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ABSTRACT

The overall aim of this research is to provide base technology for an automated

vision system for on-board interpretation of geophysical data. During the first
yea_s work we have demonstrated that geophysical data can be treated as

patterns and interpreted using single neural networks. Research underway at this
time is developing an integrated vision system comprising neural networks,
algorithmic preprocessing and expert knowledge. This system is to be tested

incrementally using synthetic geophysical patterns, laboratory generated
geophysical patterns and field geophysical patterns.
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SUMMARYOF PREVIOUSWORK

The objectives of the first year funding were threefold. First, develop a continuous

profiling EM vision system. Second, develop a continuous profiling sonic system. Third,
evaluate pattern recognition and neurat network approaches for automated interpretation

of continuous profile data. As funding for the first year effort (1989-1990) necessitated a

reduction in scope, objectives one and three became the operative objectives for the

project.

Combining SERC Funding with funding from several other projects, we purchased
a ground penetrating radar (GPR) system for continuous profiling using EM radiation in

the 500 MHz and 300 MHz frequency ranges. Extensive experimentation of the GPR system
at our geophysical test site and at several sites in Arizona is reported in McGill et al., 1989,
McGiII et al., 1990, and McGill, 1990.

Research during the first year has also demonstrated that radar signatures can be

represented as patterns and interpreted automatically using a single neural network, see

Figures 1 and 2. Our increasing experience in the field, however, indicated that GPR

signatures can become quite complex, but target shape and aspects of the GPR survey
(such as profiling speed) also strongly influence the radar return signatures. Hence, we

believe that a single neural network could rapidly become overwhelmed by actual field

situations, as we ourselves are at times. This belief has led to this year's project, which
has as an objective to develop and incrementally test an integrated vision system com-

prising neural networks, algorithmic preprocessing and expert knowledge represented by
a symbolic paradigm.

SUMMARY OF CURRENT RESEARCH

The research objective of the current reporting period is to develop and incrementally
test an integrated vision system comprising neural networks, algorithmic preprocessing

and expert knowledge.

VISION SYSTEM

During our previous research, we have demonstrated that GPR patterns are ame-
nable to adaptive pattern recognition using a single neural network. In these experiments

a continuous output simulated neural network was used to predict the horizontal and

vertical location of a buried plate given the radar signal returned from the irradiated plate.
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Results from generating synthetic radar signatures over regular geometric shapes,

Figures 3 through 7, show that, theoretically at least, far more than the target's spatial
location can be derived from the radar pattern. The target shape can be ascertained from

the slope of the signature arms, and the vertical and horizontal extent of the target can be
calculated from the length and shape of the signature arms. Hence, neural network-based

pattern recognition systems should be able to provide more information than our previous

experiments have asked of them.

In the field, though, several factors combine to complicate the GPR patterns. First,

attenuation in the surrounding soils will limit the radar penetration, thus truncating the

anomaly arms. Second, the EM wave velocity of the background soils and the speed of
the GPR profile can compress the radar pattern, making shape determination difficult. And
third, heterogeneties in the background soils can superimpose noise on the desired GPR

patterns.

Because of these difficulties, we have undertaken a program to design a more

complex vision system able to incorporate the advantages of neural networks, knowledge

base and algorithmic paradigms into a single unit. Neural networks, for example, appear
to work best on simple (toy) problems. That is, the simpler the pattern, the more successful
neural networks are in recognizing it. Furthermore, the scale of the 'toy" (Minskey and

Papert, 1968) problem is at a level at which most of the functioning of the human visual
system seems to work, i.e., the human visual system appears to be composed of numerous

simple neural networks working, for the most part, independently on specific aspects of

a pattern.

The complexity of the human visual system seems to reside not as a single huge

network, but rather in the complex (and so far little known) way in which the component
networks interact or are coordinated. The focus of this effort, then, is on organizing several

simple systems into a more effectively complex larger one. Although we are still exper-

imenting with some fundamental uncertainties related to the specifics of how to go about
such an organizational task, the following discussion outlines our general approach.

Applying the concept of encapsulation found in object oriented programming, par-
ticular domains of the pattern recognition function will be isolated from others to keep the

level of inter-model complexity down. We anticipate that higher level objects will be

employed to coordinate, or manage, the interaction of simpler objects. Research on the
visual system of the horseshoe crab, for example, indicates that the information flow into
the crab's visual cortex from its brain exceeds the information flow into its visual cortex

from the system of neural networks constituting its optic nerve. Hence, even in simple

visual systems there appears to be significant management of image information through

knowledge gained from heredity or experience.
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The basic idea is to use neural network paradigms as separate objects within the

object oriented programming environment. Nets for associative memory, nets for self
organization and back-propagation nets for discrimination, will ideally be guided and
directed in terms of access and activation by expert system modules. At the time of this

progress report, a preliminary knowledge base has been assembled, the components

(expert system shell, neural network simulation package, and small talk based object
oriented programming environment) have been implemented on a Sun Sparcstation, and
software to generate synthetic data for neural network training (Figures 3 to 7, for example)
has been assembled.

INCREMENTAL TESTING

Synthetic Patterns

Testing of the vision system will interact with system development. Tests will first be

completed using synthetic data such as those shown in Figures 3 through 7. That actual
GPR patterns look like these synthetic data is demonstrated in Figure 8. The vision system

will be supervised until it can perform well on the synthetic data.

Laboratory Test Tank

To test the system in a more natural environment, but still in a well controlled, labo-

ratory situation, we have constructed as part of this project a laboratory GPR test tank
shown in Figure 9. The large GPR test tank has been constructed for testing GPR imaging

apparatus under well-controlled laboratory Conditions.

The test tank consists of a 2.1m high by x 2.1m diameter fiber-glass and polyester

mat stock tank. The aqueous, background, solution in the tank has a high permittivity,
hence realistic field situations can be scaled within the tank to distances within a few tenths

of a meter.

The aqueous solution will serve two purposes: first, to compress the waves enough

to present a scaled-down version of an actual field site, and second, to attenuate the waves
enough to keep the sides, bottom, and surface reflections small. Because the permittMty

of water is generally an order of magnitude greater than that of most rocks. Electromagnetic

waves having equal frequencies can be scaled to a third the wavelength. Furthermore,

frequencies higher than that in the field can be employed to further decrease wavelength.
The medium's skin depth will be adjusted by adding ionic compounds such as HCI to a

specified concentration, yielding the necessary conductivity. The model anomalies will be
constructed using resin and graphite.
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Figure 8. Actual GPR profile from an historical archaeology site at Tubac, Arizona.
The adobe wall is similar to the target modeled in Figure la.
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The modeling scheme will be chosen to provide an attenuation per wavelength similar
to that found in the field. In this way, the same conditions encountered in the field can be

modeled in a controlled environment. Using this unique facility, the influence of EM wave

velocity, profiling speed and background attenuation on GPR patterns can be assessed
while still maintaining homogeneous background conditions. The research during this

phase will evaluate the ability of the GPR vision system to extrapolate from synthetic patterns
to real, but still ideal, patterns. This phase will also be interactive as the system is adjusted

to improve performance.

EEJ._Q_T.5 E

As a final test, the GPR system will be applied using the GPR test facility at the San

Xavier Geophysical Test Site. This test facility has been designed specifically for our SERC

GPR work (Figures 10, 11, and 12). Details of this site are provided in McGill, 1990.
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Figure 10. Location of the SERC, GPR test site at the San Xavier Geophysical Test

Facility.
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