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Abstract

In a hypersonic boundary layer over a wall of variable curvature, the region most sus-
ceptible to Gortler vortices is the temperature adjustment layer over which the basic state
temperature decreases monotonically to its free stream value (Hall & Fu (1989), Fu, Hall &
Blackaby (1990)). Except for a special wall curvature distribution, the evolution of Gortler
vortices trapped in the temperature adjustment layer will in general be strongly affected by
boundary layer growth through the O(M?3/2) curvature of the basic state, where M is the
free stream Mach number. Only when the local wavenumber becomes as large as of order
M3, do nonparallel effects become negligible in the determination of stability properties.
In the latter case, Gortler vortices will be trapped in a thin layer of O(€'/?) thickness which
is embedded in the temperature adjustment layer; here € is the inverse of the local wavenum-
ber. In this paper, we first present a weakly nonlinear theory in which the initial nonlinear
development of Gortler vortices in the neighbourhood of the neutral position is investigated
and two coupled evolution equations are derived. From these two evolution equations we can
determine whether the vortices are decaying or growing depending on the sign of a constant
which is related to the wall curvature and the basic state temperature. In the latter case, it
is found that the mean flow correction becomes as large as the basic state at distances O(1)
downstream of the neutral position. Next, we present a fully nonlinear theory concerning
the further downstream development of these large-amplitude Gortler vortices. It is shown
that the vortices spread out across the boundary layer. The upper and lower boundaries
of the region of vortex activity are determined by a free-boundary problem involving the
boundary layer equations. Finally, the secondary instability of the flow in the transition
layers located at the upper and lower edges of the the region of vortex activity is considered.
The superimposed wavy vortex perturbations are spanwise periodic travelling waves which
are /2 radians out of phase with the fundamental. The dispersion relation is found to be
determined by solving two coupled differential equations and it is shown that an infinite
number of neutrally stable modes may exist.

1This research was supported in part by the National Aeronautics and Space Administration under NASA
Contract No. NAS1-18605 while the second author was in residence at the Institute for Computer Applica-
tions in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.Additional
support was provided by USAF under Grant AFOSR89-0042 and SERC.
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1 Introduction

This paper is the third of a series of papers reporting on our studies of the stability properties of
hypersonic boundary layers with respect to the Gortler instability mechanism. The previous
two papers have been devoted to the linear development of Gortler vortices in hypersonic
boundary layers. The first, Hall and Fu (1989), is concerned with fluids which have their
viscosity modelled by Chapman’s law; whilst the second, Fu, Hall and Blackaby ( 1990), studies
Sutherland’s law fluids. In the second paper, the roles played by gas dissociation and wall
cooling in the determination of stability properties are also clarified. In the present paper, we
first study the nonlinear development of Gértler vortices in the neighbourhood of the neutral
position and show how a large amplitude vortex structure can be developed under the combined
effects of viscosity and nonlinearity. Then we consider one of the several possible types of
secondary instabilities which the latter vortex structure may suffer, namely, the wavy type.
For a review of the general literature on Gortler instability in hypersonic flows we refer the
reader to our previous papers. A detailed review for the related incompressible flow problems
can be found in Hall (1988). Here we only mention the papers which are most relevant to our
present studies.

The type of nonlinear theory which we use here is different from the classical weakly
nonlinear theory and was first established by Hall (1982) and Hall and Lakin (1988) in the
context of Gortler instability in incompressible flows. In the classical weakly nonlinear theory,
see, for examle, Stuart (1965), the size of the disturbance is chosen such that the cumulative
effects of nonlinearity are brought into the evolution equation as a solvability condition at the
third order of a successive approximation procedure using a multiple scales approach. This is
possible because the growth rate in the neighbourhood of the neutral position is small. Hall’s
(1982b) nonlinear theory is suitable for problems which have large growth rate (correponding
to large wavenumbers); the size of the disturbance is chosen to be so large that nonlinear effects
come into play at the order at which the vertical structure is determined. Such large amplitude
Gortler vortices can grow downstream of the neutral position and become so large as to produce
a mean flow correction as large as the basic state, as is shown by Hall and Lakin (1985). When
this happens, the vortices are confined to a core region bounded by two transition layers. In
the core region of Gortler vortex activity, the boundary layer is forced by the vortex which
itself is driven by the boundary layer. In the two transition layers, the vortex is reduced to zero
exponentially. Hall and Seddougui (1989) and Seddougui and Bassom (1990) studied the wavy
type of secondary instability which might occur in the two transition layers. Their studies were
motivated by the experimental results of Bippes (1978) and Aihara and Koyama (1981), who
observed that the three-dimensional breakdown of steady spanwise periodic Gortler vortices

led to a time periodic flow with wavy vortex boundaries similar to those which occur in the
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Taylor problem. Our present investigations are mainly aimed at finding out how the results for
incompressible flows found by Hall (1982), Hall and Lakin (1985), Hall and Seddougui (1989)
and Seddougui and Bassom (1990) should be modified in order to describe hypersonic flows.
The most important property of a two dimensional hypersonic boundary layer is probably
that it can be divided in the large Mach number limit into a wall layer and a temperature
adjustment layer sitting at the edge of the boundary layer, and that it is the latter layer that is
most susceptlble to Gortler vortices. Since for a hypersomc boundary layer the basic state tem-
perature varies s1gn1ﬁcantlry,r Chapman s v1scoh£t} law is a poor approximation to the viscosity
of the fluid and Sutherland’s la.w is more realistic, throughout the present paper Sutherland’s
law will be adopted and our attention will be focussed on the tempera.ture adjustment layer.
It has been shown by Fu, Hall and Blacka.by (1990) that when Sutherland’s law is used, the
wall layer and the temperature adjustment layer are respectively of thickness of order M 3/2
and order umty in terms of the physma.l variable. For Gortler vortices which have wavelength
comparable with t the boundary layer thxckness (deﬁned as the wall layer mode), the neutral
Gortler number is a decreasing function of the local wavenumber. As the local wavenumber
increases (physically, this may correspond to when we follow the downstream evolution of the
vortlces) the centre of vortex activity moves towards the temperature adjustment layer and
the neutral Gortler number tends to be mdependent of the global wavenumber. For Gortler
vortices trapped in the temperature adjustment layer, the neutral Gortler number is found to
have its first term mdependent of the global wavenumber This term is due to the curvature
of the basic state; other higher order correction terms are related to viscous effects and are in
general affected by boundary layer growth. How important the nonparallel effects are depends
upon the wall curvature and on the size of the wavenumber. Before we review Fu, Hall and
Blackaby’s (1990) main findings, let us first note that for a hypersonic boundary layer de-
scribed usmg a 51m11ar1ty variable, boundary layer growth has two lengthscales. The first scale
is related to the 51mllar1ty variable 7 (which is defined as the ratio of the Howarth-Dorodnitsyn
variable over v/2z where z is the streamwise variable). This scale, which we shall refer as the
short scale, is not present in incompressible boundary layers and it arises because of the fact
that n, = O(M3?) > 1. The second scale is the usual one related to the variable z. It
was shown in Fu, Hall and Blackaby (1990) that the effect of boundary growth over the short
scale is felt ma.m]y through an O (M 33 2) cur;rature term in the y-momentum equation and that
when the wall curvature distribution is proportional to (2z)~ 3/2 the wall curvature exactly

counterbalances the curvature of the basic state if the Gortler number is chosen appropriately,

so that for thxs specxa.l curvature case nonparallel effects affect the stability properties in a
similar fashlon to that for 1ncompress1h1e bounda.ry layers. But since the special curvature

case is possibly of little physical relevance we shall only consider the more general curvature

case in this paper.



Intuitively, the effects of boundary layer growth decrease as the wavelength becomes increas-
ingly small, since to a very small wavelength vortex, the boundary layer streamlines would be
almost straight lines. Therefore the effects of boundary growth are usually described in terms
of the relative order of the vortex wavelength to the lengthscale over which the boundary layer
growth is significant (i.e. is an O(1) effect). Since for a hypersonic boundary layer the most
important scale of boundary layer growth is the short scale defined above and it is related to
the free stream Mach number, we describe nonparallel effects in terms of the relative orders of
the wavenumber and Mach number. Fu, Hall and Blackaby (1990) showed that when the local
wavenumber is of order unity, the downstream development of Gortler vortices is governed
by inviscid equations and thus their spatial development has an oscillatory nature. Viscous
effects are small but are cumulative so that they become important further downstream where
the local wavenumber has become large. Nonparallel effects are dominant for this range of
wavenumbers. When the wavenumber reaches O(M/4), viscous effects become of leading or-
der effects but nonparallel effects are still dominant. Only when the wavenumber becomes as
large as of order M3/8, do nonparallel effects become negligible and viscous effects then dictate
the downstream evolution properties of Gortler vortices.

In the present investigation, our first aim is to find out how nonlinear effects compete
with viscous effects in the evolution of Gortler vortices and to show how a large amplitude
vortex structure can be established. We exclude nonparallel effects by assuming that the
local wavenumber is of order M8, This assumption is physically relevant because a large
local wavenumber can not only be achieved by a large global wavenumber but it can also be
achieved by moving sufficiently far downstream. Thus a vortex of any wavenumber would
eventually evolve into the wavenumber regime covered by the present theory as they propagate
downstream. Our second aim is to provide an asymptotic description for the wavy type of
secondary instability which the large amplitude Gortler vortex structure may suffer.

The rest of this paper is divided into five sections as follows. After discussing the basic
state and giving a brief review of the linear theory in section 2, we consider in section 3 the
weakly nonlinear development of large amplitude Gortler vortices in a small neighbourhood of
the neutral stability position given by the linear theory. We show that if the basic state and the
wall curvature satisfy a certain condition, these Gortler vortices will grow until they become
so large as to drive a mean flow correction as large as the basic state. The further downstream
evolution of these large amplitude vortices is then studied in section 4 where we show that the
vortices have a triple layer structure which consists of a region of vortex activity bounded by
two transition layers over which the amplitude of the harmonic part of the vortex decays to
zero exponentially. The position of the two transition layers are found to be governed by a free
boundary problem which is solved in section 5 for a number of curvature distribution cases. In

section 6 we investigate the secondary instability of the two transition layers with respect to
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travelling waves which are 7/2 out of phase in the spanwise direction with the steady Gortler

vortices. Finally in section 6 we discuss our results and draw some conclusions.

2 Basic state and a review of the linear theory

Consider a hypersonic boundary layer over a rigid wall of variable curvature (1/A4)x(z*/L),
where L is a typical streamwise length scale and A is a lengthscale characterizing the radius of
curvature of the wall. We choose a curvilinear coordinate system (z*,y*, z*) with * measuring
distance along the wall, y* perpendicular to the wall and 2* in the spanwise direction. The
corresponding velocity components are denoted by (u*,v*,w*) and density, temperature and
viscosity by p*,T* and u* respectivély. 'The free stream values of these quantities will be

signified by a subscript co. We define a curvature parameter § by

§=—= 1
A' ( )
and consider the limit § — 0 with the Reynolds number R defined by
* *
R= e (2
Hoo

taken to be so large that the Gortler number
G = 2R (3)

is O(1). In the following analysis, coordinates (z*,y*,2*) are scaled on (Z, R-Y2L R-12L),
the velocity (u*,v*,w") is scaled on (ul,, R~1/2u%,, R"1/?u2) and other quantities such as
p*,T*, and p* are scaled on their free stream values with the only exception that the pressure
p*is scaled on p;'ugrahd the bulk viscosify A* is scaled on u’,. All dimensionless quantities will
be denoted by the same letters without a superscript *. For an ideal gas without dissociation

the Navier-Stokes equations are given by

dp g - i
3 a—zﬁ'(Pvﬁ) =0, (4)
Du Op 8, Ou 8, du (5)

Por= "5zt B_y-(”%) + 5. (k5o

a 2 .0 8 a
p(91+3cnu2)=—R—’i+—"’—{(A—5u) ”"}+ (1)

Dt 2 dy Oy 0zp Ozg
a9, Ov d, ov '
+ %(ﬂ%) + 5, (05;) (6)
Du__pop [ 2 0u), 0 Ow 0 Ou 8 v
pT)?__Rgg-l-B—z{()‘ 5“)6:::3}-*-6:1:3 H oz )+3y(y6y)+3z(ﬂaz)’ (7)
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Dt
g a oT. 18, 8T
+= ay("ay) e G (8)
YM?*p = pT. (9

Here we have used a mixed notation in which (v,vs,v3) is identified with (u,v,w) and
(z1,T2,z3) with (z,¥,2). Repeated suffices § signify summation from 1 to 3. The constants
7, M and o are in turn the ratio of specific heats, the free stream Mach number and the Prandtl

number defined by

*? »?
Coey uly ul, PooCpoo
Y= ) M= ?RT‘ =y 0= k 3
Cpos Y s 00

where ® is the gas constant, k is the coefficient of heat conduction, and @e = 4/ YRTS, is
the sound speed in the free stream. In equations (5)—(8), the operator D/Dt is the material
derivative and it has the usual expression appropria.té to a rectangular coordinate system.

The basic state is given by
(’U., v, w) = (ﬂ(zay)) ’TJ(:L‘, y)a 0)7 T= T((l!,y),

p=p(z,y), p=p(z,y) (10)
By substituting (10) into the governing equations (4)—(9) it is straightforward to obtain the
reduced equations satisfied by the basic state. The reader is referred to the book by Stewartson

(1964) for a detailed discussion of these basic state equations. If we define the Howarth-

Dorodnitsyn variable § and a similarity variable 5 by

7= /pdy and n—\/g—m (11)

then the continuity equation is satisfied if u and v are written as

- ' - 1 1 , /n 1
= , = —[—= + =dn). 12
fi(m), % \/2_:;,-[ pf(n) F f 3 ) (12)
Here the functions f(n) and T(n) must satisfy
ff"+ (puf"y =0, (13)
1 = = - -
~(pRT")' + fT' + Ay - )M?p(£")’ =0, (14)
if the z-momentum and energy equations are to be satisfied. The y-momentum equation gives
9p
3y 0



i

i

[t}

to leading order so that = #(z). In our following analysis, we assume that there is no pressure
gradient along the streamwise direction and therefore we can take = constant. Equation (9)

then gives
7 ﬁT =1. (15)

Once the v1scos1ty Z is specified as a function of the temperature, equations (13) and (14) can
then be mtegrated to determine the basic state Such solutions have been given by Hall and Fu
(1989) for Chapman’s viscosity law and by Fu, Hall and Blackaby (1990) for Sutherland’s law.
In both cases, the boundary layer divides into two sublayers: a wall layer in which T = O(M?)
and a temperature adjustment layer over which the temperature decreases monotonically to
its free-stream value. Certainly, for a hypersonic boundary layer across which the temperature
varies significantly, it is more appropriate to use Sutherland’s viscosity law
a2

E=(1+ m)(—m (16)
where m is a constant. In this case, the thicknesses of the wall layer and the adjustment layer
are O(M~'/2?) and O(1), respectively (in terms of the similarity variable 5). In the adjustment
layer, the functions f and T in (12) expand as

f=n—M[.f,2+ﬂ;z(:’J)rl+ T=T+--, (17)

with f and T satisfying

(1+m) (_\-/I_imfn) + nf" =0, (1+ m) ( ‘\/-f T') + nTI - 0. (18)

o T4+ m

In the linear stability analysis, we superimpose a steady periodic stationary vortex structure
with Wavenumbér a on the basic Stafe (10) and the perturbation equations are found by
linearizing the Navier-Stokes equations about the basic state. These linear equations have
been fully dlscussed in our previous paper Fu, Hall and Blackaby (1990) It was shown there
that for the wall mode which has wavelength comparable with the boundary layer thickness,
the neutral Gortler number is a decreasing function of the local wavenumber. As the latter
increases, the centre of vortex activity moves towards the temperature adjustment layer and
the Gdrtler number tends to a constant which is the leading order term of the Gortler number
expansion for the mode trapped in the temperature adjustment layer. It is this mode that
is most susceptible to Gortler vortices since it has a smaller Gortler number than any other
mode.

Asi is typlca.l of Gortler vortices in growmg boundary layers, the evolution of Gortler vortices
in the temperature adjustment layer is dominated by nonparallel effects. It was shown in Fu,

Hall and Blackaby (1990) that in the hypersonic limit such nonparallel effects operate mainly
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through the O(M?3/?) curvature of the basic state. Thus only when the wavenumber a is as
large as of order M2 do nonparallel effects become negligible and the following asymptotic

expression for the neutral Goértler number can be obtained:

2BM?3/? 4 3 1 3g0 6290
G= —n(zn)(Zzn)"’/z + goa +a°- —T—xn 2_1-13'617‘2 + - "y (19)

where /52504
oo _ 2 n—
M—o00 0 ox(za)T

and Tp = T(n*), Ty = T'(%*), Bo = A(To). The constant 7* denotes the centre of vortex
activity and has the numerical value of 3.001 when o = 0.72, m = 0.509. In (19) the first
term is due to the curvature of the basic state and other terms are due to viscous effects.
It is clear that a = O(M 3/ 8) is the order at which viscous effects become comparable with
the effects of centrifugal acceleration due to the curvature of the basic state. In the following
analysis, our nonlinear theories will be concerned with wavenumbers in this regime. Although
this assumption about the order of the wavenumber is necessary to obtain a relatively simple
asymptotic analysis, it is also relevant to physically situations since our analysis is actually
based on the assumption v2za = oM 3/8) and the latter condition is always satisfied by

vortices far downstream of the leading edge.

3 Weakly nonlinear theory

In this section, we consider the initial nonlinear evolution of large wavenumber Gortler vortices

in the neighbourhood of the neutral position z = z,,. We shall fix the Gortler number as given

Y o= (2B iw)k 0
= \r(zn)@any? ") &

where for the convenience of asymptotic analysis, we have defined an O(1) constant N and a

small parameter € by
N=M}.a*, e=1/a (2)

It can easily be seen that (1) is just (19) with the O(a®) term on the right hand side neglected.
This implies that the linear neutral position corresponding to (1) would be z, + O(¢). In the
present context, it does not matter whether we start with (19) or with (1).

We now turn to the derivation of the nonlinear perturbation equations. The total flow is

written as
_ 1 _
u=u+h—l-1-U, v=94+V, w=W,
1 _
p=p+3(p+P), T=T+T, (3)



where M; defined by
1

M=*ts

is used to scale the streamwise perturbation velocity so that M will not appear in the followmg
nonlinear perturbation equa.tlons In (3d), p/R is the second order correction to the basic state
pressure (the leading order term P is a constant). On substituting (3) into the Navier-Stokes
equations (4)—(9), making use of (12) and (17) and neglectmg cubic and higher order terms
of the perturbation quantities U,V, ‘W,P and T, we obtain the following set of perturbation

M, =

equations:
1,8U noUu 1 0 pau) f”

v Or-vainiunbr-uny e —Uzz e, T\ TR T 7
( # 2zT Bn(T on \/§ET2
nf" 1 ,,)] gfrer 1, 1 U

—_ + WU
2z T2 22T 57) T by )

—— +

H 2272 8n | T V2T 371
. T 8U 78U f 1 8,p,,0U
—i(TU,); — == — ———=— .V— ——T——
MTU.): - 5l ~ 3 an ¥ Vot Fon\ T an

77f"T2 1 8 f" 2
R =0, 4
2z 73 43T 0n T ") )

1,0V név, g1’ _ 4 0, pov
(o — )~ =V = Ve~ ———= (x5
T( 0z 2z 0n’ 2z7T? # 3-(22)T 37I(T 377)

4L 9P
V22T 07 T2(2 )3/2°2
4 _a_(n:i"p) - 4jnd” 8T
3(2z)32T0n° T 3(2z)3/272 On
2pT' B8 1 _ 8V
W, — . ; V— + WV,
3\/ﬂT 3\/§5T377( )+ T(«/ r )
_I_(_‘?K._ nov _ ﬂv)Jr[_? __ 4 ov, 1 oT
T2 8z 2z 8n 2zT 3h"e 3v2zT On° /22T 01
[ 4 _omv. 4 0 10V, & oW
3.(2z)T20n 0n * 3-(22)T0n T On’  3v2zT 91
2 On N 1 oW
" 3v2T 9 V2zT on
T? i . 1 8 [ fnd”
—_— 2z)32G — BM®? - = + ?T' ~— 2212 =0, (5
+ T2y 2 % - (2z) —F 1+ 52a)3T O (5)
gt i v, 2T 1,0W 70w
L vt L2 Pt T~ =~
V2zT 3v2zT 87 3-(22)T T( 9z 2 an)
1 8, pdW, 1, 1 _ow

(5’:37)) T(\/—Tva +WW)

[_ (2:!:)3/2G BM3/2 T 4 1’]2T’]
aT

—W, + uVu} + V.]aT;

4
_-sz + — =
T3k 92T 0n
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T
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1 8V 0 o, T
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Here & = p(T), i = dp/dT,i = d®[/dT? and the bulk viscosity has been taken to be zero.
The linear perturbation equations discussed in Fu, Hall and Blackaby (1990) can be obtained
from the above equations by neglecting nonlinear terms.

To solve these nonlinear perturbation equations, we first note that in the large wavenumber
limit, Gortler vortices are trapped in an internal viscous layer of O(e'/?) thickness centred at

the most unstable position n = 7%x. We therefore define a variable ¢ by

¢—Zl. )

In the neighbourhood of the neutral position z = z,,, the growth rate in the z-direction can
be shown to be of order 1/¢ and it is appropriate to describe such rapid growth by defining

another variable £ by

- T — Ty
&= — (10)
An order of magnitude analysis of the perturbation equations (4)—(8) then shows that
U =0(V), W=0(?V), T=0(V), P=0(c?V). (11)



We assume that nonlinear effects reinforce the fundamental at the order in € at which the

vertical structure is determined. It can then be deduced that the appropriate sizes of the

perturbation quantities must be
U=0(?), V=0(?), wW=0(1)
T= (53/2) P=0(Y), (12)

and that the corresponding mean ﬂow correctxons signified by a subscript “m”, must be of the

orders

Um = 0(?), Vi O(e), m = O(672), Trm = 0(¥/%). (13)

As is well known, the nonlinear interactions that occur in the Taylor-Gértler problem do not

generate a mean flow in the spanwise direction. We therefore look for asymptotic solutions of

the form
; U= (302 {'umo 4Py 4+ [(Uo+ U4 )E+ -+ C.C.]} ,
' V=2 {(Vo+ e Vit )E+- o+ ccl,
W = (Wo + &2W, + - )E+ -+ C.C., (i4)
T = 372 {amO + 0, 4+ [(Bo+ €0+ VE+ -+ C.C.]} ,
= €2 (Ppno+ €/ Py +--) + €7 {(130_|_€1/2}:'1 +--)E+ ~-+C’.C.},
W}{ere

E = exp( ), (15)

and C.C. denotes the con_]ugate On substltutmg these expansmns mto the perturbatlon equa-
7 tions (4)—(8), expandmg all coefficients there about z = z,, and 7 = 7*, and then equatmg the
coefficients of like powers such as €, Ee and etc., we obtaln an infinite h1erarchy of equatxons

To leadmg order, the Gortler number go is determined from a solvability condition for (Vo, To)

and is ngen by
_2V2z, 274 )
go = z l‘LO 0 (16)
0'K.0T1 .

whilst Ug, Wo, 80 and Po are related to Vo by

# O'T1
Ug= ——2_V, 0 = —————Vb,
° VT T? o o V2T fioTE °
1 8V o _ Vs (17)

: Wow -t o p___To O
o= T T, 0 0= T 2z, 04

10

[ TR [Tt 1 R



where f! = f'(n*), To=T(7*), T = T'(n*), Bo = B(To) Ko = x(zn). Note that (16) is
consistent with (20), as we would expect. The mean pressure, the mean streamwise velocity

and the mean temperature are found to satisfy

0Ppmo _ kov angog

- 'm0, 18
54 o7, 0 (18)
22,010 8 o2 20%T) A|Vo|®

s YT ] m0 = 75 ’ (19)
o 0z 0¢? BT 04
and . . _
20,To 8 _ 8%\ _ 2f5 8Vl (20)
o 0% 042 T pT? 9

To next order, we obtain four expressions similar to (17) for Uy, 61, W1 and Py in terms of
V1 and Vp and the condition that

dgo
Trh=rt =0, (21)

which implies that #* is where go attains its minimum (and hence that 7* is the most unstable
position).
If we carry out the expansion to one order higher, we find from a solvability condition for

(Va, 62) that Vo must satisfy the evolution equation

62VQ _ 2(1 + a)ff’oz,, aVQ

2 _ ad?Vp + biVy = - —=LVo——, 22
34?7 e P T #2)
where . )
~ To-'ﬂna go
a=——F7">1n=n* > 0,
390 On? In=n
- 23,-,,7“*3{ 2BN k1 3 s 1 }
b= 3 gono(2:n,,)3/2\no-+ §$—n) + Ko - 2z, )’ (23)

and where k; = k(). Thus we have two coupled evolution equations (19) and (22) together
with an uncoupled equation (20) which govern the downstream evolution of the fundamentals
and the mean flow corrections. It is easily seen that the present weakly nonlinear theory is
different from the classical weakly nonlinear theory (see, for example, Stuart (1965)). In the
latter theory the amplitudes of the mean flow corrections are one order smaller than those
of the fundamentals and thus the resulting evolution equation for the fundamentals is an
ordinary differential equation and the former can be determined independently of the mean
flow corrections.

Before we present the solutions of these nonlinear evolution equations, let us first note that

equation (22) reduces to the linear evolution equation

62V0 _ 2(1 + O')To.’bn oV,
o¢? 3o oz

—ad?Vo + b3V = 0, (24)
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after the nonlinear forcing term on the right hand side has been neglected. This equation has
been discussed in Fu, Hall and Blackaby (1990) and its general solution can be obtained by
first looking for separable solutions and then expanding in terms of the eigenfunctions. It is
shown there that the mth mode is neutrally stable at %, = (2m + 1)v/a/b. The most unstable
mode corresponds to m = 0. Therefore Gortler vortices with Gortler number given by (1) are
neutrally stable at z, + €Z,. If we replace Zn in (1) by ZTn — €%, and expand the resulting
expression up to and include the 0(6_3) term we recover (19) which is the appropriate Gortler
number expansion for Gortler vortices neutrally stable at z = z,,. Thus, as we remarked in the
paragraph below (2), it does not matter whether we use (19) or (1) for our weakly nonlinear
theory; such a difference in the choice of the Gortler number only results in an O(e) shift in
the linear neutral p'osition.

We now discuss the solutions of the nonlinear evolution equations (19) and (22). We shall
not consider (20) any further since its solution for the mean streamwise velocity umo is not
needed in the remaining discussions of this paper. To simplify the notation, we make the

following substitutions:

1Bl » -\1/4
X = = (4 ,
WAk (= (4a)""¢
~ o 2:1:,1 = 2z"T02
(44)1/4 Vo, Omo= —ngo- (25)
WEquatlons (19) and (22) then become
o? 20 8 \; _ OV
(W 1+ak3X)0 aC (26)
(W—gkﬁ—-c iX) 7o = 207", (7)
where e
k= (1 + U)INTOIbI
d0a

In (27) the posi
equatlons :-irero he same form as Hall’s (1982b) equatlons (3.15a,b) for 1ncompressxble flows
V(they are identical when o = 1). The reader is referred to that paper for a detailed discussion
of their numerical and asymptotic solutions. According to Hall (1982), an important property

of these two coupled evolution equations is that any initial disturbance introduced upstream

tlve (negative) sign is to be taken if bis posxtlve (negatxve) These two

would either decay to zero or evolve into a unique large amplitude structure at large downstream
locations; debéﬁding on whether § < 0 or b > 0. The latter conditions are in fact the conditions
for Gortler vortices to decay (b < 0) or grow (b > 0) linearly downstream of the neutral position
T, + €%, (see Fu, Hall and Blackaby (1990)).
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The easiest way to see how a large amplitude structure is possible is by looking for such
solutions for (26) and (27) directly. If an asymptotic state is to be achieved, it must be the
last two linear terms on the left hand side of (27) that balance with the nonlinear term on the

right hand side of (27). Thus after integration we have

o = 3 X7 {-C— (28)

BT

vx 12°vx' )’
where, based on the argument given in Hall (1982), we have assumed f,m0 to be an odd function
of ¢ so that we can put the arbitrary integration constant to zero. On substituting (28) into

(26) and integrating, we obtain

77 = 35 + 1o)X {0 - (=) (29)

where C is an integration constant to be determined. Solutions (28) and (29) are only the first
order approximations. We note that the similarity variable (/X 1/2 is important. Thus if we

define
¢

= == 30
VX (30)
and look for the following form of asymptotic solutions for (26) and (27):
bmo = X ?8mo0(€) + X Pbpmor (&) + -+,
Vo = XY Voo(€) + X2V (€) + -+, (31)

we would have émOO and Voo given by

~

1 1 3) ., 11 ok
oo =5 (6~ 556, =503+

140

)- (¢ -¢). (32)

Here, without loss of generality, we have assumed Vo to be real.

The above solution breaks down near § = £C since V& must be positive. In each of
these regions Voo develops a boundary layer structure (hereafter we shall call them transition
layers) and it can be shown that each of the required layer is of thickness X -1/6, In the upper

transition layer §{ = C we define a new variable % by
% = XUS(CXY? - ¢) = X?/3(C - ¢). (33)

To match with the core region solutions (31) and (32), we have to look for solutions of the

form
bmo = X3/263,0(¥) + X582 (%) + X920+ ---,

Vo = XVOUI() + XT3 ) + . (34)

13



On substituting (34) into (26) and (27), equating the coefficients of like powers of X and then
considering the matching conditions at various orders, we find that 62, and 6, are simply

the expansions of the core region solution (32a) in the transition layer, i.e.,

%(c - %203), Bl = (—l + (’:)¢ (35)
and that V satisfies
- d;;fg — 2DV — 2(VO). (36)
By matching with (32b), we require that
(V9?2 — C( as P — oo. (37)

Equétion (36) is a particulér form of the second Painléve transcendent. The existence and
uniqueness of its solution has beehrfpi'a;ea by 7Hastihgs and Mcleod (1980), and this solution
is proportional to Ai(—1%) when % — —oo. Thus Vo decays to zero exponentially in the two
transition layers which bound the core region of vortex activity.

Above the upper transition layer and below the lower transition layer, (26) reduces to

o? 20 . 0 \ -

It admits an asymptotic solution of the form
o-mO = XS/Z@mO(f) + e (39)

To match with (34a) and (35), Omo(f) must satisfy

do 1 c?
- 3 mo —— — -
| Omo (C C’ ) 3T as { — C. (40)
Substituting (39) into (38) gives
d? ok d 30
(@*m'f&‘ 1+a’°) Omalt) = 0. (1)

The solution of this equation which decays to zero when £ — oo is
ke 7 ‘/;
GmO = Aexp (— T) -U (5, 56) ’ (42)

where U(7/2,1/k/2¢) is a parabolic cylinder function, 4 is a constant and k is defined by

20
1+o0

k= (43)

14



On using (42) in (40), we obtain

- \/540(9/2,\/1'?/_2(:) L_ i

2 V2 U(7/2,\/I$C) ~C-o
4 C-C3/12 (chz) _

" 2w, JE20) “P\8

The first of these relations determines C, the location of the upper transition layer. It is easy

(44)

to see that if we multiply both sides by the denominator of the right hand side and then move
the numerator to the left hand side, the resulting algebraic equation changes sign at places
where the denominator and the numerator vanish; so there is a single solution which lies in
the interval 2 < C < 2+/3 for all k.

The solution for the lower transition layer can be obtained in a similar fashion. It can be
shown to be given by (42) with A replaced by —A and £ replaced by —¢. Thus by (31), (32),
(34), (37) and (42), for a given X > 1 the flow structure in the interval —o0 < ¢ < o0 is
completely determined.

Since the amplitude of V; and 8,,,0 grows as the vortices propagate downstream, insertion of
(31) and (32) back into (14) shows that the latter expansions become invalid when & = O(e™?)
where the mean flow corrections €3/2u,,g and €3/26,,0 become as large as the basic state. Since
¢ =€ (n—n*),at 2 = O(e7?!) (i.e. —z, = O(1)) the transition layers are at n—7* = O(1)
and are of thickness of order €1/25-1/€ = ¢2/3, In the next section, we shall consider the further

downstream development of these large amplitude vortices beyond z — z, = O(1).

4 The fully nonlinear theory

It has been shown in the previous section that at positions O(1) downstream of the neutral
position z,,, the mean temperature correction and the mean streamwise velocity become as
large as the basic state. When this happens, we expect that the large M structure of the

boundary layer is still valid. The total flow is now written as
u=u+ Ml—lU, v=94+V, w=W,

1 _
p=5+—R-(fJ+P), T=T+T. (1)

It should be noted, however, that although (1) is of the same form as (3), (%,%,,T) here
is the non-harmonic part of the total flow and is different from its counterpart in (3) which

represents the unperturbed basic state. In the temperature adjustment layer, the similarity

15



variable 7 = 7(z, y) is defined by

"= 75, Tty @
where the function 7 in the integrand is understood to be the composite solution of the mean
temperature (i.e. the wall layer temperature Pl‘&i?,:?}},e mean temperature in the temperature
adjustment layer). ‘We note that because of the O (1) correction from nonlinear interaction, the
mean temperature is now also a function of z. In the limit  » Qorz—z, — 0, T(z,n) — T(n)

and (2) then reduces to (11).

We assume that the mean velocity components % and o have the following expressions:

__0f@m)  _ 1 [ ; of 7
a= 28 on STt AT} + vz, ) (3)
Here f(z,7) and T(z,n) expand as |
fam=n-hst LB =T (9

The function vs(z,n) in (3b) is added in order to satisfy the contmulty equatlon As can be
seen from (31), this added term is partly due to the dependence of T on and partly due to
the O(1) mean flow correction from nonlinar terms in the continuity equatxon The function
I(T) in (3b) denotes the integration of the mean tempera.ture from 0 to 7. It includes the

contribution from the mtegratxon of the wall layer temperature and thus has the expression

11 =mrp s [ (T<x,s) %L;"—) g - At (5

where the constant B is defined by (20a).
With the aid of (2)—(4), the following important relations can easily be established:

. IT) 108KT)
=T T 8 (6)
8 9 a v 7 18IT)
Yoz + ”ay {\/ET T2z T &z 677’ (7)
7= Lﬂ o pe B
B=14 granton V=M + D(z,7), (8)

where D(z,7) is defined by

1 (- 9(1 + m)? 3(1 + m)? nT
The operator on the left hand side of (7) will frequently appear in our following analysis. To
simplify notation, we shall denote it by L() Thus for any function F(z,n) we have

v a a
- - 2- 10
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By substituting (1) into the Navier-Stokes equations (4)—(9), making use of the above

relations and then neglecting all the cubic and higher order nonlinear terms of (U,V,W, P,T),

we obtain the following perturbation equations:

U + oo Tan( L %‘Z—};(}Tvafwv)
~K(TU.). - L) + ﬂT] E%T%(%T%%)
UV - T =0,

1 0p 4 9

_2 — (£
'L(”H'—' GRU + ot on ~ 62T B\ )

. 4 0, mov,. 1 8P

Lowaw - By 2_5’1_3_ pv' | T 2p7 8T

B {2Gnu (2:1:)3/2M +L(D)+ 31]( T ) T2 3272 0y

2/.LT’ B0 aV
=W, — =—(W,

3\/2:cT 3\/2le977( )+T(\/ T 6

4L OV 1 8T

(L _ W, — —e ]+ e —

Tz( V)+ \/ V) * [ 32T an] V2zT 67

_{__.4__@6_‘/.}. 4”’ i(lﬂ)_;__ﬁ__?&

3-(2z)T20n 8y ' 3-(22)Tdn' T 0n’ " 3v2zT On

2 3;1. e 1 oW

3\/2:1:T3 V2zT On

1., ., 18 ;'Z'D’ _

pT' V.4 B0V, + 24T’ T-l(aW n 0w
V2zT * 32zT 9n *13.(22)T°* T &z 2z dn

+WV;)

F5ITt i 5 )~ T By )
l;_(aav: ZZBBVT‘},)+{§[LW" 3J,2LZT631:] +\/21_$Tg’1;
oy 51t BT o T )t AR T ot e
+(GWe - s g VT =0,
AU+ b e D)4 W o T L)
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1 3

+L(T3)+ \/__T4T =0, (14)
R (”T') ¢—T2V + FUD -2+ 5 G
g e+ o T T
F3(UT) + \/gzl:rv) 50T gz ZZ;
B g 2le :n(ggT) +(TT2):] :S"Z)Tz 4ale :n (“T’Tz) =0. (15)

Here, to simplify nota.tmn, we have used a prime to denote partial differentiation of the mean
flow quantities with respect to 7. As £ — ¢, — 0, the mean corrections produced by nonlinear
interaction become mcreasmgly small and the above equations then reduce to two sets of
equations: the basic state equations (13) and (14) and the perturbation equations (4)-(8).
In the light of the results given in the previous section, we expect that Gortler vortices
would be trapped in an O(1) region bounded by two transition layers centred at n = m(z) and
72(z), each of which has thickness of order O(€3/?). The configuration is sketched in Figure 1
in which the region of vortex actlvxty 1s denoted by I, the upper and the lower transition layers
by IIa and Ila respectxvely, whilst the region above the upper transition layer and the region
below the lower tranmtxon layer are denoted by IITa and IIIb, respectively. The flow properties
in these reglons are now considered separa.tely
We start with the core region I. There the sizes of the perturbation quantities can be

determined from the results given in the p;eviods section. From (25) and (31) we deduce that

at z — z, = O(1),

oV
V, = O(e~1/?), 22—
o= 0(), 4 =0(1).
Relations (17) then give
Uo = O(e71/?), o= 0(¢71/?), Wo=0(1), Po=0(1). (16)

Then from the rela.tlons between (Uo, Vo, Wo, bo, Py) and (U, V, W, 6, P) shown in (14),

we deduce that
U=0(e), V= o), W=(Q1), T=0(¢), P= Oo(e™h). (17

We therefore assume the followirnigrferxrnr of solutions for (11)—(15):

% = fo(z,n) + ef(z,m) + -,
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T(z,n) = To(z,n) + €Ta(z,m) +
. "6=”2(3,Tl)+5”}(-’”,7l)+"',
U = e{E(US + €U} b )4 eBXUR 4 )+ +CCY,
Vet {E(V] +eV o)+ eEX(V2 4 )+ +CC.}, (18)
W= {E(Wg+eW11+---)+eE2(Wg+---)+-.-+c'.c.},
P=c*{E(P; +eP} +o)+eB P34 )+ ...+C.C},
T=e{E(h+ e8]+ ) +eE G+ )+ ..-+C.C},
where E is defined as in (15) and C.C. denotes the conjugate. We now substitute these
expansions into the perturbation equations (11)—(15). After equating the coefficients of E°
in (14), (11) and (15), we obtain
aTo 'U? aTo _ 1 aTo . BI(TQ) _ 1 %
oz | 2z1, 0n To Om Oz V2z 0

- A V) (19)
_ 2%_?. g%’% 20U} - iWE - ‘/T?%f—gagvg rcc. (20)
_ Tﬁfvg%‘% 42068 W — *;.,i—;%%egvg rcc., (21)

where fio = B(To), and a bar over U and W signifies conjugation.
On equating the coefficients of E€™" in (11), Ee~3 in (12), Ee? in (13), Ee! in (14) and
Ee ! in (15), we have

_ 1 0fc
Ul ——-——V4 =0 22
Vo + \/Q_E-Tg 677 0 ] ( )
H(z
RV — T-(gleé =0, (23)
B 9oy, B0 "0 ply —fo(iWy)=0, 24
v2zTy a"] 0 3V22T0 a‘r) ot 3“0(1 0) ( )
a i ;
5;( 'f%) +V2z(iWg) =0, (25)
1 0T, 1

S
—-——,__.2ng E;I_VO + ;}1»090 = 0; (26)
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where fio = ji(To) and where H(z) is defined as

_ k(z) 1 1
H(z)= BN { eI (23:)3/2} + 5590 (27)

Equations (23) and (26) are consistent only if

2, V2= _, (28)

, pTe 0n  H(z)

This is a first order differential equation which can be solved to give an expression for the mean
temperature. Note that in the limit ¢ — z,, (28) reduces to (16) which is the condition for the
original basic state to be neutrally stable at a single point = 7*. Equation (28) shows that at
O(1) distance downstream of the neutral position, the basic state is forced By the vortices to
be such that it is neutrally stable everywhere simultaneously in the region of vortex activity.

With the aid of the relations (22)—(26), we can express U}, W},8} and Pj in terms of Vg

as follows: _ _
oo oy gp_ 109k
0 /—233}-1-01-13 an Q> o] F—zmﬁofg an 01
1 0 V
Wy = 2 29
Wo = \/@;an To =) (29)
Pl — [lo 8Vo +( 4#0) 1 BTO
° = " VazT, On V2zT, 01 6
With the use of these relations, equation (19) reduces to
Integrating this equation then gives
8I(To) | 2poT
g = vas o)y 2B | (31)

§ =V 5z T H(z)

Here we have put the arbitrary integration function of z to zero. Even if we had not done so,

this function could be shown to be zero at a later stage.
With the aid of the relations (29)—(31), we can reduce (20) and (21) to

%(poafo)+ 8fo _ . 0f _ 2_@_( 1 af'olvllz)_ Nore (9f0“,0.2 (32)

To dn 77617 Bz~ T2om BoTo On oH(z )

18 (g0 8T . 0T 2V2%To 8, - 12

—— = -2 = - —(oTo| Vo |)- 33
After To(z,7) has been determined from (28), equation (33) can be used to determine |V | and
solving (32) then gives an expression for fo(z,n). From (28) we see that the boundary layer
flow is forced by the vortices which, from (32), are driven by the boundary layer.
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We now proceed to solve (28) to determine the mean temperature To(z,n)- When £ is
given by Sutherland’s law (16), (28) becomes

(To+m)? 8T _ (1+m)® 2z

T  8n ~ o H(z) (34)
Integrating (34) gives
2 (1+m)* vz

TG(_m + g mTo + ZTg) e H( )\7’+ a‘(z))’ (35)

where a(z) is a function to be determined.

Integrating (33) with the aid of (34) yields
H(:n) 71 18 ﬂoaTo BT aTo

V12=——_—/-———--—— —2z—dn. 36
Vol 2v2z o To {aan(To 6n)+n6n az [ 7 (36)

We now assume that |V} |? vanishes at 7 = m(z), m2(z), which bound the region of vortex
activity. As in the case of weakly nonlinear development discussed in the previous section,
these two boundaries are also where the solution (36) breaks down and where transition layers
exist. The thickness of each of these layers is 0(52/ 3) 50 that in the upper transition layer at

n = 1p(z), we define

(=T (37)

Near 7 = 72, we can deduce from (36) and (29) that Vg, 8} and U} are all of order €'/2, and that
W and Pj are both of order ¢~1/3, With the use of these results, the sizes of (U,V,W,T, P)

can be determined from (18), which are shown in the following asymptotic expansions:
U= 54/3{E(U01 + R0, 4 +...+c,c_},
V=3BV + eV +-) +-+CC,
W=V {EWo + Wi +--) + -+ c.c.},
P=e*3{E(Pn + &/ Pu+-)+--+CCY, (38)

T=€4/3{E(001 +€2/3011+)++CC},

%% = folz, &) + €13 fi(z, &) + €3 fo(z, &) + -,
T = To(z, &) + €/*Ti(z,£) + Tz, £) + - -+,
vs = v50(, €) + €2 v51(z, €) + €/ 3055(, ) + - -

Here we expect that the first two terms in (38f, g, h) are simply the expansions of the mean

flow functions fo(z,), To(z,n) and v in I near n = 7,. Hence

e, 0) = Foem), (a6 = 22 g
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To(z,€) = To(z,m)  Ta(z,€) = ?—Ti(“—"’) ¢. (39)

Similar expressions can be written down for 959 and 95;. On substltutmg (38a-g) into (11)—(15)
and equating the coefficients of various orders of the harmonics and mean flow quantities, we

obtain a hierarchy of equations. From (12) we have from equating the coefficients of Eec8/3

and Ee?,
H

BoVor — T( z) =0, (40)
0
. pr H(z 2T,
BoVia + ot Taen = 5201, — L1t
0
= 27 g _
4o 0°Vor 1 0Pn Bo  O(iWg) _o. (41)

T 3(2z)T2 a¢2 t JoeT, € 3v3al, OF
Here and subsequently we write T} for 8To(z,7,)/07 to simplify the notation and fo =
i(To(z,m)), o = &(To(z,m)). Equating the coefficients of E¢~7/3 and of Ee*/3 in (14)

gives v
I“'O 01
- P Woi) =0, 42
3\/2—3:1,0 05 01 + 11'0(1' 01) ( )

1 an + 'I.W(n
v 2(L‘Tg 8£ TQ
Finally, by equating the coefficients of Ee2/3, E® and E%" in (15), we obtain

=0. (43)

T3 Bo
Vazta ot gl =0, (44)
oT, oTR
0 — — e S——
\/—-Tan + Ll-o 1+ ng( 3¢ T Wor
8%001

Popqug _ __Po_ U001

» + o fToeol 2$0’Tg 862 0’ (45)
T]ZT(; o 32T2 Do

— —— — T
2c¢T, 2zoT: 8¢ szTz("o ) 0

1 80, _ 96
t Faerz 7 (Vou 62‘1 + Vo a?) + -—(szeo, — iWo1001) = 0. (46)
0

We have not written down the equatlons obta,med from the x-momentum equation since the
determination of Vp;, Woi, 8001 and Py does not involve the streamwise velocity component.
Equations (40)—(46) can be solved in the followmg way. First, from (42), (43) and (44), we
can express sz, Poy and 01 i in terms of Vm and its derivatives. We note that equatlons (40)
and (44) are already consistent because of (28) Next, equations (41) and (45) give a 2 x 2

inhomogeneous matrix equation of the form A{ = f for { = (Vi1,811)7. The inhomogeneous
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term f involves 875 /8¢ as well as Vi, and its derivatives. The former can be determined from

(46) and can be shown to be given by

. - .
o - Dol (ko - ytge - bVl - S(o) (47
where S(z) is a function to be determined. Since the coefficient matrix A has zero determinant
because (40) and (44) must have non-trivial solutions, the inner product of the left eigenvector
of A and f must vanish. Omitting all the details, we can show that the latter condition can

be reduced to the following second order partial differential equation for Vo;:

aazfl + 51(2)Vor = 4: ;V01|V01|2 + S2(z)Vor, (48)

where
Si(z) = —%z To (3 I + -3—.;1—01"0—' + ;(;T]gTz) (49)
Sa(z) = (2—3“’)- - % . 5(a). (50)

This equation is a particular form of the second Painleve transcendent and has been shown by
Hastings and Mcleod (1978) to have a solution such that

49:0

Ile2 ~ S1(z)¢ as £ - —o (51)

and that |Vo;| decays to zero exponentlally as ¢ — oco. Thus the Gortler vortices are trapped
below region IIla and the condition (51) ensures that Vo, matches with Vol in the core region
I An identical analysis applied to the lower transition layer ITb shows that the vortices there
are also reduced to zero exponentially away from the core region so that they are also trapped
above region IIIb. As a consequence, above the upper transition layer and below the lower
transition layer, there are only mean flow fields.

In IIIa,b the mean flow fields are still formally represented by (3) and (4), but now f and

T expand as
F(z,n) = folz,n) + O(e), T(z,n) = To(z,n) + O(e), (52)
where fo(z,7) and Ty(z,7) satisfy

I 2 f 2 F
\/FO afo)+ afo 223)’0__

0
1 — | —==1 —2 =0,
(1+ m)an (To + m On? Ton dzdn

(1+m) 8 \/fl?oaTo N 0T 2ma_T_o_ 0 (53)
o O \To+m "377 9z

To satisfy the continuity equation, vs must be calculated from
I(T

5, 2(T)
0z

(54)

Vs =
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where the function 7 is defined by (5). We note that the governing equation (53b) for To(z, )
is decoupled from that for fo. We can therefore solve (53b) on [0, ], [72, 00] first subject to

the following boundary and matching conditions:

(i)-

n 1 -
To(z,n)—»f—z(1+m)25;+---, as n— 0, To(z,n)—~1, as p—oo;  (55)

(ii).

Tﬂ(z) 77]) = TO(m: 77]): aTo(Z, 77])/67’ = aTO(z 77:)/37). i=12 (56)
(iii). = 7 and 7, are where V] vanishes and from (36) they satisfy
m 1 14 Ho 6T0 aT aTo
[11 ‘_{;%(Tg—%)-*-n—é_ﬁ_ 2:1:5— dn=20. (57)

Thus equations (52b)—(57) constitute a free boundary problem which can be solved numeri-
cally for a given curvature distribution to determine the two boundaries m(z), 72(z) and the
unknown function a(z) in (35). Once these three functions are determined, all of the pertur-

bation quantities can be calculated by the appropriate formulae given in this section.

5 Numerical results

VIn this section, we shall outline a numerxcal scheme which we have used to mtegra,te the above

free boundary problem and discuss our numencal results.

For convenience, we shall drop the hat notation and subscripts ‘o’ in (53)—(57). Thus our

free boundary problem is to mtegra.te

(1+m)g_( JT BT) 0T 50T

o M\T+médn 577 26_:1::0’ (58)

subject to the boundary and matching conditions (55)—(57). The interval (0, 00) is divided

into three sub-intervals:

Ty:(0,m), T2:(m,m), Ta:(m,o0).

Qur aim now is to intégrate (58) in the ”irxfliterrya.ls T'; and T3, and iterate on the values of

m(z), m(z) and a(z) at a given z so that the matching conditions (56) at 7 and 7 are

satisfied and the integral (57) over I'; vanishes.

For the purpose of numerical calculation, it is necessary to work with fixed boundaries so

in T'; and T3 we make the transformations .-

n=m(z)e?, n=m), (59)
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respectively, so that the intervals I'; and I's now become
Ih%:(-00,0), T3¥:(1,00). (60)

The additional exponentional stretching in (59a) is introduced to accomodate the rapid change
of T near 7 = 0 (as indicated by (55)).

In terms of the new variables ¢ and v, (58) becomes

oT 8°T oT
235;—-}-141(22,(}5,11)—6?2- = Bl($,¢,T, 0_45-), (61)

and T 82T 8T
2$5z— + A3(z, '¢', T)W = B3(27¢1 T7 a,¢)’ (62)

respectively, where
1+m VT e %

c T+m 1
! —-2¢
B1=(1+2z'rh_1+m_ VT e )6T

A1=—

o T+m' %

1+m e -2¢ m-T ( )2
4 mn 2\/_(T +m)2 09
1+4m T 1

(63)

M= Frm &
2:1:772) 0T 1+m 1 m-T oT .,
Bs= (1 l L (92
3 ( + a¢+ c  m 2/T(T +m)? (6¢)

Equations (61) and (62) are parabolic partial differential equations, so their solutions can
be otained by a marching procedure. We shall now use the solution of (61) as an illustrative
example to explain our numerical scheme. If the values of T,7(z), 72(z) and a(z) are known

at z = %, then the following schem is used to determine these functions at Z + €&

T — T Tipr — 2T+ Tica

T;
+ A1(8,60,T3) . =

__.;_), (54)

2z .

- Bl(z ¢u 1)

where h is the vertical grid spacing, a tilde denotes a quantity evaluated at the position Z + €
and a subscript signifies evaluation at the indicated vertical grid point. In the expression for
By, (&) is replaced by i

m(s) = 21, (65)
where #; is a guess for 71(% + ). If we replace —0o by ¢o and use n mesh points in the 7

direction, we have

$i=¢o+ih, ¢n=¢do+nh=0.
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Application of (64) toi=1,2,..-,n—1 gives a triagonal matrix equation which can be solved

after the following boundary conditions are incorporated:

9(1 4+ m)? 1 _
To= o? . ';7; . eddo’ T = TO(I"’h)v (66)
where To(z,m ) is calculated from (35). The derivative of T at n = m(z) is calculated from
oT 10T Tty — Tnr '
anlﬂ:’h M 6¢|¢— 771h L (67)
and we define a function f; by
A s or 8T,
fi(a,m) = |n =m — a—,:lnmn: (68)

where the second term is calculated from (34) and & is a guess for a(Z + €), which is used in
the calculation of To(z, 7 ) according to (35). Equation (62) can be solved in a similar fashion,

which leads to a second function f5:

def. 17 WBT aTo

fz(av".k = '17_2"6",‘;‘1#:1 (9 Iﬂ—ﬂ:) (69)

where 7, is a guess for 72(Z + €). For a given guess (&, 7, 72), a third function f; is defined by

means of - é' _ o7
. ow = 1 |18, pydT oT T
fs(a,m,nz)=/: '270{——(-‘:'i 0)+n S 2 O}dn. (70)
T

ocdn To On on dz
With the aid of the three-dimensional version of the Newton-Raphson method, our program
iterate on (a, m, m) until the three error functlons become sufﬁuently small simultaneously.

The above procedure shows how to march the values of (a(z), m(z), n2(z)) one step forward
along the stream-wise direction at a given downstream location. The scheme is complete if the
initial values of (a(z), m(z), 72(z)) are known at a certain initial position ¢ = zo. Such values
are provided by the weakly nonlinear theory, as we show below.

The weakly nonhnear theory established in §4 gives the large X(= (z — z,)/€) structure
for growmg Gortler vortices. The present fully nonlinear theory for € — z, = 0o(1) should
then match in the small (z — z,) limit with that large X structure. Therefore, the desired
initial conditions for (a(z),m(z),72(z)) and T are imposed near the neutral position z, and
are obtained by rewritting the large X solutions of the weakly nonlinear theory in terms of the
original variables ¢ and 7.

First of all, the initial value of a(z) can be obtained by using the condition that 8o given
by (28) vanishes at 7 = n* so that Tg in (35), when evaluated at = %*, can be replaced by
T, the unperturbed basic state temperature. To determine 7; and 7, we simply have to write

£ = +C defined between (32) and (33) in terms of the original variables z and n with the aid
of (9), (10), (25) and (30). The result is

;
ma =1+ CY (2 - 20) (71)
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where @ and b are given by (23); whilst C is determined by solving (44a). Finally, the initial
value of T can be written as
T =T + €/20mo, (72)

where T is again the unperturbed basic state temperature and the other term is the one
appearing in (14d). Rewritting the latter in terms of the original variables £ and 7 with the
aid of (9), (10), (25), (39) and (42), we obtain

37, 53/3 ke 7 [k
3/2 = . TR Rt L _ N U(=- -
€/ %0mo = £A 2:1:,,T3 = (z — zn) exp( 8 ) U(2, F 25), (73)

where
e n-7'
Vb VE-za

and where the ‘4’ and ‘—’ signs should be taken for 0 < 7 < 71 and 72 <7 < respectively.

£=

In Fig.2, we have shown the evolution of the mean temperature correction €3/28,,0 given
by (73) downstream of the neutral position z = 0.5; whilst in Fig.3 we have shown how the
growth of €3/26,,0 depends upon the neutral position z,. We can see that for a fixed value of
T — Tp, €3/20,,., decreases drastically with increasing z,. Forz — 2z, = 0.001, our numerical
calculation shows that 63/20m0 becomes as small as of order 10~7 when z, = 20. In our
numerical experimentation, we find that if we choose too large a value for| T,, the amplitude
of the initial Gértler vortex would be too small to have any effect on the evolution of the
temperature, and as a result, the numerical values of m(z) and m(z) would coalesce into a
single value as we march downstream. This is why we choose rather small values for z, in
our following numerical discussion. Such an experimentation also provides a check on our
numerical scheme as we expect that the two free boundaries would coalesce if no vortices were
present.

We now discuss our numerical results. It was found that the above numerical scheme
converged for sufficiently small values of & and that h; = 0.005,hy = 0.004,& = 0.0001 gave
a stable scheme for the cases investigated and yielded values for 7,72 and the other flow
quantities correct to two decimal places, where h, and h, are the vertical grid spacing in I"f
and I"zl’, respectively. All cases correspond to o = 0.72,m = 0.509, N = 1 and to a thermally
insulated wall for which the basic state solutions have been given in Fu, Hall and Blackaby
(1990). The first case we considered has the curvature distribution and the neutral position
given by

k(z) = (22)%%, z,=04 (74)

The correponding Gortler number is from (1) given by G = 21.8044/¢*. The weakly nonlinear
theory results (71), (72) and (73) were used to calculate the initial values of m(z),7(z)
and a(z) and the initial profile of T at z = 0.401. The numerical scheme described in this
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section was then used to advance the solution beyond z = 0.401. The numerical values thus
obtained for 74(z) and mz(z) are shown in Fig.4 and the total temperature distributions at
z = 0.4,0.8,1.2 are shown in Fig.5 with that for z = 0.4 correponding to the unperturbed
basic state temperature. In Fig.4 we have also shown the values of 7;(z) and n7,(z) calculated
according to the weakly nonlinear theoryr result (71), which is strictly valid only forz —z,, <« 1.
In Fig.6 we have shown the eigenfunction V{}, calculated from (36), at the downstream locations
z =0.5,0.6,0.7,0.8.

The second case we considered corresponds to
k(z) =v2z, z,=03. (75)

The Gortler number for this case is from (1) given by G = 18.9681/¢*. This is the case which
admits a similarity solution in the context of incompressible flows, as has been shown by
Hall and Lakin (1985). Such a similarity solution is no longer possible here because of the
contribution to the Gortler number expansion from the basic state curvature, as can be seen
from (27) and (35). However it can be deduced from (27) that

H(z) ~n(m)£\/-2_5, as T — 00,

and further from (35) that 7 and 7, become independent of z when z becomes large, so that
a similarity solution is possible for large z. This is verified by our numercal results shown
in Fig.7 which clearly shows the increasing independence of 7, and 7, on z when the latter

becomes large.

6 Secondary instability

After the large Gortler vortex structure discussed in the previous two sections has been estab-
lished, we expect that the boundary layer would becqgrrxgrggscig’gi:blg to secondary instability
of the wavy vortex or vorticity mode type. Thus foilowing Hall and Seddougui (1989), we
now study the secondary instability of the steady structure described above by superimposing
spanwise periodic travelling waves on the flow in the two transition layers. We shall confine
our attention on the upper transition layer; the lower transition can be studied similarly. The
steady vortex structure in Ila is now our basic state. We signify it by a subscript B and rewrite

it here for easy reference:

'u.B:'TJ.+—]L%-U, vg=7+V, wg=W,
1, _ _
pB:I."*'RT(p'{'P)’ Tp=T+T, (1)
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where

O ol (s ) 4 ymdID)
u=g, v_m( Tf+anI(T))+\/§a—: o,

3 B, flz,m)
'r’_M1/2+ M1 +...,

T = Tz, ) + o(M°), (2)

g—% = fo(z,m) + %%(w,nz) £ 4 3 (2, ) + -,

- aT, .
T = To(z,m) + —a;o(“’ﬂlz) . &2/3 + 64/3T2($,£) 4oeen,

Here fo and f; are respectively the same as those appearing in (18a) and (38f) and I(T) is
defined by (5). The harmonic part (U,V,W,P,T) expands as in (38). But without loss of

generality we rewrite them as
U = €3 cos %(Um +BU; 4+ )+,

V =e?cos ;(Vm + PV + )+,
W =€ /35in %(WO1 +EBPWL 4+ )+, (3)
T = €*/*cos %(Tm + BT 4+ )+,

P=¢e*3cos %(Pm + B+ )+,

Comparing (3) with (38) shows that U,V,W, T, P here are in turn equal to 2U, 2V, 2iW,2T,2P
there. Therefore, the equation satisfied by Vo, here can be obtained by replacing Vo in (48)
by Vo1/2. Thus we have

0%V 2z
-8—£;)l + 51(z)¢Vor = %ﬁgvo:’i + Sa(z)Vor, (4)

We now look for travelling wave solutions superimposed on the above steady state. The

total flow is then written as

u:'u.B—i-i-&U’, v=wvg+ 6§V"*, w= wg + §W”,
M,

p=pp+6P*, T=Tp+6T", (5)
where § is a small parameter introduced to facilitate linearization. The linearized perturbation
equations are obtained by replacing (U,V, W, P,T) in (11)-(15) by (U + 6U*,V + §V*, W +
§W*, P + §P*, T + §T*), putting back the /0t terms in the momentum and energy balance
equations, and then linearizing in terms of §. They are given by

L(BU‘+_)?’_6U‘_13U‘)__ . 1 i(uaU‘) f Ve
T 8z ' M, 6z 2z On Wlez ™ 50T 0n' T 0n V2zT?
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+[ ﬂf" 1 (p,f") i‘i . 0T*
2z72 ~ 22T 8y T 22727 9y
.U U, .. .
T[\/—T(V —+V— Bn )+W Uz-{-WUz]
- Ly f" I U T
76z 2z an \/ET T2' 9z ~ 2z an \/_T
1 8 ,p,,00 1 8 ;1, LoU . N
—ﬁan(F 877 21:T an(T an ) wTU;), — W(T*U.).
of nfr2rT 1 8 (Bf" ..\ ,,1 T.8U° _
(—37 %) T3 22T 817 _FTT + ('1'; - F)W =0, (6)
1,8V Jave g av* o s 8 pove

-7-’-(63 +E

dz 2z o7 )= WV g - 3-(2m)T%(TW)
1 8pP* H(z)T* 2av oT* 2T’

V2zT 0n T2 et 3z7¢ oq + 3\/2:;;TW'

.
“swmram Ot T (\/__T

_T fov: _
T2 \ Bz

NI
3-(2z)T? 0 87

* 3-(2z)T%(T an) 32zT 0n  3v2z71 07

9 [V‘V+VV‘]+WV+WV)

lai_nT'V, T BV_laV_r)T'V
2z 0y 22T T3\ 8z 2z8q 22T
4 9,148V L oW, 2 B#W + Iqu} T
o ov? 4 0,10Vt B OwW;

4
_{3-(2m)T255 n 3-(2z)T%(T an) 3v2zT On

2 Op. . } ( a4 8V 2 ) 1 8T*

W V —_————— Wz —— —

T3Vl 0y T 3v2zT 0n _ 3'*) JazT o
L oVt 2. ) 1 6T ( 1 oW ) )

| —e— — W) ——— — V. ) iT;

(3\/231" an  3M:) Jar o  \Vear an T '2) B

* = =7 -
+H(a:) 2TT 1 8 (;w TT‘)_( 1 8w +V;) aT,

T3 Teéd  GzTop\ T V2zT on
(- ,_,"’;)6;;'=o, 7
+§nw;, ¥ 2—11-,(;?—,7(%9?7) -1 ( f;ﬁv-aw s mfva;‘: W,
+WW‘)+T‘(%T 2%63?7,) ;(a‘;z' 2%66%)

4 -
+ {gﬂsz + £

v, 1 og 1 8uOW palaW}

= =—V; (=
3V2zT dn /22T n 2zT2 8 8n + 2zT 617(T dn )

73

ov; 1 on,, 1 opow* g o 16W‘}

+{§" =t 3757 0y T Jocton ® T 227980 6yt 2T on\T Gy )
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b 1 oW or* i 1 8w*
£ _ v, « 9L
+\/2:¢T(\/22:T on 0 on \/2zT(\/2zT on V')an

4 2 9V 4 2 8V 1 T . aw*
-W, - ——=—— uT* “W?* - ——=—1 4T, — =0,
+ [3 3v2zT an]“T‘+[3W‘ 3v2zT an]"T (T T=) ot 0, (8)
fl 1 a Vt Wt l
(02: M, 0z 2zan)(T=) \/_Tan( T)+( T V2zT®
. 1 aV ) (e 1 av* ,)T 8(T')
V2zT an T2~ “\ /22T Bn T2 8t T?
a a T* .0 W
—(ETVB )(Tg) (s/_T’V —+W g,;)('fa)
2TT* 2% ._
+(3:z: 2:1;8 )( T3 )t \/—T-aTT 0, (9)

1,8T* f' 8T* 7n OT* T . 7T’ 1 8 .t .
-f( Oz + M, 8z 2z On )+ V2zT? + {2:1:T2 2z0T 817(—-—) T
Bpe B O 18 ROT"

o ** 92zT%¢ 8n 2zTo0n T 8n

1 1 BT 1 orT*
—_—_V— V——-—- W*T, WT')
(\/2_zT t 7T o T Y

T (T _ndT, T' S _ T (0T _mer T
T2\ 3z 2z 0n ' 2zl T2\ 8z 2z0n \/ﬁT

1 6 8T 1 8p, 8T i )
T 9zT?0 0y On Qszo.'é;T B o —{(T T.): + (TT;):}

__B 0T oT T 9T, 0T nl'orT

22Todn T on T 01 9z 2z’ T2

! .
1 9 ("TTT')+(1 Ty2T _o. - (10)

" 2z0T 07 T Tz) at

Here f' has been used to denote 8f f/0n to simplify notation. In the two transition layers, the
vertical lengthscale is characterized by the variable { defined by

n—-m
(= —apo (11)
thus 5 5 5
9 _ o L o(e? -2
2 =0, g =0, F=0l) (12)

where the scales for z and t are deduced from perturbatin equations. Since we are looking for

travelling wave solutions, it is convenient to define a new variable ¢ by

p=t-z (13)
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and use (¢,z,§,2) in place of (¢,z, £, z) as the new independent variables. Hence

6,0 9 9 9
3z 8z 8 &t 8’

f! 0
(1+ )8z+5i

which appears in (6)—(10) is transformed to

o _ 1o
0z M1 6¢

and the operator

(14)

to leading order.
Next, we assume that the superimposed disturbance is /2 out of phase with the steady

state. Therefore, the perturbation quantities take the form
U* = 64/3sin§~E - (uo1 +€2/3‘U-11 +:--)+---4+C.C.,
V* = e/ 3in g - E - (vor + 23y, + )4+ C.C.,
W* =€ 3E - (wmo + €Pwmy + )+ -+
+ e V3¢os % - E - (wo1 + Pwyy + - J+---+C.C, (15)
P* = 6"4/3sini— “E-(ph + P+ )+ -+ C.C.,

T* = 4/3 sing (05 + /360, + )+ -+ C.C..

Here _ M0
1 x 1 1
N E = exp (?2 [ k@)= - =3 ) (16)
where () is the constant frequency and the wavenumber K expands as
K=K0+62/3K1+"'- (17)

The scale for ¢ in (16) is chosen so that in (14)
1 0 d
——=0(7).
M1 6¢ (8:: )
We now subsﬂtute (15) and (3) into (6)—(10). By equating the coefficients of e~8/3E sin(z/¢)

and e~ 2Esin(z/€) in (6) we obtain

H(z)ge — o, (18)

1 -
T;(KO + fo)vor + fover — 72

-2-,—(1{0 + fo)via + T [K1 + fobQ - (Ko + foﬂ)‘—f]vm
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4/10 62‘001 1 apal
3-(22)I2 06 ' vooT, Of

H 2T! i Is] 1
(z)(ou 05001) + —fo _To =—wWmoVo1 = 0. (19)

3Vazlo 06 T
Equating the coefficients of €~ 7/3E cos(z/¢), Ee~"/3, and E¢~5/3 in (8) gives

+hovi1 + Téfﬁo‘"m -

7 - [_10 6'001 4_ .
— =(K Q _— e —pl — — =0, 20
To( o+ fo)wor + Wori T Po1 3I’Lowo1 (20)
- %—(Ko + fo)wmo = 0, (21)
0
i = i ! i To
—=(Ko+ fo)wm1 — = K1 + foéQ — (Ko + fof2) =€ ¢ wmo
To To To
Ho Bzwmo 6W01 me _
+ 2273 98 3 _Tz( 01 + Vo 5% )=0. (22)

Finally, from equatig the coefficients of e~*/3E sin(z2/ e) in (9), €"?/3Esin(z/¢) and ®E sin(z/e)

in (10), we have

1 8'001
=0, 23
Wo1 — ,—22T0 af ( )
1 -
—— K —_
To( o+ fof2)65; + \/_T2 —==>v01 + l‘0001 0, (24)

“‘(KO + fo)03; + T [Kl + fobQ — (Ko + foﬂ) 5]901

1 _ oT, 2T o 0263
—_— TI —— _-0_ - '——-'i
+v2a:Tg o1 o¢ Evon 2z0TZ 0
1 . - Tl ene 1
+ ;(ﬂoou + foT3¢05;) — Tawmoom = 0. (25)

We now proceed to solve this hierarchy of equations. First, it can be seen that (18) and (24)
have non-trivial solutions only if
Ko = —fof2. (26)
It then follows from (16) and (2a) that the travelling wave propagates downstream with
the same speed to leading order as the that of the basic steady flow. We also note that (21) is
now automatically satisfied.
From (24), (23) and (20) we have

6 _ T = i B . Fo O
o1 = \/ ugT2 ’ V2zT, 6¢ » Fot V2z2T, 0¢ )

With the use of these relations, equation (19) and (25) can be reduced to a 2 X 2 matrix

(27)

equation of the form A({ = f for { = (v1, 01y )T. The inhomogeneous term f involves vo; and

its derivatives. It also involves 873/8¢, the expression of which can be obtained from (47) by
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replacing Vo; there by Vp;1/2. Since the coefficient matrix A has zero determinant, ¢ has a
non-trivial solution only if the inner product of f with the left eigenvector of A vanishes. The
condition then leads, after some algebra, to the equation

62’001 _ (2:1:)7—'3
o¢? 3iz0

{"nzT £+ 3k + P)TiE + LGk ")(Kl + Freq)

L (1+0)(22)T,

The equation involves wy,o as well as Vo;. To determine wy,o, we turn to (22) which can be

shown to reduce to

azwmo . 2$TQ 1 62V01 62‘001
ErZ (Kl + fob Q) wmo + 5= 2ioTs vo1 3¢ - Vo1 582 =0. (29)
With the use of the definitions (49) and (50), equation (28) can be rewriten as

8? 2z
T 1 g, (a)tvon = ¢ ).f (22)07 2 on + SaYoen

o¢ 6
1 2z)T; . .y 7
(;22(-1)—2 {(T-Kl + fo(',f)'vm - wmon} . (30)

Finally, after (4) and (30) have been used to eliminate the second order derivatives of Vo; and

Vo1, equation (29) becomes

azm 22T 1 2 ey F
Toes - 2ty + 036 omn = LHTEE (6, 4 070V — vV} O

Equations (30) and (31) are to be solved simultaneously to determine the second or-
der correction K; to the wavenumber and the frequency 2, subject to the conditions that
Vo1, Wmo — 0 as 7 — Zoo so that the travelling waves are confined within the transition
layers. It is poéls'i"ir)le to simplify these two eéuations by scaling the flow properties of the basic
Vsteadyrstate out of this eigenvalue problem. This can be achieved by introducing the following

new independent and dependent variables:

= -sheNe- S V= gaa Y
=—lia\/§~§;-§--vm, W = Wpo. (32)
In terms of these new variables, equations (4), (30) and (31) become
‘f:cv (v =V, (33)
‘-iz—‘; _(+ %iﬁ)c'v _ ;if{'v _ oV 4 %\/ng ~0, (34)
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d? A .
w——2--i(QC+K)w+

1+0_, 140
di? 140 Viw -

o? v6o?

q__ 0 + o)To iz Q k= (1+0)Toz (Kl N f!8a(z) _Q) _

FioS1() oS3 (z) S1(z)
Equations (33)—(35) are of the same form as their counterparts for incompressible flows as
discussed by Hall and Seddougui (1989) and Seddougui and Bassom (1990). In fact, when
o = 1, the two eigenvalue problems are identical. The neutrally stable solutions correspond
to real values of ! and K. Such solutions were first given by Hall and Seddougui (1989) and

were later improved upon by Bassom and Seddougui (1990). The latter authours’ numerical

(¢ K)Wv=0, (35)

where

(36)

solution shows that the lowest neutrally stable wavy mode has its eigenvalue pair given by
(K ,9) = (0.690,0.372). (37)

Since ! = 0 corresponds to a stable wavy mode, when {1 is increased the mode described by (37)
is more dangerous than any other higher mode because it will occur first. It was conjectured
by the above authors that in general there will be an infinite number of such neutral solutions.
This conjecture was further supported by Bassom and Seddougui’ (1990) asymptotic analysis
which shows that there is indeed a family of neutral modes for K>1,0>1.

Once the numerical values of K and €} have been found, the second order correction K to
the wavenumber and the frequency € can be determined from (36). Note that K, is a function
of z. Thus for a given frequency Q, Ki(z) is the wavenumber for the travelling wave to be
neutrally stable at z. If Q is held fixed to be the neutral value at z = Z, then K,(z) will be
complex when z # Z, implying that the travelling wave will experience spatial amplification
or decay away from the neutral position.

The numercal values of K; and 2 are also dependent on the properties of the underlying
steady state, the solution of which has been shown in sections 4 and 5. We shall not give
any definite values for K; and Q for any specific conditions, since the principal aim of the
present section is to show that neutrally stable travelling wave solutions do exist in the present
hypersonic context. If necessity comes, the values of K; and for any specific situation are

obtainable by using the relevant formulae given in the present paper.

7 Conclusion

In this paper, we have given an asymptotic description of the nonlinear development of large
amplitude Gortler vortices downstream of the neutral positon. We have shown how an asymp-
totic state can be established under the combined effects of viscosity and nonlinearity. We have

also investigated the possibility of such a large amplitude vortex structure losing stability to
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travelling waves of the wavy type. Such an analysis has important applications, for example,
to the flow in engine inlets and near the control surface of hypersonic vehicles.

The basis of our present studies is the linear theory given in our previous paper Fu, Hall
and Blackaby (1990). It has been shown there that taking the large Mach number limit
has two implications. Firstly, the boundary layer splits into two sublayers: a wall layer and a
temperature adjustment layer. It is the latter layer that is most susceptible to Gortler vortices.
We note that in their studies on the Rayleigh instability, Hall and Cowley (1990), Smith and
Brown (1990) and Blackaby, Cowley andeill(lQQO) found that the temperature adjustment
layer is also most susceptible to the inviscid insta.bility.r Secondly, the boundary layer growth
has two scales: a short scale related to the similarity variable 7 and the usual scale based
on the streamwise variable z. The short scale is felt mainly through the O(M?3/2/(22)%/?)
curvature of the basic state. Thus in the special case when the wall curvature is proportional
to (2z)~3/2, it exactly counterbalances the basic state curvature and Gortler vortices evolve
downstream in the same manner as those in incompressible flows. In the more general curvature
case, boundary layer growth strongly affects the evolution of Goértler vortices and it becomes
negligible only when the local wavenumber is of O(M3/®) or larger.

In the present paper, we have confined our attention to the O(M 3/ 8) wavenumber regime
and thus we have been able to exclude the effects of boundary growth. The neutrally stable
position is then uniquely defined. The linear theory tells us that when a certain parameter
is positive, Gortler vortices will grow as they evolve downstream of the neutral position z,.

In the weakly nonlinear theory presented in section 3, we have determined the evolutionary

_ behaviour of growing Gortler vortices in a small neighbourhood of the neutral position where

Gaortler vortices grow at a scale dictated by the variable X = (z — z,)/e. It is shown that the

~mear. temperature fpmo and the first fundamental Vj satisfy two coupled evolution equations;

whilst the mean streamwise velocity umg can be determined from another evolution equation
once 0,0 and V have been found (other first fundamental components are related to V). In
the limit X — oo, we have 0,0 ~ X3/2, upmo ~ X3/? and Vo ~ X1/2 50 that when X = O(e71),
that is when z — z,, = O(1), the mean temperature and streamwise velocity corrections become
as large as the basic state. When this happens, the weakly nonlinear theory becomes invalid
and the further downstream development of Gortler vortices is described by the fully nonlinear
theory given in section 4. There it is shown that Gortler vortices spread into a region of O(1)
depth which is bounded By two transition layefs. ‘In the région of vortex activity, the mean
temperature is determined from a solvability condition for the first fundamentals and thus it
adjusts itself so as to make any modes neutrally stable everywhere simultaneously. The fact
that the basic state is now completely altered by the the large amplitude Gortler vortices can
be seen from (32) and (33) which show the first fundamental V] as a forcing to the “modified”

basic state equations. In the two transition layers viscous effects make the fundamentals decay
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to zero exponentially, so that above the upper transition layer and below the lower transition
layer there is only the mean flow. The centres of the two transition layers are determined
by a free boundary problem, which has been solved numerically in section 5 for a number of
curvature cases. Thus solutions for the first fundamentals and the mean flow quantities have
been determined for 0 < 7 < oo in closed form.

Once the large amplitude vortex structure described by the fully nonlinear theory has been
established, transition can be reached by two possible routes in the form of secondary instabil-
ities, as was shown by Swearingen and Blackwelder (1987). The first secondary instability is
described here in section 6 which takes the form of time dependent travelling waves confined to
the two transition layers and which leads to the wavy vortex boundaries observed experimen-
tally. It is shown that such wavy type secondary instabilities may indeed exist in the present
hypersonic context. The second possible secondary instability is associated with a Rayleigh

instability. Relevant results will be given in our next paper.
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Figure 2. The growth of the mean temperature correction downstream of the neutral stability -
position z, = 0.4 over a wall with curvature x = (2z)%2, as predicted by the weakly nonlinear -

theory (5.56). The profiles shown correpond to x=0.6, 0.8, 1.0 and 1.2.
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Figure 3. The dependence on z, of the amplitude of the mean temperature correction at a
fixed distance of 0.001 downstream of the neutral stability position z,,. The profiles shown

correspond to T, = 0.4,0.6,0.8,1.0 and to the same curvature distribution as in Figure 2.
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Fig.4
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Figure 4. The development of 7, and 7; with z for the case x(z) = (2z)%/?,z, = 0.4.

~——- fully nonlinear theory; ------ weakly nonlinear theory.
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Fig.5
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Figure 5 The non-harmonic part of the temperature at different downstream locations for the

same case as in Figure 4.
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Fig.6
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Figure 8 The eigenfunctions V7 at different downstream locations for the same case as in

Figure 4.
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Figure 7. The development of ;1 and 72 with z for the case k(z) = v2z,z, = 0.3.
——- fully nonlinear theory; ------ weakly nonlinear theory.
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