Research Grant NAG-l-1114

Wayne H. Bryant, Technical Monitor

ISD-Systems Architecture Branch

(NASA-CP-[8_181) BUILDING A GENERALIZED

D[STRIi3UTED SYSTEM MODEL Progress Reportf

period ended 31 Jul. 1991 (old Dominion
univ.) 70 p CSCL

G3/d2

N91-2_970

--TH_U--

Nql-2_975

Unc1_s

0012202

May 1991

DEPARTMENTOF COMPUTERSCIENCE
COLLEGEOF SCIENCES
OLD DOMINIONUNIVERSITY
NORFOLK,VIRGINIA 23529

BUILDING A GENERALIZED DISTRIBUTED SYSTEM MODEL

By

Ravi Mukkamala, Principal Investigator

Progress Report
For the period ended July 31, 1991

Prepared for
National Aeronautics and Space Administration

Langley Research Center
Hampton, Virginia 23665

Under
Research Grant NAG-l-1114

Wayne H. Bryant, Technical Monitor
ISD-Systems Architecture Branch

Submitted by the
Old Dominion University Research Foundation
P.O. Box 6369

Norfolk, Virginia 23508-0369

V May 1991

N91-23971

Building a Generalized Distributed System Model

R. Mukkamala

E.C. Foudriat

Department of Computer Science

Old Dominion University

Norfolk, Virginia 23529.

Annual Report and Renewal Request

Abstract

The key elements in the first year (1990-91) of our project were:

• Investigate the effects of modeling on distributed system performance

predictions.

• Look at possible graphical interfaces to the proposed distributed pro-

totype and simulator system.

• Conduct preliminary studies towards the design of a generalized dis-

tributed system.

In the second year of the project (1991-92), we propose to

• Develop detailed designs for the prototype.

• Implement and test the system.

• Conduct further studies on modeling distributed systems.

1 Introduction

In the 1990-91 proposal, we discussed the need for building a modeling tool

for both analysis and design of distributed systems. To this end, we have

been considering different design architectures for the modeling tool. Since

many of the research institutions have access to networks of workstations, we

have decided to build a tool running on top of the workstations to function

as a prototype as well as a distributed simulator for a computing system.

In addition, we have been investigating the effects of system modeling

on performance prediction in distributed systems. While some performance
measures such as the average number of participating node set size of a

distributed transaction is not very sensitive to the underlying model, mea-

sures such as transaction commutativity measures are quite sensitive to the

evaluation models.

We have also considered the effects of static locking and deadlocks on the

performance predictions of distributed transactions. While the probability
of deadlock is considerably small in a typical distributed system, its effects

on performance could be significant.

In this report, we summarize our progress in these three areas and de-

scribe the details of the proposed work.

2 Distributed System Model: Prototype/Simulator

The main goals of our efforts in building a general tool for simulation and

prototyping of distributed systems are:

• A framework to experiment with distributed algorithms/systems.

• Implement in terms of basic primitives (e.g., RPC, reliable communi-

cation).

• A good user interface - preferably with graphic and mouse functions.

• Provisions to include user specific code for different components.

• A library of procedures representing typical options for components

(e.g. two-phase locking).

• A base for distributed simulation as well as prototyping.

• Efficient mechanisms to monitor and display the activities.

• Powerful performance analysis tools.

To this end, we started looking at a transaction oriented distributed

system. Since our aim is to provide a general framework rather than to

provide a solution to a particular model, our goal is to provide some of

the basic primitives at the bottom layer, and let the user build the needed

upper level software. To make the prototype usable for a novice user, we

propose to provide a graphic interface through which a user can specify the

system configuration. As an example application, we considered distributed

database system modeling. As shown in Figure 1, we identified seven ma-

jor components. Each of these components can be further described in a
detailed model. For example, the local manager can be modeled as a coor-

dinator of local concurrency control manager and the transaction resource

manager. Given a set of components, the control structure of the system

can be represented through directional links. Figure 2 illustrates one such
control structure.

After considering several alternates, we decided to base the graphic inter-

face on the lines of the MIT Network simulator. The MIT simulator is devel-

oped at Massachusetts Institute of Technology with funding from DARPA.

Even though it is intended for simulating communication networks, we have

decided to adopt its graphic interfacing routines for our distributed simula-

tor. Since the source code (in C) is available, we are modifying this code

to suit our needs. Some of its distinguishing characteristics of the network

simulator are:

• Internetwork simulator

• Components include gateways, network links, hosts, TCPs and users.

• Network configuration is displayed on the screen.

• User can control the simulation.

• Network configuration can be modified with the mouse.

• Other simulation parameters can be changed on-line using the mouse.

• Network configuration can be saved for later use.

• Several performance measures may be printed.

3

Figure

Distributed System Model

Global

manager

Ditribution
control

Local

manager

Site
Recovery

manage r

Resource

manager

Site i

Resource

(e.g. database)

Global

manager

Ditribution
control

Local

manager

Site
Recovery

manager

Resource

manager

Site j

Resource

(e.g. database)

Site i

Site Recovery

MG

Figure 2

User

Transaction

GTM

Replica control

Comm.

Resource

MG

Global CCM

/
/
/

/
/
/
/
/
/
/
/
/
/

/
/
/

Site j

m°

manager

Network

Replica control

GTM

Global CCM

Since process communication is a basic primitive needed in distributed

systems, we have decided to provide this as a basic mechanism in our system.

Currently, we are experimenting with the Sun RPC system calls to design a

high-level primitive. RPC has several advantages including:

• Hiding details of network programming

• Availability of library routines

• Hiding the operating system dependencies

• Availability of the standard data representation using XDR format

which allows a simple way of transferring data.

3 Effects of Modeling on Performance Predic-

tions

As a second part of our study, we have conducted investigations to deter-

mine the impact of modeling on distributed system performance. Here, we
summarize the results of two such studies:

Study 1: Effect of Data Distribution Models on Transaction Com-

mutativity [2]. Recognizing commutativity among transactions appears

to reduce the number of rollbacks (at the time of merge) in a partitioned

distributed database system [1]. The main objective of this study is to de-

termine the impact of data distribution modeling on the evaluation of the

benefits due to commutativity. We studied the effects of six distinct data
distribution models on the evaluation of the number of rollbacks. We de-

rived closed form expressions for five of the six models, and used simulation

for the sixth model. The conclusions from this study are summarized as
follows.

• Random data models that assume only average information about the

system result in conservative estimates of system throughput.

Adding more system information does not necessarily lead to better

approximations. In this paper, the system information is increased

from model 6 to model 2. Even though this increases the computa-

tional complexity, it does not result in any significant improvement in
the estimation of the number of rollbacks.

4

Transactioncommutativity appears to significantly reduce transaction

roilbacks in a partitioned distributed database system. This fact is

only evident from the analysis of model 1. On the other hand, when

we look at models 2-6, it is possible to conclude that commutativity is

not helpful unless it is extremely high. Thus, conclusions from model

1 and models 2-6 are contradictory.

The replication distribution (i.e., the actual number of copies for each

object) seems to effect the evaluations significantly. Thus, accurate

modeling of this distribution is vital to evaluation of rollbacks.

Study 2: Effect of Data Distribution and Reliability Models on

Transaction Availability [3]. In this study, we selected three abstractions

for data distribution modeling and three for node reliability modeling, and

constructed six system models. Here, transaction availability is defined as

the probability with which all data copies required by a transaction are

available at the beginning of its execution. As before, we could derive closed

form expressions with five of the six models (using probabilistic analysis),
and used simulation for the other model. A transaction was characterized

by the number of data objects that it accesses, 3. The conclusions derived

from this study are summarized as follows.

• By choosing a proper distributed database model, the computational

complexity of transaction availability evaluations can be significantly
reduced.

• For values of s < 10, all models result in almost the same transaction
evaluation.

The degree of replication of individual (or group) data objects seems

to have a significant effect on transaction availabilities. Thus, when

different data objects have different copies, adopting average degree of

replication at the system level may not result in accurate availability
evaluations.

• The actual distribution of data object copies has some, if not signifi-

cant, impact on availability evaluation.

In a heterogeneous environment where different nodes may have dif-

ferent reliabilities, it is sufficient to represent each node by the average

node reliability, without affecting the availability evaluations.

Havingconductedthesestudies,weconcludethat

• Adoptingsimplemodelsmaydrasticallyreducethecomplexityof met-
ric evaluations.

• Choosinganalyticallytractablemodelsenableseasyinterpretationof
functionaldependencies.

• By choosinginappropriatemodels,for eitheranalyticaltractability or
conceptual simplicity, it is possible to arrive at incorrect conclusions.

• Model choice is highly dependent on the metric. While a simple model

serves well for one metric, it may be insufficient for another metric.

4 Determining the Effects of Locking on Distributed

Transactions

Deadlocks are known to deteriorate performance in both centralized and

distributed database systems [4,5]. In spite of this, several performance

studies have ignored the deadlock problem in their analyses [6]. In [4], Shyu

and Li proposed an elegant technique to evaluate the response time and

throughput of transactions in a non-replicated DDS. Assuming ezclusive

locking (i.e., only write operations), they model the queue of lock requests

at an object as a M/M/1 queue. This results in a closed-form for the waiting

time distribution at a node, expressed in terms of the average rates of arrivals

of requests and the average lock-holding time.

In general, a database transaction reads from a set of data objects (the

read-set) and writes on to a set of data objects (the write-set). In this

paper, we consider both the the read and the write operations of database

transactions, and propose a technique for performance evaluation.

We make the following observations from evaluations made with our

technique.

• As expected, the presence of shared locks has a substantial impact on

the probability of deadlock occurrence. When only 1/3 of the accessed

data objects are updated, the probability of deadlock is considerably

small as compared to when all objects are updated.

• The observations about the deadlock probabilities are also valid for

restart probabilities.

• Transactionresponsetimes are also quite sensitiveto the ratio of
sharedlocks. Here,wecomparethe responsetimeswhendeadlocks
are ignoredwith thoseobtainedwhendeadlocksareconsidered.The
effectof deadlocksis morepredominantat highertransactionloads
and with smallervaluesof readratio. When1/3 of the accessedob-
jectsareupdated,theeffectof deadlocksis not significanton response
time.

• Theeffect of deadlocks on response time is decreased with the increase

in the number of data items. Obviously, this is due to the decrease in

probability of conflicts and hence a decrease in deadlock occurrence.

When only 1/3 of the accessed data are updated, this effect is almost

insignificant. When 2/3 of the accessed data are updated, deadlocks
seems to have a noticeable effect on response time.

• When a small number of data objects are accessed, the probability of

deadlock is negligible, and hence its effect on response time is small.

When more data objects are accessed, the effect of deadlocks on re-

sponse times is significant.

5 Summary of Accomplishments in 1990-91

We have published the results of our research (since August 1990) in two

conferences. In addition, two papers are submitted for publication in inter-

national journals. These are:

1. Y. Kuang and R. Mukkamala, "Performance Analysis of Static Lock-

ing in Replicated Distributed Database Systems," Proc. Southeastcon

1991, pp. 698-701.

2. Y. Kuang and R. Mukkarnala, "A Note on the Performance Analysis of

Static Locking in Distributed Database Systems", Submitted to IEEE

Trans. Computers, December 1990.

3. R. Mukkamala, "Effects of Distributed Database Modeling on Evalu-

ation of Transaction Rollbacks," Proc. WSC'91, December 1990, pp.

839-845.

4. R. Mukkamala, "Measuring the Effects of Distributed Database Mod-

els On Transaction Availability Measures," Submitted to Performance

Evaluation Journal, March 1991.

In addition,ourcurrentworkonbuildingtheprototypefor a distributed
systemshouldresultin severalconferenceandjournal papersin 1991-92.

6 Proposed Research Efforts in 1991-92

During the next grant period (August 1991 to July 1992), we propose to

continue the study and development of the distributed prototyping and sim-

ulator system. The main main problems that we need to solve in this period

are:

Complete the graphic interface design and implement it on Sun work-
stations.

• Investigate efficient means of offering flexible as well as efficient means

of specifying interfacing between system components. We expect this

phase to consume considerable time.

• Design, build, and test a specific system using the primitives offered

by the system. Experiences from building a specific system should aid

us in developing a generalized prototyping tool.

• We propose to use the prototype to evaluate the performance of several

distributed mutual exclusion policies. Such a study may result in the

development of new policies.

• We propose to do further investigations in modeling of distributed

systems and determine their impact on predictive analysis tools.

References

[1] S. Jajodia and P. Speckman, "Reduction of conflicts in partitioned

databases," Proc. 19th Annual Con. on Information Sciences and Sys-

tems, 1985, pp. 349-335.

[2] R. Mukkamala, "Effects of Distributed Database Modeling on Evalu-
ation of Transaction Rollbacks," Pro(:. WSC'91, December 1990, pp.

839-845.

[3] R. Mukkamala, "Measuring the Effects of Distributed Database Mod-

els On Transaction Availability Measures," Submitted for publication,
Maxch 1991.

8

'w

[4] S.-C. Shyu and V. O. K. Li, "Performance analysis of static locking in

distributed database systems," IEEE Trans. Computers, vol. 39, no. 6,

pp. 741-751, June 1990.

[5] Y. C. Tay, R. Suri, and N. Goodman, "A mean value performance

model for locking in databases: The no-waiting case," J. A CM, vol. 32,

no. 3, pp. 618-651, July 1985.

[6] M. Singhal and A. K. Agrawala, "Performance analysis of an algorithm

for concurrency control in replicated database systems," Proc. A CM

SIGMETRICS Conf. Measurement Modeling Comput. Syst., 1986, pp.

159-169.

u

APPENDIX

Proceedings of the 1990 Winter Simulation Conference
Osman Balci. Randall P. Sadowski, Richard E. Nance (eds.)

N91-23972

EFFECTS OF DISTRIBUTED DATABASE MODELING ON EVALUATION OF
TRANSACTION ROLLBACKS

Ravi Mukkanlala

Department of Coinputer Science

Old Dominion University

Norfolk, Virginia 2;1529-0162.

ABSTRACT

Data distribution, degree of data replicatkm, and transaction
access patterns are key factors in determinhlg the performance
of distributed database systeins. In order to simplify tile evalua-
tion of perforrnance measures, database designers and researchers

tend to make simplistic assuinl)tiolls about the systlqn. IN this
paper, we investigate the effect of rot,all'ling asslmlt)Lions Oil the
evaluation of one such Ineasure, the nunlber of transaction roll-
hacks, in a partitioned distributed database system. We develop

six probabilistic models and develop expressions for the number
of rollbacks under each of these models. L'ssentially, the models
differ in terms of the available system information. The analyti-
cal results so obtained arc t'onipaled to results from silnlllatit)n.
From here, we conclude that most of tile probabilistic models
yield overly conservative estimates of the number of rollbacks.
The effect of transaction commutativity on system throughput is

also grossly undermined when such models are employed.

1. INTRODUCTION

A distributed database system is it collection of cooperating

nodes each containing a set of data items (In this paper, the
basic unit of access in a database is referred to as a data item.).

m user transaction can enter sllch a sy:atenl at &lly Of these IIodl's.

The receiving node, sometimes referred to as tile coor'dinalln9 or
initiating node, undertakes the task of locating tile nodes that

contain the data items required by a transaction.
A partitioning of a distributed database (DDB) occurs when

the nodes in the network split into groul)s of communicating
nodes due to node or comnnniication link failures. The nodes

ill each gronp call conllnllllil'ale wit Ii _'a(;h other, hilt nl) node ill

oue group is able to coltlLlulnicate witli uodes in other groups, _,V<:
refer to each such group as a partiholi. The algorithms which al-
low a partitioned DIll] to continue functiot6ng generally fall into
one of two classes [I)avidsou ctal. 1985}. Tho_e in the llr_t class
take a pessimistic approach and process only those transactions
in a partition which do not conflict with transactions in other par-

titions, assuring nmtual consistency of data when partitions are
reunited. The algorithms in the second class allow every group

of nodes in a partitioned DDB to perform new updates. Since
this may result in independent updates to items in different par-
titions, conflicts among transactions are bound to occur, and the

databases of the partitions will clearly diverge. Therefore, they

require a strategy for conflict detection and resolution. Usually,
rollbacks are used as a means for pi'(.serviNg coNsist_'r.'y; con-
[licting transaction_ are rolled ba,k when i)atlili_Ns al_' t_'unih',l,
Since coordillating the nndoing of tra.sacliotlx is a v('ly difficult
task, tlleae [nethods are called oplimt..ttc _,iHct, they are useful

primarily in a situation where the number .f itenls i. a par-
ticular database is large arid the probability of conllicts among
transactions is small,

In general, determining if a transactio, that _.ccessfully ex-
ecuted in a partition is rolled back at the tilllc the database
is merged depends on a numher uf factors. J)ala items in the
read-set and the write-set of the ti'arlsa('iioN, Ihe distiibution of

these data items anlong tile olh(.r part ilil,lls, ;,,_'_s pal h'liiS i)f

transactions iu other partitions, d,tla d_'p,',l,l,'N_ies allliJllg the
transactions, and semantic relation (if anvi t ,'tween these trans-
actions are some examples (if the_e fat_._s _,x._l evahqltion ()f

rollback probability for all transa(li(ms iH a dalabane (and heuce

the evahzati()n of the nltlllht'l of it)lh',[Da(k Ilallsactions) gen-
erally invt>Ives both analysi_ avid siNIttl,di_m, and r_'(lttirt's large
executiou tilnl's II),tvhls_m 19_2; f)avi,l•()ll 19.";I]. 're ovl.rcome
the coinl)t/tatitmal iOinl,h.xili_.s id ev,_luatitm, d,'sign('ls and re-
searchers gt'n,'rally i,'n_llt It, al]j,lOXilll;ttitHi t_,(h.lqu('s II)avkl-
sire 1!182; I)avids_m I!),_(i; Wrighl I!tSA,t: \\'right I!J,u3[)]. 'l'ht'se
te('bniques Ii'dli('e the clltlljmtatitm tiNit' by Hlal-;i/Ig _iml)lifying
assunll)tions to reprcsl'nt the unlh'rlyiiLg dinl lil;ttlcd s_v,dt:ln. The
time complexity of the re_,ultitlg lel hlli(pl(.._ gl(qllly (Ic'pctids on

the assumed lilod('l as ',vlql a3 l'VillllilliOll ll'l hlli(ill(.S.

In this palit, r we ate i.lt('resh'd in d,'t(.i ,Hi.hig Ihe effect of tile
distributed datal,a_,' mt,drN L,t, the' _t,Nq,tll,llioNal _omph>xity
and at'c'lll'al'y ill Ill,' lolll>,, k nl ,ll i-I I, . III .i I,_11 Iil i.l.'d ,lai ithase.

The balazlce of this llap_'l is (,utlim'd a. ftAlt)w_, Section 2 for-
mally defines the problenl undl'r ('lltP>i(It>ial toll. Ill Scction 3, we

discuss tilt; data (list ribul iON, _,'l)li(at it>H,..,I I_ ansactlotl model-
ing. Sectit_n .I deliv_.s tht' tldll)a('k sial isl it • f,. ,m_' distribution
Inodel. Ill Section 5, we Ct)llll)al(' Ih(. _,l,,,Iv_in N.._h.(Is for six

models and sinmlation method Ii)r on(. mod,'l I)a_.d oil colilputa-
tional coinplexity, sl)acc COmlih.xily, and ac(ulaly of the measure.
Finally, in Sectioll li, we s_lml_mliz+ + Ih,, olJlaint.d i+,s+lJts.

2. PROBLI'3M I)ESCBII)TfON

Even though a transa(:lion '/_ in Imtlilh)ll]_l tllay be rolled

hack (at merging tillle) ivy another tl'aitsaclillil '/', ill paltition 1½

(tilt, to a nuiilb(,r of ieilSOllS, lhl' t'ollowiii_ Iwo i ilsl'_i allf fonnd to

be the major contributors il)avidson t982 I.

i. PI _- P_, and there is at h.ast one data item which is up-
dated by I.)lh Tt an,I '/'z. This is r_'fi,rrcd to as a write-wrtlc
conllict.

iV, Pi = P1, "l:l is rolh'd hack, and it is a dependency pairnt of
T i (i.e., '/_ has ll'ad ilL h'ast one data itl'ni updated ivy T2,

and _/:_OCCIII'S prior ill 7'i in tile seiialization sequence).

Tile above discussion on reasons for rollback only considers

the syntax of transactions (i.e. read- and write-sets) and does

not recognize any senlantic relation between them. To be more
specific, let us consider transactions TI and T_ executed in two
difl'erent partitions l)i and /ix respectively. Let us also assume
that the intersection betwce, the write-sets of "/'l and "F_ is non-

empty. Clearly, by tile above delhlitioN, there is a wrltewrite
conflict and one .f the tWl) transactions has to be rolled back.

Ih>wever, if Ti avid 'l:l rllllilllll|e Wit h ('alh oth_'r, tlien there is no
ill'ed to r_dll,a,k _'il llt'l _d I he tiilii_iil {lllll_ ill the thi._ of partition
merge [(.arlia-hh)lilia 198;I; dajodia and _ql)ecklnan lY85; Jajodia
arid Mukkanlala 1900]. hlstead, '/'l needs to be executed in 1½
and T_ rieeds to be executed in Pl. The analysis in this paper

take this property into account.
[n order to compnte the ilumher of rollbacks, it is also nec-

essary to define some ordering (O(P)) oil the partitions. For

example, if Ti and 7) correspond to case (i) above, and do not
commute, it is necessary 1o deterlnhle which of these two are
rolled back at lhc ti..' of nwrgil_g, I)artition ordering resolves

this aillblguity by II.' t_,lh)witlg rlih': \VI...cv,." two) i(mllicting
but non-(_Ollillllliiiig tlitliSactiDiis ale executed hi tWO different

partitions, then the tran.'.acl k)li _'xecuted hi tile lower order liar-
titles is rolh'd back.

839

pRECEDING PAGE BLANK NOT FILMED

i

R. Mukkamala

Since a transaction may be rolled back due to either (i) or
(ii), we classify the rollbacks into two ('lasses: Class 1 and Class

2 respectively. The problem of estimating the number of roll-
backs at the time of partition melging in a partially replicated
distributed database system may be forn|ulated as follows.

Given the following parai,leters, dc'lerHline the number of

rolled back transactions in class 1 (RI) aud class 2 (lla).

• n, the n,md)er of nodes ill the (Ialabase;

• d, the nund)et of data items ill the database;

• p, the number of partitions in the distributed system (prior
to merge);

• t, the number of transaction types;

• GD, the global data dilectory that contains the location of
each of the d data items; the (;I) matrix has d rows and n

columns, each of which is either 0 or 1;

• NSk, the set of nodes in partitio|! k, Vk = 1,2,...,p;

• RSj, the read-set of transaction type j, j = 1,2,...,t;

• WSj, the write-set of transaction type 3,) = 1,2,... ,t;

• /_r+k, the utlnlber of t,a.sa(ti..,s ,d lype j l<'<l+'ived ill par-

LiLies k (i)Jhu ltJ Nl+'lg<'),j = I,2 t, k = 1,2 p.

• CM, the cotnum_tativity Nlatnix that de+lines transaction

commutativity. If CM_j_ =truc theu transaction types Jl
and j_ commute. Otherwise they do not commute.

The average number of total rollbacks is now expressed as R =
RI + R2.

3. MODEL DESCRIPTION

As stated in the intrc_dtwlion, the i>rhnary objective of tiffs

paper is to investigale the ell(?< t of data distribution, replication,
and transaction models on esti,,,ation of the nundJer of rollbacks

in a distributed database' sysl(,ul.
To describe a data distlibutioH-trausaction model, we char-

acterize it with three orthogoual patanneters:

1. Degree of data item replication (or the number of copies).

2. Distribution of data item copies.

3+ Transaction charactelizaliou

We now discuss ['ach of these palanleters in detail.

For simplicity, several analysis techni<lues assume that each
data item has the sanoe ntunll)er of copies (or degree of replica-

tion) in the database system [Coffman et al. 1981]. Some other
techniques characterize the degree of leplication of a database by
the average degree of replication of data items in that database

[Davidson 1986]. Others treat the degree of replication of each
data item independently.

Some designers and analysts assume some specific allocation

schemes for data item (or grou)) co ties (e.g., Mukkamala 198,7))+
Assuming con|l)lete knowh'dge of data copy (istr but on ((i'D)
is one such assulnl)tion. I)t'p(mding on the tyl)e of allocation,
such assuml)tions may simplify the p,rrfi_rlnance analysis. Oth<;rs
assume that each data item copy is randomly distributed among
the nodes in the distributed system [Davidson 1986].

Many database analysts characterize a transaction by the size
of its read-set and its write-set. Since different transactions may

have different sizes, these are either classified based on the sizes,

or an average read-set size and average write-set size are used to
represent a transaction. Others, however, classify transactions
based on the data items that they access (and not necessarily on

their size). In this case, transaction types are identified with their

expected sizes and the group of data items from which these are
accessed. An extreme example is a case where each transaction in

the system is identified completely by its read-set and its write-

set.

With these three paranlelers, we can describe a number of
models. Due to the limited space, we chose to present the results

for six of these models in this paper.
We chose the following six models based on their applicability

in the current literature, and their close reseml)lance to practical

systems. Iu all these mo<lels, the rate of arrival of transactions
a I (_;[(I]_ <) f the. no,l,'s is assum('d to he COml)h'tely known a prioni+
We also assume (onqdete knowledge of the partitions (i+e. which

nodes are in which partitions) in all the models.

Model 1: Among the six chosen models, this has the max-
imum information about data distrihution, replication, and

transactions in the system. It captures the following infor-
mation+

* lPcplicatior: Data replication is specified for each data
item.

• I)ata dislr_bv4liorl: The distribution of data items among

the nodes iN the system is represented as a distribution
matrix (as descrii)ed in Section 2).

• 7'mrsactioas: All distinct transactions executed in a

system are represented by their read-sets and write-

sets. Thus, h)r agiven transaction, the model knows
wlfich data items are lead, and which data items are

ul,dah'd. The tonuu,,lativity iuforn,atiou is also com-
Idet_'ly known and is expressed as a matrix (as de-
scribed in Section 2).

Model 2: This model reduces the number of transactions

by combining them rote a set of transaction types based on
commutativity, commonalities in data access patterns, etc.
Since the transactions are now grouped, some of the indi-
vidual characteristics of transactions (e.g. the exact read-
set and writes-set) are lost. This model has the following
information.

• I?eplieahon" Average degree of replication is specified
at the system level.

• Data d_stv+buhon: Since the read- and write-set infor-

mation is not retained tor each transaction type, the
data distribution information is also summarized in

l+,n'ms of average data items. It is assumed that the
data copies are allocated randomly to the nodes in the
system.

• T_nsachons: A transaction type is represented by
its read-set size, write-set size, and the number of
dal.a items from which selection for read and write

is mad<+. Since two transaction types might access the

same data item, it also stores this overlap information
for eveny pair of transaction types. The commutativ-
it 3' information is stored for each pair of transaction

types.

Model 3: This model further reduce the transaction types

by grouping them based only on commutativity character-
istics. No consideration is given to commonalities in data
access pattern or differing read-set and write-set sizes. It
has the hdh)wing iufortllatlon.

• Ilcphcalion: Average degt<'e of replication is specified

at the system level.

• Data distribution: As in model 2, it is assumed that

the data copies are allocated randomly to the nodes
in the system.

• Transactions: A transaction type is represented by
the average read-set size and average write-set size,
The commutativity information is stored for all pairs
of transaction types.

Model 4: This model classifies transactions into three

types: read-only, read-write, and others. Read-only trans-

840

_ I II

"i

Effects of Dislribuled Database Modeling on Ev_lluation of Transaction Rollbacks

actions commute among tllemselves. Read-write transac-
tions neither comraute among themselves nor commute with
others. Tile others class corresponds to ttpdate transactions

that may or may not commute with transactions in their
own class. This fact is represented by a commute probabil-
ity assigned to it.

• Replication: Average degree of replication is specified
at the system level.

• Data distribution: As in model 2, it is assumed that
the data copies are allocated randomly to tile nodes

in tile system.

• Transactions: Read-only class is represented by aver-

age read-set size. The read-write class is represented
by average read-set and write-set sizes, Tile others
class is represented by the average read-set size, aver-
age write-set size and tile probability of conlm.tation.

Model 5: This model reduces the transactions to two

classes: read-only and read-write, llead-on]y transactions
commute among themselves. The read-write transactions
corresponds to update transactions that may or may not
commute with transactions in their own class. This fact is

represented by a commute probability assigned to it.

• Replication: Average dcgrce of replication is specified
at the system level.

• Data dintnbutzon: As in model 2, it is assumed that

the data copies are allocated randomly to the nodes
in the system.

• Transactions: Read-only class is represented by aver-

age read-set size. The read-write (lass is represented
by average read-set amJ write set sizes, alld the In'ob-
ability of COllllllDla_ ioll.

Model 6: This model identilies read-only transactions and
other update transactions, tqut these two types haw: tile
same average read-set size. Update transactions may or

may not commute with other update transactions.

• Replication: Average degree of replication is specified
at the system level.

• Data dl_tribid,m: As in model 2, it is as._mned that

the data COl,ie_ _tl'_ allocated randonlly to the nodes
iu tile system.

• Transactions: The read-set size of a transaction is de-

noted by its average. For update transactions, we also

associate an average write-set size and the probability
of commutation.

Among these, model I is very general, and assumes complete
information of data distribution ((;D), replication, and transac-
tions. Other models assume only partial (or average) ild'ormation
about data distribution and replication. Model t has the most
information and model 6 has the least,

4. COMPUTATION OF TItE AVERAGES

Several approaches offer potential for computing the average

number of rollbacks for a given system environnlent; the most
prominent methods are simulation and probabilistic analysis.

Using simulation, one can generate the data distribution ma-
trix (GD) based on the data distribution and replication policies

of the given model. Similarly, one can generate different trans-
actions (of dilferent lypes) that can be received at tile nodes in
the nctwork. Since the paltition reformation is completely spcc-
ilird, by sealchhJg Ihr J,,h,_a.t _.h.J,._ _,f llw (;I) ..ttrix, it is
possible to detel'nfille whether a ,_veil tlitllSill tioIt hits I)¢'1'11 _llc-

cessfully executed in a given partition. Once all the successful
transactions have been identified, and their data dependencies
are identified, it is possible to identify the transactions that m_d
to be rolled back at the time of merging, The generation and
evaluation process may have to be repeated enough number of

times to get tile required confidence in the final result.

Probabilistic analysis is especially useful when interest is con-

fined to deriving the average behavior of a system from a given
model. Generally, it requires less computation time. hi this pa-

per, we present detailed analysis for model 6, and a summary of
the analysis for models l-5.

4.1 Derivations for Model 6

This model considers only two transaction types: read-only

(Type 1) and readlWrite (Type 2), Both have the same average
read-set size of r, A read-write transaction updates w of tile data
items that it reads. Nik and N-2J. represent tile rate of arrival of

types 1 and 2 respectively at partition k. The average degree

of replication of a data item is given as c. The system has n
nodc.s and d data items. 'rile probability that two read-write
trallsaction ('Ollllllllte iS r/l.

I,ct u_ cottsider all arbitrary trallSaCtlon TI received at one
of the nodes ill partition k with Ttk nodes. .";ince the copies of
a data item art! raiMomly distributed among the n nodes, the

probability that a single data ilem is accessible in partition k is
given by

(,/

Since each (blta it,,Ill is iml,'pendrtltly allocated, the expecte(]
number of data items available i. this partition is dak. Similarly,

since Tt accesses r data items (on the average), the probability
that it will be successfillly executed is o[. From here, the number
of successful transa('ticms in /," is esihHatcd as ch_Nl,_ and ,:*_N,_,
for types 1 aml rrspt'(tiv_.ly

In conqmti.g I1.' i.'ub.bi]ity of rtAH,ack of Tt due to case (i),

we are ollly itaerr_l,'d .I t/allsal t hms that ii[)(];tte a _]ata iteM/ ill
the write-_rt ol 1_ .n,I ..t _,,...,I_mg with 7'1. The probability
that a given dala item (updated by 711 is not updated in atlotln:r
partition k' by a non-cunmmting tra.saction (with respect to 7])
is given by

/3_, = (l- w _l,-,,,)<,:,_,,,_j (2)

Given that a data item is availahle in k, probability that it is
not availabhr in k' is given its

= ('-'''') - (°-°:....)
,,<(:)

From here, tile probability that a data item available in k is not

updated any other transaction in higher order partitions is given
as

,. = l-i [(k,_.')+(1 -_(t.,x-'))/_,,l (4)
vl.',Olk'l>ol_-)

]'lie probability that transaction "/'t is not in write-write con-

flict with any other ram-commuting transaction of higher-order
partitions is now give. as

(5)

["flail lil.ll,, lh,. lillllil,l.i _,f t I;iiis;i_ I ilill <, I'_,[h'd back dill" tO cat,'gory

(i) ,,i,,y [..... ×pi,.ss,.,I,is tq = k/_=l([- I,_),,'_N_
To compute the rollbacks ol category (ii), we need to deter-

mine the plobahility that 7'l is rolled back due to the rollback of
a depcndellcy palest ill the _i,.llle partitioii. If "1_, is a read-write

trausaction in partitiou k, then the probability that TI depends
on 7'_ (i.e. read-write conflict) is given by:

4
i-
!
I

t

R. Mukkamala

,\k = 1 - -- (6)

The probability that 7'_ is not lolled I)a,k due to Ill(" roll back of

any of its del)eudeu(y pareuls i,; now e, iveta by:

I=L

where Nk = NI_ 4-N2_ and , = l\'2_/(Nt_ + A"lk).
The total number of rolled hack tratlsavlions due to category

(ii) is now estimated _ I_2 =]_=l(1 - \k)o_(,\'l_ + tLkN_k). The
total number of rolled hack transactious Is I¢ = lit + Ii'2.

5. COMPARISON OF TIIE MODELS

As mentioned in the intzoduction, the main objective of this

paper is to determine the effect of data distribution, replicatioa,
and transaction models on the est imat iou of rollbacks. To achieve

this, we evaluate tl." desil,,d mm_sm'_' u_it*g, six dill'er_'nt dala
distribution and rt'ldicati.u m,.h'ls. '11,' i(,ttlparison of tl,'se
evaluations is based on computati.nal time, storage requirement,

and the average values obtailw(I.
l)ue to the limiled sp_(', w(" _.uhl lit>q. I,_'smlt tl,' detailed

derivations r,,r II,, a",',:,K" values f,,, mt,,lels 2 6. The fiual ex-

pressions, howew'r, ate i_reseNted in [Mukkamaht 1990].

5.1 Computational Complexily

We now analyze each of the evaluation methods (for models

1-6) for their cottq)utational comph'xity.

• in model 1, all t transaclious aue <,,ml)h'tely specified, and
the data disltil,utiork r_alrix is ;rise ktlowu. To deO'rnfiue
if a transacti.u is su<ces_fuL, w,, m'ed to th(' scan the dis-

tribution matlix. _qimilarl.v. determining if a transaction in
a lower order parliti(m is to he r,lLed back due to it write-
write conflict with a tra.sactitm of higher order I)al'titiou

requires comparison of write-s('ts of the two transactions.
[)eterlninil_g if a transaction needs to be roiled back due to
the rollback of a dependem'v parent also requires a search.
All this requires O(,dt + pZiZ + pt_,'V), whene t is the num-
ber of transacti(m types at_d ,\' is the illa×ilnull| number of

transactions executed in a I)antitiou_ prior to the merge.

• Models 2-6 havea s_titar computation structure. The num-

ber of transacthm tS'l)('s (t) is high for model 2 and low for
model 6. Each of these models require O(p_l_e + pt_N)

time. As before, t is the nuluber of transaction types and
N is the maxinmm number of transactions executed in a

partition prior to the merge.

Thus, n,)(h'l I is the most (oinldeX (('ou_q_utalionally) aml u_odel

6 is the least complex.

5.2 Space Complexity

We now discuss the space complexity of the six evaluation
methods:

• Model 1 requires O(dn) to store the data distribution rna-
trix, O(n) to store the partition information, O(dt) to store
the data access information, and O(nt) to store the trans-

action arrival information. It also requires OIt_) to store
the commutativity information. Thus, it reqmres O(dn +

dt + rtt + t _) space to store model information.

• Models 4-6 require similar information: O(t) to store the

average size of read- and write- sets of transaction types,
O(nt) for transaction arrival, O(n) for partition informa-
tion, and O(t) for corumute information. Thus they require

O(n/) space.

• Model 3, iu additiou to Ihe space required by models 4-
6, also requires O(I _) for ('ommutalivity matrix. Thus it

requiz('s O(,t + t _) .space.

• Model 2, in additior_ to the space required by model 3,

also negui_es t z spa(_' to slore the data overalp information.
Thus, it requi_es O(nl + t_) storage.

Thus, model 1 has the largest storage requirement and model 6
has the least.

5.3 Evalualion of the Averages

In order to compare the effect of each of these models on
the evaluation of the average rolthacks, we have run a numher of

experimenls. In addition to the aaalytical evaluations for models
1-6, we have also run simulations with Model 1. The results
from these runs are sulnmarized in "Fables 1-7. Basically these
tables describe the number of transactions successfully executed

before partition merge (Before Merge), number of rollbacks due
to class I (Rt), rollbacks due to class 2 (I?_), and transactions
considered to he successful at ti_e completion of merge (After

Mr_yr). ()bviously, Ihe last letm in C.ml>utvd from the eatti_'r
three terms. In all these tal,h's, ti_e Iot.al nund)er of transaction

arrivals into the s.vslenl dining partit toning is taken to be 65000.
Also, each node is assumed to receive equal share of the incoming
t t'allsac | i',) n s,

• q'al)le 1 suHlunarizes the effect of number of partitions as
nn'asured wilh ._lo(h'ls I-ft. llere, it is assumed that each

of the dala it('uus m Ihe system has exactly c = 3 COl)ies.
The olher assumptiol_S ill models I-[i are as folh)ws: "

1. Model 1 considers 130 transaction types in the sys-
tem. Each is described by its read- and write-sets and
whelher it (otmnutes with the other transactions. 90

of the l:111at(' nead-ou,ly transactions. The rest of the
,10 at(' I_,ad-wuite. Am()ug tlw read-write, 15 ('OIIIIllllle
with each t_tlu'r, anlolhi'r 10 COlHIiIuLc' with each other,
aml the test of the 15 (h) not comrnute at all. The sim-

ulatiou rtlll tA_e": l, lle Sallle inputs hut evaluates the

averages by simulation.

2. Model 2 maps the 130 tl-ansaction types into 4 classes.
'['o make the comparisoHs simple, the above four classes

(90+15+10+15) are taken a.s four types. The data

overlap is coral)uteri from the informatk)n provided in
model 1.

3. Model 3, to facilitate comparison of results, considers
the above ,I classes. This model, however, does not

capture the data overlap information.

4. Model 4 considers thr(_ types: read-only, read-write
tl_at commute among themselves with some probabil-

ity, and read-write that do not commute at all.

5. Model 5 ('onsiders read-only tn'ansactious with read-set
size of 3 and read-write transactions with read-set size
of 6. Read-write transactions comnmte with a given

probability.

6. Model 6 only considers the average read-set size (com-

puted as ,1 in our case), the portion of read-write trans-
actions (=45/130), and the average write-set size for
a read-write (= 2). Probability that any two transac-
tions connnute is taken to be 0.4.

From Table I it may be observed that:

• The analytical results from analysis of Model I is a
close approximation of the ones from simulation.

• The evaluation of number of successful transactions

prior to the merge is well approximated by all the
models. Model 6 deviated the most.

• The difference in estimations of R_ and R_ is signif-
icant across the models. Model I is closest to the

842

Effects of Distributed Database Modeling on Evaluation of Transaction Rollbacks

simulation. Model 5 has the worst accuracy. Model

,5, surprisingly, is somewhat better than Models 2,3,,1,
and 6.

• The estimation of /22 from models 2-6 is about ,50
times of the estimation fi'om Model 1. The estima-

tions from Model I and the simulation are quite close.
From here, we can see that, Models 2-6 yield overly
conservative estimates of the number of rollbacks at

the time of partition merge. White Model 1 estimated
the rollbacks as 1200, Model 2-6 have approximated
them as about 13UO0.

• This dilfereuce in estimations seems to exist everl when

the nutnher of partitious is increased.

• "Fable 2 summarizes the effect of numl)er of copies on the
evaluation accuracies of the triodels. It may be observed
that

• The difference between evaluations from Model 1 and

the others is signilicant at low (c = 3) as well as high
(c = 8) values of c. Clearly, the difference is more
significant at high degrees of replication.

• The case p_ = 4,p2 = 6, c = 8 corresponds to a case
where each of the 500 data items is available in both

the partitions, This is also evident from the fact that

all tile 65000 input transaction_s are successful priuL mto
the merge.

• The results from tlw ,ualysis and simulation of Model
1 are close to those frum siLnulatiom

• Table 3 shows the effect of increasiug the number of nodes

from 10 (iu Table 1) to 20. For large rabies of _, all the six
models result in good approximations of successful trans-
actions prior to inerge. The difference_s in estimations of lit
and R,2 still pt-rsist.

• Tabh. 4 ¢Orlll);!.l+l's inodvls 5 aud G. Whih' mod,'l t; ,sly re

titHis av_.n';tge ivall[s_,t, sizt' illl\)lllLi_.tit_ll fOX ;lily ttauna_, litJlt,
nnodel (J lu't'l)S this inlf_rnulali,m hn" read-_Jtdy and read-writ<+
transactious _eparately. This addltiorml inforulation en-
abled nlodel 5 to arrive at better al)proximatiot_s for Ill
and Rz. hi additiou, the elfect of connnutativity on Ill and

R2 is not evident uutil m _> 0.99. This is counterintuitive.
The simplistic .ature of the models is the real cause of this
observation. Thus, even though these models have resulted

in conservative estimates of Rl and Rz, we can't draw any
positive conclusions about the elfect of conunutativity otL
the systeut throughl)ut.

• Tile cornrnerltS that were irlBde about tile conservative na-

ture of the estimates from models 5 and 6 also applies to
model 2. These results are summarized in Table 5. Even

though this model has much nlore system information than
models ,5 and 5, the results (/¢n and /12) are not vc'ry differ-

est. However, the effect of conmmtativity can now be seen
at rn > 0.95.

• llaving observed that the effect of commutativity is almost
lost for smaller values of m in models 2-6, we will now look

at its effect with model 1. These results are summarized

in Table 6. Even at small values of m, the effect of com-

mutativity on the throughput is evident. In addition, it
increases with m. This observation holds at both small

and large values of c.

• In Table 7, we summarize the effect of variations in num-
ber of COllies. In Tal)les 1-6, we assumed that each data
item has exactly tile same rmmber of copies. This is more

relevant to Model 1. Thus we only consider this model i,
deternliniug the <'fft'ct of copy variations on evahlation of /_1
and 11_. As sllowll inl thin talde, the' t'lf_rct is sig.ilicant. As
tire vltriatknn in slumber t_f copies is iulcrt'ase<l, the ummlmr
of successful trallsactions prior to in<trEe d<ycl'l:ases. Ihsnce,
the number of couflicts are also reduced. This results in

a reduction of Ill and t_. AS loug as the variations are
not very sigmficant, the dilfet'ences are also not significant.

6. CONCLUSIONS

In this paper, we have introduced the problem of estimating
the number of rollbacks iu a partitio.ed distributed database sys-
tem. We have also introduced tile concept of transaction commu-

tativity anti described its etfect on transaction rollbacks. For this

purpose, the data distribntion, replication, and transaction char-
acterization aspects of distributed database systems have been

modeled with three parameters. We }rave investigated the effect
of six distinct models on the evaluation of the chosen metric.

These investigatioas have resulted in some very interesting ob-
servations. This study involved developing analytical equatiorls
for the averag<+s, aud evahutting thg.m for a range of paratnctvrs.
We also used siunulatiou_ for t,ue of these models, l)ue to lack

of space, we couhl not luesent all the obtained results in this
paper. In this sectiou, we will summarize our conclusions from

these investigations.
We now SlJlrllnarize thf'se COllchlslorls.

• Random data mudels that assume only average information
about tile system result in vt+ry cotJservative estimates of

system throughput. One has to be very cautious in inter-
preting these results.

• Addiug more systvlu ittformaticm does not necessarily lead
to better approximations. [u this paper, the system iufor-
mation is increased fFom model f; to model 2. Even though
this increases Lilt. tounlmtatitmal cornldexity, it dues not

result in any sigui/icaut improvetnent iu tile estimation of
number of rollbacl;s.

• Model 1 represents a specific system. Here, we define the

transactions COUlpletety. 'l'hus it is closer to a real-life sit-
uation. Results (aualytical or simulation) obtained from
this model represent actual behavior of tile specified sys-

t(,m. II.w<,v,'r, r(,sults obtahL(.d from such it nl(.lel are too

Sl)t',vili,' , aud ciLtl'l l)c +'xll'iL,l,'([for utli,+'u' systeuns.

• 'l'ransactiu. coluuulutalivity .lq.t+ars t(J signilicantly r,.'dLl('e

tratnsaction rollbacks inl a paLtitioued distributed databas_ +
system. This fact is undy e_ident from the analysis of tuodel
1. O. the other h;tt_d, whell we look at models 2-6, it is

possible to cotxchltlt, that cumtnutativity is not helpful un-
less it is very wu'y high. Thus, conclusions from model 1
and models 2-6 appear to be contradictory. Since mod-

els 3-6 assume average traltsactions that can randomly se-
h:ct any data lien) to rvad (_)r write), tire ewduations froul
these nlodels are likely to l. edict higiler conllicts aim hertce
more rt)llbacks. The beuetil s due to comnnltativity seem to

disappear iu the a,,'<+rage behavior. Model l, ou the other

hand, describes a specific system, and hence can accurately
compute the rollbacks. It is also able to predict the benefits

due to commutativity more accurately.

• The distribution of number of copies seems to affect the
evaluations signiticantly. Thus, accurate modeling of this
distribution is vital to evaluation of rollbacks.

In addition to developing several system models and evalua-

tion techniques for these models, this paper has one significant
contribution to the modeliug, simulation, and performance anal-
ysis community.

If an abstract system model with average iulformation is
employed to evaluate the effectiveness of a new technique
or a flew co.cept, then we should only expect conservative
estimates of the elfects, I. other words, if tire results from

the average models are positive, then accept the results.
If these are negative, then repeat the analysis with a less
abstra(+ted lnodel. CotlCel_ts/techniques that are not ap-
In_l)riah' fin all avl'ragt, sy_t,:t, u.ty still be apidicabh_ fi_r
some Sl,.(ili<: ,',yst,'ms.

1143

R.Mukkamala

Table1.ElfectofNmnl)('tofPartitionsonIt,)llbacks
Pi = I,Pt = 6, c = 3 lh = 4,p2 = p:_ = 3,c = 3

Model]l<'hu,' /?, /?¢ Alle_ Ih'l'<_re IP, lia After

M<'_gc M,',g, + M_',g,' M_'rge

S illl.

I

2

3

4

5

6

Model

#
Siln.

1

2

3

4

5

6

50200 100(I 2H5 .18!)!)5

50200 I ()_JlJ 19!) .19U01

,18315 3597 10322 3.1397

483|5 346.I 1019.1 34657

,I8618 ;1667 1112,t3 3,1708

47276 267!) 102;18 3.1360

,16593 3.652 S5711 3.1171

31150 0 0 31450

:114511 (1 0 31.I 50

27069 3,160 8945 14664

27069 2798 !141,0 1486I

27657 3255 9444 14958

24207 1507 9106 13594

22;156 2937 6673 12747

Table 2. I"AI'_.(I_,1"Nu,nh,', ,I (_,,i,i,'s _,n Ih)lll)arks

Pt = I,tq = (i,c = 2 = 4,p_ =6, c= 8]i* I

Bcfure I¢_ 1¢._ After liefore lit It_ After

Merge M,'rg(" Merge Merge

65000 4000 4970 56030

65000 4000 4!IS 1 56019

651100 80O0 17777 39223

651100 80[)0 17786 39214

65000 8000 17786 39214

65001) 80110 17_75 39125

650U(1 81111(I [7860 39|10

3,1600 200 15 31385

3.1600 20<) (I 3110U

31 ()G!I I !19,_ 5119 2:_!J52

;110[;!I lli()l 5:1:l I 2,1131

31595 17!18 5,12tI 24377

23203 151>8 2;126 I !.KIll!]

27138 3.1i3 1701 22021

Table 3. Elfcct of NuHd)cr of Nodes on lh_libacks

PI = I(I,Pz = ltl.c -- 5 Pl = II),p_ = 10,c = 12

Model Before I¢i 16 Allen Before lit 16 After

Merge Mt'rge Merge Merge

_iFfl.

i

2

3

,1

5

6

61250 ,1000 (;2,1(I 51010

61250 ,1000 6231 51[119

6]02,1 !)(l!)() 211S:I 31)751

61021 S!)!)2 212S6 31)7,1[;

61100 !}031 21326 ;lOT.El

60968 !.I06.1 212!)2 30613

60876 !KI6:{ 211!)31i3(V,77

650(10 5000 6231 53769

6501)0 5000 6231 53769

65[100 1(10[)0 22277 32723

651100 100110 22286 32714

65000 10000 22286 32714

65000 100(}0 22375 32625

65000 10000 22360 32640

ACKNOWLEDGEMENT

This research was sponsore<l in part I,y tit(' NASA I,angley
Researctl Center under con/,'act NAt;-1-115+1.

REFERENCES

Coffman, E. (-;., E. (;elenbe, and Ik Plateau (1981), "Optimiza-
tion of Number of ('opi('s in a I)istribut<'<l I)atalmsc," I1"1','1".

Tr<tns(tcttons on S,,fl,,ar, I'ngdn_+'rtn9 7, 1,78-_'1.

Davidson, S.B. 119821, "An optilnistic protocol for partitioned
distribttted database systems," Ph.D. thesis, Department

of EECS, Princeton Llniversity.

Davidson, S.B. (1984), "Optimism and consistency in partitioned
distributed database systems," A CM T_,ansactions on data I"

systems 9, 3, ,t56-181.

Davidson, S.D., II. Garcia-Molina, and l). Sk+'en (1985), "Consis-

tency in partitioned nctworks," ACM Computin9 Surveys

17, 3,341-370.

Davidson, S.B. (19861, "Analyzing partition failure protocols,"
Technical Report MS-C[S-86-05, Department of Computer

and Info. Sci., Univ. of Pennsylvania.

Garcia-Molina, II. (1983), "Using semantic knowledge for trans-
action processing in a distributed system," ACM Trans. on
Database Syslerus 8, 2, 186-213.

Jajodia, S. and i'. Speckman ([985), "Reduction of conflicts in
partitioned databases," h| Pvoceedin�s of the 19th Annual

Conference on Information Sciences and Systems, 349-355.

Jajodia, S. and R. Mukkamala (1990), Measuring the Effect of
Commutfttive 7'ransarttons On Distributed Database Pcr-

[ormancc, 'lk) appear in Computer Journal.

Mukkamala, R. (1987), "Design of Partially Replicated Distributed
Database Systems," Technical Report 87-04, Department
of Computer Science, University of Iowa.

Mukkamala, R. (1990), "Measuring the Effects of distributed
databa.se models on transaction rollback measures," "l?ech-

nical Report 90-;18, Department of Computer Science, Old
l)omit|ion University.

Wright, D. D. (1983a), "Managing distributed databases in par-
titioned networks," Ph.D. thesis, Department of Computer
Science, Cornell University, (also TR 83-572).

Wright, D. D. (1983b), "On merging partitioned databases," A CM
SIGMOD Record 13, 4, 6-1,1.

844

EffectsofDistributedDatabaseModelingonEvaluationofTransactionRollbacks

Table 4. l;]ffect of m ou Ih)llha_ k-_ (Models 5 and 6: I'_ = .1, p, = 6, c = :|

Model 5 Model 6

m Ht /?_

0.00

I).50

0.80

0.90

0.95

0.99

1.00

Before 112 After

Merge Merge

47276 2t17!) 1023,*; 3 I:1(;0

47276 21;7!) I02:1,_ 3 1:160

47276 21i7!) 102:1_ 3.t 3_)0

47276 2679 1(}2:1_ :11:160

4727(5 21i7_ 1112:lfl :1l?,hU

,17276 2211_ 10005 3.t403

46726 0 o ,167L)6

Before 1?2 After

[Merge Mvrgu

.16593 :18152 85711 31171

,165!13 38'5'_* ,u5711 :1.(171

,16593 3852 8570 31171

,1659:1 3S-18 8,57,1 31171

.11i593 377.1 s77t :1,1175

,lti593 2182 1011t9 3.13111

•16593 o o .16593

Table 5. Elfvct of m o,, Itolll,acks (Model 2: /q = .1,/,_ = (.;)

c=3 c=8

m Before ltt /?a Aftra" l:lcfore RI t?a After

Merge Merge Merge Merge

0.0

0.27

0.40

0.77

0.95

0.99

1.0

,18315 3597 10322 31397

48315 :15!17 111:122 31397

48:115 'J597 111:1'_)2 :1.K197

,t8315 35!17 IIKl22 31397

48315 3205 IIITUN :11.11.)2

48315 98(i L2>82 ;I 1.1-17

48'.115 o 11 1,'<315

65000 8000 17973 39O27

65000 81)1.)11 1797:| 3!)027

6500(.) 8000 1797:1 39027

65000 8000 17!)7:1 39027

(i5t.)(.)O 76(i0 1_312 39028

65000 .1321 216.12 :19037

(_,50(J0 0 0 6.5000

Table 6. I",11',,(t o1 ,, ¢,u lh,lll,a(l_,_ (M,(h.I 1: /n = I,/_:_ = (i)

c----3 C----, _,

m I}ef(n¢" let l?.a <\ f_('r 11(,(ore ll_ l_'a ,.\ft('r

Merge .Merge Merge M(.rge

0.0 5090(.) 40011 1199 .15001 65000 8(100 (i379 50621

0.27 50200 10011 199 ,191101 (i5(11.)I) ,10110 1981 5601.9

0.40 5117t11.) 81111 I_)9 I!)21)I (i5000 I _01.) 279:1 60,107

0.77 5021.)(t i) o 502i)0 (i5(.)00 t) 0 65000

1.0 5020(.) o o .s()2oo (;5oot) o 0 65000

Table 7. E'ff(.('t of Variali(ms i,, # ,,f (',,pi(',, on llolll,acks

(Model 1: l,_= ,l,/>i = (i,,(,/c : ,. = o.27, wo/c : m = 0.0)

lq = ,Pa = G,c= 3

('olJy lh.fi,z(. It_ l?e Aft(,r

l)istjil)ut ion Merge M('rge

dj : 500 w/c 50200 1000 199 490(.)1

wo/c 50200 ,1000 1199 ,t5001

d_ = d4 = 100, d a = 300 w/c "18300 1000 9!17 46303

wo/c 48300 4'200 179:1 ,t2'307

d2 = d3 = 167, d4 = 166 w/(41,1110 200 0 .11200

wo/c 41,100 2000 5!17 388(.13

dl = (1_ = (l:) = ,ll : d; = 101.) w/c ,10,100 2(.111 (.) 4|.)200

w_)/(41.111111 I B(.)O 7!17 :18(.103

dl = (Is = 250 w/c 28700 0 0 28700

wo/c 28700 1200 199 27301

845

N91"23973

Measuring the Effects of Distributed Database Models

On Transaction Availability Measures

Ravi Mukkamala

Department of Computer Science

Old Dominion University

Norfolk, Virginia 23529.
emait: mukka@cs.odu.edu

Abstract

Data distribution, data replication, and system reliability are key fac-

tors in determining the availability measures for transactions in distributed

database systems. In order to simplify the evaluation of these measures,

database designers and researchers tend to make unrealistic assumptions

about these factors. In this paper, we investigate the effect of such assump-

tions on the computational comple.,dty and accuracy of such evaluations. We

represent a database system with five parameters related to the above fac-

tors. Probabilistic analysis is employed to evaluate the availability of read-

only and read-write transactions. We consider both the read-one/write-all

and the majority-read/majority-write replication control policies. We con-

elude that transaction availability is more sensitive to variations in degrees

of replication, less sensitive to data distribution, and insensitive to reliabil-

ity variations in a heterogeneous system. The computational complexity of

the evaluations is found to be mainly determined by the chosen distributed

database model, while the accuracy of the results are not so much dependent
on the models.

Keywords and phrases: Availability, Database models, Distributed

Systems, Distributed Database Systems, Performance Evaluation, Proba-

bilistic Analysis, Reliability, Transaction Availability

Measuring the Effects of Distributed Database Models

On Transaction Availability Measures

1 Introduction

A distributed database system is a collection of cooperating nodes each

containing a set of data objects 1 A user transaction can enter such a

system at any of these nodes. The receiving node, some times referred to

as the coordinating or initiating node, undertakes the task of locating the

nodes that contain the data objects required by a transaction.

When we consider systems that require high guarantees for successful

execution of transactions (especially for read-only transactions), it is impor-

tant to consider transaction availability. Even though there are a number

of availability (and reliability) metrics defined for computer systems [2,9],

in this paper we choose two metrics: Start availability (TSA) and finish

availability (TFA).

Transaction start availability (TSA) defines the probability with which

a transaction can successfully start its execution. By our definition, a trans-

action is said to have a successful start when it can access all the required 2

copies of the data objects that it needs for its execution. For simplicity, we

consider a data copy at a node to be available for access when that node

is up and it is accessible from the node that is currently coordinating the

execution of the transaction. A transaction can start its execution as soon

as all the required data object copies are available.

Transaction finish availability (TFA) defines the probability with which a

transaction can complete its execution, given that it has started its execution

successfully. If execution times for transactions are negligible (as compared

to the mean-time-to-fall of the components), then this reliability will be

close to 1. However, since transactions take a finite but significant amount

of time to execute, it is quite possible that the nodes that are involved in

the execution of a transaction (and available at the start of execution) may

lln this paper, the basic unit of access in a database is referred to as a data object.

2The number of copies of an object that are required to be accessed by a transaction

depends on the operation (read or write) and the replica copy control (e.g. reaxt-one/write-

all, majority) [3,18].

fail during its execution. In this case, the transaction is said to be aborted.

In such cases, the execution needs to be restarted.

Formal definitions and evaluation of these two metrics (TSA and TFA)

depend on several factors such as the fault model of the system (including the

reliabilities of the system components), the transaction execution policy, the

data distribution policy, the degree of data replication, the concurrency and

commit protocols, and the characteristics of the given transaction [4,7,9]. In

addition, TFA depends on the execution times of transactions.

Even though it is theoretically possible to formulate equations expressing

the two metrics in terms of the above mentioned factors, the evaluation of

these equations is extremely cumbersome and requires unreasonably high

computation times. The evaluation of the exact values for these measures

generally involves both analysis and simulation. Evaluation tools with such

large execution times are certainly not acceptable to a database designer

who needs to evaluate a number of such possible database configurations

before arriving at a final design.

To overcome these problems, designers and researchers generally resort

to approximation techniques [7,8,16]. These techniques reduce the compu-

tation time by making simplifying assumptions regarding data distribution,

data replication, and transaction execution. The time complexity of these

techniques primarily depends on the underlying model as well as the evalu-

ation technique.

The effect of data distribution and replication models on evaluation of

transaction response time has been measured in earlier studies [13]. These

studies indicate that the computational complerity of a selected database

model does not necessarily reflect the accuracy of the resulting performance

evaluations. In fact, a model requiring computational time of 30(n 2) has

yielded results very close to those from a complex model with O(n") com-

ple.,d ty.

In this paper, we study the effect of data distribution, data replication,

and fault models on the accuracy of transaction availability evaluations. We

employ probabilistic analysis to arrive at the estimates for the desired values

for six typical models.

The balance of this paper is outlined as follows. Section 2 formally

3Here, n denotes the number of nodes in a distributed system.

defines the problem under consideration. In Section 3, we describe a clas-

sification scheme for data distribution and replication policies. Section 4

illustrates the advantages of probabilistic analysis over simulation, and em-

ploys this technique to evaluate the measures for two different models. In

Section 5, we compare the analysis methods for six models based on com-

putational complexity, space complexity, and the accuracy of the measures.

Finally, in Section 6, we summarize the obtained results, and suggest a

general approach for design and analysis of these systems.

2 Problem Description

In this paper, a read-only transaction is characterized by the average number

of data objects that it reads (i.e., its read-set size). Similarly, a read-write

transaction is characterized by the number of data objects that it reads

(read-set size), and the number of data objects that it updates (write-set

size).

The problem of estimating the availability of a read-only transaction

may be formulated as:

Given the following parameters, estimate TSA, and TFA, for a read-

only transaction that requires s data objects for read access.

• n, tile number of nodes in the database 4

• N, the index set for the nodes in the database; N = (1,2 , n}

• d, the number of data objects in the database

• D, the index set for the data objects in the database; D =

{1,2,...,d}
• GD, the global data directory that contains the location of each of

the d data objects; the GD matrix contains d rows and n columns,

each of which is either a 0 or a 1; i.e., GDij = 0 or 1, Vi E

D and Vj EN

• the reliability of the nodes in the network.

The problem of estimating the metrics for a read-write transaction can

be similarly defined.

4Table 1 summarizes the notation used in this paper

Symbol Description

ai

c

Cl

d

di

g
k

n

ni

P

q
r

ri

$

A1,A_

BI, B2

Cx, C2

D1, D2

El, E2

D

GA

GD

N

TSA,

The number of data objects accessed from the it_ group

The average number of copies of a data object

The number of copies of a data object in the lth class

The number of data objects in the database

The number of data objects in the ith class

The number of data object groups

Number of live nodes

Number of nodes

The number of nodes in the ith class

The number of copy classes

The number of reliability classes

The average node reliability

The reliability of a node in the i th class

The size of the read-set

Policies representing the data grouping

Policies representing limits on the data objects per node

Policies representing the degree of replication

Policies representing the copy distribution

Policies representing the component reliability

The index set for the data objects in the database

Group access vector representing the number of objects accessed

from each class or group

Global data directory (or dictionary)

The index set for the nodes in the database

Transaction start availabifity of a read-only transaction with

read-set size s (read-one/write-all policy)

Transaction start availability of a read-write transaction with

read-set size x + y and write-set size Y (read-one/write-all policy)

Transaction start availability of a transaction with

read-set size s (read-majority/write-majority policy)

The size of the read-only object set

The size of the read-write object set

Table 1: Notation

4

3 Model Description

As stated in the introduction, the primary objective of this paper is to in-

vestigate the effect of data distribution, replication, and fault models on

availability estimations and the computational complexity of these evalua-

tions.

To describe a data distribution, repfication, and fault model, we charac-

terize it with five orthogonal parameters:

A - Object grouping (or clustering)

B - Limits on the number of data objects per node

C - Degree of object replication (or the number of copies)

D - Constraints on distribution of object copies

E - Constraints on component reliability

We now discuss each of these parameters in detail.

Some distributed database systems allocate individual data objects [5,

10]. We categorize this strategy as A1. In other systems, data objects

are first partitioned into disjoint groups, and then the resulting groups are

allocated [12,16,17]. Thus, the copies of all the data objects in a given group

are allocated to the same set of nodes. We refer to this strategy as A2.

Some database designers place no explicit limit on the number of data

objects that may be placed at a node [7]. This strategy is named as B1.

Others restrict the number of data objects that may be placed at a given

node. This may be attributed to storage limitations or for security reasons

[11]. We refer to this strategy as B2.

For simplicity, several analysis techniques assume that each data object

has the same number of copies (or degree of replication) in the database

system [6,16]. Some other techniques characterize the degree of replication

of a database by the average degree of replication of data objects in that

database [7]. In this paper, both these categories are referred to as C1.

Others treat the degree of replication of each data object independently.

We refer to this as strategy C2.

Some database desirers and analysts assume that each data object (or

group) copy is randomly distributed among the nodes in the distributed

system [7]. We refer to this as D1. Others assume some specific allocation

schemes for data object (or group) copies [11]. Assuming complete knowl-

edge of data copy distribution (GD) is one such assumption. Depending

on the type of allocation, such assumptions may simplify the performance

analysis [13]. This category is referred to as D2.

Again for simplicity, some database designers and analysts assume that

all components (nodes and links) in a distributed system have the same

reliability factor [1]. In this paper, we only consider node failures and node

repairs 5. We let El denote a policy where all nodes are assumed to have

the same reliability characteristics, and E_ denote a policy where nodes are

classified based on their reliability characteristics.

Using this classification, any known data distribution, replication, and

reliability policies may be categorized by these five parameters. For example,

< A2, B1, C1, D2, E1 > represents a policy where

1. Data objects are first grouped and then allocated.

2. There is no ezplicit limit placed on the number of data objects (or

groups) allocated to any node.

3. Each group has the same average degree of replication.

4. The copies of a group are distributed in some systematic manner

among the nodes in the system.

5. All nodes in the system have identical reliability characteristics.

With these five parameters, we can describe thirty two basic policies.

Several variations of these basic schemes are possible due to variations in

systematic distributions (D2), variations on the limits of data objects per

node (B_), and the types of grouping (A2). Due to space limitations, in this

paper we chose to present the results for six of these policies. Interested

reader may refer to [14] for an analysis of other policies.

5That is, the underlying network structure almost always facilitates communication

among live nodes.

We chose the following six policies to study the effect of the above men-

tioned parameters on availability computations:

Model 1: < A1,B1,Ct,D1,E1 >

Model 2: < A_,B1,Ct, D1, E1 >

Model 3: < AI,B_,C1,Dz,E1 >

Model 4: < A1,Bt,C2,D1,E1 >

Model 5: < A1, BI,Ct, D_, El >

Model 6: < AI,Bt,Ct,Dt,E_ >

Among these, Model 1 represents a simple system that is computation-

ally attractive (as shown in Table 2). Model 2 reflects the effect of data

grouping on the evaluation. Similarly, Model 3 reflects the effect of placing

limits on number of data objects. Model 4 represents the effect of varia-

tions in number of copies of data objects on availability evaluation. Model

5 shows the effect of biased or non-random distributions of data objects

on the evaluation. Finally, Model 6 reflects the effect of non-homogeneous

environment (i.e., different node reliability characteristics) on transaction

availability evaluation.

In the following section, we derive closed-form expressions for the average

transaction availabilities for Models 1 and 2.

4 Probabilistic Computation of the Availabilities

There are several approaches for computing the availability of a given trans-

action in a database. These computations assume a given data distribution,

data replication, and fault models. We now look at two such methods:

simulation and probabilistic analysis.

Using simulation, one can generate the data distribution matrix (GD)

based on the data distribution and replication model. One can also generate

the reliabilities for each of the nodes in the system 6. Similarly, one can gen-

erate all possible transactions (with different read-sets and write-sets) that

8Here, we ignore the possibility of network partitioning, and thereby ignore link relia-
bility factor.

canbe receivedat eachof the nodesin the network.Foreachsuchtransac-
tion receivedby the system,the datadistribution matrix canbe searched,
andits ability to accessall therequireddataobjectsmay beverified. In
addition to generatingtransactions,weshouldalsogeneratenodefailures
and noderepairsin the time domain.Thus,sometransactionsmaynot be
successfuldueto theinaccessibilityof oneor moredataobjectsthat they re-
quire(dueto nodefailures).With suchstatistics(of successful/unsuccessful
transactions)in hand,wecanobtaintheaverageavailabilityofa transaction
of agivensize.Thisaveragecorrespondsto asingledistributionmatrix. The
generationandevaluationprocessmayhaveto be repeated sufficient times

to get the required confidence in the final result. Since there are d data ob-

jects, there are (_) possible transactions with read-set r size s, and there are

n nodes where each of these may be received. Given a transaction, and the

node where it is received, determining the state (successful/unsuccessful) of

a transaction takes at least O(nd) computations (i.e., to scan the columns of

the GD matrix corresponding to available nodes). If the distribution matrix

is generated k times, then the evaluation of the desired average set size for a

transaction of size s takes O(kn2d(_s)) time. In general, k is a function of the

number of copies, the number of data objects, the number of nodes, and the

data distribution model, and it could be very high. Suppose d = I00, s = I0,

and n = 10, then this method requires approximately 101_k computations.

Even for reasonable values of k, this is an unreasonably high computation

time.

To avoid this large evaluation time, we adopt probabilistic analysis. In

this analysis, we essentially study the given data distribution and reliability

model and arrive at an expression for the average transaction availability

for a given read-set (or write-set) size. With probabilistic analysis, some

data distribution models (e.g., Models 1 and 3) may require insignificant

amounts of computation. Some may need moderate computation times (e.g.,

Models 2 and 6), whereas others may need large computation times (e.g.,

Models 4 and 5). Regardless of the model, all these need considerably less

computation time (with more accuracy of results) than the corresponding

simulation methods.

We now illustrate the probabilistic method of analysis by applying it for

7The corresponding term for write-sets of update transactions may be easily written.

Models1 and 2. Expressionsfor othermodelsmaybederivedin a similar
manner.Interestedreadermayfind the detailsof thesederivationsin [14].

4.1 Derivation of Reliability Metrics for Model 1

Model1, designatedas< A1, B1,C1,D1, E1 > assumes the following about

the data distribution and replication:

[R1] The data objects are allocated individually (i.e. not grouped) to the

nodes.

[R2] There are no limits placed on the number of data objects that may be

placed at each node.

[R3] The average degree of replication (c) of a data object is given.

[R4] The copies of a data object are allocated randomly.

[R5] Each node in the system has identical reliabiLity (= r).

Further, to simplify the illustration of the current analysis, we make the

following assumptions regarding the distribution of groups, and the partici-

pating node set determination:

[R6] Each transaction is equally likely to access any data object.

[RT] The transactions that enter the distributed system are coordinated

by a set of reliable servers that search the distributed database system

(i.e., the availability of nodes and their dictionaries) for the availability

of the required data objects.

Due to Rule R7, we will not distinguish transactions that are received

at different locations in the system. Thus, we will disregard the originating

node as a parameter in this analysis s.

aThe analysis can easily be extended to a situation where transactions received at an

unavailable node ate automatically considered ax unsuccessful.

4.1.1 Derivation of Availability for Read-only Transactions

Letusconsidera read-onlytransaction7'1with s objects in its read-set and

received at one of the servers. Let us also assume that the copy control

algorithm follows a read-one/write-all policy. Thus T1 needs to access any

one of the c copies of a data object that it requires.

Given that exactly k of the n nodes are available (i.e., up), the probabifity

that at least one copy of a given data object is available is given by:

rt--k

Pk,, = 1 (c) (1)

By definition of the read-one/write-all policy, Pk,1 represents the probability

that a data object is available for read access in the system. Since each data

object is allocated independently to the nodes in the system (by Rules R1

and R2), the probability that all s data objects required by T1 are available

for read access within these k nodes can then be expressed as:

= = 1 j (2)

Assuming the reliability of any given node to be r (from Rule R5), the

probability that T1 has successfully started is:

TSA, = r}(1 - r) Pk,s

k--I

Given that T1 has successfully started, we will now compute the prob-

abifity with which it can be successfully completed. Let us assume that n,

nodes are involved in the execution of 7'1, and that it has an execution time

of t units. Now, in order for T1 to be successful, all these n, nodes have to

be available for at least t units of time, given that they were available at the

start of execution. Assuming an exponential distribution for time between

node failures with a failure rate of A, the probability that a node which is

available at time zero is available throughout time t is given by:

At = e -t'x (4)

10

Fromhere,theprobabilitythat noneof the ns nodes have failed during time

t is given by:

TFA, = A'_'

= _-_'"_ (5)

Estimating ns for transaction T1 is a complex problem. This problem has

been well investigated and the details of the solutions may be found in [15].

In this paper, we assume that ns for 7'1 has been obtained a priori for a

given data distribution and fauIt model.

4.1.2 Derivation of Availability for Read-write Transactions

Let us now consider a read-write transaction T2 with s objects in its read-

set and y objects in its write-set. Let us assume that for a given read-write

transaction write-setC_read-set [3,7]. Thus, among the s data objects, y

objects are both read and written, while x = s - y data objects are only

read. (Note that the intersection of the read-only and the read-write sets of

the data objects is empty.) Since the replication control algorithm follows a

read-one/write-all policy, 7'2 needs to access all c copies of the y data objects

and any one copy of the x data objects.

Given that exactly k of the n nodes are available (i.e., up), the probability

that all c copies of a given data object are available is given by:

P_" = (:--5 (61

Since each data object is allocated independently to the nodes in the system

(by Rules R1 and R2), the probability that all y data objects required by

T_ are accessible for update is expressed as:

fo]
P_,_ = [(:)] (7)

Similarly, the probability that all x data objects are available for read access

may be computed as:

(,,-k).Pk,_ = 1-_ (s)
(:)

11

Fromhere,theprobabilitythat T2 is successfully started may be computed

as;

k=l

= ,-_'(1- ,.),,-k 1 _ (9)
k_-i (:)

The finish availabilities for 7"2 may be similarly computed using Equa-

tions (4) and (5) where n, is now replaced by n_.y [14].

4.1.3 Derivation of Availability for Transactions with Majority

Consensus

In the above two sections, we dealt with read-one/write-all replication con-

trol policy. The majoriW consensus protocols [18] which require the acces-

sibility of at least a majority of the total copies of a data object for both

read and write operations are very attractive in a failure prone environment.

Since both read and write operations require the same number of copies of

a data object, in this analysis we do not distinguish between read-only and

update transactions. Here, we simply refer to 7"1 as a transaction.

Let rn = 2 ,[c+l] represent the majority of copies. Then the expression for

start availability for T1 is given as:

TSa" = _,_., ,-k(1- ,-)"-" (lO)
k=_ (:)

Similarly, the expression for the finish availability for T1 may be expressed

as:

TFAs = A'_ °

= e -'_'t_ (11)

where ns now represents the average number of nodes accessed for executing

7'1 with the majority consensus protocol [15].

12

4.2 Derivation of Transaction Availability for Model 2

Model 2, designated as < A2, B1,C:, D1, E1 > is similar to Model 1, except

that the data objects are now grouped, and the groups are then allocated

to nodes in the system. This may be described as:

[RP]

[R O]

The data objects are first grouped and the groups are then allocated,

to the nodes. Let the d data objects be partitioned into t distinct

groups. Let dk represent the number of data objects in group k. Thus,

E =l = d.

There are no limits placed on the number of groups that may be placed

at each node.

[Rii]

[ai2]

[R13]

The degree of replication is the same for each group (c).

The copies of a group are allocated randomly.

Each node in the system has identical reliability (r).

Again, to simplify analysis, we make the following assumptions:

[R14] Each transaction is equally likely to access any data object.

[R15] The transactions that enter the distributed system are coordinated

by a set of reliable servers that search the distributed database system

(i.e., the availability of nodes and their dictionaries) for the availability

of required data objects.

4.2.1 Derivation of Availability for Read-only Transactions

Once again let us consider transaction Tt executing under a read-one/write-

all policy. Given that k of the n nodes are available (i.e., up), the probability

that at least one copy of group k is available is given by:

(r-k)
i- (i2)

(:)

If the vector GA =< al,a2,...,at > represents the number of data objects

accessed by T1 from each of the t groups, then the probability that T1 is

13

successfullystartedmaybecomputedas:

(da:) (d_)''" (da:) 14)
P_(a,_) = (_)

1 ifak>O 15)f(k) = 0 otherwise

GA = < al,a2,...,at >,

t

ak =s and Vk l<k<tO<ak <dk
k=l

When data objects are equally distributed among the groups (i.e., dl = d2 =

... =dt = {), then this expression may" be further simplified as:

TsA. = E r'(1-_) _-' 1 (2) L c
l=l k=l

16)

(_)
(iT)

The expression for TFAs is the same as in Equation (5).

4.2.2 Derivation of Availability for Read-write Update Transac-

tions

Let us consider transaction T2 which requires z objects for read-only oper-

ations and y data objects for read and write operations (s = z + y). Thus

we need to define two GA vectors for read-only and read-write data object

sets:

GA'

GA"

i i i
= < a 1,a2,...,at >

t

Ea_ =z and Vk 1 < k< t O_<a'_<dk
k=l

Ii II It
= < al_a2_...,g t

t

)--_a_=!/ and Vk l<k<t0<_a"<_dk-a'k
k=l

14

In computing TSA_,y we should recall that if a data object is write

accessible under a given node availability conditions, it is also read accessible.

However the reverse is not true. These two facts are made use of in deriving

the following expression for TSAr,y:

GA _ GA" l=l

' [(.__)i'(k)
[I [i_=, (_)

(_oi)¢4)...¢o!)
Pr(OA') = 0

,, J _, /'"_ °7 J
P_(aA")=

(_)

I, OAa_ > 0
1 if a k =

if(k) = 0 otherwise

{
1 if a k > 0

f"(k) = 0 otherwise

1-It_ j
k=l

(ts)

As before, when data objects are equally distributed among the groups

(i.e. dl d2 = dt d= = "'" = 7), this expression may be simplified as:

TSA;,_ = _ r 1(1- r) "-t t t-
,=,_,=1_,=0 k, k_ L(o)J

(__,_+ (_) _' __, ,-_,-_ _ c,__.%--_+___. ,
(:) [(_)] d_) ¢V)

(19)

The finish availability TFAz,y may be computed using Equation (5)

where n, is now replaced by nx,y which is assumed to be known a priori in

this paper.

15

4.2.3 Derivation of Availability for Transactions with Majority

Consensus

As described in Section 4.1.3, under the majority consensus protocol both

the read-set and read-write set are treated in the same way for access prob-

ability computations. Thus, we only consider a read-only transaction with

a read-set size of s. The expression for TSA_ can now be written as:

"
TSA: = ___ Pr(CA) __, rZ(1 - r) '_-t 1"_ (:) (20)

GA l=l k=l £_=m

where Pr(GA) and f(k) are as defined in Equations (14) and (15).

Once again, when data objects are equally distributed among the groups

(i.e. dl = d2 = ... = dt = 4), this expression may be written as:

TSA_
t=_ k=l L l, =m (_)

(/,) "-' (T)
1-z (22)

5 Comparison of the Availabilities for the Six

Models

As mentioned in the introduction, the main objective of this paper is to

determine the effect of data distribution, replication, and fault models on

the estimation of transaction availability. To achieve this, we evaluate the

desired measure using six different models. The comparison of these evalua-

tions is based on computational time, storage requirement, and the average

values obtained.

Due to space limitations, we cannot present the detailed derivations for

the average values for Models 3-6. The final expressions, however, are sum-

marized in the appendix.

16

5.1 Computational Complexity

We now analyze each of the evaluation methods (for Models 1-6) for their

computational complexity.

Let us refer to Model 1. From Equations (3) and (9), it is clear

that computation of TSAs and TSA_,_ take O(cn 2) time o. Simi-

laxly, from Equation (10), it is clear that the computation of TSA_

requires O(c2n _) time.

• We now derive this complexity term for Model 2. Let us first look

at the computation of TSA,. From Equation (14), we derive that

the computation of Pr(GA) requires O(s) time. The number of GAs

generated is approximately O(s t) where t represents the number of

data object groups. Given a GA vector and Pr(GA), computation of

TSA, requires O(nct+n 2) arithmetic operations (from Equation (18)).

Thus the evaluation of TSA, requires O(s t (nct + n 2 + s)) time. Sim-

ilarly, we can conclude that TSA'_, u requires O(z_yt(nct + n 2 + s))

time (Equation (19)), and TSA" requires O(s'(nc_t + n 2 + s)) time

(Equation (20)).

• For Model 3, the computational complexity for TSA_ is O(n2+n(s+c))

(Equation (23)). Similarly, TSA'.u and TSA" require O(n2 + n(c + s))

and O(r_ 2 + n(c 2 + s)) respectively (Equations (24) and (25)).

The computational complexity for Model 4 depends on the number

of copy categories. Assuming that s < dk for k = 1,2,...p, we can

generate approximately sp different CA vectors. Thus the computation

of TSA, requires O(sP(n2+ npc+ s)) time. To compute TSA', we need

to compute the number of possible CA _ and CA" vectors. There are

approximately a:P CA _ vectors and yP CA" vectors. Thus, TSA_,u

requires O(zPyP(npc + n 2 + s)) time. Similarly, we can conclude that

TSA_ requires O(sP(npc 2 + n 2 + s)).

• In Model 5, we assume that the entire data dictionary information

is available to us. Given a GD matrix and a node status vector S,

9Here, we are assuming that the evMuation of the terms (_) and pq takes O(q) and

O(1) time respectively.

17

computationof f(S), if(S), and f"(S) require O(nd) time to search

the matrix. Given n, there are 2 '_ possible S vectors. Thus the com-

putations of TSA, TSA', and TSA" require O(2"(nd + s)) time.

In Model 6, the number of NA vectors generated is (hi + 1)(n2 +

1)... (nq + 1). For simlification, we approximate it as (_ + 1) q. Given

a NA vector, the computation ofTSA, TSA', and TSA" require O(s+

c+q), O(s+c+q) and O(sc+c2+qc) time respectively. Thus the three

metric evaluations require O((_+ l)q(s+c +q)), 0((_ + 1)q(s+c+q)),

and O((_ + 1)q(cs + c2 + cq)) time respectively.

These complexities are summarized in Table 2. From this table it may be

observed that models 1 and 2 are computationMly very attractive. The

complexity of evaluations with models 2,4, and 6 depend on the number of

groups, the number of copy variations, and the number of reliability vari-

ations respectively. For systems with a large number of nodes, evaluations

with model 5 are very expensive.

5.2 Space Complexity

We now discuss the space complexity for the six models:

• Models 1 and 3 just require the values of d,c,s,r and n. Thus the

storage requirement is O(1)

Since Model 2 requires that the di values be stored, and that the GA

vectors be generated, it requires O(t) storage, where t is the number

of data groups.

• Model 4 requires O(p) storage to contain the p copy classes.

• Model 5 requires O(nd) storage for the GD matrix.

• Model 6 requires O(q) storage to contain the node reliability class

information.

Thus, Model 5 has the largest storage requirement. These complexities are

summarized in Table 3.

18

Model ComputationalComplexity
Read-only Read-write

1 O(cn 2)

2 o(,'(,_a + _ + _))
3 O(n 2 + nc + ns)

4 O(sP(npc + n2 + s))

5 O(2n(nd+,s))

6 o((_ + t)_(_-+c + q))

o(_. _)
O(x_y_(nct+ n_+ _))
O(n_+ nc+ ns)
O(zPyP(npc+ n_+ s))
o(2_(_d + _))

o((_ + I)_(_+ _+ q))

O(st(nch + ,_ + s))

O(n 2 + nc _ + ns)

O(g(npc 2 + n_ + s))

O(2n(nd + s))

o((_ + t)_(_ + _"-+ _q))

Table 2: Computational Complexities for the Evaluation of Availabilities

Model Space

Comple_ty

o(t)
o(t)
o(t)
O(p)
O(_d)
O(q)

Table 3: Space Comple.,dties for the Evaluation of Availabilities

19

5.3 Comparison of the Availabilities

In orderto comparetheeffectivenessofeachof thesemodels,wehaveevalu-
atedavailabilitiesfor a widerangeof parameters.Dueto spacelimitations,
in this paper, weonly presenta smallsubsetof theseresults. Similarly,
sinceTFAj, TFA_,_, and TFA_ are found to be insensitive to variations

in models, we are not presenting these results here. We only present the

results for the transaction start availabilities. These results are summarized

in Figures 1-7.

Figures 1-3 compare the availabilities obtained from the six models. The

following assumptions are made for models 1-6:

,

,

°

In Model 2, we assume that the d data objects are grouped into n

data groups each containing din data objects. This is similar to the

assumptions in [13].

In Model 3, we assume that each of the n nodes in the system is

allocated ezactly the sarne number of data objects (equal to dc/n).

In Model 4, we assume that d/2 data objects have c copies, d/4 data

objects have c + 1 copies, and the rest have c - 1 copies. This keeps

the average copies the same (i.e., c) but brings a copy variation factor

into consideration.

4,

.

In Model 5, we assume that the d data objects are allocated system-

atically so that the copies of the i th data object are allocated, in a

circular manner, to the nodes starting from (i @ n) + 1.

In Model 6, we assume that n/3 nodes have reliability r 0.1, n/3

have reliability r + 0.1 and the rest have a reliability r. lO

Figure 1 summarizes the results for read-only transactions with read-one/write-

all policy. Figure 2 presents these results for transactions (read-only or

read-write) with majority-read/majority-write protocol. Finally, Figure 3

summarizes the results for read-write transactions with read-one/write-all

policy. From these results, we make the following observations:

1°When r = 0.95, we assume that n/3 nodes have reliability r-0.5, n/3 have reliability

r + 0.05 and the rest have a reliability r.

2O

• For read-only transactions (with read-one/write-M1 policy),

(i) Evaluations with models 1 and 3 are close over the entire range
of s and r.

(ii) Evaluations with models 2 and 5 are also close over the entire

range of s and r. This may be explained by the fact that the

number of groups 9 = n = 10 for model 2 and the systematic

distribution for model 5 implicitly results in i0 groups. However,

they do differ in the manner in which these groups are distributed.

(iii) For r >_ 0.95, evaluations with all models, excepting model 4, are

quite close.

(iv) Evaluations with model 4 appear to significantly deviate from

all other models for r _> 0.75. This implies that modeling of

the degree of replication is a very important task in availability

evaluations.

• For transactions with majority-read/majority-write policy,

(v) Evaluations with models 1 and 3 appear to be close. Similarly,

evaluations with models 2 and 5 are close. In addition, evalua-

tions with model 6 are close to evaluations with models 1 and

3.

(vi) For s _> 25, the availabilities appear to be independent of the

read-set size. This implies that computations for s > 25 are

redundant.

(vii) The evaluations with models 2 and 5 seem to differ at higher

values of n. The evaluations with the other four models are close

for n = 20. This is an interesting observation.

(viii) Once again, the variations in degree of replication of individual

data objects appears to have a dominating effect on availability

evaluations.

• For read-write transactions with read-one/write-all policy,

(ix) The availabifities for s >__5 are significant only when r _ 0.99.

21

(x) Sincethe availabilitiesaregenerallylow, the effectof the differ-
encesin themodelsseemto beinsignificant.At highreliabilJties
(i.e. r >_ 0.99), the evaluations with model 4 seem to deviate
from the evaluations with the other models.

We will now study the effect of the individual model parameters.

• Models 1 and 3 are very simple, and need no further investigation.

Evaluations with model 2 represent the effect of data object group-

ing on availability (Figure 4). As the number of groups is increased,

the availability seems to be decreasing. This effect seems to dimin-

ish for g >- 25. This effect is insignificant for read-write transactions.

Similarly, this effect seems to vanish at high node reliabilities.

Evaluations with model 4 represent the effect of variations in degrees

of replication of data objects (Figure 5). The effect of these varia-

tions seem to be insignificant on read-write transactions. The effect

of copy variations seem to be more apparent at high node reliabilities.

Similarly, this effect seems to be more pronounced on read-only trans-

actions (with read-one/write-all policy) than the other two classes.

Model 5 represents the effect of data distribution on the availability

evaluations. From Figure 6, it may be observed that the distribution

effect is only evident at s >__10. In addition, the effects are more

significant for read-only transactions than the other two classes. The

effect is less evident at high node reliabifities.

Model 6 represents the effect of node reliability variations on avail-

abilities. From Figure 7, it may be observed that the variations have

almost no effect on availability evaluations.

6 Conclusions

The current investigations on measuring the effect of data distribution, repli-

cation, and fault models on transaction availability evaluation have resulted

in some very interesting observations. As part of this study, we chose six

22

modelsrepresentingsix differentparametricassumptionsthat researchers
and designersgenerallytend to makein their analysis.Usingprobabilis-
tic analysis,we derivedexpressionsfor transactionavailability.for three

classes of transactions: read-only (read-one/write-all policy), transactions

with majority-read/majority-write policy, and read-write transactions (with

read-one/write-all policy). The effect of the six parameters is measured by

evaluating availabilities (for different read-set sizes). From here, we conclude

that:

By choosing a proper distributed database model, the computational

comple.,dty of transaction availability evaluations can be significantly

reduced.

• For values of s _< 10, all models result in almost the same transaction

evaluation.

• It is not necessary to evaluate transaction availabilities for values of

s>25.

Evaluations for the read-only transactions (with read-one/write-all

policy) are more sensitive to database modeling than the other two

classes of transactions.

The degree of replication of individual (or group) data objects seems

to have a significant effect on transaction availabilities. Thus, when

different data objects have different copies, adopting average degree

of replication to represent ant object in a system, may not result in

accurate availability evaluations.

The actual distribution of data object copies has some, if not signifi-

cant, impact on availability evaluation.

In a heterogeneous environment where different nodes may have dif-

ferent reliabilities, it is sufficient to represent each node by the average

node reliability, without affecting the availability evaluations.

Data object grouping (logical or physical) does not seem to effect the

accuracy of availability evaluations as long as the number of groups is

not too small (e.g. When d = 1000, g >__25 is sufficient).

23

Distributed database designers and researchers can utilize these results in

choosing appropriate parameters that would result in reduced computational

requirements without sacrificing the resulting accuracy of the design and

analysis of these systems.

24

Appendix

Model 3 < A1,B2,C1,D1,E1 >:

Here, we assume that each node has exactly the same number of data objects

(= d.c].

k=l (s

TSA" = .k (1 - ,)_-k (25)
__-_ (,)

TFA, = e -'_'t'\ (26)

TFA'. v = e-'_',_ t,\ (27)

TFA", = e -n"t_ (28)

: el1

..__
L(c)J

,=m (:)

Model 4 < A1,B1,C2, Dx,E1 >:

Here, each data object may have its own degree of replication specified.

For an efficient computation, we classify the data objects into p categories

(1 < p < n) based its degree of replication, dl denoted the number of data

objects in the I th category where each object has ct (1 _< ct _< n) copies.

TSA, = __.Pr(CA) _ rk(1 _ ,),_-kl-I 1 (_)
CA k=l 1=1

(29)

25

TSA' =
2: ,y

TSA" =

CA =

CA II .__

Pr(CA) =

Pr(CA') =

Pr(CA") =

m I =

The expressions for

tions (26)- (28).

CA' CA" k-=l

i i!

'[(°::)]" I(:)l"I-I fI,:, ,:, LOJ

' (.)(c,-.) (3t)pr(cA) &l - _)"-_II (_)
CA k-=rn 1=1 Ll'=m_

P

<al,a2,...,ap>, _-'_ak=s,Vk l <_k<_pO<ak <_dk
k=l

P

' Z< a'l,a_,...,ap>, a_=z, Vk 1 <k <p0<ak_<dk
k=l

P

< a'_,a'_',... ,% >, ,__.ak = y, Vk 1 < k <_p 0 <_a'_'<_d_ - a_
k=l

(_,_(_)... (_o_)
0

dl _ {d2 _ . dp
',;_ .. (_,)

0
((_'o,,:_")(_7,:;)... ,r_'-°;_ox_,

d-a:

(_)

TFA,, TFA_,y, and TFA:' are the same as in Equa-

Model 5 < Ax,B1,C1,D2, E1 >:

Here, we assume that the entire data distribution is available as a dictionary,

GD.

TSA_
(_(s))

= _s Pr(S)_,) (32)

(l'(s))(_(s)-_)
= _Pr(S)" _ " (33)

s ("_) (_7)

26

(_,,,(s))
TSA" = _-'s Pr(S)"

Pr(s) = #,,,(s)(1 - _)_-1"'(s)

where

(34)

S - Node status vector; Sj = 1 :=> Node j is up; S5 = 0 ::> Node j is down.

f(S) - The number of data objects available for read with the given node

status vector (S). This is computed by scanning the columns of the GD

matrix corresponding to the live nodes (as given by S).

if(S) - The number of data objects available for update (i.e. all c copies

of these data objects are available at the live nodes) with the given node

status vector (S). This is also computed by scanning the columns of the GD

matrix corresponding to the live nodes (as given by S).

f"(S) - The number of data objects available with a majority of copies

among the available nodes. As before this is computed by' scanning the

columns of the GD matrix corresponding to the live nodes (as given by" S).

f'"(S) - The number of nodes available (or up) as indicated by the vector

S.

Model 6 < A1,B1,Cx,D1,E2 >:

Here each node may have its own reliability. For computational purpose, we

categorize the nodes based on their reliability. We assume that there are q

(1 _< q < n) such categories. We let nl to represent the number of nodes

with reliability ri, and ai to represent the number of currently active (or up)

nodes with this reliability.

TSA, = _ Pr(NA)

TSA",

- (,,_Sj__.,o,)
1

(:)

1_ ak rk
k=l

°'
-Z:,=,

_ Pr(NA) ' ¢-k(:)

$

k=l ak

°,)
0

(36)

27

Pr(NA)

NA

q

1-I ._ _ (I- _)_-:_
k=l

(:',)(:_) ... (::)

< al,a_,...,aq >, Yi= 1,2,...,q0< a__< n_

(3T)

28

References

I1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91

M. Ahamad and M.I{. Ammar, "Performance characterization of

quorum-consensus algorithms for replicated data, _' Tech. Report, GIT-

ICS-86/123, Georgia Institute of Technology, 1986.

M.D. Beaudry, "Performance-related reliability measures for computing

systems," IEEE Trans. Computers, Vol. C-27, pp. 540-547, June 1978.

P.A. Bernstein and N. Goodman, "Concurrency control in distributed

database systems," ACM Computing Surveys, Vol. 13, pp. 185-221,

June 1981.

B. Bhargava and L. Lilien, "A review of concurrency and reliability is-

sues in distributed database systems," Concurrency Control and Relia-

bility Issues in Distributed Systems, B. Bhargava (Ed.), Van Nostrand

Reinhold Co, pp. 1-84, 1987.

S. Ceri, G. Martella, and G. Pelagatti, "Optimal file allocation for a

distributed database on a network of minicomputers," Proc. Interna-

tional Conference on Data Bases, University of Aberdeen, pp. 216-237,

July 1980.

E.G. Coffman, E. Gelenbe, and B. Plateau, "Optimization of number

of copies in a distributed database," IEEE Transactions on Software

Engineering, Vol. SE-7, No. 1, pp. 78-84, 1981.

S.B. Davidson, "Analyzing partition failure protocols," Technical Re-

port, MS-CIS-86-05, Dept. of Computer Science, University of Pennsyl-

vania, January 1986.

H. Garcia-Molina, "Performance evaluation of the update algorithms

for replicated data in a distributed database," Ph.D. Dissertation, Com-

puter Science Department, Stanford University, June 1979.

H. Garcia-Molina and J. Kent, "Performance evaluation of reliable dis-

tributed systems," Concurrency Control and Reliability in Distributed

Systems, B.K. Bhargava (Ed.), pp. 454-488, 1987.

29

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[is]

B. Garish and H. Pirkul, "Computer and database location in dis-

tributed computer systems," IEEE Transactions on Computers, Vol.

C-35, No. 7, pp. 583-590, July 1986.

R. Mukkamala, "Design of partially replicated distributed database sys-

tems," Technical Report,, TR 87-04, Department of Computer Science,

University of Iowa, July 1987.

R. Mukkamala, S.C. Bruell, and R.K. Shultz, "Design of partially repli-

cated distributed database systems: an integrated approach," Proc.

ACM SIGMETR[CS Conference on Measurement and Modeling of

Computer Systems, pp. 187-196, May 1988.

R. Mukkamala, "Measuring the effect of data distribution and replica-

tion policies on performance evaluation of distributed database sys-

tems," Proc. Fifth International Conference on Data Engineerin 9,

February 1989.

R. Mukkamala, "Mea.suring the effect of data replication and fault mod-

els on transaction availability analysis," Technical Report, TR 89-35,

Department of Computer Science, Old Dominion University, May 1989.

R. Mukkamala, "Performance evaluation of distributed database sys-

tems," Technical Report, TR 89-43, Department of Computer Science,

Old Dominion University, June 1989.

K.C. Sevcik, "Comparison of concurrency control methods using ana-

lytic methods," Proc. Information Processing 83, R.E.A. Mason (Ed.),

North-Holland, September 1983.

L.E. Stanfel, "Applications of clustering to information system design,"

Information processing and Management, Vol. 19, No. 1, pp. 35"-50,

1983.

R.B. Thomas, "A majority consensus approach to concurrency control

for multiple copy databases," A CM Transactions on Database Systems,

Vol. 4, No. 2, pp. 180-209, June 1979.

30

Figure la. n=10, d=1000, c=3, r=0.4

0.900 i

0.800

I 0.700
0.800

TSA,

0.500

0.400

0.300

0.200

0.100

x Model 1

• Model 2

+ Model 3

• Model 4

• Model 5

• Model 6

v v v

v

21 41 61 81 101

Read-set size (s)

Figure lb. n=10, d=1000, c=3, r=0.75

0.900

0.800

0.700

0.600

0.500

0.400

0.300

0.200

0.100

0
21 41 61 81

Read-set size (s)

101

0 990

0.970

T!A 0.950
0.930

s

0,910

0.890

0.870

0.85

Figure lc. n=10, d=1000, c=3, r=0.90 Figure ld. n=10, d=10000, c=3, r=0.75

0.200

0.100

0
21 41 61 81 101 21 41 61 81 101

Read-set size (s) _ Read-set size (s)

Figure 1. Transaction Start Availabilities for Read--Only Transactions (with Read-one/Write-all policy)

0.9900

09800

0.9700

0.9600

0.9500

0.9400

0.9300

0.9200

0.9100

0.90

Figure le. n=10, d=1000, c=5, r=0.75

x Model 1

• Model 2

+ Model 3

• Model 4

• Model 5

• Model 6

21 41 61 81

Read-set size (s)

101

0.900

0.8oo

0.700

A 0.600
T 0.5OO

II

0.40O

0.300

0.200

0.100

0

Figure If. n=20, d=1000, c=3, r=0.75

21 41 61 81

Read--set size (s)

101

TSA,

0.990

0.960

0.930

0.900

0.870

0.84o

o.81o

0.780

0.75

Figure Ig. n=10, d=1000, c=3, r=0.95

21 41 61 81 101

Read-set size (s)

Figure 1 (Continued). Transaction Start Availabilities for Read-only Transactions (Read--one/Write-all Policy)

O.400

0.360

0.320

l 0.280
O.240

TSA;" 0.2o0

0.160

0.120

0080

0.040

Figure 2a. n=10, d=1000, c=3, r=0.4

× Model 1

_" Model 2

+ Model 3

_' Model 4

• Model 5

• Model 6

6 11 16 21 26

Read-set size (s)

Figure 2b. n=10, d=1000, c=3, r=0.75

0900

0.800

I 0.700

0.600

TsA;O.500

0.400

0.300

0.200 "_

0.100

0
1 21 41 61 81 101

Read-set size (s)

0.9_

0.8_

T! 0.7_
0.6_

,,

• 0,5_

0.4_

0.300

0.2_

0.1_

Figure 2c. n=10, d=1000, c=3, r=0.90
Figure 2d. n=10, d=10000, c=3, r=0.75

0900

0.800

0.700

T!A 0.600. 0.500

• 0,400

0.300

0.200

0.100

0
21 41 61 81 101 1 21 41 61 81 101

Read-set size (s) _ Read-set size (s)

Figure 2. Transaction Start Availabilities with Read-Majority/Write-Majority Protocol

Figure 2e. n=10, d=1000, c=5, r=0.75 Figure 2f. n=20, d=1000, c=3, r'=0.75

0.900 0.900 x Model 1
• Model 2

0.800 0.800 + Model 3

T! 0700 TS! 0700 , " Model 4
0.600 0600 lt_ " Model 5

•. 0.500 - 0.500 _/_lh BModel6
•

0.400 0.400

0.300 0.300

+ i0.200 0.200

0.100 0.100

0 0
21 41 61 81 101 I 21 41 61 81 101

Read-set size (s) _ Read-set size (s)

Figure 2g.

0.900

0.800

I 0.7000.600

TSAr" o.soo

0.400

0.300

0.200

0.100

0

n=10, d= 1000, c=3, r=0.95

21 41 61 81 101

Read-set size (s)

Figure 2 (Contd.). Transaction Start Availabilities with Read-Majority/Write-Majority Protocol

Figure3a.n=10,d=1000,c=3,r=0.75
0.450

0.400

0.350

0.300

0.250

0.200

O. 150

0.100

0.050

0

x Model 1

A Model 2
+ Model 3

* Model 4

• Model 5

• Model 6

= s/3,x = s-y

-

23 43 63 83 103

Read-set size (s)

0.720

0.640

0.560

,_! 0,48O
TSA o.4oo

0.320

0.240

0.160

0.080

0
3

Figure 3b. n=10, d=1000, c=3, r=0.90

23 43 63 83

Read-set size (s)

103

0.970

0.950

0.930

0.910

0.890

0,870

0.85

Figure 3c. n=10, d=1000, c=3, r=0.99

23 43 63 83 103

Read-set size (s)

0.750

0.700

0.650

0.600

0.550

0.500

0,450

0,400

0.350

0.30
3

Figure 3d. n=10, d=10000, c=3, r=0.90

23 43 63 83 103

Read-set size (s)

Figure 3. Transaction Start Availabilities for Read-write Transactions (with Read--one/Write-all Policy)

0.600

0.570

0.540

_! 0.510
0.480

TSA 0.450

0.420

0.390

0.360

0.330

0,30
3

Figure 3e. n=10, d=1000, c=5, r=0.90

0.720

0.640

0.560

_! 0.480
TSA 0.400

0.320

0.240

o.16o

0.080

0
3

Figure 3f. n=20, d=1000, c=3, r=0.90

m

a.

l

Figure 3 (Contd.). Transaction Start Availabilities for Read-write Transactions (with Read--one/Write-all Policy)

23 43 63 83 103 23 43 63 83 103

Read-set size (s) _ Read-set size (s)

0.900

O.800

0.700

I 0.600

0.500
TSA,

0.400

0.300

0.200

0.100

0

0.900 l

0.800

_. 0.500

0.400

0.300

0.200

0.100

0

0.500

0.450

0.400

0.250

0.200

0.150

0.100

0.050

0
3

Figure 4a. n=10, d=1000, c=3, r=0.50

v

x Groups=5

= Groups= l0

+ Groups=25

* Groups=50
),

Read-only (Read-one/write-all)

21 41 61 81 101

Figure 4c. n=10, d=]000, c=3, r=0.75

_K"---X X

Majority-read/Majority-_Tite

21 41 61 81 101

Figure 4e. n=]0, d=1000, c=3, r=0.75

Read-write (Read--one/write-all)

t
TSA,

0.900

0.800

0.700

0.600

0.500

0.400

0.300

0.200

0.100

0

0.950

0.900

0.850

0.800

0.750

0.700

0.650

0.600

0.550

0.5

Figure 4b. n=10, d=1000, c=3, r=-0.75

Read-only (Read-one/write-all)

21 41 61 81 101

Figure 4d. n=10, d=1000, c=3, r=0.95

,¢

y = s/3,x = s-y

0.900

0.880

0.820
i

0.780

TS! 0.7400.700

"7 0.660

0.620

0.580

0.540

0.5
3

Majority-read/Majority-write

21 41 61 81 101

Figure 4f. n=10, d=1000, c=3, r=0.95

Read-write (Read-one/write-all)

23 43 63 83 103 23 43 63 83

Read-set size (s) _ Read-set size (s)

103

Figure 4. IUustration of the Effects of the Number of Groups on Availability Metrics (Model 2)

v

0900

0.800

0.700

I 0.600
0.500

TSA,
0.400

0.300

0.200

0.1oo

0

0.900

0.800

O. 700

I 0.600
0.500

TSA;'

0.400

0.300

0.200

0.100

0

Figure 5a. n=10, d=1000, c=3, r=0.5

x dz = 10(30,ci= 3

• dt=3OO, cl=2, dz=400, c2=3

d3 = 300, c3 = 4

+ d_=300, c_=l,dz=400, cz=3

_. d3=300, c3=5

• dt=d2=d3=d4=ds =200,
c_= i,i = 1,2 5

",7---5
21 41 61 81 101

Figure 5c. n=10, d=1000, c=3, r=0.75

Majority-read/Majority-write

Jt

21 41 61 81 101

Figure 5e. n=10, d=1000, c=3, r=0.75

Read-write (read--one/write-all)

0900

0800

0.700

T!A 0 600
, 0.500

0.400

0.300

0.200

Figure 5b. n=10, d=1000, c=3, r=0.75

d--one/write-all)

"5 4

21 41 61 81 101

Figure 5d. n=]O, d=]O00, c=3, r=-0.95

X0.900

0.400

0.300

0.200

O.100

0
Majority--read/Majority-write

21 41 61 81 101

0.900

0.800

l 0.700

0.600

TSA_ 0.500

O.400

0.300

0.200

0.100

0
21 41 61 81 101

Read-set size (s)

0.900

0.800

I 0.7000.600

TSA: 0.500

0.400

0.300

0200

0.100

0

Figure 5f. n=10, d=1000, c=3, r=0.95

_write (rld-one/write-all)

21 41 61 81

Read-set size (s)

101

Figure 5. Illustration of the Effect of Copy variations on Availability (Model 4)

TSA,

TSA;"

Figure 6a. n=10, d=1000, c=3, r=0.50

0.900

0.800

0.700

0.600

0.500

0.400

0.300

0.200
0.100

Read-only (Read-one/write-all)

21 41 61 81 101

Figure 6c. n=10, d=1000, c=3, r=-0.75

0.900 1 Majority-read/Majority-write

0.800

0.700

0.600

0.500

0.400

0.300

0.200

0.100

0

0.900

0.800

0.700

0.600

0.500

0.400

0.300

0.2OO

0.100

TSAr"

21 41 61 81 101

Figure 6c. n=10, d=1000, c=3, r=0.75

Read-write (read--one/write-all)

x Systematic distribution

• Arbitrary distribution

0.900

0,800

0.700

0,600

0.500

0.400

0.300

0.200

0.100

0

Figure 6b. n=10, d= 1000, c=3, r=0.75

Read-only (Read-one/write-all)

21 41 61 81 101

Figure 6d. n=[0, d=t000, c=3, r=-0.95

0.950 _: >

0.900

0.850

0.800

0.750

0.700

0.650

0.600

0.550

0.5

0.950

0.900

I 0.850

0.800

TSA;, 0.750

0.700

0.650

0.600

0.550

0.5

Majority-read/Majority-write

21 41 61 81 101

Figure 6d. n=10, d=1000, c=3, r=0.95

Read-write (read-one/write-all)

21 41 61 81 101 21 41 61 81

Read-set size (s) _ Read-set size (s)

Figure 6. Illustration of the effect of Systematic Distribution on Availability (Model 5)

101

?
TSA,

Figure 7a. n=10, d=1000, c=3, avg. r=-0.50

0.900

0.800

0.700

0.600

0.500

0.400

0.300

0.200

0.100

0

x nz = 10,rl = 0.5

a, nl = 3,rl = 0.3, n2 = 4,r z = 0.5,

n3 = 3, r3 = 0.70

+ nl=n2=n3:n4:ns:2

rl = O.l,r2 = 0.3,r3 = 0.5,
r, = 0.7, r5 = 0.9

0 20 40 60 80 100

Figure 7b. n=10, d=1000, c=3, avg. r=-0.75

0.900

0.800

0.700

0.600

0 20 40 60 80 100

0 900

0.800

0.700

0.600

0.500

0.400

0.300

0.200

0.100

0

:igure 7c. n=10, d=1000, c=3, avg. r=0.75

n, =10, r, = 0.75 t

nl = 3,rz = 0.5001,n2 = 4,r2 = 0.75

n3 = 3, r3 = 0.9999

4- rq = n2 = n3 = n4 = ns = 2

rl = 0.55, r z = 0.65, r3 = 0.75,

_.95 _.

Majority-read/majority-write

21 41 61 81 101

TSA;

Fi_000, c=3, avg. r=-0.95

0.950
0.900 _

0.850

0800

0.750

0.700 !

0.650

0.600

0.550

0.5

x nl = 10, rt = 0.95

• nl = 3, rl = 0.90, nz = 4, r2 = 0.95,

nj = 3, r3 = 0.9999

Majority-read/majority-write

0 20 40 60 80 100

Fi

0.900

0.800

0.700

0.600

0.500

0.400

0.300

ure 7e. n=10, d=1000, c=3, avg. r=0.75

x n_ = 10,ri = 0.75

A. nl = 3,rl = 0.5001,n2 = 4,rz = 0.75

n3 = 3, r3 = 0.9999
4-

nl : nz= it3 : r14 : ns = 2

rx = 0.55,rz = 0.65, r3 = 0.75,
r, = 0.85, rj = 0.95

Read-write (Read-one/write--all)

Figure 7f. n=10, d=10(30, c=3, avg. r=0.95
,

0.950

0._0

0,650

0.800

0.750

0.700

x nt = lO, rl =0.95

• n_ = 3, rl = 0.90,n2 = 4,rz = 0.95,

n3 = 3, r3 = 0.9999

21 41 61 81 101 20 40 60 80 100

Read-set size (s) _ Read-set size (s)

Figure 7. Illustration of the Effect of Reliability Variations on Availability (Model 6)

0.650

0.600

0,550

0.5
0

Read-write (Read-one/write--all)

IEEE PROCEEDINGS OF THE

UTH TCON '91

Volume2

91CH2998-3
NI_A

N91"23974 !

Performance Analysis of Static Locking in Replicated Distributed Database Systems

Yinghong Kuang

Ravi Mukkamala

Department of Computer Science

()td l)onlhllon University

Norfolk, Virginia 23529.

Abstract

Data replications anti transaction deadlocks can severely af-

fect the performance of distributed database systems. Many

current evaluation techniques ignore these aspects, because it

is dimcult to evaluate through analysis and time.consuming to

evaluate through simulation. [n this paper, we use a technique

that combines simulation and analysis to closely illustrate the

impact of deadlock and evaluate performanwc of replicated dis-
tributed database with both shared and exclusive locks.

1. Introduction.

A distributed database system (DDS) is a collection of co-

operating nodes each containing a set of data items. A user

transaction can enter such a system at any of these nodes. The

receiving node, often referred to as the coordinating node, un-

dertakes the task of locating the nodes that contain the data

items required by a transaction.

In order to maintain database consistency and correctness

in tim presence of concurrent transactions, several concurrency

control protocols have been proposed [1]. Of these, the most

commonly used are time-stamping and locking protocols. Lock-

ing protocols have been widely used in both commercial and

research environments. In static locking, prior to start of exe-

cution, a transaction needs to acquire either a shared-lock (for

read operations) or an exclusive lock (for update operations) on
each of the relevant data items.

Data replication is used to improve tile performance of local

transactions and tile availability of datab,'c_es. In replicated

databases, one data item may have nlore than one copy in

the system. Replica control algorithms are used to maintain

the consistency among these copies. One of these is the read-

one/write-all protocol. With this protocol an exchlsive lock

need to acquire an exclusive lock from every copy of the data

item . For a shared lock to succeed, any one copy of the data

item has to be share locked. When transactions with conllicting

lock rcqm.._t._ arv i,itiated concllrlvntly, I.h,,y ,ould I,. possibly
blocked due to a deadlock.

There are two major ways to evaluate the performance of

distributed systems: simttlation and analysis. Simulation is a

conceptually tractable technique, but requires large computa-

tion time. On the other hand, analysis is computationally faster

but may not be tractable for all problems. In [4], Shyu and Li

proposed an elegant analysis model to evaluate the response

time and throughput of transactions in a non.replicated DDS.

Assuming ezclusive locking (i.e., only write operations), they

model the queue of lock requests at an object as an M/M/I

queue [31. This results in a closed-form for the waiting time

distribution at a node, expressed in terms of the average rates

of arrivals of requests and the average lock-holding time. With

shared lock and replications added into the picture, it is very
difficult to have a close model for it. Because of tile limita.

tions of simulation and analysis, we develop a technique that

combines _inmlation and analysk_.

This papvr is organized as the follows, hi Section 2, we de-

scribe the model used in our performance evaluation. In Section

3, we propose an evaluation technique. In Section 4, we illus-

trate the results. Finally, Section 5 has the conclusions.

2. Model

Our model has the following parameters:

* There arc n nodes.

* There arc d data items in a DDS.

• A data item may be located at exactly c number of nodes.

The dc data copies are uniformly distributed across the n

nodes.

• Each transaction accesses k data items.

• r is the read ratio. So among k data items to be accessed,

rk are accessed only for read operations, and the rest

are for read-write operations. Due to the read-one/write-

all replica control policy, a transaction must procure rk

shared locks for rk read operations and (1 -r)kc exclusive

locks for the (1 - r)k read-write operations.

• Each data item is equally likely to be accessed by a trans-

action.

* Transaction arrivals into the system is a I'oisson process
with rate A.

• The communication delay between any two nodes is ex.

ponentially distributed with mean i.

o The average execution time of a transaction, once the

locks are obtained, is _.

0 The deadlock mechanism is invoked every r seconds.

• After an abortion of a transaction, it takes an average of

seconds for this transaction to be restarted.

* # is the service rate of transactions.

IThis researcll was supported in part hy the NASA Langley Research
Center under contracts NAG-I-Ill4 and NAG-I-1154.

• b is the lock-holding time.

• Ac is the arrival rate at each data copy.

CH2998-3/9 I/1_00-0698501.00_ 19911EEE

__1

!

I
i

!

I

I

I

I

I

|

3. Performance Evaluation Technique

Our technique consists of two stages. [n tile first stage, tile

sverage transaction response thne and throughl)ut are c,d,'u-

hted by ignoring the deadlock. This is an ite, atiw. step i.v,,lv-

ing simulation and analysis. In the second stage, the proba-

bilities of transaction conflicts anti deadlocks are colnpttled by

probability models. These probabilities are used, ill turn, to
compute the response time and throughput in the pres,.nce of

deadlocks.

Stage 1:

Initially, we assume that there are no lock conflicts between

transactions. Each transaction has to procure rk shared lock

on data copies and (1 - r)kc exclusive locks oil data copies.

When a transaction has got all the lock grauts from these data

objects, it can go ahead with execution.

This procedure is summarized in the following 6 steps.

1. Initialize lock-hohling time(b) to be I/tL

2. Given the total rate of transaction arrival(A), the shared

lock ratio(r), tl,e number of data items(d), the n,u,,her of

data items required by each transaction(k) and the num-

ber of replications(c), derive the arrival rate at each data

copy(Ac).

3. With the arrival rate at each data copy(.\c), the average

lock-holding time(b), and the transmission time(t +)we cat,

simulate the queue at a data copy to arrive wait-time(w)
distribution. With this distril)ution we can calculate the

response time of transactions.

4. With tile average service time of transactio,s(l//,}, and

the transmission time, we can derive a new lock-hohling

time(b').

,5. Set b to this new lock-holdiug time b'.

6. If the old and new lock-holding time are sulliciently close,

stop the iteration. Otherwise, go back to step 3.

At the cud of slagc I the ,'cspot,se time with..t tl.' c..sid.r..

lion of transaction deadlocks is obtained.

Stage 2:

This stage considers transaction conflicts and co|nputes the

deadlock probability, tlere the probabilities of transaction dead-

lock and restart are computed. These are then used to compute

response time and throughput in the presence of deadlocks.

Assume there are two transactions T1 and "I"2. Let RS, WS

be tile read and write sets of transactions respectiw, ly.

1. Let fsi be the probability that the readset of Tl has i data

items overlapping with the writeset of T2, i.e. II?S(TI)N

WS(T2)I = i.

2. Let feij be the probability that given IRS(TI)nWS(T2)I =

i, the writeset of TI has j data items ow.rhq)ing with

the rvadsvt and wrile,wt t,f'l'2, ia'. tl,. i,r.I,;,hililv Ih.d

IW.b'('/'l) n (]ttS('/'2) U IVS('./'2)) I = j,

I Clearly,

_

, :v ,_-, : (1)
:.,_ (:,)

(_-qO-"-'+q
j I k t_-,tt-j]

:,,,,- (.2/
Itcan alsobe noted that fsife, istileprobabilitythat:

IRead-setCl'!)nWvite-set(T2)l=i

A IWrite-set(Tl)N(Write-set(T2)URead-set(T2))l=j.

If Pll_ is the probability that T1 waits for T2,

l)lt',j = pl + p2 - pl * t,2 (3)

pt = 1 - [1 - (t/2y]' (,1)

p'_, = (l-(ll2:') (s)

where pl is the probability that TI waits for T2 for shared locks
in readset

and p2 is the probalfility that T1 waits for T2 for exclusive locks

in writeset.

Probability that TI waits for T2 is now given by

,tun(x,k -:r) ntin{k-t,k-Q

Pw = _, _, fs,feuPIV,, (6)
i=O 2=0

With this probahility of waiting and tile forml]las in [4] we can

calculate tile i>robability of a transaction deadlock, the prob- "

ability of a transaction restart and the probability of a trans-

action to be blocked by other transactions. And with these

probabilities and the time between deadlock detection(r), we

can cah'ulah' the ,'esprmse time with consid4.ration of deadlock.

(l)ctails are om¢.tte, l Iwr*'.)

699

4. Results

Using this technique, we obtained a number of interesting

results that illustrate tile effect of deadlocks and number of

replications on database iwrformance. These are summarized

in I"igures 1-5. We make the following observations.

• "l'ransaction rVSl.mSe times are quite sensitive to the ratio

of shared locks (Figure l and 2). Ilere, we compare the re-

sponse times when deadlocks are ignored (DI, computed in

Stage 1) with those obtained when deadlocks are consid-

ered (DC, computed in Stage 2). The effect of deadlocks

is more predominant at higher transaction loads and with

smaller values of r. When r = 2/3, the effect of deadlocks

is not sig,|ilicant on response time.

• If we compare Figure I and 2 with Figure 3 and 4, it can

be observed that the increase in replications results in the

larger response time when read ratio is smaller than 1/3.

* Fig. 5 shows the respouse times with different replication
numbers. [Sere we can see that with both cases when

read ratio is 2/3 and 1/3, the response time increases as

the ,mmber of replications increases. But with read ratio

etluals I/:1, t}w hlvreasing rate is rnucb s,na]ler than that

with r,'.,I I,,tt,, cq,t,ls 2/:L

5. Couclusions

h, [,tl, Shyu aml Li presented an elegant technique to eval-

uate tile performance of distributed database systems in tile

presence of deadlocks. Their technique assumed only exclusive

locks and thus representing the worst-case effects of deadlocks.

PRE'CEDi,,",_PAGE BLANK NOT FILMED

response
Ume

(see)

response
Lime

(scc)

response
time

(see)

1.8

16

14

12

1

08

06

c=2 / Ir = 1.00
k= 3 Ar = 0.67

+r = 0.33
d=200 ¢r = 0.00

r =20 /

/I-= 0.2
= .

2 4 6

arrival ratc(trans/soc) 1

Figure. 1 Comparison of response fimc with different
read ratio when deadlock is ignored.

2

18

16

14

12

1

0.8

0.6

C=2 / / Zr= 1.()o

*r = 0.67
k = 3 +r = 0.33

d=200 Or = 0.00

• =20

=2

_= 0.2

2 4 6

amval ra¢(U'an_Vscc) ,1.

Figure.2 Comparison of response Umc with different
read rauo when deadlock is considered.

2 /l c=3

1.8 k= 3

d=200

1,6 r = 20

m =2

1,4 {'=0.2
£= O.Ol

1.2 /

t =r= I.O0

• r = 0.67

oe +r =0.33
#r = 0.00

06--
0 2 4 6

arrival ratc(l_ans/sec) J,

Figure.3 Comparison of response time with different
read ratio when dead|ock is ignored.

response
time

Cw.c)

2

18

16

14

12

!

08

06

C=3

k=3

d=200

r =20

¢o =2
i'= 0.2

f= om

._f =r= 1.00

• r = 0.67

+r = 0.33
#r =0.00

2 4 6

arrival rate(tran_scc) _

Figure.4 Comparison of response time with diffcrcm
read ratio when deadlock is ignoced.

response
time

(so:)

2.2

2

1.8

1.6

1.4

1.2

0.8

k=6 _DC =r = 0.67

d= I000 /1 *r = 0.33

r =20 /_D[
m =2

/=o.2 // -

_°4°'/ Dc

D[

3 5

replication numbcr c

Figure. 5 Comparison of response time with different
read ratio with and without deadlock.

DC: Deadlock Considered.

DI: Deadlock Ignored.

In this paper, we have extended their technique to combine sirr

ulation and analysis. And with this extended technique weallo'

both shared and exclusive locking and also replications in o_

model. We evaluated the the effect of number of data items, th

number of data items accessed by each transaction, the ratio c

read operations on transaction response time and the number c

replications. These results show the importance of considerin

both shared and exclusive lock requests, the deadlock proba

bilities as well as the number of replications of database [¢

response time evaluations.

700

1

]
701

-IF

N91"23975

A Note on the Performance Analysis of Static

Locking in Distributed Database Systems

Yinghong Kuang and Ravi Mukkamala

Department of Computer Science

Old Dominion University

Norfolk, Virginia 23529.

Abstract

Even though transaction deadlocks can severely affect the perfor-
mance of distributed database systems, many current evaluation tech-

niques ignore this aspect. In [4], Shyu and Li proposed an evaluation
method which takes deadlocks into consideration. However, their tech-

nique is limited to exclusive locking. In this paper, we extend their
technique to allow for both shared and exclusive locking. Using this

technique, we illustrate the impact of deadlocks, in the presence of

shared locking, on distributed database performance.

Index Terms: Distributed databases, exclusive locking, performance mod-

eling, shared locking, static locking, two-phase locking.

1 Introduction

A distributed database system (DDS) is a collection of cooperating nodes

each containing a set of data objects. A user transaction can enter such a

system at any of these nodes. The receiving node, often referred to as the

coordinating node, undertakes the task of locating the nodes that contain

the data objects required by a transaction.

In order to maintain database consistency and correctness in the pres-

ence of concurrent transactions, several concurrency control protocols have

been proposed [1]. Of these, locking protocols have been widely used in both

commercial and research environments. In static locking, prior to start of

execution, a transaction needs to acquire either a shared-lock (for read op-

erations) or an exclusive lock (for update operations) on each of the relevant

data objects. When transactions with conflicting lock requests are initiated

concurrently, they could be possibly blocked due to a deadlock. Deadlocks

are known to deteriorate performance in both centralized and distributed

database systems [4,6]. In spite of this, several performance studies have

ignored the deadlock problem in their analyses [2,5].

In [4], Shyu and Li proposed an elegant technique to evaluate the re-

sponse time and throughput of transactions in a non-replicated DDS. (In the

rest of the paper, we refer to this as the S-L technique.) Assuming exclusive

locking (i.e., only write operations), they model the queue of lock requests

at an object as a M/M/1 queue [3]. This results in a closed-form for the

waiting time distribution at a node, expressed in terms of the average rates

of arrivals of requests and the average lock-holding time. This technique

consists of two stages. In the first stage, the average transaction response

time and throughput are calculated by ignoring the deadlock. This is an

iterative step that uses the known properties of the M/M/1 queue [3]. In

the second stage, the probabilities of transaction conflicts and deadlocks are

computed. These probabilities are used, in turn, to compute the response

time and throughput in the presence of deadlocks.

In general, a database transaction reads from a set of data objects (the

read-set) and writes on to a set of data objects (the write-set). Assuming

that all accesses axe write-only (as in S-L) results in the worst-case per-

formance (with respect to deadlocks and response time) of a DDS. In this

paper, we propose to extend the S-L technique to consider both the the read

and the write operations of database transactions. Using the extended S-L,

we evaluate the effect of deadlocks on distributed database systems.

2 Model

Except for the inclusion of read operations, our model is the same as in S-L.

For the sake of completeness, we summarize the DDS model here.

• There are N nodes and D data objects (or data granules in S-L) in

a DDS. The D data objects are uniformly distributed across the N

nodes. A data object may be located at exactly one node.

• Each transaction accesses K data objects. Among these, r. K are

for read-only purpose, and the rest are for read-write. (Obviously,

0 _< r _< 1.) In other words, a transaction must procure r • K shared

locks and (1 - r) • K exclusive locks.

• Each data object is equally likely to be accessed by a transaction.

• Transaction arrivals into the system is a Poisson process with rate _.

• The communication delay between nodes is exponentially distributed

with mean t.

• The average execution time of a transaction, once the locks are ob-

tained, is _¢.

3 Evaluation Procedure

Since we axe only proposing extensions to the S-L model, we do not intend to

repeat the description of their procedure. Instead, we will discuss only the

salient features of their procedure that are relevant to describe the proposed

extensions.

In Stage 1 of the S-L technique, an iterative procedure is used to eval-

uate the response time and throughput of a DDS ignoring the possibility
of deadlocks. In each iteration, the average waiting time (for exclusive lock

requests) at each of the data objects is computed using estimates of the av-

erage lock-holding times from the previous iteration. By definition, no two

exclusive lock requests can have lock grants on the same object simultane-

ously. Also, assuming that the lock-holding time is exponentially distributed

(with mean 1/_u) and that the lock request arrivals form a Poisson process

(with rate _ = _ • K/D), the distribution of waiting time Wi at an object

i is expressed as (M/M/1 queueing formula [3])

fw,(Y) -- (1 - p)"#o(Y) + At(1 - p). e-"(1-p)y (1)

where #0(') is the impulse function and p = Ar//l. Using the waiting time

distribution, the waiting times at the K data objects are randomly gener-

ated. These are used, in turn, to derive new estimates for the lock-holding

times (1/#). The iterations stop when two successive computations of aver-

age waiting time estimates are very close.
When we consider both shared and exclusive locks, the problem of es-

timating the waiting time distributions becomes difficult. Since two shared

lock grants on the same object may exist simultaneously, and an exclusive

lock may not be granted while another shared or exclusive lock is already

granted, the queueing discipline at a node is complex. Such complex queue-

ing disciplines are analytically intractable [3]. For this reason, we propose to

use simulation to solve the queueing model. Given the total rate of arrival

of lock requests At, the shared lock ratio (r), and the average lock-holding

time (1/#), the queue at an object may be simulated. From here, the waiting

time distribution may be obtained in the form of a table. Once the waiting

time distribution is obtained, the same iterative procedure as in Stage 1

of S-L may be adopted to compute the response time when deadlocks are

ignored. As in S-L, transaction response time is defined as the time between

the instance the lock requests are sent and the time the last grant request

is received by the coordinating node.

In Stage 2, the probabilities of transaction deadlock and restart are com-

puted. These are then used to compute response time and throughput in

the presence of deadlocks. When we assume that transactions only make

exclusive lock requests, the expression for the probability of conflict between

any two transactions is given by,

Pc = 1 (D_.K) (2)

However, when we consider both shared locks and exclusive locks, the prob-

ability of conflict is reduced. In this case the probability of conflict is given

by,

, " ", K-K',p; = z,"_'-',_ if,) (3)
where K' = r.K and represents the average number of shared locks; (K- K')

is the average number of exclusive locks per transaction. Clearly, when

r = 0, Pc = Pc'; when r = 1, Pc' = 0; and in all cases, Pc >_ P_-

By replacing Pc with Pc', the procedure suggested in S-L may be applied

to obtain the desired performance metrics.

4 Results

Using the extended S-L technique, we obtained a number of interesting

results that illustrate the effect of deadlocks on database performance. These

are summarized in Figures 1-5. We have verified our results with those

obtained in [4] for the all exclusive locks case (r = 0). We make the following

observations.

As expected, the presence of shared locks has a substantial impact on

the probability of deadlock occurrence (Fig. 1). When only 1/3 of

the accessed data objects are updated (i.e., r = 2/3), the probability

of deadlock is considerably small as compared to when all objects are

updated (r = 0).

The observations about the deadlock probabilities are also valid for

restart probabilities (Fig. 2).

Transaction response times are also quite sensitive to the ratio of

shared locks (Fig. 3). Here, we compare the response times when

deadlocks are ignored (computed in Stage 1) with those obtained when

deadlocks are considered (computed in Stage 2). The effect of dead-

locks is more predominant at higher transaction loads and with smaller

values of r. When r = 2/3, the effect of deadlocks is not significant on

response time.

The effect of deadlocks on response time is decreased with the increase

in the number of data items (Fig. 4). Obviously, this is due to the

decrease in probability of conflicts and hence a decrease in deadlock

occurrence. For r = 2/3, this effect is almost insignificant. For r = 1/3

and r = 0, deadlocks seems to have a noticeable effect on response

time.

Fig. 5 summarizes the effect of the number of locks per transaction on

response time. When K is small, the probability of deadlock is negli-

gible, and hence its effect on response time is small. At higher values

of K, the effect of deadlocks on response times is significant. Similarly,

at smaller values of r, the effect of dedalocks is more apparent.

5 Conclusion

In [4], Shyu and Li presented an elegant technique to evaluate the perfor-
mance of distributed database systems in the presence of deadlocks. Their

technique assumed only exclusive locks and thus representing the worst-case
effects of deadlocks. In this paper, we have extended their technique to al-

low both shared and exclusive locking. Using the extended technique, we

evaluated the the effect of number of data objects, the number of data ob-

jects accessed, and the ratio of read operations on transaction response time.

These results also indicate the importance of considering both shared and

exclusive lock requests for response time evaluations.

References

[1] P.A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control

and Recovery in Database Systems, Addison-Wesley, 1987.

[2] A. Hac, "A decomposition solution to a queueing network model of a
distributed file system with dynamic locking," IEEE Trans. Software

Eng., vol. SE-12, no. 4, pp. 521-530, Apr. 1986.

[3] L. Kleinrock, Queueing Systems, Vol. I, New York: Wiley-Interscience,
1975.

[4] S.-C. Shyu and V. O. K. Li, "Performance analysis of static locking in

distributed database systems," IEEE Trans. Computers, vol. 39, no. 6,

pp. 741-751, June 1990.

[5] M. Singhal and A. K. Agrawala, "Performance analysis of an algorithm

for concurrency control in replicated database systems," Proc. A CM

SIGMETRICS Conf. Measurement Modeling Comput. Syst., 1986, pp.

159-169.

[6] Y. C. Tay, R. Suri, and N. Goodman, "A mean value performance

model for locking in databases: The no-waiting case," J. ACM, vol. 32,

no. 3, pp. 618-651, July 19S5.

6

Probability

0.005

0.004

0.003

0.002

0.001

0 _'

o

K= 3 _r= 2/3

D=200 +r= 1/3
¢r=0

t'=20

co =2

_i=0.2

2 4 6 8

Fig.1.

Arrival rate(trans/sec)2

Deadlock probability with different

read ratios

0.0025

0.0020

0.0015

Probab_ity

0.0010

0.0005

K = 3 Ar = 2/3

D=200 ÷r=1/3
Cr=0

r = 20

=2

_=0.2

2 4 6 8

Arrival rate(trans/sec)_t

Fig.2. Restart probability with different

read ratios

Response
time

(sex)

1.15[

1.1oI

':I
K = 3 IX:: Deadlock considered.
d = 200 DI: Deadlock ignored.

,r=20
m =2

o.gs S = 0.0]

I Xr=l Z d-

0"901 At=2/3 //"

+r= 1/3 Io. 1 /f DX

0.75 DC

0.70

0.6
0 2 4 6 8

Arrival rate(trans/sec) Z

Fig.3 Comparison of response time when
deadlock is considered and deadlock is ignored.

Response
time

(sec)

085

K =- 3 DC: Deadlock considered;

D = 400 DI: Deadlock ignored.

l"=20
0.80

ca =2

ti = 0.2

/.

0175 Xr=l /,All: /q.
• • = 2/3

I +r=I/3 J _ DI

0.70 DC

0.65

0.6
2 4 6 8 10

Arrival rate(trans/sec) _.

Response time with high number of data objects.Fig. 4

1.6

Response

time

(sec)

1,4

1.2

I

0.8

=4

D=400

r = 20

to =2

Yi = 0.2

• r = 2/3

+r = 1/3
)r=0

DC

DC

DI

DI

DC

DI

0.6

0.4
0

DC: Deadlock considered.

DI: Deadlock ignored.

1 2 3 4 5

K

Fig.5. Comparison of response time with

different number of lock requests.

