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Executive Summary

The National Aeronautics and Space Administration's Langley Research

Center continually reviews its research programs for their responsiveness to

national needs, and the Langley program in flight-critical digital systems has

been a part of this systematic process. Flight-critical digital systems are in

transition from specialized use to pervasive use, and a more comprehensive

program review is being undertaken to ensure Langley's program is respon-

sive to the changing needs. The first step of this review is to ask industry for

its view of the issues which must be addressed for the practical realization

of flight-critical digital systems. This was the question posed to a significant

sample of the U. S. Aerospace industry at a U. S.-only workshop held at

Langley on December 13-15, 1988. The results of this workshop are relevant

not only to NASA and the participants but also to the entire industry. This

publication documents the workshop and presents the issues and recommen-

dations found by the individual working groups.

Issues that generated the most consensus across the workshop were the

lack of effective design and validation methods with support tools to en-

able engineering of highly-integrated, flight-critical digital systems, and the

lack of high quality laboratory and field data on system failures especially

due to electromagnetic environment (EME). EME is emerging from rela-

tive obscurity as a technical issue to become a pacing issue for flight-critical

systems deployment. There were many important issues identitied by in-

dividual working groups such as proving the effectiveness of mnltiversion

software, the lack of test and certification standards, and the lack of effective

on-line test. The space systems participants had a unique viewpoint since

they come from a tradition where extreme weight sensitivity has forced the

use of non-redundant systems; they remain to be convinced of redundant

systems effectiveness and demand figures of merit before embracing their use

in either space or launch vehicles.

There were 115 participants at the workshop; 85 of them were from off-

siW organizations. Fifty organizations, including 31 commercial organiza-

tions, were represented. An organizational center of gravity would lie near

the commercial aircraft industry. This make up was partly intent ional since

commerdal aircraft has been the primary focus of tile fault tolerance work

at Langley. The good turnout is a measure of the importance of 1he subje¢:t

and is a tribute to the willingness of the industry to support industry-wide

activitie._. One of the overview speakers observed that the audienc(' contained



enoughexpertise to design an aircraft. Judging from the companies repre-

sented and the experience of the participants, many of the critical design

decisions for future U. S. aerospace systems may actually be made by those
in attendance.

Although not a strictly technical issue, most groups had difficulty commu-

nicating about flight-critical digital systems. Much time was spent seeking

common ground on which to define the issues. Perhaps the most important

task is to formulate a common understanding of the problems and a common

language to express that understanding.
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1 Introduction and Overview

The Flight-Critical Digital Systems Technology Workshop was conducted

by Langley Research Center to elicit the aerospace industry's view of the

technical issues facing those who will be applying digital systems to flight

vehicle functions, where loss of function would cause loss of vehicle or unsafe

vehicle operation. The Langley Research Center has for the past fifteen years

been developing methods to design and validate flight-critical digital systems

with the primary emphasis on systems that would be suitable for commercial

air transport application. Most of the Langley research is generic since it

has dealt with assessing system reliability, designing systems to be validated,

proving designs correct, and other research areas that are generally applicable

to a variety of real-time systems. The aerospace industry on the other hand

is practical and product-oriented, and the views of the issues are not uniform

over the aerospace industry because of the different mission requirements for

different industry products. The workshop was conceived to use the generic

elements of digital systems as a context for the identification of issues that

are or will be of importance to industry. It was felt that the combinatiol_ of

the theoretical and practical would produce a lively interaction among the

participants and result in not only the widest coverage of ideas, but also

the greatest benefit to the participants from having been exposed to greatly

differing views of flight-critical digital systems technology. The workshop was

open to interested parties with U.S. citizenship. The workshop was divided

into three main parts as shown in the agenda in Figure 1.

An overview session opened the workshop, and six speakers prescllted

their views of broad research issues that apply to both commercial and mil-

itary aircraft electronic systems, and to the still broader questions of olec-

tronic reliability. These presentations provided a framework for the more

detailed working group deliberations that followed. The overview session

opened with an introductory presentation by Dr. J. F. CreedoN, wel(om-

ing the participants to Langley and reviewing the goals of the workshop in

the context of the NASA- Langley research program. The followillg presen-

tations addressed research needs that result from increasing use of digital

systems tbr primary flight controls. This increased use is accon_panicd by

an incre;ise in the complexity of flight control systems that inclttdes move

intcgrati(m of flight controls with other subsystems (e.g., propulsion control,

stores management). New requirements for system-wide integrily man_e-



ment including coverage of generic failure modes and threats due to elec-

tromagnetic interference are being established. These newer requirements

translate into a disproportionate increase in design effort making concurrent,

multidisciplinary engineering teams and early analysis of computer system

dependability properties necessary. The presentations challenged some com-

monly held notions by, for example, showing that system failures in a sample

of fielded systems were not caused by coding errors but by other elements of

system implementation. The presentations also emphasized the human side

of the system development process where communication and understanding

between engineering groups must be enhanced to effectively support the in-

tegration of large systems. The visual aids for these talks are reproduced in

Appendix A.

The heart of the workshop was the second part where the working groups

met in three half-day sessions. The participants were asked to preselect

a working group, and there was enough self-selected participation in each

working group to form a viable group for each working group topic. Each

working group was chaired by an industry representative except for the soft-

ware group which was chaired by a university professor. The first half-day

session was assigned according to each participant's stated preference. The

second and third half-day working group sessions were open to further atten-

dance selection at the participant's prerogative. Although there was some

movement between groups, most of the participants chose to stay with their

initial selection. There were seven working groups which represented generic

elements of flight-critical system design and validation. The seven working

groups topics were as follows:

• Aeronautical Requirements

• Space Requirements

• System Design For Validation

• Failure Modes

• System Modeling

• Reliable Software

• Flight Test



The aeronautical and spacerequirement working groups addressedthe
levelsof dependability (e.g.,performanceandreliability)that must beachieved
in order that flight-critical digital systemscan fulfill usefulroles in their re-
spectiveflight regimes.The systemdesignfor validation working group ad-
dressedhowflight-critical digital systemtechnologycanbemadea part of the
initial vehicledesignthus escapingthe traditional "add-on" role of electronic
systems.The failure modesworking group addressedhow the variousfailure
modesimpact the designof digital systemsusedin flight-critical applications.
The systemmodelingworkinggroup addressedthe modelingtechniquesand
support tools that are required to permit designersto adequatelyjudge the
merits of different systemdesigns. Systemreliability modeling formed the
bulk of the modelingdiscussionswhichmayreflect the emphasisthat hasbeen
placedon that aspectof fault-tolerant digital systems.The reliable software
working group addressedhow softwareshouldbe treated asa componentof
flight-critical digital systems. The flight test working group addressedthe
role of flight test in demonstrating the acceptability of flight-critical digi-
tal systems.The following section is devotedto the detailed reports of the
working groups.

The third part of the workshopwasa half-day summary of tile research
issuesfound by each group. This was presentedby each working group
chairmanspeakingfor his group. A viewgraph style summaryof the major
findings is presentedin Appendix B. Thekeyrecommendationswereprovided
by eachworking group chairman. Appendix C contains a list of workshop
participants. A further condensationof the issuesand recommendations
over all the groups is presentedin Figures 2 and 3. The purposeof this
documentis to presentthe issuesand recommendations,sincethey represent
the dedicated labor of somevery knowledgeablerepresentativesfrom the
aerospaceindustry and will beof valueto the industry as it finds its way in
tile ageof flight-critical digital systems.



December 13_ 1988

!):()0 a.m. -- 12:00 noon: Opening Session (Overview Talks)

9:00

9:30

10:00

10:30

11:00

11:30

Dr. J.F. Creedon, NASA Langley Research Center

Dr. Thomas B. Cunningham, Honeywell Systems Research Center

Dr. Carl S. Droste, General Dynamics

Mr. Jim Treacy, Federal Aviation Administration

Mr. Larry J. Yount and Mr. Richard F. Hess

Honeywell Commercial Flight Systems

Mr. Richard S. Ullman, ITT Defense Technology Corporati,)n

1:00 p.m. -- 5:00 p.m.: First Parallel Working Groups Session

• Requirements for Flight-Critical Digital Systems - Aeronautical

• Requirements for Flight-Critical Digital Systems -- Space

• System Design for Validation

• Failure Modes

• System Modeling

• Reliable Software

• Flight Test

December 14_ 1988

8:30 a.m. -- 12:00 noon: Second Parallel Working Group Session

1:00 p.m. -- 5:00 p.m.: Third Parallel Working Group Session

December 15, 1988

8:30 a.m. Chairmen's Reports

12:30 p.m. Workshop Adjourns

Figure 1: Workshop Agenda
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Lack of fully effective design and validation

methods with support tools to enable engineering

of highly-integrated, flight-critical digital systems

Lack of high quality laboratory and field data

on system failures

Figure 2: Summary of Issues Common to Many Working Groups



Collect and analyze data for both operational and

experimental systems

Evaluate the cost-effectiveness of design and

validation technologies

Provide an easy-to-use, integrated, and validated

environment of tools, guidelines, and results

• Establish criteria for EME validation

Figure 3: Summary of Recommendations Common to

Many Working Groups
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2 Summary of Working Groups Recommen-

dations

2.1 Working Group Goals

The seven parallel working groups addressed the topics of aeronautical and

space requirements, system design for validation, failure modes, system mod-

eling, reliable software, and flight test. The participants in each working

group represented industry, government, and academia. The relative repre-

sentation is given in the viewgraph-style summary in Appendix B. To pro-

mote a lively examination of ideas and issues within each working group, the

working group minutes were taken without attributing the items discussed

to individuals or organizations. Each working group report is presented un-

der the names of three participants who were responsible for both guiding

and summarizing the working group discussions and for compiling the report

provided in this section. This team consisted of a working group chairman,

a representative from the Research Triangle Institute (RTI), and a NASA

Langley Research Center (NASA-LaRC) sponsor. The chairman, who in the

majority of cases was from industry, ran the session and ensured that the re-

port captured the proceedings of the working group. The Research Triangle

Institute representative captured the meeting minutes and drafted the work-

ing group report. In all except one case, the RTI representatives had actively

participated in research and development related to the working group topic

being addressed. The NASA-LaRC sponsor handled any problems that arose

and ensured that the working group meeting and report met the objectives
set forth.

Each working group addressed three groups of research issues. The first

group of issues are associated with urgent problems where there is not time

to mount a research program and for which some interim solution is the

best result that can be expected. The government role would be supportive

in providing results of previous/current research and perhaps demonstra-

tions/evaluations of interim solutions. The second group is composed of

research issues associated with longer term problems which are amenable to

being addressed by deliberate research programs. The results of the research

could be aimed at bettering current practice or at solutions to problems

which ar(' anticipated to become critical in the near future. The third group



are research issues associated with problems that may become important at

some more distant time because of a slowly developing technology or because
of some foreseeable market demand.

The following subsections are the working group reports. Although there

was a cross-group transfer of participants, the reports have been, for the

most part, independently generated by separate groups. Issues and recom-

mendations that appear in many reports can be judged to have a somewhat

universal recognition by the total workshop.

IO



2.2 Working Group Report

on

Requirements For Flight-Critical Digital

Systems- Aeronautical

Chair: John Todd, Douglas Aircraft

Co-Chair: James Kelly, NASA-LaRC

Coordinator: Jill Hallenbeck, RTI
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2.2 Requirements For Flight-Critical Digital Systems

- Aeronautical

2.2.1 Introduction and Overview

The rapid introduction of digital avionics to jet transportation has been most

profound. Almost every function associated with the operation of recently

manufactured aircraft involves digital monitoring and processing techniques.

The susceptibility of these newer digital systems to electrical transient effects

appears to be higher than that of their older analog counterparts. Recently,

the growing concern of upset to flight-critical, fly-by-wire (FBW) control sys-

tems in military aircraft has been highlighted in technical journals and the

media by reports of high-energy radio frequency (RF) (HERF) fields insid-

iously inducing control-system failures that resulted in loss of aircraft and

life. Additionally, lightning whose encounters are random and even less fre-

quent, can produce more intense voltages and currents for a much shorter

duration that, in turn, can also cause upset. Thus, effects of the electromag-

netic (EM) environment produced by lightning could be even more insidious

than effects that have been shown to be caused by man-made RF radiators

(radar, microwave, television, radio, directed energy weapons).

The most dramatic news to hit the EM compatibility (EMC) community

in some time is the recent revelation that a number of flight-critical, FBW

control systems are highly susceptible to radiated EM energy. Conclusive

proof is hard to come by as system upsets (i.e., nuisance disconnects, actua-

tor movements, etc.) usually occur at significantly lower energy levels (light-

ning currents, RF field strengths) than energy levels that cause component

failures, leave no trace, and are very often nonrepeatable. The problem of

designing highly reliable, maintainable, and lightweight FBW flight controls

is further complicated by the following technology trends.

Two recent trends in technology have increased the probability of digital

system upset. First, commercial and military aircraft (including rotorcraft)

are employing far greater percentages of composite materials, which inher-

ently provide less low-frequency shielding within the Faraday cage provided

by the airframe. Second, the increasing number of modern digital systems

are turning to more densely packaged integrated circuits (ICs) that operate

at lower powers and higher speeds and to more and more complex software.

The susceptibility of these devices is usually evidenced by the response to

12



an undesired transient voltage that creates any unwanted logic state which

shows up on the system output. In general, IC susceptibility is dependent

not only upon the incident source's amplitude and frequency, but also on the

system's circuit values, clock rate, pulse width, pulse repetition frequency,

bandwidth, loop gain, and flow rate of information processed by the device.

Despite these trends, the performance and weight requirements imposed

on military aircraft necessitate the use of FBW flight and engine controls.

2.2.2 Critical Issues

The first issue before the working group was to come to a common under-

standing on a few important issues. The first of these is

2.2.2.1 What is a flight-critical digital system?

The working group discussed a wide variety of topics, including:

1. Reliability requirements

(a) Commercial: 10 -9 /Flight/Hour

(b) Military: 10 -7/Flight/Hour

2. Commercial Aircraft Goal

(a) Never in fleet lifetime will you lose an aircraft

3. The system is required for safe flight while engaged

4. Flight-critical systems are not necessarily required for the _'ntire term

of the mission

5. What/who drives the requirements?

(a) government

(b) liability

(c) industry

(d) consumers

13



6. If a flight-critical systemfails, will you necessarilylosethe aircraft?

7. Are developmentapproachesdifferent or the same for military and
commercialaircraft?

(a) Are the processessimilar?

(b) Are there different criteria?

(c) Are differentarchitecturesemergingfor each?

8. Doesn't the definition of flight-critical changedependenton

(a) Is the systemneededthroughout the mission?

(b) Is the systemonly neededduring part of the mission? (e.g.,land-
ing system)

(c) If you losea systemthat wasn't critical, but its lossconfusesthe
pilot and/or crew in chargeof taking alternative measures,does
the systemthen becomeflight-critical?

(d) Is the systemconditionally necessaryonly if it hasbeenswitched
on? (e.g.,automatic pilot)

(e) Overall Mission Reliability

i. Military - Peacetime

ii. Military- War time (e.g.,mayfly with failures if on a critical
mission)

iii. Commercial

2.2.2.2 Flight-critical digital systems

The working group lists the following digital systemsasflight-critical.

1. Primary FBW/Fly-by-light (FBL) Flight Controls

(a) actuators

(b) signaling

(c) computers

(d) sensors

14



(e) powersupply

(f) controllers, flight deck

2. Full-authority digital enginecontrol (FADEC)/Electronic EngineCon-
trol (EEC)

3. Primary Flight Displays

2.2.2.3 Flight-critical digital functions

The working group lists the following digital functions as flight-critical in

their opinion.

1. Aircraft stability and control (augmentation).

(a) Enhance stability

(b) Establish stability

2. Propulsion Control (Is this critical for multi-engine aircraft?)

3. Integrated Flight Propulsion Control

4. Flight Displays

5. Structure Load Limiting/Static & Dynamic Stability

6. Stores Management

7. Configuration Management

2.2.2.4 Flight-Critical Systems Implementation Requirements

To achieve a design of a "safe" flight-critical system, the following re-

quirements must be met.

1. Th,' designers must prove that their system will always recover from

any and all non-hard faults reasonably quickly.

15
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The pilot must be integrated into the system design process. He and

the crew are the users of the system and are responsible for normal

operation and for taking alternative actions in abnormal situations.

Well-formed and correctly implemented specifications are absolutely

necessary.

4. A method to verify the completeness and consistency of specifications
must be established.

. Up-front analysis must be performed before functional specifications

are written. How do you get the airlines/government to express their

requirements adequately so that a functional specification can be writ-
ten?

. A requirements methodology, which outlines structured methods for

building requirements suitable for simulation and designed for auto-

matic testing of the requirements, must be developed. This approach

also applies to the design methodology.

2.2.2.5 Discussion of issue areas

The working group decided to spend its time discussing the following

eight topics and related subtopics. They are presented here in the agreed

upon order of importance to the working group members.

1. Fault tolerance/redundancy management:

(a) fault monitoring

(b) fault detection

(c) fault masking

(d) fault isolation

(e) fault types and specifications

(f) system architecture

(g) fault recovery

2. Functional specifications

16



3. Requirements methodology

4. Design methodology (for safety)

5. Prove/demonstrate reliability and survivability

6. Validation and verification

7. Certification basis

8. Maintenance (system availability is equivalent to the self-test result)

Discussion summaries of each of the issue areas follow.

2.2.2.5.1 Fault tolerance

As with other flight-critical systems, one of the primary requirements

of FBW flight control systems is that they must be capable of sustaining

hardware and software faults and still be fully operational. Over the past

decade a number of approaches have been utilized to address this require-

ment. They range from very simple schemes where "sufficient" redundancy

on critical components and extensive voting are used to "mask" faults to

more complex schemes involving fault detection, isolation, and some form of

system reconfiguration.

The simplest scheme is unacceptable for several reasons. First., the level

of "sufficient" redundancy is very difficult to define due to the large number

of potential failure modes possible in FBW systems. Second, a high level

of redundancy is required to mask faults in all critical areas. Third, as

undetected and uncorrected faults accrue, the level of redundancy and thus

the reliability of the system falls off rapidly as a function of flight hours.

Therefore, effective fault detection is a necessary first step in sustained FBW

system reliability.

It is evident that any flight-critical fault-tolerant computer system m_lst

be able to handle software and hardware faults. Furthermore, it ._hould be

capable of dealing with coincident multiple faults to a reasonable extent.

Except in the case of purely static redundancy where faults are maske(l via

voting/signal selection, all fault-tolerant systems must be able to detect and

isolate faults. To accomplish this task, sophisticated and overlapping fault

detection techniques are required to provide near unity coverage. The extent

17



of coverage overlap will depend on the importance of the operation and the

redundancy of components in each portion of the computer system. Obvi-

ously the greater the coverage, the more complex our system becomes, so

some trade-off must be made between system complexity and adequate fault

detection. The trade-off criteria will depend to some extent on how the

system is designed. Furthermore, coverage criteria will need to be further

defined to better address generic faults issues.

Particular areas of discussion were

1. Types of Faults

2. Upsets

3. Lightening

4. "Hiccup"

It became clear from the discussion that everyone did not have the same

understanding of terminology for describing faults and failures and rather

than spend a lot of time not agreeing, the working group agreed to disagree,

but to standardize the discussion to include the following two "definitions".

1. Fault - any condition which tends to degrade the operation of any part
of the system.

2. Failure - the inability of a system to perform its intended function.

Further threads of this discussion

(a) What are the requirements for digital flight systems (from actua-

tors to sensors)?

(b) Probabilities are associated with requirements - if you can't prove

it should you build it? How do you obtain statistics about faults

(common mode - environment, design, power spikes, lightning,

specification, non-stationary)? How do you predict fault statistics?

What are the marginal areas which can be affected by research?

(c) What is the probability of occurrence of generic hardware faults?
Is this the bottom line?

(d) Where do you put your redundancy?

18



(e) If you can't tell how reliable somethingis do you automatically
add back-ups?

i. Do back-upsonly provide a psychologicaladvantage?
ii. Haveback-upseverpaid their way?
iii. Availability of back-up:

A. Back-upis a form of redundancy
B. Back-upsjust point to the needfor high reliability of pri-

mary systems
C. Back-upsmaybeshouldn't be automatically switchedon

- pilot shouldhaveswitch - if hecan't flip it - then failure.
D. Thereis aneedfor reliability figuresin the areaof back-up

systems.

(f) How long shouldrecoverytake?

(g) Requirementsmayneedto stateprobabilities (occurrenceof some
kind of fault under someconditions) to usein design.

We draw on past experience. Each system is new, but past experience

is used as a starting point. Each company has decided on reliability figures

so that each design effort isn't a big research project, but these figures are

company confidential.

NASA-LaRC needs to know experience of companies which is kept secret

from the public, FAA, and other companies. They need a list of expected

faults. These faults seem to vary in importance from company to company.

System reliability analysis output needs to drive testability requirements.

Where is built-in test (BIT), self-test? How much?

2.2.2.5.2 Functional specifications

The proliferation of critical digital flight control systems has evidenced a

number of new, potentially catastrophic failure modes not encountered with

conventional mechanical and analog control systems.

Look at field data rather than other academic "studies" (e.g., multi-

version). In general most companies wilt not release information except to

NASA-LaRC, and then only under certain conditions.

FBW allow improvements in controls (e.g., sticks, input devices).

19



The pilot is a critical part of the system. His stressand workload vary
throughout theflight/mission. Heis the monitor of genericfaults. In general,
what shouldbeassignedto the pilot? Howshouldhebe involvedin the design
process?

With specifications,it is hard to tell whether "all the basesarecovered".
Even if the specificationis complete,how doyou know if it is corrector not.

Standardizedspecificationcheckers,stylesheets,and possiblya MIL stan-
dard areneededto validate specifications.Specificationscan be a sourceof
defectsin the implementation.

2.2.2.5.3 Requirements methodology

If the output of the requirements phase of a design methodology is an

executable specification, the designer could then build a model from the

specifications and test the specifications. If the specifications are consistent,

then you can test them and find any errors. Do available tools adequately

support real-time systems?

Proof of correctness efforts and structured programming are two areas

that aid the requirements methodology.

2.2.2.5.4 Design methodology

Today's systems have too many states for a designer to process by hand. A

need for a structured approach to process a design specification is recognized.

Tools to help designers through this process are an immediate need.

The use of design languages, graphics, and possibly English should be

used in specifications to "cut out the middle man" and make specifications

more readable and therefore more understandable to the designer. If the

specifications are immediately understandable to the designer then errors will

be found more readily. (Refer to Communications of the A CM, September

1988, Alan M. Davis, "A Comparison of Techniques for the Specification of

External System Behaviors", pp. 1098-1115.)

There is a need for structured methodology tools, which can verify for

correctness and which support traceability. These tools should support hier-

archical representations, automate code generation/logic synthesis, and pro-

vide a library of reusable, reliable, and validated modules for both hardware
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and software.

2.2.2.5.5 Demonstration of reliability/survivability

Optimum protection of critical digital aircraft systems requires both sur-

vivability and recoverability from faults resulting from EM as well as other

causes. For EM induced faults it appears that the use of many different pre-

vention and tolerance techniques may be necessary to harden flight-critical

digital systems to high confidence levels. If properly implemented, these high

protection levels can be achieved with little or no weight and cost penalties

while improving system reliability and maintainability.

The working group felt that the following topics were important in this

discussion

1. Accelerated life testing of environmental effects

2. Synthesize

3. Analysis from experience of similar systems

4. Degradation of system over time

5. Reliability of software

6. Failure Modes and Effects Analysis (FMEA)

Accelerated life testing is important because of the large number of pos-

sible faults and the apparent random appearance of environmental factors

that create a situation where these faults manifest themselves.

The ability to create testing facilities with control features is extremely

important to our understanding of the environmental phenomenon. These

facilities are extremely expensive. Unfortunately, specifications are vague be-

cause knowledge about unexpected (low probability) phenomenon is limited.

The problem of modeling what is not understood was discussed briefly.

Designers depend a great deal on experience gathered from existing sys-

tems when designing a new system. Experience is what minimizes _ecurrence

of the same mistakes.

Systems degrade with time, therefore systems need to be tested through-

out their lifetime, adding to the life cycle expense, while also adding to the

pool of knowledge from which designer's will draw.
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How doesonebegin to show the reliability of software? How susceptible

is software t,o random generic common mode faults.

How good are the models for FMEA analysis? Is physical fault insertion

good enough? Can enough information be gained by this process? There are

the problems of "building it" to "try it", a very expensive proposition.
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2.2.2.5.6 Verification and validation (V & V)

The working group felt that this topic was too big for them to accomplish

much in the remaining time, so a list of items were compiled for discussion

at a later date.

1. How much is enough?

2. When do you quit?

3. When can you quit?

4. How can the task be partitioned?

5. How can the risks be managed?

6. V & V crosses traditional boundaries of responsibility, how can this be

managed?

7. What tools are available? Must we rely on a "hot bench"?

8. How do you V & V interfaces?

9. How do you V & V complex subsystems?

Automatic theorem provers were discussed briefly. No consensus on the value

of this type of tool was obtained, but its proponents pointed to

1. use as an alternative to testing

"2. use for complementing testing

as benefits compared to traditional V & V.

Opponents referred to the

I. unknown reliability of new tools and techniques

2. dewdoping methodology for when to use these tools

3. "unprovable" parts of the system still need traditional testi_g

as reason to take the "wait and see" attitude about the developing technol-

ogy. Theorem provers have been successfully demonstrated on structured

software, but have yet to make significant headway on hardware, except that

produced by logic synthesis tools.
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2.2.2.5.7 Certification basis

As critical flight control systems have become more complex they have

evolved from pure analog implementations to include digital hardware im-

plementations and now microprocessor based software implementations. The

extreme complexity of a full time FBW flight control system virtually neces-

sitates the use of some type of microprocessor based software implementation

due to their great flexibility and computing power.

While microprocessor based software implementations are well suited for

FBW and autoland systems, they are difficult to verify and validate for cer-

tification due to their extremely large number of possible failure modes and

the indeterminate effects thereof. For a FBW system we would like to avoid,

if possible, the time consuming and costly low level software verification and

critical hardware FMEA verification, as well as exhaustive system verification
and validation efforts.

Specifically, the working group briefly touched on the following topics:

° FAA involvement during development. It is too late to plan certification

after design and development of a new system. The FAA and other

concerned parties should have plans prepared during development so

that certification can proceed smoothly. It is too costly to build a

system that can't fly.

. Basis for certification should be done before production is complete.

This point follows the same argument as above. Plans for flight testing

and V & V for certification should be complete before the first plane

exits the production line.

° Validation of new technologies. The FAA should continue to accept the

responsibility for looking at and approving new technologies. Standards

are needed so that future systems can be designed effectively.

° Validation procedure development. A methodology with specific guide-

lines is necessary to get a product through certification validation. This

methodology should follow the validation of a new technology or new

application of existing technologies.
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2.2.2.5.8 Maintenance

It is suspected that unrecognized (non-permanent) faults are, to a good

extent, responsible for unscheduled removals of aircraft digital equipment.

This suspicion is generally supported by maintenance figures which indicate

that for unscheduled aircraft digital equipment removals, less than 15% can

be traced to the reported failure and in roughly 50% no hard-wired failure

can be found. This trend accounts for the substantially lower Mean Time

Between Removals (MTBRs) of high Mean Time Between Failures (MTBF)

digital equipment. The direct result of these low MTBRs is higher mainte-

nance costs.

A goal for commercial airlines, as proposed by the working group, is to

have zero unscheduled maintenance of aircraft. A box is placed in the system,

tested periodically, but is never removed. A procedure for revalidation of a

system once it has been disassembled, fixed, and reassembled does not exist

and it is the general consensus that maintenance itself introduces d(_fects into

the system. System developers are depending heavily on BIT and self-test

for _ystem checkout, fault detection and system go/no-go testing on the flight

line, yet these are inexact technologies themselves.

On-card redundancy was offered as one way to accomplish some fault

tolerance that could allow the zero unscheduled maintenance goal.

A concrete goal: make boxes as good as the cables in current systems.

How can we establish EM interference (EMI) failure protection so that

this is a realizable goal?

2.2.3 Research Needs

2.2.3.1 Questions of interest

1. Identification and probability of colnmon mode failure: how do you

design to avoid common mode failure? Can you? Only in commercial?

How far can the system degrade? At all'? Should anybody (e.g., pilot,

crew) know?

2. How do we tolerate intermittent faults? Soft fault - spontaneous recov-

ery? No decision. What do we call it when a sensor starts to drift, but

has not left tolerance?

25



3. Definitions of fault types, e.g., soft/hard/intermittent/generic/common
mode.

4. How do we recover the system from common mode failures?

(a) How do we fail?

(b) Leave power level same?

(c) Go to back-up? De-emphasis?

(d) Reconfiguring is a way to recover

(e) Common mode failures

5. How do we model environment?

6. How do we test environment? What are the needed environmental

specifications? How much? (Some work has to be done here.)

7. How do we achieve high dispatch reliability? How high a MTBR should

be required?

(a) How high with need for any maintenance?

(b) As good as cables (inspect periodically)?

(c) Never touch "Black Box"?

(d) Environment changing too fast?

8. How do you maintain a critical digital system?

9. How fast does the system have to recover?

10. Itow long do you need to endure an intermediate transient fault?

11. How often do the various types of faults occur? (Basis for our esti-

mates.)

12. How do we integrate user perspectives in systems design (i.e., pilots,

flight crew)?

13. How do we capture the coupling effects of an integrated control system

in a function specification?
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14. How do you write high-level requirementsfor integrated systems(i.e.,
flight/engine) that can be translated into realizablefunctional specifi-
cations?

15.

16.

How do we test for reliability (acc. life test) and survivability. Unex-
pectedsituations - What are they? What do you do about them?

Lossof function is driven by common mode faults/design errors. How

do we ferret out common mode faults early in the design phase?

17. How do you stress the system to bring out common mode/generic

faults?

18. On future complex highly integrated systems, how do we do the ex-

tensive verification and validation needed? How can we decouple task

verification and validation and then recouple?

19. Use automated theorem proving in addition to traditional test ing method-

ology. This emerging technology may prove very beneficial to the V &

V procedures currently in place.

20. How do we maintain a flight-crucial system over the aircraft lifetime?

21. How do you revalidate a repaired system?

2.2.3.2 Recommended research activities

The following is a table that represents the importance placed by working

group members on each recommendation for a research activity. The work

associated with accomplishing each of the recommendations should begin

within the next two years to meet the needs and requirements identified by

the working group.

Recommendations - how important are they?

H:

M+:

M:

L:

High priority

Slightly less than high priority

Moderate priority

Low priority
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Order
Discussed

2

3

5

Recommendation
NASA-LaRC should do an in-housecompilation
and analysisof in-servicereliability data for criti-
cal digital systemsand presenta sanitizedversion
to the public. Here, "sanitized" meansthat data
will not be attributed to a particular company,
event,or accident,so that reluctanceon the part
of contributors canbe minimized.

Obtain analysisand developmenttools. These
toolswill providemodelsandhelppredict fault in-
surance/fault tolerance/fault detectioncoverage.

Refine structured requirements methodology
tools. Somerudimentary tools have beendevel-
oped by industry, but are not availableand are
not reviewedoutsidethe developersworkingenvi-
ronment.

Obtainstructuredmethodologytools. Thesetools
will easethe documentationstruggle that takes
placeduring everydevelopmentcycle. Thesetools
needto provide traceability of requirementsand
"correctnessverification" features.

Increaseknowledgebasefor systemstresstesting
(random inputs, model noiseenvironment, etc.).
The biggestissuefacing membersof this commit-
tee is how the environment affects the systems.
With more information about environmental ef-
fects, systemscan be better designedto handle
the effects.

Priority
H

M +

L

L

H
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Order
Discussed

6

7

8

9

10

Recommendation
Developcostandtime effectivevalidationand ver-
ification philosophy for complex integrated sys-

tems. The designers and implementors of to-

day's flight-critical systems do not have a good

idea about how extensive the V&V process needs

to be to be adequate. This process is currently

very costly. Responsible maintenance organiza-

tions are also extremely concerned with revalida-

tion after reassembly and maintenance.

Validation of new technologies and background

testing for certification basis (increased confidence

level). The working group members are concerned

with the confidence they can place in new tech-

nologies and new applications of existing technolo-

gies.

Cost trade-offs for designing complex fault toler-

ant systems. How much time and energy should

go into each phase of the development cycle so

that the end product is safe, but the producer

can stay in business.

Validation and maintenance procedures of flight-

critical systems over life of aircraft. Much is heard

in the media about maintenance when there is an

air disaster, yet there are few established proce-

dures for safe maintenance. Developers of new

systems would like to achieve a goal of no unsched-

uled maintenance over the lifetime of the aircraft.

Electromagnetic environment (EME) propagation

analysis and testing and modeling for validation.

Again, how can we get models of the environment

validated so that developers can place high confi-

dence in system modeling?

Priority

H

M

M

M +

It
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2.2.4 References

Davis, Alan M., "A Comparison of Techniques for the Specification of Exter-

nal System Behaviors", Communications of the ACM, September 1988, pp.
1098-1115.

2.2.5 Abbreviations

BIT:

EM:

EMC:

EMI:

EME:

FADEC:

FBW:

FBL:

FMEA:

HERF:

IC:

MTBR:

MTBF:

I{.I_':

built-in test

electromagnetic

electromagnetic compatibility

electromagnetic interference

electromagnetic environment

full-authority digital engine control

fly-by-wire

fly-by-light

failure modes and effects analysis

high-energy radio frequency

integrated circuit

mean time between removals

mean time between failures

radio frequency
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2.3 Working Group Report

on

Requirements For Flight-Critical Digital

Systems- Space

Chair: Robert Gates, Martin-Marietta

Co-Chair: Howard Stone, NASA-LaRC

Coordinators: Robert Baker and Anita Shagnea, RTI
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2.3 Requirements For Flight-Critical Digital Systems

- Space

2.3.1 Introduction and Overview

High reliability has been required for the digital avionics systems used in life-

or mission-,'ritical space applications. Traditionally, reliability requirements

have been met using extensively tested single string systems built with S-

level parts and with backup components only for crucial single point failures.

Emphasis was placed on fault avoidance as opposed to fault tolerance. Sev-

eral factors contributed to this approach. The extraordinary premium placed

on system weight and power consumption was the primary factor dictating

a minimum of redundancy. Further, techniques to provide redundancy man-

agement were, in the past, crude and the associated hardware would have

represented a significant proportion of the avionics hardware. It was also

recognized that single string systems were much less complex and that ade-

quate single string systems could be designed and tested. Consequently, there

has existed a bias against the use of redundant fault-tolerant systems in the

space application community. The introduction of fault-tolerant systems into

these applications must not only be justified by performance and cost, but

also must overcome the reluctance to depart from established practice.

Tradition notwithstanding, it was the consensus of the working group

that technology advances in hardware, software, and fault-tolerant system

architectur¢_; the increases in lift capability; and the more demanding applica-

tion requirements dictate the need to reassess requirements for fault-tolerant

avionics. There is good reason to expect that fanlt-tolerant avionics systems

will play an increasing role in space applications.

Applications whose requirements were considered in the working group

included the aerospace plane, the shuttle, launch vehicles, earth orbiting

satellites, space station, and planetary craft. However, the discussions were

predominantly directed toward the requirements of the joint Air Force/NASA

Advanced Launch System.

2.3.2 Critical Issues

2.3.2.1 Figures-of-Merit AppropriateFigures-of-Merit (FOM) for avion-

ics used in space applications was the first topic considered in this working

group. No single FOM was identified for all applications. Rather, several
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FOM's must be consideredand the specificFOM's that areappropriate de-
pendupon the characteristicsof the specificapplication. Reliability require-
mentsfor a number of applicationsresult in systemfailure ratesof 10-7 to
10-l° failuresper hour, putting thesesystemsinto the very- to ultra-reliable
range.

It was noted that for launchvehiclessuch failure rates for the avionics
wouldbe inconsistentwith the overallfailurerate of the vehicleandthat often
political and emotional considerationdrive reliability requirementsrather
than cost and technical considerations. Fuel systems,engines,and other
mechanicalsystemsall fail at rates several orders of magnitude higher than

these numbers. The goal for the ALS avionics was in the range of 10 -5

failures per hour, which in turn was substantially lower than that for the rest

of the vehicle.

It was further noted that the cost to validate such a system (10-1°), if

indeed such a system could be validated, would be staggering by present

approaches. It was stated that reliability requirements established should

result in minimum life cycle costs. Presently, the cost of the avionics on

a launch vehicle is a small percentage of the cost of the vehicle and the

opinion was offered that the current avionics equipment is overqualified. The

equipment has survived vehicle explosions and has continued operation. Since

cost of this equipment is relatively small, the tendency has been to make

certain that an expensive vehicle would not be lost due to such an inexpensive

component.

The sensitivity of system reliability to the system recovery parameters

such as coverage on short missions was discussed. It was noted that even

long missions are punctuated by brief periods or mission phases requiring

high reliability. During these phases, coverage would become an issue. Cal-

culations indicate that changing the coverage parameter from unity proba-

bility of recovery to a recovery probability of .9 can change system reliability

by several orders of magnitude for short missions and very high reliability.

Consequently, particular attention must be given to the design o|" self test s

and built-in test and evaluation (BITE) for these applications. It was not_'d

that achieving coverage approaching 100% is extremely difficult in practice.

Industry representatives described an approach or philosophy used by 3_'t

Propulsion Laboratories on certain space applications which de-emphasized

evaluating reliability. Instead, systems were designed to have no single point

failures unless the director approved each instance where a single point failure
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could occur. Systemswere two-failure tolerant excluding theseexceptions.
It w;_spointed out that this philosophycould lead to costly systemsand in
somecaseshad the potential to reduceoverall systemreliability.

rib evahlatereliability, the classesof faults or fault types against which
system fault recoveryand fault masking is effective must be specified in
systemrequirements.With the environmentalstressesthat accompanyspace
applications(thermal, mechanical,radiation, etc.), simplepermanent "stuck-
at" fault modelsare not adequate. More complexfault behavior suchas
transientsmust be considered.The potential valueof the Byzantin_,resilient
systemswhich are capable of handling arbitrary fault behavior for a set
numberof simultaneousfaults wasdiscussed.

Industry representativespointed out that for launch vehiclesthe range
safetyrequirementsdictate moredemandingdesignconstraintsthan do the
reliability requirementsfor missionsuccess.

2.3.2.2 System Costs and Testing Currently, a substantial part of the

costs for a space mission is devoted to testing. In some instances systems are

subjected to excessive testing to the extent that system life could be reduced

by the tests. Each unit undergoes complete burn-in tests, shock tests, and in

some instances tests only appropriate for the development models. Testing

continues up to launch time.

It was noted that multipath redundant avionic systems could potentially

reduce testing requirements. If their use could eliminate full testing of every

unit, recurring system costs would be reduced.

Tile computer performance requirements for flight control of launch vehi-

cles are not very demanding. Excess capacity in the digital computer collld

be used to incorporate features which would lead to a reduction in overall

launch systems costs as opposed to the cost of the avionics system. The

cost of added complexity in the avionics system could possibly be offset by

reduced costs in prelaunch testing and mission planning. Adaptive guidance

and control, embedded health monitoring, system history logging and auto-

mated test and checkout are among the candidate features for the avionics

system which could reduce overall launch costs but would increase the avion-

ics system costs.

Due to the previous bias against multipath systems in the space commu-

nity, development tests should include "piggy-back" tests on flight vehicles
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using conventionalavionics. In thesetests, the multipath systemwould per-
form all the functions and results would be comparedto the conventional
system. The conventionalsystemwould control the vehicle. This would al-
low many of the concernsregardingmultipath systemsto beexaminedand
resolvedwithout making what would beconsidereda large, risky change.

2.3.2.3 System Engineering and Integration Many of the testing

and validation problems that impact current systems are related to the in-

tegration and testing of computer systems. It was felt that while individual

subsystems could be demonstrated to meet their requirements, the problem

of establishing that a system met overall requirements was much more dif-

ficult. The complexity of system designs and the interdisciplinary nature of

modern systems (digital systems, software, advanced sensors, RF systems,

etc.) contributes to this problem. A clear need exists for methods, tools,

and facilities to support system engineering and integration. It was felt that

some of these issues were of the scale that they could not be addressed by

individual companies.

In addition to systems integration, concern was expressed over the need

for validated design tools which can manage the complexity of modern sys-

tems while satisfying the need for systems reliability. It was recognized that

the existing high level commercial design tools such as silicon compilers, soft-

ware language compilers, control system design tools, etc. all have been de-

veloped with performance and functionality as requirements. Requirements

for reliability, fault tolerance, validation, and testability were not considered.

It is not known to what extent these tools could affect systems design in

these areas, but the potential exists to introduce design faults which would

reduce system reliability. With each high leverage design feature provided

by these tools, a sequence of lower level desig_ decisions are automatically

made. These lower level design decisions were made to satisfy performance

and functionality requirements, not to satisfy any of the many other require-

ments characteristic of mission-critical applications.

In this regard, some concern was voiced about the mandated use of Ada

for future systems, even though Ada is recognized as having substantial ad-

vantages for system development.

A need for methods, tools, and facilities for rapid prototyping of systems

was also identified in the working group. Again this was viewed as an area
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beyondthe resourcesof a singlecompany.

2.3.2.4 Future Systems Requirements for more advanced systems with

more autonomy is the trend for space applications. As a result, systems to

meet these requirements are more complex, have greater throughput require-

ments and have more demanding reliability requirements. Intelligent systems

will be necessary to meet mission objectives. All phases of the system de-

w'lopment process will be affected. However, a good deal of concern was

expressed regarding the testing and validation of intelligent systems.

2.3.3 Research Needs

The following tables summarize, in order of priority, the urgent and longer

term research needs identified by the working group.

URGENT ISSUES (NEXT 2 YEARS)*

• What is appropriate figure-of-merit for system design? Factors

include cost, reliability, time, coverage, and availability

• Define approach to specifying parts levels (Class S vs Class B)

• Limit scope of production testing for multipath production

acceptance testing

• Adequacy of fault coverage via bit/self test (example VLSI _ less

than 90%) for advanced fault-tolerant systems

• Integration of new environments into design process -

e.g., S.E.U. and E.M.E.

• How suitable are dissimilar designs?

• Use of Ada in multi-path systems

- Rendezvous

- Real time

*Prioritized
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LONG TERM ISSUES (NEXT 5 YEARS)

Increased emphasis on integration research

- Health monitoring interface

- Validation of adaptive GN&C/intelligent systems

Plan to educate regulatory organizations and key management

people on multi-path systems (requires identification of approval

wickets)

• Establish criteria/architecture for lift-off with known

failures to increase availability

• How to insert modern technology in a long term space program

• Specify more comprehensive fault models including transient

and hardware/software design faults

Concern that modern, high leverage design methods/tools

can contribute unreliability to multi-path systems (e.g.,

unintended redundancy from compilers and graphic circuit

design programs)

• Define recovery approaches during prelamwh phase and

for reusable vehicles
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on
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Chair: Gerald C. Cohen, Boeing Advanced Systems

Co-Chair: Dan Palumbo, NASA-LaRC

Coordinator: Joanne Bechta Dugan, RTI
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2.4 Design for Validation/Verification Working Group

2.4.1 Introduction and Overview

Validation refers to the process by which the system requirements (from

which the specifications are derived) are shown to be correct. Verification

is the process by which a system is shown to meet the given specifications.

Demonstrating that a system meets the given requirements is not the same

as showing that the system will perform the desired function, as it does not

guarantee that the requirements themselves are correct. The working group

on Design for Validation and Verification (V/V) was charged with discussing

how to design a flight-critical system so that it can be validated and verified.

Several classes of issues were discussed, commencing with an assessment of

current design methodology, and the need for better systems engineering.

Many participants voiced a desire for a set of design guidelines that would

facilitate V/V. Two of the many chronic V/V problems were discussed, the

first being the need for a suitable language for requirements definition, and

the second being the need for reliable failure data on new technologies. The

working group spent the largest portion of time discussing the need for an

integrated set of tools to aid in the design of verifiable and validatable flight-

critical systems. Many of the other issues were then couched in terms of

the integrated tool set. Each participant was asked to list the research issues

thought to be the most important; the lists were then consolidated and prior-

itized (by majority vote). Each of these classes of issues will be summarized

in subsequent sections, followed by the prioritized listing of research goals,

and a discussion of the issues relating to the integrated tool set.

2.4.2 Critical Issues

2.4.2.1 An assessment of the current situation The working group

meeting began with several participants discussing problems associated with

recently developed systems, in that systems have been plagued with (()st

overruns, late delivery, etc. A major cause of schedule delay was felt to b(" lhe

digital electronics systems. One participant stated that late design changes

to a particular system were causing 1500 wiring changes to be performed

per day, while the actual embedded computer was accounting for between 5

and 15 percent of the entire system errors. The conclusion of this discussion

was that a move must be made toward a total system engineering design
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environment. This approachwould reduce"sideeffects"from designchanges,
and wouldenforcetraceability of design changes throughout the hierarchy of

design. (This same feeling was expressed during the opening session of the

workshop).

Many of the participants from the commercial side of aviation were in-

terested in hearing from those who have been designing military systems, as

they have been using FBW technology for some time. The desire for a com-

pendium of experience gained and lessons learned from the military systems

was expressed. It was thought to be extremely useful to gather and analyze

data especially with respect to failure rates and modes. The participants

were skeptical as to whether such a project could be realized, however.

2.4.2.2 Design guidelines Another major topic of discussion concerned

the development and utilization of guidelines for designing systems that are

inherently verifiable and validatable. As an example, several participants

spoke of designing deterministic systems by avoiding the use of preemptive

scheduling, interrupts and floating point numbers. The rationale behind the

use of such restrictive guidelines would be the elimination, possibly, of a large

number of required simulation runs. An extremely large number of simulation

runs is required to obtain anomalies through the statistical runs (known in

the avionics arena as "rare event data."). The large number of required

runs can be easily demonstrated. If the requirement state that the system

failure rate for a flight-critical system be less than 10 -11 (failure rate of the

structure) for a 6 hour mission, then 10 -13 simulations are required to obtain

the rare event data. Obviously this number is impractical and techniques

must be found to reduce it, possibly by variance reduction techniques such

as importance sampling.

One participant suggested the following example set of guidelines for de-

signing a verifiable and validatable system:

Layered hierarchy of computing functions.

From the application layer down to the silicon layer, each layer should

be strongly verified and should have tight, consistent interfaces to adja-

cent layers. There should exist fault-tolerant capabilities at each layer.

• Isolation of ultra-critical fi,nctions.

l"or special protection, ultra-critical functions should be kernalizcd.
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TraceableDependencies.
To support validation of design modifications, dependencies among

function modules should be logically traceable. (The issue of trace-

ability was raised many times in subsequent discussions.)

Smoothly degradable behavior.

Efficient trade-off between multiprocessing for high performance and

fault tolerance.

Run-time testability and observability.

The assumed attributes of each component should be testable at run

time. That is, if a certain behavior was assumed to be impossible or

certain, this behavior should be observable at run time, so as to verify

the correctness of the assumptions and to assure the adequacy of fault

tolerance.

There was a large degree of interest in developing a standard library

of building blocks, each of which is formally and completely verified and

validated. The functions implemented should be general enough to allow

widespread usage. Each module should have formal specifications and generic

designs, with provisions for modification and re-verification. Custom systems

would be built by connecting the blocks and verifying the connections.

Participants also desired a set of guidelines for using new technologies

and methodologies, such as N-version implementations, design diversity by

dissimilarity, designing integrated vehicle management systems, etc. The

development of such guidelines were recognized as research issues, and will

be discussed in the section where the prioritized list of research topics is

presented.

2.4.2.3 Specific V/V problems Two recurrent problems in designing

for V/V were discussed; the first has a simple but economically impractical

solution, while the second appears to have no satisfactory solution. The first

problem arises when trying to assess the correctness, performance or relia-

bility of a system using new technologies, in that it is difficult to predict

component failure rates, failure modes and possible erratic behaviors. The

classic solution to this problem is to dramatically overdesign the system (for

example, in the Byzantine failure problem); this approach is frequently infea-

sible in systems that are constrained by cost, size, weight, etc. Tile efficacy
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for designing to withstand Byzantine failures was discussed. One participant

claimed to have never seen a Byzantine failure, while another claimed that

all redundant computers that have been built and monitored sufficiently have

exhibited Byzantine behavior.

One participant asked whether it would be feasible and useful to build a

fly-by-wire flight control system (perhaps with a mechanical backup) that is

extensively over-monitored, so as to obtain the needed data. There was near-

unanimous agreement that such an approach would produce badly needed

data. However, there was also near-unanimous agreement that such a system

would not be built by short term profit-minded management.

The second problem is the desire for a clear, precise language for require-

ments and specifications. From the software engineering perspective, studies

have indicated that errors in specifications or requirements are more costly

than any other kind of error. Specification languages have been developed

that are easy to use, but only for narrow applications. (See Rich and Waters,

"The Programmer's Apprentice: A Research Overview," IEEE Computer,

November 1988.) It is not clear whether the design of parts (or all) of a

flight-critical system is a narrow enough application for the development of

a useful specification language. Even if a specification language could be

developed such that the specifications could be shown to meet the require-

ments, only half of the problem would be solved, that being the verification

part of V/V. The problem of proving that the requirements themselves are

correct, consistent, and complete (the validation part of V/V) would still re-

main. The consideration of this problem was considered to be of paramount

importance to virtually all participants in the workshop. It was suggested

that perhaps rapid-prototyping could be at least a partial answer.

2.4.2.4 An Integrated Tool Set Several participants suggested the de-

velopment of an integrated tool set for system design as a valuable research

goal. Much of the session was spent discussing the desired attributes of such

a tool; as such the tool served as a stimulus for the discussion and priori-

tization of many research goals. Even though the development of such an

extensive tool set appears to be a rather lofty goal, it may serve as an agenda
for future research.

The most comprehensive presentation of the integrated tool set is dis-

cussed here. Most participants accepted this proposal as a valid starting
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point, but did not necessarilyagreewith each proposed point. A multi-
phaseprogramfor the development of the tool set was proposed, commencing

with the development of a formal language, in which the requirements for the

flight control system or vehicle management system would be expressed. This

language would be developed mindful of the goal of validation, and would

provide the capability for upgrading the requirements. The Integrated Tool

Set (ITS) would then be used to verify the correctness of the system against

the requirements and specifications at each design phase.

Phase I - Development of requirements and specifications for ITS. The

requirements should consider (among other characteristics) the size and

types of systems to be evaluated and verified, and the system charac-

teristics and parameters to be included.

Phase II - Critical issues (such as those listed in the prioritized list of

research topics) are identified and resolved.

Phase III - Development of an integrated set of tools for performance

and reliability evaluation of systems defined by the specifications. The

outputs of these tools should be in a form that is comparable to the

requirement specifications.

• Phase IV - Evaluation of the tool set. The set of tools, as well as its

integration should be rigorously validated and verified.

It was suggested that the development of silicon compilers for integrawd

circuit design might serve as a model for the development of an integraled

tool set.

The working group participants saw the development of a tool set as a

framework for enforcing guidelines for verifiable designs. The development of

such guidelines was assumed to be the major item on the agenda for future
research.

Part of the third working group session was spent compiling a list of at-

tributes that were desired in such an integrated tool set. The optimism of the

participants was evident during this phase of the discussion, as nearly every

conceivable attribute was suggested and embraced. It was envisioned that

the optimal tool set would nominally have the system requirements as the

input, a_ld would produce design specifications (via an interface to a (',AD
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tool) and a verification test set as outputs. The tool would support some

common language which would enforce traceability, support verifiable hier-

archical development and building block designs, and interface to reliability

and performance tools.

It was clearly understood that such an immense undertaking would re-

quire a long term monetary commitment from NASA and industry. It was

envisioned that NASA would serve as a central control point for tool devel-

opment, and would integrate tools and techniques researched and developed

by others into the tool set, and would support and maintain the tools after

integration. Such an undertaking also requires close ties with industry; in-

dustry should use the tools in good faith and provide feedback to NASA for

future improvements.

2.4.3 Research Needs

Each participant in the working group was asked to list the research items

deemed important for their work in design for validation and verification. The

separate lists were compiled and then were separated into two lists, based on

the desired reseaxch goal. Each of the items on the first list was characterized

by the desire for a set of guidelines for using new design techniques. These

items were designated (by majority vote) as high, medium or low priority.

The items on the second list were other research items to support design for
validation and verification.

2.4.3.1 Guidelines for New Design Techniques

2.4.3.1.1 High priority research items

• Failure containment, coverage, FMEA, redundancy management

Although much has been done in the area of assessing coverage and

assuring failure containment, this area continues to be a high priority

concern, especially in the face of increased integration of flight-critical
functions.

• Environmental effects

The topic of EME and IIERF research was mentioned by several dif-

ferent working groups. The major interest in the V/V group wins an
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assessment of the effects on the failure rates and failure modes of com-

ponents in flight-critical systems.

• Reusable building blocks

The concept of designing systems by utilizing a library of pre-designed

and verified building blocks has been generally accepted as a good idea.

The research needed in this area is in the methodology for developing

and combining building blocks and in the design, verification, and stan-
dardization of modules.

• Concurrent processing

Because of the inherent difficulties in verifying multiprocessor systems

(for enhanced performance rather than fault tolerance), concurrent sys-

tems are currently not approved for flight-critical functions. Techniques

for validation of concurrent systems is thus considered a high priority

item.

• N-version hardware and software

The concept of N-version and dissimilar designs needs to be addressed

more fully; for example, what are the relative advantages and disad-

vantages, is there an optimal N, and how can one quantify the merits.

• Guaranteed determinism

If systems can be guaranteed to be deterministic, the task of valida-

tion is simplified considerably. Research iuto methods for guaranteeing

determinism, even if some subsystems arc, nondeterministic, is needed.

• Complexity metrics and complexity reduction

A methodology should be researched and developed for partitioning

complex systems into more manageable units, perhaps hierarchically.

Issues concerning interfaces and failure containment must be investi-

gated.

2.4.3.1.2 Medium priority research items

• Integration concepts

As systems become more integrated, guidelines must be developed that

pertain to partitioning of the hardware, partitioning of the software,

and partitioning of functions between the hardware and the software.
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If multiple functions operate on the same computer or use data from

the same sensors for example, it is difficult to guarantee independence,

which makes verification and validation more difficult.

Validation of Modeling Assumptions

The participants of the design for V/V working group were concerned

with the concept of testing for the validity of assumptions made in

analysis.

Highly reliable communications

Reliable standard two-way real-time data communications networks

and development of applicable verification techniques is crucial to the

highly-integrated flight control application.

Performance/Reliability Tradeoffs

Guidelines for trading performance for reliability, and a tool which
would allow such trade-off case studies are needed.

2.4.3.1.3 Low priority research item Only one item was deter-

mined to be a low-priority research item, that of determining guidelines for

designing for smoothly degradable behavior. The problems to be addressed

in this area concern the restoration of the system following a transient er-

ror, and the derivation of bit-synchronous protocols that will allow graceful

degradation following an error.

2.4.3.2 Other research needs The research items in this section were

not considered to relate to the development of guidelines for design, but

rather were considered to be research items otherwise related to design for

V/V. This list was not prioritized.

Technology transfer

There should be increased levels of communication between industry,

military and NASA to define the lessons learned on past flight-critical

systems, covering such areas as redundancy management, performance,

backups, documentation, testing, failure modes. It was suggested that

a fuller interaction between NASA, industry and FAA personnel should

be promoted, so that research could be better focused on real problems.

Perhaps researchers could be placed in industry for a time.

46



VarianceReductiontechniques
Severalparticipantswantedto seeresearchcontinuein simulation method-
ology asapplicableto flight-critical systems.Someexampletopics in-
cludethe investigationof variancereduction techniquessuchasimpor-
tance sampling, and investigation of the useof parallel processorsto
speedsimulation run times.

SoftwareWaterfall techniqueasapplied to multiprocessingsystems
It is not clear whether current waterfall techniquesfor softwarespeci-
fication are appropriate for multiprocessingand knowledge-basedma-
chines.

Deterministic boundsfor non-deterministicbehavior
For what kinds of non-deterministicbehaviorcandeterministic bounds
be developed?

Formal verification
Work on formal verification should undoubtedly continue; its potentials

and limitations should be realistically evaluated.

Undocumented functionality

Some systems may provide more functionality than is documented.

This can pose a problem when errors on input pins cause the system

to go into internal test mode, for example.
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2.5 Failure Modes Working Group

2.5.1 Introduction and Overview

The goal of the failure modes working group was to identify industry needs

that relate to failure modes in flight-critical digital systems and to suggest

research programs to NASA-LaRC that will satisfy these needs. In other

words, what research help does industry need?

Motivation for this effort stems from the more extensive use of electronics

in flight-critical systems (flight control, engine control, cockpit displays, etc.)

in place of mechanical/hydraulic systems. This shift to electronics has un-

doubtedly created new failure modes that have not yet been discovered. For

example, it is evident that the failure modes in a fly-by-wire flight control

system are not the same as those in a mechanical/hydraulic flight control

system. All failure modes must be identified and understood in order that

industry be in a position to preserve safety. Such information will also allow

industry to improve aircraft reliability and maintainability, which will in turn

increase system availability and decrease system life-cycle cost.

The working group proceeded by (1) formulating a set of definitions that

relate to failure modes, (2) identifying failure mode issues for flight-critical

digital systems, (3) developing a comprehensive list of research problems

by brainstorming, and finally (4) molding the list of problems into research

programs that will contribute to solutions for industry problems/needs in

this area. The following writeup represents the consensus of the working

group participants listed in Appendix C of this report.

The working group realized early in the working session that definitions

(failure, hard fault, soft fault, failure mode, etc.) were needed so professionals

with different backgrounds could proceed effectively with the stat('d task. It

was decided that the following definitions, some of which have been proposed

as 1EEE standards, would be used by the working group.

1. VEHICLE: Highest level component.

2. SYSTEM: Second highest level component.

3. FAILURE MECHANISM: A mechanism that could produce a fail-

ure (metal migration,voltage overstress, lack of grease, etc.)
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4. FAULT: Phenomenological reason for a failure (open wire, stuck-at-1

fault, stuck-at-0 fault, design fault, mechanical friction, etc.)

5. FAILURE: Deviation of behavior from specification (arithmetic func-

tion failure, storage failure, flight control function failure, etc.)

6. HARD FAILURE: The same as a permanent failure. Repeated use of

the same input and same initial conditions results in the same incorrect

response

7. SOFT FAILURE: The same as a temporary failure. Repeated use of

the same input and same initial conditions does not result in the same

response

8. LATENT FAILURE: Fault has occurred, error has not occurred.

9. FAILURE MODE: A failure and the associated symptoms [pilot

taking a nap while plane nose-dives (human failure mode), unwanted

movement of ailerons (system failure mode), unwanted flight control

command (subsystem failure mode), etc.]

10. ERROR: Deviation of device's state from correct state [pilot fails to

note that plane is in a nose-dive (human error), erroneous position of

ailerons (system error), erroneous signal from flight controller (subsys-

tem error), etc.]

2.5.2 Critical Issues

Throughout the working session, the working group identified various tech-

nology issues that relate to the use of electronics in flight-critical systems.

The list of issues include environmental threats, the existence of new failure

modes, test techniques, validation/certification, and modeling. These issues

appear immediately below in outline form.

• Environmental threats

High Energy Electromagnetic Environment (EME)

• Lightning (direct strike)

• High frequency RF (HERF)
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• Electromagneticpulse(EMP)
NuclearEMP

Lightning EMP

• High energy nuclear particles that causesingleevent upset
(SEU)

• Temperature & humidity

• Vibration

• Failure modes of new technologies

- CMOS/SOS

- Gallium arsenide

- Room temperature superconductors

- VHSIC/VLSIC

• Failure modes at various levels of system hierarchy

- transistor level

- gate level

- board/module level

- subsystem level

- system level

• Relationship between failure modes and functional demands

• Energy required to upset or damage a component

• Testing procedures

Research & development

Manufacturing

Field

techniques for fault detection/isolation

nonconcurrent test techniques (off-line testing)

• Test
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- _:oncurrenttechniques(on-line testing)

- functional testing

- behavioraltesting

• Tro_bleshooting

- Fault detection

- Fault isolation

- Repair& retest

• Validation�certification�integration criteria

- ltow does one validate a system?

- ltow does one validate a component of a system?

- flow does one certify that a module performs as inten&,d?

- How does one assure that the module is compatible with other

modules in the system':

• Modeling problems

- device modeling

- fault modeling

- component stress (over a period of time)

• Problems encountered when handling products

- Electrostatic discharge (ESD)

- Shock & vibration

- Effect of temperature and humidity

2.5.3 Research Needs

2.5.3.1 General Needs During a brainstorming session, thirteen re-

search problems were identified by the working group. These problems, which

refle_ t indtlstry needs as perceived by the working group, are presented below.
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1. Establish electromagnetic environment (EME) internal to aircraft that

results from external electromagnetic environment.

• Obtain experimental data (data base)

• Develop analytical results

• Demonstration

2. Develop certification/integration criteria for digital systems.

3. Explore component trends and EME sensitivities.

4. Study chip level testing (functional test in a known environment).

• Static/dynamic tests

• Error detection and correction (EDAC)

• System test interface

5. Update MIL- STD-HDBK-217E (F).

• Add new parts (VHSIC/VLSIC, Josephson devices, etc.)

• Include fault data (hard and soft faults)

• Include failure mode data (including probability of failure mode

occurrence)

MIL-STD-HDBK-217 or its equivalent is the basis for failure rate pre-

diction. However, it does not include information on transients and

intermittents which represent roughly 50-90% of failures. Thus, infor-

mation contained in the existing document is the tip-of-the-iceberg.

A program is thus needed to supply the missing data. If not done,

reliability modeling is of limited value.

6. Establish Testability Program.

• Manufacturing test

• Field test

• Functional fault models for system lesting

• Faih, re mode modeling
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7. Defineand investigatereasons why fly-by-wire systems fail.

• Multiple independent faults (never observed)

• Single point failures (observed some times)

• Domino failures (most common?)

Most research has been aimed at multiple independent faults, but it is

the other two that appear to be the real problem. A program is needed

to confirm this observation so that research, development, and design

resources are allocated to the right problem.

8. Verify that present redundancy techniques are adequate.

9. Fiber optics (life testing).

10. What is the probability of a Byzantine failure? Is the probability of a

Byzantine failure high enough to require specific architectures? With-

out knowing this, design decisions will .have to be made by flipping

a coin. A program is thus needed to determine this probability and

answer additional sensitivity questions such as: Does increasing clock

rates, which decrease timing margins and increase metastability rates,

cause an increase in Byzantine failures?

Note: A Byzantine failure is any failure that produces different symp-

toms for different observers. For example, a flip-flop that outputs a

signal that lies between 0 and 1 can be interpreted as a zero by some

downstream devices and as a 1 by other downstream devices. Byzan-

tine failures are more commonly related to timing. They also tend to be

single point failures, and in such case the probability of system failure

cannot be lower than that of the associated Byzantine failure.

11. Methods exist for detecting many degraded conditions in non-electrical

components (detect vibration, bearing noise, crack in metal, etc.).

However, methods have not been developed for detecting degraded con-

ditions in electrical systems. Thus, advanced methods are needed for

detecting degraded electrical components before they fail. Two possible

approaches are the use of analog techniques and/or the use of failure

history.
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12. Determine the percentage of failures that are hard/soft in existing sys-

tems.

• Data to be supplied by industry

• Create data base for use by industry

13. Investigate failure mechanisms for new technologies.

2.5.3.2 Suggested Research Programs The primary objective of the

failure modes working group was to identify three groups of problems to be

addressed by NASA. In the first group are urgent problems where there is

not time to mount a research program and for which some interim solution

is the best result that can he expected. The second group consists of longer

term problems that are amenable to being addressed by deliberate research

programs. The third group consists of problems that may become important

at some time in the future. These three groups of problems are identified

in the sections immediately below as (a) short term research effort, (b) long

term research programs, and (c) future research problems.

2.5.3.2.1 Suggested Short Term Research Effort The working

group concluded that all problems identified in section 3.5 are very important

and should be part of a long term or future program. This being the case,

no short term research efforts were identified by the working group.

2.5.3.2.2 Suggested Long Term Research Programs By analyz-

ing the research problems (brainstorming output) presented in section 3.5,

the working group identified three long term research programs. Program #1

was created by combining research problems 1, 2, and 9. Program #2 con-

sists of research problems 3 and 5, and Program #3 is comprised of research

problems 3 and 4. These three long term programs are further described

immediately below.
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Certification and Integration Criteria (Long Term Program #1)

EME/HERF internal environments

* Perform tests to determine internal environment caused by HERF,

lightning and other external EM environments (some data does presently

exist)

- Engine nacelles

- Fuselage

- Cockpits

• Perform any additionalvehicle/component teststo achieve the needed

degree of comprehensiveness in the EME response data bases

Formulate a data base from the above tests

Determine the transferfunctionsthat relatethe internaland external

environments in typicalaircraftstructures

Develop a national resource analysis capability that includes the various

transfer processes (functions/models) from the external environment to

the digital circuits that provide the needed data processing/functions

(environment, aircraft exterior, aircraft interior, cables, equipment en-

closures, circuits, etc.)

Develop methods to assess the impact of the internal environment on

systems

- Test methods

- Analysis methods
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Design/Verification

Develop methods to verify adequacy of hardware and software designs

to prevent system functional upset due to the EME/HERF internal

environments. This will include test and analysis methods which are

needed to verify protection against upset in the lightning multiple stroke

and multiple burst environments (How much protection is enough?).

Determine the degree of comprehensiveness of system representation

in the test configurations needed for flight-critical systems verifica-

tion/validation.

Life Testing

Perform accelerated life testing on fiber optics to determine sensitiv-

ity to EME and low level radiation and vibration environments (also

consider thermal sensitivity, embrittlement, opacity, etc.).

Note: Long term program #1 should be carried out in cooperation with

other organizations in the United states and Europe (e.g., FAA, DOD, RTCA,

SAE committees AE4L and AE4R, EUROCAE, IEEE, and major airframe

manufacturers).

Testing (Long Term Research Program #2)

Troubleshooting and Repair

Smarter diagnostic aids are required to reduce trouble shooting and

LRU turn around times. One possibilily is to store acceptance test

software in the system, and download the software into a PC, for field

testing; this could enhance testing and at the same time reduce the

amount of special test equipment required for field testing. Study is

required to provide verification of effecliveness and cost savings at-

tributable to test software LRU loading and standard test busses (e.g.,

IEEE 488).
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Error-detecting/correcting (EDAC) codes

• Most digital systems do not presently utilize EDAC codes that carry

wordlength penalty that increases with detection/correction capability

of the code. A study is requested to demonstrate reduced mean time

between unit removals due to the use of EDAC or other concurrent

in-flight monitoring, and cost effectiveness.

Fault injection guidelines

• Guidelines are requested for injecting faults to assess performance and

capabilities of fault detection techniques and diagnosis of prototypes in

a laboratory environment.

Component Trends (Long Term Program #3)

Empirical Data

* An on-going test program to provide empirical data on new families of

digital devices is requested. Such data needs to define Energy thresh-

olds such as speed-power product Pd • rd and failure modes for new

devices (damage thresholds, upset thresholds, degradation thresholds,

etc.). This data should be maintained in a national resource data base.

Update MIL- STD-HDBK-217E (F)

• Add new parts (VHSIC/VLSIC, Josephson devices, etc.)

• Include fault data (hard and soft faults)

• Include failure mode data (including probability of failure mode occur-

rence)

Provide guidance for interpreting empirical data (relate empirical data

from standardized waveforms to various waveforms produced by asso-

ciated EME).
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2.5.3.2.3 Suggested Future Research Programs Future research

problems identified by the working group consist of those problems in section

3 (problems 7, 8, 10, 11, 12, and 13) that were not included in the long term

research programs of section 4. These problems are listed immediately below

(A through F) for completeness.

A. Define and investigate reasons why fly-by-wire systems fail.

(a) Multiple independent faults (never observed)

(b) Single point failures (observed some times)

(c) Domino failures (most common?)

Most research has been aimed at multiple independent faults, but it is

the other two that appear to be the real problem. A program is need

to confirm this observation so that research, development, and design

resources are allocated to the right problem.

B. Verify that present redundancy techniques are adequate.

C. What is the probability of a Byzantine failure? Is the probability of a

Byzantine failure high enough to require specific architectures? With-

out knowing this, design decisions will have to be made by flipping

a coin. A program is thus needed to determine this probability and

answer additional sensitivity questions such as: Does increasing clock

rates, which decrease timing margins and increase metastability rates,

cause an increase in Byzantine failures?

D. Develop advanced analog techniques for detecting degraded compo-

nents before they fail.

E. Determine the percentage of faults/failures that are hard/soft in exist-

ing systems.

(a) data to be supplied by industry

(b) create data base for use by industry

F. Investigate failure mechanisms for new t,'chnologies.
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2.6 System Modeling

2.6.1 Introduction and Overview

2.6.1.1 Motivation and Goals The industry representatives in this

working group are looking for tools and techniques that will assist them in

the design of fault-tolerant systems. They are aware of the reliability tools

that have been developed at NASA-LaRC, and look to LaRC for guidance

on what the tools can do and how they can be applied to their problems,

as well as for instruction on how to use the tools. They are also interested

in the research and techniques/tools that LaRC is developing to gather the

data required as input to the reliability tools. Currently, industry is having

great difficulty in selecting the proper tool for a given problem and applying

it correctly. The lack of a coherent and unified presentation of how the wide

variety of tools relate to each other, and how to properly exploit the richness

of this variety has greatly limited the effectiveness of all the tools. The tool

builders must address this issue for the tools to be accepted and used.

2.6.1.2 Industry Needs The need exists in industry for modeling and

tools to support fast development of responses to RFP's, system design, and

trade-off studies. Modeling is required during the design of fanlt-tolerant sys-

tems to translate high-level requirements into system/architecture require-

ments, to improve productivity during the design process, to provide a means

of fleshing-out preliminary designs, and to provide justification for the result-

ing design. Modeling is also required to conduct trade-off studies between

different designs with respect to attaining system requirements within spec-

ified constraints, especially cost constraints. To perform the required mod-

eling, techniques that are developed should be embedded in tools. The tools

in turn must be easy to use, accurate, validated, and efficient. It was the

consensus of this working group that no tool currently meets these needs and

that industry quite clearly can recognize a tool that meets their needs.

Tile current reliability tools may be adequate for most of industry's prob-

lems, but they must be made more easy to use and apply to a given problem.

The current tools do provide an adequate base for extension into analysis ar-

eas that industry expects to be high growth areas, such as performance and

cost analysis; however, a much tighter interaction between the industry users

and the NASA model builders is required for current and future investment
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in tool developmentto be justified.

2.6.2 Critical Issues

Ultimately, industry feels that an integrated tool environment is needed to

aid them both in quickly deciding between competing system designs and

in completing the design and assessment of a target system. However, the

primary focus of the working group discussions was (1) what tools exist for

reliability analysis, (2) what methods and internal models are they based on,

(3) how are they used, (4) how can the user be certain that he has accurately

matched a tool to his system and accurately input a system representation

to the tool, and (5) how can the user be confident of the results computed by

the tool. The iterative process of modeling a system for reliability analysis

and modifying it based on the results of the model analysis is illustrated in

Figure 1. In this process, understanding the system means to understand

the types of faults the system is subject to, what effects the faults have on

the system, and how the system can detect, isolate, and recover from faults.

This understanding of the system is essential in selecting a tool that can

properly represent the system and compute a solution. Once the tool has

been selected, the appropriate input model(s) has to be created. The model

can then be evaluated, and the results used to determine if modifications to

the system are necessary.

The reliability tool builders see themselves involved in an iterative de-

velopment - as new fault tolerant systems are designed, they modify their

tools to handle the new modeling needs. The users' primary concern is that

the tools demand too much knowledge of a given technique, such as Markov

modeling, and provide little support for judging the validity of their results.

Some of the current means used by members of this group to validate the

results include using several tools and comparing the results, and comput-

ing hand solutions of simplified models as a comparison. The members of

the group also feel that there should be more explicit guidelines as to which

modeling techni(lues arc appropriate for various systems. There was general

consensus that the tools perform the numerical computations correctly, but

uncertainity as to correct interpretation and application of the tool mod-

els by the users. The users are also concerned about validating the system

models they create and the difficulty of attaining the data required for input

parameters to the tools. In general, it seems that the users and the tool
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builders differ in their expectationsof userexpertise in the various model-
ing techniquesand applicationsof the varioustools to particular problems.
Also, the disagreementsamongvarioustool developersabout the utility and
applicationsof certain techniquesand the real usesto which their tools will
beapplied add to the doubtsof the usercommunity asto whetheror not the
current tools meet their needs.

The topics identified for discussionby the working group were

• What tools areavailable

• Howto modelcomplexsystems

• How to modelcoverage

• How to compile,compute,and/or estimatedata neededfor model pa-
rameters

• What are the issuesin tool development

- Developmentof graphical inputs

- Designationof beta test sites
- Determination of what is needed

- Determination of who developswhat

- Identification of industry needs

• What are the mathematical issues

• How can tools be usedfor quick justification of designdecisions

• Performancemodeling

• Cost modeling

I How can designand evaluation be integrated

• How to verify systemmodels that are cr('atedas input to tools

• How to verify results from tools
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2.6.3 Research Needs

As a result of the working group discussions, issues were identified that the

industry representatives felt should be addressed, possibly by LaRC. The

issues were categorized as urgent issues that should be resolved within a

year, research issues that should be started now and resolved within 5 years,

and long term research issues with no timetable for resolution.

2.6.3.1 Urgent Issues The focus of the urgent issues is to exploit the

full power of the reliability tools currently available from NASA by enhancing

the information that is available about the tools, by creating guidelines for

their use, and by continuing research on data collection for model inputs. It

was felt that an industry/NASA workshop should be held so that a more

precise and detailed identification could be made of the type and scope of

the problems and applications that industry wants to model than currently

exists. The successful completion of the following actions is essential to the

full utilization of the current tools:

• the development of guidelines for matching application to tool for all
NASA tools

• the development of guidelines for selecting coverage representation and

parameters

the creation of an example-based user's guide for each tool that would

show how to use that tool through an evolutionary presentation of each
of its features

• the development of explicit guidelines for a user to confirm that a model

or a tool's output conforms with his input and intentions

• the provision of tutorials directed at the application of the tools to the

user's specific problem area

the (ontinuation and expansion of experiments and data collection to

determine model inputs, particularly focused on the internal processes

relating to coverage

• the active and continuing confirmation by NASA that the above actions

focus on and apply directly to the industry users' needs.
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2.6.3.2 Research Issues The researchissuesto bestartednow andcom-
pleted within 5 years wereselectedwith the goal of improving the power
and productivity of NASA's current tools. First, to increasethe use and
valueof the tools, they shouldbe mademoreportable; easierto usethrough
the addition of prompts, library functions, sophisticatedon-line help facili-
ties, graphical and textual input, user-specifieddefaults, input consistency
checks,and facilities for flexibleoutput manipulation. To increasethe user's
confidencein the tool results and to improve the user's ability to validate
modelsand outputs, the tools should be modified to automatically bound
all internal modelingand numericalapproximations,to tell the userwhy the
answeris what it is, and to include more graphic output capabilities. In-
formation on why a certain answerresulted can provide design insight as
well as permit confirmation of tool usage. Finally, to make a start toward

an integrated tool environment, NASA-LaRC should select an appropriate

input format or vocabulary for reliability modeling tools and develop and/or

acquire performance modeling and evaluation tools.

2.6.3.3 Long-Term Research Issues For the long term, NASA should

initiate the research that will be required to extend and integrate individual

"ility" tools into an environment for supporting all phases of system de-

sign. Capabilities need to be added to individual tools to assist in making

informed decisions with respect to a particular "ility" in the design optimiza-

tion process. However, these capabilities have to be selected and developed

to complement and interact with those of other tools. In particular, the

interactions and tradeoffs between reliability and performance need to be

identified for integration into general performability tools.

For reliability estimation, research is needed to develop a tool that can

selectively create fault tree, markov, or simulation models from a unified,

high-level input language, solve that model and produce output in a unified

and descriptive format.
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2.7 Reliable Software

2.7.1 Introduction & Overview

The Software Reliability Working Group was composed of 21 members who

met on December 12 and 13, 1988 to discuss and evaluate the important
research issues in this area.

Most of our efforts were spent on defining and listing the various issues

associated with this area. The group discussed the importance of software

issues within a system context, rather than as a separate entity divorced from

the hardware issues. As an example, we considered hardware and software

coupled issues as falling within our area. If a system contained three comput-

ers (hardware) with a hardware voter to form a triple modular redundancy

(TMR) scheme and identical versions of the software on each computer, this

was considered hardware fault tolerance and was not addressed in our dis-

cussion. However, if the voting rule was an algorithm programmed on a

microprocessor, then we classified the system as a software implementation

of hardware redundancy and included this as a topic in our area. Similarly,

if there were system issues which related to both hardware and software, we
considered these as well.

The group discussed definitions of terms when necessary, to reach a com-

mon understanding. The term software fault tolerance is used to refer to

software algorithms that implement hardware fault tolerance, whereas the

term fault-tolerant software is used to refer to schemes to mask software

faults, such as n-version programming and recovery blocks. Also, as is evi-

denced in the research literature, a lot of members had different ideas about

the meaning of Verification, Validation and Test (VV&T). To allow for the

broadest meaning of this term, the group used it to encompass all activities

various people associated with the term.

It was noted that VV&T of software has traditionally been a difficult task

in that it absorbs a large portion of development resources, it is difficult to

formulate a well-defined methodology for effective testing, and it is difficult to

identify which system failures are due to software faults. VV&T is especially

difficut in the case of fault-tolerant systems where one wishes failure rates of

10 -9 per hour. These very low failure rates make the problem of software,

hardware, and system VV&T very difficult.

We spent less of our time on our attempts to classify and rank the 42
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research and advanced development issues which we defined. These issues

are grouped under the 6 major categories given in section 2.7.2: however,

there is some overlap between categories. We voted on the importance and

time needed for investigation of each issue. Importance was ranked as high

(H), medium (M), or low (L). The time needed was categorized as up to two

years (2), five years (5), or 10 years (10). These rankings appear to the left of

each issue. In most cases, a consensus was reached on the rankings. In a few

cases there was a substantial split, and in such cases both opinions are listed.

For example, a ranking of (H-5,2) means that almost all agreed that the issue

was of high priority and most thought it to be a five-year issue; however, a

substantial minority thought it could be accomplished in two years.

Time did not permit a second round of rethinking of the issues and a

grouping of them into a number of coherent interrelated research programs.

If this had been done, some of the rankings might have changed a bit. For

example, if a two-year issue of medium priority was found to be necessary

to collect data to be used in a five-year issue of high priority, then the two-

year issue would become high priority. Twenty four (57%) of the issues were

rated of high priority, twelve (29%) of medium priority, and the remaining

six (14%) were of low priority.

Subsequent to the workshop, all participant.s were provided with a rough

draft of the categorized issues, and were asked to vote for the ten top is-

sues among the 24 high priority items. The participants (NASA employees

excluded) were then polled by telephone for their votes. Ten of the 11 r_'-

sponded. These were averaged according to the following ranking schem,':

the most important issue was rated as 10, the next most as 9, down to the

10th issue, which was rated as 1 (one respondent only ranked the top five

issues). Issues which were not ranked in the top ten received a score of zero.

The top nine issues (highest average scores) are listed in Section 2.7.3.2. All

the 24 high priority issues received at least one vote; however, only those with

an average score of 2.7 or higher appear in Section 2.7.3.2 and each of these

issues received votes from either 4, 5, 6, or 7 out of the nine respondents.

(Assuming a uniform distribution due to random selection, the scores would

have all been 2.3). A smaller number of issues emerge if we read carefully

the descriptions given in Section 2.7.3.2. In a number of cases, the same

issue is being raised from a different viewpoint. As examples, compare the

similarities of: issues 25 and 30, issues 7 and 8, and issues 28 and 33.

On December 14 when each group made their report, a few emphasized
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the importanceof creatinga national data repository. It seemsthat most of
the membersof the group would support the conceptasevidenceby some
of the topics discussed:"Performance,reliability, and availability analysis
of real-world N-versionsystems","Definition, specification,and collection of
reliability data", "Correlatingthe measuredreliability with [variousfactors]",
"Data collectionof fieldedsystemsand lab experiments",as well asothers.

2.7.2 Critical Issues

During the working group meetings, a first draft of an outline of categories

was created. These categories were meant to span all detailed issues dis-

cussed. The working group had time to place most but not all issues within

the categories. Following the working group meeting, the remaining issues

were categorized. To adequately incorporate these remaining issues, the cat-

egories were slightly modified; the outline below shows the resulting catego-
rization.

SOFTWARE RELIABILITY WORKING GROUP RESEARCH ISSUES

• SOFTWARE ISSUES IN FAULT-TOLERANT SYSTEMS

- Fault-Tolerant Software Techniques

- Hardware and Software Integration Issues

• RELIABILITY/AVAILABILITY/SAFETY ANALYSIS OF SOFTWARE

- Reliability Growth Models

- Common Mode (Coincident Error) Models

- Metrics

- Development; VV_:T

- Safety and Risk

• DATA COLLECTION

- Fielded Systems

- Lab Experiments
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• SOFTWARE TESTING AND EFFECTIVENESS

- Evaluation

- Coverage Criteria

• SOFTWARE DEVELOPMENT METHODOLOGIES

- Evaluation

- Paradigms

- Language Issues

- Tools

• CERTIFICATION AND STANDARDS

2.7.3 Research Needs

2.7.3.1 Research Issues Identified The following annotated list sets

forth the forty-two issues identified by the working group. The issues are

presented within the category framework delineated in the previous section.

Immediately preceding each issue, a priority and time rating is given, in the

format <Priority>-<Time>, according to the following scheme. Priority was

assigned based on the participants' assessment of the urgency in the need for

research results to guide government and commercial endeavors to predict,

measure, and ensure the reliability of flight-critical software.

PRIORITY

H: High

M: Medium

L: Low

TIME

2: up to 2 years to complete

5: from 2 to 5 years to complete

10: from 5 to 10 years to complete

• SOFTWARE ISSUES IN FAULT-TOLERANT SYSTEMS

- FAULT-TOLERANT SOFTWARE TECHNIQUES
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1. (H-2) Definition, properties (robustness, convergence, etc.),

and analysis of various voting strategies (as used in N-version,

recovery blocks, adaptive, on-line & spares, repair, etc.). For

the various voting strategies proposed for fault-tolerant software, it

would be beneficial to have a common basis for their definition and

delim,ation of their various properties. Then, the strategies could be

analyzed (e.g., performance and reliability) and compared for potential

applications.

'2. (H-2) Examine the effects of reduced levels of verification,

validation, and test (VV&T) on the reliability of fault-tolerant

software systems. Fault-tolerant software has been proposed in order

to protect against software faults. It has also been suggested that

this development technique could reduce the need for certain VV&T

activities on the individual versions. The relationships between the

VV&T of the versions, the fault-tolerant software strategy, and the

overall systems resultant reliability characteristics must be investigated.

3. (H-5) Cost-benefit analysis and selection criteria for various

fault-tolerant software techniques. The bottom line for the accep-

tance of any new technology is cost. Given various voting strategies,

VV&'T techniques, and reliability characteristics, analysis capabilities

are needed that will assess the costs and benefits of various N-version

techniques and allow for quantitative comparisons and selection crite-
ria.

4. (H-5) Performance, reliability, and availability analysis of

real-world fault-tolerant software systems. Data from fielded

systems should be used to analyze the effectiveness of implemented N-

version systems in achieving their required performance, reliability, and

availability levels.

o (H-10) Guidelines for the development of N-version programs

to minimize common mode (coincident) failures. N-version

software assumes that the individual versions fail independently. To

achieve independent failure, the individual versions are usually pro-

grammed by separate programming teams. Studies have shown that

this approach cannot guarantee independence. Investigations need to
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be conductedwhich can provide the basisfor guidelinesfor the devel-
opmentof N-versionsoftware.

6. (M-2) Defnition and properties of reconfiguration/recovery

techniques. Just as there are various voting techniques to consider

for N-version software, once a vote has been made on non-unanimous

results, it may be necessary to reconfigure or recover the hardware,

software, or system. Work to define reconfiguration and recovery tech-

niques, and to compare the properties of these techniques, is needed.

- HARDWARE AND SOFTWARE INTEGRATION ISSUES

7. (H-5) Interaction and impact of fault-tolerant software on

hardware redundancy management. From a systems viewpoint,

how do fault-tolerant software and redundant hardware systems inter-

act? Specifically, how is the operation of hardware redundancy man-

agement affected when the hardware is overlaid with fault-tolerant soft-

ware? Is there danger of negative synergisms?

8. (H-5) Categorize, validate, and analyze the cost-benefits of

software to manage hardware redundancy. In all current redun-

dant hardware systems, there is some portion of the redundancy man-

agement that is done in software. This type of software has its own

attributes and properties which must be understood and analyzed.

.% (M-2) On-line discrimination between hardware and software

faults. In a fault-tolerant system with recovery, it is imperative that

faults be isolated and identified. When a redundant hardware system

is running fault-tolerant software to protect against software faults,

the discrimination between hardware and software faults i_ necessary

so that proper recovery actions can be taken. If software faults are

thought to be hardware faults, good hardware units will be discarded

and the problem will still remain.

10. (L-2) Redundant hardware (non-lock step) with single soft-

ware version. There are two approaches for allowing tasks (single

version, non-fault-tolerant software) to execute on a redundant hard-

ware system: synchronously (lock step) and asynchronously (non-lock
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step). When task execution is asynchronous,then the job of fault re-
coverybecomesmorecomplicatedthan whentasksrun synchronously.

11. (L-5) How to design flight-critical software to be independent

of underlying hardware. In order to make flight software usable

across airframes and across different vendors hardware, it would be

desirable to make software independent of the underlying hardware.

This would also reduce the overhead for certification and recertification.

12. (L-IO) Validation of non-deterministic scheduling of tasks.

There are two approaches to the scheduling of tasks: deterministic

(according to predefined task schedule tables) and non-deterministic.

When scheduling is non-deterministic, the order of task execution will

be affected by various factors and thus result in tasks being executed

in a random order. These factors must be determined along with their

effects on the order of tasks and the execution of the system.

• RELIABILITY�AVAILABILITY�SAFETY ANALYSIS OF
SOFTWARE

- RELIABILITY GROWTH MODELS

13. (M-2) Investigate the correlations among wall clock time,

CPU time, input space, and test vectors for software reliabil-

ity modeling. Software reliability growth model describe the relia-

bility of software as a function of time (i.e., clock or cpu time) or the

number of executions (i.e., number of inputs or test vectors). There has

been some discussion in the research literature concerning the appro-

priate unit of "time" for reliability estimation. Some models appear to

work better for one unit over another. Controlled investigation needs
to be conducted to resolve this issue.

14. (M-2) Unified hardware, software, and systems reliability

models. From an overall systems point of view, very little, if any,

work has been done to enable the estimation of the reliability of a total

system, including hardware and software. The pursuit of software re-

liability models without regard to the total system context could limit
the results of this research.
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- COMMON MODE (COINCIDENT ERROR) MODELS

15. (H-2) Coincident Error model analysis. A theoretical basisfor
reliability modeling of redundant softwareand coincident failure has
beendeveloped.Estimation techniquesbasedon this approachneedto
bepursued. Also, this modelingapproachshouldbeusedto investigate
the benefitsand limitations of fault-tolerant software.

- METRICS

16. (H-2) Correlating the measured reliability of the software

with software metrics. Analyses to determine which metric or com-

bination of metrics (such as design and code complexity measures, lines

of code) best predict the observed operational reliability of the software.

- DEVELOPMENT; VV&T

17. (H-5) Correlating the measured reliability of the software

with development strategies and associated VV&T. Data from

fielded systems should be used to establish empirical relationships be-

tween various software development strategies, along with their associ-

ated VV&T techniques, and the resultant measured reliability.

- SAFETY AND RISK

18. (H-2) Hazard Analysis and Failure Modes and Effects Anal-

ysis. The feasibility and efficacy of these techniques should be in-

vestigated for their application to software. Failure modes and effects

analysis concentrates on identified failure modes, and the effects the

failures have on the software or system. Hazard analysis is a much

broader based activity; it entails identifying conditions and events that

may result in an accident or catastrophe. Hazard analysis may include

failure modes and effects analysis.

19. (M-2) Feasibility of using Software Fault Trees. Investigate

using fault tree analysis to show dependence of software faults, and

from this information develop improved lest cases.
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20. (M-2) Reliability (Safety) Block Diagrams. A traditional method

for analyzing hardware reliability is to make a model of the system

based on the probability of success paths existing in the system. Such

models are generally referred to as reliability block diagrams or graph

models. They can be used in much the same way as fault trees, to

model the success of system software.

• DATA COLLECTION

- FIELDED SYSTEMS

21. (H-5,2) Definition, specification, and collection of reliability

data. Lack of voluminous, complete data on fielded systems hinders

our knowledge of failure rates, and ability to validate reliability models

and to estimate failure rate parameters for reliability prediction. The

contents of a complete data base of error and reliability data needs to

be defined and specified. Then, a mechanism to facilitate collection,

storage, and access of these data needs to be set up. Note that due to

the low failure rates of fielded flight-crucial systems, large quantities of

data collected over time are needed to further the progress in this area.

22. (H-2) Collection of metric data on systems for correlation

with measured reliability. Fault-tolerant systems have been fielded,

such as the A320, the space shuttle, and the X29A. Fault-tolerant soft-

ware design is being used to increase reliability. Metric and reliability

data from these systems would provide invaluable feedback to the re-

search and user communities. A framework for the collection of these

data is needed. Such data would enable evaluation of development and

VV_:T strategies, modeling approaches, and cost-benefit analyses.

- LAB EXPERIMENTS

23. (tt-5,2) Definition and execution of lab experiments. Experi-

ments can be used to investigate specific issues of concern. In the past,

experiments have provided data on the error rates of software due to

different bugs, the rates of coincident failures in N-version software,

and the strengths of various testing techniques. These studies have

also provided insight on how to collect meaningful data for investigat-

ing software reliability.
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• SOFTWARE TESTING TECHNIQUES AND EFFECTIVENESS

- EVALUATION

24. (H-2) Analysis of error classes and their associated functional

mapping, and appropriate techniques for detections. What

classes of errors are found in flight-critical software? Are more catas-

trophic errors observed in some error classes than in others? Does the

functionality of a software unit map to the classes of errors likely to be

found in that unit? Which testing techniques are better at exposing

each class of errors?

25. (H-5) Cost-benefit comparison of various testing strategies.

How do different criteria compare for selecting input spaces (e.g., error

crystals, fault trees, data partitions) to emphasize in testing? How do

techniques such as dynamic branch testing compare with techniques

such as static structure analysis? Is it worthwhile to place more em-

phasis on formal testing at earlier phases (e.g., unit testing)?

26. (M-5) Stopping rules for VV&T, and their associated metrics.

Testing often stops because of schedule and cost deadlines, rather than

because a technique has been exercised to satisfaction of a technique-

specific stopping rule. Studies to determine reasonable, measurable

stopping rules are needed. In conjunction with these stopping rules,

guidance on the time and cost to budget to accomplish them are needed.

- COVERAGE CRITERIA

27. (H-2) Establish integration test coverage criteria. More quan-

titative guidance is needed for aiding in determining when sufficient

coverage has been obtained during integration testing. For examl_le,

what are adequate coverage criteria for stack depth analysis, data in-

terconnectivity, and timing tests?
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• SOFTWARE DEVELOPMENT METHODOLOGIES

- EVALUATION

28. (H-5) Cost-benefit analysis of various software development

strategies (fault avoidance). How do fault avoidance (as opposed to

fault tolerance) development strategies such as Clean room, structured

analysis, Jackson methodology, compare?

29. (H-10) Techniques and tools for requirements/specification

validation. Evaluation of existing tools and techniques (e.g., rapid

prototyping, requirements languages) is needed. Areas for improving

these existing tools and techniques must be identified, as well as iden-

tifying new ones. Then the definition, specification, development, and

assessment of improvements must be undertaken.

30. (H-10) Ways to make single version software more reliable.

Tools to develop test cases; can fault tree analysis be used to show

dependence of faults and be used to generate test cases? A basis for

determining the reliability of software is needed. Work on defining and

developing testing strategies is needed.

31. (L-2) What techniques ensure high levels of programming

quality in light of the fact that VV&T has been separated from

the coder. This addresses the psychological issue of complacency

among some programmers working on self-correcting software (e.g., n-

version, recovery blocks). How can we impress on programmers that

it is extremely important they make their code as reliable as possible,

rath(,r thau rely on error-correcting facilities?

- PARADIGMS

32. (H-5) Design for software testability. Methods are needed for de-

signing software so that it can be tested more effectively and efficiently.

Note that in hardware, design faults are not counted as 'errors'; only

wearout is counted as an error. With software, design flaws are indeed

errors. Also, complexity permitted in hardware is fairly limited. Soft-

ware complexity, and the shared resource environment in software are

big coutributors to error, l,',xl>lore (tesigiling fi)r low COml)lexity , el, c.
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33.

34.

35.

36.

37.

(H-5) Techniques for establishing error containment in soft-

ware. Techniques which lead to preventing errors in noncritical por-

tions of code from corrupting critical portions are needed. Also, con-

tainment of errors within critical portions of code is needed, to ensure

minimum damage/degradation from a given error.

(M-10) Use of formal proof techniques in establishing soft-

ware integrity. There are statistical limitations on the estimation

of reliability of life-critical systems. To quantify ultra-high reliabil-

ity using a life testing approach, a prohibitively large number of test

cases and/or test specimens must be used. Therefore, there is a growing

group in the research community that is advocating the use of alternate

approaches to the validation of ultra-reliable systems. One of the most

powerful such approaches is formal mathematical proof of correctness.

Using this approach, a system is specified in a formal specification lan-

guage and this specification is refined through a series of increasingly

detailed design levels all the way down to actual implementation. At

each step of the process, the current level of the design is mathemati-

cally proven to be consistent with the previous level.

(M-10) What is the role of software reuse in flight-critical

software?. Can this software be easily reused? What about inter-

facing reusable modules with software under development? How can

'robustness' of reusable software be measured and conveyed to potential

reusers?

(M-IO) Collection of a library of reliable modules for reuse.

Research issues include determining if and how software module reuse

can benefit flight-critical software development. Specific areas to ex-

plore include: 1) identifying functionality (modules) which likely can

b(, reused at, less cost than developing new ones, 2) assessing the re-

suiting robustness of the software, and 3) pros and cons of interfacing

reused modules with new code under development.

(L-IO) Establishing software engineering and assurance cri-

teria and methods for artificial intelligence. With the increased

usage of AI methods, the functional dolnain of software will expand

into more life-critical areas. Adaptations to and expansion _,f existiw_g

83



softwareengineeringand assurancecriteria will be required by these

driving technology changes.

- LANGUAGE ISSUES

38. (*_)Effect of various languages (Ada, C) on software reliability.

The issues that should be addressed include the structure, capabilities,

size, and philosophy (e.g., strong typing versus no type checking) of the

language, and the status of the compilers/interpreters available.

- TOOLS

39. (L-2) Tools and techniques for maintaining, enhancing, and

retargeting flight-critical software. What about old undocumented

or poorly documented software? What about software that doesn't

have source code anymore? What about the need to retarget software

when the underlying hardware it was developed for has become obso-

lete?

• CERTIFICATION AND STANDARDS

40. (H-2) Determine requirements for testing of tools.

(a) Development tools: compilers, linkers, code generators, etc.

(b) Monitoring tools: coverage analysis and traceability analysis

(c) Analysis tools: simulators and test case generators

There is a great emphasis on automating the design, development, and

VV&T processes. Automation usually means the use of a tool to do a

function. Thus, software is producing and analyzing software. There-

fore, there must be requirements and guidelines for the testing of these

tools. This area poses some unique challenges when it is considered

that the output of a piece of software is another piece of software or

data about a piece of software.

xAs an oversight, this issue was not rated by the Working Group.
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41.

42.

(H-IO) Institutionalize results of research on software relia-

bility, standards, and guidelines. It has been said that the user

community can lag as much as ten years behind the research commu-

nity. This gap must be closed in the aerospace community, specifically

with respect to software. Ways must be found to get the most im-

portant research results into the hands of those that need them most.

Government agencies, like NASA and FAA, should play a crucial part

in this technology transfer.

(M-IO) Certification procedures for products of tools associ-

ated with emerging software development techniques. Given

that there are many tools available for the design, development and

VV&T of software, it should be possible to formulate certification pro-

cedures which take into account the use of these tools.

2.7.3.2 Nine Most Urgent Issues The following list details the results

of a post-meeting poll of working group attendees, to determine the few most

important issues of the forty two identified.

VOTING CONSENSUS ISSUE

RANK SCORE PRIORITY NUMBER ISSUE

1 5.4 H-2 40 CERTIFICATION AND STANDARDS.

Institutionalize the Results of

Research on Software Reliability

Standards and Guidelines

2 4.4 H-10 30 SOFTWARE DEVELOPMENT

METHODOLOGIES: EVALUATION

Ways to Make Single Version

Software More Reliable

3 3.5 H-5 17 RELIABILITY/AVAILABILIT Y�
SAFETY ANALYSIS OF SOFTWARE:

DEVELOPMENT; VV&T. Correlating the

measured reliability of the software with

development strategies and associated VV&']
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RANK

4

8

9

VOTING

SCORE

3.3

3.4

3.3

3.3

2.8

2.7

CONSENSUS

PRIORITY

H-5

H-5

H-5

H-5

H-5

H-5

ISSUE

NUMBER

3

8

25

33

28

ISSUE

SOFTWARE ISSUES IN FAULT-TOLERANT

SYSTEMS: FAULT-TOLERANT SOFTWARE

TECHNIQUES. Cost-benefit analysis

and selection criteriafor various

fault-tolerantsoRware techniques.

SOFTWARE ISSUES IN FAULT-TOLERANT

SYSTEMS: HARDWARE AND SOFTWARE

INTEGRATION ISSUES. Categorize,

validate, and analyze the cost/

benefits of software to manage

hardware redundancy

SOFTWARE TESTING TECHNIQUES

AND EFFECTIVENESS: EVALUATION.

Cost-benefit comparison of

various testing strategies

SOFTWARE DEVELOPMENT METHODOLOGIES:

PARADIGMS. Techniques for establishing

error containment in software.

SOFTWARE DEVELOPMENT METHODOLOGIES:

EVALUATION. Cost benefit analysis of various

software development strategies (fault-avoidance).

SOFTWARE ISSUES IN FAULT-TOLERANT

SYSTEMS: HARDWARE AND SOFTWARE

INTEGRATION ISSUES. Interaction

and impact of fault-tolerantsoftware

on hardware redundancy management.
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2.7.3.3 High-Priority Issues The following three lists are subsets of

the full list of issues presented in the previous section. These lists highlight

the high-priority issues; the first list consists of all H-2 issues; the second, all

H-5 issues; and the third, all H-10 issues.

ISSUES REQUIRING 2 YEARS TO COMPLETE

ISSUE

NUMBER ISSUE

2

15

SOFTWARE ISSUES IN FAULT-TOLERANT

SYSTEMS: FAULT-TOLERANT SOFTWARE TECHNIQUES

Definition, properties (robustness,

convergence, etc.) and analysis of various

voting strategies (N-version, recovery blocks,

adaptive, on-line & spares repair, etc.)

SOFTWARE ISSUES IN FAULT-TOLERANT

SYSTEMS: FAULT-TOLERANT SOFTWARE TE(,HNIQI:ES

Examine the effects of reduced levels of

verification, validation, and test (VV&:T)

on the reliability of fault-tolerant soft-

ware systems

REIAABILITY/AVAILABILITY/SAFETY ANALYSIS OF

SOFTWARE: COMMON MODE (COINCIDENT ERROR) MODELS

Coincident Error model analysis
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ISSIJE
NUMI_ER

16

18

21

22

24

2_

4(}

ISSUE

RELIABILITY/AVAILABILITY/SAFETY ANAIJYSIS

OF SOFTWARE: METRICS

Correlating the measured reliability of the
software with software metrics.

RELIABILITY/AVAILABILITY/SAFETY ANALYSIS

OF SOFTWARE: SAFETY AND RISK

Hazard Analysis and Failure Modes and

Effects Analysis

DATA COLLECTION: FIELDED SYSTEMS

Definition, specification, and collection

of reliability data

DATA COLLECTION: FIELDED SYSTEMS

Collection of metric data on systems for

correlation with measured reliability

SOFTWARE TESTING TECHNIQUES AND

EFFECTIVENESS: EVALUATION

Analysis of error classes and their associated

functional mapping, and appropriate techniques

for detections

SOFTWARE TESTING TECHNIQUES AND

EFFECTIVENESS: COVERAGE CRITEIHA

Establish integration test coverage criteria

CERTIFICATION AND STANDARDS

Determine requirements for testing of tools
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ISSUES REQUIRING 5 YEARS TO COMPLETE

ISSUE

NUMBER ISSUE

4

17

SOFTWARE ISSUES IN FAULT-TOLERANT

SYSTEMS: FAULT-TOLERANT SOFTWARE TECHNIQUES

Cost-benefit analysis and selection criteria

for various fault-tolerant software techniques

SOFTWARE ISSUES IN FAULT-TOLERANT

SYSTEMS: FAULT-TOLERANT SOFTWARE TECHNIQUES

Performance, reliability, and availability

analysis of real-world N-version systems

SOFTWARE ISSUES IN FAULT-TOLERANT SYSTEMS:

HARDWARE AND SOFTWARE INTEGRATION ISSUES

Interaction and impact of fault-tolerant software

on hardware redundancy management

SOFTWARE ISSUES IN FAULT-TOLERANT SYSTEMS:

HARDWARE AND SOFTWARE INTEGRATION ISSUES

Categorize, validate, and analyze the cost-benefits

of software to manage hardware redundancy

RELIABILITY/AVAILABILITY/SAFETY ANALYSIS

OF SOFTWARE: METRICS

Correlating the measured reliability of the

software with development strategies and

associated VV_T
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ISSUE
NUMBER

21

23

25

28

32

33

ISSUE

DATA COLLECTION: FIELDED SYSTEMS

Definition, specification, and collection

of reliability data

DATA COLLECTION: FIELDED SYSTEMS

Definition and execution of lab experiments

SOFTWARE TESTING TECHNIQUES AND

EFFECTIVENESS: EVALUATION

Cost-benefit comparison of various testing

strategies

SOFTWARE DEVELOPMENT METHODOLOGIES:

EVALUATION

Cost-benefit analysis of various software

development strategies (fault avoidance)

SOFTWARE DEVELOPMENT METHODOLOGIES:

PARADIGMS

Design for software testability

SOFTWARE DEVELOPMENT METHODOLOGIES:

PARADIGMS

Techniques for establishing error containment
in software
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ISSUES REQUIRING 10 YEARS TO COMPLETE

ISSUE

NUMBER ISSUE

SOFTWARE ISSUES IN FAULT-TOLERANT

SYSTEMS: FAULT-TOLERANT SOFTWARE TECHNIQUES

Guidelines for the development of N-version

programs to minimize common mode (coincident)

failures

29 SOFTWARE DEVELOPMENT METHODOLOGIES:

EVALUATION

Techniques and tools for requirements/

specification validation

30 SOFTWARE DEVELOPMENT METHODOLOGIES:

EVALUATION

Ways to make single version software more reliable

41 CERTIFICATION AND STANDARDS

Institutionalize results of research on software

reliability, standards, and guidelines
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2.8 Flight Test

2.8.1 Introduction and Overview

2.8.1.1 Motivation The Flight Testing working group was established

to determine the areas in which flight testing can be used to verify the per-

formance and safety aspects of avionic systems that cannot be adequately

accomplished by analysis, simulation, and laboratory testing, as well as the

ways that flight test results can be applied to improve these other types of

testing. Flight testing is expensive compared to simulations, but simulations

do not provide sufficient confidence to be accepted without confirmation by

flight testing. It may be possible to use flight testing to improve the confi-

dence level of simulations and thus reduce the cost of testing and approving

new systems.

2.8.1.2 Goals The goals of the flight testing working group were to iden-

tify research areas that would help industry reduce the cost and improve the

reliability of digital system design by appropriate use of flight testing. Not

only were research areas identified, but possible research directions were gen-

erated that might aid in accomplishing these goals. The flight testing session

also developed a list of areas in which flight testing is important. This list

is separated according to system integrity issues and system functionality

issues. In addition, a list of possible candidate experimental test systems

was generated that would be useful in testing and improving present tools

and methods. This list of candidate systems should serve as a starting point

from which a research project could be developed.

2.8.1.3 Industry Needs Industry has sew_ral needs for research in sup-

port of flight test activities, including standardized flight critical design

methodologies and verification tools that NASA-LaRC should be able to

provide. These capabilities must allow for design innovation and the contin-

uing improvements in the verification methods and tools themselves. Models

need to be developed for many environmental conditions that are poorly un-

derstood, such as wind shear, turbulence, lightning, and atmospheric effects

on radio frequency ( RF ) and electro-optical ( E-O ) guidance sensors. In

turn, flight testing can be used to support research in other technological

areas, a._ in developing methodologies for building digital systems and tile
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tools for implementing these methodologies.

A method for using flight testing to improve design techniques arid tools

was discussed by the working group and is shown schematically in Figure

4 presented below. Present techniques and tools are used to design and

model a system, then testing ( including flight testing ) is conducted to verify

performance and integrity. The differences between the model predictions

and the actual performance are used as a basis for improvements to methods

and tools. The process is then repeated to continue improvements in methods

and tools as technology improves and new problems arise. Much of the testing

could be done by industry during development of new systems, with the data

collected during this testing being stored and organized by NASA-LaRC for

later use by all of industry.

2.8.1.4 Industry Support Industry presently conducts flight testing of

all systems that are to be certified and released for use; government agencies

monitor, review, and verify test data to decide whether or not to certify a

system for in-service use. Much of the flight testing being conducted may be

redundant and the methods of testing are often re-invented by each company

conducting flight tests. If NASA-LaRC were to develop a general data base

of design verification methodologies and tools that was available to all orga-

nizations conducting flight testing, it could reduce the cost of development

of new systems. The initial data base may be the current industry flight

test simulation / correlation methods and tools. For the proposed data base

to be useful, there would have to be industry and certifying agency support

to not only contribute data to the system, but to utilize the data stored by

NASA-LaRC in future developments as well.

2.8.1.5 Links to Other Verification Methods An obvious link of

flight testing to other design verification methods is the link to simulation.

Flight testing can be used to improve the models for later simulations, and

also to confirm that present models are accurate. Simulation and flight test-

ing must be used in complementary and efficient ways to improve the tech-

niques for modeling and testing systems. With the current rate of technology

growth, testing and modeling methods and tools must be improved to reduce

development costs while ensuring that the performance and integrity require-

ments of tlle systems are met.
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2.8.2 Critical Issues

Of the issues discussed during the working group, the following were of con-
siderable interest:

• Improved design, test, evaluation, and verification processes that are

used broadly by industry and government,

• Environmental information,

• The roles of testing versus simulation,

• System Functionality, and

• System Integrity.

Each of these issues is highly interrelated, and thus one or more of them

appears to some extent among the research needs listed later. Research ideas

were discussed that might lead to improvements in each of these areas. One

of the major issues discussed was the ways to verify the tools being used

during development and ways that feedback from the flight testing phase

might be used to improve these tools. Some care needs to be taken to assure

that development and testing are done in ways that may later be used to

improve each other.

2.8.3 Research Needs

2.8.3.1 Near-Term Needs

Verification Methodologies NASA-LaRC should develop new method-

ologies, and improve existing ones, for verifying the performance and

integrity of flight-critical digital systems that could then be used as the

industry standards. These verification methodologies could utilize the

advantages of flight testing in the verification process. Some possible

areas to which flight testing could be applied include comparing the

reliability of single version software systems versus redundant software

systems, and the reliability of similar systems versus dissimilar systems

in a redundant software environment. NASA-LaRC should not be in-

volved with the development of specific flight-critical systems; rather,

NASA-LaRC should develop tools for building flight-critical systems.
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Pilot inputs, sensors] On-line
FBW/L
system

T
To actuators
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Off-line

FBW/L

system

Experiment support system
• Fault injection
• Data collection

• Configuration control

Figure 5: Experimental FBW/L System Test Bed

Verification Tools The new, or improved, w_rification methodologies will

require new, or improved, tools to aid in their use. At a minimum,

some standard type of data base needs to be defined such that the

design tools will work together to aid design optimization, information

transfer, and maintenance from one organization to another.

Test Bed A general-purpose flight test bed needs to be developed that
would allow the verification methods and tools themselves to be veri-

fied. The test bed would also allow new systems to be operated on-line

or off-line with existing on-board systems. For example, if a new flight

critical system or system element is developed, it could be installed on

the test bed aircraft in parallel to the present system. Testing would

then reflect "live" conditions without risking the aircraft or crew on

an untested system. Figure 5 shows schematically the organization of

a test bed aircraft. The test bed for parallel systems also allows for

testing of systems in degraded modes wil hout risk to aircraft or crew.
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Designing for Testability From the beginning of the design of a system,

provisions need to be made for later testing of the system. These

provisions include additional windows into systems without impacting

performance and safety, but which may improve producibility and in-

service maintenance.

2.8.3.2 Longer Term Needs

Environmental Models NASA-LaRC should develop, verify, and upgrade

models of environmental conditions that would then be used by indus-

try in developing new sensors and systems. NASA-LaRC would also

serve as the "clearinghouse" for this information as well as any feedback

provided by industry using these models.

NASA's role as a "clearinghouse" would include the functions of col-

lecting and storing data generated by various members of the industrial

community. Some of the types of information in this data base might

include: lightning, High Energy Radio Frequency ( HERF ) effects, tur-

bulence, wind shear, precipitation, etc. NASA-LaRC would also keep

the most recent versions of design, verification, and testing tools and

would also serve to insure that all newly developed tools met certain

standards and thus could communicate with each other. This data base

of information and these tools would be available to all members of the

industrial community for use in developing new flight-critical digital

systems.

How much testing Just as verification methodologies need to be developed

or improved, testing methodologies need to be improved and investi-

gated. The major issues raised concerning flight testing are concerning

which systems / elements are to be tested, when sufficient testing has

been accomplished to satisfy regulatory and operational requirements,

and to quantify the level of confidence available in the test results.
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2.8.4 List of System FunctionaLity Issues

( Not Prioritized )

System

• Redundancy Management / Failure Detection, Isolation, and Recon-

figuration ( FDIR )

• Lightning/HERF

• Design Errors / Model Accuracy

• Hardened Stability Augmentation

Software

• Ada / Real Time Issues

• Dissimilar Software

• Automated DeveLopment Tools

Computer

• High Reliability Architectures

• Timing Tolerances

• Transient Recovery Capability

• Technology ( Electronic, Fluidic, etc. )

• Similar / Dissimilar
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Sensors

• Solid State

• Skewed

• Analytical Redundancy

Actuators

• Smart Actuation ( Electrohydrostatic ( E-H ), Electromechanical ( E-

M ), Electrical or Mechanical? ( EOM ) )

• Integrated Actuators ( Local Power )

• Fault Characteristics

Communications

• OpticM

• Protocol

Power ( Electrical / Hydraulic)

• Centralized / Distributed

• Dissimilarity

• Uninterruptible / Redundancy? Management

Pilot / Vehicle Interface

• Head Up / Down Functional Displays

• Reconfiguration

• Controller Operation

• Caution / Warning Displays
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2.8.5 List of System Integrity Issues

( Not Prioritized )

• Command / Stability Augmentation Control Law Concepts

• Envelope Limiting

• Autoflight Control Law Concepts

• Flutter Suppression

• Autonomous Landing / Obstacle Avoidance

• Autonomous Windshear Prediction

• Engine-Matching Modes

• State Estimation / Analytical Redundancy

• Pilot / Vehicle Interfaces

- Displays ( Primary, Caution / Warning )

- Controllers, Data Entry

- Procedures

2.8.6 List of Candidate Experimental Systems

• Fly By Wire / Light ( FBW / L ) Control System

• Crew Station Display System

• Autonomous Landing System

• Windshear Prediction System

• Flutter Suppression System
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• Flight Management
• Informatuon Systems

• Eleclromagnetics

I.: Zl ;-I
& ()PI.:I?,AI IONS /

/

k t. s.:,,,, I
r l _'"'n" _e l

• Engineering Sup:)otl
• Fabricalion

• Faol;ty Operahor ";

• Reliabdily/Quali/y Assurance
• Safely

CIIIEF ]
SCI F.NTIST

R. W Barnwell

• lqesearcnQuality/Conlen!
• UniversityPrograms

I

R. R. Nunanmkef

• Aerolhermodynamics

• E nergetics
• Almosphenc Sciences

• System Studies

• Shuttle& Space Slahon

Support

.... J------

[ i.:£,_l::_fl_.t_ }\V t) M;IIC

• Ins!n Frqentalion

• Compuler/Simulalor Supped

• Remote Sensing Technology

• Proiect Management

AUGUST 1987

(.)VE R'v'IY ,q 35

0E:h:z;d;:L PE..:G#:p?
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JAERONAU,'TICS RESEARCH I _i;.ii

methods

Elecl_omagnelics

Human
performance

measurement

Fault tolerant &

concurrent _bcessing
architectures
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OF POOR C;_L_.L(TY INFORMATION SYSTEMS GOALS

To generate architectures, concepts, design methods, and
integrated design tools for information processing systems
required by future aircraft and spacecraft applications.

To develop concepts, approaches, and methods which increase the
performance and reliability and decrease the cost of applications
and systems software for ground and flight systems.

To provide analytical methods, assessment techniques,
experimental methodologies, and the AIRLAB facility for the
evaluation and validation of fault-tolerant, concurrent processing,
and distributed computer systems and software for spacecraft and
aircraft applications.

O,qiC_3:,ii'_L PAGE IS
OF pOOI_ r_)UALll'Y

FAUL -TOLERANT SYS TEMS RESEARCH

\ ,

\ \
\

PRODUCTS

• VALIDATION METHOD

EFFECT I VENESS

• COMPARAIIVE ANALYSES

• INTEGRATED SYSTEM

DESIGN CONCEPTS

.:._,._,-,,'F _'_ ,,,,.L) l
"_=".. ,_ .:/ UIL} "[_

", • ,_ IIIL, IIIU _,l AIRLAB

ill

#

\

• CONCEPTS

• HARDWARE

MODELS

A-!)



FLIGHT CRITICAL DIGITAL SYSTEMS
TECHNOLOGY WORKSHOP

OBJECTIVES

Identify research issues which must be resolved

Define level of analysis experimentation and
demonstration required for acceptance of results

OUTPUT:

Workshop document (including consensus on most
important issues)

FOLLOWED BY:

Assessment of our program vs. identified needs

Feedback to industry on program

FLIGHT CRITICAL DIGITAL SYSTEMS
TECHNOLOGY WORKSHOP

PROCESS

Overview presentation to provide a context for the workshop

Working Group Sessions: Aero and Space Requirements
Design for Validation
i-mlure Modes

System Modeling
Reliable Software

Flight Test

ORIGINAL PAGE 15

OF POOR QUALITY
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Some Thoughts On

Flight Critical Systems

Tom Cunningham

Honeywell Systems & Research Center

December 13, 1988

with help from:

Kevin Driscoll
Gautham Ramohalli
Russ Hendrick

Larry Yount
Randy Gaylor
John Weyrauch
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The Coverage Umbrella Must Be Big
L =, i i i i

Generic Failures_ d

Complexity Unknown HW

eats

, l

Complexity
i .u

• Functional Demands

- Reality of FBW, WLA, RSS, Envelope Limiting...

- More functions under the fault tolerant

umbrella, e.g., VMS

- Complex feedback mechanizations (are they
necessary?)

• Attempts at Safety

- "Cover every conceived failure"

- "If two channels are better than one, why not
ten ?"

° Hardware capability

- VLSI complexity

- New sensors and actuators

PRECEDIr_G PAGE BLANK NOT FILMED
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Threats ORIGINAL PAGE iS

OF, POOR qUALITY

• EME

• Lightning

"File digital electronic circuits used in modern FCSs arc
vulnerable to upset by decreasing levels of disturbance.

I00

G

o_

01

0.0| _L J_

100

• NMOS

o CMOS-BULK

"= CMOS-SOS

a IZt.

OC - p2

JIll _ I t t t 1 |

II1 I 1990

Feature _l¢, P ($zm)

(iltlica ,h t,c f >r upset ph)(lcd a_ a trifle|ion of

feature '-.lit. There r-; ',urpn_,mgly little dcp,zmicnc¢

tt[1 dcviL t' tL't'hflt)llH y

OA

Mo(ots and Transformers

Relays

Vacuum Tubes

Comp_it_ and
Wtre.W0ettd R cli_¢l

Rectifier =,nd

Regulator Diodes

Medium- and High-

Power Trinsiston

(;E and Low-Power

Transislnls

Integrated Circuits

M_crowave _od¢=

1
/
l
/

II

1
/

/

IO _ lO "4 I 104 IO _1

Rang_ of E_c_|y 1o C'hang¢ Sta_

Integrated circuits arc among the c[cctrotuc

components most .¢.¢nsitiv¢ to [_MP. Source:

DNA EMP Awareness C_mr._e N_Jl¢.$

88 (ttl; OR/?
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The EMI:, threat is also increasing.

Threat

1020 IUS() I%() I:ml_tc

Ti me
88 !FK; 0843

RF Sources

ORIG{N,A.L PAGE IIS

OF POOR (_J/U.ITY

,o .-, J. .... _ ,oo

_, i_ _, ;_ ,coo

,oo _, _o_ _+,, mo moo
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THREAT INTRA/INTERSYSTEM

ELECTROMAGNETIC
INTERFERENCE

STATIC

DISCHARGES
LIGHTNING HIGH-ALTITUDE

ELECTROMAGNETIC

pULSE_(HEM_P_ ....
THREAT Local

EXPOSURE Usually
Antenna Related

local

Particle Related

local

Cloud Related
Regional
Nuclear Burst

EFFECTS Induced
Direct

Induced Direct

Induced
Induced

CRITICALITY Flight Safety Mission Flight Safety Flight Safety

THREAT Broadband

SPECTRUM Up to IOOGHz

PROTECTION

MEASURES

MIL-STDS

Broadband

Up to 100 MHz

Bro.,dband

Up to 100 MHz

Broadband

Upto 100 MHz
Shielding Discharges Diverlers EMI Techniques

Filtering EMI TechnK:lUeS. Surge arresters
Redundancy EMI Techniques
Cable/Equip. Placement

Fiber Optics

Channel Recovery Channel Recove_ Channel Recover), Channel Recovery__
MIL-E-6051 MIL-E-6051 MIL-E-6051 NONE
MIL-STD-461/462 MIL-B-5087 MIL-B-5087
MIL-B-5087 MIL-STD-1757

A new hazard is now facing commercial aviation.

Military aircraft have been lost due to this problem.

! X.$$7

//

Tornado Fighter

Black l lawk llcticoptcr

ORIGINAL PAGE IS
OF POOR QUALITY
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Software Concerns

Too many design

Coding errors have

Ada features are of

Proof of software is

- Sabotage

- "Improvements"

- Security

errors are blamed on "Software"

not presented problems

concern

important:

Some "Software" Errors

System
ll|

JA-37 Viggen

STS-1 "Bug heard
round the world"

DIGITAC

Design/ No
Error Algorithm Code Compilel Error Other

WOW Switch not ',"
properly engaged

Syncronization of ",,/
computers

ABS/ 1/:: 1

Apache LHX
Demo

Compiler irqerp, of ,/
180 _ to -180"

!X-29 FSW Series of dangerou,'; _'_'
flight modes

._\..21
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The Human Side of Design

Problems are solved by "people"

Solutions must be understood by people who
understand the problem

- Problems are complex --> Solutions nust be
simple

Find the one person on the team who can
explain the solution

• Avoid trust in "discipline" interfaces

- Hardware / Software

- Aircraft / Flight Control

• Preserve the "Corporate Memory"

Some Research Needs
ii I

1. Achievable Levels of Safety Assurance

2. Relative Importance of Byzantine Problem

3. Methodologies for Correct System Timing

4. Complexity Metrics

5. Psychological Factors in Design

6. Design Diversity

7. Tradeoffs between Avionics and Related Systems

8. Level of Verification Needed for Support Tools

9. Methodologies for Designing and Evaluating FBW Systems

10. Methodologies lor Developing and Verifying Correct Requirements

11. Ada Issues

12. Fiber Optics

13. An Objective List of Safe-Design Features (with relative values)

A-?:_
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NASA rest)urees are invaluable for lhis etTort.

• Simulation and analysis of architectures

• Fault insertion and instrumentation

• Characterization of upsets

• ATOPS aircraft flight testing

• EME environment characterization

• EME circuit effects characterization

fib C|_ 096%

Looking for a challenge ?

How about this ?

A-23
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NASA FLIGIIT CRITICAL SYSTEM WORKSifOPC[IAR1S

CARL S. DROST[

12-13-88

GENERAL DYNAMICS FORT WORTH DIVISION

PRECEDING PAGE BLANK NOT FILMED
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WHAT IS THE EXPERIENCE BASE OF THE FORT WORTH DIVISION OF GENERAL

DYNAMICS (GD/FW) ON DIGITAL FLIGHT CONTROL SYSTEMS?

O GD/FW HAS BEEN FORTUNATE TO HAVE THE OPPORTUNITY TO DEVELOP AND

FLY A NUMBER OF INTEGRATED DIGITAL FLIGHT CONTROL SYSTEMS.

DO AFTI/F-16 DIGITAL FLCS
DO AFTI/F-16 AUTOMATIC MANEUVERING ATTACK SYSTEM

DO F-16 GUAD DIGITAL DEMONSTRATION SYSTEM

DO F-16 PRODUCTION DIGITAL FLIGHT CONTROL SYSTEM

DO F-16 AUTOMATIC TERRAIN FOLLOWING SYSTEM

O GD/FW IS HEAVILY INVOLVED IN THE INTEGRATION OF A NUMBER OF

FLIGHT CRITICAL SYSTEMS NOW BEING DEVELOPED FOR FLIGHT TEST, BUT

NOT YET FLOWN (IN SOME CASES TEAMED WITH OTHER ORGANIZATIONS).

DO ATF

DO ATA

DO F-111 FLIGHT CONTROL MODERNIZATION

OO OTHER

O GD/FW IS IN THE INITIAL STAGES OF FLIGHT CRITICAL SYSTEM

DEVELOPMENT FOR A NUMBER OF PROPOSED AIR VEHICLES.

DO ADVANCED VERSIONS OF THE F-16

DO NASP
DO E-7 STOVL
DO OTHERS

WHERE ARE THE SOFT SPOTS F0R FUTURE

FLIGHT CRITICAL SYSTEM DEVELOPMENT?

O MANY OF THE TRADITIONAL BOUNDARIES BETWEEN TECHNOLOGIES ARE

DISAPPEARING AND FLIGHT CRITICAL SYSTEM COMPLEXITY IS RAPIDLY

INCREASING.

O THE CRITICAL SYSTEMS DEVELOPMENT TASK IS NOT A LINEAR FUNCTION OF

SYSTEM SIZE.

O CRITICAL SYSTEMS INTEGRATION TECHNOLOGY IS DIFFICULT TO TRANSFER.

) INCREASING DIVERGENCE BETWEEN DEMONSTRATED AND THEORETICAl

TECHNOLOGY -- REAL WORLD VERSUS PROMISES.

PRECEDING PAGE BLANK NOT FILMED
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TRADITIONAL TECHNOLOGYBOUNDARIESARE DISAPPEARING
AND SYSTEM COMPLEXITY IS RAPIDLY INCREASING

O THE NUMBER AND EXTENT OF SYSTEMS THAT FALL INTO THE CATEGORY

WHERE FAILURE CAN CAUSE IMMEDIATE RISK TO THE AIRCRAFT WILL BE

GREATLY INCREASED.

O THERE WILL BE SIGNIFICANTLY INCREASED INTEGRATION OF FLIGHT

CONTROL WITH _THER SYSTEMS.

OO PROPULSION

O0 AIR DATA

O0 AVIONICS

OO STRUCTURES

OO STORES MANAGEMENT

OO SECONDARY CONTROL

O MANY AIRCRAFT SUBSYSTEMS THAT ARE NOT FAULT TOLERANT ON THE

PRESENT GENERATION OF AIRCRAFT WILL HAVE TO BE MADE REDUNDANT OR

BE PROTECTED BY ANALYTIC REDUNDANCY.

O CONTROL LAW DESIGN WILL INCLUDE MANY MORE THAN THE TRADITIONAL

VARIABLES OF THE PAST.

LIFE CYCLE COST OF THE TOTAL INTEGRATED SYSTEM IS BECOMING AN

INCREASINGLY IMPORTANT FACTOR (I.E, RELIABILITY, MAINTAINABILITY,

AVAILABILITY, ETC.).

THE CRITICAL SYSTEMS INTEGRATION ENGINEERING TASK IS NOT A LINEAR

FUNCTION OF THE SYSTEM SIZE

0 SYSTEMS INTEGRATION IS BRINGING TOGETHER MANY TRADITIONAL

TECHNICAL DISCIPLINES IN AN INTERACTIVE MANNER.

O WHETHER WE LIKE IT OR NOT, THE INTEGRATED SYSTEMS OF THE FUTURE

ARE FORCING US MORE AND MORE TO "DESIGN BY COMMITTEE".

O MOST OF US REALIZE HOW MUCH LONGER IT TAKES A COMMITTEE TO DO

SOMETHING.

0 THE CHALLENGE IS TO MAKE THIS COMMITTEE FUNCTION AS A CLOSE KNIT

TEAM TO MINIMIZE OVERHEAD.

O THE FOCUS OF THE TEAM MUST BE ON INTERACTIVE COMMUNICATION.
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THE CRITICAL SYSTEMS INTEGRATION ENGINEERING TASK IS NOT A LINEAR
FUNCTION OF THE SYSTEM SIZE (CONTINUED)

O EXPERIENCE HAS SHOWN THAT MANPOWER REQUIREMENTS ESCALATE

DISPROPORTIONATELY WITH SYSTEM COMPLEXITY.

LOOKING AHEAD, WE MAY BE "DESIGNING BY BUREAUCRACY" IF WE ARE NOT

CAREFUL, PARTICULARLY I: WE FORGET THAT COMMUNICATION ACROSS

TECHNICAL BOUNDARIES IS MUCH MORE IMPORTANT THAN STRUCTURE. THE

OVERHEAD MAY BECOME PROHIBITIVE UNLESS WE CAN FIND NEW WAYS OF

FUNCTIONING.

O UNDETERMINISTIC SYSTEM CONCEPTS SUCH AS ARTIFICIAL INTELLIGENCE

WILL REQUIRE NEW VERIFICATION AND VALIDATION METHODS.

O PHILOSOPHICAL CHANGES IN HOW WE APPROACH SYSTEM DESIGN,

VERIFICATION, AND VALIDATION MAY BE REQUIRED BECAUSE

EXTRAPOLATION OF PRESENT METHODS BECOMES PROHIBITIVE.

CRITICAL SYSTEMS INTEGRATION TECHNOLOGY HAS BEEN

DIFFICULT TO TRANSFER

MANY COST VERSUS SAFETY TRADES REQUIRE LARGE, EXPENSIVE PROGRAMS

TO FORCE COST EFFECTIVE RESOLUTION. ON RELATIVELY SMALL PROGRAMS,

FLIGHT CRITICAL SYSTEM INTEGRATION DECISIONS CAN BE GREATLY

INFLUENCED BY OTHER FACTORS, SINCE PRODUCTION MANUFACTURING AND

LONG TERM OPERATIONAL SUPPORT ARE NOT A PRIMARY CONSIDERATION.

O THERE IS RARELY ANY PROVABLE "BEST" WAY TO INTEGRATE SYSTEMS.

DIFFERENT TECHNICAL BACKGROUNDS AND EVOLUTIONARY DEVELOPMENT MANY

TIMES RESULT IN A NUMBER OF ACCEPTABLE SOLUTIONS. SELECTION OF

THE "BEST" APPROACH IS OFTEN DEPENDENT ON THE GROUND RULES

SELECTED TO DO THE EVALUATION.

O EFFECTIVE SYSTEMS INTEGRATIONS RELIES ON PERSONNEL AND FUNCTIONAL

ORGANIZATION AS IT DOES TECHNOLOGY.
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THE REAL WORLDVERSUS PROMISES

O POTENTIAL TECHNOLOGICAL ADVANCEMENTS ARE COMING AT US AT AN EVER

INCREASING RATE.

O TECHNICAL POSSIBILITY IS OVER-SHADOWING TECHNOLOGY MATURATION IN

THE REAL WORLD.

IT DOES NOT TAKE A BIG ERROR IN GROUND RULE ASSUMPTIONS TO HAVE A

PARTICULAR TECHNOLOGICAL OR SYSTEM ENGINEERING APPROACH COLLAPSE

DOWN AROUND YOU.

O JUST BECAUSE SOMETHING HAS BEEN TALKED ABOUT FOR A HUMBER OF

YEARS DOES NOT MEAN IT IS TRUE AND IS SURELY NOT SOMETHING ON

WHICH YOU BUILD THE "NEXT" GENERATION.

O WE MUST BE VERY CAREFUL THAT OUR ZEAL AND INTEREST IN

TECHNOLOGICAL "ADVANCEHENT" DOES NOT GET US IN SERIOUS TROUBLE.

SYSTEM WIDE INTEGRITY MANAGEMENT (SWIM) WILL BECOME A FUNDAMENTAL
SYSTEM ENGINEERING CONCEPT

0 THE REOUIREMENT IS NOW BECOMING APPARENT BY THE NEED TO INCLUDE

NON-REDUNDANT SYSTEMS AS PART OF FLIGHT CRITICAL SYSTEMS.

O0 AUTOMATIC MANEUVERING ATTACK SYSTEMS (AMAS)

DO AUTOMATIC TERRAIN FOLLOWING AND AVOIDANCE

OO AUTOMATIC GROUND COLLISION AVOIDANCE SYSTEMS FOR

DISORIENTATION, INATTENTION, AND LOSS-OF-CONSCIOUSNESS.

O FAILURE PROTECTION MUST BE TREATED ON A SYSTEM WIDE BASIS AS

EARLY IN THE PROGRAM AS POSSIBLE.

O DESIGN AND SUPPORT TECHNICAL DISCIPLINES MUST BE INTEGRATED INTO

AN EFFICIENT SYSTEM ENGINEERING TEAM WITH EARLY EMPHASIS AND

PARIICIPATION OF SAFETY, RELIABILITY, HUMAN FACTORS, PVI. AND

OPERATIONS RESEARCH PERSONNEL.

O ALL SYSTEM COMPONENTS ASSUME A ROLE IN SWIM.

0 PROTECTION AFFORDED BY SYSTEM MUST BE ANALYZED AND DOCUMENTED.
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CHANGES AFFECTING OFP _ i I ) CHANGES NOT AFFECTING OFP

FUNCTIONAL REQUIREMENTS _ ,* _ FUNCTIONAL REQUIREMENTS

I I ," Design / I '
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(C YCL E MO VES Cl OCKWISE)

NASA PURSUIT OF INTEGRATED SYSTEM TECHNOLOGIES

FEELING THE PRESSURE OF INCREASED SYSTEM INTEGRATION, MANY

RESEARCHERS ARE PURSUZNG THE TECHNOLOGY AT THE INTERFACE POINTS

BETWEEN THE TRADITIONAL TECHNICAL DISCIPLINES.

NASA is AT A STAGE WHERE DECISIONS NEED TO BE MADE RELATIVE TO HOW

DEEPLY NASA 0AST WANTS TO GET INTO THE SYSTEMS AREA. THERE ARE

TWO WAYS TO GO.

OO CONTINUE IN THE PRESENT MANNER WITH THE VARIOUS TECHNOLOGIES

EACH DEVELOPING ADVANCEMENTS IN THEIR IMMEDIATE INTERFACES AND

CONDUCTING LIMITED SYSTEM INTEGRATION TASKS NECESSARY FOR

EXPERIMENTS FOCUSING ON AIRCRAFT CAPABILITY.

00 DIVE COMPLETELY INTO THE FLIGHT CRITICAL SYSTEMS INTEGRATION

AREA.

EITHER ROUTE IS A PERFECTLY RATIONAL APPROACH, AND NASA WILL BE

PROVIDING VALUABLE TECHNOLOGY FOR THE FUTURE AIRCRAFT IN EITHER

CASE.

O THE HISTORICAL DIFFICULTY IN TRANSFERRING INTEGRATION TECHNOLOGY

SHOULD BE HEAVILY WEIGHED IN ANY NASA DECISIONS.

0 EFFECTIVE PURSUIT AND TRANSFER OF FLIGHT CRITICAL SYSTEMS

INTEGRATION TECHNOLOGY WILL REQUIRE SIGNIFICANT LONG-TERM FUNDING

COMMITMENTS AND REORGANIZATION.
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The FAA Systems Perspective

Federal

Jim Treacy

Aviation Administration

December 13, 1988

(There were no visual

aids used for this presentation)
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COIVIIVII_CIAL AVIATION FLIGHT-CRITICAL

RESEARCH NEEDS

13 DEC 88

LJ. Yount/RY. Hess

HoneyweU/SCFSG
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RECOVERABLE F4.ULTS

A Characteristic associated with digital computers

that knows several aliases (upset, soft fault, faults

with nonstationary observability)

Soft Faults can be induced by

- Environment;tl Factors (e.g.IKM:E,Nuclear p_u'ticlcs,ete)

- Hardware Factors

- Software Factors

In addition to being an obvious concern relative to

s,'tfety, soft faults may be a major contributor to

the concern associated with the costly MTBUR

unconfirmed removals problem

TRANSPARENT RECOVERY

EU DISRUPTION

DATA BUSING

I
i

EM PROTECTION I
ENHANCEO AREAl

J CP

TRANSFER OF
STATE VAR|ABLES

I_ I • i_ I
IEM PROTECTION I • ;EM pROTECTION i
i EHHANCEO AREA t • iENHANCED MEAl

L........ I .......
DATA BUSING

OF POOR QUALITY
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SUMMARY

0 FAA CERTIFICATION BASIS FOR

_ONIC CONTROL SYSTEMS

- NEEDS FURTHER DEFINITION

o _ _OLOGY

- NEEDS FURTHER DEVELOPMENT

o AIRCR_I_VIEPROT]_'I_/ON_L_rl]_VI]_
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Ki!Y TECHNOLOGIESFORTHE1990'S

RICHARDULLMAN

FLIGHTCRITICALWORKSHOP

LANGLEYRESEARCHCENTER

DECEMBER13-15,1988
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KEY TECHNOLOGIES FOR THE 1990'S

AN INDUSTRY STUDY OF HIGH-LEVERAGE

ENABLING AEROSW'ACE TECHNOLOGIES

AND ROADMAPS TO ATTAIN THEM

|| $_8.1)o1

DEFENSE

SOME HISTORICAL PRECEDENTS
III

1970 THE SMOKE STACKS

,Q

1975 - APPLIANCES

1980 - AUTOMOTIVE 11'4DUSTRY

1985 CONSUMER ELECTRONICS

? ' AEROSPACE TECHNOLOGY

8g.SJIl.O01

DEFENSE

PRECEDi;';_C= PAGE BLANK NOT FILMED
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CATALYSTS - AN .INDUSTRYCONSENSUS
AND A NATIONAL COMMITMENT

ARTIFICIAL
INTELLIGENCE

COMPOSITE
MATERIALS VERY-LARGE

SCALE INTEGRATED
CIRCUITS

I
t

ADVANCED
SENSORS

THE
OF THE

FUTURE

SOFTWARE
DEVELOPMENT.

OPTICAL
INFORMATION
PROCESSING

PROPULSION
SYSTEMS

ULTRARELIABLE

ELECTRONIC SYSTEMS

DEFENSE
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A RENEWED
II III

COMPETITIVENESS
III _

2000 _<-
-_..-
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_:_ GLOBAL
.LSUPERIORITY
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/!}.: AEROSPACE -
,. ," PRODUCTS

. .;i_ :_ - _,.

• Y._ _" ..i_

U,S. AREOSPACE COMPETITIVENESS INITIATIVE
I I
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I

Vali4t.lil' _,l'}
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DEFENSE
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DEFENSE
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:.....

PROGRAM STATUS

• TECHNOLOGY ROADMAPS ARE BEING COORDINATED

• GOVERNMENT PARTICIPATION IS QUITE ACTIVE

• TECHNOLOGY TEAM MEMBERSHIP CONTINUES TO GROW

• KEY TECHNOLOGIES ASSESSED AS 40% OF TOTAL INDUSTRY TECH
DEVELOPMENT

$1.5B IR&D

$1.SB CR&D

• AEROSPACE TECHNOLOGY POLICY FORUM WAS CONVENED

ll-|_lO -I_)

DEFENSE

URESROAI}I_P

ULTRARELIABLEELECTRONICSYSTF._ IN THE 21_t CENTURY

I ENtlAEE THE RELIABILITY OF ELECTRONICSYSTE/_, BY AT LEASTA MAGNITUDEWITtt]g

THE DECADE

I ACHIEVETHIS grilLE RF.JEING

ACOUIS1TIONCOSTS

DEVELOffEETTIE

CYCLETIlE THROUGHTHE PLANT

COSTOF OMERSHIP

/

ORIGINAL PAGE iS
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U_S ROADfIAP

Ai>P_RO_O_AC_!I.

i CULTURALCHAHE INIIOWTIlE,DESIGNPROCESSISAPPROACHF.OAWl)IIAIIA@ED-

"CONCURRENTENGINEERING"

i DEFECTFREEI_ACTURIHG

I TECHNOLOGYIII,Sf.iTlOi,I

I UN_RLYIH__rr,.B.1_._tlAN{:F11_%t,$.,..F-,l;t;,itllilllAl,_Y_II

RELA110tlStIIP10 lill INITIATIVE

i CONCURRENIENGINEERINGISIIIEENGINEERINGARMOFI_I

i

i DEFECTFREEMANUFACTURINGISTHEULTIMATEGOALOF CONTINUOUSIMPROV&I_NT
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TIESYSTENATICA_tt |0 TIE INTEGRATED,CO_CU_RENT_SIGNOFPRODUCTSAND

THEIRRELATEDPitOC(_._,INCLUDItIGHANUFACTUR[A_DSUPPORT.TillsAPPROACH

1SINTENDED10CkJJ_TIlEDEVELOPERSFR_ TIEOUTSET,TOCONSIDERALLELFJ'IENTS

OFTilePROI_TLIFECYCLEFROMCO_EPTI_THROUGHDISPOSf&,]NCLUDiNGOUALITY,

COST,SCiEBI..EAN_U_ERP_OUIP_r..W._T$.

CONCURRENT ENGINEERING

I

REQUIREMENT
]::>.

SEQUENTIAL ENGINEERING

PROOUCTDEVELOPMENT PROCESSDEVELOPMENT
]::> I>

PROTOTYPE
7:>

CONCURRENT ENGINEERING

REQUIREMENT
Z:>

_ PRODL_'rDEVELOPMENT

PROCESSDEVELOPMENT

I_ PROTOTYPE
'-

AN INTEGRATED PROCESS WHICH ENGINEERS THE PRODUCT
AND THE MANUFACTURING AND SUPPORT PROCESSES TOGETHER

WITH EMPHASIS ON EFFICIENCY, INCREASED QUALITY AND REDUCED COST.
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CONCURRENT ENGINEERING
I

SELECTEDCASE STU DIES

_ ii

CASE STUDY

McDONt_f LL DOUGI-AS

iiQL_ IALLISTIC

_._li'l _tk,_ 0IVI.SION

¢,Ikl

HI[Wq.I[TT,Pa_KARDCO,
tNSTIRtJ44t.NT DIVISION

IBM

QUALITYCOST "' SCHEDULE

tOq_ E,AVtI, AGI ON DID FOR

REACTOR AND MISSILE

PRO,,RG"lr IL

REDUCED LABOR RATES

BY S,?JUHOUR; COST

_AVINGS 301k BELOW BID.

COST OF REPAIR FOR NEW

CIRCUIT PACK

PRODUCTION CUT AT

LEAST

:b0% ACTUAL 8AVlNGS IN

DEVELOPMENT COST FOR

CONSTRUCTION

EQUIPMENT.

MANUFACTURING COET8

REDUCED 42_&.

PRODUCT DIRECT

ASSEMBLY LABOR HOURS

REDUCED 45%.

SIGNIFICANT SAVINGS (REDUCTION

FROM 4S WEEKS TO I HOURS) iN

ONE PIIASE OF tIIGtt SPEED

VEiIICL_ PRELIMINARY DESIGN; 11

MON|H SAVING ON TAV.,IB DESIGN.

PART AND MATERIALS LE.AD..TIME

REDUCED BY 30%: ONE PART OF

DESIGN ANALYSIS REDU_.,ED BY

OVER I0%,.

TOTAL PROCESS TIME REDUCED TO

44Rk OF BASELINE FOR SESS, _

SAVINGS IN DL=VF.L_

TIME.

REDUCED DEVELOPMENT CVCUE-

TIME 3S%.

SIGNIFICANT REDUCTION IN

I I:NGTH OF PMT DESIGN CYCLE.

40% REDUCTION IN ELECTRONIC

DESIGN C¥CLF-

SCRAP REDUC#,D idP&, NEWORK COST

REK)UCED _ AND IleL)N,

CONEORM,iJ, ICZl NII.KR_I,D II_; WELD

DE! I:CT5 PLR UNiT DEC,RI;J551;D Tb'_;

i_P/, FEWER CH&NGES ON R[ACTOH;

U% FEWER DR&WING CNANGE& ON

TAV-BB.

FLOOR INE.PECTK)N RATIO

DECREASED BY OVER _ MATERIAL

II, HORTAGES REDUCED FROM 12=/= TO

O, _ DEfECT-FREE OPERATION.

DEFECT_ REDUCED BY 30'% TO S'r%.

NUMBER OF INSPECTORI Ri_DUC[D lily

2/3.

PRODUCT FIELD FAILURE RATE

REDUCED f_0"& ¢CRAP AND REWORK

REDUCED 75%.

FEWER ENGINEERING CHANGES.

GUARANTEED PROI}UCIBIUrIf AND

TESTABILITY.

CONCURRENT ENGINEERING

SIGNIFICANT ELEMENTS

O

O

O

TOTAL SYSTEM ENGINEERING -.FRAMEWORK FOR SYSTEM
INTEGRATION AND OPTIMIZATION .

MULTIDISCIPLINE TEAMS - INTEGRATED PRODUCT AND PROCESS

ENGINEERING, STREAMLINED PROCESSES

QUALITY ENGINEERING METHODS - EFFICIENT PRODUCT AHD
PROCESS OPTIMIZATION

CAD/CAF_JCAM - MANAGEMENT OF CHANGE, RAPID TRAN3F:,-, _.--
BENEFITS, REDUCTION OF ERRORS, EFFICIENT DATA COLLEC[ ,ON
AND ANALYSIS, EFFECTIVE INTEGRATION
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CONCURRENT ENGINEERING

DESIGN

CHANGES

SEQUENTIAL
ENGINEERING

CONCURRENT_k_ PRODUCT DEVELOPMEN T

ENGINEERING _k_ PROCESS DEVELOPMENT

_'_ PROT(3TYPF

! LJ

-- i|

QUAL PRODUCTION

TEST DEPLOYMENT

PRODUCT PRODUCT PROCESS

.o_,...:lo,v.o_.._i,.o,o,.,io..o,.,.,
REQUIREMEN T

/ \
\

WHY? "_ _ HOW?

BoO

Design

Objectives

Critical

Functions

Required /_ '
_-_ Bu_ _,_n._

COMPONENTS
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COMI'OHENT !

D-D

OB ]EC'rlVI_S

COM_NENT 2

CKITICAL
FUNCTIONS

¢o*0,,ulql UdINJadl bi
• of mulomw utqeb*m,*m,
uul_

P,od_'.ed Cedt
2

• K,arced 'Ti*

"i_lXmllm_ollof requ_emenla
f.o_.ux_mtly randI_ an ImclTaled
l_l_ou i-lo opUmld producll
mid m_ufm:_ I mid *upp_l pmcmm_

• . _ ,,

. Coatlaum_ n_rdv *ad

• Improvemcm of _oducl,
ll_roc*aa• ,uppo_ clmrm_t*d*ll¢*,

co_Po_r 3

REOUIRED

CAPABILI'I'IES

C,pm*'. a_, oo co_r_able p_lucl..
_occ,_a & 0upport (1¢_ Jostled).

De0ae sod capmur, daJ_ f_ Me WUlm*,
*?,*em pcoduct, pl'ul • mqlqwN.
(comple*emd _ m_ril_Iom)

_),sthelltZ8 requlrulmSll Izllo

' Ih_IB of Ix_lu=0, l_mU_ & ml, ll_t..;

Vl_lbl. dNlp of _, .
Foemm and Juppe_.

I*,4.m_p_d,-., pint.w.
*sd m_ dam, . ,

Dim.mlmu, pmdu_ Wce.,i,
mid mppo_ dJuL

OeUvw ImXlu=__ dll f=_

l*mc_m W.olmJtnu*" - " " :"

COMI_)NB, IrT4

T_CI|NICAL
BUILDING
BLOCKS

Daxa_¢Isues

Prum_w_kJ/
_ur_aii_Uv_uw_

T_ a J_l,0d_

I_l,.a*m*

[nlidlJlcul ove_llht lot bop_l
mu_lumeul o| ©lumle*.

Prom:live, concurrent Iv-",,bllll7 Dca,ll_nI'roce_*ee
O|mdmrmstdesign.

gqlm_mqFr*m_ork

LIST EACH OF THE TOOLS TOBE DEVELOPED
(Continued)

II I I I

l DEFECT FREE MANUFACTURING "" ."

- TRANSITION TEAMS

- CONTINUOUS IMPROVEMENT

- PROCESS OPTIMIZATION

- SPC

- TQM

- RELIABILITY MODEL TO REFLECT MANUFACTURING PROCESS

TECHNOLOGY INSERTION

- VLSI

- MIMIC

- VHSIC

- SUPPORTING TECHNOLOGIES
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OE_P_QOE_QUALITY

rLLATED ACTIVITIES UMDERWAY. ..

I IDA STUDYON lie ROlE OF COgCURP,EtIT ENGINEERINGIN _ SYSTFJLSACOUlSITION

I DARPASTUDIESONCOMCURRENTENGINEERING

I ll_ INITIATIVES

| SLIPPflP,TING TECtLI4OLOGIES

BASIC ROADMAP
CONSIDERATIONS

STATE OF ONGOING
RESEARCH AND STUDY

INVESTMENT LEVELS, AND
r THEIR IMPLICATIONS

THE MIX OF RESEARCH
FUNDS

ONGOING PROGRAMS

NEW APPROACHES

MAJOR ROAD BLOCKS,
SOLUTIONS

NEED FOR INCENTIVES

RECOMMENDED APPROACHES
I I

• x

CHANGE IN -; DEFECT Fill
DESIGN PROCESS " MANUFACTURING

TECHNOLOGY
INSERTION

IIII Sit 41115

ITT:
DEFENSE
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NEEDED"

NEEDED:

ULTRA RELIABLE ELECTRONIC SYSTEMS
(URES) (Continued)

HUMAN CAPITAL :

• INDUSTRIAL EXHIBITION

- CRYSTAL PALA(_E, LONDON

- 1851

• DOMINANT WORLD POWERS

- #1 - BRITAIN

- #2 - U.S.

• BRITISH BUSINESSMEN AMAZED AT U.S. PRODUCTS

• LITERACY RATE

- U.S. - 90%

- BRITAIN- 67%

ULTRA RELIABLE ELECTRONIC SYSTEMS
(URES) (Continued)

HUMAN CAPITAL

• 1980's
.i

• DOMINANT WORLD POWER

- #1 U.S.

- #2 JAPAN

• AMERICAN CEO's MARVEL AT THE QUALITY OF
JAPANESE PRODUCTS FLOODING THE MARKET

• LITERACY RATE

- JAPAN - 95%

- u.s. 8o%

IIg -Sill 410T

ITT
DEFENSE

llll-SZl OO&

ITT
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THE LOOMING MISMATCH
BETWEEN WORKERS AND JOBS

II I

• ACTUAL SKILL LEVELS OF NEW WOmKtRS
P|ACENT Of It- TO _S-Y|AR-OEDS |*_TilJi_
THI tAIlOR MARKET. fROM ills TO J000

• SKILL LEVELS NEEDED FOR NEW lOIS
PtRCINT OF N|W JOBS CR|A|ED tlDId
Ills TO _000

+

LEVEL4 LEVELs
CAN glAD CAN I|AD
JOURNALS EClINTIfI_
AND TECHNICAL

MANUALS. JOURNAES
AND MITE AND
IUSHd|SS TINANaAL
tITTERS AND mIRORTS. AND
REPORTS. WAITI

IOURNAL
AR1_CLIS AND
_ll(HIS.
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LEVEL 6
NAS SAUl
SR_LS AS

t|VEL s. IUT
MOrt!
AOVANC|D.

ll.S+l Or!

DEFENSE

NEW PRODUCT 1DEVELOPMENT

TIME NEEDED TO

DEVELOP A NEW CAR

TOYOTA - _ YEARS

DETROIT-S YEARS

HARVARD BUSINESS REVIEW
NOVEMBBR,_qE.,_R 1eBB

)ll[ FRODUCTION . ._

CYCLE TIME THROUGH

THE PLANT

TOYOTA - 2 DAYS

DETROIT - _ DAYS

I CUSTOMER _

INVENTORY TURNS FOR' TIME NIEDED TO SCHE.
THE ENTIRE SUPPLY CHJUN DULl A DEALER'S ORDER
TOYOTA • |i TIMES/YEAR TOYOTA • I DAY
DETROIT - I TIMESJYEAR DETROIT. | DAYS

_.._ PLANT 4_ DEALER ISCHEDULE ORDERING 4'
,.a

II ";J ll;lI

rEFENSE
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URES ROADMAP (Continued)
I

BASIC FACTS .

1. TOYOTA CAN DEVELOP A NEW CAR IN 3 YEARS V5 IDi_iTI_(_II_I._
YEARS

2. INVENTORY TURNS FOR ENTIRE SUPPLY CHAIN
TOYOTA 16 TIMES/YEAR
DETROIT 8 TIMES/YEAR

3. TIME NEEDED TO SCHEDULE A DEALERS O_DER
TOYOTA - 1 DAY
DETROIT - 5 DAYS

4. PRODUCTION CYCLE TIME THROUGH THE PLANT
TOYOTA 2 DAYS
DETROIT 5 DAYS

5. F-15 AJC BUILT IN JAPAN DEMONSTRATE HIGHER RELIABILITY,
REDUCED MAINTENANCE

ll-IIl-@ll

ITT

HARVARD BUSINESS REVIEW
NOVEMBER- DECEMBER 19U

O
P
P
O
II
r
U
N
I
T
Y

C
O
S
T

DEVELOPMENT RISK

ll-l|ll|4

[] OUTLtNERS DFFFN._I=
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NASA-LaRC FLIGHT-CRITICAL

I)IGITAL SYSTEMS TECHNOLOGY

WORKSHOP

December 13-15, 1988

SUMMARY VIEWGRAPHS
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