
NASA Contractor Report 187563

ICASE Report No. 91-39

ICASE

NONLINEAR DEVELOPMENT AND SECONDARY

INSTABILITY OF GORTLER VORTICES IN

HYPERSONIC FLOWS

Yibin B. Fu

Philip Hall

_ (NASA-C_-IS7663) NONLIN£AR OEV_LOPMENT ANO
z SECONDARY INSTABILITY OP GORTL_R VORTICFS IN

__ HYPERSONIC FLOWS Final Report ([CASE) 48 p
CSCL 01A

m R

Contract No. NAS1-18605

May 1991

N91-_4i27

Uric] aS

G3/02 0019745

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

IW A
_:_-.=-: :: National Aeronaulics and

Space Administration

Langley Research Center
Hampton, Virginia 23665-5225





NONLINEAR DEVELOPMENT AND SECONDARY INSTABILITY

OF GORTLER VORTICES IN HYPERSONIC FLOWS 1

Yibin B. Fu, Philip Hall

Department of Mathematics

Oxford Road

University of Manchester

Manchester M13 9PL

U.K.

Abstract

In a hypersonic boundary layer over a wall of variable curvature, the region most sus-

ceptible to GSrtler vortices is the temperature adjustment layer over which the basic state

temperature decreases monotonically to its free stream value (Hall & Fu (1989), Fu, Hall &

Blackaby (1990)). Except for a special wall curvature distribution, the evolution of GSrtler

vortices trapped in the temperature adjustment layer will in general be strongly affected by

boundary layer growth through the O(M 3/2) curvature of the basic state, where M is the

free stream Mach number. Only when the local wavenumber becomes as large as of order

M a/s, do nonparallel effects become negligible in the determination of stability properties.

In the latter case, G6rtler vortices will be trapped in a thin layer of O(e 1/2) thickness which

is embedded in the temperature adjustment layer; here e is the inverse of the local wavenum-

bet. In this paper, we first present a weakly nonlinear theory in which the initial nonlinear

development of GSrtler vortices in the neighbourhood of the neutral position is investigated

and two coupled evolution equations are derived. From these two evolution equations we can

determine whether the vortices are decaying or growing depending on the sign of a constant

which is related to the wall curvature and the basic state temperature. In the latter case, it

is found that the mean flow correction becomes as large as the basic state at distances O(1)

downstream of the neutral position. Next, we present a fully nonlinear theory concerning

the further downstream development of these large-amplitude GSrtler vortices. It is shown

that the vortices spread out across the boundary layer. The upper and lower boundaries

of the region of vortex activity are determined by a free-boundary problem involving the

boundary layer equations. Finally, the secondary instability of the flow in the transition

layers located at the upper and lower edges of the the region of vortex activity is considered.

The superimposed wavy vortex perturbations are spanwise periodic travelling waves which

are 7r/2 radians out of phase with the fundamental. The dispersion relation is found to be

determined by solving two coupled differential equations and it is shown that an infinite

number of neutrally stable modes may exist.
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1 Introduction

This paper is the third of a series of papers reporting on our studies of the stability properties of

hypersonic boundary layers with respect to the GSrtler instability mechanism. The previous

two papers have been devoted to the linear development of GSrtler vortices in hypersonic

boundary layers. The first, Hall and Fu (1989), is concerned with fluids which have their

viscosity modelled by Chapman's law; whilst the second, Fu, Hall and Blackaby (1990), studies

Sutherland's law fluids. In the second paper, the roles played by gas dissociation and wall

cooling in the determination of stability properties are also clarified. In the present paper, we

first study the nonlinear development of GSrtler vortices in the neighbourhood of the neutral

position and show how a large amplitude vortex structure can be developed under the combined

effects of viscosity and nonlinearity. Then we consider one of the several possible types of

secondary instabilities which the latter vortex structure may suffer, namely, the wavy type.

For a review of the general literature on GSrtler instability in hypersonic flows we refer the

reader to our previous papers. A detailed review for the related incompressible flow problems

can be found in Hall (1988). Here we only mention the papers which are most relevant to our

present studies.

The type of nonlinear theory which we use here is different from the classical weakly

nonlinear theory and was first established by Hall (1982) and Hall and Lakin (1988) in the

context of GSrtler instability in incompressible flows. In the classical weakly nonlinear theory,

see, for examle, Stuart (1965), the size of the disturbance is chosen such that the cumulative

effects of nonlinearity are brought into the evolution equation as a solvability condition at the

third order of a successive approximation procedure using a multiple scales approach. This is

possible because the growth rate in the neighbourhood of the neutral position is small. Hall's

(1982b) nonlinear theory is suitable for problems which have large growth rate (correponding

to large wavenumbers); the size of the disturbance is chosen to be so large that nonlinear effects

come into play at the order at which the vertical structure is determined. Such large amplitude

GSrtler vortices can grow downstream of the neutral position and become so large as to produce

a mean flow correction as large as the basic state, as is shown by Hall and Lakin (1985). When

this happens, the vortices are confined to a core region bounded by two transition layers. In

the core region of GSrtler vortex activity, the boundary layer is forced by the vortex which

itself is driven by the boundary layer. In the two transition layers, the vortex is reduced to zero

exponentially. Hall and Seddougui (1989) and Seddougui and Bassom (1990) studied the wavy

type of secondary instability which might occur in the two transition layers. Their studies were

motivated by the experimental results of Bippes (1978) and Aihara and Koyama (1981), who

observed that the three-dimensional breakdown of steady spanwise periodic GSrtler vortices

led to a time periodic flow with wavy vortex boundaries similar to those which occur in the



Taylor problem. Our present investigations are mainly aimed at finding out how the results for

incompressible flows found by Hall (1982), Hall andLakin (1985), Hall and Seddougui (1989)

and Seddougul and Bassom (1990) should be modified in order to describe hypersonic flows.

The most important property of a two dimensional hypersonic boundary layer is probably

that it can be divided in the large Much number limit into a wall layer and a temperature

adjustment layer sitting at the edge of the boundary layer, and that it is the latter layer that is

most susceptible to GSrtler vortices. Since for a hypersonic boundary layer the basic state tem-

perature varies significantly, Chapman's viscosity law is a poor approximation to the viscosity

of the fluid and Sutherland's law is more realistic, throughout the present paper Sutherland's

law will be adopted and our attention will be focussed on the temperature adjustment layer.

It has been shown by Fu, Hall and Blackaby (1990) that when Sutherland's law is used, the

wall layer and the temperature adjustment layer are respectively of thickness of order M 3/_

and order unity in terms of the physical variable. For GSrtler vortices which have wavelength

comparable with the b0undary layer thickness (defined as the walt layer mode), the neutral

GSrtler number is a decreasing function of the local wavenumber. As the local wavenumber

increases (physically, this may correspond to when we follow the downstream evolution of the

vortices), the centre of vortex activity moves towards the temperature adjustment layer and

the neutral GSrtler number tends to be independent of the global wavenumber. For GSrtier

vortices trapped in the temperature adjustment layer, the neutral GSrtler number is found to

have its first term independent of the global wavenumber" This term is due to the curvature

of the basic state; other higher order correction terms are related to viscous effects and are in

general affected by boundary layer growth. How important the nonparallel effects are depends

upon the wall curvature and on the size of the wavenumber. Before we review Fu, Halt and

Blackaby's (1990) main findings, let us first note that for a hypersonic boundary layer de-

scribed using a similarity variable, boundary layer growth has two lengthscales. The first scale

is related to the similarity variable 77(which is defined as the ratio of the Howarth-Dorodnitsyn

variable over _ where x Js _he streamwJse variable). This scale, which we shall refer as the

short scale, is not present in incompressible boundary layers and it arises because of the fact

that _z = O(M s/2) >> 1. The second scale is the usual one related to the variable x. It

was shown in Fu, Hall and Blackaby (1990) that the effect of boundary growth over the short

scale is felt mainly through an O(M 3]2-)_c'urvature term in the y-momentum equation and that

when the wall curvature distribution is proportional to (2z) -3/2, the wall curvature exactly

counterbalances the curvature of the basic state if the GSrtler number is chosen appropriately,

so that for this special curvature case nonparallel effects affect the stability properties in a

similar fashion to that for incompressible boundary layers. But since the special curvature

case is possibly of little physical relevance we shall only consider the more general curvature

case in this paper.

_ 2



Intuitively, the effects of boundary layer growth decrease as the wavelength becomes increas-

ingly small, since to a very small wavelength vortex, the boundary layer streamlines would be

almost straight lines. Therefore the effects of boundary growth are usually described in terms

of the relative order of the vortex wavelength to the lengthscale over which the boundary layer

growth is significant (i.e. is an O(1) effect). Since for a hypersonic boundary layer the most

important scale of boundary layer growth is the short scale defined above and it is related to

the free stream Mach number, we describe nonparallel effects in terms of the relative orders of

the wavenumber and Mach number. Fu, Hall and Blackaby (1990) showed that when the local

wavenumber is of order unity, the downstream development of GSrtler vortices is governed

by inviscid equations and thus their spatial development has an oscillatory nature. Viscous

effects are small but are cumulative so that they become important further downstream where

the local wavenumber has become large. Nonparallel effects are dominant for this range of

wavenumbers. When the wavenumber reaches 0(M1/4), viscous effects become of leading or-

der effects but nonparallel effects are still dominant. Only when the wavenumber becomes as

large as of order M S/s, do nonparallel effects become negligible and viscous effects then dictate

the downstream evolution properties of GSrtler vortices.

In the present investigation, our first aim is to find out how nonlinear effects compete

with viscous effects in the evolution

vortex structure can be established.

local wavenumber is of order M S/s.

of OSrtler vortices and to show how a large amplitude

We exclude nonparallel effects by assuming that the

This assumption is physically relevant because a large

local wavenumber can not only be achieved by a large global wavenumber but it can also be

achieved by moving sufficiently far downstream. Thus a vortex of any wavenumber would

eventually evolve into the wavenumber regime covered by the present theory as they propagate

downstream. Our second aim is to provide an asymptotic description for the wavy type of

secondary instability which the large amplitude G_rtler vortex structure may suffer.

The rest of this paper is divided into five sections as follows. After discussing the basic

state and giving a brief review of the linear theory in section 9., we consider in section 3 the

weakly nonlinear development of large amplitude GSrtler vortices in a small neighbourhood of

the neutral stability position given by the linear theory. We show that if the basic state and the

wall curvature satisfy a certain condition, these GSrtler vortices will grow until they become

so large as to drive a mean flow correction as large as the basic state. The further downstream

evolution of these large amplitude vortices is then studied in section 4 where we show that the

vortices have a triple layer structure which consists of a region of vortex activity bounded by

two transition layers over which the amplitude of the harmonic part of the vortex decays to

zero exponentially. The position of the two transition layers are found to be governed by a free

boundary problem which is solved in section 5 for a number of curvature distribution cases. In

section 6 we investigate the secondary instability of the two transition layers with respect to

3



travelling waves which are x/2 out of phase in the spanwise direction with the steady GSrtler

vortices. Finally in section 6 we discuss our results and draw some conclusions.

i

2 Basic state and a review of the linear theory

Consider a hypersonic boundary layer over a rigid wall of variable curvature (1/A)_(z*/L),

where L is a typical streamwise length scale and A is a lengthscale characterizing the radius of

curvature of the wall. We choose a curvilinear coordinate system (z*, y*, z*) with z ° measuring

distance along the wall, y* perpendicular to the wall and z ° in the spanwise direction. The

corresponding velocity components are denoted by (u*, v °, w*) and density, temperature and

viscosity by p*, T* and _* respectively. The free stream values of these quantities will be

signified by a subscript oo. We define a curvature parameter 6 by

L (1)
6= 7 ,

and consider the limit 6 --* 0 with the Keynolds number R defined by

R- ,_Lp;o (2)
u_

taken to be so large that the GSrtler number

G = 2Rz126 (3)

is0(1). In the followinganalysis,coordinates(=*,y*,z*) are scaledon (L, R-X/=L, R-X/=L),

the velocity(u°,v*,w*) isscaledon (u_o,R-X/2u*, R-Z/2u*) and other quantitiessuch as

p*,T*, and/_* are scaledon theirfreestream wlues with the only exceptionthat the pressure

p* isscaledon p*u_ and the bulk viscosity_* isscaledon/_. Alldimensionlessquantitieswill

be denoted by the same letterswithout a superscript*. For an idealgas without dissociation

the Navier-Stokesequationsare givenby

O_.pp"I-, O (pv l3) O, (4)
Ot ore#

Du Op O. Ou 0 Ou

p(-b-T+ = _ CA- +
,%,

0 Ov 0 Ov
+ _(u_)+ _(u_),

Dw ,.,Op O _ 2 .Oval 0 . Or#

(s)

(6)

O. Ow 0 Ow
+ NC_,N) + _(Ub-T), (T)

=

Z



DT _y Ou. 2] 2 DpP-_ =/_(7 - 1)U2[( )2 + (__z) + (7 - 1)U _-_

1 0 0T 1 0 aT

+ (8)

7M2p = pT. (9)

Here we have used a mixed notation in which (vl,v2,va) is identified with (u,v,w) and

(zl,z2, za) with (z,y,z). Repeated suffices/3 signify summation from 1 to 3. The constants

7, M and a are in turn the ratio of specific heats, the free stream Math number and the Prandtl

number defined by
,2 $2

7 = c_,..___._M = u_ = u_ Foocpoo
' 7_T* a-'_' a=_Cp_ koo '

where _ is the gas constant, k is the coefficient of heat conduction, and a_ = _ is

the sound speed in the free stream. In equations (5)-(8), the operator D/Dt is the material

derivative and it has the usual expression appropriate to a rectangular coordinate system.

The basic state is given by

(u, v, w)= (_(z,y), 9(z,y), 0), T = T(z,y),

p = y), = (10)

By substituting (10) into the governing equations (4)-(9) it is straightforward to obtain the

reduced equations satisfied by the basic state. The reader is referred to the book by Stewartson

(1964) for a detailed discussion of these basic state equations. If we define the Howarth-

Dorodnitsyn variable ._ and a similarity variable 7/by

Joe Y (Ii)_]= pdy and _= _zz'

then the continuity equation is satisfied if _ and _ are written as

1 1 _n 1_,= f'(_/), _'= _[--pf(_/) "l-f'(r/)-_ _dr/]. (12)

Here the functions f(_7) and _'(_7) must satisfy

ff" -+-(_p.f")'= O, (13)

I (_[_T')' fCF' I)M2_(I") 2 = O, (14)+ +

if the x-momentum and energy equations are to be satisfied. The y-momentum equation gives

0___P= 0
Oy



to leading order so that _ = i_(z). In our following analysis, we assume that there is no pressure

gradient along the streamwise direction and therefore we can take _ = constant. Equation (9)

then gives

= 1. (15)

Once the viscosity _ is specified as a function of the temperature, equations (13) and (14) can

then be integrated to determine the basic state. Such solutions have been given by Hall and Fu

(1989) for Chapman's viscosity law and by Fu, Hail and Blackaby (1990) for Sutherland's law.

In both cases, the boundary layer divides into two sublayers: a wall layer in which T -- O(M _)

and a temperature adjustment layer over which the temperature decreases mon0tonically to

its free-stream value. Certainly, for a hypersonic boundary layer across which the temperature

varies significantly, it is more appropriate to use Sutherland's viscosity law

f_3/2

(1+ m)(/, + (16)

where m is a constant. In this case, the thicknesses of the wall layer and the adjustment layer

are O(_ r-l/2) and O(1), respectively (in terms of the similarity variable 7;). In the adjustment

layer, the functions f and T in (12) expand as

(lW)
f:7/-M_--_-/_-+M_-----_ +... , _':_'+...,

with / and T satisfying

+ _;T'= O.
(l+")\T+m / _ T+_ /

(18)

In the linear stability analysis, we superimpose a steady periodic stationary vortex structure

with wavenumber a on the basic state (10) and the perturbation equations are found by

linearizing the Navier-Stokes equations about the basic state. These linear equations have

been fully discussed in our previous paper Fu, Hall and Blackaby (1990). It was shown there

that for the wall mode which has wavelength comparable with the boundary layer thickness,

the neutral GSrtler number is a decreasing function of the local wavenumber. As the latter

increases, the centre of vortex activity moves towards the temperature adjustment layer and

the GSrtler number tends to a constant which is the leading order term of the GSrtler number

expansion for the mode trapped in the temperature adjustment layer. It is this mode that

is most susceptible to GSrtler vortices since it has a smaller GSrtler number than any other

mode.

As is typical of GSrtler vortices in growing boundary layers, the evolution of Gartler vortices

in the temperature adjustment layer is dominated by nonparallel effects. It was shown in Fu,

Ha]] and Blackaby (1990) that in the hypersonic limit such nonparallel effects operate mainly

Z
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through the O(M 3/2) curvature of the basic state. Thus only when the wavenumber a is as

large as of order M 3/s do nonparallel effects become negligible and the following asymptotic

expression for the neutral G;Srtler number can be obtained:

where

and _'0 = T(r/*),

2BM 3/2 a3 1 130° 02go (19)c = _(=.)(_=.)3/=+ go='+ "_. 2Co'o_.' +""

B def. lira M -3/2 _'(z/)d_7, go = - " (20)

The constant 77" denotes the centre of vortex;o = ;@o).
activity and has the numerical value of 3.001 when _ = 0.72, rn = 0.509. In (19) the first

term is due to the curvature of the basic state and other terms are due to viscous effects.

It is clear that a = O(M 3/s) is the order at which viscous effects become comparable with

the effects of centrifugal acceleration due to the curvature of the basic state. In the following

analysis, our nonlinear theories will be concerned with wavenumbers in this regime. Although

this assumption about the order of the wavenumber is necessary to obtain a relatively simple

asymptotic analysis, it is also relevant to physically situations since our analysis is actually

based on the assumption v/_a = O(M 3/s) and the latter condition is always satisfied by

vortices far downstream of the leading edge.

3 Weakly nonlinear theory

In this section, we consider the initial nonlinear evolution of large wavenumber GSrtler vortices

in the neighbourhood of the neutral position z = x,. We shall fix the GSrtler number as given

by

( 2B_ ) 1 (1)c = \_(=.)(2=.)_/2+ go ;_,

where for the convenienceof asymptotic analysis,we have definedan 0(1) constantN and a

small parameter e by

= Mi.a-', e= l/a. (2)

It can easily be seen that (1) is just (19) with the O(a 3) term on the right hand side neglected.

This implies that the linear neutral position corresponding to (1) would be xn + O(e). In the

present context, it does not matter whether we start with (19) or with (1).

We now turn to the derivation of the nonlinear perturbation equations. The total flow is

written as
1

u=_+_-U, v=_+V, w=W,

1
p=i_+ _(is+e), T=T+T, (3)



where M1 defined by
1

M1 -- 3 1

M_+_ _ _

is used to scale the streamwise perturbation velocity so that M will not appear in the following

nonlinear perturbation equations. In (3d), f_/R is the second order correction to the basic state

pressure (the leading order term _ is a constant). 0n substituting (3) into the Navier-Stokes

equations (4)-(9), making use of (12) and (17) and neglecting cubic and higher order terms

of the perturbation quantities U, V, W,P and T, we obtain the following set of perturbation

equations:

1 ou ,7ou 1 o £ou_ /;
_( o_ 2. o,7) - pu,, + v2_ _( _ on" v'_7¢_

r/]" 1 _ T _]" OT 1 1 OU+[2-2fi 2_ ( /")IT 2x_ 0,1+ _(-&2_V_ + wtr,)

T OU ,70U /" 1 0 h OU

-.p(TU,), - _[ 0z 2z 0rl + _---_V] 2zT _-_(_T-_ )

r/]"T _ 1 0 [_]",,,,
2z _3 4zT0-@'-T-" )=0, (4)

10V rl OV r/T'V - pV,, 4 O [ p OV _
g(ox 2_ o,7) 2_', 3.(2_)_'_'gN4"

1 OP _ 1 1+v/_- or/ t ¢,2(2_)3/2[5" (2_)a/_a - BM_/2 M"- --_- + r/_']

a(2x)3/,_ _'--¢--'. T + a(2_,)3/,_, Or/

2[_T' .W. _ O? 1. 1 OV-_3,/_7_ 3_" (w,) + _(-&-_v_-_n + wv,)

2 W 4[_ OV]. 10T
T ( OV n OV rl_" V) + [-_[z , -

4 Op, OV 4_ 0 10V [z OW,- 3. (2,.)_ "_on o,7 + 3. (2_)_"_(_-_) + av/_-;_ or/

2 OPW, } . 10W

T 2 [1 .(2z)3/,G_BM_/2 p"+r/,,,]+ 1 0 (:_T _ )+ _3(2m)3/_ 2 a_ 6(2z)z/_.0r / T _ = 0, (5)

M" p or. 2_' T _ _.OW n_.OW_
457---_v" + _-_2_-_ - P"+ 3-._ " _ _ 2_ o,_"

4_14 _ I O ( p OW,_ _ 1 1 OW
+g_ "+_._'_'_-N-_' _(-_fv-_+ww,)
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T. OW 7? (gW { 4 _ V¢ _ OV_ 1

1 O_ OW 1/i," OT
O 1 OW } _ . 1 OW-I 2z_2 (9)/ (9)/ + 2_' 0"_(_'-0-_'_ ) T + _(-v_mT

4 2 OV

+ (_W, 3v/_ _ 0)/)/2T, = 0, (6)

1 0 V 1 W )/T' 0 )/ 0 T
v/-_2_0-_(_)-F _, :+2-_3"T-(_m 2_)(_')

1 OV T 1 O O T

(v_T O, + W')gZ-(-_---_V_ + W_)(_)

O 7? O T 2 )/:r' T 2=0, (7)+ ( _ 2x_)(V) 2x2_

_" 1 (9T )l (gT [ )lT' 1 cO PT' _T,,,/_9-----_v+ _( ox 2-__) + 2-_ 2xT,__(T )IT -

_T' OT 1 (9 (pOT_ 1 . 1 aT

r or , or 1 (9 r(gr
_-2( (gz 2z (9)/ H- _'-m'_V) 2za_. (9)/_ (9)/ 2zT 3

_ _ [ 1..l__O._O( T (gT 1 (9 ( "_ )at2x_(9)/,_-ff-)_)/) + (TT,)_] 4zaT(9)/ T 2 = 0. (8)

Here p = #(T), p = dp/dT, h = d2p/d_ and the bulk viscosity has been taken to be zero.

The linear perturbation equations discussed in Fu, Hall and Blackaby (1990) can be obtained

from the above equations by neglecting nonlinear terms.

To solve these nonlinear perturbation equations, we first note that in the large wavenumber

limit, Gbrtler vortices are trapped in an internal viscous layer of O(e _/2) thickness centred at

the most unstable position 7/= )/.. We therefore define a variable ¢ by

)/- I/*
¢= el/, (9)

In the neighbourhood of the neutral position z -- zn, the growth rate in the z-direction can

be shown to be of order 1/e and it is appropriate to describe such rapid growth by defining

another variable _ by
X -- Xn

= _ (lO)

An order of magnitude analysis of the perturbation equations (4)-(8) then shows that

U = O(eaV), W = O(e'/aV), T = O(e_V), P = O(e-'/aV). (11)



We assume that nonlinear effects reinforce the fundamental at the order in • at which the

vertical structure is determined. It can then be deduced that the appropriate sizes of the

perturbation quantities must be

= o(•3/2), v = o(•-'/'-), w = o(1)

T = (•3/2), p = O(e-'), (12)

and that the corresponding mean flow corrections, signified by a subscript "m", must be of the

ord ers

v,,, = o(•_/_), y,,, = o(•), P,,,= o(•-_), T,,,= oc•_n). (13)

As is well known, the nonlinear interactions that occur in the Taylor-Gbrtler problem do not

generate a mean flow in the spanwise direction. We therefore look for asymptotic solutions of

the form

where

u = •3/_{,,,,,o+ •,/2,,,,,,,+ ...+ [(Vo+•,1_, +...)s + ... +C.C.]},

v =,-'/' {(Vo+,'/_v,+...)_ +... +c.c.},
W = (Wo + •1/2W1 +...)E + ... + C.C.,

r = ,_/_{o,,,o+_'/_o,,,1+...+ [COo+•'/'o,+...)_+ ...+c.c.]},

v = •-'(v,,,o+•l/_p,_,+...) +•-1{(Po+ •l/,v, +...)z,+... +c.c.},

(14)

E = exp( iz_-), (15)

and C.C. denotes the conjugate. On substituting these expansions into the perturbation equa-

tions (4)-(8), expanding all coefficients there about x = x,, and _? = _?*, and then equating the

coefficients of llke powers such as •, E• and etc., we obtain an infinite hierarchy of equations.

To leading order, the Gbrtler number go is determined from a solvability condition for (V0, To)

and is given by

go=

whilst U0, W0, 60 and Po are related to V0 by =

/;'
vo= vTz;_o_o_Vo,

iWo = 1 OVo N OVo (17)v'_-;_'o 0¢' Po= _'o 0¢'

O.K,,0_'Vl '

0 0 =

10



where ](_'= ]"(_/'), To = T(r/*), T1 -- T'(_/'), P<)= _(To) Ro---R(zn). Note that (16)is

consistent with (20), as we would expect. The mean pressure, the mean streamwise velocity

and the mean temperature are found to satisfy

oP,,,o (is)
= _ 'o'rnO,

0_b 2T0

(2z.a,o 0 0 2 ) 2a2T1 0lVo, = (19)po 0= = p to a¢ '

and

_ 0_- 0¢ 2 _..o-_oT__2.2 0¢

To next order, we obtain four expressions similar to (17) for Uz, ez, W1 and PI in terms of

VI and V0 and the condition that

_ I,,--,,' =0, (21)

which implies that 7/* is where go attains its minimum (and hence that _/* is the most unstable

position).

If we carry out the expansion to one order higher, we find from a solvability condition for

(V2, 02) that Vo must satisfy the evolution equation

2z.To 2_ a0,_o
02Vo 2(1% a)Toz,_ OVo _ R¢2V ° + b_Vo - -- Vo _ , (22)
0¢ 2 3p0 Oz 3T1 _b

where

"_ z,_ 02go •
a'= 3go _-'_'_2'n='_ > O,

, 2Zn'02 { 2B/V _ 3 _;1 1 }-- 3 goRo(2=n)3/2( .-I-2--_) -I-_o 2z. ' (23)

and where _1 : R'(z,,). Thus we have two coupled evolution equations (19) and (22) together

with an uncoupled equation (20) which govern the downstream evolution of the fundamentals

and the mean flow corrections. It is easily seen that the present weakly nonlinear theory is

different from the classical weakly nonlinear theory (see, for example, Stuart (1965)). In the

latter theory the amplitudes of the mean flow corrections are one order smaller than those

of the fundamentals and thus the resulting evolution equation for the fundamentals is an

ordinary differential equation and the former can be determined independently of the mean

flow corrections.

Before we present the solutions of these nonlinear evolution equations, let us first note that

equation (22) reduces to the linear evolution equation

O2Vo 2(1 + a)Tozn ago _ a¢2V ° -F b_V0 = 0, (24)
0¢ 2 3/20 O_
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after the nonlinear forcing term on the right hand side has been neglected. This equation has

been discussed in Fu, Hall and Blackaby (1990) and its general solution can be obtained by

first looking for separable solutions and then expanding in terms of the eigenfunctions. It is

shown there that the ruth mode is neutrally stable at _,, = (2m + 1)v_/b. The most unstable

mode corresponds to m = 0. Therefore GSrtler vortices with GSrtler number given by (1) are

neutrally stable at zn + e_n. If we replace z,_ in (1) by z_ - e_n and expand the resulting

expression up to and include the 0(e -3) term, we recover (19) which is the appropriate GSrtler

number expansion for GSrtler vortices neutrally stable at z -- zn. Thus, as we remarked in the

paragraph below (2), it does not matter whether we use (19) or (1) for our weakly nonlinear

theory; such a difference in the choice of the GSrtler number only results in an O(¢) shift in

the linear neutral position.

We now discuss the solutions of the nonlinear evolution equations (19) and (22). We shall

not consider (20) any further since its solution for the mean streamwise velocity urn0 is not

needed in the remaining discussions of this paper. To simplify the notation, we make the

following substitutionsi

a 2_ V0,
Po- _o(4a)i14v 3 "

Equations (19)and (22)then become

where

In (27), the positive (negative) sign is to be taken if b is positive (negative).

equations:are of=the same form as Hall_s (19825) equations (3.15a,b) for incompressible flows

(they are identical When a = 1). The reader is referred to that paper for a detailed discussion

of their numerical and asymptotic solutions. According to Hall (1982), an important property

of these two coupled evolution equations is that any initial disturbance introduced upstream

would either decay to zero or evolve into a unique large amplitude structure at large downstream

locations, depending on whether b < 0 or b > 0. The latter conditions are in fact the conditions

for GSrtler vortices to decay (b < 0) or grow (b > 0) linearly downstream of the neutral position

x = &_, ¢ = (4a)m¢,

O.,o= (251
h ] ec. ,r_ e

,,..o= (26)

- x o#_0
- -,- ) 0= 0 ,

k = (1 + a)x.Tolbl.
4poa

[s to be taken if These two

z, + e_n (see Fu, Hall and Blackaby (1990)).

12



The easiestway to seehowa largeamplitudestructure is possibleis by looking for such

solutions for (26) and (27) directly. If an asymptotic state is to be achieved, it must be the

last two linear terms on the left hand side of (27) that balance with the nonlinear term on the

right hand side of (27). Thus after integration we have

--2 V_

where, based on the argument given in Hail (1982), we have assumed _m0 to be an odd function

of ( so that we can put the arbitrary integration constant to zero. On substituting (28) into

(26) and integrating, we obtain

]frol2 = 5(_ Jr 1---_) • X. 6,2 _ ( )2 , (29)

where C is an integration constant to be determined. Solutions (28) and (29) are only the first

order approximations. We note that the similarity variable (/X I/2 is important. Thus if we

define

( (30)
_=_

and look for the following form of asymptotic solutions for (26) and (27):

_o = x3/_oo(_) + x'/_o1(_) +...,

?o = xi/_froo(_)+ x-'/2fro1(_) +..., (31)

we would have (;,_oo and froo given by

1( 1 a) - 1 1 tTk0,_oo= _ _- ]-_¢ , 11o2o=5(_+ 1-'-_)'(C2-_2). (32)

Here, without lossof generality,we have assumed froto be real.

The above solution breaks down near _ = ±6, since fr020must be positive. In each of

these regions fr00 develops a boundary layer structure (hereafter we shall call them transition

layers) and it can be shown that each of the required layer is of thickness X -1/e. In the upper

transition layer _ = 6" we define a new variable _bby

_b= XI/B(OX I/_- C) = X_/3(6,- _). (33)

To match with the core region solutions (31) and (32), we have to look for solutions of the

form

= yl/e_2_,.oxV_°o(,A)+ x5/6_o(_)+.. _o +'",

fro= xV6fro(_)+ x-V_fro_CV_)+ .... (34)

13



On substituting (34) into (26) and (27), equating the coefficients of like powers of X and then
"0 -10,_o simplyconsidering the matching conditions at various orders, we find that 8,, o and are

the expansions of the core region solution (32a) in the transition layer, i.e.,

and that _r0° satisfies

C2
1 3 "1 =

0% = (c- _c ), 0,,,o (-_-+ T)¢, (35)

d2_o o =co=+ _ _ 2 (T;"o°)3. (36)
d,¢,2 l+a --

By matching with (325), we require that

1 _ (37)(T_°) 2 -, C(_ + )e, as e --, _.

Equation (36) is a particular form of the second Painl_ve transcendent. The existence and

uniqueness of its solution has been proved byHastings and Mcleod (1980), and this solution

is proportional to Ai(-_b) when ¢ --* -oo. Thus Vo decays to zero exponentially in the two

transition layers which bound the core region of vortex activity.

Above the upper transition layer and below the lower transition layer, (26) reduces to

(0-_'202l+a2ak_--_O) 0,_0= 0. (38)

Itadmits an asymptotic solutionof the form

0m0 = X3/20mO(_)-_ - --.. (39)

To match with (34a) and (35), O,,o(_) must satisfy

O,.o _ l(c -
1

_c_),
dOrno 1 C 2

_ as _¢_ C. (40)
d_ 2 8'

Substituting (39) into (38) gives

(d_ ok. _d 3_ k)O.,o(_)+ 1 +---_ d_ 1 +a

The solutionof thisequationwhich decaysto zerowhen _ _ oo is

Omo=Aexp(-_-)'U (_'_) '

=o. (41)

(42)

where U(712, V/_) is a parabolic cylinder function, A is a constant and I¢ is defined by

2(7

l+a
(43)

L
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On using (42) in (40), we obtain

k-C t___4U (9/2' _0) 1-C'/4

exp -- .
(44)

The first of these relations determines C, the location of the upper transition layer. It is easy

to see that if we multiply both sides by the denominator of the right hand side and then move

the numerator to the left hand side, the resulting algebraic equation changes sign at places

where the denominator and the numerator vanish; so there is a single solution which lies in

the interval 2 < C < 2V_ for all k.

The solution for the lower transition layer can be obtained in a similar fashion. It can be

shown to be given by (42) with A replaced by -A and _ replaced by -_. Thus by (31), (32),

(34), (37) and (42), for a given X >> 1 the flow structure in the interval -oo < _ < oo is

completely determined.

Since the amplitude of V0 and 8,_0 grows as the vortices propagate downstream, insertion of

(31) and (32) back into (14) shows that the latter expansions become invalid when _ -- O(_ -1)

where the mean flow corrections E3/2_,_0 and _3/20,_0 become as large as the basic state. Since

= _-1/2(__ rf), at _ - O(_ -1) (i.e. _-zn -- 0(1)) the transition layers are at r/- r/* -- 0(1)

and are of thickness of order _1/2_-1/6 __ _2/3 In the next section, we shall consider the further

downstream development of these large amplitude vortices beyond x - x,_ - O(1).

4 The fully nonlinear theory

It has been shown in the previous section that at positions 0(1) downstream of the neutral

position x,_, the mean temperature correction and the mean streamwise velocity become as

large as the basic state. When this happens, we expect that the large M structure of the

boundary layer is still valid. The total flow is now written as

1

u=_+-g_U, v=_+V, w=W,

1

p - i_ + _(/3 Jr P), T = _' Jr T. (1)

It should be noted, however, that although (1) is of the same form as (3), (_, _, 15,_') here

is the non-harmonic part of the total flow and is different from its counterpart in (3) which

represents the unperturbed basic State. In the temperature adjustment layer, the similarity

15



variable 7/= _-, y) is defined by

I [_ dy
= _ J0 _(_,_(x,y))' (2)

where the function T in the integrand is understood to be the composite solution of the mean

temperature (i.e. the waU layer temperature plus the mean temperature in the temperature

adjustment layer). We note that because of the O(1) correction from nonlinear interaction, the

mean temperature is now a16o a function of z. In the limit ? --* 0 or z -,, --, 0, T(z, _7)_ T(_?)

and (2) then reduces to (11).

We assume that the mean velocity components _ and 9 have the following expressions:

__ 0s(,,_) _= 1 {__(_ _)s+ asi(¢)} + v_(,,_). (3)

Here f(z, _7)and ¢(z, _?) expand as

1(='_)+... _=_(,,_)+... (4)
f(z, 71)= _l MI/2 + _ ,

The function v6(x,7/) in (35) is added in order to satisfy the continuity equation. As can be

seen from (31), this added term is partly due to the dependence of T on z and partly due to

the O(1) mean flow correction from nonlina r terms in the continuity equation. The function

I(¢) in (3b) denotes the integration of the mean temperature from 0 to 7/i It includes the

contribution from the integration of the wall layer temperature and thus has the expression

I(¢) = Ma/2B + T(z,() a_4 j d( a2773 (5)

where the constant B is defined by (20a).

With the aid of (2)-(4), the following important relations can easily be established:

I(T) i aI(T)
_ - 2_- _ a_. ' (_)

_ + _ : + [ (z)y _xx v/_ ' 2z T Oz J 0-_'

1 c9] B---_M3/2 + D(z, 71), (8)
_z=I+M'-'--_cO-'_+'", v = x/2z

where D(z,7?) is defined by

D(_,'_)= _ _(_'_)
9(1 + m):_ 3(1 + rn)_ "_ _?T
j_ /'/_- _w_ J+_'_ v_ (9)

The operator on the left hand side of (7) will frequently appear in our following analysis. To

simplify notation, we shall denote it by Li). Thus for any function F(z, 77)we have

L (F ) : "_zcoF + I,
v6

T _ J 0-_" (10)2=

I

_=

16



By substituting (1) into the Navier-Stokes equations (4)-(9), making use of the above

relations and then neglecting all the cubic and higher order nonlinear terms of (U, V,W, P, T),

we obtain the following perturbation equations:

TL(], )_ _ 0 r_/". TL(V)- pV,- 1 a p0U_ f'2xT _'_'---_ -)- _mT-_('_ 0_i" 4- V/_.._,i,----------_V

1 O(pp,,_]T_ p]" OT 1 1 _ OU-[_t(/') + 2--_-_, _. ,_ 2--_+-_(-_-_v-_n+wv,)

f" 1 0 £TOU,_
-/2(TU,), - T_-[L(U) + _-_V]- 2-_-_(T _'_'

1 o h?'T2_+ L(/') - _ _(T "= o,

L(_) + _-_.G_fi2 + v_T O_ 6zT _( T"

1 TI_"_ 4 VO £aV_ 1 OP+ L(v) - 2-T_v - py,, 3. (2x)? _(T On"+ v_? an

_ {1at¢_ 2 B M s/2 L(D) 2T O /2_' ] T 2/29' aT(_._)_/'. + + _(-_-)_ _- 3_---_0,7

2/2'T' W _ _n(W,) + 1 1 aV+3_ * 3v_zT ._(_V.-_+WV,,)

_' 2 W- 4/2 #V 1 aT
-_(t(V)+ -_cV)+ [_/2 , 3VW?_l.v_Ca,_

4 O/20V 4_ O lOV /2 OW,,- 3 .(_)_ a_ o_ + 3 .(_)?_(_--#n )+ 3v_¢ an

2 8PW, +/2V'_,,}T " 1 VOW

T _ IGor, ]_ 1 8 [_9'T2 _ =0,+ _[_(_) + _-_-_ \_-/ /

/2T' p OVz 2p_ff" T - 1. voW _ voW,_
v_;----?v" + 3v_ vo,_ P"+ 3. (_x)_' • _( _ £_ _"

vo(£ vow__ 1 1 _vow
+ ; p W_ , + 2 z T -O_ T vo"q " ._ ( _ V --_ + W W, )

_i_T__¥(VOW r/ voW {4. ,5 voV. 1 o')/2

1 vo/2vow /2 a (1 voW_I _._._( 1 voW voT+2-3-_vonan + _-_n'_-_--n 'J T+ v_-¢ v_ an + v')o--#n

4 W 2 VOV. "T
+ (_ " 3v_-;2 _ )_' "= o,

- s(_) + .,/_ _ v_' i,/(9 ) + _w, - v_E?_T- L( )

(11)

(12)

(13)
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10V W T 1 0 8 T
(V_-_C" 0,7 + ,)_-(-_---_Y_+ W_)(_T)

T2 _ T 2 = 0,
+ L(_) + _,4

1 0 +--V+ L(T)-[ +
L(_) 2_o_ 077 v'_7_2 2-75-f r T

(14)

-_T,, _T' @T 1 o3(BOT_ 1. 1 @T- 2zT2a "_ 2-'_aT'_"T-_" + -_(_V_--_+ WT,)

'i" I_.__ COP T OT
-_-_(L(T) + --_V)- 2maT 2 _

- _L2-_-_,_-_ , + (TT:)z] + T_ 4az__ T2 = 0. (15)

Here, to simplify notation, we have used a prime tO denote partial differentiation of the mean

flow quantities with respect to T/. As z - z, --* 0, the mean corrections produced by nonlinear

interaction become increasingly small and the above equations then reduce to two sets of

equations: the basic state equations (13) and (14) and the perturbation equations (4)-(8).

In the light of the results given in the previous section, we expect that Gbrtler vortices

would be trapped in an O(1) region bounded by two transition layers centred at _/= vh(x) and

_(x), each of which has thickness of order O(ea/2). The configuration is sketched in Figure 1

in which the region of vortex activity is denoted by I, the upper and the lower transition layers

by IIa and IIa respectively, whilst the region above the upper transition layer and the region

below the lower transition layer are denoted by IIIa and IIIb, respectively. The flow properties

in these regions are now considered separately.

We start with the core region I. There the sizes of the perturbation quantities can be

determined from the results given in the previous section. From (25) and (31) we deduce that

at x - mn ----0(I),

Vo= aVo= o(1).
a,/,

l_elations (17) then give

Uo = O(e-'/_), 80 = O(e-'P), Wo = 0(i), Po = 0(I). (16)

Then _om the relations between (U0, V0, Wo, O0, Po) and (U, If, W, O, P) shown in (14),

we deduce that

U=O(e), V--O(e-1), W=(1), T=O(e), P=O(e-1).

We therefore assume the following form of solutions for (11)-(15):

o_/= ]o(=,,7)+ + .--,
O7/

(17)
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_'C_,_)= To(_,_)+ _T,(_,_)+ "",

u=_{E(u_o+_u:+...)+_(u#+...)+...+c.c.},

v =,-'{E(v_+,v:+...)+_'(Vo_+...)+...+c.c.}, (18)

w= {E(w_+,w: + ...) +,_(Wo_+...) +... + c.c.},

P= ,-' {r,(P_+,P? +...) +,E_(Vo_+...) + ... + c.c.},

r =, {E(eI + ,e_+ ...)+,_(e_,+ ...) + ...+ c.c.},

where E is defined as in (15) and C.C. denotes the conjugate. We now substitute these

expansions into the perturbation equations (11)-(15). After equating the coefficients of E% °

in (14), ill) and (15), we obtain

O_o v_ O_'o 1 O_'o OI(_'o) 1 Ov_

a= 4-.¢W_oa,t To-E¢ o= _ a,7

2_o _(#olVo_l_), (19)- v_(=)

_\Toa,7) -2=_--=+ To_

_ VW.,aO_ vS_a.foe,_,,
- -_-o"°T_ +==u°'_m°'-_ _'_a,7 o o +c.c., (2o)

_a,7_,To-E-¢/ +,7-E-¢- _=-_-+ 2=.° ) vW,,_

v_
_° e_¢o'+c.c., (2z)= To o_+==_o'._$o'- _o_

where Po = p(To), and a bar over U and W signifies conjugation.

On equating the coefficients of Be -z in (11), Be -3 in (12), Ee -_ in (13), Ee -_ in (14) and

EC z in (15), we have

noVo'+ v_fg Vo'= o, (2_)

nov2- _(_-=)_o'= o, (23)

O, (24)

a {Vo_
_,_, + vb_(_w_)= o, (25)

1 z
1 aT°v2 + -_poeo= o, (2_)
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where/_o = _(To) and where H(x)is definedas

_;(Z) 1 } iH(x)=B# _(..)(2x.)3/2(2_7 +_go. (2Z)

Equations (23) and (26) are consistent only if

0¢o v_ (2s)
_o' _-_ + HCf)- 0.

This is a first order differential equation which can be solved tO give an expression for the mean

temperature. Note that in the limit z _ z,_, (28) reduces to (16) which is the condition for the

original basic state to be neutrally stable at a single point _7= _/*- Equation (28) shows that at

O(1) distance downstream of the neutral position, the basic state is forced by the vortices to

be such that it is neutrally stable everywhere simultaneously in the region of vortex activity.

With the aid of the relations (22)-(26), we can express Ulo, W_,Olo and Po1 in terms of V_

as follows:

,_ a_'Ovo_'
u0'= V_o¢0 _ Vo',

i o.vo_,
_W_o- _&c_),

Po OVo1 4po] 1 aTo ,
P°_- v_0 0_ +(_°+_oo'v_o _v_.

With the use of these relations, equation (19) reduces to

(29)

0-_(_oo )= T0 _ ]+ H('z)0-T/ "
(30)

Integrating this equation then gives

2p0To _/1 2 (31)_ =v__ + H--_,0 •

Here we have put the arbitrary integration function of • to zero. Even if we had not done so,

this function could be shown to be zero at a later stage.

With the aid of the relations (29)-(31), we can reduce (20) and (21) to

O ld 4V/__ 0/o
Vo_l.,

0,]

;F_ To_] + n-6_ _'_ = H(--) " (O°_°IV°_I')" (33)

After _'o(=,_7) has been determined from (28), equation (33) can be used to determine IVo_land

solving (32) then gives an expression for j_(=,_/). From (28) we see that the boundary layer

flow is forced by the vortices which, from (32), are driven by the boundary layer.

2O
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We now proceed to solve (28) to determine the mean temperature _'0(x,r/). When _ is

given by Sutherland's law (16), (28) becomes

(_o+ _)_ a_0 (1+ _)_
= - (343

Tor Or/ a HCz)"

Integrating (34) gives

"6 o "H(_) (r/+ a(x))' (35)

where a(x) is a function to be determined.

Integrating (33) with the aid of (34) yields

_(_) /.l{la_oa_o_ O_o 2O_o_Wol12= 2v__o_o ___(_o-_n" + r/-_n- _j dr/. (36)

We now assume that IVdl_ wnishes at r/ = r/l(z),r/2(z), which bound the region of vortex

activity. As in the case of weakly nonlinear development discussed in the previous section,

these two boundaries are also where the solution (36) breaks down and where transition layers

exist. The thickness of each of these layers is O(e 2/3) so that in the upper transition layer at

7? = r/2(z), we define

= r/- _2 (37)
,2/3

Near r/= r/2, we can deduce from (36) and (29) that V01, 01 and U 1 are all of order ,1/3, and that

W 1 and P_ are both of order e-1/3. With the use of these results, the sizes of (U, V, W, T, P)

can be determined from (18), which are shown in the following asymptotic expansions:

v = ,'/_{ECUo,+,_/_<,+...) +... +c.c.},

v =,-'/" {E(Vo,+e_"v,,+...)+...+ c.c.},

w= ,-'/_ {E(Wo,+,_/_w,,+...)+ ...+c.c.},

p = ,-4/3 {E(Po, + ,,/3p,, + ...) + ...+ C.C.}, (38)

r =,,/_{_(Oo,+e/_o,1+...)+...+c.c.},

a_ =/o(_,_) + ,_/V,(_, _)+ ,'/V_(-, _)+...,
O77

= _0(x,_)+ ,_/_,(_, _)+ ,'/_(_, _)+--.,

_6= _6o(_,_) + _2/%6_(_,_) + ,4/%6X_,_)+....

Here we expect that the first two terms in (38f, g, h) are simply the expansions of the mean

flow functions f0(x,r/), To(z,r/) and v_ in I near r/= _. Hence

_(Z,_) = /0(X,r/2), /1(::,_): a_(_" f}2)"_,
Or/
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_o(=,()= :to(=,,_) _'_(=,,:)= O_'o(=,_)._.. (39)
0,7

Similar expressions can be written down for _60 and _61. On substituting (38a-g) into (11)-(15)

and equating the coefficients of various orders of the harmonics and mean flow quantities, we

obtain a hierarchy of equations. From (12) we have from equating the coefficients of Ee -s/s

and Ec -2,

PoVol - H(z) 8oi= 0, (40)
T_

pov,1+ _o_Vol- HT_(011_ -_-o_°'2__ ,

4po O2Vo, 1 OPol Po 0(Z-Wol) = 0. (41)

Here and subsequently we write T_ for OTo(z,r/2)/Or/ to simplify the notation and p_ =

p(To(=, _)),/30 = /2(To(z,_)). Equating the coefficients of Ee -7/3 and of Ee -4/3 in (14)

gives

_o OVol_ Pox+ _p_(iWol)=o,
3_o o_ ,_

1 OVol + _iW°l = O.
v_¢_ o¢ To

Finally, by equating the coefficients of Ee -2/'_, Ee ° and E% ° in (15), we obtain

(42)

(43)

Vol + _---0o1= 0,
VW_o_

(44)

v_-----_o_ v_ o_ To '_°1

+ ho(_8o1 Po _ 828o_
a - 2=a_to2.0(----y- = 0,

-_-/_o2=O_o_ a__

(45)

1 . _
2=;T-_(_o- To_ o

1 . 698ol - 08ol 1

+ v/_hg (Voz--_- + Voz--_-) + _oo(il/_°18°1 - iW°18°1) = 0" (46)

We have not written down the equations obtained from the x-momentum equation since the

determination of Vol, Wol, 8ol and Po_ does not involve the streamwise velocity component.

Equations (40)-(46) can be solved in the following way. First, from (42), (43) and (44), we

can express iWol,Pol and 8ol in terms 0fvo_and its derivatives. We note that equations (40)

and (44) are already consistent because of (28). Next, equations (41) and (45) give a 2 × 2

inhomogeneous matrix equation of the form A¢ = f for _ = (Vn, 8n) T. The inhomogeneous
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term f involvesOT2/O_ as wellas V01 and itsderivatives.The former can be determined from

(46)and can be shown to be givenby

aT_a,_- _To_T_,___o_ (_O__o- _)To_, _- _,IVo,12_T° _ - S(=), (47)

where S(z) is a function to be determined. Since the coe_cient matrix A has zero determinant

because (40) and (44) must have non-trivial solutions, the inner product of the left eigenvector

of A and f must vanish. Omitting all the details, we can show that the latter condition can

be reduced to the following second order partial differential equation for V01:

a2Vol 4m-. Vo,lVo,I -I- S2(m)Vol, (48)a_2 +S1(=)W01=3

where

2_-(3T_ + 3/_" + _o_CPo2) , (49)sl(,) = --yTo no To$_

(2=) ¢o_. s(=). (50)
s2(=)= '-_'To

This equation is a particular form of the second Painleve transcendent and has been shown by

Hastings and Mcleod (1978) to have a solution such that

4=a2 (51)
3#_IV°ll=~ s,(=)_ as _--,-co

and that ]Vol] decays to zeroexponentiallyas _ _ oo. Thus the GSrtlervorticesare trapped

below regionIIIaand the condition(51)ensuresthatV0_ matches with V0_ in the core region

I.An identicalanalysisappliedto the lower transitionlayerlib shows that the vorticesthere

are alsoreduced to zeroexponentiallyaway from the coreregionso that they are alsotrapped

above regionIIIb. As a consequence,above the upper transitionlayerand below the lower

transitionlayer,thereare only mean flowfields.

In IIIa,b the mean flow fields are still formally represented by (3) and (4), but now ] and

expand as

i(z,_)=/o(=,_)+o(d, T(=,_)=To(=,_)+O(,), (52)

where ]o(m,7/) and To(re,r/) satisfy

(1+m)a ( I =a o

To satisfy the continuityequation,r6 must be calculatedfrom

(53)

v_ = x/2xa_(3 ), (54)
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where the function I is defined by (5). We note that the governing equation (53b) for T0(x, 7/)

is decoupled from that for ]0. We can therefore solve (53b) on [0, _], [_, oo] first subject to

the following boundary and matching conditions:

(i).

_o(,.,n) --, -_(1 + m)_ + ..., as ,7_ o,

(ii).

(iii).

_0(=,,) -_ 1, as _-_ _; (55)

_'o(=,,Tj)=_'o(=,,7_), O_o(.,,Tj)/a,7=a_'o(=,7_)/o,7,j= 1,2;

= rA and r_ are where V0I vanishes and from (36) they satisfy

; _(_ _-, + _-_- - 2. e_ = 0.

(56)

(57)

Thus equations (52b)-(57) constitute a free boundary problem which can be solved numeri-

cally for a given curvature distribution to determine the two boundaries rA(x), _(x) and the

unknown function a(x) in (35). Once these three functions are determined, all of the pertur-

bation quantities can be calculated by the appropriate formulae given in this section.

5 Numerical results

In this section, we shall outline a numerical scheme which we have used to integrate the above

free boundary Problem and discuss our numerical results.

For convenience, we shall drop the hat notation and subscripts 'o' in (53)-(57). Thus our

free boundary problem is to integrate

_ \ T + m O,TJ + "7-5"_- 2=-_x = °'
(58)

subject to the boundary and matching conditions (55)-(57). The interval (0, oo) is divided

into three sub-intervals:

r,:(0,_), r_:(_,_), r3:(_,oo).

Our aim now is to integrate (58) in the intervals £1 and r3, and iterate on the values of

rh(,),_(_) and a(x) at a given z so that the matching conditions (56) at rh and r_ are

satisfied and the integral (57) over F2 vanishes.

For the purpose of numerical calculati0n,=it is necessary to work with fixed boundaries so

in rx and r3 we make the transformations

7?= 'rh.(x-)e ¢', 7/= _(x)'¢', (59)
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respectively, so that the intervals Ft and F3 now become

r_ : (-c_,O), r3_ : (1,c_). (60)

The additional exponentional stretching in (59a) is introduced to accomodate the rapid change

of T near _?= 0 (as indicated by (55)).

In terms of the new variables ¢ and ¢, (58) becomes

OT
2x_-+ AI(x,¢,T)_--_ = Bt(z,¢,T, _-_), (61)

and

respectively, where

.02T OT

2x_- + As(z, ¢,T)_-_ = Ba(z,¢,T, _-_),

1 + m v_ e -2_
A 1 _ •

(62)

l+m e -2¢ m-T OT 2
+ ..... (_-_) , (63)

l+m _ 1
A3 = --_

a T+m'-_2

B_= (1+2z_7_.¢0T l + m 1 m- T OT 2, 0-¢ + -_ "_-_ " 2v_(T + m)2 " (0-¢) "

Equations (61) and (62) are parabolic partial differential equations, so their solutions can

be otained by a marching procedure. We shall now use the solution of (61) as an illustrative

example to explain our numerical scheme. If the values of T, _(z), _(z) and a(z) are known

at z = $, then the following schem is used to determine these functions at $ + _:

2_. _ - _ ¢_+I - 2T{ + T{-1 T_+I - T{-1
+ Al(_.,¢i,_) • h2 = Bl(_,¢i, T/, ), (64)2h

where h is the vertical grid spacing, a tilde denotes a quantity evaluated at the position _ +

and a subscript signifies evaluation at the indicated vertical grid point. In the expression for

B1, _7_(_:) is replaced by

= - (65)

If we replace -c_ by ¢o and use n mesh points in the _7

¢n = ¢0 + nh = O.

where fi is a guess for _(_ + _).

direction, we have

¢i = ¢0 + ih,
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Applicationof (64) to i = 1,2,-.., n- 1 gives a triagonal matrix equation which can be solved

after the following boundary conditions are incorporated:

To = 9(1 + m) 2 1
32 ._.e4¢0 , T,, = T0(x,_h), (66)

where To(x, th) is calculated from (35). The derivative of T at 7/-- rh(x) is calculated from

aT 1 BT T,,+I - T,,-1 (67)

and we define a function fl by

OT (9To

fl(h,_) = ___-_'nI'--'_ - "8"6-V"="' (683

wherethesecondterm is calculatedfrom(34)and a is a guessfor ,,(_ + _), whichis usedin

the calculation of T0(z, 7h) according to (35). Equation (62) can be solved in a similar fashion,

which leads to a second function f2:

.f2(a, _) def. 1 aT c9_'o= - -_-_1,_=,- _ ,=,_, (69)r/2

where _ is a guess for _(_ + _). For a given guess (h, _h, _), a third function f3 is defined by

means of

To __(_-_--n' + n-_v- _j,t,7. ('t0)
With the aid of the three-dimensional version of the Newton-Raphson method, our program

iterate on (5, _h, _) until the three error functions become sufficiently small simultaneously.

The above procedure shows how to march the values of (a(x), rh (x), _(x)) one step forward

along the stream-wise direction at a given downstream location. The scheme is complete if the

initial values of (a(_), _(x), _(:c)) are known at a certain initial position x = x0. Such values

are provided by the weakly nonlinear theory, as we show below.

The weakly nonlinear theory established in =§4 gives the large X(= (x - _n)/e) structure

for growing GSrtler vortices. The present fuli_r nonlinear theory for x - x,_ = O(1) Should

then match in the small (x - xn) limit with that large X structure. Therefore, the desired

initial conditions for (a(x), rh(x), _(x)) and T are imposed near the neutral position z,_ and

are obtained by rewritting the large X solutions of the weakly nonlinear theory in terms of the

original variables x and r/.

First of all, the initial value of a(x) can be obtained by using the condition that 8m0 given

by (28) vanishes at _? = 7/* so that _'0 in (35), when evaluated at 7/= 7/*, can be replaced by

_', the unperturbed basic state temperature. To determine rh and _, we simply have to write

= +C defined between (32) and (33) in terms of the original variables z and _ with the aid

of (9), (10), (25) and (30). The result is

_.2 = ,*-I-Ct4-_(= - _..) , (7'1)
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where 5 and b are given by (23); whilst C is determined by solving (44a). Finally, the initial

value of T can he written as

T --- _' + e3/2e,._o, (72)

where T is again the unperturbed basic state temperature and the other term is the one

appearing in (14d). l_ewritting the latter in terms of the original variables z and r] with the

aid of (9), (10), (25), (39) and (42), we obtain

where
2_ 7}- U°

and where the '+' and '-' signs should be taken for 0 < _ < rh and _ < _7< co respectively.

In Fig.2, we have shown the evolution of the mean temperature correction es/20m0 given

by (73) downstream of the neutral position zn = 0.5; whilst in Fig.3 we have shown how the

growth of es/20mo depends upon the neutral position z,. We can see that for a fixed value of

z - zn, e3/20m0 decreases drastically with increasing z,. For z - zn = 0.001, our numerical

calculation shows that e3/20m0 becomes as small as of order 10 -7 when zn -- 20. In our

numerical experimentation, we find that if we choose too large a value for zn, the amplitude

of the initial GSrtler vortex would be too small to have any effect on the evolution of the

temperature, and as a result, the numerical values of _(z) and _(z) would coalesce into a

single value as we march downstream. This is why we choose rather small values for zn in

our following numerical discussion. Such an experimentation also provides a check on our

numerical scheme as we expect that the two free boundaries would coalesce if no vortices were

present.

We now discuss our numerical results. It was found that the above numerical scheme

converged for sufficiently small values of _ and that hi : 0.005, h2 : 0.004, _ = 0.0001 gave

a stable scheme for the cases investigated and yielded values for _, _ and the other flow

quantities correct to two decimal places, where hi and h_. are the vertical grid spacing in P_

and r2¢, respectively. All cases correspond to a = 0.72, m - 0.509, N = 1 and to a thermally

insulated wall for which the basic state solutions have been given in Fu, Hall and Blackaby

(1990). The first case we considered has the curvature distribution and the neutral position

given by

_(z) = (2z) 3/2, z. = 0.4. (74)

The correponding GSrtler number is from (1) given by G = 21.8044/e 4. The weakly nonlinear

theory results (71), (72) and (73) were used to calculate the initial values of rh(z),_(z )

and a(z) and the initial profile of T at z = 0.401. The numerical scheme described in this
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section was then used to advance the solution beyond • = 0.401. The numerical values thus

obtained for _(z) and _(z) are shown in Fig.4 and the total temperature distributions at

z = 0.4,0.8, 1.2 are shown in Fig.5 with that for z = 0.4 correponding to the unperturbed

basic state temperature. In Fig.4 we have also shown the values of _(x) and r_(_) calculated

according to the weakly nonlinear theory result (71), which is strictly valid only for z -z, << 1.

In Fig.6 we have shown the eigenfunction V01, calculated from (36), at the downstream locations

z = 0.5, 0.6, 0.7, 0.8.

The second case we considered corresponds to

= o.3. (75)

The GSrtler number for this case is from (1) given by G = 18.9681/e 4. This is the case which

admits a similarity solution in the context of incompressible flows, as has been shown by

Hall and Lakin (1985). Such a similarity solution is no longer possible here because of the

contribution to the GSrtler number expansion from the basic state curvature, as can be seen

from (27) and (35). However it can be deduced from (27) that

~ • -.,oo,

and further from (35) that _, and r_ become independent of z when z becomes large, so that

a similarity solution is possible for large z. This is verified by our numercal results shown

in Fig.7 which clearly shows the increasing independence of rh and r_ on z when the latter

becomes large.

6 Secondary instability

After the large GSrtler vortex structure discussed in the previous two sections has been estab-

lished, we expect that the boundary layer would become susceptible to secondary instability

of the wavy vortex or vorticity mode type. Thus following Hall and Seddougui (1989), we

now study the secondary instabil;ty of the steady structure described above by superimposing

spanwise periodic travelling waves on the flow in the two transition layers. We shall confine

our attention on the upper transition layer; the lower transition can be studied similarly. The

steady vortex structure in IIa is now our basic state. We signify it by a subscript B and rewrite

it here for easy reference:

1

us=e+_U, vB=_+V, ws=W,

1
pB = _+ "_(@+ P), TB= T + T, (1)
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where

/--n M1/_+_+"',

_-- _(x, _) + o(M°), (2)

i. :0(,,,/.]2 ) Jr _.._._ (_,,i_2). _E2/3 Jr _4/3/2(X, _") "Jr "'',a#

= _o(-, _) + a_o(,, _). _2/3 + :n_(_,_) + ....
at/

Here fo and ]2 are respectively the same as those appearing in (18a) and (38f) and I(_') is

de_nedby (5). The harmomcpart (U,V,W,P,m) expandsas in (38). But withoutloss of
generality we rewrite them as

U = 6413 COS Z(Uol -Jre213Un +...) +...,

V = _-2/Scos z--(Vol+ _2/3Vll + ...) +...,

W E-1/3
Z(W01 Jr E213Wll Jr'' ") Jr''', (3)sin

T = e4/3 cos Z(T01 Jr e2/3T11 +...) Jr ...,

P -" e -4/3 cos Z(Pol Jr e213p n Jr...) Jr ...,
6

Comparing (3) with (38) shows that U, V, W, T, P here are in turn equal to 2U, 2V, 2iW, 2T, 2P

there. Therefore, the equation satisfied by Vo, here can be obtained by replacing V01 in (48)

by V01/2. Thus we have

02Vol = a2_._zV,_
O_----T- + Sl(x)_Vol 3p_ oI + S2(z)Vol, (4)

We now look for travelling wave solutions superimposed on the above steady state. The

total flow is then written as

u=UB+M----T6U*, v=vB+6V*, w=ws+6W*,

P = Ps + 8P*, T = TB + 5T', (5)

where 6 isa smallparameter introducedtofacilitatelinearization.The linearizedperturbation

equations are obtained by replacing ( U, V, W, P, T) in (11)-(15) by (U + 6U*,V Jr 6V',W Jr

6W*, P Jr 6P*, T Jr 6T*), putting back the 0/Ot terms in the momentum and energy balance

equations, and then linearizing in terms of 6. They are given by

1.c9U* .{' cqU* 7/ cqU* 1 B(/_cgU'_ ]" V"_ + _ 8--7 _ a,7) - _u:, - _T _ YTn" + VW_-----Z
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,d" 1 a__(M"_lT. _, I,,OT"+
[2:_T2 57"_0rF -'¢-"- - 2-_2 o_

1 1 . ,OU _ OU*.

+_[_(v _+ vT_)+ w'u. +wu, i

T[aV" , au" ?' . _[au _ o_ ?'
-T_ _ _ T_ +_;--d v l-T* _ _+_¢V]

1 af_TaU*, 1 (TT .aU2zf_'_'_-T_ ) 2roT _) - p(TU:), - #(T'U,),

a]' d")2T____T"_ a (:_) T.a_.am. 2-rex T a 2,T _ TT* + ( T - -_ )-._ = O,

1.aV* p OV* _? aV*. tiT' _ , 4 a t # aV*.
_-ffi-_ + _ _ _ _ )-_'v:,-2-g-'_v a.(2_)_,_-_-_)

I OP" H(_,)T" 2_'aT" 2M" .

3vz_'_ 0rl_" • / + T

{av" ,7ov" '_¢'v"_ - r" ( ov ,7av '_t' v'_-_- \ & _x 0,7 _ / 9w .5-i* _ o,1 _.7"_ /

{ 4 a_OV 4/2 a I aV. _t OW, 2 af_W, + _V,.}T*- a.(2_)_:o_a_+ 3 (2-.)_(_T_)+• _ a_ av_ a_

4 opov • 4p 0 _ov'. _ owIa.(_,)_ o,7 0,7 + 3.(_.,)T_(_--_ )+ av_ o,7

2 O_W . 4f, aT"
3V/'_T O_l "'* + [zV**,} T- ( OV 2_W.

)
(g)()___ 2TT* 1 0 TT* - 1 OW*+ " e_ 6zTOn _mT On + V; [zT,

T OV*+( - y_)--_- = O,

1. OW* P OW* _10W* _T' _, Ft OV; 2f_rl_"- T*
--_(---ffi-- + )+ + P: +M_ Om 2z Or/ _;-m-m-_V_ 3v/_ ' Or/ 3-(2m)T *

4 . 1__o(_,aw'__lg _.__.k_v.aW_ _ ow"
+'3FzW;* + 2zT-ff_ "_ Orl " T \V"_7' "_ + _-x-_V--_'-y +W-W"

T* .OW rl OW T (OW* rI OW"
+WW*) + -_( -_m 2z 8r/) + T _ _m 2z @r/ )

{4. p OV, 1 Opv 1 OpOW ____D___(lOW }+ "3ttW:'" + 3v/_7 ' cgrl + v_m'T 0-_'_ + 2z-"-__ 8rl Orl + 2zT cOrl T "-ff_'_) T*

41 . p OV; 1 OpV . 10paW* p O lOW*.'l+ ._#W'.., + 3v_"_" Orl + v/_7 ' c%1* + 2m--__ Orl Orl + 2_T O-_(_T_)_ T

(6)

(r)
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1 OW aT* _ . 1 aW* ,.ST

2 T aW*

O ]' a 7/ O T* 1 O V* W* _'

-( _ + M, Ox 2xYi)(_)+_Tb-i(-e-)+(-Y-)'-:C_T 3

. 1 aV 1 OV*_t_W,)__ - a T*-(-_;-_-y# + w,)_ - (v'W_ o,7 -_(_)

1 a a T* . 1 V,a .a T
-(_--_v_+w_)Cy_)-(_-----_ _+w _)(_)

0 _? O ..2TT*. 29'
+ (O"m 2-x O'wl)(_ ) + VI_'I "4TT" "" O,

i. aT* ]' aT" )1 aT" '$" V" + _ rl_''
-_(_ + -M1Ox 2_ O,7) + v_¢----z I,2_T2- --

_-T* - h_'' OT" 1 0 ( 12aT"

1 ( I__I._v.OT 1 _aT" )+._ \ vl_ -_--_+ _V.-_ + W*T, + WT;

r(or__" .or"
-e _ \ Ox 2. On

1 OPTOT*

--.T*

- 0,

1 O ('_T'_I
2_'T" IT"

- )IOT T'

1 a_,,,OT _ {(T'T,), + (TT*,),}
2x'T_a Orl "_ "_ a

(8)

(_)

O T OT* T* OT O'T r{_'.2TT*

-2,T---_-,,_(-_ "-'_'i'_,_+ "e- "_ ) + ( _ W )--e-_

2maf0-'_ TT" + ( - "_T)'-_"= O. (10)

Here f' has been used to denote Of/_/to simplifynotation.In the two transitionlayers,the

verticallengthscaleischaracterizedby the variable_ definedby

n-_ (11)
_= _--_T-/_,

thus

a a =o(c_), o =o(__), (12)= °(c_/_)' ag _/
where the scales for z and t are deduced from perturbatin equations. Since we are looking for

travelling wave solutions, it is convenient to define a new variable ¢ by

¢--_-m (13)
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and use (_, z, _, z) in place of (¢, z, _, z) as the new independent variables. Hence

0 a 0 0 O
b -- ---4

0z 0z 8¢' 0t 8¢'

and the operator

]') 0 0

which appears in (6)-(10) is transformed to

O ]' 0

0z M1 0¢

to leading order.

(14)

Next, we assume that the superimposed disturbance is _r/2 out of phase with the steady

state. Therefore, the perturbation quantities take the form

Here

U* : e413 sin z . E . (urn + e21sun + ...) +... + C.C.,
e

V* = e-2/asin _ . E . (Vol + e2/aVn + ...) + ... + C.C.,

W* = e-1/3E • (WmO+ e2/3Wml + """)+ "'"

+ e-1/3 cos z_. E. (win + e2/3wn + ...) +.-. + 6'.6'.,

P* = e-4/3 sin [- E. (p;_ + e2/3p_ +...) +... + 6'.6'.,
e

T* = e4/3sinz. E . (O;t + e2/aO_l +...) +... + C.C..
e

E = exp 7/ K(z)dz e2 ],

where fl is the constant frequency and the wavenumber K expands as

(15)

(16)

K = Ko + e2/SK1 +".. (17)

The scale for ¢ in (16) is chosen so that in (14)

1 = o( o

We now substitute (15) and (3) into (6)-(10). By equating the coefficients ofe-S/aE sin(z/e)

and e-2Esin(z/e) in (6) we obtain

i -//!_)Og 1 = O,
_oo(K0 + fol2)Vol + PoVot Ta

i i -T_Yoo(gO + £n)Vll + Yoo[gl + ]g_ - (go + ]o_) _>oI

(18)

g
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4_ 0 2vol 1 Op_l

_o ) 2_ . _ Owol 1- 3V_'xT0 O_ - _ooWmOVOl = 0. (19)- (0;i_o ¢0oi)+

Equating the coefficientsof e-Z/3Ecos(z/e),Ee -z/3,and Ee -s/3in (8) gives

i Pc OVol 4

- _(go + ion)_ol + 3v_'o a¢ - v_, - _po,_ol= o, (20)

i
- _(Ko + ion)_,_o = o, (21)

-To (K°+ f°f_)w"_'- i'_"ToK1 + i;_fl-(Ko+ iOn)To jwm0

+ .._ O_w,_o 1 __ _-----=--. _--:-:--_OW°l,, Owol_
2xT0_ a_ 2v_T_(V°l _ + v°_ 0¢ j=°

(22)

Finally, from equatig the coefficients of e-4/3E sin(z/e) in (9), e-2/3E sin(z/e) and e°E sin(z/e)

in (10), we have
1 OVol

=0, (23)
wol V_o O_

• T,_ 1 ,

_(A'o+ioa)O;_+_[KI+i;_a-(_'o+,'oal_,qoOl

+ ,_'o _ LT°V11"IL'( 0_ =_0 ¢)'001J -- _2zaT_ O_2

1 , 1
+ _(po0_ + po¢_051) - _w_o001 : 0. (25)

We now proceed to solve this hierarchy of equations. First, it can be seen that (18) and (24)

have non-trivial solutions only if

go : -]oF/. (26)

It then followsfrom (16) and (2a)that the travellingw_ve propagates downstream with

the same speed to leadingorderas the thatof the basicsteadyflow•We alsonote that(21)is

now automatically satisfied.

From (24), (23) and (20) we have

0;1 -- V_O¢02 I]°1'

1 OVO1

_o_- V_o o_' v_-
_0 0'001

V_To O_ "
(27)

With the use of these relations, equation (19) and (25) can be reduced to a 2 × 2 matrix

equation of the form A_ = f for ¢ = evil, 0_1) T. The inhomogeneous term f involves vol and

its derivatives. It also involves 0T2/0_, the expression of which can be obtained from (47) by
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replacing Vm there by V01/2. Since the coefficient matrix A has zero determinant, ( has a

non-trivlal solution only if the inner product Of f with the left eigenvector of A vanishes. The

condition then leads, after some algebra, to the equation

022]Ol(2Z)_o_
{_of + 3(po+ _o)_gf + i(1 + _)(K1 +0f 2 3po To

± a2 T/2 -I'- P,o / vm (1+
_s(_)j + _-2z-T°_°V°13Po = 0. (28)

)( )
-V_ r01

The equation involvesWmo as wellas VOl. To determine Win0,we turn to (22) which can be

shown to reduce to

02_,,,,o 2_'O(KI 1 ( 02v01 022101'_0f2 ¢ _o +/_fn)_o + 2_o---_ok21°10f2 vOlof2 ] = 0. (29)

With the use of the definitions (49) and (50), equation (28) can be rewriten as

022101 = (_),_'v0'12]Ol+ S2(z)2]Ol
0_-==-=T- -_- Sl(m)_2]Ol 6p 0

+ (1 + a)(2m)_'o {(iK1 + if_]_)2]ol - wmoVm} • (30)
3po

Finally, after (4) and (30) have been used to eliminate the second order derivatives of Vm and

2]o1, equation (29) becomes

-- : t,_l + in/_f)_,,.o - {UK1 + ¢_/_a)Vo12]o1- _o.,OVgl}. (31)O_2 _o 6_

Equations (30) and (31) are to be solved simultaneously to determine the second or-

der correction K1 to the wavenumber and the frequency f/, subject to the conditions that

2]m, Win0 ---) 0 aS T/ ---) 40O SO that the travelling waves are confined within the transition

layers. It is possible to simplify these two equations by scaling the flow properties Of the basic

steady state out of this eigenvalue problem' This can be achieved by introducing the following

new independent and dependent variables:

' _(_)_ v = - _v_
¢ = -s_(_)(_ s_(_)" v_oS_/_Cz)•Vo,,

¢1/3a 2 ,,t (32)2] : --_ . ------- • 2101 ) 'W = _mO.
l+a To

In terms of these new variables, equations (4), (30) and (31) become

d2V
- Cv = v_, (33)

dQ

d% (1 + ia)_v - -_ig2] - vV 2 + V"gI,'w = O, (34)
dQ

T_
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where

--- - l+av2w l+a.i(fl¢+I()Vv=O, (35)d2w 2 •i(SC + +
de 2 1 + ,_ a 2 v_a2

_ = (1÷ o)T0]_z (1+ a)_'0x ( /_S2(x) )- ]ZoSI(Z) "fl' 1_ = • gl + --" fl • (36)gos /3(x) s,(,)

Equations (33)-(35) are of the same form as their counterparts for incompressible flows as

discussed by Hall and Seddougui (1989) and Seddougui and Bassom (1990). In fact, when

a = 1, the two eigenvalue problems are identical. The neutrally stable solutions correspond

to real values of fl and K. Such solutions were first given by Hall and Seddougui (1989) and

were later improved upon by Bassom and Seddougui (1990). The latter authours' numerical

solution shows that the lowest neutrally stable wavy mode has its eigenvalue pair given by

(k,i_l)= (0.690,0.372). (37)

Since _ = 0 corresponds to a stable wavy mode, when fl is increased the mode described by (37)

is more dangerous than any other higher mode because it will occur first. It was conjectured

by the above authors that in general there will be an infinite number of such neutral solutions.

Thin conjecture was further supported by Bassom and Seddougui' (1990) asymptotic analysis

which shows that there is indeed a family of neutral modes for/_ > 1, _ > 1.

Once the numerical values of/( and _ have been found, the second order correction/(1 to

the wavenumber and the frequency fl can be determined from (36). Note that K1 is a function

of x. Thus for a given frequency fl, Kl(x) is the wavenumber for the travelling wave to be

neutrally stable at x. If 12 is held fixed to be the neutral value at x = _, then Kl(x) will be

complex when x _ _, implying that the travelling wave will experience spatial amplification

or decay away from the neutral position.

The numercal values of K1 and fl are also dependent on the properties of the underlying

steady state, the solution of which has been shown in sections 4 and 5. We shall not give

any definite values for K1 and fl for any specific conditions, since the principal aim of the

present section is to show that neutrally stable travelling wave solutions do exist in the present

hypersonic context. If necessity comes, the values of/(1 and fl for any specific situation axe

obtainable by using the relevant formulae given in the present paper.

7 Conclusion

In this paper, we have given an asymptotic description of the nonlinear development of large

amplitude GSrtler vortices downstream of the neutral positon. We have shown how an asymp-

totic state can be established under the combined effects of viscosity and nonlinearity. We have

also investigated the possibility of such a large amplitude vortex structure losing stability to
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travelling waves of the wavy type. Such an analysis has important applications, for example,

to the flow in engine inlets and near the control surface of hypersonic vehicles.

The basis of our present studies is the linear theory given in our previous paper Fu, Hall

and Blackaby (1990). It has been shown there that taking the largeMach number limit

has two implications.Firstly,the boundary layersplitsintotwo sublayers:a walllayerand a

temperature adjustment layer.Itisthe latter]ayerthatismost susceptibleto G_rtlervortices.

We note thatin theirstudieson the Raylelgh instability,Hall and Cowley (1990),Smith and

Brown (1990) and Blackaby, Cowley and Hall (1990) found that the temperature adjustment

layer is also most susceptible to the inviscid instability. Secondly, the boundary layer growth

has two scales: a short scale related to the similarity variable _7 and the usual scale based

on the streamwise variable _. The short scale is felt mainly through the O(Ma/2/(2z) a/2)

curvatureof the basicstate.Thus inthe specialcasewhen the wallcurvatureisproportional

to (2x)-3/2,itexactlycounterbalancesthe basicstatecurvatureand GSrtler vorticesevolve

downstream inthe same manner asthoseinincompressibleflows.In the more generalcurvature

case,boundary layergrowth stronglyaffectsthe evolutionof GSrtlervorticesand itbecomes

negligibleonly when the localwavenumber isof O(M 3/s)or larger.

In the presentpaper,we have confinedour attentionto the O(M 3/s)wavenumber regime

and thus we have been able to exclude the effectsof boundary growth. The neutrallystable

positionisthen uniquely defined. The lineartheory tellsus that when a certainparameter

ispositive,GSrtlervorticeswillgrow as they evolvedownstream of the neutralpositionx,_.

In the weakly nonlineartheory presentedin section3, we have determined the evolutionary

behaviour ofgrowing GSrtlervorticesin a small neighbourhood of the neutralpositionwhere

G_rtlervorticesgrow at a scaledictatedby the variableX = (z - zn)/E.Itisshown that the

mean temperature 0,n0and the firstfundamental V0 satisfytwo coupled evolutionequations;

wlfilstthe mean streamwise velocity_,,_0can be determined from another evolutionequation

once 0,_0and P'0have been found (otherfirstfundamental components are relatedto P'0).In

the limit X --* co, we have 8m0 "_ X a/2, _Zmo"_ X 3/2 and V0 "_ X _/_ so that when X = O(c-z),

that is when z - :_n -- O(1), the mean temperature and streamwise velocity corrections become

as large as the basic state. When this happens, the weakly nonlinear theory becomes invalid

and the further downstream development of GSrtler vortices is described by the fully nonlinear

theory given in section 4. There it is shown that GSrtler vortices spread into a region of O(1)

depth which is bounded by two transition layers. In the region of vortex activity, the mean

temperature is determined from a solvability condition for the first fundamentals and thus it

adjusts itself so as to make any modes neutrally stable everywhere simultaneously. The fact

that the basic state is now completely altered by the the large amplitude GSrtler vortices can

be seen from (32) and (33) which show the first fundamental Vo_ as a forcing to the "modified"

basic state equations. In the two transition layers viscous effects make the fundamentals decay
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to zero exponentially, so that above the upper transition layer and below the lower transition

layer there is only the mean flow. The centres of the two transition layers are determined

by a free boundary problem, which has been solved numerically in section 5 for a number of

curvature cases. Thus solutions for the first fundamentals and the mean flow quantities have

been determined for 0 < r/< c_ in closed form.

Once the large amplitude vortex structure described by the fully nonlinear theory has been

established, transition can be reached by two possible routes in the form of secondary instabil-

ities, as was shown by Swearingen and Blackwelder (1987). The first secondary instability is

described here in section 6 which takes the form of time dependent travelling waves confined to

the two transition layers and which leads to the wavy vortex boundaries observed experimen-

tally. It is shown that such wavy type secondary instabilities may indeed exist in the present

hypersonic context. The second possible secondary instability is associated with a Kayleigh

instability. Relevant results will be given in our next paper.
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Fig.3
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