May 1991 | : UILU-ENG-91-2227
CRHC91-17

Center for Reliable and High-Performance Computing
Y o

S s A

2 T e 3 »
K Lt s _,-",),
4 ESN A [t

o~

o

THE EFFECT OF CODE
EXPANDING OPTIMIZATIONS
ON INSTRUCTION

CACHE DESIGN

William Y. Chen
Pohua P. Chang
Thomas M. Conte
Wen-mei W. Hwu

Coordinated Science Laboratory
College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.






UNCLASSIFIED
URITY CLASSIFI ION HI A

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION
Unclassgified

1b. RESTRICTIVE MARKINGS
None

T T ——— Y YT YRR TV
2a. SECURITY CLASSIFICATION AUTHORITY

3 OISTRIBUTION/ AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
UILU-ENG-91-2227 CRHC-91-17

S. MONITORING QRGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION
Coordinated Science Lab
University of Illinois

6b. OFFICE SYMBOL
(If applicable)

N/A

7a. NAME OF MONITORING ORGANIZATION
NCR, NSF, AMD, NASA

6c. ADDRESS (City, State, and ZIP Code)

1101 W. Springfield Avenue
Urbana, IL 61801

7b. ADORESS (City, State, and ZIP Code)
Dayton, OH 45420

Washington DC 20550 Langley VA 20200

8a. NAME OF FUNDING / SPONSORING
ORGANIZATION

8b. OFFICE SYMBOL
(if applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

7a
N00014-91-3J-1283 NASA NAG 1-613
8¢. ADDRESE‘(City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS .
PROGRAM PROJECT TASK WORK UNIT
25 ELEMENT NO. | NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

The Effect of Code Expanding Optimizations on Instruction Cache Design

12. PERSONAL AUTHOR(S)

Chen, William, Pohua Chang, Thomas Conte and Wen-Mei Hwu

Technical FROM
16. SUPPLEMENTARY NOTATION

13a. TYPE OF REPORT 13b. TIME COVERED

TO

14. DATE OF REPORT (Year, Month, Day) ['S. PAGE COUNT
91-05-23 37

17 COSATI CODES

FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

instruction placement, inline expansion, superscalar

optimizations,cache design, cache memory, C compiler,
load-forwarding

'9 ABSTRACT (Continue on reverse if necessary and identify by block number)

This paper shows that code expanding optimizations have strong and non-intuitive implications
on instruction cache design. Three types of code expanding optimizations are studied in this
paper: instruction placement, function inline expansion, and superscalar optimizations. Overall,
instruction placement reduces the miss ratio of small caches. Function inline expansion
improves the performance for small cache sizes, but degrades the performance of medium
caches. Superscalar optimizations increases the cache size required for a given miss ratio. On
the other hand, they also increase the sequentiality of instruction access so that a simple load-
forward scheme effectively cancels the negative effects. Overall, we show that with load for-
warding, the three types of code expanding optimizations jointly improve the performance of
small caches and have little effect on large caches.

20. DISTRIBUTION / AVAILABILITY Of ABSTRACT

EIUNCLASSIFIED/UNLIMITED [ SAME AS RPT CJ oTic USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL

22b. TELEPHONE (Include Area Code) | 22¢. OFFICE SYMBOL

DD FORM 1473, 8a MAR 83 APR edition may be used untii exhausted.
All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE
ITICLASSTFTED




UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGR

-

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE



The Effect of Code Expanding Optimizations on
Instruction Cache Design

William Y. Chen Pohua P. Chang Thomas M. Conte Wen-mei W. Hwu ~

April 29, 1991

Abstract

This paper shows that code expanding optimizations have strong and non-intuitive impli-
cations on instruction cache design. Three types of code expanding optimizations are studied
i this paper: instruction placement, function inline expansion. and superscalar optimizations.
Overall. instruction placement reduces the miss ratio of small caches. Function inline expansion
improves the performance for small cache sizes, but degrades the performance of medium caches.
Superscalar optimizations increases the cache size required for a given miss ratio. On the other
hand, they also increase the sequentiality of instruction access so that a simple load-forward
scheme effectively cancels the negative effects. Overall. we show that with load forwarding,. the
three types of code expanding optimizations jointly improve the performance of small caches
and have little effect on large caches.
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1 Introduction

Compiler technology plays an important role in enhancing the performance of processors. Many
code optimizations are incorporated into a compiler to produce code that is comparable or better
than hand-written machine code. Classic code optimizations decrease the number of executed
instructions [1]. However, there are factors limiting the effectiveness of these optimizations. For
exainple. small function bodies limit the scope of optimization and scheduling. To increase the
scope of code optimization. inline function expansion is performed by many compilers [2] [3] [4].
Funetion inlining replaces a function call with the function body. To further enlarge the scope of
code optimization and scheduling. compilers unroll loops by duplicating the loop body several times.
The INPACT-T €' compiler utilizes inline expansion, loop unrolling, and other code optimization
techuiques. These techniques increase the execution efficiency at the cost of increasing the overall
code size. Therefore. these compiler optimizations can affect the instruction cache performance.
Lliis paper exaimines the effect of these code expanding optimizations on the performance of a
wide range of instruction cache configurations. The experimental data indicate that code expanding
optimizations have strong and non-intuitive implications on instruction cache design. For small
cache sizes. the overall cache miss ratio of the expanded code is lower than that of the code
withont expansion. The opposite is true for large cache sizes. This paper studies three types of
code expanding optimizations: instruction placement, function inline expansion. and superscalar
nptimizations. Overall. instruction placement increases the performance of small caches. Function
die expansion improves the performance of small cachies. but degrades that of medium caches.
Siperscalar optimizations increases rhe cache size required for a given wmiss ratio. owever. they

alsoinerease the sequentiality of instruction access so that a simple load-forward scheme removes
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the performance degradation. Overall. it is shown that with load forwarding, the three types of
code expanding optimizations jointly improve the performance of small caches and have little effect

on laree caches.

1.1 Related Work

(‘ache memory is a popular and familiar concept. Smith studied cache design tradeoffs extensively
with trace driven simulations [5]. In his work, many aspects of the design alternatives that can affect
ilie cache performance were measured. Later. both Smith and Hill focused on specific cache designs
parameters. Smith studied the cache block (line) size design and its effect on a range of machine
architectures. and fonnd that the miss ratios for different block sizes can be predicted regardless of
the workload used [6]. The causes of cache misses were categorized by Hill and Smith into three
ivpes: conflict misses. capacity misses. and compulsory misses [7]. The loop model was introduced
by Smith and Goodman to study the effect of replacement policies and cache organizations [8].
Theyv showed that under some circumstances. a small direct mapped cache performs better than
the same cache using fully associativity with LRU replacement policy. The tradeoffs between a
variety of cache types and on-chip registers were reported by Eickenmeyer and Patel [9]. This
work showed that when the chip area is limited, a small- or medium-sized instruction cache is
e nost cost effective way of improving processor performance. Przybylski et wl. studied the
interaction of cache size. block size, and associativity with respect to the CPU cvcle time and the
main memory speed [10]. This work found that cache size and cycle time are dependent design
parameters. Alpert and Flvin introduced an utilization model to evaluate the effect of the block
size on cache performance [11]. They considered the actual physical area of caches and found that

larger block sizes hiave better cost-performance ratio. Al of these studies assumed an invariant



compiler technology and did not consider the effects of compiler optimizations on the instruction
cache performance.

l.oad forwarding is used to reduce the penalty of a cache miss by overlapping the cache repair
with the instruction fetch. Hill and Smith evaluated the effects of load forwarding for different
cache configurations [12]. They concluded that load forwarding in combination with prefetching
and sub-blocking increases the performance of caches. In this paper a simpler version of the load-
torward scheme is used. where neither prefetching nor sub-blocking is performed. The effectiveness
ol this load-forward technique is measured by comparing the cache performance of code without
optimizations and with code expanding optimizations. Load forwarding potentially can hide the
effects of code expanding optimizations.

Diavidson and Vaughan compared the cache performances of three architectures with different
instruetion set complexities [13]. They have shown that less dense instruction sets cousistently
eenerate nore memory traffic. The effect of instruction sets of over 50 architectures on cache
performance has been characterized by Mitchell and Flynn [14]. They showed that intermediate
cache sizes are not suited for less dense architectures. Steenkiste [15] was concerned with the
relationship between the code density pertaining to instruction encoding and instruction cache
pertormance. He presented a method to predict the performance of different architectures based on
the s rate of one architecture. Unlike less dense instruction sets which rvpically have higher miss
rate for small caches T13]0 we show that code expansion due to optimizations improves performance
ob small caches. and degrades that of large caches. Our approach is also different from these previous
studies i that the nstruction set is kept constant. A load/store RISC instruction set whose code
der-ity s close to that of the MIPS R2000 instroction set is assuimed.

Cudernian and Flynn have simulated the effects of classic code optimizations on architecture



design decisions [16]. Classic code optimizations do not significantly alter the actual working sets
of programs. In contrast, in this paper, classic code optimizations are always performed; code
expanding optimizations that enlarge the working sets are the major concern. Code expanding
optimizations increase the actual code size and change the instruction sequential and spatial local-

ities.

1.2 Outline Of This Paper

Section 2 describes the instruction cache design parameters and the performance metrics. The
cache performance is explained using the recurrence/conflict model [L7]. Section 3 describes the
code expanding oprimizations and their effects on the target code and the cache design. Section +

presents and analvzes experimental results. Section 5 provides some concluding remarks.

2 Instruction Cache Design Parameters

2.1 Performance Metrics with Recurrences and Conflicts

The dimension of a cache is expressed by three parameters: the cache size. the block size. and the
associativity of the cache [5]. The size of the cache, 2€ . is defined by the number of bytes that can
siitaneonsly reside in the cache memory. The cache is divided into b blocks. and the block size.
2B iy the cache size divided by b. The associativity of a cache is the number of cache blocks that
Jhare 1he same cache set. An associativity of one is commonly called a direct mapped cache, and
an associativity of 20 =B (efines a fullv associative cache.

| he metric used in many caclie memory systetu studies is the cache miss ratio. This is the

citio of thie nnmber ol references that are not satisfied by a cache at a level of the memory sysrem



hierarchy over the total number of references made at that cache level. The miss ratio has served as
a good metric for memory systems since it is characteristic of the workload {e.g., the memory trace)
vet independent of the access time of the memory elements. Therefore. a given miss ratio can be
used to decide whether a potential memory element technology will meet the required bandwidth
tor the memory system.

The recurrence/conflict model [17] of the miss ratio will be used to analyze the cause of cache
misses. Consider the trace in Figure 1. ¢y, aq, ¢3. and a4 are the first occurrence of an access. and
theyv are unique in the trace. The recurrences in the trace are accesses as. ag. a7 and ag. Without a
context switch. all these four recurrences would result in a hit in an infinite cache. In the ideal case

of aninfinite cache and in the absence of context-switching, the intrinsic miss ratio is expressed

Po = —- (1)

where {2 s the total number of recurrences and .V is the total number of references. Note that
i access can be of only two tvpes: either a unigue or a recurrent access. Non-ideal behavior
oconrs due to conflicts, and this paper considers only the dimensional conflicts: multiprogramming
conflicts are considered in [18].

A dimensional conflict is defined as an event which converts a recurrent access into a miss
due 1o limited cachie capacity or mapping inflexibility. For illustration. consider a direct mapped
cache composed of rwo one-byte blocks as shown in Figure 2. A miss occurs for recurrent access s

Reference | __
Address |0 1 2 3 1 2 1 2

Figure 1: An example trace of addresses.



Reference: aq 25 k) ag
Address: 0 miss 1 miss 2 miss 3 * miss

block 0: 0 0 2 2
block 1: i 1 3

a g a 5 a E a 8

{ miss 2 1 2

2 2 2 2
1 1 1 1

* Dimensional conflict

Figure 2: An example two-block direct-mapped cache behavior.

becanse reference @, purges address 1 from the cache due to insufficient cache capacity. Hence. ay
represents a dimensional conflict for the recurrence as. The other misses. a1.a2, a3 and a4. occur
Lecanse these are the first references to addresses 0.1,2 and 3. respectively (i.e.. they are unigue
accesses . Therefore. the following formula can be used for deriving the cache miss ratio. p. for a

given trace. and a given cache dimension:

N—-(R-C C
p= ( D) =/Jo+—\f,D- (2)

where (75 is the -roral pumber of dimensional conflicts. and p, is the intrinsic miss ratio.

I a simple design, when a cache miss occurs, instruction fetch stalls and the instruction cache
waits for the appropriate cache block to be flled. After instruction cache repair is completed.
the instruction fetch resumes. The number of stalled cycles is determined by three parameters:
the initial cache repair latency (L), the block size. and the cache-memory handwidth (:3). For a
<ingle cache miss. 1he number of stalled cveles is the initial cache repair latency plus the number
ol transters required to repair the cache block. The total miss penalty without load forwardiug. ¢,
1w oxpressed by the number of total misses multiplied by rhe number of stalled cveles for a single
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cache miss.
28

tn=(iV—(R~C'D))><(L+F)- (3)

Llus 1> the miss-penalty model used when load forwarding is not assuined. The wmiss penalty ratio

is calculated by dividing the miss penalty, ¢,, by V.

2.2 Load Forwarding

Load forwarding was evaluated by Hill and Smith [12]. They concluded that load forwarding in
combination with prefetching and sub-blocking increases the performance of the cache. In this
paper. we use a simpler version of the load forwarding scheme where neither prefetching nor sub-
blocking i performed. The state transition diagram for load forwarding is shown in Figure 3.
The tustruction cache is in the standby state initially (state 0). When a cache miss occurs. the
mstruction tetch stalls (state 1). Instead of waiting for the entire cache block to be filled before
resuining. the cache loads the block from the currently-referenced instruction and forwards the
istraction to the instruction fetch unit (state 2). Furthermore, if the instruction reference stream
1> ~equiential. each subsequent instruction is forwarded to the instruction fetch unit until the end
of the block i> reached or a taken branch is encountered. Any remaining unfilled cache-block bytes
are repaired in the normal manner, and the instruction fetch stalls (state 3). This load forwarding
schiene requires no sub-block valid bits and therefore has a simpler logic for caclie block repair than
~ith biock-based schenes.

Viexample of the cache-block repair process with load forwarding is provided in Figure .
Reference Xoresults in o miss. ft takes £Loeveles before this reference is placed in the appropriate
block Tocition and is forwarded 10 the fetch unit. Reference Y is a sequential access. thus it is

considered as a hit. [tis placed in the cache and forwarded to the fetch unit. Reference 7 breaks

) CRICIMAL
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instruction fetch unit not stalled

instruction fetch unit stalled

repair

state 1
initial
delay

memory
to cache
transfer
begin

) end of block
miss or

taken branch

state 3
no load
forward

whole
block
repaired

Fieure 3: State transition diagram of the load forwarding process.



Cycle: 0 L L+1

Status: stall and repair forward forward

Reference: X X Y

Address: 1 miss 1 2  hit
block 0: 1 1] 2
block 1:
Cycle: L+2 L+3 2*L 43
Status: stall and repair stall and repair forward

Reference: Z Zz Z

Address: 4  miss 4 4

block 0: 1] 27 3 0 1| 2] 3 g} 1| 27 3
block 1:

Figure 4: An example of the load forwarding process.

the sequential-reference stream. load forwarding stops. and cache repair of block 0 continues. At
cvele L+2 the end of the block is reached. and the cache repair continues from the beginning of
the cache block. At cycle L+3. the entire cache block is filled. the fetch unit continues with the
next instruction reference. The block wrap around time is assumed to be negligible compared to
the total block-repair time '. References X and Y are sequential and constitute a run length (the
mnuher of seqguential instructions before a raken hranchi ol 2.

For the 5% cache miss. if the total number of bvtes where the instruction fetch and cache repair

“For the actual hardware implementation, the cache repair can start at the beginning of the cache block. \When
the location of the instroction to be fetched is encountered within the cache block. load forwarding begins. Load
forwarding tenmnates when the end of the block is reached or when a taken branch ix encountered. ache repair

~tops at the end of the block. The miss penalty incurred by this method is the same as the one presented i the

Jroeqpart
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overlap is represented by S[¢], the total miss penalty with load forwarding, #;, is expressed as
b=ty — ts (4)

where tg is

-R)+
ts = Zj %l (5)

ts measures the number of cycles saved by load forwarding. Equation 4 is the miss-penalty model
used when load forwarding is assumed. The miss penalty ratio with load forwarding is calculated
by dividing the miss penalty. ¢, by A

I'he saved cvcles expressed in Equation 3 is constrained by two factors. First, load forwarding is
limited by the sequentiality of the instruction reference stream. The more sequential the instruction
reference stream is. the more overlap between the cache repair and load forwarding cycles that can
Lo achioved. Second. assuming the sequentiality of the referencing stream is not a problem. load
forwarding is performned only from the missed reference until the end of the block. Thus the savings
is hiehly dependent upon the location of the miss within the cache block. The sequentiality of the
reference stream can be increased by appropriate compiler optimizations and this will be discussed
i1 Section 3. This second factor is highly variable and dependent upon the instruction reference

stream and the block size.

3 Optimizations and Code Transformations

3.1 Base Optimizations

A standard set of classic optimizations is available in commercial compilers todayv (see Table 1)

The wonl of these optinizations is to reduce the exec wtion tinte. Local optimizations are performed




within basic blocks. whereas global optimizations are performed across operations in different basic

block~. In this paper. these classic code optimizations are alwayvs performed on the compiled

PrOZrains.,

Local

Global

constant propagation

copy propagation

common subexpression elimination
redundant load elimination
redundant store elimination
constant folding

strength reduction
constant combining
operation folding

operation cancellation

dead code removal

code reordering

constant propagation

copy propagation

common subexpression elimination
redundant load elimination
redundant store elimination

dead code removal

loop invariant code removal

loop induction strength reduction
loop induction elimination

global variable migration

loop unrolling

Table 1: Base optimizations.

3.2 Execution Profiler

Execntion profiling is performed on all measured benchimarks. The IMPACT-I profiler traunslates
cach targer C program into an equivalent ' program with additional probes. When the equivalent
(" program is executed. these probes record the basic block weights and the branch characteristics
for each basic block. Profile information is used to guide the code expanding optimizations. The
profile information is collected using an average 20 program inputs per benchmark. An additional

mput i~ then used 1o measure the cache performance.



3.3 Instruction Placement

Reordering program structure to improve the memory system performance is not a new subject.
I wore recent literature regarding instruction caches. instruction placement has been shiown to
improve performance [19] [20] [21). The IMPACT-I C compiler instruction placement algorithm
improves the efficiency of caching in the instruction memory hierarchy [19]. Based on dynamic
profiling. this algorithm increases the sequential and spatial localities. and decreases cache mapping
conflicts of the instruction accesses.

For a given function body. several steps are taken to reorder the instruction sequence. For
each [unction. basic blocks which tend to execute in sequence are grouped into traces (22] [23].
Traces are the basic units used for instruction placement. The algorithm starts with the function
entrance trace and expands the placement by placing the most important descendent after it. The
placement continues antil all the traces with non-zero execution profile count have been placed.
Traces with zero execution count are moved to the bottom of the function. resulting in a smaller
cffective function body.

Reordering the basic blocks does not increase the program size significantly. The overall se-
quentiality of the resulting code is increased (i.e. the number of taken branches are reduced) due
to the formation of traces. and this may increase the need for a larger cache block size. For the
salle cache size. an increase in block size translates to a decrease in tag store. L'he overall locality
of the resulting code is increased due to the placement of more important traces at the begiuuing

ol the function.



3.4 Function Inline Expansion

Function inline expansion replaces the frequently invoked function calls with the function body. The
nuportauce of inline expansion as au essential part of an optimizing cowpiler has been described
by Allen and Johnson [24]. Several optimizing compilers perform inline expansion. For example,
the IBM PL.8 compiler does inline expansion of all leaf-level procedures [25]. In the GNU C
compiler. the programmer can use the keyword inline as a hint to the compiler for inline expanding
tunction calls {2]. The Stanford MIPS C compiler examines the code structure (e.g., loops) to
choose the function calls for inline expansion [26]. The IMPACT-I compiler has an algorithm
that automatically performs inter-file inlining assisted by the profile information where only the
inportant function call sites are considered [4]. Inlining is done primarily to enlarge the scope of
optiization and scheduling.

Stnce the callee 15 expanded into the caller. inline expansion increases the spatial locality and
decreases the number of function calls. This transformation increases the number of unique ref-
erences. which may result in more misses. However. a decrease in the miss ratio may also occur.
becanse without inline expansion the callee has the potential to replace the caller in the instruction
cache. With inline expansion, this effect is reduced. Inline expansion provides large functions to
enlarge the size of rraces selected. This enlargement of function bodies helps to further the effec-
Hiveness of instruction placement. With an increase in the sequentiality of the referencing stream.

animprovement in the performance of load forwarding can be expected.

3.5 Optimizations for Superscalar Processors

Shnce basie blocks 1vpically contain few instructions. there is little parallelism within a basic block.

For superscalar processors. many code transformations are necessary in order to increase the nuii-

L



ber of instructions available for scheduling. Many researchers have shown the effectiveness of
these optimizations [27] [28] [29]. Although these optimizations are frequently used for super-
scalar processors. these optimizations are also usefnl for scalar processors (e.g.. MIPS compiler
performs automatic loop unrolling {3]). The following superscalar optimizations have been imple-
mented in the IMPACT-1 C compiler and are performed in addition to function inline expansion
and instruction placement. They have been shown to provide significant speedup on superscalar
processors [30].

Super-block formation: A super-block is a sequence of instructions that can be reached only
from tlie top instruction and may contain multiple branch instructions. A trace can be converted to
4 super-block by creating a copy of the trace and by redirecting all control transfers to the middle
of the trace to the duplicate copy: thus. super-block formation. or trace duplication. increases code
optiniization and scheduling freedont,

Loop unrolling: The body of a loop is duplicated to increase the number of instructions in
the <uper-block. To nuroll the loop V' times. the body of the loop is duplicated (V- 1) times. For
multiple instruction issue processors, the IMPACT-I € compiler typically unrolls small loops four
or more times. For larger loops. NV decreases according to the loop size.

Loop peeling: Many loops iterate very few times, (e.g.. less than ten). For these loops. loop
anrolling and software pipelining are less effective because the execution time speut in the parallel
<ection (the optimized loop body ) is not substantially longer than in the sequential section (the loop
prologue and epilogue). An alteruative approach to loop unrolling is to peel off enough iterations.
el that the loop typically executes as a straight-line code.

Branch target expansion: lnstruction placeent and super-block formation introduce many

brancl fustructions. Brauch target expansion helps to eliminate the number of taken branches by

15



object code size || instruction
program || description (bytes) references
ccep GNU C preprocessor 20400 2.89 x 10
eqntott | truth table generator 15256 1.47 x 108
espresso || boolean minimization 61264 5.8 x 107
mpla pla layout 138808 1.07 x 10
tbl format table for troff 24804 3.08 x 107
xlisp lisp interpreter 31920 1.46 x 10
yacc parsing program generator 21320 3.47 X 10”

Table 2: Benchmark program characteristics.

copving the target basic block of a frequently taken branch into its fall-through path. The number

of static mstructions increases due to this optimization.

Super-block tormation, loop unrolling, loop peeling. and branch target expansion increase the

~equentiality of the code. Loop unrolling and loop peeling decrease both spatial and temporal

localitv. A reduction in cache performance can be expected due to a decrease in spatial locality.

Uhe increased code size and increased unique references can be expected to increase the cache size

requirement,

4 Experiments and Analysis

4.1

Benchmark Programs

table 2 shows the benchmark programs that are used in this paper. Tlree of the prograitus.

. . + v ) i M
cyptot!capressosawd elispoare from the SPEC? benchmark ser [310

Four other (' programs.

mipli. ceeps gaceand thl. are commonly used scalav programs. The object code size colunn gives

the program size i byres without any code expanding optimizations. The size of these henchmark

“Uinversity of linois is o member of SPEC.
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programs are large enough for studving instruction caches. The instruction references column gives
the corresponding number of dynamic instruction references. These instruction references are for

the full run of each benchmark program. no sampling or reference partitioning is used.

4.2 Measurement Tools

The measurement results are generated by trace driven simulation. To collect the instruction
traces. the compiler’s code generator was modified to insert probes into the assembly language
program. Executing the modified program with sample input data produced the instruction trace.
[l traces consist of the IMPACT assembly instructions (LCODE *) which is similar to the MIPS
R2000 assembly language [32].

Siuce the performance number for many cache dimensions are needed. a one pass cache simulator
i« nacd. The cache simulator for the experiments uses the recurrence/conflict model [17]. where
ouly one pass over the instruction trace is needed to simulate all cache dimensions. Similarly.
he information required to derive niss penalty with load forwarding is collected for all cache
dimeusions. In this paper. associativity of one-way. two-way. four-way. and fully-associative are
Sunated. The block sizes cousidered are 16. 32. G4. and 123 bytes. The cache sizes range from

|K to 128K bytes.

4.3 Empirical Data and Analysis

For 1he purpose of experimentation. the code expanding optimizations described in Section 3 are
oreanized into four optimization levels with increasing lunctionality: ne {no code expauding op-

Vhnization . pl Ginstrinetion placementi. iy (tunction inline expansion plus instruction placement ).

| CODF documentation is available as an internal report.

3
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program H no ] pl [ in ] szTI

ceep - 1 2% | 36% | 54%
eqntott -1 1% 2% ™%
espresso || - | 1% | 10% | 60%
mpla - 1% 3% 41%
tbl -1 3% 22% | 67%
xlisp -1 1% [ 18% | 49%
yacc - 4% | 21% | 110%
average || - | 2% | 17% | 55%

Table 3: Accumulated code size increase.

and su (superscalar optimization. function inline expansion. and instruction placement). Experi-
ment~ are conducted by varving the optimization level to measure the incremental and accumulative

etfects of these optimizations.

General Effects

In order to quantify the effect of optimization on code size, the object code size was measured for
vach levelof optiniization. Table 3 shows the relative object code size for each optimization level. All
ratios ad percentages are computed based on rhe code size without code expanding optimization.
lustrietion placement increases the average code size by 2%. Function inline expansion results in a
3% code expansion after instruction placement, as indicated by the [7% increase in average code
size in the o column of Table 3. Superscalar optimization further increases the code size by 38%
after both inline expansion and instruction placement. The total code expansion due to all the
Hivee optimizations is 33%. which reinforces the concern that these optimizations may degrade the
imstruetion cache performance.,

Flieinstruction working set of a program is defined as the smallest fullv-associative instruction

cache whiel achioves a 0019 miss catio for the program. It provides a relative measure ol cache



16 byte block 32 byte block 64 byte block 128 byte block
program | no | pl [ in | su no| pl | in| su no | pl [ in| su || no [ pl ] in| su
ccep Bl13]13[13J13]13] 12|13 12 127127130113 }12|12|13
eqntott | 10 1 10 1 10 ol 10110] 9 [10]f10]10] 10} 10 1111
espresso | 14 | 14 | 14 15014141415 13[13]13} 14 13113113 14
mpla 14 ] 131415 14 {13 | 14| 15| 14 14|14 15| 14 | 14 | 14| 15

thl 1211411515 14|14 ] 15|15 1414|1515 14 [ 131] 1415
xlisp 21121313 13712[1w3]13]13]13]13 14 1311313 14
vacc 11111 12| 13211 {13j11 111l 13 1111|1113

Table 4: Working set size for various block sizes in log, cache size.

B no pl n su

] program || num 1 % inc || num i % inc || num I % inc || num { % inc
ccep 5.1 - 7.5 47 7.7 50 1 10.5 105
eqntott 3.8 - 5.9 53 5.9 54 5.9 54
espresso 6.4 - R.4 31 9.1 42 || 14.8 131
mpla 5.1 - 8.9 76 9.9 96 || 17.3 253
thl 3.5 - 4.9 42 6.4 84 || 13.1 278
xlisp 4.2 - 6.3 50 9.5 129 || 10.8 159
vace 4.0 - 5.9 47 6.1 514 13.0 223

| average 1.6 - 6.8 48 7.8 70| 12.3 167

Table 5: Average number of sequential instructions.

size m-quirement by programs. Table 4 presents the instruction working set size of each benchmark
for all optimization levels. All numbers presented are in log, scale (e.g.. 14 is a 16K byte cache).
The laregest working set size needs at most a 32K bvte cache. All miss ratios for the larger caches
are considered negligible, and for this reason. cache sizes larger than 32K will generally not be
Jhiown in this paper. lustruction placement and function inline expansion have very little effect on
Ve instrinction working set size. Superscalar optimization approximately double the instruction
working set size. This is expected since superscalar optimizations results in the largest increase in

"()(I(‘ \i%&',



base % change
program no pl l n } su
ccep 2.89 x 10" | -0.27 [ -2.01 | -3.17

102 ]| -0.42 T -0.43 | -0.45
espresso || 5.48 x 107 || +0.18 | -1.23 | -3.33

X
eqntott 1.47 x
X
mpla 1.07 x 108 || -0.62 | -6.18 | -10.1
X
X
X

tbl 3.08 x 10" | 40.21 | -12.3 | -16.2
xlisp 1.46 x 10° || -1.84 | -14.6 | -16.7
yacc 3.47 x 107 || -1.00 | +0.13 | +6.53

Table 6: Number of dvnamic references.

A~ discussed in Section 3. all of the three code expanding optimizations can improve the sequen-
rality of instruction access. To quantify this effect. the average number of sequential instructious
execited between taken branches was measured. As shown in Table 5. all of the three optilizations
nuprove the sequentiality significantly. With all optimizations. the average number of sequential in-
structions increased from 4.6 to 12.3. This dramatic increase in sequentiality suggests that schemes
~uchas load forwarding may be able to offset the negative effect of code expansion. We will further
explore 1his subject later in this section.

\tliough the static code size increases significantly after the code expanding optimizations. the
ninber of dynamic instruction references tends to decrease with each additional level of optimiza-
fions. Table 6 presents the number of instruction references for each benchmark program. The
Lreest improvement results from function inline expansion: this is due to the lnereasing opport unity
to apply classic local and global optimizations on the inlined version of the code and to elimiuate
stroctions that save and restore registers across function boundaries. The purpose for super-
~calar optimizations is to nncover parallelism and scheduling opportunities. Note however,
~perscalar optiniizations often result in a decrease in the number of fustriction references. The

contribntion of instrnction placement 1o the number of dynamic references is small when compared



16 byte block 32 byte block

Program no l pl l in l su no l pl l mn l sU

ccep 240 | 800 | 890 | 1120 | 450 | 430 | 480 | 590
eqntott 200 1 500 | 400 | 500 || 200 | 300 | 200 ! 200
espresso || 2170 | 2170 | 2320 3290 || 1140 | 1130 | 1210 | 1740
mpla 3500 | 3300 | 4200 | 5620 || 1900 | 1700 | 2200 | 2970

tbl 1310 | 1270 | 1510 | 2000 || 690 | 660 | 780 | 1070
xlisp 300 | 700 | 800 | 1100 || 400 | 400 | 500 | 600
yacc 980 | 910 | 1040 | 2020 || 530 | 480 | 550 | 1060
li | 64 byte block | 128 byte block J
ceep 240 | 230 | 260 | 310 140 130 140 | 170

equtott 100 | 200 | 100 | 100 90 100 | 100 90
espresso || 600 | 600 | 640 940 320 | 330 | 350 | 520

mpla 1000 | 900 | 1200 | 1600 || 600 | 500 | 700 370
thi 360 | 350 | 420 | 570 180 | 180 { 220 | 300
xlisp 300 | 300 | 300 | 300 200 | 200 | 200 | 200
vacc 200 | 250 | 300 | 570 160 | 130 | 160 | 310 |

Table 7: Number of unique references.

1o the other optimizations since instruction placement only performs code reordering.

1 e sum of the number of recurrent references and the number of unique references constitutes
the number of total dvnamic references. Table ¥ shows that the number of unique references
increases for inlining and superscalar optimizations. but decreases for instruction placement. The
absolute difference within the unique references does not constitute a significant variation in the
Uliss ratio since the difference is insignificant when compared to the number of dvnamic references

in Table 6.

Instruction Placement
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Figure 7: Effect of placement on dimensional conflicts and unique references.

Figure 5 shows the effect of instruction placement on the average cache miss ratio 1. On one hand.
instruction placement reduces miss ratio for small caches (1K and 2K). For example, the miss ratio
of a | cache with placement is comparable to that of a 2K cache without placement. On the
other hand. instruction placement has very little effect on large caches (8K and 16K). The same
trend can be observed from the worst case miss ratios in Figure 6. The worst case miss ratio is the
nm‘xiu.ml miss ratio observed among all benchmark programs. Note that the benefit of instruction
placement is more pronounced for programs with high miss ratios. This is a very desirable effect
since it increases thie stability of the cache performance.

1o analvze why instruction placement improves the performance of small caches. we have mea-
<ured the misses due to unique references (intrinsic misses. see Section 2} and those due to dimen-

Sonal confliers (dimensional misses). The log plot of Figure T shows the contribution of each 10

"We fonnd that the effect of instruction placement on the cache miss ratio of other associativities closely follows
e tend of the direct mapped cache case, therefore only the direct mapped cache results are presented.
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the miss ratio with and without placement. The black bars show the intrinsic miss ratio. Figure 7
clearly indicates that instruction placement makes negligible difference in the number of intrinsic
misses °. The shaded bars in Figure 7 show the dimensional misses. As can be seen in the figure.
the reduced miss ratio after placement is due to decreased dimensional conflicts 6.

The changes in program behavior due to instruction placement explain the discrepancy between
small and large caches. The working set of the benchmark programs do not fit into small caches.
I'his accounts for rhe high miss ratio of the small caches. Instruction placement separates the
frequently executed code segments from those executed infrequently. This helps the small caches
to accommodate the frequently executed portions of the programs. Therefore. the performance of
stuall caches improves significantly after instruction placement. Since large caches can accommodate
rhe working set of inost benchmark programs. the compaction effect of instruction placement does

not make a significant difference for these cache sizes.

Function Inline Expansion

Frowetion uline expansion has two conflicting effects on cache performance. Ou the positive side.
with inlining the caller and callee bodies are processed together by instruction placement. This
allows instruction placement to significantly increase the sequentiality of the program (see Table 5).
When the cache miss ratio is high. the increased sequentiality reduces the miss ratio bhecause it
increases the number of useful bytes transferred for each cache miss. On the negative side. inlinine

trereases the working set size (see Tables 3 and 4). If the working set fits into a cache before inlining

“Thee reader s enconraged to derive the intrinsic miss ratio by dividing the number of unique references in Table T

with the number of dynamice relerences in Table .

“Note that Figure Toas o log scale, which i uecessary 1o make the intnosic miss vatio visible. However, the log
~cale adso magnifies the miss ratio of large caches. For example, iustruction placement seem to make comparable
ditfers o for smwall caches 1IN and 200 and large caches (16K and 32K in Figure 7. However. it is clear {rom
Figure 7 rhat istenction: placement has strong effect on small caches but negligible effect on large caches
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Figure 10: Effect of superscalar optimizations for direct mapped cache.

but does not after inlining. the cache miss ratio may increase substantially.

bigures X and 9 show the effect of inline function expansion on cache performance *. The cache
Hiss ratio s relatively high for small caches before inlining. In this range. the increased sequentiality
reduces the cache miss ratio. In the middle range (SK. 16K, and 32K). the working sets of sowme
benchmarks fit in the cache before inlining but not after inlining. As a result. inlining increases
cache miss ratio. The 64K cache is large enough to accommodate the program working set hefore

and after lining. Therefore, inlining has negligible effect in caches of size 64k and greater.

Superscalar Optimizations

Figure 10 shows the changes in the cache miss ratios when superscalar optimizations are applied
alterinlining and placement. The miss ratios are cousistently higher with superscalar optimizations.
Fheretore. a larger cachie is required 1o compensate for the effect of superscalar optimizations to

taintain the same miss ratio. This information is consistent with the working set size caleulated in

A~ before the trend for higher set associativities Is very close to the results for direct mapped cache. Thus, only

the direct mapped results are presented.
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Figure 11: Effect of superscalar optimizatious on dimensional conflicts and unique references.

Table 4. If the block sizes are kept constant. the required cache size to maintain the same level of
liss ratio is approximately twice the cache size over that of code with no superscalar optimizations.

Fienre 11 indicates that superscalar optimizations increase the number of unique references.
but the increase is not significant. Therefore. it is the increase in code size rather than the increase

in unique references that is the primary cause of reduced cache performance.

All Optimizations

Figure 12 shows the cumulative effect of all optimizations on direct mapped caches. Intuitively.
stnabler caches shonld perforim worse on expanded code because of increase in the expected number
ol dimensional conflicts. However. the experimental data show the opposite. For the Lk aund 2k
cachoa, the miss ratio of code without code expanding optimizations are larger than the miss ratios
of code with code expanding optimizations. Sequentiality is increased by superscalar optimizatious.

thits for larger block size. the decrease in wiss ratio is due to sequentiality {e.g.. for 1K cache in
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Figure 12: Cumulative effect of all optimizations for direct mapped cache.



Figure 12. code with superscalar optimizations has a larger drop in miss ratio going from 64B to
1288 block size than code with no optimization). For small block sizes, the positive effect of higher
sequentialitv disapears. and the negative effect of code expansion causes an increase in the miss
ratio. However, the increase in code locality by function inlining and instruction placement is still
large enough to offset the negative effect of the code expansion. and a slight decrease in the miss

ratio can still be seen in small caches.

Load Forwarding

The results of load forwarding are presented in Figure 13. Since superscalar optimizations have
the worst results thus far. they are used here to evaluate the effectiveness of load forwarding. The
iwitial mewory repair latency (L) is assumed to be 4 cvcles, and the cache-memory bandwidth (3)
i« assimed to be 4 bvtes. Equations 3 and 4 are used to calculate the relative miss time penalty.
lLoad forwarding reduces the miss penalty and effectively upgrades the cache to a performance
lovel similar to a non load-forwarding cache of twice the size. For example. assume that 2Ix direct
mapped cache with block size of 64 bytes is used with load forwarding. Using the same block size.
e iss penalty ix approximately the same as that of a 4K cache without load forwarding. When
superscalar optimizations are used. the designer can either double the cachg size to maintain the
same performance level or use load forwarding and achieve the same result.

Another observation is that a block size of 128 bytes has consistently higher average miss
pentaltios than for other block sizes. This can be explained by the number of sequential instroctions
diown in Table 3. The overall average run length for superscalar optintizations is approximately
(23 instrnctions §19.2 bytes). It is possible that the first non-sequential miss will not be in the

beeinuing of the block (see Figure L1). By using the symbol R for the run length. and / as the run
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Figure 13: Effect of load forwarding for direct mapped cache.
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| Instruction stream )
l | two blocks are fetched

Figure 14: Reference stream and cache bloek refiils.
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length starting location within the cache block. the total number of cache blocks involved in a miss

is formulated as.

({+R)

(6)

The ceiling function is used to include all used cache blocks. For each run length, there are 2B/3
starting locations. Assuming uniform distribution for all starting locations, the probability of each
starting location would be 3/28. Therefore, the penalty of each cache miss for a particular run

length is shown as Equation 7.

>

7 -1 | »B
P(R.BY= > x{r(z.B.R)x(Lau“F)—R} (
(=0

2B/3
For simplicity. an integer approximation of the run length is used. Instead of 12.3. the value of 13

i~ used for R in Equations 6 and 7.

P(13.4) = 19 cycles (8)
P(13.5) = 17 cyeles (9)
P(13.6) = 22 cycles (10)
P(13,7) = 36.5 cycles (11)

The calculated values follow the trend in Figure 13 closelv. For B equal to 4. 5. and 6. the load
furwarding miss penalties are relatively the same. with B equal to 5 (the lowest). and B equal to
| (the next lowest . For B equal to 7. the load forwarding miss penalty is noticeably higher than
the other block sizes. and this can also be shown by using Equation 7.

I e nidss penalty for each run of sequential accesses is dominated by three values: the initial
load delav. the number of refill cveles with load forwarding. and the number of refill eveles without

load forwarding. While the initial load delay is dependent upon the hardware design technology, the
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Figure 15: Effect of initial load delay {4k cache).

non-stalling and stalling refill cycles are related to the block size and the instruction sequentiality.
Betore the initial load delay reaches a certain threshold value, the number of refill cycles will have a
dominant etfect upon the miss penalty. Larger block sizes will tend to have higher wasted number
ol vefill cveles than smaller block sizes. However, larger block sizes are penalized less for the initial
oad delay than smaller block sizes. Figure 15 shows the effect of varying the value of the initial
load delay on block sizes for a 4k cache. For each value of L, the miss penalty ratio is compared
hetween four block sizes. For small values of L. 16 and 32-byte blocks perform the best. But for
larger values of L. 64-byte block performs the best. This is also verified by Equation 7. Here. the

calue of Lois set 1o 1.

P34y = 43 cyeles (12
P(13.5) = 32 cycles (133
PU13.6) = 325 cycles b
PUL3.T) = 44.75 cyeles (15
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From Figure 15. for initial delay of 10. block sizes of 32 and 64 bytes have similar performances.
and block sizes of 16 and 128 bytes have similar performances.

As the value of [ increases. the performance of the larger block sizes increases while the perfor-
mance of the smaller block sizes decreases. It is not until an initial load delay of 40 cycles before
128-bvte blocks start to out-perform other block sizes. For smaller cache sizes, the miss ratios are
the dominating factor. and a smaller block size should be used. On the contrary, for larger cache

sizes. since the miss ratios are very small. larger block sizes are preferred.

5 Conclusions

This paper analvzes the effect of compile-time code expanding optimizations on instruction cache
desien. We first show that instruction placement. function inline expansion. and superscalar op-
‘imizations cause substantial code expansion. reinforcing the concern that they may increase the
cache size required to achieve a given performance level. We then show the actual effect of each
optimization on cache design.

Among the three types of optimizations. instruction placement causes the least amount of code
expansion. Its effects on the cache performance are mostly due to the increased instruction access
sequentiality. For small caches where the miss ratio is relatively high. the increased sequential-
itv reduces the numnber of cache misses by increasing the useful bytes transferred for each cache
miise. For large caches where the miss ratio is relatively low. the effect of instruction placement is
negligible.

[hfine function expansion affects the cacle performance by increasing both the sequentiality

andl The working set size. For small caches where the miss ratio is high. the increased sequentiality
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helps to reduce the miss ratio. Due to the increased working set size. some henchmarks which fit
imto moderately sized caches before inlining do not fit after inlining. Therefore. inlining increases
the miss ratio of moderatelv-sized caches. For large caches. since the working sets fit in the cache
before and after the cache, the effect of inlining is insignificant.

Superscalar optimizations increase the cache size required for a given rmiss ratio. However.
they increase the sequentiality of instruction access so much that a simple load-forward scheme
effectively cancels the negative effects. Using load forwarding, the three types of code-expanding
optimizations jointly improves the performance of small caches in spite of the substantial code
expausion. Load forwarding also allows the code expanding optimization to have little negative

effecr ou the pertormance of large caches.
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