=Y NTL=-24T774

T TIONAL AUTHURING

s

27)

TOoMANITULATIO

D e
B I

SR I

S s
y— 4

s
[N

(

SIMULATIONS:

,_
P f
g

N

Final Technical Report |

Instructional Authoring by Direct
Manipulation of Simulations:
Exploratory Applications of RAPIDS

- o .
-8 RAPIDS Il Authoring Manual
L
4
>
) Behavioral Technology Laboratories
~
(&) [
o
= [¥a)
L4 M August, 1990
<7 b 0
=0
("1-'\
Ll Cooperative Agreement NCC 9-16
—TE Research Activity No. ET.13
< O C
Sl NASA Johnson Space Center
& C = Mission Operations Directorate
O Space Station Training Office
e
—cx
©_06
= |-

Y Aty

—

Iag N

AT R L

(University of
{

Research Institute for Computing and Information Systems
University of Houston - Clear Lake

T-E-C-H-N-I-C-A-L R-E-P-O-R-T

The
RICIS
Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space
Center and local industry to actively support research in the computing and
information sciences. As part of this endeavor, UH-Clear Lake proposed a
partnership with JSC to jointly define and manage an integrated program of research
in advanced data processing technology needed for JSC’s main missions, including
administrative, engineering and science responsibilities. JSC agreed and entered into
a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to
jointly plan and execute such research through RICIS. Additionally, under
Cooperative Agreement NCC 9-16, computing and educational facilities are shared
by the two institutions to conduct the research.

The mission of RICIS is to conduct, coordinate and disseminate research on
computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear
Lake, the mission is being implemented through interdisciplinary involvement of
faculty and students from each of the four schools: Business, Education, Human
Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the “gateway” concept. UH-Clear
Lake establishes relationships with other universities and research organizations,
having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and
research objectives to advance knowledge in the computing and information
sciences. Working jointly with NASA/JSC, RICIS advises on research needs,
recommends principals for conducting the research, provides technical and
administrative support to coordinate the research, and integrates technical results
into the cooperative goals of UH-Clear Lake and NASA/JSC.

Final Technical Report

Instructional Authoring by Direct
Manipulation of Simulations:
Exploratory Applications of RAPIDS

RAPIDS Il Authoring Manual

Behavioral Technology Laboratories

August, 1990

Cooperative Agreement NCC 9-16
Research Activity No. ET.13

NASA Johnson Space Center

Mission Operations Directorate
Space Station Training Office

e __ O

b
r 4 r 4

“?-z_—_—"

Research Institute for Computing and Information Systems
University of Houston - Clear Lake

T-E-C-H-N-I-C-A-L R-E-P-O-R-T

Preface

This research was conducted under auspices of the Research Institute for
Computing and Information Systems by the Behavioral Technology Laboratories,
University of Southern California. Dr. Glenn B. Freedman served as RICIS
research coordinator.

Funding has been provided by the Mission Operations Directorate,
NASA/JSC through Cooperative Agreement NCC 9-16 between NASA Johnson
Space Center and the University of Houston-Clear Lake. The NASA technical
monitor for this activity was Barbara N. Pearson, of the Systems/Elements Office,
Space Station Training Office, Mission Operations Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the authors
and should not be interpreted as representative of the official policies, either
express or implied, of NASA or the United States Government.

Final Technical Report

Instructional Authoring by Direct
Manipulation of Simulations:
Exploratory Applications of RAPIDS

RAPIDS II
Authoring Manual

August 1990

Documentation:
Allen Munro

Design of RAPIDS II.
Lee D. Coller, Allen Munro, Quentin A. Pizzini, David S. Surmon,
Douglas M. Towne, and James L. Wogulis

Implementation of RAPIDS II.
Lee D. Coller, Quentin A. Pizzini, David S. Surmon, and James L. Wogulis

Behavioral Technology Laboratories
University of Southern California
250 North Harbor Drive, Suite 309
Redondo Beach, CA 90277

(213) 379-0844

Information in this document is subject to change without notice and
does not represent a commitment on the part of the University of
Southern California.

© Behavioral Technology Laboratories, USC, 1988, 1989, 1990

i

ACKNOWLEDGEMENTS

The development of RAPIDS Il was supported by the Air Force
Human Resources Laboratory under RICIS Research Activity No.
ET.13 (NASA Cooperative Agreement NCC9-16). J. Wesley Regian
served as AFHRL scientific officer for this project.

RAPIDS Il is based in part on the Intelligent Maintenance Training
System (IMTS) and on RAPIDS, which were developed at Behavioral
Technology Labs, USC, under the sponsorship of the Office of Naval
Research. the Navy Personnel Research and Development Center, and
the Air Force Human Resources Laboratories, under ONR contracts
NO00Q14-85-C-0040, N00014-86-K-0793, and N00014-87-C00489.

isi

TABLE OF CONTENTS
Preface: RAPIDS Il and Original RAPIDS vii
Rapid Development of Simulation-Based Instruction 7

Why RAPIDS Il 2

Overview of Course Authoring 3

Simulation Composition 4

Authoring Instructional Content 8
Developing an Instructional Organization 17
Installing RAPIDS Il 14

Using this Manual 716

The RAPIDS Il Student Interface 17

Examples of Content Presentation 19
The Options Menu 27
Modes of Instruction 28

Building Generic Objects 29

The Role of Generic Objects 29
Using the Generic Editor 371
Object Operations 36

State Operations 48

Drawing Operations 57
Window Operations 61

Rule Authoring 64

Rules in Rapids Il 64
Internal Rules 66
External Rules 74
Rule Editor Features 78
Rule Syntax 80

Developing Simulations 83

The Role of the Simulation Scene 83
Building a Simple Simulation 88
How Simulation Works 96
Viewing Simulation Data 99
Editor Operations 107

Object Operations 108
Simulation Operations 771
Run-Time Corrections 117
Simulation Debugging 124
Multi-Scene Simulations 134
Display-Window Operations 137

iv

6 Using Attribute handles 740

An Example Simulation: A Simple Electrical Relay
Connecting with the Mouse 143

Using Make Connection 154

Creating Test Equipment 159

7 Authoring Instructional Content 163

Content Units 165

Editing Content Unit Data 168
The Content ltems Menu 175
Content tem Data 177

Student Actions 178

Expositions 187

The Global Editor Commands 197

8 Instructional Organization 792
A Sample Instructional Organization 7193
Creating a New Instructional Organization 194
Student Evaluation in RAPIDS Il 202
Authoring Conditional Course Sequences 205
Local Editing in Large Trees 209

9 Instructor Utilities 271171
Testing a Course 2171
Building a Turnkey Training Environment 2713
Examining Student Data 214

References 217

Index 219

141

Preface

RAPIDS Il and Original RAPIDS

Locality of Effect

RAPIDS II is based, in part, on RAPIDS, a simulation-based
intelligent-CBI authoring system. In original RAPIDS, simulations
were created using IMTS, a simulation-composition and -delivery
system. IMTS showed the productivity of a direct-manipulation
approach to creating interactive graphical simulations. Experience
with IMTS suggested ways that simulation editing could be made
more powerful and yet be easier to use. RAPIDS [I, the successor
to both RAPIDS and IMTS, provides a fundamentally improved
approach to simulation modeling. It also permits the development
of simulations with ongoing processes, animation, and scheduled
events.

In IMTS, two different approaches to modeling devices were
provided. In one approach, called deep simulation, the behavior of
the simulation depended on the defined behaviors of generic
objects. These object behaviors were defined in terms of the values
of immediate neighbor objects. In the second simulation approach,
called surface simulation, behaviors were defined in terms of values
at other objects, which could be arbitrarily distant.

The deep simulation approach resulted in simulations that could
more easily be modified, and required less painstaking clerical
work. The surface simulation approach was more appropriate when
the author did not understand the behavior of a device in terms of
its components, or when a device was so complex that it was
impractical to define its behavior in terms of the behavior of its
components.

The problem with the deep/surface distinction in IMTS was that it
was absolute. An author could not create a simulation in which
some portions were based on strictly local passing of values, while
other parts of the simulation made use of more remote (‘surface’)
references to determine behavior.

There are a2 number of situations in which the strict deep/surface
distinction was inappropriate. For many training simulations, it
would have been convenient to mix the two approaches. It also
would be very useful for authors to develop simulations
incrementally, using ‘surface’ methods (non-local references and
behavior rules) to prototype their device simulations quickly. Parts
of the simulation could then be made ‘deeper’ (by using more
generic rules and only local references) in a step-by-step way. This
approach would let authors get simple versions of the whole
simulation working quickly, so that feedback could be elicited from
instructional developers, instructors, and perhaps students at an
carly stage of simulation development.

vi

RAPIDS Il Rules

Attributes

Continuous
Appearances

In addition to the impossibility of combining deep and surface
approaches in a single simulation, the two styles of authoring
simulation behavior were so different that few authors learned to
employ both approaches. This meant that the simulation approach
chosen for a particular IMTS simulation would depend more on the
previous experience of the author than on the requirements of the
training domain.

In RAPIDS I1, a new unified approach to simulation replaces both
the deep and surface simulation methods of IMTS.

Rules describe and control the behavior of objects in RAPIDS II.
Rule syntax and semantics is described in detail in chapter 4. At this
point, it is enough to know that many features have been added to
make rule authoring easier and less error-prone. In addition, rules
are more widely available to simulation authors than was the case in

'IMTS. Rules can be either generic (universal for objects of a given

type) or specific to a particular simulation. Authors can create and
edit rules at the scene level as well as at the generic object level. The
propagation of effects in a simulation is determined, in part, by
rules created in the scene editor.

Rule editing in RAPIDS 1 is facilitated by a more powerful menu-
driven editing system than was available in IMTS. In addition, the
Envos Interlisp structure editor has been made available for rule
editing, for the use of authors who are comfortable with that
approach to editing structures.

Attributes are data structures associated with objects. Rules can
refer to attribute values. In IMTS, objects could have only one sort
of attribute, called ports. Ports permitted values to be automatically
passed from one object to another. Behavior rules in generic objects
manipulated port values. In RAPIDS 11, a more flexible approach is
taken. Authors can use attributes to manage the same kinds of
values that were carried by ports in IMTS. In addition, however,
authors can make other uses of the artribute mechanism.

Certain attributes are created automatically in RAPIDS II. These
include an object’s location and its current state. Rules can refer to
these standard system attributes, as well as to attributes created by
authors.

A number of different types of actions can be carried out by rules.
A very common action is to assign a value to an attribute. In
addition, however, rules can change the location or rotation of
objects or of object states. This makes it possible to write rules that
change the appearance of an object to reflect some computed value.

In IMTS, objects with moveable parts had to be represented by
some fixed number of images of the states of that object. In
RAPIDS I, the moveable part can simply be moved or rotated by a
rule when the values that control the object change. This permits
much more realistic simulations of continuous graphic changes,
while requiring less graphical authoring.

vii

Processes

Instructional
Control

Summary

In IMTS, a user event (such as throwing a simulated switch) would
lead to a number of simulation events that would propagate through
the simulation until no more rules needed to be activated. After the
simulation had settled, the user would be able to carry out another
action. In RAPIDS II, student users can manipulate the simulation
while it is active.

This feature of RAPIDS II makes it possible to write rules that set
up ongoing processes, such as incrementing or decrementing
attribute values. The appearances of objects can be made to reflect
these changing values, so that a simulation appears to be
continuously animated. This means that a simulation user can carry
out a series of interactions without waiting for all the effects of one
action to settle before carrying out the next one. (The smoothness
of the animation effects is dependent on the power of the delivery
platform employed. On Xerox 1108 and 1186 computers, the
animations will sometimes not appear very smooth.)

The combination of the new process and continuous appearance
features make it possible to create real-time task simulations in
RAPIDS II, greatly extending the training domains that can
appropriately be attacked with this tool.

The lesson editing features of RAPIDS have been extended in
RAPIDS II to exploit the new real-time features of its simulation
composition system. Lesson authors can require that certain actions
be carried out before a given artribute artains a particular value, for
example.

In summary, RAPIDS II offers a number of advantages over the
original IMTS-RAPIDS combination. It permits the development of
simulation training for real-time tasks. It provides techniques for
including animations. It’s authoring system permits a more flexible
approach to choosing the locality of effect of rules in a simulation,
while employing a more integrated approach to simulation
authoring than did IMTS. The top-level menu of authoring options
is much smaller and simpler in RAPIDS II than in IMTS/RAPIDS,
even though RAPIDS II offers greater power and flexibility to the
author.

viii

RAPIDS tl Tools

Generic Editor Content Editor
Scene Editor Plan Editor
Build Simulation Run instruction

Run Simulation

The Top-Level Menu of Authoring Options
RAPIDS I should prove to be an important milestone on the road

to a fully integrated system for authoring and delivering intelligent
simulation-based instruction.

ix

Rapid Development
of Simulation-Based Instruction

RAPIDS II is a simulation-based ITS (intelligent tutoring system)
environment. Many other computer aided instruction systems provide tools or
programming language features that support the development of brief
simulation segments intermixed with other presentations. RAPIDS II is a
system for producing computer-based training courses that are built on the
foundation of graphical simulations. RAPIDS II simulations can be animated.
They can have continuously updating elements. They can be small and
simple, or so large and complex that many screenfuls of graphics are
employed in a single simulation.

The simulation-based characteristic of RAPIDS II makes it very appropriate
for certain training tasks, but less appropriate for others. It is particularly
well-suited for teaching people about the design, structure, maintenance, and
operation of complex devices. It is an appropriate medium for operator
training and for maintenance training. On the other hand, it is not designed for
the presentation of inherently discursive materials. It would therefore be less

appropriate for developing courses about art or language, for example.

Because the instructional authoring system relies on the presence of a
computer-based simulation, its tools can exploit this simulation to permit very
quick authoring of computer-based instruction. This manual will teach you
how to use RAPIDS II to create simulations and to author training courses
based on those simulations.

RAPIDS II is the successor to RAPIDS and IMTS. If you are already familiar
with these tools, read the preface RAPIDS 11 and Original RAPIDS, above.

RAPIDS Il Authoring Manual — August 1990 1. Rapid Development of Simulation-Based Instruction

Why RAPIDS 112

RAPIDS stands for Rapid Prototyping /TS (Intelligent Tutoring System)
Development System. Because of its simulation-based style of authoring, it
encourages the rapid development of interactive instructional courses that take
advantage of computer graphic simulations.

RAPIDS II is the successor to the original RAPIDS authoring system, and it
provides the same ease of authoring of instruction based on simulation. It also
Incorporates an improved approach to authoring simulations, and supports
advanced simulation features, including ongoing processes. These features
make it possible to develop simulation-based computer graphics training
courses for real-time tasks.

Advantages for The most significant advantage of RAPIDS II for the student is that high-

the Student quality computer-based courses can be developed that would have been too
expensive to Create using conventional methods. This means that students can
benefit from the advantages of self-paced adaptive interactive instruction in a
much wider range of courses than would otherwise be possible.

A second advantage for students is that RAPIDS II-built courses have a
number of features that improve the chances that the presented material is
correct. The simulations that underlie instruction must be self-consistent in
order to function; therefore, an instructional sequence built on these simulated
effects is guaranteed to present effects that actually work in the simulated
world. This approach can be contrasted with other instructional systems in
which it is possible to ‘simulate’ simply by displaying a canned sequence of
pictures.

A third advantage for students is that the RAPIDS II delivery system-has been
developed in such a way that students cannot easily be stranded by authors. If
a student cannot come up with the answer, the run-time software will get the
student through that content item and on to the next one.

Advantages for The advantages of authoring with RAPIDS II include
the Author . chie Acquisition of the Authoring Tools

* Speed of Development

* Quality of the Resulting Course

Quick Acquisition of the Authoring Tools. RAPIDS II authoring can
be learned quite quickly because it does not require programming language
skills. Development of course materials is carried out through the use of
menus and buttons in the editor windows, and by directly manipulating
graphic simulations in essentially the same ways that students do. This
straightforward authoring interface makes it possible to begin building useable
courses the first day that you are introduced to RAPIDS II (providing that the
simulation on which your course is to be based is already available to you).

RAPIDS I Authoring Manual — August 1990 1. Rapid Development of Simulation-Based Instruction

Speed of Development. Courses can be developed very quickly (once
simulations have been built) because authoring is done largely by modeling
the desired student behavior. Authors create a content item by performing the
next action that is to be required of the student (and optionally by typing in
prompts and explanations). This direct manipulation approach to authoring
courses offers the potential for very high rates of productivity for course
developers.

Quality of the Resulting Course. Basing your course on an existing
simulation gives you opportunities for exploiting the work put into the
simulation in many ways. You can easily add instructional units that would be
too laborious to author by conventional means. In addition, many authoring
errors that can be made with other computer-based instruction systems are
likely to be avoided

Overview of Course Authoring

There are two stages to RAPIDS II course authoring. They are simulation
construction and course building. Simulation authoring has two major
components, object editing and scene editing. Simulation authoring must be
complete before course building is undertaken. Course building also has two
components, content authoring and instructional organization authoring. The
instructional plan and content may be authored in any order. It is common for
these two authoring phases to proceed in tandem.

Object
Editing

Simulation
Construction
and Testing

Organization | Zq | Authoring Course

Building and
\/ Testing

RAPIDS Il Authoring Manual — August 1990 1. Rapid Development of Simulation-Based Instruction

A good part of the technical literature on course development presupposes that
all instructional planning fmcedes all course development. While RAPIDS II
makes it possible to develop courses in this way, it does not require that the
author do so. We believe that it is usually a good idea to begin courseware
development with a good instructional plan, but we have found that the
process of developing content often informs the planning process. An iterative
approach may therefore prove to be the most effective one for many course
development projects.

Simulation construction, which is described in detail in Chapters 3 - 5, is
carried out using direct manipulation. A simulation author builds a simulation
largely by drawing it. Content authoring is performed in a similarly direct
fashion. To build a content item, you type in explanatory texts and student
prompts, and you then carry out the action that you want students to perform,
using the previously authored simulation. Instructional organization authoring
means the construction of a hierarchical plan. The plan is shown as a tree
structure, where the terminal nodes are content units. Once again, you will
use direct manipulation techniques to build this part of your course, the
instructional organization.

The next three sections of this chapter present brief overviews of these three
aspects of RAPIDS II course authoring: simulation composition, content
authoring, and instructional plan building.

Simulation Composition

Simulation composition is presented in some detail in Chapters 3 - 5. In this
section we present only a conceptual overview of the RAPIDS II simulation
composition system.

Modeling at the The elements, or objects, used in RAPIDS II simulations can be produced by

Element Level non-programmers, and they can be saved and used in any number of specific
applications. This contrasts with some other approaches to simulation
composition, such as that employed in STEAMER (Hollan, 1983; Hollan &
Hutchins, 1984), in which the simulated device is modelled with a specially
written computer program. (STEAMER's graphical indicators — such as
gauges and indicator lights — are generic elements that can be used at
different points in a simulation, or in different simulations.) The RAPIDS II
approach has the advantage of permitting faster and easier simulation
development, for the class of systems that can be simulated in this manner.

Propagation of Some objects in RAPIDS II simulations are directly manipulable. Students

Ettect click the mouse on points called handles to change the states of those objects.
(State changes in an object are usually accompanied by changes in
appearance.) Changing an object’s state will typically activate one or more
rules associated with the object. Activation of these rules will cause the values
of certain attributes to be changed.

RAPIDS Il Authoring Manual — August 1990 1. Rapid Development of Simulation-Based Instruction

When a student changes the state of a simulated control object, the object’s
rules determine new values for some or all of its attributes. These values are
referred to by the rules of neighboring objects, some of which may change
state as a result of the activation of their rules. These neighboring objects may
also have attributes that change as a result of the activation of their rules.
These changes will, in turn, result in the activation of rules associated with
other objects. In a complex simulation, hundreds of objects may be affected
by a single manipulation, and thousands of attribute values may be
recomputed.

Complex system-level behaviors are derived from simpler component-level
behaviors. This permits accurate free-play simulations without requiring
authoring an immense number of combinatorial effects (as did an earlier
simulation training system developed by this research group, described in
Towne, 1986; Towne & Munro, 1981; and Towne, Munro, Johnson &
Lahey, 1983).

To minimize simulation development time and effort, authors should be able
to build simulations largely by drawing them. To the extent possible,
authoring should be direct and concrete, rather than indirect and abstract
(Norman & Draper, 1986).

A Simple A simulation is composed of instances of generic objects. Below is a simple

Simulation simulation of a Rube Goldberg machine that uses electrical, hydraulic, and
mechanical components to turn a light on and off. Power Supply A provides
power to an electrically operated control valve, while Power Supply B
provides power to the Output Light.

When the user moves the Main Power Switch to the right, the valve is put in
its crossed position. This directs hydraulic pressure to the mechanical
Actuator (at the right in the diagram), causing it to extend. The actuator
pushes a contact closed, and electrical power turns on the Output Light.

Yalve
—o— > -
B ' .
Actuator
3000 L
Pump = £
Pwr Hﬁ
Supply
8
b QD QU;put
Main Poger Switch ; Light

PwrSupplyA

RAPIDS Il Authoring Manual — August 1990 1. Rapid Developménl of Simulation-Based Instruction

Simulation
Authoring

If a user moves the switch to the left, the valve goes into its straight state and
the actuator is retracted. The contact below opens, and the Output light goes
out. All these responses are produced in accord with the behavior rules stored
with each generic object.

Valve -
o >
—_lo I
Actuator
3000

S -
Pump c— 2% o
Pwr@_p"

Supply

B

Output
Main Pdwer Switch Light

PwrSupply A

In addition to manipulating controls and observing simulated front panel
indicators and internal actions of objects, students can examine values at
object ports using simulated test equipment. When they work with large
simulations, students sometimes discover things about the behavior of
simulated worlds that even the authors were not aware of.

Building a RAPIDS II simulation consists of composing diagrams from a
library of generic objects. Authors can build very large simulations by
dividing the target system into a number of subsections, called scenes, that
can be displayed in their entirety in the main simulation window. Simulation
effects propagate from one scene to the next through connections identified by
the author.

When the scenes of the functional model are completed the author may interact
with the simulated system to check out its system behaviors. These
interactions may include setting switches, inserting one or more failures,
observing indicator readings, and using test equipment at test points.

As sketched in the diagram below, the author may go on to produce additional
scenes that represent the target system in simplified ways, or in more
physical, less schematic forms.

RAPIDS Il Authoring Manual — August 1990

Detailed Functional Model

1. Rapid Development of Simulation-Based Instruction

Simplified or Physical Models

@ S2 @
o /@f

o]/

Generic Object

g

<

2-Position Switch Relay Contact Set

Light
I I
o> |
| 9| —F
2-Position Switch Panel Light Power
Source

BT R

Y

Ground

Relay Coil

Three Levels of Representation in Composed Simulations

RAPIDS I Authoring Manual — August 1990 1. Rapid Development of Simulation-Based Instruction

Authoring Instructional Content

The RAPIDS II instructional content editor gives you an environment that
includes a live simulation. The figure below shows a simulation of an engine
starting system. Instructional content based on this simulation can be
developed using RAPIDS II, in part by manipulating the simulation in the
same way that a student would.

View _Done Save Bxit -

Name:

Commant:

System Configuration: Current C | Configuration
Expesition bafore student sction; | Not Cef ined

Exposition after tudent action: N¢ | (ot Oef ined
Ovdar of presentation; Randos [}
Present identifying text in test mod | da? No

RAPIDS AUTHORING [7 g [s,

ton Right Start Sutton -
New E d "

Introduction to Parcs
Diverter Valve Intersctions
Left Engins Start on Ground
Right Engine Start on @round

»
pr ey
-

Mijp

ma]

[SAR
Right
Engine

The above figure shows the RAPIDS II content unit editor in use, being used
to build a set of content units based on a simulation of an aircraft engine
starting system.

Content Units A content unit consists of a group of related content items, and may optionally
include preceding and/or following expository material. In the figure above,
each of the lines in the window titled 'Content Units' names a content unit that
has been defined. 'Introduction to Parts' is one such content unit, ‘Diverter
Valve Interactions' is another, and so on.

ORIGINAL PAGE
- IS
OF POOR QuALITY

RAPIDS II Authoring Manual — August 1990 1. Rapid Development of Simulation-Based Instruction

In addition to having one or more content items and pre- and post-expositions
(explanatory presentations), a content unit has an associated system
configuration. This is a stored state of the simulation. During training, the
RAPIDS II run-time software restores the simulation to this state before the
first content item of the unit is presented. This ensures that students will
always perform the actions of a content unit in the same simulated
environment in which they were authored.

Content Items A content item is a general-purpose element that handles the presentation of
one small chunk of information to the learner, through a combination of text
and RAPIDS II graphics, and that requires a response from the student.
According to the way an item is authored it can serve to present technical
theory, to acquaint a learner with the topology of a front panel, or to instruct
in the performance of some action.

A content item, like the larger content unit to which it belongs, may have a
preceding or trailing exposition. It always has a prompt, which serves to label
the associated student action. Finally, it includes a required student action.

Content items present the bulk of instructional content. An item consists of:

« exposition (text, video, and/or graphics) to be presented before the action:
« exposition to be presented after the action:

« identifying text that identifies the subject of the action

« a specification of the correct student action

The before-the-action exposition is a combination of text and graphics that
explains, describes, or illustrates a single item to be learned. The text is
authored by the subject matter expert as s/he manipulates the simulation
graphics. The student sees the identical text and graphics during the learning
presentation. The exposition may highlight associated areas on the graphic
simulation, and it may display video disc images.

The after-action exposition has identical capabilities as the before-action
exposition. Typically, it might point out and explain important effects of the
action (either by the student or the expert) and it might summarize what
important points should have been learned by doing the item.

The text in expositions may be presented in a standard text window at the side
of the simulation graphics or it may be positioned on the graphic simulation to
relate closely to particular parts of the device representation.

The identifying text of an item describes the expected student response. In
certain modes, it is used to prompt the student to respond. In a front-panel
drill, one item might be to locate the Standby switch. The identifying text
would be

Standby switch
The training system would use this text to compose the prompt

locate the Standby switch.
In this example, the correct response would be to click in the region of the
switch on the graphical scene. ‘

RAPIDS Il Authoring Manual — August 1990 1. Rapid Development of Simulation-Based Instruction

Student Actlons A student action is a specification of what the student is expected to do in
order to successfully complete the content item. (So that, for example, the
next content item can be delivered.) The specification of a student action may
consist of

* clicking on one or more objects on a scene or scenes of the simulation
* manipulating one or more switches into specified states

* clicking in one or more regions on a scene or scenes

* make one or more selections from a menu of text items

The last of these options provides a mechanism for specifying multiple choice
questions and answers. The simple click-on-the-menu-item user interface
provides a straightforward implementation that does not require any special
authoring.

Student actions are assumed to be the fundamental units of RAPIDS II
authoring. They are the most important components of content items.
RAPIDS II provides very direct methods for authoring the required actions of
a simulation-based course.

Expositions The RAPIDS II content unit editor makes it possible to build expositions,
which are used to produce explanations, admonitions, and other presentations
for students. An exposition consists of a sequence of exposition elements.
There are a number of distinct types of exposition elements that are supported
in the content unit editor. These include

* presenting text in the message window

* clearing the message window

* playing a videodisc segment

* highlighting an object in the simulation window
* highlighting a region in the simulation window
¢ changing the scene displayed

* waiting for a student click

* waiting a specified amount of time

* presenting text in a floating window

Floating windows are a special exposition feature that makes it possible for
authors to open, shape, and position windows that overly the simulation
window. Authors can specify what text should appear in these windows, and
can clear and close them as well. ,

10

RAPIDS Il Authoring Manual — August 1990 1. Rapid Development of Simulation-Based Instruction

View Done Save Exit

The exposition editor generates a script of
exposition events, which appears in the
window to the left of the simulation
window. In the figure shown at the right,
an exposition script with six events is
displayed. The first of these is a text

event — it will have the effect of | papips AUTHORING rwn—
presenting the authored text in the

. . Add LDone Move
message window. The second and third Edl Delete Run
events Shape and Opeﬂ a ﬂoatlng Text:Every source of elsctrical pover sust

te routed through the cross-start relay --->

window.

Any exposition event in a script can be
selected by the author, and the selected
event is highlighted in the script. Selected
events can be deleted, edited, or moved to N
a new position in the script. The next [thers are rour sources of slectricat pover.
chapter presents examples of eXpOSItIONS [sa i tuen. o+ **%¢ 0 Poine to seen ofn
as they appear to the students. Floating-¥indov: reshape: (88 173 179 102)
Floating—¥indow: open vindow

F tnat ing-¥indow: show text:
fvery source of electrical power must be rou

ted through the cross-start relay --->

vait-for-student:
Floating-¥indow: close vindow

As you will see when you develop courses, the set of authoring choices in
RAPIDS Il is quite constrained. This constrained instructional syntax makes it
possible for RAPIDS II to automatically generate a good deal of rich
semantics for the simulation-based instruction. This approach has three
advantages:

1 Authoring is largely direct and not symbolic
2 There can be no 'programming bugs' in authored instruction
3 Presentation quality is typically very high

Developing an Instructional Organization

A course's instructional organization or instructional plan is used to determine
the order that content units will be presented to students, and whether a

articular student will be presented with certain content units at all. The
instructional plan of a course is its highest level component. The lowest level
elements in such a plan are the content units described above.

RAPIDS 11 provides a special tool for creating and editing instructional plans
for courses, called the instructional plan editor. The window below shows a
plan for a simple course about an engine starter system. Plans are organized

11

ORIGINAL PAGE

RAPIDS Il Authoring Manual — August 1990

1. Rapid Development of Simulation-Based Instruction

Exit

Save
Saving...dons.

as tree structures, with the root of the tree at the left. The editor is used to add,
delete, move, and edit the nodes that make up the tree.

.: ANEN JAK I EX

Save

AddUnit
DeleteUnit
MoveToParent

MoveToTop

......................................

MoveToNcde
SetDepth

VEATH ottt

N

. o
ame: Operation Ori1Y

iLaft Engine Start Or1)Y:
TRight Engine Start Or11);

Start in atr Ori1)

Comment:

Order of presentation: rendos RIEEEIEES

Content:

Unit WeI!ht Mode Condition Maximum Minimum Limit Accuracy Speed
Llenentary Ort 3 ortll Oef ined L 1 . ®/A wa
Advance Or11Y 7 oril et dofined . 1 1 wa wa

Structure of
instructional Plan

In the tree shown above, the instructional plan calls for three major
components. Students will first learn about the device organization, then be
introduced to operations, and finally be drilled on operations. The nodes that
represent these sections of the course are called organizational unirs, in
contrast to the content units described in the previous section. Content units
include the subject matter to be delivered. Organizational units serve to group
related content units or other organizational units. In the tree displayed by the
instructional plan editor, organizational unit nodes have solid borders and
content unit nodes have dashed borders.

The window shown below the tree window displays data about the currently
selected node. The data can be edited in this window. In this example, the
organizational unit called 'Operation Drill' has been selected, and the data
shown in the lower window pertain to it.

An organizational unit lists other units to be presented. The member units may
be content units or other organizational units. Associated with each unit called

Units in a plan are these data fields:

* weight: the importance of the called unit (relative to the others in
the list) ,

* mode: whether to execute a called content unit in Instruct, Drill,
or Test mode

* condition: an optional expression that controls whether to present the
unit

12

ORIGINAL PAGE I
OF POOR QUALITY

RAPIDS II Authoring Manual — August 1990 1. Rapid Development of Simulation-Based Instruction

+ maximum: the maximum number of times to present the unit

+ minimum: the minimum number of times to present the unit

o limit: the time limit for the unit, in minutes

« accuracy: the accuracy score (%) required to complete the content
unit successfully

+ speed: the speed score required to complete the content unit

successfully, in minutes

Certain of these fields apply only to content units. The mode, accuracy, and
speed fields have undefined values for organizational units. The data fields
used to control the presentation of organizational units are condition,
maximum, minimum, and limit. Accuracy scores for organizational units are
computed and returned, however.

Here is a fuller description of the uses of instructional unit fields:

Weight. The least important unit in a parent unit should be assigned a weight
of 1. The others should be assigned integer values of 1 or more to reflect their
relative importance. The composite score of student proficiency on the parent
unit is the weighted average of the proficiency scores (%'s) of the member
units.

Mode. This is only meaningful when a unit is calling a content unit. In this
case the mode determines whether the items in the content unit are presented
in Instruct, Drill, or Test mode.

Condition. This is an optional Boolean expression that is used to determine
whether it would be appropriate to present this portion of the RAPIDS II
course. A condition is evaluated prior to each presentation of its associated
unit. If the condition evaluates to true, then the unit is performed.

A simple example is
Accuracy of Drill3 < 65
which evaluates to true if the accuracy score on unit Drill3 was less than 65%.
A more complex example is
((Accuracy of Drill3 < 65) and (Speed of Drill3 > 5)) or (Performances
of Drill3 < 3)
This condition specifies that a unit will be performed if the student's accuracy
and speed were poor on unit Drill3 or if it was presented less than 3 times.

A condition can refer to the following measures for the current unit or for any
other unit in the course:

- the number of presentations of the unit

- whether the unit was successfully completed

- - the total time spent by the student in the unit, on all repetitions

- the latest speed score

- the latest accuracy score, if any
If the unit has not been presented, then speed score is infinite and accuracy
score is 0.

Authors don't need to learn the names that are used to refer to these unit data
(accuracy, speed, number of presentations, and so on), because conditions

13

RAPIDS Il Authoring Manual — August 1990 1. Rapid Development of Simulation-Based Instruction

are composed by making menu selections. The process is described in
Chapter 4.

Maximum. This specifies the most times a unit will be repeated in a row, in
an attempt to achieve the proficiency criteria. This would be set to a very high
number (or left unspecified) if the planner wishes to repeat until time runs out
or until the student meets the performance criterion.

Minimum. This field specifies the fewest times a unit will be repeated in a
row. This is usually set to 1, however some planners might wish to repeat a
unit some number of times, regardless of the student's performance.

Limit. This is the most time (expressed in minutes) that will be allocated to
the called unit.

Accuracy. The accuracy score required to complete a content unit, expressed
as a percentage.

Speed. The speed score required to complete a content unit, expressed in
minutes.

Installing RAPIDS Il

This chapter has briefly exposed you to the major concepts that underlie
RAPIDS 1. In Chapter 2, you will learn what a RAPIDS II course looks like
to a student as it is presented. Chapter 3 will show you how to create and edit
generic objects using the generic editor. Chapter 4 describes rule editing.
Chapter 5 covers scene authoring and simulation-building. Chapter 6 deals
with authoring instructional content, while Chapter 7 treats course
organization. Chapter 8 briefly presents the instructor utilities. In order to
carry out the examples presented in the manual (and in order to develop your
own courses), you must install the RAPIDS II system on your computer.

Installation Steps 1 Create a clean partition.

2 Using the Filebrowser, copy all of the files on the release floppies onto a
new hard disk subdirectory called RAPIDSII; i.e.,
{DSK}<LISPFILES>RAPIDSII>

3 (DV DIRECTORIES)

Edit your Directories variable so that it includes
{DSK}<LISPFILES>RAPIDSII>
{DSK}<LISPFILES>LIBRARY>
{DSK}<LISPFILES>LISPUSERS>
{FLOPPY}

{DSK}

14

RAPIDS II Authoring Manual — August 1990 1. Rapid Development of Simulation-Based Instruction

4 Note: The RAPIDS II release includes a new set of simulation
tools. RAPIDS II will not work with original IMTS.

5 (CNDIR '{DSK}<LISPFILES>RAPIDSII>)

6 (FILESLOAD RAPIDS-IIMENU GEREAL SEREAL INST INST-CUE
INST-PLAN SIM-STUDENT)
(When building a student environment in which no course editing will take
place, you can simply call (FILESLOAD INST SIM-STUDENT).

The above FILESLOAD command will take quite some time to be completed,
because it loads all the functions that are needed by all of the simulation and
instruction editors. At the end of the load, the RAPIDS II Tools Menu will
appear on your screen. (See the figure on the next page.)

Bulld a In order to begin working on a course, you will also have to build the
Simulation simulation on which the course depends. Chapters 3 - 5 describe how to build
a simulation in your environment.

To begin with, you might like to build the EngineStarter simulation that is
used in the examples in this manual. You can build this simulation by typing
this command in an exec window:

(BuildRapidsSimulation NEWSTARTER 'ENGINESTARTER)
or by using the Build Simulation button on the RAPIDS II main menu.

RAPIDS Il Tools

Simulation Instruction

GenaericEditor Content Editor
Scane Ed.;tor' Plan Editor
Build Simulation Run Instruction

Run Simulation

After a short delay, the simulation will be built and you will be able to carry
out most of this manual's examples in your own environment.

15

RAPIDS II Authoring Manual — August 1990 1. Rapid Development of Simulation-Based Instruction

Using this Manual

We recommend that you at least skim this entire manual before attempting to
build your first RAPIDS II course. Implement the examples on your own
machine as you read, so that you will become familiar with RAPIDS [I
authoring features in a simple training environment. You should not start
building your own course until you are comfortable with these examples.

Make certain that your simulation is working correctly before you attempt to
build a RAPIDS II course using it. Your course may not work correctly if you
make changes to your simulation after you have authored the course.

16

2

The RAPIDS Il Student Interface

To create a RAPIDS II course, you must first load the RAPIDS II authoring
and instructional environment, as described in Chapter 1. Three steps are then
required to build a course:

» Create a device simulation

+ Build content units — instructional materials based on the simulation

« Make an instructional plan that will control presentation of the content

When all three steps have been completed, a course is available for students.
Every course must have a simulation, instructional content, and an
instructional organization or plan. The simulation must be created before the
instructional content and the plan. Content and plans, however, may be
developed in any order. Authors often alternate between plan and content
authoring.

Your release of RAPIDS II includes a small course on a jet engine starting
system. You can run this course, but first its simulation must be built in your
environment. To build the simulation, you must first instal RAPIDS II as
described in Chapter 1, and then use the Build Simulation command:

Map File: NEWSTARTER
Generic Fe: ENBGINESTARTER,

Simulation

Generic Editor

Instruction

Content Editor

Scene Editor Plan Editor
A
Build Simulation Run Instruction

Run Simulation

17

RAPIDS Il Authoring Manual — August 1990 2. The RAPIDS Il Student Interface

Some time will be required to build the simulation. At the end, a message will
appear saying that the simulation has been built.

The figure below shows the RAPIDS II student interface. You can bring up
this course display by running the simple course on your computer. Click on
the Run Instruction option in the RAPIDS II Tools menu (see above). A
numeric keypad will appear on your screen. Click on the “0” key and then on
“ok” on the keypad. You will be asked what course you want to run. Type
ENGINESTARTER. A display similar to the one shown below will appear.
A menu to the right of the Voltmeter asks whether you want to "Start next
unit." Click on that command, and you will see the display shown below.

¢ Voics

Quit ’ Don’t Know

Test Equipment

MF e e
Take some time to look over the
starter system schematic shown at

right. Nots the names of the siements, and
try to understand the flow of power
through the system.

Cick anywhere to continue.

b: £ l‘l'l'11r f- I] 2 . Kia

2 L)
Engine
. o ¢
on E oéﬂn ..':752 0@100
Engine

As is appropriate in a simulation-based training system, the largest window in
the student environment presents a graphical view of a simulation. The
window to its immediate left is a message window, in which text and
instruction created by the author and, in some cases, by the RAPIDS II
instructional environment itself, are presented. Above the simulation window
are a small window for simulated test equipment and a larger window that
serves as an object scratchpad. The object scratchpad is an area into which

18

ORIGINAL PAGE IS
OF POOR QUALITY

RAPIDS II Authoring Manual — August 1990 2. The RAPIDS Il Student Interface

authors may place small windows that view parts of other scenes in the
simulation.

The buttons in the top left corner show student controls that are usually
available in the RAPIDS II student environment. These button controls are
used to carry out meta-simulation activities. Students can also directly
manipulate controls in the simulation, if the course they are using permits this.
They can also point to objects and regions of interest on the screen, and they
can make multiple-choice text responses using menus. None of the student
actions requires the use of a keyboard.

In the next section you will see examples of a number of different styles of
student-course interaction. Note that in all of them, student interaction always
involves some type of pointing response, rather than typing.

In the last chapter, you learned in the abstract about the structure of courses,
content units, content items, student actions, and expositions. That is, you
learned something about what kinds of data are associated with each of these
constructs in RAPIDS II. In this chapter, you will see how these constructs
appear to student users. In the next two chapters, you will learn how to use
the RAPIDS II editors to create and edit your own courses, content units,
content items, student actions, and expositions. :

Examples of Content Presentation

An easy way to learn about the student interface is to work through the simple
course that is distributed with RAPIDS II. As you work through the sample
EngineStarter course, you will see the actual appearances of a number of
different types of content unit items. In this section of this chapter, a few of
these presentation types are displayed and discussed.

About the The EngineStarter course is presented here only as a simple example of
EngineStarter RAPIDS II course development, not as an exemplar of a complete course
Course meant for actual use. The simulation is adapted from a training system

developed by Kieras (1988). The details of the EngineStarter simulation are
not important for learning about RAPIDS II, but a simple explanation of the
functions of the system may help you to follow the examples. See the picture
on the next page.

EngineStarter is a simulation of an aircraft engine starting system. When such
a system is on the ground, it is hooked up to an external source of electrical
and hydraulic power. Once engines have been started, this power is
disconnected. In a typical on-the-ground startup sequence, one engine is
started (using an engine start button) using the external power. The live
engine drives a generator, which provides power for starting the second
engine.

19

RAPIDS Il Authoring Manual — August 1990

—— Left gtart !unon Right Start Button =
Left

Thrigme

a -

2. The RAPIDS Il Studens Interface

Air
1l =

4
Timer I} Timer
A ¢4y - L ¥ ¢
[Igniter Diverter gniter_|*]
- Yaive
+ 4 me R@
Generator Generator P
Left Right
External s Generaror il .
Power ?
Kin £ B °l"' l Kill
1 QO rLfter
: - #C Bus
Left ! 12 Right
Engine g: ‘;Iec:ll Engine
Left AC Bus y . Right AC Bus 4
o : Temporary [> >
n n 4 Rectiti Y +
Ground Air \100 :put.r 0 0o
Left Right
f Transformer Transformer :
Engine . ——|C | 4 Engine
Instruments Rectitier 7 Rectitier Instruments
N A 4
Static | Emrgency A
Inverter

Object
Designation

If one engine goes out in the air, it is possible to restart it using the power
provided by the other engine's generator. If both engines die in the air, an
emergency power switch is closed to route power from a 24-volt on-board
battery. In this case, the left throttle is used, rather than the left start button, to
perform the actual engine start.

In the actual aircraft, a timer opens a circuit after an engine igniter has fired

long enough to start an engine. This effect is accurately simulated in RAPIDS
I

The first content unit begins with a text exposition about the schematic of the
EngineStarter system and then asks the student to identify four objects on the
scene. As in the figure below, the message window directs the student to click
on a named object.

20
ORNZIL PAGE 18
OF POOR QUALITY

RAPIDS II Authoring Manual — August 1990 2. The RAPIDS Il Student Interface

Test Equipment

L

Find the cross-start relay

Ale
Wi

5| e [
Lo e

v

I e-muJ [Generator]

e M fﬁ] ' e

L

tm
: Left AC Bus Rom X bus
on E 00 'mm 00
i 1 I—t“"'_—.:\ °®1

Lon Transtiogrmer Transtormer f#
nangine [Aacttier l'" Reactitier Engine

O

Try answering one or more of these questions incorrectly. Students are
automatically remediated when they make an incorrect object selection. When
a content unit is being played in Drill mode, RAPIDS II tells the student the
name of the object that was selected and asks that he try again. After the
second error, RAPIDS II again describes the error and then highlights the
object that should have been selected, as in the figure below.

21

RAPIDS Il Authoring Manual — August 1990 2. The RAPIDS Il Student Interface

Test Equipment

) T S 2

Take some time to look over the engine
starter system schematic shown at the
right. Note tha names of tha siements, and
try to understand the flow of power

the the system.

Find the cross-start relay

_

Try again.
You selected the Air Diverter Valve, which
was incorrect.

You selected the Right Actuator Motor,
which was incorrect.

The correct object will now be highlighted.
Cick anywhere to continue.

Here the student first clicked on the air diverter valve, rather than on the cross
start relay. RAPIDS II described the error and asked the student to try again.
Then he or she chose the right actuator motor. At this point, the relay was
highlighted to show the student what should have been selected.

As soon as the student follows the directive to "Click anywhere to continue,"
the highlighting will be removed and the lesson will continue with the next
content item.

The presentation order of the four items of this small content unit has been
specified as random, so you can expect to see the items in different orders if
you repeat the unit.

Required Switch Content items can require that students change the position of a switch or
Settings other control. When the student performs the required action, the simulation is
activated and all the normal effects of the action are propagated.

In the figure below, a student was asked to put the left start button into the
pressed position. A number of simulation effects were propagated, including
a change in the position of the diverter valve, the firing of the left igniter, and

22
ORIGINAL FAGE IS
OF POCR QUALITY

RAPIDS II Authoring Manual — August 1990 2. The RAPIDS Il Student Interface

the starting of the left engine, The external power line to the aircraft was also
automatically disconnected, and the right generator warning light came on.

Quit l Don’t Know

Test Equipment

Yoltseter

Mesrage window I Simufation Window
Put the Left Start Button into the Pressed 2o Len Dan ouwnon Right Start Button =&
position. ‘

t
Lett
Throttie Tredttie
Correct
Click anywhere to continue.
P> Lot

Timer

[Muﬂ ra.umul
Gei e Gmernter
=

o

U; f : w O

X
N

Len [3 Rignt
e o3
Lers & B - Right K Bus

On I :oc nr‘
Gfuur{‘ Al o 100 Stout 0 ' 00
Lett T e Rignt
€ l ransiormer ranstormer Engine
Incrinanes |_Rectitier Roctifier nstroments

If a student attempts to manipulate the wrong control, the manipulation does
not result in propagated simulation effects, and the control is reset to its
former position. RAPIDS II automatically presents error feedback to the
student in the message window. If the student makes another error, RAPIDS
Il gives textual feedback again, and then performs the switch setting itself,
graphically highlighting the switch. These responses to incorrect student
actions do not have to be authored. The RAPIDS II run time environment
handles most aspects of evaluating and responding to student actions without
the need for explicit authoring of those responses by the author.

23

Clitminl et s

OF POOR QUALITY

RAPIDS Il Authoring Manual — August 1990 2. The RAPIDS II Student Interface

e ssage Window Simulation Window

The simplest engine starting operation is dran suwon
starting the left engine when the aircraft is [
on the . The normal way to start
this engine Is to press the left engine start

Put the Left Start Button into the Pressed
position.

Try again.
You set the Left Throttle, which was the
wrong switch.

-

You set the Left Timer, which was the
wrong switch.

The Left Start Button will now be set to
Pressed.

Click anywhere to continue.

External
Power ‘

Emphasis In Authors have a number of tools available for emphasizing elements in the
Authored simulation during instruction. These include
Presentations » Highlighting one or more objects

» Highlighting an entire rectangular region

« Opening scratchpad windows onto other scenes
 Changing scenes

« Creating floating text windows

In the figure below, a floating text window has been opened near the cross
start relay to make a point about that element of the system.

24
ORIGINAL PAGE IS
OF POOR QUALITY

RAPIDS II Authoring Manual — August 1990 2. The RAPIDS 1 Student Interface

Quit l Don't Know

Test Equipment

Meaaaae Mindow

There ars four sources of electrical power.
You will now be asked to point to each of
them In turn,

be routed through the ri

cross -start relay =--) O
e] Engne
Battery Rigm A Bus

Teaper wy
E Q 100 fentitier o@ﬂ”

=5
LoR et T Pigh
s Famwz'%::m'j Enare

instruments

Multipie-Choice Although RAPIDS II is particularly well-suited for authoring student

Text Responses interactions based on graphical direct manipulation responses (such as object
selection and switch manipulations), it can also be used to prepare and present
text choices to students.

These choices are presented in menu form. Authors can specify which
answers are correct. Students choose START OVER if they accidentally make
a choice they don't want. Once their menu selections are complete, they click
on NO MORE ANSWERS.

25

RAPIDS I Authoring Manual — August 1990 2. The RAPIDS Il Student Interface

Start B utton
Left Throttle
Left Timer Switch
Rlﬂbt Start Button
ight Throttle

Quit l Don’t Know

Test Equipment m!m Timer Switch
TART OVER :
NO MORE ANSWBRS
Me e e Ainow e o
What are the two controis used to paerform
a normal start of tha left engine? L.;M.
Throttie
e i Ale
Timer l l }: Timer
\-— - f
3 t
' :lw [} 1
I G.n.aw] 0-\-
xternal "'t":'"
Power ? l
K _ K
O 1 e O
Len % migre
Engine
e e o 2w
GQ.“'u\ &] 100 mi.:r o@qm
! R
ehdhe [Tz k—?—ﬁ"&:&m"] Endne

Multiple-choice questions can be created that have only one correct answer, or
that have a number of correct responses. As the student makes choices, the
text of the menu items selected appears in the message window, to the left of
the simulation window. If a student makes an error, RAPIDS II automatically
provides information about the error and the choice that should have been
made, as is shown below.

Here the student chooses ‘Left Start
Button’ and ‘Left Throttle’ from the
menu, and those choices are shown in
the message window. '

After ‘NO MORE ANSWERS'® has been
selected, the message window evaluates
all the responses that were made. The
student can try again, and RAPIDS II
will evaluate the second attempt. If the
student fails again, the set of correct
answers is presented.

What are the two controle used to perform
s normal start of the lsft engina?

Left Start Button
Left Throttie

The following selection that you made was

correct:

Left Start Button

The f sslection that you oade was
ohn:nhn

Left Throttie

The correct answers are:

Left Start Button

Left Timar 8witch

Click anywhere to continue.

26

ORICINAL FAGE IS
OF POCR QUALITY

RAPIDS Il Authoring Manual — August 1990 2. The RAPIDS Il Student Interface

Other Student Authors can also create content units that call for other types of student

Actions actions, such as making indicator observations, taking test equipment
readings, and replacing objects. These types of student actions are frequently
used in constructing troubleshooting courses. As with the types of required
student responses described above, corrective feedback is generated
automatically when the student makes an error.

The Options Menu

The Options Menu has two or three items: Quit, Don't Know, and View
(which appears if there is more than one scene in the simulation). The Quit
command lets a student stop a training session. If a student chooses Don't
Know, the message window will display the correct answer and will ask the
student to click the mouse to continue the training session. If appropriate,
objects or regions in the simulation window will be highlighted to clarify the
supplied answer. Items that the student responds to with Don't Know are
scored as errors by the RAPIDS II scoring mechanism.

View If the simulation used in a RAPIDS II course has more than one scene, then
the Options Menu will include a third item, View. This command brings up a
tree of scenes in the simulation. Clicking on one of these names brings that
scene into the simulation window.

27

RAPIDS II Authoring Manual — August 1990

2. The RAPIDS Il Student Interface

Instruct Mode

Drill Mode

Test Mode

Modes of Instruction

Content units may be delivered in any of three modes: instruct mode, drill
mode, and test mode. The examples of content item interactions presented
above are all based on drill mode.

Instruct mode is not
very demanding of the
student. In this mode, a
content unit's pre-
exposition is presented.
Then, for each item,
RAPIDS II presents the
item's pre-exposition (if
one exists) and its
identifying text. The
student must then click
the mouse, but need not
perform the identified
student action. RAPIDS
II carries out the student
action. Then post-
exposition is presented.
See the example at the
right.

The student's task in
instruct mode is simply
to pace the presentation
of text and graphics by
clicking the mouse.

Do you want to start the next topic?

The simplest engine starting operation is
starting the left engine when the aircraft is
on the ground. The normal way to start
this engine is to press the left engine start
button.

We will put the Left Start Button into the
Pressed position.

Click anywhere to continue.

Note that the diverter valve is positioned
to channel air to the left engine and the
igniter is powered.

When an engine is started in the actual
aircraft, the timer opens the circuit that
powers the igniter after enough time has
passed to start the engine. In order to
make the s e of events clear, this
timer effect is not performed automatically
In this simulation. You must change the
ganged switch in the timer by clicking on it.
We will put the Left Timer into the Open
position.

Click anywhere to continue.

In drill mode, expositions and identifying texts are presented, as in instruct -
mode. In this mode, however, the student must actually perform the action
described by the identifying text. Performing any other action results in the
presentation of generated corrective feedback, as shown in the examples of

the previous section.

For many training tasks for which RAPIDS II is an appropriate development
and delivery system, drill mode is likely to prove the most useful mode of

instruction.

In test mode, pre- and post-expositions are not presented. Identifying text
may or may not be presented, at the discretion of the content unit author. In
response to each identifying text, the student must perform the identified task.
As in drill mode, corrective feedback is generated in response to student
mistakes. In test mode, however, the corrective feedback does not discuss
what action the student actually took. Instead, it simply indicates the correct

action.

28

Building Generic Objects

Appearances

The Role of Generic Objects

Generic objects are the prototypes for specific objects that appear in RAPIDS-
I simulation scenes. Generic objects store object appearances and may
contain much of the specification of object behavior as well. (In unusual
circumstances, generic objects may contain no graphics or no behavior. These
special cases are discussed later in this chapter.)

Generic objects are created and edited using the Generic Editor. It can be used
to draw the appearances of objects and to open the RAPIDS-II rule editor for
describing object behavior.

The appearance of an object is determined by its object graphics and its state
graphics. The object graphics part is always the same, no matter what the
object’s state. The state graphics change depending on the state of the object.

Consider the sequence valve shown below. When pressure at the top port on
the valve is greater than pressure at the bottom port, then the plunger in the
valve is pushed to the left and pressure can pass through the valve from top to
bottom ports. This state of the valve is depicted on the left. When pressure is
greater at the bottom port of the valve, then the plunger is extended and
pressure cannot be passed from the lower port to the upper one.

e e

No matter what state the sequence valve is in, a portion of its appearance is
unchanged. That portion is the object graphics of the valve, shown below.

3

29

RAPIDS Il Authoring Manual — August 1990 3. Building Generic Objects

You will create the object graphics of objects using the generic editor’s
Object Graphics command and a drawing palette, which is described
below in this chapter.

State Graphics State graphics can change in either of two ways. A state part can vary
continuously, by being moved or rotated with respect to the static part.
Alternatively, a state can be replaced in its entirety by a different state for that
object. Whether you want a particular object’s appearances to be handled by a
continuous state or by alternative state graphics is your decision. For many
objects, either approach will work fairly well.

If you choose the alternative state graphics approach, you will draw the object
graphics and each state graphic alternative. You will give each state a name
that corresponds to its appearance. (In the case of the sequence valve, you
will create the second state by copying the appearance of the first state and
dragging the state graphics to a new position.)

= PS5

Open Closed

If you choose the continuous graphics approach, you will draw the object
graphics and one state. You will then write a behavior rule that describes how
the state graphics should be moved or rotated to reflect attribute values.
Creating and editing rules is described later in this chapter. When you choose
the confinuous graphics approach, the position (or rotation) of the state part is
computed during the simulation process.

L,

Depending on computed values, a state may be shown at any intermediate
'position, as in in the figure above.

Alternative Continuous state graphics make sense if a simulation is com uting attribute
States or values that can be used to determine the position or rotation of the changeable
Continuous? part of an object. In some simulations, you may be able to achieve quite

smooth animation effects without having to specify all the intermediate
positions (or rotations) of an object’s states.

If an object changes its shape (by deforming or taking on a very different
appearance), rather than merely repositioning or rotating some part, then you
must use the approach of separately drawing and naming the different state
appearances.

Generic Behavior The rules of a generic object can refer only to attributes of that object, not to

Rules the attributes of any other objects. These are the prototypes for a specific
object’s internal rules. In many simulations, most of the ‘behavior’ derives
from such generic object rules. In these simulations, the external rules of a
simulation scene are used primarily to link specific objects together.

30

RAPIDS Il Authoring Manual — August 1990 3. Building Generic Objects

Using the Generic Editor

Starting the There are 2 different ways to start the generic editor. The normal way is to
Generic Editor start the editor using the RAPIDS-II menu. The top menu item in the
Simulation menu is Generic Editor.

RAPIDS il Tools

Generic Editor Content Editor
Scens Editor Plan Editor
Build Simulation Run Instruction

Run Simulation

When you click on this button, a dialog box will appear that will ask you for
the name of the library of generic objects (the Generic File) that should be
edited. Click on Generic File, then type in the file name, then click on the OK
button. (If you want to convert an old IMTS library to RAPIDS II data, then
change the IMTS File? field in the dialog box to T before clicking on OK.)

Generic File: ENGINESTARTER,
IMTS Fue?: NIL

- (The second way to invoke the generic editor is to call the
GenericEdReal function by typing
(GenericEdReal ‘LibraryName)
in an Exec window.)

When the generic editor has been successfully started, you will see a set of
windows that look like those shown below.

31

RAPIDS Il Authoring Manual — August 1990 3. Building Generic Object.

Object:
SequancsValve

Stats:
Clesss

— 2
R s
E———— L)
Add New Object e
=

Copy

Cycle

Delete

QObject Attributes

Object Graphics m @ E
Obtject Handles :"E

Move

Rename

Rotate

Rules

Scale

Move to Page
Copy to Flle

The long shallow window at the top of this editor is the message window. In

addition to displaying messages relevant to the editor tools you choose, this

window displays prompts for data, such as object names, that must be typed.

t\l’lour typed responses appear in this window during these interactions with
e editor.

The menu below the message window is used to change between the object
operations mode and the state operations mode of the editor. It is also used to
save changes and to exit the editor.

The large window is the display window. It displays the objects that are in the
library you are editing.

To the left of the display window is the options menu. Creating RAPIDS-II
generic objects requires the use of twp major modes, one for object-level
operations and one for object-state operations. Each of these modes has its
own associated menu of available options, which is always displayed to the
immediate left of the display window. In the figure above, the menu is that

associated with the object operations mode.

At the bottom of the set of windows is a long thin window that provides file
information about the current library. It shows which file you are editing. If
changes have been made but not saved, this window will appear in inverse

32

RAPIDS Il Authoring Manual — August 1990 3. Building Generic Objects

video — it will display white characters on a black background, rather than

the normal black on white.
The Graphic RAPIDS-II generic objects have two kinds of appearance elements. One is a
Parts of a Multl- static portion. This is the part of an object's appearance that doesn't change
State Object when the object changes states. The other kind of appearance element is the

state appearance. This is the part of the object that is visually different in
different object states.

J 1] L

N K X

lll TIl

The Static Part of an Object’s Appearance Two State Parts

IR MR
IXE G

The Object Shown in the Two States

To draw an object you will have to use three menus. The Object Operations
menu is used to issue commands relevant to entire objects. When you actually
draw the static part of the object, a Primitive Ops menu, which has the
drawing tools, will appear. The State Operations menu lets you perform
special operations on object states in addition to providing access to the
Primitive-Ops drawing menu. In the two figures below, the Primitive-Ops
menu is shown overlaid on the two top-level menus (Object Operations and
State Operations).

33

3. Building Generic Objects

State Operatineng

Add Neg

PRIMITIVE CPS,

-
Continu ﬂ e
a0

ditmap

?::j < Na| vox :Ij_:é'_‘

circle circte

g
O

curve De A curve
Te

line

Ro{ pejete Ren peiete

Sc

Move

————) e}
Copy | Scale File: (DSK}<UI5) File: (03K} <LiSPFIL
Date Written: 27 Date Written: 27-0c¢
EEEE—— ——

Drawing the Static Part of the Sequence Valve Drawing the State Part of the Sequence Valve

As the above figures indicate, the drawing menu (which is labeled PRIMITIVE-
OPS) can be overlaid on either the object operations menu or the state
operations menu. These two modes are the basic modes of the generic editor.
You change between these modes by clicking on the appropriate option in the
menu bar over the Display Window.

Cbject Cps Bxit

[iaplay Windaow

The menu bar is used to choose between the Object Operations mode and the
State Operations modes of the generic editor. It also has the Save and Exit
commands. Save simply saves the current version of the library you are
working on, using the original name you specified when you opened the
generic editor. As with other Interlisp-D applications, a version number
extension will be appended to the file. By renaming an earlier copy of a
library file (or by explicitly specifying the extension), you can edit an earlier
version of the library, if necessary.

34

RAPIDS II Authoring Manual — August 1990 3. Building Generic Objects

Exit Use this option to end the current session of the generic editor and close its
windows. If your changes have already been saved, you will be presented
with two choices

Exit
CancelExit
If your latest changes have not been saved, you will be presented with a menu
that gives you three choices
SaveFileBeforeExiting
ExitWithoutSaving
CancelExit

If you click on the first option, the results of your work in the session will be
preserved. The second option lets you stop working with the generic editor
but throws away your changes to the object library. You'll be required to
confirm this command before it will be carried out. The last option cancels the
Exit choice and lets you continue the editing session.

The Exit option may also lead to further prompting, if you used the command
that copies an object from the current library to another library. You will be
asked whether you want to complete that transfer by saving the destination file
with the new object.

The Two Major The object operations mode is used to perform actions on an object as a

Modes of the whole. The state operations mode is used to carry out actions on a state part of

Generic Editor an object. The next two sections of this chapter explore these modes of the
generic editor.

s

RAPIDS II Authoring Manual — August 1990

3. Building Generic Objects

The Object
Operations Menu

Object Operations
w The Object-Ops menu, as with most other

Add New Object
Copy
Cycle
Delete

Cbtject Attributes

Object Graphics

Object Handles
Move
Rename
Rotate
Rules
Scale
Move toc Page
Copy to File

Some objects may have no

appearances, and therefore cannot be (Global System Characteristics
selected by clicking on them. To Key state transitions

select such objects, hold down the
middle button anywhere in the display wind

RAPIDS-II editor menus, appears at the left
of the main editor window. Its primary uses
are

* toexamine already-defined objects

* to edit such objects

* to create new objects.
The window at the top of this menu to
displays the object name and state name of
the currently selected generic object. This
window is the Object Information Window.
As is discussed below, other information is
displayed in the object information window
when certain operations are being per-
formed.

| ooiertintormaton |
Object:
SequenceValve

State:
Closed

Most object operations are performed on a
selected object. To select an object, point to
the object and click the left button.

Select Invisible Ohject

Stealth Bomber
ow. A menu will appear, asking

you to choose which of the listed invisible objects you wish to select. If there
are no invisible objects, then the message window will tell you that there are
no invisible objects to select from.

36

RAPIDS Il Authoring Manual — August 1990 3. Building Generic Objects

A Note on Hiding Depending on the library of generic objects you are working on, you may find
Objects that the display window is quite cluttered. Once you have selected an object to
edit, the rest of the displayed library can be thought of as background.
Sometimes you want these background elements to be displayed, because you
will want to draw a new object in proportion to the other object types that it
will appear with. At other times, however, you will want to make this
background of objects invisible, so that you can concentrate on the selected
object. To hide the background after you have selected an object
« Move the mouse pointer into the display window.
« Press and hold down the right mouse button. A menu will pop up.
+ Point to the Background menu item and release the mouse button.
All the objects but the one selected will disappear. To bring them back, use
the right mouse button to bring up the display window menu and choose
Background again. The Background command is used to toggle the visibility
of all the objects that are not currently selected.

The remainder of this section describes the Object Operations commands.

Add New Object The Add New Object command is used to create new generic objects. When
you select this menu option, you will be asked to name the new generic
object. If the name you choose is already in use, then you will be prompted to
choose again.

EREE N Nane of new object: > Stabilizer,
Object:
SequenceValve

State:
Open <{Continuous>

When you type the Return key, a new object with that name is created. The
new object is the selected object. This object is invisible, since no graphics
have yet been created for it. The object information window reflects this state
of affairs:

37

RAPIDS Il Authoring Manual — August 1990

Copy

Cycle

Delete

Object:
Stabilizer

(Invisible Object)

Copy is used to create a new object that is identical to the currently selected
object. First select the object you want to copy, then click on Copy. You will
be prompted to type the name of the new object. After you type the new name
and press Return, the new copy will appear on the screen. It will be selected,
and it will ready to move (without first clicking on the Move menu item).
Position it where you want it by moving the mouse in the library window and
click the left button to position it. The copy remains selected, so subsequent
operations will apply to it until you select a different object.

Object intarmation

Copying object SequenceValve
Name of new object: >> .

Object Cps

Diaplay Window

Clicking on Cycle makes the selected object appear in its next state. You can
repeatedly click Cycle to see all of the appearances of a generic object. Notice
that the state name is displayed in the object information window at the top of
the menu.

The selected object is deleted. Naturally, the behaviors as well as all the
appearances of the object are deleted. After you click on Delete, the message
window asks whether you want to delete the object and the mouse pointer
turns into a little picture of a mouse. Click the left button to confirm the
deletion; click the right button to abort the deletion of the object.

Object Attributes An object’s attributes are the named variables that hold values associated with

the object. When you click on Object Attributes, an attribute editing window
appears to the left of the display window. In the figure below, the attributes
for the Sequence Valve generic object are displayed.

38

3. Building Generic Objects

RAPIDS II Authoring Manual — August 1990 3. Building Generic Objects

Otject Graphics

Attribyite Operations
Add Delete Done

Dbject Attributes

Attribute Name Type Handle Region
StatelocX Rea!

Currentstate Atom

ObectlocX integer

ObjectiocY integer

extend-pressure Integer (47 1301010)
retract-pressure Integer undefined
Force Boolean undefined

Some of the attributes appear in italic type, while others are in boldface. The
ones in italics are attributes that are created and maintained automatically for
the object. Any object with an appearance will have the attributes ObjectLocX
and ObjectLocY. Any object with state parts will have the attribute
CurrentState. Any object with a movable state will have the attribute
StateLocX or StateLocY or both. Any object with a rotatable state will have
StateRotation and StateRotationCenter. These attributes cannot be changed or
deleted using the Autribute Operations tool.

The attributes shown in bold type style are ones that obtain their values from
the attribute value assignments performed by your rules. Those in italics
receive their values as a result of certain operations such as moving an object
or rotating a state. Your rules control these values when they include built-in
functions such as MoveLocX and Rotate.

You can change the name of an attribute in the object attribute editor by
clicking in its name with the left button and then backspacing and typing. If
you click the name with the right button, the name will be deleted and you can
type a new one. Within an object, attribute names must be unique. If you try
to give an attribute a name that is already in use, such as StateLocX, then the
editor will append a number to the new name, as in StateLocX1. You cannot
use the name of predefined attributes even if the attribute is not currently in
use.

You can also change the type of an attribute. Click on the type name, and a
menu of type options will pop up. Choose the appropriate type for the
attribute.

If an attribute has a handle, then the region of that handle will appear in the
column labeled Handle Region of the Attribute Operations window. (A region
is displayed as a set of four numbers, representing the vales of the left, top,
bottom, and right of the region rectangle.) If an attribute does not have a

39

RAPIDS Il Authoring Manual — August 1990 3. Building Generic Objects

handle, then the handle region will appear as undefined in the Handle Region
column. You can change the handle region of an attribute by clicking on its
value with the left button. You will be presented with options for changing,
adding, or deleting the handle, similar to the corresponding actions for Object
Handles, If you click with the middle button on the handle region, then that
attribute’s region will be highlighted in the display window.

The object attribute editor will also let you add new attributes and delete old
ones. To add a new attribute, simply click Add in the editor’s three-item menu
bar. A new, generated attribute name, such as *Attribute 102’ will appear, and
its type will be ‘Atom.” You can change the name and type of this new
attribute in the same ways that you would edit an old attribute’s name or type.

Object Attributes

Attribute Name Type Handle Region
CurrentState Atom

OdpecttocX integer

Objectiocy integer

P-rear integer undefined
Pfront integer undefined
Force Boolean undefined
Attribute102 Atom undefined

To delete an an attribute, first click on the Delete option in the menu bar. You
will be instructed to select the attribute to be deleted. Clicking anywhere in the
line that represents the attribute will delete it. You will not be asked to confirm
the deletion; it will just happen. Always click carefully after selecting Delete.

Object Graphics The Object Graphics command is used to create and edit the static part of an
object’s appearance. Objects need not have any static part, so it is possible to
create a functional generic object without using this command.

40

RAPIDS Il Authoring Manual — August 1990

Object Handles

Object Operations

bitmap

box

Sc
Move {

Copy

T

circle

curvye

text

Copy
Delete
Done
Line-width 1
Move
Rotate

Scale

Ieese—s—

h—
File; {DSK}<LISK
Date Written: 27

3. Building Generic Objects

When you choose the Object
Graphics command, all the
objects except the currently
selected one disappear from
the display window. (You
can make these objects
reappear using the Back-
ground command in the
Window Operations menu.
You may want to have other
objects visible so that you
can draw the current object
so that it will mesh appro-
priately with the other objects
that will appear with it.) Any
displayed state appearance
graphics will also disappear.

The Primitive-Ops menu will
appear, partially overlying
the Object Operations menu.
Using the graphics tools and
the commands of the
Primitive-Ops menu, you can
draw or graphically edit the
unchanging part of the
selected object’s appearance.
Graphic editing is described
below in the section called
‘Drawing Operations.’

To get out of the graphic
editing mode, click Done on

the Primitive-Ops menu. The menu will disappear, and you will again be able
to issue other object operation commands.

In RAPIDS-II, the term handle refers to a designated graphical area
(associated with an object) that is sensitive to mouse clicks. Any object that
you would like students to be able to manipulate directly with the mouse must
be given one or more handles. Most handles are state handles. They are not
created using the Object Handles command, but rather the Handle command
in the State Operations menu, which is described below in the section on
‘State Operations’. Object handles are used when you want the handles to
relate to some attributes of the object rather than directly to its states.

41

RAPIDS II Authoring Manual — August 1990 3. Building Generic Objects

i Object Handles. . W —)

Haridle Operations

Add Handle

Delete Handle
Move Handle
Rename Handle

Shape Handle

I ————————
File: {OSK}<<LISPFILES>RAPIOSH>SIM
Date Written: 2-Nov-8911:07:31

Done

When you select Object Handles, a new menu of Handle Operations appears,
overlying the lower portion of the Object Operations menu. So long as this
menu is visible, the generic editor is in the handle operations mode. This
mode is used to add, delete, move, rename, and shape the handles of an
object. (Remember that most objects do not have handles. Only those that can
be directly manipulated with the mouse should have handles.)

If you click on Add Handle, the message window will prompt you for the
name of the handle that you want to add. Type in an appropriate name for the
handle and type the Return key.

Enter handle name >> ,

Object“QpS;..;i:;‘ state

Diapiay Windnw

When the selected switch or other control is made up of a small number of
alternative states, you will ordinarily create a handle that corresponds with
each state. It may therefore be appropriate to give each handle a name that
corresponds to the state into which it will put the object.

After you have entered the name of the object, a menu will appear that asks
what kind of handle shape you want to use:

t method of entering handle
Sweep region
Enter handle size
Use predefined handle
Use region of object

le

C

There are four different handle shape options. Whichever method you use to
create a handle, make sure that the handle is within the graphics of the object.

42

RAPIDS Il Authoring Manual —

Hand!e Operations

Add Handle

Delete Handle

Move Handle

Rename Handle

August 1990

RAPIDS-II is not able to detect handle manipulations outside of the
rectangular bounding box that encloses all the graphics of the object. In any
case, it is always a good idea to graphically indicate the ‘mouse-active’ areas
of an object, so that it will be clear to students how they can manipulate them.

If you select the first handle shape option, Sweep region, the mouse shape
will change to the standard Expanding Box cursor. Drag out a rectangular
region that will serve as the named handle. Any student click within this area
will be considered a handle manipulation.

The second way of designating a handle is to Enter handle size. If you choose
this method, you will be prompted to enter the width and height of the handle
region.

3. Building Generic Objects

Add Handle

Delete Handle

Enter width of Move Handle Enter height of
handle handle

Rename Handle ; 2

» | I |

7 8

bs O

File: {OSK}-<CLISPFILES>RAPIDSH>-SIM
Date Written: 2-Nov-8911:07:31

Done

File; {OSK}<LISPFILES>RAPIDSH
Date Written: 2-Nov-8911:07:3

For objects with discrete states, it is often appropriate to use the predefined
handle type when creating state handles. It is also possible, however, to make
one of these small square regions an object handle.

When you are creating a predefined handle, the cursor will change into the
shape of one of these handles, a small black box, and the message window
will prompt you to place the handle at the appropriate place on the object.

Select position for handle A

Just click the left button of the mouse where you want the handle to be placed.
Don’t be concerned about the appearance of a black square at that point. This
visual representation of the handle appears only when you are in the generic
editor’s handle-editing mode.

The fourth shape options for handles is the easiest one to use. The choice Use
region of object will simply treat the entire bounding region of the object as a

43

RAPIDS Il Authoring Manual — August 1990

Move

handle region. That region will be highlighted, just as the handle regions you
can create using any of the other methods are highlighted during the Handle

Operations mode.

Object:

Handles can be selected by clicking on Horizontal Scrall Bar

them when you are in the Handle Operation
mode. A selected handle will be highlighted | State:

by a rectangular border. When a handle has Thuab <Continuous>
been selected, its name appears in the
Object Information window, below the Handle:

state name. 81lider handle

Most of the Handle Operations menu commands apply to the selected handle.
Delete Handle will ask that you confirm the deletion of the selected handle by
clicking the left mouse button. If you don’t want to carry out the deletion,
click the right button. Move Handle will let you move the selected handle
using the mouse. Click the left button when it is positioned where you want
it. Rename Handle will bring up a prompt for a new name in the message
window. The Shape Handle command will pop up the menu of handle shape
options discussed above, so you can use any of the standard handle authoring
methods to €dit the selected handle’s shape.

Select method of entering handle
Sweep region
Enter handie size
Use predefined handle
Use region of object

Finally, clicking on the Done command in the Handle Operations menu will
take you out of the Handle Operation mode, back to the Object Operations
mode.

To move the currently selected object, click on the Move command on the
Object Operations menu. The message window will display a message
showing that the selected object is *hooked to the mouse’ and will move with
the mouse. Click the left button to position the object and end the Move

operation.

e tintortnation

Moving object Slider

Choose the Rename command on the Object Operations menu to change the
name of an object. You will be prompted to enter a new name for the selected

- object type. Type the name and press the Return key. The name appears in the

Object Information window. (See below.)

3. Building Generic Objects

RAPIDS II Authoring Manual — August 1990 3. Building Generic Objects

Object Informaton
Object:
Slider i i JS.[tate 695

Rename Slider to: >> Horizontal Scroll Bar,

Remember that you are naming a generic object, not a specific instance.
Don't call a two-position generic switch a “power switch” just because you
plan to use an instance as a power switch in a specific simulation. Give it a
more generic name, such as “Two position switch.”

Rotate This command is used to rotate a selected object. You will be prompted to
enter the number of degrees of rotation. Type in a number (counter clockwise
rotation is positive) and press the Return key. Rotation will be about the
center of the bounding region of the object.

How many degrees do you wish to rotate object Vertical Scroll Bar? >>

State Ops Save
Rules The Rules command closes the generic editor windows (temporarily, just to

reduce screen clutter). It opens a new set of windows, the RAPIDS-II rule
editor. This rule editor is available in both the generic editor and in the scene
editor, although there are minor variations in the availability of features in the
two environments. The figure below presents the initial appearance of the rule
editor.

The top window shows a picture of the selected object (here, the sequence
valve). The rules displayed in the window immediately below are the rules
that are associated with that generic object.

45

RAPIDS Il Authoring Manual — August 1990

Exit

Add New Object

Copy

Cycle

Delete

Object Attributes

Object Graphics
Qbject Handles

Mocve

Rename

Rotate

ST i T ""‘"{;..i‘;:"..&;*"p?%ﬁ

EEED

Co y rule
Edit rule
Delete rule

When an existing rule is being edited, other windows open as well. The
section on ‘Internal Rules’ later in this chapter presents the use of the rule
editor in some detail.

After you finish working on the rules of the selected object, you must click
Done in the leftmost menu. The rule editor windows will close and the
windows of the gcnenc editor will reopen, just as they were when you clicked
on Rules in the Object Operations menu.

Scale Generic objects can also be scaled. When you choose this menu command,
you will be asked for the amount of scaling. To make an object one-and-a-half
- times as big, enter 1.5. To make it half its former size, enter .5 and type the
Return key. The object will be redrawn in the main window in the new size
you have specified.

By what factor do you wish to scale object Horizontal Scroll Bar? >

46

3. Building Generic Objects

RAPIDS Il Authoring Manual — August 1990 3. Building Generic Objects

In some cases you will find it convenient to have copies of objects with
different scaling and rotation. First use the Copy command, then the Scale
and Rotate commands to build such copies.

Move to Page Libraries can have multiple pages. A library page is a view the size of the
generic editor's display window. You can change pages using the display
window's right button menu. The Move to Page option is used to move the
selected object from one page to another. You will be prompted for the
number of the page to which you want to move the object.

There are 2 pages.
¥hich page should object Horizontal Scroll Bar be moved to (enter 8 for a new page)?
PPN

You can add a new page to the library by responding 0 to the request for the
destination page number. The actual page number of the new page will be one
greater than the number of the former last page.

Copy to Flle Sometimes you may find that a given generic object should be included in a
different library. You can move a copy of the selected object to a library other
than the one that is currently open. Enter the name of the file you want to put
the object into when the prompt below appears in the message window. Don'’t
precede the file name with a quote mark.

Copy object Horizontal Scroll Bar to library? >>,

If, when you are prompted for the name of the destination library, you type
the name of a file that doesn't exist, then the generic editor will create a new
library of that name and will put a copy of the selected object into it.

The copy will not actually be completed until you issue a Save command or
exit the generic editor. At that time the file that includes the other library will
be rewritten with the new (copied) object. If you choose to terminate your
editing session without saving, you will be asked whether you want the object
copy to another file to actually take place.

Be aware that it is possible to copy the same object two or more times to
another library. If the object has been copied to the library from the same
source library, then all the copies will be in exactly the same place on the
screen in the destination library. If it was copied an even number of times
(e.8., twice), then it will appear not to be present at all — the copies will erase
each other. If this happens to you, then when you later edit that library, you
should delete the superfluous objects. It is also possible to copy into a library
an object with the same name as a different object that is already there. In this
case you should edit the library and change the name of one of the objects.

47

RAPIDS II Authoring Manual — August 1990

A Hint: Create an
Empty, Invisible
Object

3. Building Generic Objects

Authors often find it useful to have an empty generic object, one with no
appearances or behavior. Later, when building a simulation in the specific
editor, you can create instances of this ‘empty’ object, assign appropriate
graphics, attributes, and behavior rules to each instance, and thereby
customize your simulation in ways you had not planned on when you created
the library. These invisible objects can be very useful, but they cannot serve
as the basis for complete graphical simulations, because they cannot have
appearances that change under the control of rules.

Add New State

State Operations

State Operations

Add New State
Continuous State
Copy
Cycle
Delete
Handle
Move
Rename
Rotate
Scale

State Graphics

Once you have created the unchanging static
part of an appearance, you will ordinarily
build the state part or parts. The Srare
Operations menu is used to name, draw, and
position the variable parts of an object’s
appearance, the state-dependent graphics.
To get into the State (gperations mode,
choose State Operations from the menu bar
at the top of the display window. As in the

-Object Operations mode, the Object

Information window appears at the top of
the menu to display the name and state of the
selected object.

While you are in the State Operations mode,
you can change the selected object in just the
same way that you do in the Object
Operations mode. Simply click on the next
object that you want to edit the states of.

The state operations commands operate on
the selected state, just as object operations
(in the Object Operations menu) operate on
the whole object. If you want to create a
new state to work on, you can use the Add
New State command. See its description
below.

You can add a new state to a selected object using the Add New State
command. The message window will prompt you for the name of the new
state, as shown in the figure below. After entering the name (by typing it and
then pressing the Return key), you will usually draw the state, using the State

Graphics command.

48

RAPIDS Il Authoring Manual — August 1990 3. Building Generic Objects

Object Information Please enter a name for the state >> Maximum P
Object;
HydraulicPump
State:
Continuous The Continuous State construct
State provides one of the most powerful

features in RAPIDS-IL It is used to
create objects that vary continuously
in appearance, typically based on the
value of some attribute.

When you choose the Continuous
State command from the State
Operations menu, a new set 8 Continuous State Adjustments
windows, labeled ‘Continuous State
Adjustments’ appears at the bottom | X Translation: e

of the State Operations menu. These

windows are shown atdthc right. The l“""‘!‘g“"“'&‘ﬂ““‘t‘d‘%n
upper window provides a control

int];rface for experimenting with the | Y Transiation: =

appearance of the continuous object. ! Lo bbbl !
1007%

The lower window is used to set the
N Al Ratation: %
movement and rotation limits of the o D

continuous state. For example, if a !.|.|.|.|.| |.1.1,|.!
state part is to move horizontally, ie0%
you would enter values for MinX

and for MaxX. A value of 0 refers to

the location of the state as it wWas |
created using the other state |, . L—'_] Max X

operation tools, such as the drawing D
tools and Move. Negative values are [MinY :l MaxyY D
to the left of the state’s original [minrot, [___] maxRot. [

:?;:tnon, positive values are to the Rotation Center: X D v D
. Dat

For MinY and MaxY, negative values are below the original location of the
state, and positive values are higher on the screen. For both X and Y values,
the numbers refer to screen pixels.

The MinRotation and MaxRotation fields of the continuous state object refer
to the number of degrees that the object can be rotated from its originally
authored orientation. Positive values are clockwise; negative values are
counter-clockwise.

If the continuous object’s state is to be rotated, you must also set the center of
rotation for that state. These values are to be expressed in window coordinates
(where 0,0 is the top left corner of the window).

49

RAPIDS II Authoring Manual — August 1990 3. Building Generic Objects

There are two ways to set range boundaries such as MinX and MaxX. You
can click in the box to the right of a range boundary label (such as ‘MaxX’)
and enter a number or edit one that is already displayed there. Alternatively,
you can click on the label itself (e.g., on ‘MaxX’) and then position the
continuous state at the point that represents the labeled range bound. When
you click the left mouse button (signifying acceptance of the displayed state as
the named boundary), the numerical value will automatically be filled into the
box by the label.

When you want to see the visual effects of the continuous state boundary
changes you make, click on the button labeled Update in the lower window.
The state appearance of the selected object will be updated. When you have
finished making all the changes you want in a continuous state, clicking on
the Done button will exit the Continuous State Adjustment mode.

Rules that control continuous state objects refer to their translations as a
percentage of the range of transiation. Rotation numbers should be interpreted
as percentages of the range of rotation.

You can easily experiment with the appearances of a continuous state object
by using the upper window. The horizontal movements of the piston in the
actuating cylinder assembly (shown below) can be explored in several ways
in the Continuous State Adjustment mode. You can click in the X Translation
Ruler to reposition the position marker (the small black triangle in the ruler).
The marker will move to the location of the mouse in the ruler, and the
continuous state graphic will be updated to reflect the new position.

Continuowus State Adjustments

X Translation: %

s
¥ Translation: [:]:. ﬁ,:&
gLy Lyl

Rotation: [|w

T WU W I I

Min X E Max X
L]

miny [] Mmaxy

Mhnot.: Max Rot.

Rotation Center: X

File; (DS} <LISPFHLES >RAPIDSII

Date Written: 26 Mar-90 16:23;

50

RAPIDS Il Authoring Manual — August 1990

In the figure above, a click at the 63% point on the X Translation ruler has
had the effect of moving the state graphic 63 percent of the way from -3 to 29
on the X axis.

You can also experiment with continuous state appearances by dragging the
position marker in the ruler. Hold down the left button while pointing at the
position marker and drag it along the ruler. The continuous state graphic will
update simultaneously.

A third way to explore a continuous state appearance is to enter a number in
the box above the ruler. In this case, you must click on the Update button at
the bottom of the upper of the two Continuous State Adjustment windows to
see the change reflected in the appearance of the object.

You can explore rotating continuous states by using similar techniques. In the
figure below, a rotatable hinge mechanism is displayed in a state of rotation
that is 63% of the range (from 0 to -20). The signs of the Min and Max
Rotation values are important. the maximum rotation of -20 specifies the same
rotation position as 340 would. However, 0 to 340 would imply a clockwise
rotation, while O to -20 prescribes a counter-clockwise rotation.

A continuous state rotation may be more than 360 degrees. For example, if
Min Rotation was set a 0 and Max Rotation at 720, then moving the rotation
slider bar from 0.0 to 1.0 would cause the state to rotate two full revolutions.
Setting Min and Max Rotation by clicking on the label (Min Rot. or Max
Rot.), and then rotating the object to the desired position using the mouse.
The object will rotate, tracking the mouse until the left button is clicked. The
values for Min and Max Rotation will be continuously updated in the box to
the right of the label.

Continuousg State Adjustments

X Translation: D %

Min X D Max X D
MinY D MaxY D

Min Rot. D max Rot, [20__]
Rotation Center: x [130] v [280

I —————————————
file; (DSK}<LISPF|LES>RAPIDSH)SIMP
Date Written: 26-Mar-9016:23:39

51

3. Building Generic Objects

RAPIDS Il Authoring Manual — August 1990 3. Building Generic Objects

Once you have finished cxp_loring a continuous state, you must click on the
Done button in the lower window to leave the Continuous State Adjustment
mode.

Copy Often the difference in appearance between two states is quite simple.
Sometimes, for example, one part of an object shifts position in different
states. This variable part can be drawn in one position for the first state. To
make the next state, use Copy to duplicate the appearance of the first state's
graphics, and then use Move or Rotate to put them in a new position.

Object Information

Object:
HydraulicPunp

Copying state Maximum Pumping of object
Please enter a name for the state >> ,

State: Lt
Naxisus Pusping

Dispiay Window

After you click on Copy, you will be prompted to type the new state name.
The new state is the selected state, so you can easily modify the copied state.

Cycle The Cycle option is used to step through the states of an object. After the last
state for an object, Cycle will bring up the first state. (You can create a state
with no graphics by not using the State Graphics command while you are
working on a state, or by deleting all the graphical primitives in a state.)

Delete This menu command deletes the selected state. It requires that you confirm
(by clicking the left mouse button) that you want to delete the state. The next
state becomes the selected (and depicted) state

Handle The term handle refers to a designated graphical area (associated with an
object or an object state) that is sensitive to mouse clicks. Any object that you
would like students to be able to manipulate directly with the mouse must be
given one or more handles. Objects with a fixed number of static alternative
states can have a single handle associated with each of those states. Such
objects are treated specially by the RAPIDS-II simulation driver. Using the
state handle feature, you can easily build working switches and other controls
without writing rules to handle the mouse actions that manipulate the state of
the object. In effect, these rules are hard-wired into your simulation. (They
cannot be edited using the RAPIDS-II rule editor.) If you want to write a rule
that refers to the action of changing a control, the rule should refer to the
object’s state, rather than to a Mouse Down in Handle action.

State handles will put objects directly into the states associated with the handle
when the simulation is running and a student clicks on the handle. Authoring
such state handles is closely linked with the states. In the two figures below,
we see State Handle Operations being applied to two states of a switch. The
predefined handle shape is used to establish an Up handle that corresponds to
the Up state of the switch in the figure at the left. A predefined handle shape is
also used to identify the Down handle that is associated with the Down state
of the switch. It is a good idea to give handles the same names as their
corresponding states for alternative state objects.

52

RAPIDS Il Authoring Manual — August 1990

3. Building Generic Objects

These handles were created by the following sequence of steps. First, the
switch object was cycled (using Cycle) to its Up state. Then, the Handle
command was invoked. Add Handle was used to create a new handle and to
give it the name Up. The predefined shape was chosen and was positioned on
the upper contact of the switch. Then Done was used to exit from the Handle
Operations mode. The switch was cycled to the next state, Down, and the
process was repeated to add the Down state handle.

Object Infarmation

Object:
Switch-3V¥ire

State:
Up

Handle:
Up

Add New State

Continuous State

Copy

Cycle

Delete

Add Handle
Delete Handle
Move Handle

Rename Handle‘

Shape Handle

Lo

Done

State Operations

4

 Displav|

]
File: {DSh
Date Writ

Object:
Switch-3¥ire

Add New State
Continuous State
Copy
Cycle

Delete

....................

Add BHandle
Delete Handle
Move Handle

Rename Handle

Shape Handle

(411

Done

Object infarmation

State: 4
Down Display
Handle:
Down

P
File; {DSk
Date Writ

53

RAPIDS Il Authoring Manual — August 1990 3. Building Generic Objects

Using Handle If you click on Add Handle, the message window will prompt you for the
Operations name of the handle that you want to add. Type in an appropriate name for the
handle and type the Return key.

After you have entered the name of the object, a menu will appear that asks
what kind of handle shape you want to use:

Select method of entering handle
Sweep region
Enter handle size
Use predefined handle
Use region of state

There are four different handle shape options. Whichever method you use to
create a handle, make sure that the handle is within the graphics of the object.
RAPIDS-II is not able to detect handle manipulations outside of the
rectangular bounding box that encloses all the graphics of the object. In any
case, it is always a good idea to graphically indicate the ‘mouse-active’ areas
of an object, so that it will be clear to students how they can manipulate them.

If you select the first handle shape option, Sweep region, the mouse shape
will change to the standard Expanding Box cursor. Drag out a rectangular
region that will serve as the named handle. Any student click within this area
will be considered a handle manipulation.

The second way of designating a handle is to Enter handle size. If you choose
this method, you will be prompted to enter the width and height of the handle
region.

For objects with discrete states, it is often appropriate to use the predefined
handle type when creating state handles. When you are creating a predefined
handle, the cursor will change into the shape of one of these handles, a small
black box, and the message window will prompt you to place the handle at the
appropriate place on the object.

Select position for handle A

Just click the left button of the mouse where you want the handle to be placed.
Don’t be concerned about the appearance of a black square at that point. This
visual representation of the handle appears only when you are in the generic
editor’s handle-editing mode.

The fourth shape options for handles is the easiest one to use. The choice Use
region of state will simply treat the entire bounding region of the state as a
handle region. That region will be highlighted, just as the handle regions you
can create using any of the other methods are highlighted during the Handle
Operations mode.

54

RAPIDS II Authoring Manual — August 1990 3. Building Generic Objects

Delete Handle will ask that you confirm the deletion of the handle by clicking
the left mouse button. If you don’t want to carry out the deletion, click the
right button. Move Handle will let you move the handle using the mouse.
Click the left button when it is positioned where you want it. Rename Handle
will bring up a prompt for a new name in the message window. The Shape
Handle command will pop up the menu of handle shape options discussed
above, so you can use any of the standard handle authoring methods to edit
the handle’s shape. Finally, clicking on the Done command in the Handle
Operations menu will take you out of the Handle Operation mode, back to the
State Operations mode.

Move This command attaches the mouse pointer to the state graphics. When you
move the mouse, the state appearance moves. To set the new position, click
the left button.

Object Information

Object:
Switch-3¥ire

Move object state to desired location.

State: Sl SSSEEESEEE
Down

Display Window

Rename After choosing the Rename menu item, you will be prompted to type the new
state name. Press the Return key at the end of the name.

Please enter a name for the state >> Down,
Object:
Switch-3¥ire

State:
Down

Object Ops

Display Window

Rotate The Rotate option behaves just as it does in the object operations mode. You
will be asked how much the state should be rotated.

Object:
Switch-3V¥ire

State:
Down

Display Window

After you enter the number of degrees of rotation you want, you will be
prompted to pick the center of rotation. Clicking the right button makes the
state rotate about its own center. If you click the left button, the mouse pointer
turns into a crosshair in a circle. Put the center of this pointer shape over the
desired center of rotation and click the left button. The state will then be
shown in its new orientation.

355

Scale

State Graphlcs

RAPIDS Il Authoring Manual — August 1990 3. Building Generic Objects

Like Rotate, the Scale option in the state operations mode behaves just as it
does in the object operations mode. Naturally, it affects only the selected
state, rather than the entire object.

By what amount should state Down be scaled? »

Display Window

Because of rounding anomalies, it is almost always preferable to draw objects
and their states in the size that will be required in the simulations that they will
be used in, rather than to scale them.

To build or modify the appearance of a State Operations
state, you usually have to draw some part
of it. The State Graphics command takes Add N gyt
you to the Primitive Operations mode. The .)
Primitive-Ops menu is described below in } —
the section labeled Drawing Operations. In Continug 77 °
this mode, you can add, delete, copy, 98] bitmap
move, rotate, and scale the primitive cd=
graphic elements that comprise a state 9 =
appearance. 0= o
This is the same graphic primitives menu <y O sirole
that is brought up when you choose the
Object Graphics command in Object De /'\ curve
Operations mode. The next section of this ~
chapter deals with these drawing tools. ~/ ime
Hay{ /-~ "
T text
Mg
Copy
Req petete
Done
Ro
Line-width 3
Sc Move
Rotate
8cale

56

RAPIDS II Authoring Manual — August 1990 3. Building Generic Objects

Drawing Operations

The Primitive-

SEYRIEGEE The Primitive-Ops menu provides the primitive operations

Ops Menu - for controlling the appearance of graphical objects in
Y Ak RAPIDS-II. There are two ways to get to this menu. To
draw or modify the static part of an object, you select
%O vitmap Object Graphics from the Object Operations menu. To do
the same kinds of things to state parts, choose State
w box Graphics from the State Operations menu. '
_ The appearances of RAPIDS-II consist of a number of
O sirole simple or ‘primitive’ graphical elements, such as lines,
circles, boxes, curves, and arrows. Unlike some ‘paint’
/A\ ourve programs, RAPIDS-II remembers which of these primitive
elements comprise each appearance. It is therefore possible
’—/ ine to edit individual primitives in existing graphics. This is
‘ what makes it possible to delete, scale, rotate, move, or
copy a individual graphic element (such as a line or a
T 1o circle). '
Copy The first seven menu items are primitive drawing tools.
Deleto Most of them require that you click the left mouse button
twice in the main window drawing area: once to start the
Done graphic element, and once to end it. When you are done
drawing the element, click on another choice in the
Une-width 1 | Primitive-Ops menu. Naturally, you can click on the same
tool if you want to draw another primitive of the same type.
Move (The line tool works slightly differently from the others, in
Rotate that it permits the drawing of multiple connected line
segments, as is explained below.)
Scale
Arrow When you click on this option, it is grayed out on the menu to show that it is
the tool currently in use. You then create the arrow's anchor by clicking at the
point where you want the tail of the arrow. As you move the mouse pointer to
the location where you want the head of the arrow, a line is 'rubberbanded'
between the anchor point and the mouse pointer. When this rubberbanded line
is lined up just as you want the arrow to be, click the mouse button again. A
completed arrow then appears on the screen.
Bitmap This menu item pops up a set of these menu choices:
Edit Bitmap Primitive
Get Bitmap From File
Create New Bitmap

The second option, Get Bitmap From File, lets you type in the name of afile
that contains a bitmap that you would like to use as a graphic primitive in your
simulation. After you give the file name, there will be a short delay and then
the bitmap will appear in the display window.

57

RAPIDS Il Authoring Manual — August 1990 3. Building Generic Objects

The first and third options — Edit Bitmap Primitive and Create New Bitmap
— invoke the Interlisp-D bitmap editing function EDIT.BITMAP to let you
create or edit bitmap graphical elements. EDIT.BITMAP gives you a menu of
bit map manipulation commands. These include commands for shifting,
rotating, inverting, and hand editing bit maps. The hand editor gives you an
exganded view of the bitmap, making it easy to click bits on (black) with the
left mouse button and off (white) with the middle button. To learn more about
the features of the standard EDIT.BITMAP tool, read its description in the
Envos Lisp Library Packages Manual.

ORIGINAL PAGE IS
OF POOR QUALITY

| Hand Editing a Bitmap

The appearance of a generic object can consist simply of one or more bitmaps,
or such an object can contain bitmap elements in addition to other graphical
clements.

You can copy parts of the screen to bitmaps, making it possible to rough out a
graphic using the object tools, and then do the detailed work using the bitmap
editor. Be warned, however, that extensive use of bitmaps may slow down
your simulations significantly. Bitmaps usually require a great deal more
memory and storage space than do roughly equivalent object-oriented
drawings.

Box The box tool is used to draw rectangles. After clicking on the Box choice, put
the mouse pointer where you want one corner of the box. Click the left
button. Then put the pointer where you want the opposite corner. As you
move the mouse to this point, you will see a 'rubberbanded’ rectangle drawn
on the screen. Click the left mouse button when you have dragged out a
rectangle of the desired size and shape.

58

RAPIDS Il Authoring Manual — August 1990 3. Building Generic Objects

Clrcle To draw a circle after clicking on this menu choice, just click the mouse at the
point that is to be the center of the circle. Move the mouse pointer to any point
on the circle's circumference. (Again, a circle will be 'rubberbanded’ as you
move the mouse.) Click when the circle is the size you want.

Curve After clicking on the curve option, put the mouse pointer where you want the
curve to begin. Then click once where you want the middle of the curve and
once at the end of the curve. Three points are required to specify the curve.
Finally, click the left mouse button to confirm that this is the curve you want.
It doesn't matter where the mouse is pointing for this confirming click.

If you don't like the curve, instead of clicking the left button to confirm, click
the middle button. This will remove the last point of the curve. You can then
try again, using the left button to set the last point, as before. If you're not
happy with the positions of the first two points either, you can click the
middle button twice at confirmation time to remove all three points. Your next
left button click will set the first point of the curve again.

Line This tool lets you draw a series of connected line segments. Each successive
segment begins where the previous segment ended. Click Line, then click
where you want one end of the line, drag a rubberbanded line out by moving
the mouse, and click where you want the line segment to end. When you are
finished making connected line segments, drag the mouse outside the display
window and click. The last 'rubberbanded’ line segment (which extends to
the edge of the display window) will simply disappear.

Text When you choose the text option, you will be
given a choice of fonts in a popup menu. Select
the font you want by clicking the font name. To -p >
choose font size, hold down the mouse button 3 mhlnesdroman)
on the font name you want and drag the pointer |p L =
off to the right. A secondary menu of the sizes .
available for that font will pop up. Drag into the size you want and release the
mouse button. (Or, if you want to choose a bold style, drag to the right of the
size option to bring up a menu of style options. Drag the pointer into the one
you want and release the mouse button.) You will then be prompted to type in
the text you want displayed. End by typing the Return key. Your text will
then appear on the screen. Put it into position using the mouse. Click the left
button to drop the string where you want it.

Fonts
Gacha »

If a generic object is to be rotated or scaled, the text should be added after
these operations. Text can only be displayed horizontally and vertically (up-
reading or downreading).

The first seven options of the primitive operations menu let you choose
among the seven primitive graphic elements of RAPIDS-II generic objects:
arrows, bitmaps, boxes, circles, curves, lines, and text strings. The
appearance of every graphical object consists of one or more of these graphic
primitives. Most of the other menu options let you manipulate these primitives
In various ways.

59

RAPIDS Il Authoring Manual — August 1990

Copy

Delete

Done

Line-Width

Move

Rotate

Scale

You can create a copy of any primitive graphic element. After clicking on
Copy, just click on the primitive element you want to copy. The copy will
appear, slightly offset. Drag it to the position you want it to have and click the
left button again to position it.

Any graphic primitive can be removed from an appearance. After choosing the
Delete option, click on the element (line, circle, text, etc.) that you want to
remove.

This option ends the primitive operations mode and returns to the menu that
called it. If you were working on a static appearance, you will be returned to
the Object Operations menu. If you were working on a state appearance, you
will go to the State Operations menu.

You can change the width of future lines with this option. The current default
line width is displayed beside the Line-Width menu item. The graphic
primitives (except for Bitmap and Text) use the current line width setting to
determine how thick their lines will be.

To move a primitive element, click on this menu option, then select the
graphic primitive to be moved by clicking on it. Use the mouse to move the
primitive to the location you want, and then click the left button again to drop
1t there.

The Rotate feature works a little differently for different kinds of primitives.
Arrows, boxes, curves, and lines can all be rotated an arbitrary number of
degrees. (But notice that rotating a circle about its center is meaningless.) If,
after choosing the Rotate option, you click on one of these elements, then you
will be prompted to type the number of degrees to rotate. Positive values
represent counterclockwise rotation. When you rotate one of these primitives,
you will be asked whether you want to specify the center of rotation. If you
click the right mouse button, the center of the selected primitive will be used
as the center of rotation.

For text and bitmap primitives, you won't be asked to type in the amount to
rotate. Instead, you will be given a menu of the allowable rotation values,
which are in 90-degree increments.

The interface for scaling is similar to that for rotating. You will be prompted
to enter a number that will serve as the scaling factor.

3. Building Generic Objects

RAPIDS II Authoring Manual — August 1990 3. Building Generic Objects

Window Operations

Window operations are used to control global features of

Background | the display window used in the generic editor. To bring
Bury up the menu of window operations, move the mouse so
Grid that the cursor is in the display window, and press and
Grid-On/0ff | hold down the right mouse button. A window
Hardcopy operations menu (titled Window Ops) will appear. Select
Move a menu item by moving the cursor to the desired item and
PreviousPage | releasing the mouse button.
NextPage
CreatePage
Redisplay
Shrink

Background The background of an object is all the other objects in the library that is

currently being edited with the generic object editor. You may want to turn on
the background to make certain that the size of an object is proportional to the
other objects that it will appear with. At other times, you'll find that it is less
distracting to turn off the background so that you can concentrate on the
selected object.

Bury
This command puts the generic object editor windows behind any other
windows on the screen. The other windows will then overlay the generic
editor windows. To bring the generic editor back into the foreground, simply
click the mouse once in one of its windows.

Grid You can change the display window's grid size with Grid. The grid is a
coordinate system that overlays the display window. A grid is specified in
terms of the number of pixels between grid points. All graphic elements can
be automatically aligned to the nearest grid point when they are drawn. It is
often useful to draw objects that will appear together with the same specified
grid, so that their ports will match up correctly when they are positioned next
to each other in a scene.

When you choose the Grid menu option, the message window will ask you to
enter the new grid size. Type a number and the Enter key. A grid finer than 3
cannot be displayed on the screen.

Grid On/Oft The grid you specify is always in effect. (If you want to be able to draw to
any pixel in the window, you must specify a grid size of 1.) You can choose
whether or not the grid points are visible or not using the Grid On/Off menu
command. Clicking on this option toggles the visibility of the grid.

The first time that the generic editor is opened in your environment the grid
size will be 1. The grid size you select will be preserved when you change
libraries and across editing sessions. Grid size is tied to the generic editor
itself rather than to object libraries.

61

RAPIDS II Authoring Manual — August 1990 3. Building Generic Objects

Hardcopy This command prints the display window to an attached printer. Naturally,
this command works only if someone has already installed the printer drivers
appropriate for your printer in your Lisp environment.

Move You can use this command to move all the windows of the generic editor, as
an attached group, to a new position on the screen. This option is rarely used.

Previous Page Libraries can have several pages of objects, where each page is a group of
objects to be shown in the display window. The Previous Page command
brings up the page before the currently displayed page of objects. If the
currently displayed page is the first one, Previous Page will print a message to
that effect.

Next Page This command brings up the next page in the library. If the current page is the
last page, then the a message will tell you so.

Create Page Use Create Page to make a new page in the library, which will be placed after
the last page. The new page, which will be blank, of course, will then be
shown in the display window.

Redisplay On rare occasions, you may find that spurious graphic elements are displayed
that don't seem to really be there. (For example, they can't be selected or
deleted.) The Redisplay option repaints the display window, eliminating any
such graphical anomalies. You may never have to use this command.

Shrink This command suspends the generic editor and shrinks its windows sro
to an icon that represents the generic editor. The name of the library
being edited appears in small letters near the top of the icon. GE

You can later resume the same editing session by opening up the icon. The
icon can be opened either by choosing the Expand option from the right
button menu in the icon, or by clicking the middle button in the icon.

Graphic Utilities The Graphic Utilities consist of three functions (Crosshairs, ChangeGridsize,
DisplayGrid) that can be executed while you are performing a graphic
operation. For example, if you are moving an object or primitive and decide
that the grid should be changéd, select ChangeGridsize by hitting the "G" key
on the keyboard.

Here are descriptions of the Graphic Utilities functions:

Crosshairs (C or ¢ on the keyboard) — Toggles the display of large
crosshairs. This option is very useful for lining up elements that are
not very close to each other. See the screen snapshot with crosshairs
below.

ChangeGridSize (G or g on the keyboard) — Changes the grid size.
_This command is the same as the Grid command in the window
operations menu.

DisplayGrid (D or d on the keyboard) — Toggles the display of the grid.

62

RAPIDS II Authoring Manual — August 1990 3. Building Generic Objects

Obiject Operations

De box

ObjeCt A O circle

i

Copy

Rol pelete

Ry Done
Line-Width s

Move
Move

Rotate

S
File: {DSK}<ULISPFILES>RAPIDSII>
Date Written: 2-Nov-89 11:07:31

Copy | Scale

The Generic Editor with Crosshairs Turned On

Leaving the ~ There are two ways to leave the generic editor. You can suspend an editing

Generic Editor session by choosing the Shrink item on the display window's right button
menu (the Window Ops menu). If you suspend an editing session, the
additions and changes that you have made will not be saved to the disk file
that stores the library of objects. If something were to happen to corrupt your
Interlisp-D environment before you resumed the session and saved, those
additions and changes would be lost.

The other way to leave the generic editor is to use the Done command on the
Object-Ops menu. This command will actual end the session. You'll be
prompted to decide whether you want the additions and changes made in the
session to be saved or not.

63

Rule Authoring

Attributes

Rules in Rapids Il

Rules describe and control the behavior of objects in RAPIDS II. Rules can
be either generic (universal for objects of a given type) or specific to a
particular simulation. Rules for generic objects are created and edited in the
generic editor. Authors can create and edit rules at the scene level as well as at
the generic object level. These rules are edited in the scene editor. The
propagation of effects in a simulation is determined, in part, by rules created
in the scene editor.

Rule editing in RAPIDS Il is facilitated by a powerful menu-driven editing
system. In addition, the Envos Interlisp structure editor has been made
available for rule editing, for the use of authors who are comfortable with that
approach to editing structures.

Antributes are data structures associated with objects. Rules can refer to
attribute values. Attributes can include values such as voltages, fluid
pressures, and mechanical forces. Behavior rules in generic objects typically
manipulate such values. In many cases, a generic object rule transforms the
value of some input attribute to compute the value of an output attribute. In
addition, however, authors can make other uses of the attribute mechanism.

Cenrtain attributes are created automatically in RAPIDS II. These include an
object’s location and its current state. Rules can refer to these standard system
attributes, as well as to attributes created by authors.

RAPIDS II Authoring Manual — August 1990 4. Rule Authoring

Processes In RAPIDS 11, student users can manipulate the simulation while it is active.
This feature of RAPIDS II makes it possible to write rules that set up ongoing
processes, such as incrementing or decrementing attribute values. The
appearances of objects can be made to reflect these changing values, so that a
simulation appears to be continuously animated. A simulation user can carry
out a series of interactions without waiting for all the effects of one action to
settle before carrying out the next one.

The combination of the new process and continuous appearance features make
it possible to create real-time task simulations in RAPIDS ll, greatly extending
the training domains that can appropriately be approached with this tool.

Internal and Essentially the same rule editor is used to build all RAPIDS II rules. Rules

External Rules that are associated with generic objects are created when the rule editor is
invoked from within the generic editor. Rules that are associated with specific
objects (and, therefore, with particular simulations) are created when the rule
editor is invoked from the scene editor. The former type of rules (those
associated with generic objects) are called internal rules. Internal rules cannot
contain references to specific objects. They can only refer to attributes of the
generic object itself. Internal rules are described in the next section.

Rules associated with specific objects are called external rules. They refer to
attributes of one or more specific objects. External rules often perform the job
of passing values from one object to another. External rules are created and
edited when the rule editor is called from the scene editor. This process is
described later in this chapter.

The rule editor behaves in largely the same way in the two environments.
When it is invoked from the generic editor, the generic editor disappears from
the screen while the rule editing is taking place. When the rule editor is
invoked from the scene editor, the scene editor windows do not disappear.
They remain present because the author may have to point to an object on a
scene while composing a rule.

65

RAPIDS Il Authoring Manual — August 1990 4. Rule Authoring

Internal Rules

When you click on Rules in the Object Operations menu, the generic editor
windows close and a new set of windows opens for editing the rules of the
currently selected object. These windows are shown below.

Ghject Ops

hapiay 'Window

Add New Object
Copy
Cycle
Delete

Object Attributes

Qutject Graphics

Otject Handles E
Move

Rename

Rotate

ew rule by menus 1 P ke
New rule by typing g Y

Copy rule
Bcﬂl rule
Delete rule

The window at the top left displays the appearance of the object. (In this
figure, the generic object is a hydraulic valve.) The bottom window lists the
rules that have already been defined for the object. The menu that at first
appears at the lower left provides global functions, such as adding a new rule;
copying, editing, or deleting an existing rule; and leaving the RAPIDS-II rule
editor, returning to the standard generic editor interface.

Rule Authoring The rule editor makes it very easy to create syntactically correct rules by using

by Menu a set of menus to compose the rules. The seguence of menus permits only
legal rules to be composed in this way. The first example demonstrates the
authoring of a rule that determines the visual appearance of an object by
setting the object to one of its pre-defined visual states.

RAPIDS II Authoring Manual — August 1990 4. Rule Authoring

As soon as you choose New rule by menus from the top level of the rule
editor (shown above), then a menu for the types of RAPIDS-II rules appears.
The choice that you make here determines which menu will be presented next.

The last choice on the menu, ABORT, lets you change your mind, and
abandon the process of creating a new rule. The first two choices are used to
create complex rules that are ifg-constructs at the top level. The other choices
are used to create rules that perform a straightforward action, such as assign
some attribute a value, set an object to a certain state, and so on.

Types of Rules
(if ... then ...)
(if ... then .., else ...)

Assign
SetState

Schedule
Unschedule
StartProcess
StopProcess

MoveObjectX
MoveQbjectToX
MoveObjectY
MoveQObjectToY
MoveObjectXY
MoveObtjectToXY

ABORT

Let’s build a rule of the if...then... type. In English, this rule is to say:

If V-left is greater than zero, then set the state of the valve to Straight,
else set the state to Crossed,
where V-left is an arbitrarily chosen name for an attribute of the valve, the
voltage it receives at its left electrical connection.

To begin with, click on the second choice in the menu (if...then.. else...). A
new window appears, as shown in the figure below. It shows the text of the
new rule, as it has been authored to this point. The text portions between
angled brackets (< >) are those parts of the rule that remain to be specified.
This window is actually a sophisticated text editor, called SEdit, that is part of
the Interlisp-D system. You can build rules without using SEdit, but it is often
useful to be able to edit rules using this editor. To learn about its operation,
read the Envos manual that describes SEdit.

The Generic Editor message window displays authoring instructions during
the menu-based rule-authoring process.

67

RAPIDS II Authoring Manual —

Add New

es aof Condit
AN

tion

(<cond
(NCT <conditic
Is

-
>
dm=
<
(==

<O
MouseDown

ABORT

Copy
Cycle
Delete

Object Attributes

L <con
(<condition> OR <condition>)

MouseDownInHandle
MouseDownlnObject

<attribute-of-this-object)

August 1990 4. Rule Authoring

Select an expression to replace (Condition).

“State ©

Ghyect Ops 3

(AT

Iz
°

Bt b oaonlatdeblia s P aoage (RETE BIIGP
(it <Condition> then <Effecti) elee <Effect2))

Object

10ons
tion)>

0>)

8 'Desnargizad 3"%:8’!’!‘0‘:"5‘33' :
! zed) - ther- (Assign Pd @

°C ' theo ..,.m.l

: “then: mt?{\'ll’ghl’t

tr-u&-"n P pe

S~

The Types of Rules menu that was used to select (if...then...else...)
disappears as soon as the selection was made. In its place is the Types of
Conditions menu, which asks you to select a condition for the menu. Boolean
combinations can be selected (in which case the condition menu appears
again).

In this example, we want to specify a greater-than condition, so > should be
selected from the Types of Conditions menu. (As menu selections are made,
the rule text displayed in the SEdit window will be updated to reflect the more
fully fleshed-out form of the rule.)

RAPIDS II Authoring Manual — August 1990 4. Rule Authoring

Numeric components Since > requires numeric arguments,
3 IN the Numeric components menu
CQO8 appears. The condition being written is
TAN that the value of an attribute of the
LOG valve is greater than zero, so

A%%:I;LS'IQG <attribute-of-this-object> is selected.

+

X
/

POWER
MODULO
RandomNumber

MAX
MIN

XPositionToPercent
YPositionToPercent
PercentToXPaosition
PercentToYPosition

MouseX
MouseY

Clock
<{number>
<attribute-of-this-cbject>
ABORT

If the valve contained any user-specified numeric attributes, a menu of those
attributes would appear. Since there are none yet in this example, you are
prompted in the message window to type a name for a new attribute.

Messanes

Select an expression to replace <Condition).
Select an expression to replace <{numericl).
¥hat is the name of this new attribute? >> V-left

You are also asked to specify whether this numeric attribute is of type Integer
or Real.

69

RAPIDS Il Authoring Manual — August 1990 4. Rule Authoring

The Numeric components menu appears again at this point. To complete the
condition, select <number>, then in response to the prompt in the message
window, type the number 0.0.

Vhat type of attribute is V-laft?
Select an expraession to replace <{numeric2).
Tgpo a number.

>

Note that as you build a rule by making selections from menus, the textual
body of the rule appears and is modified in the SEdit window to the right. At
this point, the rule body is

(if (V-left > 0.0) then <Effectl> else <Effect2>)

Now that the condition (V-left > 0.0) has been completely specified, the
message will prompt you to specify <Effectl >, the part of the rule that will
apply if the condition is satisfied. For this, the Type of Rules menu appears,
indicating the types of rules that can be specified for this object. The
possibilities can vary from one object to another, depending on how the object
has been defined in the generic editor. For example, this valve has not been
defined as being rotatable, so the rule types Rotate and RotateTo do not
appear on this menu.

Types of Rules As the menu suggests, if...then...
(if ... then ... clauses can include other embedded
(if ... then ... else ...) if...then... clauses. In this example,
however, all that is to be done in the
Assign then-clause is to set the state of the
SetState valve. Choosing the SetState option
will bring up yet another menu, which
Schedule asks you for either a state name or an
SU nscll;ledule attribute whose value will provide the
SttartP rocess state name. Choose the state name
opProcess ‘Straighs.
MoveObjectX
MoveObjectToX
MoveObjectY
MoveOQObjectToY
MoveObjectXY
MoveObjectToXY
ABORT
‘Straight
'Crossed
MouseState

<attribute-of-this-object>
ABORT

70

RAPIDS II Authoring Manual — August 1990 4. Rule Authoring

The final steps involve specifying <Effect2>, the else part of the rule. For this
a reduced menu of rule possibilities appears, allowing only an embedded
if...then... clause or another SetState effect. Select the latter, then select
‘Crossed to complete the rule.

At this point, the entire rule has been composed by using the menu authoring
option of the rule editor. The completed rule is displayed in the rule editing
window, and is available for text-oriented editing. You can modify the rule by
clicking at the point where you want to make a modification, and then
backspace and/or type. If you make any editing changes, you should select
the Check Syntax button (see the figure below). It is not necessary to use
Check Syntax if you create a rule using the menu-based authoring and don't
edit the rule by hand. All rules composed using the menu-based rule authoring
system will be syntactically correct.

Select an expression to replace <Effectl>.
Selsct an expression to replace {(State).
Select an expression to replacs <Effect2).
Select an expression to replace <(State).

Object Cps

Diantay Winrdow

CE bt EntatieRGIeY Flackaae (FITEFILEP

Add New Ohjgct (it (v-Lsft > 0.0) then (BetState 'Streight) else (SetStats 'Crossed))

Copy

Cycle

Delete
Object Attributes

Object Graphics

Obtject Handles
Move
Rename

Rotate

Check Syntax tSte Croess ;

L Daoge

When you are happy with the rule, click on Done, and the editing window
will close. The completed rule will be added to the list in the Rules window at
the bottom of the display.

71 ORIGINAL PAGE IS
OF POOR QUALITY

RAPIDS II Authoring Manual — August 1990

Defining a
Continuous
Control

4. Rule Authoring

Let’s now define a different type of object a variable voltage source, called a
Slider Control. In this example we will imagine that negative voltages are
possible, and that our device is to output voltages between -25 volts and +25
volts. The appearance of the object is:

SR The solid black part in the middle of the
Slider Control is a handle, which can be
moved left and right by the mouse.
Associated with the object is an attribute
StateLocX, which takes values from 0.0
(when the handle is all the way left) to 1.0
l (when the handle is all the way right). The

rule we want will Assign to a new attribute
OutputVoltage a value based on the position
of the handle. A formula that converts
handle position to the desired values is

(50 x (StateLocX - 0.5)).

The behavior of this object is that OutputVoltage should be set to such a value
whenever the handle is manipulated. It is not necessary to use an if...then
construct in such a rule. The form of the rule should simply be

(Assign OutputVoltage (50.0 x (StateLocX - 0.5))).

After selecting Create rule by menus from the top level menu, the Types of
Rules menu appears.

Types of Rules The selection to be made from this
(if ... then ... menu is Assign. When it is selected
(if ... then .., else ...) the Types of Rules menu disappears,
and the message windows prompts to
Assign enter the name for a new attribute,
which we will call QupurVoltage
Schedule

Unschedule
StartProcess
StopProcess

MoveStateX
MoveStateToX

MoveObjectX
MoveObjectToX
MoveObjectY
MoveQbjectToY
MoveObjectXY
MoveObjectToXY

ABORT

RAPIDS II Authoring Manual — August 1990 4. Rule Authoring

Next a menu appears for sp_ecifying Which tvpe of attribute?
the type of attribute that is being nteger

created. Real
Atom

String
Boolean

ABORT

From this we select Real. This menu Numeric components
disappears and is replaced by the SIN
CQCSs

Numeric components menu, which

we have already seen. From this TAN
menu we first select x, the LOG
multiplication symbol. The same ANTILOG
menu reappears, and this time we SQRT
select <number> and type 50.0 in ABS
response to the prompt in the +
message window. Again the .
Numeric components menu appears; "
now we select -, the subtraction 7
symbol. Next, from the same menu,
we select <attribute-of-this-object>. POWER
MODULO
RandomNumber
MAX
MIN
XPositionToPercent
YPositicnToPercent
PercentToXPosition
PercentToYPosition
MouseX
MouseY
Clock
{number>

<attribute-of-this-object>
ABORT

At last we get a new menu, which lists the existing numeric attributes of the
Slider Control and<new-attribute>, in case the attribute we need does not yet
exist.

73

RAPIDS II Authoring Manual — August 1990 4. Rule Authoring

~ StateLocR
Ob:IectLocX
ObjectLocY

CutputVoltage

<new-attribute>
ABORT

We select StateLocX , and one last time the Numeric components menu
appears. We select <number> and type in 0.5 in response to the prompt. This
completes the rule, which is reproduced in its final form in the Rules window
after Done is selected from the final menu.

Flulc-a

t"j" w

External Rules

We now want to write a rule that changes the state of the Valve we defined
earlier, based on the output voltage of the Slider Control. To do this, we need
to write an external rule, one that lets one object refer to the attributes of a
different object. We will have to build a simple simulation using the scene
editor. External rules are created when one enters the rule editor through the
scene editor, rather than through the generic editor. Using the rule editor in
the scene environment involves two differences, the ability to refer to any
ogject in the scene when defining a rule, and the ability to connect two
objects.

The next chapter in the preliminary version of the authoring manual describes
how to use the scene editor. For the purposes of this discussion, we will
assume that you have already created a simple scene that includes one instance
of the valve defined in the generic editor, and one instance of the slider
control.

In the generic editor, we defined the valve so that its state depends on whether
the voltage coming into it is greater than zero or not, and we defined the Slider
Control so that it can output voltagcs from -25 to + 25. What we want to do
now is to add a rule to the Valve’s definition, a rule that says that the valve
receives its voltage from the Slider Control.

74

RAPIDS II Authoring Manual — August 1990 4. Rule Authoring

We begin by making sure that the Valve is the selected object in a scene which
contains both of our objects. By selecting Rule in the scene editor, we get the
top level menu.

okton s pershinas Blend

View Simulation Write Esit

ObjentLoeX Iat [)
Objenlody Iat]
minnier Iat 3
hows Int o
day Iat 3
disyleay? Booleen Trea
display-tima Iat 4333
.. MOA (ASSER dipay?)) l acr]

. Mam (Uannotule (Asica dlspay?)))
v Ban (Joneomie (Assiga dspay))))

fs

%
Y
3
Ly
1 E)
XAk 1)

oma OxX OFERs QW

F R I I Il Ll Ll o
[L2 AR BEEREEE.]
o O eSsseseRse

=TT
1436700 WNA

... mon (Assign em/pm) e ...)

<>

)

T

Cibect Operations

Cresate Copy =l ™

o%|0a
of {jo

Delete Cycle

V-Piip Labe)
Make connection

Assign. flash? Trus). -l

New ruie by menus 11 {{satting? of estting-c ’-tmzfnﬁm.f»luhr’fm) olge -
New rule by typing 1t {(setting? of satting—clock then (Assign display-tims (time

Axki gt xtart-time 2).- o Sl

Copy rule Assign start—reference 8 ST
Ecrll rule 1f»'iFotting?:oftutﬁnrc)oct:m:- +~SCENE) {e Falee) then (OneTime ghulgn'otart—u
Delete rule lﬂi u:}ih?mfﬁo_tﬁhq‘c]wk;mjv_ﬂ!-@i -{s-Falsa) then (OneTime (Assign start-re

ssign disp Y T Sl
Done it Flasn? (o ralon) tree (armign dtwpley? Tew)y .

The only difference between this menu and the two-level menu in the generic
editor environment is the existence of the Make Connection option in the
menu.

75
ORIGINAL PAGE IS
OF POOR QUALITY

RAPIDS Il Authoring Manual — August 1990 4. Rule Authoring

We again select Create rule by menus, Types of Rules
at which point the Types of Rules (if ... then .,
menu appears. (if ... then ... else ...)
Assign
SetState
Schedule
Unschedule
StartProcess
StopProcess
MoveCbjectX
MoveQObjectToX
MoveQbjectY
MoveQObjectToY
MoveObjectXY
MoveQObjectToXY
ABORT
Selecting Assign gets rid of this menu and brings up the menu of attributes of
the Valve.
Delete Cycle
V-Flli Label
a
Pb
Pd
Pc
V-left
<{new-attribute>
ABORT

We want to assign a value to V-left, so select that attribute. Since V-left is
defined as type Real, our old friend the Numeric components menu appears
again. This time it is slightly different; it includes the option <attribute-of-
different-object>, which is what should be selected for this rule.

76

RAPIDS II Authoring Manual — August 1990 4. Rule Authoring

XPositionToPercent
Y PositionToPercent
PercentToXPosition
PercentToYPosition

MouseX
MouseY

Clock
<{number>
<attribute-of-this-cbject>
attribute-of-different-object

ABORT

When that selection is made, all the rule editor windows and menus disappear
and the scene editor environment resurfaces. To select an attribute of a
different object (that is, other than the valve), you hold down the Shift key
while moving the mouse into the object you want to select, in this case the
Slider Valve. Still holding the Shift key, click the left mouse button. This
selects the object, and brings up a menu of the relevant (in this case, numeric)
attributes of that object.

ShderControi0g79
StateLocX Type: real Value: 0.505
ObjectLocX Type: int Value: 87
ObjsctLocY Type: int Value: 317
OutputVoitage Type: real Value: ??

<new-attribute>

To complete the rule we select Output Voltage. The menu disappears, the rule
windows reappear, and the new rule is printed in the Rules window, after
Done is selected.

In this formula, V-left refers to an attribute of the selected object, the Valve.
Since StateLocX is taken from a non-selected object, it is represented in a
more complex way, specifying not only the attribute name, but also the
specific object name, liderControl0079, and the name of the scene which
contains the Slider Control, SliderAndValve.

Given the three rules we have written, we could change the Valve to the
Crossed state by moving the handle of the Slider Control to left of center, or
to the Straight state by moving it to right of center.

RAPIDS Il Authoring Manual — August 1990 4. Rule Authoring

Rule Editor Features

Check Syntax The Check Syntax button checks whether a selected rule is well-formed. (See
the figure below.) All rules constructed using the menus of the rule editor are
perforce well-formed. This option is used to check the syntactic correctness of
rules that have been edited in the SEdit window. The message window
presents information about the well-formedness of a rule whose syntax has
been checked.

The full syntax of RAPIDS-II rules is presented in the last section of this
chapter.

Elementary Rule Rules may consist of a number of nested if-clauses, but eventually there must
Actions be an expression of some elementary action or actions that the rule is to
perform.

The most basic (and, in most simulations, the most frequently utilized) kind
of elementary action is the assignment of a value to an attribute. In the rule
syntax, this action is represented by
(Assign Attribute Value)

where Artribute is the name of some attribute, and Value is either a constant or
an expression that can be evaluated to produce a value. Attributes have types,
such as integer, real, atom, string and boolean. The value that is assigned to
an attribute must be of the same type. (One exception to this rule is that
attributes of integer type — that is, whole numbers — can be assigned real
values. Similarly, attributes of real type can be assigned integer values.)

Another commonly used rule action is Set Stare. This action is used to set an
alternative-state object to one of its states. A spring-loaded positioner, for
example, could have a rule that says

(if (InputPressure > SpringForce) then (SetState Positioner ‘Open))
where InputPressure and SpringForce are attributes of the spring-loaded

Positioner.
Graphic Rule Many of the elementary actions of the RAPIDS-II rule syntax provide
Actions graphical control. These commands are used to move or rotate objects or

states. These can be divided into two groups: those that apply to objects as a
whole and those that apply to continuous states.

MoveObjectX MoveStateX
MoveObjectToX MoveStateToX
MoveObjectY MoveStateY
MoveObjectToY MoveStateToY
MoveObjectXY MoveStateXY
MoveObjectToXY MoveStateToXY
Rotate
RotateTo

78

RAPIDS Il Authoring Manual — August 1990 4. Rule Authoring

As the above table shows, only continuous states can be rotated under the
control of rules, not objects as a whole. The Move commands for objects
have parameters that refer to pixels. Move commands for continuous
states have parameters that should be interpreted in terms of percent of the
range of the state.

Move commands with To in their names are absolute moves, while those
without To are relative to the current location.

Real-Time Rule Four elementary rule actions support real-time effects in RAPIDS-IL.

Actions Schedule is used to post a future assignment or other elementary action.
Unschedule can eliminate a scheduled action. StartProcess starts a continually
updating assignment or other elementary action. StopProcess ends such an
ongoing action short of its goal.

A Schedule action has two arguments: an elementary rule and a delay time for
the execution of the rule. For example,

(Schedule (Assign Tank’s Volume MaxCapacity) EndFillDelay)
or

(Schedule (SetState 'Exploded) DetonationDelay)

The delay time parameter is relative to the current time, that is, the time at
which the schedule rule is carried out.

Unschedule takes only one argument, the rule that is to be unscheduled. If
more than one scheduling of the rule has taken place, all schedulings are
removed by the Unschedule. The actual unscheduling takes place as soon as
the Unschedule is carried out.

A StartProcess elementary rule has three arguments: the attribute to be
regularly updated, the rate at which to update it (expressed in units per
second), and the destination value for the process. The way the simulator
handles processes is to update each attribute that has been put on an ongoing
processes list (by an invocation of StartProcess) according to its rate as often
as possible. Once a destination value has been attained, that attribute is
removed from the process list.

Another way to remove an item from the ongoing processes list is by the
invocation of a StopProcess rule. StopProcess has only one argument, the
attribute that is being regularly updated.

79

RAPIDS Il Authoring Manual — August 1990 4. Rule Authoring

Rule Syntax

The syntax of RAPIDS-II rules is presented below. For the most part, the
generic editor and the surface editor have the same rule syntax. Exceptions are
noted.

<rule>
<if-clause>
<effect>

<if-clause>
(i1f <cond> then <if-clause>| [OneTime]<effect>
else <if-clause>| [OneTimel<effect>)
(1f <cond> then <if-clause>|(OneTime]<effect>)

<cond>
(<cond> AND|OR <cond>)
{(NOT <cond>)
(<atomic> is <atomic>)
(<boolean> is <boolean>)
(<string> is <atomic>)
(<numeric> <comp> <string>)
<MouseFn>
<attribute> ;Of type Boolean

<comp>
<>
>
>=

<
<=

<MouseFn>
{(MouseDownInHandle <handle>)
{(MouseDownlInObject <object>)
(MouseDown)

<handle>
(<handle-name> of <object-name> on <scene>) ;External rules only
<handle-name>

<atomic>
<attribute>
<Lisp_atom>
MouseState

80

RAPIDS Il Authoring Manual — August 1990 4. Rule Authoring

<Boolean>
(is <cond>)
True
False

<numeric>
(<f1> <attribute>|<numeric>)
(<£2> <attribute>|<numeric> <attribute>|<numeric>)
(<f3> {<attribute>|<numeric>}
MouseX
MouseY
XPositionToPercent
YPositionToPercent
PercentToXPosition
PercentToYPosition
Clock
<number>
<attribute> ;O0f Lisp numeric type

<fl>

sin

cos

tan

log
antileg
sqrt
abs

<f£2>
+

X

/

power

modulo
random-number

<f3>
max
min

<attribute>
<attr-name> of <object-name> of <scene-name> ;Ext rules only

<attr-name>

<string> .
<attribute> ;Of Lisp string type

<Lisp_string>

81

RAPIDS II Authoring Manual — August 1990

<effect>

<prim_effect>

(Schedule <prim_ effect> <numeric>)

(Unschedule <partial prim effect>)

(StartProcess <partial prim effect!> <numeric> <numeric>)
(StopProcess <partial prim effect>)

<prim_effect>
(<Graphicl> <numeric>)

(<Graphic2> <numeric> <numeric>)

(SetState <atomic>)

(Assign <attribute> <numeric>|<Boolean>|<atomic>|<string>)

<partial_prim_effect>

(<Graphicl>)
(<Graphic2>)

(SetState <atomic>)
(Assign <attribute>)

<Graphicl>

Rotate
RotateTo
MoveStateX
MoveStateY
MoveStateToX
MoveStateToY
MoveObjectX
MoveCbjectY
MoveObjectToX
MoveObjectToY

<Graphic2>

MoveStateXY
MoveStateToXY
MoveObjectXY
MoveObjectToXY

1

SetState.
changes. Also,

4. Rule Authoring

The prim effect of a StartProcess or a StopProcess cannot be an instance of
It would not make sense to try to set up a process of object state
only attributes of the Lisp numeric types can be the argument of
‘Assign’ in a partial prim_effect argument of StartProcess or StopProcess.

Developing Simulations

The scene editor is the RAPIDS II authoring tool that is ordinarily used most
in building simulations. It is an elaborate tool for composing and testing the
scenes of interacting objects that comprise a simulation.

The scene editor can be used to create single-scene or multiple-scene
simulations. In order to become familiar with the basic functions of the scene
editor, read through the example below, Building a Simple Simulation, and
then try it yourself. Then study the rest of the chapter, which briefly describes
most of the features of the scene editor.

The Role of the Simulation Scene

Simulations in RAPIDS II are divided into a number of interacting scenes. A
scene is a fixed-size graphical view of a portion of a simulation. Simple
simulations typically contain only one scene. More complex simulations may
have a number of interacting scenes.

The form of the RAPIDS II student interface is influenced by the number of
scenes in a simulation. If a simulation has more than one scene, the Options
menu of graphical buttons in the upper left corner of the screen will include an
item labeled View. Clicking on this button (available only in the student
environment) brings up a tree of scene names that comprise the simulation. If
a simulation has only one scene, the Options menu will not have a button
labeled View.

When a simulation does have more than one scene, it can be navigated by
students in either of two ways. One way of navigating is to use the View
menu button to bring up a tree of available scenes, and then to click on a node
labeled with the name of the destination scene. A second way of navigating is
by means of the scene icons on a scene. A scene icon is a graphical object that
serves as a gateway to another scene. When a student double-clicks on a

83

RAPIDS II Authoring Manual — August 1990 5. Developing Simulations

scene icon, the scene displayed in the scene window is replaced by the
destination scene.

When you are first learning how to use RAPIDS II, you should work on
single-scene simulations. Once you have mastered the basics of scene editing,
you can progress to examples that include multiple scenes.

toar s prratinres Metss

| View Simulation Write Exit

vl Aty

. Lgft 3tart Button Right Stare Sutton —-
.

» Right
Baw&h Al """"':r"'

‘[4
l Ignicter J
lmnu l
£11 J‘\,M K111
Ehgine 1 Engine
© @
Creste Copy ks
Right AC Bus
Delete Cycle arSung ‘? ¢ \1 00
\ :1’:!

- ne
V-Filp Label [S o indsrments
Move Open
Rename Rotate Jet Engine Starter g, p—— S

The Scene Editor Windows
The Scene The scene editor is a powerful and elaborate authoring tool, and it has many

Editor Windows windows. As in the generic editor and the RAPIDS II simulation
environment, the largest window is the Display Window. This window is
used to build and display simulation scenes.

Immediately above the display window is the Editor Operations Menu, which
is used to select global editor operations, such as saving and quitting. This
menu is also used to move back and forth among the two major scene editor
modes: object operations and simulation. When you begin a scene editor
session, you will be in the object operations mode, which allows you to
create, name, move, and otherwise modify the components that make up a
simulation scene.

8 ORIGINAL PAGE |5

RAPIDS I Authoring Manual — August 1990 5. Developing Simulations

Above the editor operations menu is the Message Window, which, like the
message window of the generic editor, is used to prompt you for data that
must be entered with the keyboard, such as the names of objects.

Just below the display window is the Scene Information Window, which is
not shown in the above figure. This window tells the name of the file
containing the scene data that is currently being edited. It also tells when the
file was saved. If changes have been made to the file since it was saved, the
window will be inverted (white text on a black background).

DITDALINGIF =y
[Sunn ALDIFAE File being edited: (DUJQLINFID [- SFRY Date Writueni (S-Nov-08 13,80 |\ i | abor storwes

To the left of the display window are a set of windows and menu items
appropriate to the current editing mode. At the top of these is the Scaled Scene
Window (gray in the screen picture on the previous page), which usually
shows a miniature version of the scene that is parent to the scene in the
display window. If the current scene has no parent, this window is filled with
gray. The use of the scaled scene window is described in detail in the chapter
section below called Object Operations.

Just below the Scaled scene window is an area called Object Info, where a
variety of information about the currently selected object is displayed.

85

RAPIDS II Authoring Manual — August 1990 3. Developing Simulations

WY M Wew s

Object Info In
Object
Operations

Object info

Left Timer

(82 438 6 8)

Open

3
CurrentState atom
ObjectlocX int 40
ObjectLocY int 4135 4 i
RightOutputr iat 0 i
RightInput int 100 -~
TriggerVoltage int 0
LeftOutput int 0

(it .., hen (Schedule (S&tState))) *nc

{it ... men (JetState)) *nc

(it ... men (Assign RigntOutput) dse ,,.) *noc
@it ... taen (Assign LeftOutput) etse ..,) *no
(Assign Rigntinput) *no

! (Assi¢a Lantnpur) » K111
(ﬁ::: rdggt::‘;u::) "no E:;:.{:.
Object Operations 7
Create Copy
n In
Delete Cycle 4 Ground Air o
\O
Lefy
V-Flip Label Eng:
Inst
Mave Open -
Rename Rotate Jet Engine Starter
Scale Rules

Scene: NEWSTARTER File being edits

Information about the currently selected object appears in a set of windows
just above the object operations menu. From top to bottom, these windows
contain:
The name of the selected object
A scrollable list of the handles of the object, with corresponding
state names
A scrollable list of the attributes of the object, together with their
types and current values
A scrollable list of the object’s behavior rules, in an abbreviated
form

The data shown in the object information windows are very useful for
understanding the behavior of simulations during the authoring process.

86

RAPIDS II Authoring Manual — August 1990

The Simulation
Operations User

Interface Paused

PausesUnPause

CurrentEvents '

Simulation Attributes

Clock int 40026
MouseX int 54
MouseY int 20

MousaState atom Up

Object Info

Left Timer

Open (82438 535) Open
CurrentStata atom Open
ObjectLocX iat 40
ObjectLocY int 413
RigatOutput int 0
Rightlaput int 100
TriggerVoltage int 0
LaftOutput int 0

@i ,,, hen (Schedule (JatState))) *no

{1 .., men (Satstate)) *no

@1 .., men (Assign RigntOutput) dse ...) *nc
Gf ... man (Assign LeftOutput) ese ...) *no
(Assign Rigntinput) *ac
(Assign LaftInput) *ac
(Assign TriggerVatage) *no

Snap Compile
Save State Restore State
Pause Rules Pause Attributes ||
Trace Attridbutes System Trace

h 4

lﬁ

) =i V400 ubvoj

5. Developing Simulations

A 4 I

3 I E X"
T
~ T
| C
Kill
Left
Engine
on in
| Ground Air o
o [
LY
4 Lefi
Eng-
Inst

Scene: NEWSTARTER

Jet Engine Starter

File

being edite

When an author puts the scene editor into its Simulation Operations mode,
then the Object Info windows are shifted down. Above them appear windows
with the current activity state of the simulation (Paused/Running), that show
the state of the simulation clock, and that list the rules that are presently on the
rule evaluation stack (in the Current Events window). There is also a list of
simulation attributes and their values. Simulation attributes are not associated
with any particular object, but rather with the simulation as a whole.
Examples include the current simulation clock value and mouse information.

This chapter will show you how to interpret the data shown in these
windows, and how the major modes of the scene editor are used to edit and

test simulations.

87

ORIGINAL

OF

PAGE ig
POOR QuAL Ty

RAPIDS II Awthoring Manual — August 1990

Starting the
Scene Edltor

Building a Simple Simulation

In this exercise, you will create a W/
simulation of a simple circuit that 2
controls two lights. When the switch is

put into the ‘up’ position, the upper

light comes on. When the switch is in - 3
the lower position, the lower light =
comes on. '

Follow the step-by-step process described below to build a simple simulation
like this yourself.

Just as the generic editor can be started in three ways, so can the scene editor.
You can start a new scene editor session by using the Lisp invocation:
(SceneEdReal 'YourSceneName ‘Alibrary name)
Where YourSceneName is the name of the scene you are building or editing
and ALibraryName is the name of the library that will serve as the source of
new objects. To create the simple scene described here, you need to use the
library with the Bladefold objects. Type
(SceneEd ‘CIRCUITt 'SIMPBLADEFOLD)
in the executive window. This will open the scene editor on an empty scene
called CIRCUIT1. The Bladefold library of generic objects will be available.

The second way to invoke the scene editor is to use the RAPIDS II top-level
menu. Click on the Scene Editor command, and a dialog box will open that
asks for the names of the scene file and the generic file, as in the screen
snapshot shown below.

e: NEWSTARTER
GenericFile: ENGINESTARTER,
LooaSubSams?: NIL

Build Simulation Run instruction

Run Simulation

Finally, if a scene editor session was started earlier and
suspended (by a method described later in this chapter),
there will be a shrunken window on the screen. The
window will show the object that was selected the first time
that the scene was shrunk. The window title is the name of
the scene.

5. Developing Simulations

RAPIDS II Authoring Manual — August 1990 5. Developing Simulations

You can resume that editing session either by choosing Expand from the right
mouse button menu in the icon or by clicking on the icon with the middle
button. Either action will open up the scene editor session in the state that it
was left in.

In this example, you are creating a brand-new simulation, so the scene editor
will open with nothing in the display window.

scaled cene Window

Olyerct Infa

Heooma Heceroee E it Operationa Menu

bject Ops. Simulation Write

Disalay ‘Windnw

Create
Delete
V-Flip
Move

Rename

Chyect Operations :

Cycle

Copy

Label
Cpen

Rotate

The Generic
Objects Menu

You must create a number of specific objects on the simulation scene. Select
the Create menu item from the Object Operations memu

Create is the command that lets you create a specific instance of some generic
object. It brings up a list of the available objects — all those that are in the
currently active library. In the figure below, the Generic Objects Menu for the
‘SIMPBLADEFOLD library is shown. This is a scrollable menu with the
names of the generic objects in the library given in alphabetical order. Scroll
the menu until the item ‘Switch-3Wire’ appears (as in the right half of the
figure below). Click the mouse on this item to select it.

89
ORIGINAL PAGE IS
OF POOR QUALITY

RAPIDS II Authoring Manual — August 1990 5. Developing Simulations

E_

GENERIC.OBJECTS |
4-WaySolenoidOperatedValve Helicopter-TopView
ActuatingCylinderAssembly HydraulicPump
Blade2 Light-Round
Blade3 Pipe-Elbow
Bladed _ Pipe-Intersection _
Blades Py Pipe-T oy
BladeHinge PowerSupply
BladeLock cle Reservoir cle
BladeLockCylinder bel SequenceValve bel
Contact-2Position ShgttleValve
ControlLockCylinder cn SpringLoadedPositioner Icn
Ground tate Switch-2Wire tate
Helicopter-TopView

jles . les
Lo ZF PP EEL, B Wige-T

Switch-3Wire is a simple two-position switch. A specific object based on the
named generic object will now be drawn in the display window. The object
will appear in the lower right corner of the window and will move with your
mouse movements until you click the left button to drop it where you want it.

RAPIDS II Authoring Manual — August 1990 5. Developing Simulations

Switch-3Wire0078

up (92 388 10 10) Up

Down {92 333 10 10) Down

CurrentState atom Down

ObjectLocX int 78

ObjectLocY int 333
i
Gody

Position the switch on the scene and click the mouse button. The pattern of
dots in the region of the switch shows that it is the currently selected object on
the scene. The Object Info windows now show data about this specific object.

When new objects are created in the scene editor, unique names are
constructed for them. These names are based on the names of their generic
objects, with some appended numerals. It is a good idea to change the names
of simulation objects to be suitable in the simulation context. To do this, click
on the Rename command in the Object Operations menu. Type in a new name
in response to the message window prompt.

Message Window
Please enter a new name for selected object >> Selector

Because the switch will be used to select between two lights, it would make
sense to call it ‘Selector.’

Adding Objects Use Create again to add an instance of the PowerSupply to your simple
simulation. Position it to the left of the switch and use Rename to give it a
name like ‘Main Power Supply.’

91

RAPIDS I1 Authoring Manual — August 1990 5. Developing Simulations

MainPowerSupply

CurrentState atom Powar
ObjectLocX int 5
QObjectLocY iat 341

Because it is the currently selected item, the pattern of dots is now shown in
its region, rather than in the region of the switch.

Use Create to add a couple of instances of the Light-Round object type and

one of Ground. You should have a scene that looks something like that
shown below.

Ground

CurrentState atom
ObjectLocX int 197
ObjectLocY iat 313

Drawing
Background
Elements

A number of different techniques can be used to connect electrical objects,
including creating new Wire-type objects. In many cases, however, it is
sufficient to simply create background graphics that visually connect the
objects.

92

RAPIDS Il Authoring Manual — August 1990 5. Developing Simulations

Hold down the right mouse button in the display
window to bring up the WindowOps menu. Select the [Bury

option called Ediz to bring up the same menu of |chg o°>ceneName
graphics authoring tools that is used in the generic |Grid

editor. Any drawing elements you create now will
belong, not to any of the objects on the scene, but to
the scene as a whole. Such graphical elements are

called background graphics.

OCh)e 0
Groungly= op

A of

arrow

I\
»

CurrentState atom
ObjectLocX int
ObjectLocY int

bitmap

o
C
a

dbox

u—@—o—

curve

n

> Ol

’

Use the line tool to visually connect the two lights to the ground. When you
have finished modifying the scene in this way, click on Done in the drawing
menu to exit the background editing mode.

At this point, you have built a visual display that doesn’t do much. Student
users will be able to manipulate the switch (because of the way its generic
object was defined), but such manipulations won’t make the lights change. To
get that effect, it is necessary to define some behavior for them. You must
enter rules for the lights that tell them how to act, based on the state of the
switch.

Select the upper light, then choose the Rules command. The rule editor,
described in Chapter 4, will open.

93
ORIGINAL PAGE 'S
OF POOR QUALITY

UpperLight

Currealtets &t ot @_\:'_'é—__,;
OtjenLosX lat »
Oujenlocy ime "

Create Copy

Delete Cycle

V-Rlip Label

Make connection

New ruje by menus
New rule by typing

Copy rule
Ecﬁ{ rule
Delete rule

Done

Uﬁng the menus, build a rule for the upper light that turns the light on when
the switch is up. A rule like this

(if ((CurrentState of Selector on CIRCUIT1) SameAs ‘Down)
then (SetState ‘On)
else (SetState ‘Off))

expresses this behavior. Note that the attribute reference for this external
attribute specifies the object and the scene name as well as the name of the
attribute.

In building the condition, you will specify that the condition is a comparison
of the ‘SameAs’ type that refers to the <attribute-of-another-object>. When
the rule editor is ready to be told what this attribute of another object is, you
should specify the CurrentState of the switch (which we called Selector in this
example). At this point the rule editor windows will be cleared from the
display window, so that you can point to the ‘other-object’ that you want to
specify. The way to indicate such an object is to hold down the shift key and
click on the object. When you click on the switch, you will see a menu pop up
that lists its attributes, as in the figure below:

RAPIDS II Authoring Manual — August 1990 5. Developing Simulations

UpperLight

CusrrentStata atom oft
ObjectLocX int 99
ObjectLocY int 3435

CurrentState Type: atom VYalue: Up
{new-attribute>

Here the only existing attribute of the switch is its CurrentState.

When you have finished building the rule for the upper light, build a similar
one for the lower light.

(if ((CurrentState of Salector on CIRCUIT1) SameAs ’Down)
then (SetState ’'0On)
else (SetState 'Off))

This external rule specifies that the light is to go on when the switch is down,
and to go off when the switch is up.

Test Simulate Your simulation is now ready to test. You can perform test simulations
without leaving the scene editor. Thus far, your work has all been done in the
object operations mode. This is the default mode for the scene editor. To
simulate, change to the Simulation mode. At the top of the display window is
the Editor Operations Menu.

Pending Hecelver Editur Oprerations Menu

View Object Ops, Write Exit

Click on Simulation in this menu bar. You'll notice that the menu at the left of
the display window changes. It now displays the Simulator Operations Menu.
Click on the PAUSE button just to the left of the clock window. The clock
will begin counting. If everything has been hooked up properly, you should
see the light go on.

When you are in simulation mode in the scene editor and the simulator is not
paused, you can manipulate switches the same way that students do in the
RAPIDS II runtime environment. Play with your simulation for a while.

95

RAPIDS I Authoring Manual — August 1990 5. Developing Simulations

How Simulation Works

It is possible to build effective simulation-based courses in RAPIDS II
without understanding in detail how simulation works. This is particularly
true if you are building simulations like the simple circuit presented above —
simulations that do not schedule or unschedule events and that do not make
use of processes.

In more complex simulations, however, authors often find that they have to
debug their simulations. The scene editor’s simulation operations mode makes
it possible to view the values of attributes, to step through rule execution, and
to perform many other detailed actions that help the debugging process. In
order to carry out such actions, however, the author must have an
understanding of how the simulation works.

Overview First consider the simple case of a simulation that does not have scheduled
events or processes. The simulator spends most of its time waiting for the
student to take an action (by clicking on a simulated switch). When a switch is
thrown, its state is reset, and its CurrentState attribute is automatically
changed.

Every attribute has an associated list of rules — the rules that refer to that
ztngribute. For example, a ‘PowerOn’ light might have a rule something like
s:
(if ((CurrentState of PowerSwitch) SameAs ‘On)

then (SetState ‘Shining)

else (SetState ‘Off))
The CurrentState attribute of the PowerSwitch object will include this rule in
its list of affected rules.

Whenever an attribute changes value, all of the rules that it affects must be
run. In the case of the example above, the rule that sets the state of the
PowerOn light should be run because the CurrentState attribute of the
PowerSwitch changed. (The action portion of the rule — the SesState — will
be carried out only if it actually changes the state of the PowerOn light.)

Affected rules are not run immediately when an attribute value changes.
Instead, those rules are put on a list called CurrentEvents. Current events are
all the things that are supposed to happen essentially simultaneously. After all
the rules that refer to a just-changed attribute have been put on the Current
Events list, then those rules are executed.

After the rules in the CurrentEvents list have been carried out, any graphical
changes that are required are done. If a set of ‘simultaneous’ rule executions
cause a number of changes in state and changes in the locations and rotations
of objects or object states, then all those graphical effects are displayed at the
same time at the end of the process of carrying out the CurrentEvents rules.

RAPIDS Il Authoring Manual — August 1990 5. Developing Simulations

The Clock The RAPIDS II simulator runs on computers that are not parallel machines.
That is, they can do only one thing at a time. RAPIDS II simulates real-world
events that may be simultaneous. The conflict (between the computer’s ability
to perform only one action at a time and our desire to simulate simuitaneity) is
resolved by using a simulated real time clock. When the simulation wants
many things to happen at once, this clock freezes until they have all happened.
Then simulated real time is set to the actual time, and the clock ticks on
normally. The simulator does not fall further and further behind real time,
because it jumps ahead to the current time whenever it has finished all the
‘simultaneous’ actions it was just working on.

Scheduled Authors can write rules that schedule events. The simulator checks to see

Events whether it is time for any scheduled events after it empties the CurrentEvents
list. If scheduled events are due to take place, then they are added to the
CurrentEvents list and the process begins again.

If the time for a scheduled event has already passed, then the clock is set back
to the time at which the event was supposed to take place.

It is possible to write a (defective) simulation that never gets out of the current
events list. For example, the two rules:

(Assign AttributeA AttributeB + 1)

(Assign AttributeB AttributeA - 1)
form a tight infinite loop. A simulation that includes these rules will never
perform any scheduled events, because the CurrentEvents list will never be
empty. The author has asked the simulator to simultaneously perform two
operations that affect each other, and the simulator will keep working at those
tasks to the exclusion of all else.

Simulation

Attributes
There are a small number of attributes that belong to the simulation as a
whole, rather than to particular objects. These attributes include the simulator
clock, the position of the mouse, and the state of the mouse (whether there
has been a click, for example).

After the CurrentEvents list has been emptied, the simulator checks to see if
any of the simulation attributes have been changed. If so, any rules that refer
to these attributes are added to the CurrentEvents list for execution during the
next pass.

Processes The simulator maintains a list of active processes. When a rule execution
results in a StartProcess effect, the new process is added to this list. When the
CurrentEvents list has been emptied, the simulator works through the list of
active processes and carries them out.

The form of a StartProcess effect is
(StartProcess <partial-prim-effect> <numeric> <numeric> <numeric>)
An example of a rule that starts a process is
(it ((CurrentState of DrainValve) SameAs ‘Open)
then (StartProcess (Assign CurrentVolume) CurrentVolume 2 0)
else (StopProcess (Assign CurrentVolume))

RAPIDS Il Authoring Manual — August 1990 5. Developing Simulations

This is a rule that sets up a process that drains away a reservoir's volume at a
constant rate (2 units per second) when the reservoir’s drain valve is opened.
The StartProcess specifies the effect that is to be carried out (an Assign to the
CurrentVolume attribute. The next three values are the starting value for the
assignment, the rate (in units per second), and the destination value. Here the
starting value is the value at the time that the process is posted to the active
processes list. The rate of change is 2 per second. The destination value is 0.

When a process reaches its destination value, it is removed from the active
processes list. If the process would have advanced beyond the destination
value, then the simulation clock is set back proportionately. In this way, the
termination effects of every process are certain to be simulated.

A Summary of In simplified pseudo-code, this is how the RAPIDS II simulation works:
RAPIDS Ui Initialize simulation
Simulation Repeat
if UserEvent (such as mouse action)
then add affected rules to CurrentEvents
if ScheduledEvent
then for each scheduled event
carry out the action and
add affected rules to CurrentEvents
if ongoing processes
then for each process
carry out the action and
add affected rules to CurrentEvents
While there is a rule in CurrentEvents
carry out the action
and remove the rule from the list
add new affected rules to CurrentEvents
Show all graphical effects of the events
Until user stops the simulation

It is useful for authors to understand enough about how the RAPIDS II
simulator works that they can make effective use of the debugging tools that
have been built into the simulation operations mode of the scene editor. The
next section describes some specialized views of simulation elements that are
provided in RAPIDS II. An understanding of the simulation at the level of
detail described in this section should make it possible to use these views
effectively.

Simulation Data Implicit in the above discussion were references to the major types of data
used by the RAPIDS II simulator. These data elements include objects,
handles, attributes, and rules.

Object Object data includes a list of handles, a list of attributes, a list of
rules, and a set of possible graphical appearances, called states.
For most purposes, the underlying simulation algorithms are
much more concerned with attributes and with rules than with
objects. Objects are natural for authors to deal with, however.
They provide authors convenient access to attributes and to rules.

Handle A handle is a region (necessarily rectangular in RAPIDS II) that
is sensitive to mouse clicks. It is handles that make user events

98

RAPIDS II Authoring Manual — August 1990 5. Developing Simulations

possible. There are three different kinds of handles: object
handles, state handles, and attribute handles. Mouse actions in
object handles have simulation effects if authors have written
rules that refer to actions in those handles. Mouse actions in state
handles automatically change states. Mouse actions in attribute
handles create temporary assignment rules that send values to test
equipment probes.

Attribute All values of interest in a simulation are stored in attributes.
Attributes play a role similar to that of variables in programming
languages. Attribute data includes the rype of the attribute (such
as integer or string), its current value, and a list of the rules that
refer to the attribute.

Rule Rules provide the mechanism for changing values of attributes. A
rule includes the literal rule expression that can be edited using
the rule editor, a list of the rriggers of the rule — the attributes
that are referred to, and the owner of the rule — the attribute that
may be changed by it.

In addition to these basic simulation data types (and many others that you
need not be aware of to author effectively), RAPIDS II has a number of
complex data types that you should be aware of. These include simulation
attributes and the current events list, which are described above in this
section.

Viewing Simulation Data

The simulation data described above can be viewed in the simulation
operations mode of the scene editor. This feature can be very useful for
understanding the behavior of your simulation and for debugging it. This -
section previews these views of simulation data. The sections on Simulation
Operations and on Simulation Debugging, below, give additional descriptions
of how they are used.

99

RAPIDS Il Authoring Manual — August 1990 5. Developing Simulations

Object Data View The Object Info windows provide
essential object data. At the top is the

name of the object. Just below is the Left Timer
list of handles associated with the jemmm—
object. In the box below the handle |°™® (1242068 Opea
box is a list of the object’s attributes. jummm —
The last box presents a list of rules | Sheetroie oom opes
associated with the object. ObjestLoc¥ iat 5
RighatOutput int 0
Objects have two types of attributes. %{tmﬂg;t“ . i,;!' ;00
N ‘ rigger
One kind, called system astributes, are wfgm wr t o

those that can be set by rule actions
other than Assign. These attributes ((;: - ten g:o&m;)(:asm») *ne
M 4 H e Then () no
include CurrentState (which is set by (it men (Assgn RigatOuiput) ese ...) o
SetState) and object and state location | e ... men (Assign Lenoutput) ase ...) *no
attributes (which can be set by a Ezécn :.i:tmn:;:)‘:no

. : ign n o
variety of movement functions). The (Asien Triggervatacs) *no
second type of attribute is author-

defined attributes.

System attributes are listed first in the attribute list, followed by the author-
defined attributes. The first of the system attributes is CurrentState. The value
of this attribute is the name of the currently displayed state in the display
window.

Object Graphic The simulation Display Window shows all the visible objects
View on a scene in their current states. Each object’s graphic view is
shown in this window.

Handle Data View The box immediately below the object name in the Object Info windows
provides a view of the object’s handle data. One line of data describes each
handle. A line of handle data includes, first, the name of the handle; second,
the rectangular region of the handle; and, third, the name of the state
associated with the handle. (Only state handles have associated state names.
Object handles do not.) In the figure below, the OnGround handle has the
rectangular area (59 130 34 32) for its region and the associated state named
OnGround. 1t is often a good idea to give state handles names that are the
same as or closely correspond to their associated states.

Cataper tnifo k
OnQround/InAir Switch | KiN
Left
OaGround (69 130 34 32) OnGround
Inair (96 130 26 28) InAir Engine
e
CurrentStata atom OnGround
ObjectLocX int 39
ObjectlocyY int 126
on in
4 Groung %ur
\0

100

RAPIDS Il Authoring Manual — August 1990

Handle Graphic
View

Attribute Data
Views

It is the author’s responsibility to make handles graphically distinctive for
students. The simulation appearance should make it reasonably clear to
students which areas are touch sensitive.

In the scene editor, however, a special feature is available to show authors the
location of handles. If an author holds down the middle mouse button on a
line of handle data, then that line will be highlighted and the corresponding
handle region will also be highlighted in the display window, as in the figure
below.

Object Infa y
OnQGround/InAir Switch K111
OnGrouns (59 130 3¢ 32) OnGround E},:{:e
(96 130 26 25) InAir
| CurrentState OnGround
ObjectLoc¥ int 39
ObjactLocY int 126
. Oon In
4 Ground _Air
o
N

Attribute data can be viewed in a number of different windows. These include
the object attribute list shown in the Object Info windows (as in the above
figures), and a number of more specialized views of attribute data.

Each line of the object attribute list has three (sometimes four) elements. The
first item on the line is the name of the attribute. The second item is the
attribute’s type, and the third item is the current value of that attribute. If the
attribute has an associated attribute handle, then the letter H appears as the last
item on the line.

In the figure above, the first line of the attribute list for the OnGround/InAir
Switch presents data for its CurrentState system attribute. The name of this
attribute is CurrensState, its type is atom, and its current value is OnGround.

Edit Pause Condition
Inspect

Pause On/Off

Set

Attributes can also be viewed in windows that present
the flow of effects in a simulation. When the left
mouse button is clicked on an attribute name, a menu
of attribute options appears. In the case of one of the
attributes in an Object Info attribute list, a menu of
options will appear as at the right.

Whom Do | Affect

The details of this menu are described in the section on Debugging
Simulations, below. For now, consider the last two options, Who Affects Me
and Whom Do I Affect. When either of these options is selected, a window
opens that shows a network of affects. In the case of Whom Do I Affect, the
leftmost (or root) item is the selected attribute. In the case of Who Affects Me,
the selected attribute will appear at the right, with one or more affecting
attributes on the left. The size of the Affeces window will depend on how
large the network of affects is in the simulation. If the network of affects is
large, the window will not be large enough to show all the effects. In that
case, the window will be scrollable. Here are very simple examples of the two

101

5. Developing Simulations

RAPIDS II Authoring Manual — August 1990

types of Affects displays. Both are taken from the simple circuit example at
the begirming of this chapter.

In the figure below, an author has selected the UpperLight object, then clicked
the left button on its CurrentState attribute in the attribute list (the third box in
the Object Info window). When the menu of attribute options popped up, the
author chose Who Affects Me. A small window appeared that shows that only
one other attribute affects the CurrentState of UpperLight — an attribute that
is also called CurrentState, and that has the value Down at this time. (See the

figure.)

Cape

~tinto

UpperLight

———————
Gt ... hen (SetState) aise ...) *n¢c

Attribute s that affect CurrentState

CurrentState. Dowa

CurrentStsts. Ot

The textual objects that are shown in the Affects window are attributes, not
objects. Each attribute in this window is represented by its name and its
current state.

In the figure below, the author has selected the Selector switch, then clicked
on its CurrentState attribute in the attribute list at the left, then chosen Whom
Do I Affect.

ke ot Intn

Selector
{92 368 10 10) Up

Down (92 333 10 10) Down
CurreatState atom Down
OtjectLooX int 75

int 333

Attritite effects from Carrent=tare §
currentstate, Ottt i
CurrentState, Off

]

t:\u-rmsmc.novn<

102

5. Developing Simulations

RAPIDS II Authoring Manual — August 1990 §. Developing Simulations

In this example, two attributes (the CurrentState attributes of the two lights)
are affected by the selected attribute. The Affects window can sometimes be
confusing because only attribute names, not object names are used. In this
example, all three different attributes shown in the Affects window have the
same name. Authors can sometimes recognize which object’s attribute is
meant by observing the current value of the attribute. (In this example, only
the Selector switch’s CurrentState can have the value Down, so it is clearly

the one at the left.)
Attribute RAPIDS II provides another way to figure out what object is implicitly
Graphics View referred to by an attribute name in an Affects window. If the author clicks the

middle mouse button on one of these names, the object that has that attribute
will be highlighted in the Display Window, as in the figure below.

Object info

L— Selector

Up (92 388 10 10) Up
Downa {92 333 10 10) Down
CurrentState atom Down
ObjectLocX int 75
ObjectLocY int 333

Attribite effects from CurrentState

s CurrentState, O tf
CurrentStste,Down
CurrantSime, O

In a sense, attributes have no graphics. Only objects have graphics. In order
to highlight an attribute graphically, the scene editor highlights the object. If
the object to be highlighted is on a different scene, that scene appears in the
scaled scene window, with the object highlighted.

This technique for highlighting an attribute’s object graphics — clicking with
the middle button on the attribute data — is not restricted to use in the Affects
window. An author can also middle-click on an attribute in the Object Info
window’s attribute list, and the corresponding object will be highlighted.

Some attributes are associated with particular locations on an object. These are
the objects that were given attribute handles in the generic editor. If an author
middle-clicks on the data of such an attribute, only the attribute handle is
highlighted, not the entire object.

103

RAPIDS II Authoring Manual — August 1990 5. Developing Simulations

Simulation Simulation attributes — the universal

Attribute Data attributes associated with the clock BB NeE

Views and the mouse — can be viewed in
much the same way as ordinary object
attributes. In the Simulation Opera-
tions mode, this window appear just
above the Object Info windows.

Clicking on simulation attribute data with the left mouse pops up the standard
menu that lets an author ask for an Affects window display for the attribute.
Clicking on one of these attributes with the middle button has no effect,
because they do not have an associated object that could be highlighted.

Simulation attributes may appear in Affects windows, just like object
attributes. The attribute options menu works for them in such windows as
well.

Rule Data View Below an object’s attribute list in the Object Info windows is its rules list. The
rules in this list are shown in an abbreviated form. At the end of an
abbreviated rule, there may be a tag that gives additional information about the
form of the rule in the environment.

If an abbreviated rule has a trailing *nc, it means that the rule has not been
compiled in this environment. (All the rules of a scene can be compiled by
using the Compile command in Simulation Operations mode.) Compiling the
rules makes them run a little faster than they would otherwise.

If an abbreviated rule is followed by *nw, it means that the rule is not
working in this environment. There are two reasons that a rule might not be
working in an environment. The most common reason is that the rule refers to
objects from another scene that has not been loaded in the current scene editor
session. Such rules are inactive in the simulation operations mode, even
though they might work perfectly in a complete simulation. One way to avoid
this problem is to always require that the scene editor load all related scenes.
This is done by giving the Load Subscenes? field of the dialog box the answer
T. (See the figure below.)

Hakibrs 1 Tools

| SimulafScene File: NEVSTARTER
==l Generic Flle; ENGINESTARTER,
Generic B, opa subscenes?: NIL

Scane Erl Lc_'ﬂl

Build Simulation Run Instruction

Run Simulation

104

RAPIDS Il Authoring Manual — August 1990 5. Developing Simulations

The second reason that a rule could be marked as *nw, or not working, is that
it could have a syntax error. This will not happen if the rule was built using
menus, but can happen when rules are edited using the SEdit editor.

The abbreviated form of a rule in the rules list ordinarily makes it impossible
to be read what the rule actually does. Fortunately, there is an easy way to
expand the rule into a more readable form. If an author clicks the left mouse
button on one of these rules a list of rule options appears in a menu, as in the

figure below.
Clock int 154435 A
MouseX int 42 s
MouseY int 14 =
MouseState atom Up

LowerLight

CurrentState atom On
ObjectLocX int 100
ObjectLocY int 318

The use of these options is explained in the section on Simulation Debugging
later in this chapter. The second option, Expand, makes it possible to view the
data of a rule. When Expand is selected, the standard Interlisp SEdit window
opens and displays the selected rule in detail. The rule is shown as a
conventional C-Lisp S-Expression, so it has many sets of nested parentheses,
as can be seen in the next figure.

105

Simulation Attributes

RAPIDS 1l Authoring Manual — August 1990 5. Developing Simulations
et 0to

LowerLight

Rule of ohbiect LewerLigM en scene CIRCUIT1

(i ((CurrentState of Selector on CIRCUIT1) SameAs °'Down)
then (SetState °On)
eise (SetState "0ff))

(if ... then (SatState) dse ,,.) *nc

In this expanded view of the rule, authors can take action to evaluate a portion
of the rule. Clicking the middle mouse button on a part of the rule makes the
value of that part of the rule appear in the message window. For example,
clicking on the parenthesis in front of ‘CurrentState of Selector on
CIRCUIT1’ makes the message window display (CurrentState of Selector o..
CIRCUIT!) — Down. Clicking on the next outermost level of parentheses
evaluates the larger rule segment, ‘ ((CurrentState of Selector on
CIRCUIT1) SameAs ‘Down).’ The message window says that this rule
segment is currently True.

{(CurrentState of Selector on CIRCUIT1) — Down

Value of rule segment: True

Rule of object UpperLight on scene CIRCUIT1

PRV A N A

(if ((CurrentState of Selector on CIRCUITi) SameAs ‘Oown)

then (SetState 'On)
eise (SetStates '0ff))

T— T

AR O N N O N N N N N R N N R N N N AR R R R A

Rule data are displayed in abbreviated form in the object info windows and in
the CurrentEvents list. The same features just described for getting and
evaluating expanded views of rules from an objects rule list can also be
applied to rules in the CurrentEvents list.

RAPIDS II provides additional views of rule data in the rule editor itself,
which is described in Chapter 4 of this manual.

106

RAPIDS II Authoring Manual — August 1990 5. Developing Simulations

Rule Graphics If the author clicks the middle mouse button on an abbreviated rule, the object

View that has that rule will be highlighted in the Display Window. This works in
essentially the same way that the Attribute Graphics View (described above)
does.

Editor Operations

The highest level menu in the scene editor is the Editor Operations Menu. It is
always displayed while the editor is running.

Pending Receiver Editor Operations Menu

View Object Ops, Simutation Write Exit

This menu, which is positioned just above the display window, is used to
change the modes of the scene editor. While carrying out the exercise of
creating a simple simulation scene, you carried out most operations in the
object operations mode. To test and debug your simulation, you used the
simulation mode.

The View command is described below in the discussion of multi-scene
simulations. This menu item brings up the parent scene of the current scene in
the Display Window. An author can work up through a hierarchy of scenes
by repeatedly clicking on View.

The Object Ops. command puts the scene editor into the object operations
mode. In this mode authors can add objects to the simulation, move them,
delete them, create and edit rules, and so on. This mode is used to build
simulation scenes and link them together.

The Simulation command puts the scene editor into the simulation operations
mode. In this mode, authors can run simulations interactively. Many special
debugging windows are available for inspecting simulation data.

The Write command is used to save the currently displayed scene on your
disk. Be sure to use it whenever you have made changes. Notice that some
changes to a simulation scene are fairly subtle, and you have to work at it to
remember to save. For example, suppose you delete an object on one scene
that is connected to an object on another scene. You not only need to Write the
scene with the deleted object, but also the scene that it was connected to. Be
sure to bring up that scene and Write it to your disk, as well.

The small window below the display window will be inverted when changes
have been made to the current scene but it has not yet been saved. After you
do the Write, you'll see this window change back to the normal black text on
white background.

107

RAPIDS Il Authoring Manual — August 1990 S. Developing Simulations

The Exit option lets you leave the scene editor. If you have made changes that
you haven't saved, the message window will name these altered but unsaved
scenes. In this case, you'll be offered a menu of three choices
Exit without writing files
Write altered files before exiting
Cancel exit

The first option lets you leave the editor and abandon all changes that were not
already explicitly saved with the Write command. The second option will
automatically save all the altered files and then quit. The third option interrupts
your Exit command so that you can continue editing. If you want to save the
changes made to some scenes but not the changes made to other scenes, you
can go to the scenes with changes you want to save and use the Write
command there. Then select the Exit command and choose the Exit without
writing files option. Ordinarily, of course, you will want to save all the
changes you have made.

Object Operations

If you worked through the example at the beginning of this chapter, then you
are already familiar with many of the commands of the object operations
menu. This section reviews those commands and presents others you may not

have used yet.
Create . Copy
Delete Cycle
Y-Flip Label
Move Open
Rename Rotate
Scale Rules

108

RAPIDS Il Authoring Manual — August 1990 S. Developing Simulations

Create Choosing the Create option brings up the menu of generic objects. The
Generic Objects Menu is a scrollable list of all the objects in the current
library. Click on the name of the object you want to use as a template for a
new jpcciﬁc object. If you change your mind and don't want to create a new
specific object, just click on the title bar of the generic objects menu (the black
bar with the word GENERIC-OBJECTS at the top).

Sometimes it is difficult to remember what kind of object is meant by a
particular name in the generic objects menu. If you are using one of the
supplied libraries, you may want to use the Appendices to this manual to help
you select objects by their names. The scene editor also has a built-in feature
that helps you identify generic objects. If you point to an object name and
hold down the middle button, a picture of the object type will appear above
the menu.

Copy To create a new specific object of the same type as the selected object, choose
the Copy command. The new object (the copy) will then be the selected
object, and it will move with the mouse. Clicking the left mouse button will
deposit the object at the location of the mouse pointer.

Newly copied objects have the same behavior as the originals, because they
have copies of the rules of the originals.

If a scene icon object is copied, the new object will not point to the original
scene (or any other). If you want it to function as a scene icon, you will have
to Open it.

Delete The selected object is deleted. It disappears from the scene. If the object was
labeled (see below), then its label will also be removed. Rules that referred to
attributes of the deleted object should be edited appropriately (perhaps by
replacing a deleted attribute with one that still exists).

The rules of other objects that refer to deleted attributes will not work. In the
Object Info windows, such rules in the abbreviated rules list will have a *aw
appended to indicate that they are not working.

Cycle The Cycle command is used to change the state of the selected object.
Repeatedly choosing Cycle steps through the available states. You may need
to use this option to put an object into a state that accords with its context in
the scene. That is, you wouldn't want to build a scene in which the objects
are in conflicting states. Use cycle to put objects into compatible states before
going into the simulation mode.

If an object with a continuous state is cycled, the state part will move through
ten percent of its extent each time that the Cycle command is selected. (The
increment of ten percent can be edited by the author.)

V-Fiip V-Flip is used to make an object do a vertical flip on the scene. More
formally, the object is displayed upside down and mirror imaged. By
combining the Rotate and V-Flip commands, you can show an object in any
orientation.

109

RAPIDS II Authoring Manual — August 1990

Label

Move

Open

Rename

Rotate

Scale

Objects that have text components may look a little strange after undergoing
V-Flip. The text is not actually flipped, but is put into a different relative
position. You may want to avoid flipping objects with text elements.

A specific object can have one or more associated labels on its scene. Labeling
can mean much more than adding textual elements. Any of the graphic
primitives of the Primitive-Ops menu can be added to an object.

Using the Label command, you can add static graphical elements to any object
in a simulation. Some authors use this technique to build short graphical wires
and pipes to visually cormect neighboring objects.

If you choose Move when there is a selected object, then that object will move
with the mouse. Clicking the left button will position the object again. If no
object is selected, this menu command will have no effect.

Using Open converts the selected object into a scene icon. It will serve as a
link to another scene. To open the scene that corresponds to a scene icon, the
student must double-click on the scene icon object. Double-clicking means
clicking twice in very close succession without moving the mouse. When a
scene icon is opened this way, the scene in the Display Window is replaced
by the scene associated with the scene icon.

After you click on Open you will be asked to click the left button if you want
to type in the name of the scene that the object should represent. If you click
the left button and type in a scene name, then the selected object will be linked
to the named scene. If you click the right button, a new scene will be created
and given the name of the specific object.

This command lets you change the name of a specific object. When you build
a simulation you may have scenes with many objects based on the generic
object name plus a number. You can replace these names with more
appropriate ones. Using meaningful names will help you in constructing your
simulation and may help your students during simulation training.

The Rotate menu command rotates the selected specific object 90 degrees
counterclockwise. The text elements of an object are not rotated, but are
simply repositioned. You may prefer not to rotate objects based on generic
types with text elements. It also usually works better to wait to label a specific
object until after you have rotated it.

Scaling has not yet been implemented. A message to that effect appears in the
Message Window when the Scale command is selected.

The Rules menu command opens the rule editor for creating and editing
external rules. See Chapter 4 for a description of rule editing.

110

5. Developing Simulations

RAPIDS II Authoring Manual — August 1990

§. Developing Simulations

Mouse Actions In
the Simulation
Mode Windows

Simulation Operations

The scene editor lets you test your simulations without using the run-time
simulation driver. (That is, you don't have to quit the scene editor and go into
the student simulation mode.) To get into simulation mode, click on
Simulation in the editor operations menu.

In the simulation mode, the configuration of windows to the left of the display
windows changes, and the object operations menu is replaced with the
simulation operations menu.

Paused

PausesUnPause

Clock int 40026
MouseX int 54
MouseY int 20
MouseState atom Up
Object info

Left Timer
Opan (824385 5) Open
CurrentState atom Open
ObjectLocX int 40
ObjectLocY int 415
RightOutput int v}
RighiInput int 100
TriggerVoltage int 0
LeftOutput int 0

@it .., hen (Schedule (SetState))) *no

(it ... men (Jat3tate)) *no

(it ... then (Assign RigatOutput) dse ,..) *nc
@it ... hen (Assign LeftOutput) dse ..,) *nc
{(Assign RigntInput) *no

{Assign Leftlnput) *ne

(Assign TriggarVaitege) *no

Snap Compile
Save State Restore State
Pause Rules Pause Attributes

Trace Attributes System Trace

A simulation can be Paused or Running. A little
window labeled Pause/UnPause displays a label that
describes the current state of the simulation. Clicking in
this window toggles the simulation between these two

states.

111

ORIGINAL PAGE IS
OF POCR QUALWY

RAPIDS II Authoring Manual — August 1990 5. Developing Simulations

To the right of the Pause/UnPause window is a window

that displays the simulator clock, in seconds. See the

section on How Simulation Works, above, for an 0
explanation of the clock. Clicking in this window has
no effect.

Just below the pause window and the
(Assign SumOutput) *no clock window is the CurrentEvents
window. This window shows a list
of the rules in the CurrentEvents list.
The role of this list is explained above in How Simulation Works. In brief,
the rules in CurrentEvents are the currently pending rules that must be carried
out ‘simultaneously.’ The rules are shown in an abbreviated rule form in this
list (See the section entitled Viewing Simulation Data.) Clicking with the left
button on an abbreviate rule brings up the menu of rule operations, described
below in Debugging Simulations. These rule operations are actions that
authors can apply to rules to try to understand what the simulation is doing.
Holding down the middle button on one of these rules will highlight the object
that owns the rule in the display window. The right button anywhere in this
window will bring up a special menu of CurrentEvents Operations that are
explained in the section on Debugging Simulations.

Fravises Hindran se Clock

Currentt veats
(if ... then (SatState) else ...) *ac
(12 ... thean (SetState) else ...) *ac

Simulation Atteibutes
Clock int 37139 7

MouseX int 46 “—%—‘——_y_
MouseY iat 14 =
MousaState stom Uy

Below the CurrentEvents window is a window labeled SimulationAttri-butes.
This window displays a data view of the attributes that do not belong to any

specific object.

A left mouse button click on one of these attribute data lines will pop up the
Attribute Operations menu, which is discussed below in the section on
debugging simulations. The right button menu is also useful in this window.
If an attribute is not currently traced, then changes in the attributes value will
not be posted in this data view. The Redisplay option in the right button menu
can be used to update the attribute data display with the latest values.

Below the Simulation Auributes window is the set of Object Info windows,
which are discussed earlier in this chapter. Some of the actions that can be
taken in these windows are explained below in the Simulation Debugging
section.

112

RAPIDS II Authoring Manual — August 1990 5. Developing Simulations

Display Window Clicking on an object in the scene editor's simulation mode will have different
Actions effects, depending on whether the simulation is paused or running. If the
simulation is paused, clicking with the left button will select the object, just as
in the object operations mode. The object will not be highlighted in the display
window as it would be in the object operations mode, however. Its object data
‘\:]vlllllge displayed in the Object Info windows at the lower left corner of the

splay.

If the simulation is running, then, if the object has state handles, a click on a
handle puts the object into the state that corresponds with that handle. If the
object has an object handle, then any rule that referred to Mouse Down in
Handle of the object will be executed.

If the object has an attribute handle that has been designated as a Probe, then
that attribute will be made the current probe attribute. If the attribute handle
has not been designated as a probe, then the corresponding attribute will be
connected to the currently designated probe attribute, if there is one. See the
section on Authoring and Using Test Equipment, below.

113

RAPIDS II Authoring Manual — August 1990

Snap

Complle

The Snap command is used to create
exact copies (called snaps) of
ortions of the display window.
g‘hese snap windows can be
positioned anywhere on the screen.
A convenient place to put snap
windows is on the scaled scene
window in the upper left corner of
the set of simulation editor windows.

In the figure at the right, a snap of a
slider control object has been placed
in this area. Snaps stay on the screen
until the user closes them (using the
Close command on the right button
menu). When the user changes the
scene in the Display Window, the
snaps are still present.

Snaps are fully functional views of
the snapped objects. When a switch
is manipulated in the display
window, any affect on the snapped
object will be displayed in its snap
window. Snapped controls can be
manipulated as well, and will have
exactly the same effects that they
would if the object were manipulated
when its scene is displayed in the
Display Window.

5. Developing Simulations

Patiae A inPause

CurrentEvents
{Assign sumOutput) *nec

Clook int 0
MouseX int 40
MouseY int 11

MouseState atom Up

Object Info

SliderControl0113

Handle (174 88 15 26) Handle
PR

CurrentState atom Handte

SteteLocX real 01

ObjectLocX resl 160

ObjectLocY real 85

SumOutput real ??

When the Snap command is selected, the pointer will change shape (to the
Interlisp Expanding Box cursor). The user can then drag out a rectangle to
select one or more objects on a scene. When the mouse is released, the

snapped window will appear.

Snap windows have their own right button menu. To get rid a subscene, use
the Close subscene option from its right button menu. To put a subscene in a
different location, use the Move subscene option from this menu.

When a simulation is built for use by students, all the rules in the simulation
are automatically compiled to native machine code. In the scene editor
environment, however, rules are not ordinarily compiled, in order to avoid
long compilation delays when rules are edited.

114

RAPIDS Il Authoring Manual — August 1990 5. Developing Simulations

Compiled rules run much faster than uncompiled rules. If a simulation seems
to be running slowly, an author can often speed everything up by choosing
the Compile command. After this command is selected, there will be a delay
while compilation takes place. As the rules for an object are compiled, the
name of that object appears in the message window.

Save State Save State makes a snapshot of the current state of the simulation, which can
later be restored using Restore State. When you select Save State, a prompt in
the message window asks for the name of the state to be saved. Type the
name and the Return key.

Saved Simulation States

Restore State RestoreState inserts a

Snap Compile ILowerOn

:?a\;:%fs;ipssi};s&la%f na Save State 1R UpperOn
: on, Pause Rules Pause Attributes [
one of those prekusly Trace Attridbutes System Trace Scene: CIRCUITL

stored using the Save
State command.

When this command is chosen, a menu of the saved states appears. Selecting
the name of the desired state has the effect of restoring that state.

Pause Rules Developing RAPIDS II simulations, like computer programming, sometimes
calls for a debugging phase. You may build a scene and find that it does not
behave exactly as you expected it to. The scene editor includes a number of
tools to help you figure out what you might have done wrong in constructing
a scene. These tools include the ability to set and remove pauses at particular
objects, the ability to artificially assign attributes certain values, and a trace
facility for studying the sequence of effects during simulation on your scene.

The details of simulation debugging are treated in the Simulation Debugging
section of this chapter, below. Briefly, both rules and attributes may be
paused. When a rule is paused, the simulation stops when the rule is about to
be executed.

In order to get through the paused rule, it must [Execute Top Rule
be executed ‘by hand,’ which is done using the |Redisplay

Execute Top Rule command of the Current |Undo last execution
Events Operations menu.

The Pause Rules command has the effect of marking every rule as paused,
so that the simulator will pause before executing any rule.

Pause Attributes Attributes can also be paused. When an attribute is paused, the simulator
stops immediately after changing an attribute’s value. The Pause Artributes
command makes the simulator pause after changing the value of any object
attribute in the simulation.

Pauses can result in apparently incongruous simulation appearances. As the
figure below demonstrates, a pause may intervene between the execution of
two rules that are supposed to be simultaneous. In the figure below the lower
light has been put into its ‘On’ state, but the upper light has not yet been put
into its ‘Up’ state.

115

RAPIDS II Authoring Manual — August 1990 5. Developing Simulations

Trace Attributes

System Trace

"

When an attribute is being traced, its data view is refreshed whenever the
attribute changes. The Trace Arntributes command causes all the object
attributes in a simulation to be traced. Tracing attributes slightly decreases the
responsiveness of a simulation, because time is spent rewriting data views.

This command is not yet implemented. A message to that effect appears in the
Message window when the System Trace command is selected from the menu
in the Simulation Mode.

In the future, this command will be used to trace the system attributes.

116

RAPIDS II Authoring Manual — August 1990 §. Developing Simulations

Run-Time Corrections

If an author builds every behavior rule using menus, then the simulation will
be syntactically correct. This means that every rule will adhere to the
requirements for rule structure. Unfortunately, syntactic correctness alone will
not guarantee that the simulation can run (much less that it will run as the
author expects). In order to run, a simulation’s behavior rules must also be
semantically correct. Rules can fail during execution if they have undefined
attributes values or if they apply operations to attributes that have values
outside of the domain of the operation. This section describes how the
simulator responds to undefined-attribute errors and to out-of-bounds errors.

Undefined When a simulation is loaded, all of its attributes are undefined. Then, when

Attributes the simulation is started (as, for example, when the author clicks on the Pause
button in the simulation operations mode in the scene editor), all of the
constant assignment rules are run once. A constant assignment rule is a rule
that assigns to an attribute a constant value — a particular number or atom or
string — rather than assigning some function of other attributes.

This initial assignment of constants will affect all the rules that refer to the
attributes that just received values. Those rules will be placed on the
CurrentEvents list, and their execution may result in the propagation of effects
to still other rules. In this way, most of the attributes of a simulation will lose
their undefined status and will acquire values at the time that the simulation is
started.

Sometimes, however, an attribute will be referred to (by an executing rule)
when it does not have a value. RAPIDS II is ordinarily able to handle this
situation by postponing execution of the rule. It carries out other pending
rules first. One of these rules may assign a value to the undefined attribute.
This method will work if the author has designed a simulation so that certain
attributes, those that function as sources (such as electric power supplies and
hydraulic pumps), are given initial values by constant assignment rules. Other
assignment rules in the simulation propagate effects from these sources
through the simulation.

Sometimes a list of object attributes (in the Object Info window, for example)
includes undefined attributes. The value field of such attributes will be
displayed as ??.

If an author’s rules don’t provide a value for an attribute that serves as a
source, then the simulator’s strategy of postponing rules will not succeed.
The simulator will detect a semantic error, called undefined attribute. When
this happens, the simulator pauses and it re-posts the rule to the Current
Events list. It then opens a special Undefined Attribute Window. See the
figure below.

117

RAPIDS Il Authoring Manual — August 1990 §. Developing Simulations

sunulatton Weite

etined value SumQut

Ruls of shiect S1iderContreltil) en scone NEWTILE
(As31gn SumOutput (BtatelocX + Susdutput))

1 I

The window at the lower left comer of this figure is an undefined attribute
window. It presents the text of the rule that encountered the undefined value
in an expanded form. If the author holds down the middle button in the
window’s title bar (the area that says ‘Rule of object SliderControl10113 on
scene NEWFILE in the above figure), then the object that owns the rule will
be highlighted in the display window. (If the object is not in the display
window, then a scaled version of the scene that it is in will appear in the
Scaled Scene Window at the top left comner of the screen, and the object will
be highlighted there.)

The undefined attribute window is a rule evaiuation window, just like the
expanded rule discussed above in the subsection on Rule Data Views in the
section on Viewing Simulation Data. This means that you can click on
portions of the rule to underline rule segments.

Rule of obiect SliderControl0113 on scene NEWFILE
(Assign SumOutput (StateLocX + SumOutput))

I T T T T T T O O T N O O O T N O N O T N O N R N R N N N Y

118

RAPIDS Il Authoring Manual — August 1990

These segments will be evaluated and the results printed in the Message
Window above.

SumOutput — undefined
StatelocX — 8.1

Value of rule segment: undefined

The Undefined
value Menu

Message Window
The value of the attridbute (SumOutput of SliderControl0113 on NEWFILE) is undefined.
Type the value to be assigned to the attribute SumOutput.

The value must be a number. >>

A menu at the top of the undefined
attribute window gives a number of
options for dealing with undefined
attribute error. The title of this menu
begins with ‘Undefined value’ followed
by the name of the attribute that is
undefined. In this example ‘SumOutput’
is not defined.

Undefined value -- SumQOut
Set attribute value
Attribute ops

Resume simulation

Abort simulation

If the author chooses Set attribute value, the first option in the menu, then the
message window will prompt for a value that should be used in this execution
of the simulation. (See the figure below.)

Note that the value entered will not be permanently assigned to the attribute.
That is, the next time the simulator is initialized, the same problem will occur
again. Nonetheless, this is often a good choice for an author to make in order
to test the behavior of the simulation when a certain value is used for the
simulation. If the simulation behaves appropriately, the author can later add a
constant assignment rule that gives the value to the attribute.

When the author sets an attribute value, the scene editor will offer to build a
constant assignment rule that gives that value to the attribute. If the author
agrees, that value will serve as an initialization value for the attribute when the
simulation is run again. (If automatic rule creation is carried out during a
scene editor session, the author must be sure to Write the changed file in order
to save the change.)

The second choice on the menu, Artribute ops, gives
authors a standard menu of attribute operations. This [Edit Pause Condition
menu applies to the attribute named in the menu title | J2P*et

. . . , . Object Bundie
— in this case, ‘SumOutput.” Two of these options, [pause On/Off
Who Affects Me and Whom Do [Affect are described [Set
above in the section on Viewing Simulation Data. The |Trace On/Off

. . . . , Who Affects Me

other options are discussed below in the Simulation |whom Do | Affect

Debugging section.

119

5. Developing Simulations

RAPIDS Il Authoring Manual — August 1990

Out of Bounds
Values

The third option on the Undefined value menu is Resume simulation. This
command closes the undefined attribute window and attempts to continue with
the simulation. Since the simulation will resume with the rule that was
paused, this choice will be successful only if the author has taken steps to
give the undefined attribute a value while the simulation was paused. This can
be done by using the Set attribute value option in the menu, or by using Set
from the Artribute Operations menu (shown immediately above).

The fourth choice on the Undefined value menu is Abort simulation. This
command closes the undefined attribute window but does not continue with
the simulation. This is an appropriate choice if the author wants to carry out
actions using the object operations or simulation operations menus, rather
than to continue simulating at this time.

The second kind of semantic error that RAPIDS Il can detect is out of bounds
errors. Rules can include calls to arithmetic functions that appropriately apply
to only a limited domain of values. Here are the domain restrictions that
currently apply to such function calls in these rules.

Function Domain Error Condition
LOGn nso
SQRTn n<0
x/n n=90
xMODULOn n=0
ANTILOGn n>87

SetState x n n not in the set of states of x

If any of these domain error conditions are detected when the simulator
executes a rule, the simulator pauses and it re-posts the rule to the
CurrentEvents list. It then opens the Out of Bounds Attributes windows, as
shown in the figure below.

5. Developing Simulations

120

RAPIDS Il Authoring Manual — August 1990 5. Developing Simulations

,,,,,,,

|

Resume simulation

bort simulation

Rule of ehiect SliderContrei8113 on scens NEWFILE
(Ass1gn LogOutput (LOG StateiocX))

| I

Compils

The largest of the new windows, which is at the bottom of the group of
windows, is an executable rule window, similar to the one that is opened in
the case of an undefined attribute error. It presents the text of the rule that
encountered the out of bounds value in an expanded form. If the author holds
down the middle button in the window’s title bar (the area that says ‘Rule of
object SliderControl10113 on scene NEWFILE in the above figure), then the
object that owns the rule will be highlighted in the display window. (If the
object is not in the display window, then a scaled version of the scene that it is
in will appear in the Scaled Scene Window at the top left corner of the screen,
and the object will be highlighted there.)

You can click on rule segments in the executable rule window and they will be
underlined in the expanded rule view.

121 ORIGINAL PAGE 1S
OF POOR QUALITY

RAPIDS Il Authoring Manual — August 1990 5. Developing Simulations

StataLooX resl 0,0 Resume simulation

bort simulation

Rule of ebiect SliderContrel0113 on scene NEWFILE

(Assign LogQutput (LOB StatsiocX))

R N O O O I T N O T T T T T T T T O O N O O O O N N O N O N N O N N O N NN Y

At the same time, the selected segment will be evaluated, and the results of its
evaluation will appear in the message window, as shown below.

StateLocX -~ 8.0

Value of rule segment:
Can’t compute the LOG of a number less than or equal to 0.

Needed
Attributes

When an out-of-bounds error is encountered, the message window describes
the nature of the domain constraint violation.

A window above the executable rule window is the Needed Attributes
window. It lists the attributes with values that violate the domain constraints
of the operations that are applied to them in the rule. In the case of this
example, only one attribute is a problem, StazeLocX.

If the author clicks on an attribute in this list, the menu of attribute operations
pops up. The same attribute operations discussed in the sections Viewing
Simulation Data and Simulation Debugging are available.

Resume simulation

Abort simulation

Rule of obiect SliderControl0113 on scene NEWFILE

gAss'ign LogOutput gLOG StatelocX))

TR T N N O S N O T T T T T O O O O O O O S O T T T T T T T O O O O N S N N AR Y

One authoring strategy is to use the menu to set an appropriate value for the
attribute and to then continue, testing that the corrected value works. If it
does, the author can edit rules to ensure that the attribute will have an
appropriate value in the future.

122

RAPIDS Il Authoring Manual — August 1990 5. Developing Simulations

Another strategy for dealing with Out of Bounds errors is to change the rule
so that it tests for the out-of-bounds condition and has a different effect when
that condition holds true.

Resume/Abort To the right of the Needed Attributes window is a menu with two options,
Simulation Resume simulation and Abort simulation. If Resume simulation is selected,
the Out of Bounds Atributes windows close and the simulator resumes its
work. It again attempts to execute the rule that made the simulation pause. If
Abort simulation is selected, the windows close but the simulation does not

continue.
Other Rule Undefined attributes and out-of-bounds attribute values are not the only kinds
Errors of errors that can occur in a simulation’s rules. They are the two types of

semantic errors that the simulator knows how to detect.

The most common errors are those that tell the sirmulation to behave in ways
that are different from the way the actual device behaves. Sometimes these
authoring errors are difficult to detect. The next section presents the tools that
help authors find and fix such problems.

123

RAPIDS II Authoring Manual — August 1990 5. Developing Simulations

Simulation Debugging

Complex simulations don’t always work exactly as their authors expected
when they are first tested. The Simulation Operations mode of the scene editor
has many features that assist the simulation debugging process.

Debugging an Consider the simple circuit shown below. A battery is connected to a light by
graml p: r a switch. The author clicks on Paused to start the simulation.
mulation

air o e Mlaeyg

e oneom Wt

iR .
o

O W

= . re

.|| i

CusreatStare et a2
pe)

Objertlasy iar ;08

VelwOwt ime ”

(Asugn VaRsOut) *ne

Sasp Cempile

When the author clicks the switch into its closed position, the light fails to
come on! (See the figure below.) The simulation needs to be debugged.

124

RAPIDS Il Authoring Manual — August 1990

Pavine Ao e }

iat
MeuvsaX int
MouseY iss
MonsaStare stom

U

battery

Stmulation

~li

{Assiga YarsOW) *ne

Complle

5. Developing Simulations

The simulation is running, but the light is not in the correct state. There are a
number of strategies that the author can apply to determine how the simulation

should be revised to solve this problem.
light

atom o1t

First, clicking on the light in the
Display Window puts the light’s
object data into the Object Info
window.

CurrentState
ObjactLoecX
OvjectLocy

296
21

(if .., men (i .., then (SetState) dse) €S8 L)

125

RAPIDS II Authoring Manual — August 1990 5. Developing Simulations

Then, clicking on the CurrentState MP&::Q Condition
attribute in the light's object attribute nspec
list brings up the Autribute Opera- Hipause on/on

Set

tions menu. The author might select J’Vr;coA%ngto‘ﬂM
Who Affects Me in order to find out 0 AfTe e
what attributes in the simulation have |EEEESIZENER Aadelelul 2:6' =li-la:
control of the state of the light. Objetlo®y int oy

@i1 .., men (it .., hen (JetSiste) wse ,..) dse ,,,)

Snap Compile
Save State Restore State
Pause Rules Pauss Attridbutes

Trace Attributes System Trace

A window that shows the [N EAGEE LT e
attributes that affect the
CurrentState attribute of the | currentstate, ctoses:

light opens on the screen. Vatsout, CurrentState, O £

VoitsOut,

The author can see that the state of the light depends on three other attributes:
the state of the switch, and the VoltsOur attributes of two objects. (To find out
what objects are the owners of these attributes, the author could middle-
mouse click on any attribute name in the Affects window and the object would
be highlighted in the Display Window.)

126

RAPIDS Il Authoring Manual — August 1990 5. Developing Simulations

The nature of the problem is M
light

still not clear, so the author
clicks on the abbreviated rule | —————
in Object Info in order to
bring up the Rule Operations

CurrentState atom ort
menu. ObjectLosX iat 296
ObjectLocY int 321

Edit Pause Condition
Expand

inspect

Pause Qn/Off

Snap
Save State Restore State
Pause Rules Pause Attributes

Trace Attributes System Trace

Clicking on Expand brings up an executable rule window for the rule, as in
the figure below. The rule specifies that the light should go on if the battery’s
VoltsOut attribute is 28 and the ground’s VolesOut attribute is 0 and the
switch’s CurrentState attribute is ‘closed.

The author decides to check on the status of each of these preconditions for
the light coming on. One way to carry out this check is to select the
corresponding rule segments in the expanded rule window. The rule segment
will be evaluated and the result printed in the message window.

127

RAPIDS II Authoring Manual — August 1990

(VaitsOut of

battery sa MOJO) -- 27

Valus of rule mgmeat: False

[e ouecrom it o

MonsaX int
MowesW int 18
Monseftan atom Up
light
Cusraniftate atem ore
ias 3%

k-

.|} J

(i ({{veit ¢

then (SetState ‘On)

olse (SetState 'OfF7))

D

ONenles¥ iat Rule of objoct L{ght ea scone MOJO
——————_———————

({voltsOut of ground on NOJD) « 8))
Al .. mea O ... men (3us then (It ((CurrentState of switch on #0J0) SemeAs "closed)

elss (SetStace 'OfF))

5. Developing Simulations

Selecting the first rule segment
{(voltsOut of battery on MOJO) = 28)

produces an evaluation result of False. (See the message window above.) The
battery’s VoltsOut attribute has the value 27, not 28 as the rule requires.

128

RAPIDS Il Authoring Manual — August 1990 5. Developing Simulations

The author now checks on the
battery by clicking on the battery battery
in the Display Window. The
Object Info windows change to
display an object data view of the

CurrentStsta atom [33

battery. Looking over the object | o.:qoroox

, . O, int 153

attribute list, it is clear that the | opjectLosy iat 308

VoltsOut attribute does indeed | voiwout int 27

have the value 27. : . i
Edit Pause Condition
Expand

To find out how the battery got nspect

this value, the author decides to Pause On/Off

look at the battery’s only rule.
Clicking on the abbreviated rule
brings up the Rule Operations
menu.

nap Compile
Save State Restore State
Pause Rules Pause Attributes

Trace Attributes System Trace

Choosing Expand from this menu {Rule of object battery on scene MOJO
brings up an expanded rule window
for the battery’s rule:

(Assign voltsQut 27)

At this point the author can clearly see that the problem is an erroneous
constant assignment rule for the battery’s VoltsOut attribute. The most direct
route to solving the problem now is to edit the rule in the rule editor, changing
the 27 to 28. If the problem were less clear, it might be desirable to use the
Set feature of the Artribute Operations menu to test the simulation’s behavior
with the value set to 28. After the correct behavior was observed, the author
would use the rule editor to change the above constant assignment rule.

Attribute and In the remainder of this section, the major debugging features of the scene

Rule Operations editor are presented. Two of the most important ways of accessing the
debuggi gaatures require making use of the Attribute Operations menu and
the R. 3p¢rations menu.

Edit Pause Condition
inspect

Object Bundle
Pause On/Of?

The attribute operations menu (shown at right) is
accessed by clicking the left mouse button on attribute
data. Attribute data can be found in the following
windows:

whom Do | Affect

129

RAPIDS Il Authoring Manual — August 1990 5. Developing Simulations

The object attributes window (in the Object Info windows)
The Affects windows

The Out of Bounds Attributes window

The simulation attributes window

The rule operations menu (shown at right) is accessed [EditPause Condition]
by clicking the left mouse button on rule data. Rule [ExPand

. . . Inspact
data can be found in the following windows: . |Patrae Onsofe

The Object Rules window (in the Object Info windows)
The Current Events window

The sections below describe the features offered by these menus.

Pauses Authors can instruct the simulator to pause under specified conditions. During
a pause, the CurrentEvents list can be inspected, object attributes and
simulation attributes can be examined, and individual rules can be executed.
Pauses can be associated with attributes or with rules.

Pausing a rule means that whenever the rule is about to be executed, the
simulation pauses. Pausing an attribute means that just after the attribute’s
value changes, the simulation is paused. The simulation pauses just as it
would if the author had clicked on the Running button to pause the
simulation. After browsing through the simulation data, the author can resume
the simulation by clicking the same button, which reads Paused.

Authors can edit a Pause Condition for any attribute or rule. A pause
condition determines whether or not the ‘paused’ rule or attribute will actually
make the simulation stop running. If an author does not create a pause
condition for a rule or an attribute, then its pause condition is considered to be
‘True.” This means that if pausing is turned on, the simulator will stop
running when that rule is to be executed or when that attribute is about to be
assigned a value.

Edit Pause Whether an author creates a
Condition pause condition for an attribute [Create pause condition by menus
or for a rule, after choosing the | Create pause condition by typing
Edit Pause Condition command,
a new menu appears at the lower Done
left comner of the screen.

If the option Create pause condition by menus is selected, then a series of
menu choices are presented to help the author build an expression that will
determine whether the attribute or rule will be paused if pausing is turned on.

130

RAPIDS II Authoring Manual — August 1990 5. Developing Simulations

Baigse Uk e CHICK 2l .ﬁ'w‘.? | ITl %
Timer
2) ?

Caarrerdb senta

(if ... than (Sehodula (SetStata)))

41 ... Wen (Asiign OUWPMYage) €5 ...) l : | loniter v:f::' [E

Closk int 0

MonsaX imt 174 . I Qanerator l I G.ﬂ.nlil
Mossa¥ iat 20 -

MonseState atom Up

Obectinfa T

Left Start Button

Select an expression to replace <PauseCaondition>.

Prassed (32 630 3 77) Fresses

CusrentStates otom 2reseed

ObjestloeX int 20

Objectlovy’ ing 58

OutpuiVoltege it b Sk it WEatankesule Packaas INTERLISS
IspwtVoitege iat k)

(<PauseCongition))

es of Conditions |
<candition> AND <condition
(<condition> OR <condition)>)
(NOT <condition>)

Comparison

Mouse Jet Engloe Starter [_1-1_]"—“—’ orer [

{attribute-of-this-object>
kattribute-of-different-object)

[fcrne: MELETARTER
ABORT

Frle berweg edrtedr {OSKICLISFF ILES)SOURCEDRAPIOS - I WELSTARTER. ;2

The menu-based pause-condition editor lets you build a conditional
expression similar to the condition expressions that can be created to fill the
<condition> part of a rule. This condition expression is understood to refer
implicitly to the object to which the attribute or rule belongs. The figure below
shows the appearance of the SEdit window just after the author has completed

a condition expression for the pause condition for a rule of a push-button
object.

SEdit \EditableRule\ Package:; INTERLISP

(CurrentState SameAs ’Pressed)

The effect of this condition expression is to pause the rule just before its
execution if the CurrentState attribute of the object is ‘Pressed and if pausing
has been turned on. The pause will take place whether pausing was set for the
individual attribute or rule — using one of the above menus — or whether it

was set by the one of the two global commands, Pause Rules or Pause
Attributes.

131

RAPIDS II Authoring Manual — August 1990

Pause

Inspect

On/Oft

Choosing Pause On/Off has the effect of marking an individual attribute or
rule for pausing. The simulation will actually pause only if the Pause
Condition of the rule or attribute is true. (The default Pause Condition is
True.) When rules or attributes are paused individually, they appear in bold
face in any visible rules lists of abbreviated rules, as in the figure at the left

5. Developing Simulations

below.

Havise nPase

Objert info

Left Start Button

Clock

Pauses/UnPause

Clock int 0 Clock int [s]
MoussX int 174 MouseX int 174
MouseY int 20 MouseY int 20
MousaState atom Up MousaState atom Up

Object info
Left Start Button

(if ... then (Schedule (SetState)))
(if .., men (Assign OutputVaitags) wse ,..)

Clork

Pressed {32 538 34 27) Pressed Prassed (32 638 34 27) Pressed
CurrentStata atom Pressed CurrentState atom Preassed
OtjectLooX int 20 ObjectLocX int 20
ObjectLocY int 538 ObjectLoc¥ int 538
OutputVoltage int 28 OutputVoltage int 28
InputVoltage iat 28 InputVoltage int 28

{Assign ILaputVaitage)

(if ... thean (Schedule (SetState)))
@t ... hen (Assign OutputVaitage) ése ,,.)

(Assign Inputvaitsge)

Snap Compile Snap Compile
Save State Restore State Save State Restore State
Pause Rules Pause Attributes Pause Rules Pause Attributes

(if ... then (Schedule (SetState)))
(if ... men (Assign OutputVoitsge) dse .,.)

Trace Attridutes System Trace Trace Attributes System Trace

When the simulation pauses on encountering such a rule, as in the Figure at
the right above, the CurrentEverns list will show the paused rule at the top of
the list. Naturally, the rule data will also appear in bold face in this window.

The Inspect option can also be found on both the Attribute Operations menu
and the Rule Operations menu. This option opens an Interlisp-D data structure
inspector for the selected data (the selected attribute or rule). This inspector is
really a Lisp programmer’s tool, rather than a simulation developer’s tool. We
recommend that you avoid using this feature, as it is both confusing and
dangerous. Documentation on the inspector can be found in the Xerox or
Envos Interlisp-D documentation.

132

RAPIDS Il Authoring Manual — August 1990 5. Developing Simulations

Expand The Rule Operations menu’s Expand feature opens an [Edit Pause Condition
expanded structural view of a rule. Selecting rule |FxPend
elements in this window results in the evaluation of |payse On/of

those elements, and the evaluation results are
presented in the message window.

See the section Viewing Simulation Data for more on this feature.

Object Bundle When an attribute data view that is not in a set of Object Info windows is
selected, the command Object Bundle will be included in the Attribute
Operations menu. This command will open a new set of Object Info
windows for the object that owns the selected attribute. Authors can open a
large number of such window sets to view the data of many objects at the
same time.

It is also possible to open an object bundle from the Rule Operations menu,
when you bring up this menu within the CurrentEvents window.

Set The Set command in the Attribute Operations menu can be used to give a
particular attribute a certain value. This command is useful for quickly testing
the effects of certain values in the simulation.

Trace On/Off The Attribute Operations menu’s Trace On/Off command lets authors toggle
the trace status of attributes. If an attribute is being traced, its visible data
views will be updated as the simulation changes the attribute’s values. If you
want to know the current value of an untraced attribute during a simulation,
you must use the right button command Redisplay in the attribute data

window.
If an attribute is being traced, its data R NNNEEG
view in the attribute list of Object Left Engine

Info windows is overlaid with a light
gray pattern. In the figure at the
right, the CurrentState attribute is

marked as having Tracing turned on. g::::r;i;;«;::mg:;
ObjectLoocY int 359
OutputVoltage iat 0
The Affects The last two commands on the Attribute Operations menu are Who Affects Me
Commands and Whom Do I Affect. These commands open a window that graphs the

flow of effects among attributes.

133

ORIGINAL PACE IS
CF POOR QUALITY

RAPIDS II Authoring Manual — August 1990

Obyect into

Selector

oy (92 358 10 10) Up
Down (92 333 10 10) Down
CurrentState atom Down
ObtjectLocX int 73
ObjectLocY int 333

Attribute effects fram CurrentState

CurrentState.Ofs
curumsmt.novn<
CurrentState,OLf

It is possible to build a perfectly legal simulation that has circular effects. If an
attribute name appears more than once in an Affects window, it will be boxed.

Multi-Scene Simulations

Many complex simulations require a number of scenes. In RAPIDS I, the
scenes of a simulation are organized hierarchically. You should organize the
scenes to minimize the number of required scene changes. It often helps to
include functionally related components on the same scene.

A parent scene in an RAPIDS II simulation is one that has one or more objects
that represent or stand for other scenes. Clicking on such an object during a
simulation will cause the display window to replace the current scene with the
scene that the object represents. We call such objects scene icons. Any
specific object can be made a scene icon.

To make an unconnected object into a scene icon, use the object operations
menu to select it and then choose the Open command. You will be asked to
click the left button if you want to type in the name of the scene that the object
should represent. If you click the left button and type in a scene name, then
the selected object will be linked to the named scene. (That scene will then
appear in the display window for scene editing.) If you click the right button,
a new scene will be created and given the name of the specific object.

The simplest structure for a multi-scene simulation is to have one parent scene
with a scene icon for every other scene in the simulation. This is a nearly flat
scene structure. The parent scene, in a sense, merely replicates the scene map.

134

5. Developing Simulations

RAPIDS 1l Authoring Manual — August 1990 5. Developing Simulations

In more complex scene hierarchies, some of the scenes that can be accessed
from the highest parent scene have scene icons themselves. Parent scenes are
not constrained to contain only scene icons. They can have ordinary objects as
well.

If an ordinary object is made a scene icon (by Opening it), it does not lose its
active characteristics. Values are still propagated through its attributes and its
rules will be invoked normally. Users are can manipulate controls (switches)
that are turned into screen icons, using normal mouse actions. Double-
clicking on a screen icon only means to go to the scene the icon represents; it
does not also mean that the switch should be manipulated.

Scene In the scene editor you navigate using scene icons and the View menu

Navigation command. This contrasts with navigation during student simulation, which
lets students use the automatic scene map to go to any of the scenes in a
simulation hierarchy in one step.

Servo Shut-0ff Systes
Hyrirsul1c Syseem, Blade S
Hydraulic System, blade 3
Pylon Unlocked, Flignt Position, & Check Bladefoid Circuitt
Blades foided Ctrcuit
TOP SCENE Blades Spread & Contro) Lockpins Advanced Circuit
B8ladsfold Circuit
Pover Circuit
Sefety Yalve Control Circutt
Hydraulic System, Blades & & 2
8lade Pogittoning Systes
accessory Drive Control Circutt

A Scene Map

135

eINAL PRGE IS
OF FOOR QU

4
A*

RAPIDS II Authoring Manual — August 1990

Parent Scene

5. Developing Simulations

Child Scene

Child Scene

Child Scene

Display Window Navigation in the Scene Editor

When you are using the scene editor, there is no way to bring up the scene
map. All navigation is carried out using scene icons and the View menu
command. Clicking on a scene icon brings up the scene it represents; clicking
on View brings up the parent of the scene in the display window.

When a scene is brought up during an editing session there may be a
significant delay while the editor reads data from your disk. Ordinarily, the
first time delay is much greater than scene-changing delays during run-time
simulation. Subsequent access to the scene during an editing session also will
be quicker, in most cases.

136

RAPIDS Il Authoring Manual — August 1990 5. Developing Simulations

The Scaled The Scaled Scene Window, the small window at the upper left corner of the

Scene Window scene editor, displays a miniature copy of a scene. As far as scene navigation
goes, it is controlled a lot like the display window. If you click on a scene
icon in the parent scene window, the contents of that window will change to
those of the scene represented by the scene icon. By clicking on the menu
button just above the window (labeled View Parent Scene), you can display
the parent scene of the scene currently displayed there.

In addition to controlling the parent scene window this way, authors
automatically change it when they change the scene in the display window.
When the scene displayed there changes, the parent scene window shows the
parent scene of the scene in the display window. (If there is no parent scene
for the scene in the display window — that is, if the top scene is displayed —
then the parent scene window will display a gray background.)

The parent scene window is sometimes displayed inverted — black for white,
as in a photographic negative. This means that the miniature image of the
scene is not entirely accurate because it hasn't yet been updated to reflect
recent changes you made to the scene. To update the miniature view of the
scene, simply put the mouse pointer in the parent scene window and wait a
moment for it to be redrawn.

Display-Window Operations

Bury
ChangeSceneName
Edit

Grid
Grid-On/Off
Hardcopy
Redisplay
Shrink

The right mouse button brings up a window operations
menu, similar to the one discussed in Chapter 3.

Bury This command works just like the Bury command of the generic editor. It
brings up the windows that are hidden below the scene editor windows and
puts them on top, where you can manipulate them. To restore a scene editor
window to the fore, click on any portion of the window.

Change Scene The Change Scene Name command on the right button menu lets you change

Name the name of the scene currently displayed in the display window. The
message window prompts you for a new name. Scene names can have spaces
in them. A scene name is not necessarily the same as the name of the disk file
that represents the scene. The name first given to a scene (or something close
to it) will be used as the file name. Later changes to the scene name will not
make the file name change. It is an error to change the name of any scene file
(for example, using the Filebrowser utility) if the scene it contains is referred
to by any other scene.

137

RAPIDS Il Authoring Manual — August 1990

Edit

It is usually best to change the names of any scenes that are created
automatically when you open specific objects without specifying a name,

Sometimes you want a scene to contain elements that don't really have to be
specific objects — they are primarily decorative rather than functional from
the point of view of the simulation. Examples include fixed mechanical
elements such as brackets and fasteners, and labels that apply to the scene as a
whole rather than to particular objects on the scene.

The scene editor lets you draw such graphical elements directly on the scene
that needs them. When you choose Edit from the window operations (right
button) menu, a palette of drawing tools appears at the left edge of the display
window. If you have already used the generic editor drawing tools, this tool
menu should look familiar. It is the standard primitive operations menu. You
can use it to draw graphic elements and to add scene-level textual elements.
(See Chapter 3 for a detailed description of the use of this menuw.) The menu is
shown in the figure below, overlaying the object operations menu.

Groungd= op

4

arrow

~
»

CurrentState atom
ObjectLocX int
ObjectLooY int

a
[
a

bitmap
box

u—@—o

curve

NDOE

Object Operations -

Create

Copy
Delete Delete

Done
V-Flip

Line-Width 1
Move Move

Rotate
Rename

Scale

Scale ules
Scene: CIRCUITY File beng ed

138

5. Developing Simulations

RAPIDS I Authoring Manual — August 1990 5. Developing Simulations

Grid The Grid command has the same effect as in the generic editor. It allows you
to specify the grid intervals (in pixels) for the purposes of positioning objects.
It is often helpful to use an appropriate grid size in the scene editor when
laying out a scene. An active grid allows you to place objects only at grid
locations, not at one of the pixels in between. For example, many of the
objects in the Bladefold library were drawn using a grid size of 6. You may
find it easier to line up specific objects with each other in your scene if you
choose the same grid size when you use this library

Grid - On/Oft As in the generic editor, this feature toggles the visual appearance of a grid in
the display window.
Hardcopy If your computer has been configured with the appropriate printer drivers and

is connected to a printer, the Hardcopy command will print a copy of the
display window on your connected printer.

RedIsplay The Redisplay command repaints the display window. On rare occasions,
graphic operations may leave bits of meaningless garbage on the screen that
can't be selected or otherwise dealt with normally. These graphic artifacts can
be removed by repainting the scene using Redisplay.

Shrink You can suspend a scene editing session by using the Shrink command. The
scene editor windows will shrink to a tiny window that displays only the
currently selected object.

Always do a Write before shrinking your scene editing session and going on
to something else. Otherwise, if something damages your Lisp environment,
anything that you haven't saved may be lost.

139

Using Attribute Handles

Connecting
Attributes —
Overview

An Autribute Handle is a region that is associated with particular a attribute of
an object. Attributes don't have to have handles, and most don’t. There are
two major uses for attribute handles

* connecting attributes while authoring scenes, and

* creating test equipment (such as multimeters, pressure guages, etc.

This chapter describes how attribute handles are used to make connections
and test equipment. If your simulations don’t require test equipment, and you
don’t plan on connecting attributes using the mouse, you don’t have to read
this chapter. The first part of the chapter describes how attributes can be
connected using attribute handles. The second part of the chapter describes
test equipment authoring.

In RAPIDS II, authors must explicitly connect objects to each other wherever
they want values to be passed. Any values that are associated with objects are
found in the artributes of the object. ‘Making a connection’ between two
objects means ensuring that a value will flow from one object to another. If an
author wants the value of a power supply’s OwputVoltage attribute to flow to
the InputVoltage attribute of a power switch, then he or she must ensure that
the switch’s InputVoltage is assigned the OutputVoltage of the power supply.

There are three different ways to connect attributes in RAPIDS II.
» Write a rule that assigns the value of one attribute to another
» Use the middle mouse button to link the attribute handles of objects
o Use the Make Connection option of the rule editor

No matter which of these connection methods is used by the author, the
underlying effect is the same. A new rule is created that has the form

(Assign InputVoitage of PowerSwitch OutputVoltage of PowerSupply).
Every connection is underlyingly represented as an assignment rule.

140

RAPIDS II Authoring Manual — August 1990 6. Using Attribute Handles

In this chapter, the latter two methods for making connections are outlined
and demonstrated in the context of an elementary simulation, which is
described below. The two shortcut approaches to making connections are:

(1) linking attributes using the middle button of the mouse, and

(2) using Make Connection in the rule editor.
Chapter 4, on rule editing, describes the creation of assignment rules using
the ordinary features of the rule editor.

Here we describe only the simple case of direct connections between the
attributes of two objects. Keep in mind that it is sometimes necessary to link
attributes in more complicated ways. For example, conditional assignments of
values are sometimes required. (That is, an assignment is to take place only if
some condition holds true.) These types of connections must always be
authored by writing a rule that prescribes the flow of effects.

An Example Simulation: A Simple Electrical Relay

Imagine that you want to create a course to teach elementary electrical
component functionality. In such a course, you might have a scene that
demonstrates the behavior of an electrical relay.

A Simple Circuit with a Relay

<

N
— 4+ Switch
[J G
-+
Battery A . Relay
Battery B

Light

This simple simulation can be used to demonstrate how a relay behaves in a
circuit. When the switch is closed, the power provided by Battery A energizes
the coil in the Relay. This closes the relay’s internal contacts, so that the
power provided by Battery B will turn on the light. If the switch is opened
again, the coil will be de-energized, the contact will open again, and the light
will go out.

141

RAPIDS Il Authoring Manual — August 1990

6. Using Autribute Handles

There are a number of different ways that this simulation could be written. In
the example presented here, an intermediate level of behavior modeling is
used. If we had taken a completely high-level ‘surface’ approach to modeling
the circuit’s behavior, we would not need to connect object attributes at all. If
we had taken an approach that represented electrical phenomena in a more
detailed, ‘deeper’ way, the examples would be significantly more complex.

The first step in building the course on the behavior of the relay was to create

the generic o

bjects that serve as the templates for the specific objects in the

simulation scene shown above. In the course of building these objects, we
sometimes used the ordinary rule-building approach to connecting attributes in
a single object. For example, the switch needs a rule that describes when
voltages should be passed from its input to its output attribute (called Volts/n
and VoltsOut, respectively. In the figure below, such a rule is in the process
of being built.

Select an expression to replace {Effectl).
Select an expression to replace <{Attribute).

<{numeric).
{Effect2).

~State Ops

Select an expression to replace
Select an expression to replace

it Object Ops

Display Window

00

Object Operations

Add New Object

Copy
The

SEdit \EditableRule\ Package: INTERLISP
(it (CurrentState is *Closed)

then (Assign VoltsOut Voitsln)

else <Effect2))

uence of directions to the author (‘Select and expression to replace...")

shown in the message window at the top indicates that this rule is being built
using the menu-based rule creation option.

When the rule has been completed, it appears as shown in the figure below.

142

RAPIDS I Authoring Manual — August 1990 6. Using Attribute Handles

o——o' Display Window

Qg
Add New Object (if (CurrentState is 'Closed)

then {Assign VoltsOut VoltslIn)
else (Assign VoltsOut 0))

Copy

This rule could be viewed as an instance of a conditional connection, in the
sense that it connects the value of the Voltsin attribute to the VoltsOut attribute
of the switch. Such attribute-connecting rules can be created either in the
generic editor (for connecting two attributes of one generic object) or in the
specific editor (in order to connect the attributes of different objects).

The two shortcut methods that are the subject of this chapter (mouse-based
connections and Make connection connections) are available only in the scene
editor. They can therefore only be used to connect the attributes of specific
objects. When two generic attributes (of a single generic object) are to be
connected, the author must create an assignment rule using the rule editor in
the generic editor. (It is, however, possible to connect two attributes of a

single specific object using either the mouse-based or the Make connection
methods.)

Connecting with the Mouse

The easiest way to connect two attributes (of two different objects in a
simulation) is to use the middle mouse button. The simulation author clicks
first on the attribute that is to receive a value, and then on the attribute that is
to provide the value. A new assignment rule is automatically created for the
first attribute, with the form

(Assign AttributeWhatever of FirstObject SomeAttribute of SecondObject)
This process is shown in detail later in this section.

143

RAPIDS I Authoring Manual — August 1990 6. Using Attribute Handl:

Attribute In order to connect attributes using the mouse, there has to be something to

Handles click the mouse on that represents the attributes. This is the function of
antribute handles. An attribute handle is a rectangular area that represents the
location of some attribute of an object. Most attributes don’t have attribute
handles. There is no particular part of an object that should be associated with
its CurrentState, for example. For some other attributes, however, especially
those that are associated with values that are input to or output from an object,
it makes sense to associate a particular part of the appearance of the object
with that auribute. An author sets up such an association by creating an
attribute handle for the attribute. All attribute handles must be created in the
generic editor.

Battery

(iavisidie Objest)

T T .
Behavioral Technology Laboratories

In the figure above, the author is completing the appearance of the Battery
generic object in the generic editor. The two terminals at the top of the battery
are good contenders for the locations of attribute handles for attributes that
will be used to distribute power from the simulated battery.

144

RAPIDS Il Authoring Manual — August 1990 6. Using Attribute Handles

Creating After the drawing is finished, the author in this example chooses Object
Attribute Attributes from the object operations menu (to the left of the display window)
Handles and adds a couple of attributes, which he chooses to call PosVolts and

NegVolts. Following the procedures described in Chapter 3, he names the
attributes and assigns them the type integer. When attributes are first created,
their entries in the Handle Region column of the Attribute Operations window
(see the figure below) appear as undefined.

Object Attributes

Attribute Name Type Handle Region
CurrentState Atom

ObectlocX integer

Obectlocy integer

PosVolts LY L S undefined

In order to create an attribute handle for an attribute, the author clicks on the
word ‘undefined,” and a menu pops up with a choice of ways to create a
handle for the attribute.

Attribute Operations
Add Delete Done

Object Attributes

Attribute Name Type QLI Select method of entering handle
Sweep region
ObectlocX Integer Enter handie size
ObectiocY integer Use predefined handle
PosValts integer Use region of object
NegVolts integer (8049010 10)
-+

In the case of these attributes, the author wants to create handles about the size
of the terminals at the top of the battery, so he chooses the Use predefined
handle option, which creates a handle that is 10 by 10 pixels. The mouse
pointer turns into a black rectangle, and the author positions it on top of the
appropriate part of the appearance of the object. In this example, one attribute
handle is associated with the PosVolts attribute by being placed on the
terminal labeled with a + in the battery’s appearance. Another attribute handle
is created for the NegVolts attribute and is placed on the terminal graphic just
above the -

Creating such attribute handles in the generic editor is all that an author has to
do in order to be able to select an attribute with the right mouse button when
working in the scene editor.

145

ORIGINAL PAGE IS
GF PCOR QUALITY

RAPIDS Il Authoring Manual — August 1990 6. Using Attribute Handles

State Handles It is important to keep in mind the distinction between attribute handles and
and Attribute the state handles that are associated with switches and other controls. Authors
Handles create attribute handles from the Attribute Operations window, as shown in

the figure above. State handles — the regions of a control object that cause the
object to change between states — are created in the State Operations mode of
the generic editor, as shown in the figure below.

State Operatinns

Add New State

Continuous State O/O

Copy
Cycle

Delete

selnct methioad of enteririg handis-
Sweep region
Enter handle size
Use predefined handle
gion of state

H’d‘ﬂd'& ;,

Delete Handle

Control-type objects can have both types of handles — state handles and
attribute handles. The switch used in this simple example has both types of
handles. In the figure below, the Attribute Operations window is open for the
same switch. Here the author has created attributes called Volirsin and
VoltsOut and has associated attribute handles with each. The handles are
located at the two circles at either end of the switch. See the figure below.

146

RAPIDS Il Authoring Manual — August 1990

Object Operations

Add New Cbject
Copy
Cycle

Delete

Object Graphics

Attribute Operations
Add Delete Done

Object Attributes

Attribute Name Type Handle Region
CurrentsState Atom

Ob,ectlocX integer

ObectlocY integer

Yoltsin Integer (65 38010 10)
YoltsOut Integer (110380 10 10)

6. Using Attribute Handles

In a similar fashion, the author then creates a Light object for the simulation,
adds new attributes (here called Voltsin and GroundSide, and makes attribute
handles for the new attributes.

Obyect attributes

Type

Attribute Operations
Add Delete Done

Handle Region

ObpctlocX integer

Obpctiocy integer

Voltsin integer (65305 1010)
GroundSide integer (1103051010)

Ho

The next step in creating the example simulation to teach about relays is to
create the Relay generic object. It should have the two states shown here:

147

ORIGINAL PAGE IS
GF POOR QUALITY

RAPIDS II Authoring Manual — August 1990 6. Using Attribute Handles

The Relay has four electrical ports: two for the coil and two for the voltage
path that is controlled by the relay.

_Qbject Attributes

Object Graphics

Attribite Operatinna

Add Delete

Uibect Attributes
Attribute Name Type Handle Region
CurrentState Atorn
ObpectloX Integer
ObjectiocY integer
Coilvaltsin Integer (65 26010 10)
CollvoksOut integer (11026010 10)
Signaivoltsin Iinteger (55 2201010)
SignalvVoltsOut Integer (11522010 10)

Using the Attribute Operations window of the generic editor, the author
creates these new attributes and assigns them attribute handles, as shown in
the above figure.

Defining Generic At this point, all the necessary attribute handles have been created. The author

Behavior can build whatever rules are required at the generic level. It usually makes
sense to write generic rules that govern the internally-determined aspects of an
object’s behavior. One example is the rule for the switch presented near the
beginning of this chapter, which says that values are passed from one voltage
attribute to another if the switch is closed.

Since the behavior of the light can be said to depend on the values of its
voltage attributes, it also makes sense to create a generic object rule that sets
the state of the light. The oversimplified rule shown below works for this
simulation, but an author could write a more sophisticated rule that would
give the object wider applicability.

148

RAPIDS II Authoring Manual — August 1990 6. Using Attribute Handles

e | B

OQO p State Ops Save Exit

Obiect Oneratinne

Add New Object

Copy
Cycle

Delete

Object Attributes

Qbject Graphics
Object Handles @
Move

Rename

Rotate

ew rule by menus
New rule by typing

Copy rule
aJ’:? rule
Delete rule

The behavior of the generic Relay can also be defined in the generic editor.
Two rules are called for. The first says that signal voltage should be
propagated when the relay is in its energized (closed) state. The second says
that the state of the relay should be closed when power is supplied to the coil
and that the relay should otherwise be open. See the figure below.

149

ORIGINAL PAGE IS
OF POOR QUALITY

RAPIDS II Authoring Manual — August 1990 6. Using Attribute Handles

Ovbject Graphics
Obtject Handles

Move

Rename

Rotate

'Enargized-Clasad) then (Asstgn SignalVoltalut SignalValtsln) sls
ther. (SwtState 'Energized-Cloved) wise (SwtStats 'Desrmrgized-Op

Af (CurrantStata is-
New rule by menus ey
New rule by typing

Copy rule
Ecﬂt rule R . B :
Delete rule PN Sl -

Dane [R

Building a Scene At this point, the generic library required for the simulation is complete. The
author must Save the library before openning the scene editor. The author
activates the scene editor and creates the scene shown on the on the second
page of this chapter. If you have the files used in this example, and are
following along on your machine, use the name RelayScene for the scene file
and RELAYOBJS for the library file.

i {e#4#} Login: (password)

Reading generic definition f1le: {BSK}<LI
gPFILES)RAPIOSI I>RELAYOBJS.GREAL;1....
one

 RARIDS 1] Touls

Scene File: RelayScsne
i Generic File: RELAY0BJS,
toad SubScenes?: NIL

[H [Ganeel
O] [Cance]

GenericEdito

Scene Editor L

v

4 Build Simulation I Run Instruction
—_—

Run Simulation

R SRR O R DDA DDV DOL DI ESLLAIDLDSINLIDODALE 000

The appearance of the scene during its construction in the scene editor is
shown 1n the figure below. The Create menu command is used to create new
instances of the generic types previously defined and to place them on the
scene. The lines (‘wires’) in the scene were simply drawn in using the
background drawing tools of the scene editor. (The author chooses Edit from
the right button menu in the display window. A drawing menu appears at the
left of the Display Window. When the line drawing is complete, the author
selects Done, and the drawing menu disappears. See Chapters 3 and 5 for
additional information on using the drawing tools.)

150

RAPIDS II Authoring Manual — August 1990 6. Using Attribute Handles

1 Permwmnmn Her e er Fottar precatinons Menu

Simoiaion _ Weic

et Info

the light q, O

-+ Switch
Inj®!
—
CurrantState Woed ot -_—
ObjectLosX Iat 70 Battery A
Ovjenkosy Iat 73
Volula 1at saksown H
GrouadSide Iat saxnows H Battery I

ol .., ham (JRIMe) ws ...) "N

i
[obiect operatans |
Create Copy
Delete Cycle
V-Rilp Label
Mave Open
Rename Rotate
Scale Rules

Kcena: RelayScens File being edited: RalayScene Date Yritten: Mew f{le -- has not besn oritten

Simply placing the objects on the scene and drawing some lines to make them
look attached to each other has not resulted in their becoming functionally
connected. At this point the author is ready to begin making connections
between objects in the scene. Connections are made in the Object Operations
mode of the scene editor.

Mouse Making connections with the mouse is a two-step process. The author first

Connections designates the attribute that will be the receiver (the one that will be assigned a
value in the rule that is created) and then designates the attribute that will be
the source of the assigned value.

An author might choose to start by connecting the input voltage attribute of the
switch in the above scene (an attribute called Voltsin) to the voltage attribute
associated with the positive terminal of the battery. The first step is to
designate the receiving attribute, by clicking with the middle button of the
mouse in the circle at the left of the switch. Because that area was previously
marked as an attribute handle for the Voltsin attribute, the scene editor
recognizes that an attribute has been chosen as the target of a new assignment.
It gives feedback to that effect by presenting the message “Pending Receiver
has been filled with the selected attribute” in the message window.

151

ORIGINAL PAGE IS
OF POOR QUALITY

RAPIDS II Authoring Manual — August 1990 6. Using Attribute Handles

Message SWindow

Pending Receiver has been filled with selected attribute.

Pending Receier Foitor Qperations Meny

VoltsIn unknown Simulation

Disbila;vvrindowﬁq

Write

A Simple Circuit with a Relay
.

— + Switch
[J
——

Battery A Reley

Battery B
Lignt

Just to the left of the menu bar, above the top left corner of the Display
Window is a small window labeled Pending Receiver. This window is
ordinarily empty. After the author clicks on the Voltsin attribute handle,
however, the name of the attribute, *VoltsIn’ appears in this window. The
current value of the attribute is also displayed. Because the simulation has
never been run at this point, the value of Voltsin is unknown.

When a Pending Receiver has been designated, the next click of the middle
button on an attribute handle is interpreted by the scene editor as the source of
the attribute value that should be assigned to the attribute named in the
Pending Receiver window.

Reading about the mouse-based connection process is much more laborious
than simply doing it. The author clicks the middle mouse button once on the
handle of the receiving attribute and then on the handle of the sending
attribute. Presto! The connection has been made.

152

RAPIDS Il Authoring Manual — August 1990 6. Using Attribute Handles

Once a connection has been made, a the switch

new rule is immediately created that

constitutes the functional [goes e w3 6291 Open
implementation of the connection. If
the author now selects the switch, its | SvrreatState Word Open

. . . . OtjectLocX Int 2335
object information window (as at the | Gyjectzocy Iat 463
right) will show that there is a rule | voitsta Int unknown H
that assigns a value to Voltsin. (The | VoltsOut Int unknown H

rule is shown in an abbreviated form
— Assign VoltsIn. The *nc next to
the rule simply indicates that the rule | (ass¢n vatsin) *ne
has not yet been compiled for
execution efficiency.)

An author can make most of the required connection in a small scene such as
the relay simulation in two or three minutes. In the figure below, the rules of
the relay object are examined in the Rules Window immediately after its
SignalVoltsin and CoilVoltsin attributes have been connected using the
mouse-based connection method. The lowest rules shown in this list are the
rules of the generic Relay, while the higher rules — in this case the two rules
that begin with the word Assign — are rules of the specific relay object on
this particular scene.

(Assign-SignalvaltsIn (PosVolts of battary. : 't-on DT IIE RSN
-(gsszg?:m%ugr VoltsOut of the : Scene)) S :

.. S ots
nergized-Op

Making connections with the mouse is the easiest way to provide for the
correct assignment of attribute values between objects in a simulation. It can
only be used, however, if attribute handles were defined for the generic
objects. The next section describes another way to make connections.

153

RAPIDS Il Authoring Manual — August 1990 6. Using Attribute Handles

Using Make Connection

The second easy way to make connections is to use the Make Connection
option in the RAPIDS II rule editor. This feature does not require attribute
handles, so it can be used to connect any attributes of specific objects.

Curreatstate Word otr -+

ObjemLoeX Iat s70 attery A y
ObjestLosy Iat 378

Voluale Int waknowa H

GroundSide Iat vaknows H atiery

(i ... hea (JStas) esa ...} *ne

Create Copy
Delete Cycle
V-Filp Labe)

h_

‘Make conpection

New rule by menus
New rule by typing

Copy rule
Bcﬁt’ rule
Delete rule

Done

The figure above shows the rule editor being invoked on the specific light in
the relay simulation. One rule already exists for the light, a rule inherited from
the generic Light object. Here the light’s Voltsin attribute must be connected
to the SignalVoltsOut attribute of the coil above. The author chooses Make
connection from the top-level rule menu at the left. The message window
(near the top of the screen) prompts the author to select an attribute of the light
that is to receive a value. (See the message window appearance below.)

Saelect the attribute that is to recsive a value.

154

RAPIDS II Authoring Manual — August 1990 6. Using Attribute Handles

Receiving attribute At the same time, the top-level rule
urrentState menu is replaced with a new menu

ObjectLocX titled ‘Receiving attribute.” This

ObjectLocY menu lists those attributes that have

cltsln already been defined and gives the

GroundSide author the option of defining a new
attribute at this time.

{new-attribute>

ABCRT

The author wants to create a rule that assigns a value to Volts/n (that is, one
that connects the light’s input voltage to a source). The message window
shows that the Voltsin attribute has been designated as the receiver and asks
the author to pick what atuibute is the source of the value.

Message Window

Select the attribute that is to receive a value.
Receiver: Voltsln

Select the attribute that is to send a value.

The easiest way to designate the source (that is, the sending attribute) is to
choose it from a list of the attributes of another object. The author holds down
the shift key and clicks on the object that has the source attribute. In this case,
the relay should be Shift-clicked.

A Simple Circuit with a Relay

ObjectLocX Type: int Value; 375
ObjectLocY Type: int Value; 405
Coilvoitsin Type: int Value; ??

CoilVoltsOut Type: int Value: ??

Switch Signalvoltsin Type: int Yalue: ??
SignaiVoitsOut Type: int Value: ??
M <new-attribute>
-+
Relay
Battery B

A pop-up menu of the selected object’s attributes appears, as in the figure
above. Here all the defined attributes of the relay (that are of the appropriate
type — integer or real, in this case) appear in the menu, along with an option
to define a new attribute. The type and value of each attribute is also displayed
in the menu. (If attribute names were not well-chosen, it is sometimes very
useful to be able to see their current values.)

Since the light should get its value from the relay’s SignaiVoltsOut attribute,
that is the attribute that the author chooses from the pop-up menu. At this

155

RAPIDS I Authoring Manual — August 1990 6. Using Attribute Handles

oint, the connection has been established, and a new assignment rule appears
in the list of rules. See the figure below.

m ba

attery A

E

g
338

!

02 .., Ben (JmIime) ase ..) *ne
(Aszaga Yattsia) *ne

e pmeatinn s

Create Copy
Delete Cycle
V-Flip Label

Make connection

New ruje by menus
New rule by typing

c I
Edit rule
Delete rule
Done
The author can then make another connection using this method, or use one of
the conventional (menu-based or structure-editor) approaches to building
another rule. As with any other rule, a rule created using Make connection can
be deleted or edited.
Testing the After a few minutes of making connections on this scene (using either the
Simulation mouse connection option or the Make connection feature of the rules editor),

the author can begin testing the finished simulation.

The two figures below show two states of the finished simulation. In the first
one, the switch is open, so the relay coil is unenergized, the relay contact is
open, and there is no power to the light. In the second figure, the switch has
been closed, so the relay coil is energized, its contact is closed, power is
available to the light, and it is shining.

156

RAPIDS Il Authoring Manual — August 1990 6. Using Attribute Handles

A Simple Circuit with a Relay

A

CL—
-+ Switch
0 Q
-+
Battery A Relay
Battery B
Light

Figure A. Switch Open, Relay Coil Unenergized

A Simple Circuit with a Relay

A

G
—- + Switch
0 d
-+
Battery A Relay
Battery B

Light
Figure B. Switch Closed, Relay Coil Energized

This simulation scene is now ready for use as part of a course on the purpose
and functioning of simple electrical relays.
When to Use Both mouse-based connection and the Make Connection option from the Rule
Make Connection Editor are easy to use. If attribute handles have not been defined for a generic
object, it is not possible to use mouse-based connection. In such cases, the
Make connection option is the only one available other than simply building
the rule (either by menus or with the structure editor).

157

RAPIDS Il Authoring Manual — August 1990

Sometimes you will not be able to use mouse-based connection even when
attribute handles have been defined. In particular, when two different specific
objects with handles have overlapping regions it may not be possible to
choose attribute handles from both. This is the case in the simulation of neural
connections on the retina, shown below.

Editor Operations Menu

Simu

lation -

Write

Receptorn329
ObjectlLocX Type;int Value: 335
o |ObjectLocY Type: int Value: 375

e 206 020 o0.%0 ol , E

9@00@00@00@09 nghtlnput Type: int Value: 7
MidOutput Type: int Value: 7
LeftOutput Type: int Value: 7

RightOutput Type: int Value: 7
r_;-l r_-] r—] f—] {new-attribute>

’V’ N/
7

O
I EEEEEE 8 .

Here the retinal ganglion cell objects partially overlap the receptor cell objects
from which they receive input. This makes it impossible to cormect a ganglion
cell’s input attribute to the corresponding output attribute of the receptor cell.
Fortunately, it was easy to use Make connection to establish the proper
assignments. (In the figure above, the author is about to assign the MidOusput
of a receptor to the MidInput of the retinal ganglion cell immediately below it.)

When mouse-based connection fails to work because the objects are so close
together that their regions overlap, simply select the object that owns the
receiving attribute, choose Rules from the object operations menu, and then
use Make connection to establish the assignment rule that links the attributes
appropriately.

158

6. Using Auribute Handles

RAPIDS Il Authoring Manual — August 1990

A Note on
Productivity

6. Using Attribute Handles

This description of attribute conmection uses quite a few pages to describe two
techniques that are really very simple to use. The relay simulation took less
than one and a half hours to complete, including building the generic library
from scratch, together with testing and debugging the simulation. Part of this
productivity was due to the ease with which connections could be made.

Attributes for
Test Equipment

Creating Test Equipment

Attribute handles also play an important role in creating pieces of test
equipment. To make an item of test equipment, such as the voltmeter shown
below, simply requires taking certain attribute actions in the generic editor and

then building a special type of rule in the scene editor.

Voltmater

N

P

/4

In the generic editor, an attribute called VoltsAtProbe was created and
assigned an attribute handle. See the figure below. This attribute will
represent the test probe for the simulated voltmeter. Its handle is located at the
stylus in the voltmeter’s graphics.

Delete

Object Graphics

Add Done
Attribute Name Type Handle Region
StateRotation Rea!

CurrentState Atomn

ObectlocX intager

ObpctlocY integer

VoltsAtProbe Real {72 55 31 25)
DisconnectValue Real undefined

Voltmater

e

159

ORIGINAL PAGE IS
OF POOR QUALITY

RAPIDS II Authoring Manual — August 1990 6. Using Attribute Handles

The attribute that will be associated with a test equipment probe can be given
any name. The attribute name DisconnectValue, however, is a special name
that serves a special function in simulated test equipment. Whenever a piece of
test equipment is disconnected, the value in its DisconnectValue attribute is
placed in its test probe attribute or attributes.

Generic Behavior In the case of the voltmeter, if the author wants a value of 0 to register when
the meter is disconnected, then the generic object should be given a constant
assignment rule that gives DisconnectValue that value:

(Assign DisconnectYalue 0.9)

The visual behavior of the generic object must also be authored in the generic
editor. The voltmeter’s needle should rotate to a position that is determined by
the value at the VoltsAtProbe attribute. The following rule achieves this effect:

(if (VoltsAtProbe <= 8.0)

then (RotateTo 0.8)

else (if (VoltsAtProbe < 50.0)
then (RotateTo (VoltsAtProbe / 58.8))
else (RotateTo 1.8)))

This rule says that if VoltsAtProbe is greater than 0, then the needle should
Totate to a proportion of its extent determined by the value of VoltsAtProbe.
This rule creates a voltmeter that measures voltages between O and 50.

Rename

Raotate

58.8)

New rule by menus i 3 D
New rule by typing

Copy rule
Btﬂ{ rule
Delete rule
Done

When these two rules have been created, a simple voltmeter has been defined.
(See the above picture.) Naturally, it is possible to build more complex items
of test equipment, as well. For complex test equipment, it is usually best to
create the controls and indicators as separate generic objects. The indicators
should have the test probe attributes and the special DisconnectValue attribute.

Defining Specitic To make a specific test equipment indicator, you must create a special rule that

Test Equipments assigns the reserved attribute indicator PROBE to your test probe attribute.
The rule editor supports the authoring of such rules by menu in the scene
editor environment.

160

RAPIDS Il Authoring Manual — August 1990 6. Using Attribute Handles

In the case of the simple voltmeter, the specific voltmeter object needs a rule
that assigns PROBE to its VoltsAtProbe attribute:

(Assign VoltsAtProbe PROBE)

In the figure below, such a voltmeter is shown in the simulation operations
mode of the scene editor. It has been connected to the output voltage of the
relay.

Prending Heceiver | Eibtor Operations Menu

Objes Ope

Yoitmater

(&;
7

&

-+
Batiery A Tay
W ey

Cloek Iat o
MowsaX Iat b '
Monse¥Y Int 4 S— —
MouseState Word Uy
Obiert tntoy 1
Voltmeter0469 Lignt
SuiaRoatios Raeal a0
CurrentState Word WesdlaRotati{
ObjenlosX
Objactlosy
VolsA Probe: i Real i

DisconaedtViine Real

G4 ... Taem (AasteTo) Wie ...) *ne
{Asngn Discsnne¥uuns) *as
{ASnga VAL AIPrme) *ne

Saap Compile

Save State Restors Stats

Pause Rules Pause Attridutes

Trace Attridutes System Trace <onei RelasScens Frle being editeds (DR UPFILES RAPIOSTLRELACENE 13 Date Written: 18:1u) 48 13 ")
The needle has deflected about 10% from its 0 value in this figure. It is
measuring five volts, so its needle has rotate 10% of the extent between its 0-
and 50-volt values.

How Test Clicking on a test probe with the middle button during a simulation makes that

Equipment Is probe the currently pending probe. The little window labeled Pending

Used Receiver (at the top left of the Display Window) will then show the name of

the test probe attribute. (Its value 1s also shown here. When the test probe is
first designated, its value will be unknown.) The test probe will remain the
pending receiver until a different test probe is selected.

To hook the chosen test probe up to a test point on the target equipment, the
user must click the middle button of the mouse on some test point. A test

161

ORIGNAL PAGE IS
CF PONR QUALITY

RAPIDS Il Authoring Manual — August 1990 6. Using Attribute Handles

point is interpreted here as any attribute handle in the simulation. When this
attribute handle is middle-buttoned, the test probe attribute is temporarily
connected to it, until the probe is connected elsewhere or is disconnected.

An active test probe can be disconnected using the right button menu of the
Pending Receiver window. After such a disconnect takes place, the value at
the test point will be the value of its DisconnectValue attribute. See the
updated (disconnected) attribute value in the figure below.

Pending Receiver

So long as a test point is connected to another object’s test point (attribute
handle), the behavior of the test equipment will reflect changes in the test
point’s attribute value. This approach to test equipment permits very flexible
and realistic simulation behavior in RAPIDS II.

162

Authoring Instructional Content

Building a
Simulation

Simulation

The content unit editor is used to create and edit a course's content units. A
content unit is a fragment of a lesson that is based on a RAPIDS II simulation.
Complete courses are constructed using the instructional plan editor, which is
described in the next chapter. Each content unit (lesson fragment) includes
one or more content items, which are also created in the content unit editor.
Every content item has a student action. The expositions associated with
content units and content items are composed in the content unit editor. In
sequence, this chapter describes the editing of content units, content items,
student actions, and expositions. The examples in this chapter are based on a
course about the jet aircraft engine starter system described in Chapter 2. You
can examine this course using the RAPIDS II authoring tools that you loaded
earlier.

The content editor can only be used to build course materials for the most
recently built simulation in the environment. Here we use the term built
simulation in a special way to mean a special simulation that has been built by
choosing the Build Simulation menu item in the RAPIDS Il Tools menu.
When you click on this option, the dialog box shown below appears.

Map File: NEWSTARTER
Generi Fre: ENBINESTARTER,

Instruction

Generic Editor Contant Editor
Scene Editor plan Editor
- __
Build Simulation Run Instruction

Run Simulation l

The Map File referred to in this dialog is the highest-level scene in the
simulation. (If the simulation has only one scene, that is the name to insert.)

163

RAPIDS Il Authoring Manual — August 1990 7. Authoring Instructional Content

Starting the
Content Unit
Editor

The Generic File is, of course, the library of generic objects used to build the
simulation,

After the OK button is clicked, several minutes will be required to build a run-
time, compiled version of the simulation. As they are processed, names of the
specific objects in the simulation will appear in the window at the top of the
RAPIDS II Tools menu. When the simulation build process is complete a
message to that effect will appear above the menu:

Ri gﬁt ‘Start Button
Left Start Button
The simulator is now built.

RAPIDS 1 Tonls

__Simulation ____Instruction |

Generic Editor Content Editar
—

Scane Editor Plan Editor
Build Simulation Run Instruction

Run Simulation

The content unit editor always works on the last built simulation. Even if
another simulation has been edited since, the course development will apply to
the older built simulation.

Normally, the content editor is started by using the RAPIDS II top-level
menu, as shown below. After clicking on the Content Editor button in the
Instruction column, a dialog box opens, asking for the name of the content
file. The RAPIDS II environment supports only one active simulation at a
time, so there is no need to name the simulation that the instructional content
will be based on — it must be based on the current simulation.

Content File: STARTERTASKS,

[oF] [Cancel

Simulation nstruction

Run Simulation

164

RAPIDS IT Authoring Manual — August 1990 7. Authoring Instructional Content

To edit the EngineStarter course used in the examples in this chapter, specify
the content file called STARTERTASKS. After a brief delay, a set of
windows similar to those shown on the next page will open on your screen.

Another way to start the content unit editor is by invoking the Lisp function
call ContentUnitEd, as in

(ContentUnitEd 'CourseName)
where 'CourseName is the name of the content unit file to be edited. Most
authors will prefer to use the RAPIDS Il Tools menu, as shown above.

Content Units

When you first open a content editing session, you will see a display like that
shown below. The simulation window will contain the top scene from the
simulation that has been built in your Lisp partition. Here we see a new
course for the NewStarter simulation, just after it has been opened in the
content unit editor.

View Done Save Bxit

RAPIDS AUTHORING - 0:5:36 Left Start Button Right Start Button _-\—,

New Edit Co Delete Pla R
. Right
Introduction to Parts <t 1o Throttle
Sources of Electrical Power
Ctiverter Valve Interactions

Right Engine Start on @round.
Starting engines in the air
Free Play Starting in Atr

o
“un - |__|_ 1_1 - Xi11
Left Right
Engine 3 f 3 ; o Engine
© F k ©
Lefs &£ s Right AC Dus
enperary
adlng AF 0 100 Al o 100
[]]
e Righe
ine ransforser Engina
Instrusents Rectif ler Instrusents

165

ORIGINAL PAGE IS
OF POOR QUALITY

RAPIDS Il Authoring Manual — August 1990 7. Authoring Instructional Content

New

Edit

The window at the left lists the content units that have already been defined
for the course, if there are any. Just above that window is a set of commands
that apply to content units as a whole. These commands are New, Edit, Copy,
Delete, and Play. They allow you to create a new content unit, or to edit, copy
(and edit the copy), delete, or play an existing unit.

New Edit Copy Delete Play

At this level of the content unit editor, you can choose to create a new content
unit, by clicking on New in the area above the list of content units. Doing so
will open a new Unit Editor Window, shown below. The unit editor lists the
data fields of a content unit, along with the default values that are assigned to
certain fields.

Name:

Comment:

System Configuration: Current Configuration
Exposition before student action; Not Oef ined
Exposition after student action: Not Oef ined
Order of presentation: Random
Present identifying text in test mode? No

To acquaint yourself with the editor, you should first use the unit editor to edit
an existing content unit. To edit a unit, you must first select it, by clicking on
its name in the list of content units. The selected unit name will then appear
inversed (that is, as white text on a black background).

Oiverter Yalve [nteractions

Left Engine Start on Ground

Right Engine Start on Ground
Start when engines die in the air
EngineStarter Test
Identify sources

If, after selecting the unit called ‘Introduction to Parts,’ you click on Edit,
you will see the unit editor window open at the top of the simulation window.
It will display the values of the data fields associated with that unit, as shown
below.

166

RAPIDS II Authoring Manual — August 1990 7. Authoring Instructional Content

_

ame: Introduction to Parts
Comment: A simple identification task with random order of presentation
System Configuration: Current Configuration
Exposition before student action: Def ined
£ xposition after student action: Not Def ined
Order of presentation: Sequential
Present identifying text in test mode? No

The meanings of each of the data fields for a content unit will be described
later in this section.

Copy It is often useful to model one content unit on another that has already been
defined. You can do this by selecting the unit that you want to base a new unit
on and then choosing Copy from the menu of content-unit-level commands.
The new copy of the unit will immediately be opened for editing. Since it will
have exactly the same data as did the original unit, the first thing you should
do is to change the name of the unit.

Delete Choosing the Delete command from the menu of content-unit-level
commands will cause the currently selected content unit to be deleted. The
editor will ask you to confirm that the unit should actually be deleted by
clicking the left mouse button. If you click the right mouse button, the delete
command will be aborted.

Play You can see how a content unit will appear to students by choosing the Play
command, which applies to the currently selected content unit. A menu will
appear asking whether you want to go through the unit in Drill or Test mode.
After you make one of these selections, the screen will change its appearance.
The command buttons in the upper left corner of the screen (Menu, Replace,
Find Object, and Indicator) will be replaced with the Options Menu of the
student user interface (Quit, Don't Know, Test Equipment, and View). In
effect, you are now a student being presented with that content unit.

When you finish the unit, the student interface will disappear, and the content
unit editor will be restored. The unit you just played will still be the selected
unit.

167

RAPIDS I Authoring Manual — August 1990 7. Authoring Instructional Content

Editing Content Unit Data

The data fields of content units are described in the remainder of this section.
To follow the examples on your own computer, begin by selecting the
‘Introduction to Parts’ unit and then clicking on the Edit command. The
major windows will look something like the figure below.

View Done Save Exit
— o Namae: Introduction to Parts
Cormwnent: A siuple identification task vith randos presentation order
System Configuration: Inftial Stace
Exposkion before student action: Oef 1ned
Exposition after student action: Not Def tned
Order of pr b Sequent tal
Present identifying text in test mode? I No
CONTENTUNIT 0:5:36 . Left Start Button Right Start Sutton —wh
o 2 A
New Edit Move Delete .
3 Right
Find the Left Start Button. SIA Al Thrattle
Find the Left Throttle.
Find the Left Timer.
Find the Left Igniter. Tenar Timer
Find the Left Engine.
Find the Left Generator.
Find the Left Relay. 4 t
Find the Esergency Power Switch. I
Find the Esergency Pover Light.
Find the Right Start Button.
Find the Right Throttle.
Find the Right Timer.
Find the Right lgniter.
Find the Right Engine.
Find the Right Senerator.
Find the Right Relay.
K11 Kt11
Left b°°!-_ Right
1ne 1 Engine
(&] ©
Right A6 Ous
o Lot K u T"’J'"o"
Cround %'L‘ 0 100 . o \{ 00
VO Bl
Engine ranat oreer Transforaer o i
Inetrusents | pogeifier Rect if fer Instrusents

The list of content units that was on the left of the simulation window has
now been replaced with a list of the defined content items for the content unit
that is being edited. Above this list of content items is a menu with three
choices: New, Edit, Move, and Delete. These commands apply not to the
content unit as a whole, but rather to content items. The next section will
discuss content item editing.

In the remainder of this section, the other data elements of a content unit are
described, along with how they are edited. Those elements are:

168

ORIGHIAL FAGE IS

RAPIDS II Authoring Manual — August 1990 7. Authoring Instructional Content

« Name

+ Comment

« System Configuration

« Exposition before content unit

« Exposition after content unit

* Order of presentation

+ Present identifying text in test mode?

In most cases, you will find that you can learn how to enter or edit these data
elements simply by trying to do so. The first step is to click in the field.

Name Click on Name in the content unit window, or click anywhere in the name if
one has already been defined. The typing cursor appears at the point that
you've clicked. You can delete letters by backspacing and type a new name.
The name of a content unit can include spaces.

|Name: Introduction to Parts,

If you fail to give a content unit a name and choose Done in the top menu, the
name will be shown in the list of content units as ‘- - -".

Comment The comment associated with a content unit is edited in just the same way that
aname is. Click where you want to enter or delete material and type normally.
This data field is optional. The comment is never seen by students; it is meant
only as an aid to courseware documentation for authors.

System When you click on the System Configuration command, the content unit
Configuration window disappears, so the simulation window has nothing overlaying it. The
list of content items at the left is replaced with a list of defined system
configurations.
SYSTEM CONFIG. 0:8:49
New Rename “Delete

System Configurations
Current Configuration

If one of these is a defined state of the simulation that you want to have

installed when the content unit begins, you can simply click on it to select it (a -
system configuration called ‘Initial State’ has been selected in the above

figure), and then click Done on the menu bar above the simulation window.

At this point the content unit window will reappear, and the list of defined

system configurations at the left will be replaced once again by the list of

content items for the unit.

Initial State is a special pre-defined state. It is the state that the simulation was
left in when it was last saved in the scene editor. (Hence, this is the state that
the simulation will be in after Build Simulation is carried out.)

169

RAPIDS II Authoring Manual — August 1990 7. Authoring Instructional Content

Current Configuration has a different meaning from all the other configuration
names that can appear in the list of system configurations. When an author
selects Current Configuration, it means that it doesn’t matter what
configuration is installed when the unit is started; the author is indifferent. Be
careful not to use this option if students will be required to manipulate
switches or if the lesson fragment discusses any aspect of the displayed
system configuration. Students may see a quite different simulation state,
depending on what happened in the previous content unit.

Detining Sometimes you may want to begin a content unit in a system configuration
a New that has not yet been defined. If so, you must define the new system configu-
Contiguration ration. Note that the menu bar above the list of defined system configurations

has three commands relevant to system configurations. Choose the New
command to begin defining a new configuration. You will be asked to name
the new configuration.

View Done Save Exit
Configuration name))

SYSTEM CONFIG. F_U:8=49

New Rename Delete

Current Configuration
Initial State

The new configuration can be based on an existing configuration, including
the Initial State. This means that a previously defined configuration can be
loaded in to serve as the starting point for defining a new configuration.
Choose from the list by clicking on the desired configuration in the menu
labeled System States. This menu is shown in the figure below, just above the
upper left corner of the Display Window.

170

RAPIDS Il Authoring Manual — August 1990 7. Authoring Instructional Content

View Done Save Exit
"y LAY L T Y

Which system state do you want to use as o i
a starting point for creating this new
configuration?

System States
Initial State
DisplayWindow
-l Left Stat

SYSTEM CONFIG.

Rename

0:8:49

Delete

»

New

System Configurations L. fr
Current Configuration e
Initial State e Throtel

A system configuration can include failure states for components of the
device. This means that before a content unit is started, the selected
component failures are entered into the simulation. Most system
configurations don’t include failures, so the author ordinarily simply clicks on
Done in the menu above at this point. See the figure below.

View Done = Save Exit

All test equipment has been disconnected.
All failed objects have been replaced.

You may open or close subscenes on the
scratch pad.

You may insert failures into the system.
When all have been inserted, select “Done".

Select the object that you want to fail.

SYSTEM CONFIG. 0:8:49
New ~Rename " Delete

System Confiqurations
Current Configuration
Initial Stats

Then the author manipulates the simulation switches, just as the student
would. When the desired simulation state is achieved, clicking on Done marks
that state as the new system configuration. The figure below shows the
prompts that appear at this point in the process of defining the system
configuration.

171

RAPIDS Il Authoring Manual — August 1990 7. Authoring Instructional Content

During this phase authors can change scenes normally so that they can
manipulate switches on other scenes. They can also — using the commands
on the right button menu — open and position scratchpad scenes. (For more
information on the Object Scratchpad, see Chapter 5.) As you click on
switches to set them, a textual transcript of your actions will appear in the
Message Window. In the example shown above, a new system configuration
is being defined that begins with the Right Start Button being put into the
Pressed position. When you have finished setting up your new configuration,
click on Done on the menu bar above the simulation window.

View Daone Save Exit

You may insert failures into the system.
When all have been inserted, select "Done".

Select the object that you want to fail.

Set the switches to put the system into the
appropriate configuration.

When all have been set, select "Done".

SYSTEM CONFIG. rm_mo:g

New Rename Delete

System Configurations

Current Configuration
Initial State

At this point the author is asked whether to save the whole configuration or
simply the sequence of steps gone through to set up the simulation. A menu
appears in the object scratchpad area presenting these two choices, along with
the option to abort the definition of this system configuration. (See below.)
Either saving the whole configuration or the switch sequence will work. If the
switch sequence is short, that is usually a better choice, because it requires
that less data be stored and retrieved. On the other hand, when such a system
configuration is reinstalled, it actually goes through the process of simulating
each switch throw in turn, so students may observe a good deal of possibly
mytsatuerious simulated activity at the beginning of a unit as the configuration is
installed.

172

RAPIDS Il Authoring Manual — August 1990

Other
Conflguration
Options

Content Unit
Expositions

View Doaone Save Exit bject Scratchpad

Left Start Button

CurrentState: Pressed
Do you want to save the entire system
configuration or just the sequence of
switch settings?

If you abort, the system configuration will
revert to what it was before you set the
switches and nothing will be saved.

Abort
DisplayWindow

SYSTEM CONFIG.

New Rename

0:1:56
Delete

-

System Configurations L.ft
Current Configuration e
Initial State e Throttie
— 1

After one of the two Save options is selected, the new system configuration
name appears in the list of configurations. Here a system configuration called
Left Running on Ground has been defined.

SYSTEM CONFIG. 0:1:56

Delete

New Rename
Syatem Configurations
Current Configuration

Initial State
Left Running On Ground

When you have selected System Configuration in the content unit
window, you can also perform two other system configuration options —
renaming and deleting defined configurations. To exercise either capability,
you must first select the configuration by clicking on its name in the list of
system configurations. Then choose the command you want from the menu
above — Rename or Delete.

Before using the Delete command, however, be aware that it may be
dangerous. Other units may call for the deleted configuration. If so, they will
thereafter install the ‘Initial State’ on startup. You will be warned of this
danger if you begin to delete a configuration that is used by another unit.

Rename is not similarly hazardous. If you rename a system configuration, all
the content units that use it will automatically refer to it by its new name.

There are two exposition fields for a content unit, Exposition before
content unit and Exposition after content unit. The expositions you
create for these fields will be presented to students at the beginning and end of
the content unit, respectively.

Save Configuration
Save Switch Sequence

- Left Start Button

7. Authoring Instructional Content

173

RAPIDS Il Authoring Manual — August 1990 7. Authoring Instructional Content

Clicking on one of these fields in the content unit window will bring up the
exposition editor, which always appears to the left of the simulation window.
Because the exposition editor offers a rich set of options for creating
presentations to the student, it is described in a separate section later in this
chapter.

Once an exposition has been created, the word ‘Defined’ appears near its field
name in the content unit window. See, for example, the Exposition before
content unit field below.

Name: Introduction to Parts

Comment: A simple identification task with random order of presentation
System Configuration: Current Configuration

Exposition before student action: Def ined

Expaosition after student action: Not Defined

Order of presentation: Sequential

Present identifying text in test mode? No

Order of You can decide whether you want the content items of the current unit to

Presentation always be presented in a fixed order (the order in which they are listed in the
list of content items) or randomly. Simply click on the option you want for
this field.

In a newly created unit, the default ordering of content items is sequential.

Identitylng Text As you will see in the next section, each content item has an identifying text

in Test Mode? that helps specify what student action is required. In most cases, this text
should be used in constructing a prompt for the student. Yes is the default
value of this field of a new content unit. In rare cases, an author wants to
require that a student perform a series of steps without any prompting when
the content unit is presented in test mode. In this circumstance, the option No
must be selected.

In the other two modes, instruct mode and drill mode, identifying text will
always be presented. This option allows you to eliminate identifying text in
test mode only.

174

RAPIDS II Authoring Manual — August 1990 7. Authoring Instructional Content

New

Edit

The Content Items Menu

Content items are usually the most important parts of their content units. They
prescribe what actions a student must take while working through the content
unit. Each content item may have associated expository material, as well.

Content items appear in a list to the left of the simulation window while you
are editing a content unit. At the top of this list is a menu bar with four
commands that apply to menu items: New, Edit, Move, and Delete.

The New command will create a new item and open an item editor window
with default values for the four data elements.

When you are editing a content unit, the list of its content items appears in the
window to the left of the simulation window. To edit one of these items, first
select the item by clicking on it. In the figure below, an item called ‘Find the
emergency power switch’ has been selected. Then click on Edit in the menu
above.

New Edit Move Delete

Find the emergency power switch

Find the cross-start relay
Find the left igniter timer
Find the right igniter timer

An ltem Editor Window, such as the one shown below, will then open at the
top of the simulation window.

Identifying text:

£ xposition before student action: Not Def ined

Exposition after student action: Not Defined

Action: Switch Menu Find Indicator Replace TestEquipment FreePlay
Tolerance: @

Action time start: @

Actiontime end: 2147483647

Time to wait after action: 0.0

Simulator status: 0On

The Content Item Editor Window

175

RAPIDS II Authoring Manual — August 1990 7. Authoring Instructional Content

Move Clicking on Move in the menu bar above the list of content items signals that
you want to move the selected item to a different point in the list. It doesn't
make much sense to move an item if the unit uses random presentation, but
Move is commonly used to reorder items in sequential units.

When you issue the Move command, a prompt will appear that asks you to
click on the item that the selected item should appear after.

Select location to move item after (to move to beginning of list select first item and choose the

appropriate menu response)

If you pick the first item in the list of content items, a menu will appear that
asks you whether the originally selected item should appear before or after the

first item.
5 Tocat . —
Before
After
Delete The Delete command is used to remove the selected content item. When you

choose Delete, the content item editing window appears with the item to be
deleted displayed in it. You are asked to confirm the deletion by clicking the
left mouse button. When the deletion is confirmed, the editing window is
closed and the item is removed from the item list.

176

RAPIDS II Authoring Manual — August 1990 7. Authoring Instructional Content

Content Item Data

Content units contain four data elements: identifying text, optional pre- and
post-expositions, and a student action. The authoring of student actions is
covered in some detail in the next section.

identifying text:

Exposition before student action: Not Defined

Exposition after student action: Not Defined

Action: Switch Menu Find Indicator Replace TestEquipment FreePlay
Tolerance: @

Action time start: @

Action time end: 2147483647

Time to wait after action: 0.8

Simulator status: 0On

Identifying Text You can edit Identifying Text in much the same way that content unit names
are edited. The next section of this chapter, Student Actions, describes how
the identifying text of an item can be automatically generated by the RAPIDS
II editor, based on the student action.

Item Expositions The optional pre- and post-exposition elements of a content item are created
and edited with the Exposition Editor, which is described later in this chapter.
If you click on one of these fields (‘Exposition before student action’ or
‘Exposition after student action’) in the item editor window, then the
exposition editor will open at the left of the simulation window.

Action This field lists the seven types of student action that can be required in a
content item. Each one of these action types (Switch, Menu, Find, Indicator,
Replace, Test Equipment, and Freeplay) has its own ways of being authored.
So far as possible, each such action is authored by simply carrying out the
action, just as the student would. The details of these authoring processes are
described in the next section of this chapter.

Done When you have finished editing a content item, click on Done in the menu
bar above the simulation window. The item editor window will close and be
replaced with the content unit editor window for the content unit you are
working on. The content item list will still be displayed on the left. You can
edit another item by selecting it and clicking Edit again.

177

RAPIDS II Authoring Manual — August 1990 7. Authoring Instructional Content

Student Actions

There are seven kinds of student actions that can be prescribed in a content
item, They are:

« manipulating one or more switches into specified states
 make one or more selections from a menu of text items
+ ‘Finding’ by either
clicking on one or more objects in the simulation, or
clicking in a region on a scene
noting an indicator value
replacing a simulated object
performing a specified test using simulated test equipment
interacting in a free play fashion with the simulation

This section walks through the actions required to author each of these student
action types. You should be able to carry out the process on your own
machine.

Finding Objects If you have been following this text by carrying out the illustrated operations,
you are now in the unit called ‘Introduction to Parts.’ Try recreating one of
the content items in this unit. Delete the item called ‘Find the emergency
power switch.” Then select New from the menu bar over the item list. The
item editor window will open.

identifying text:

Exposition before student action; Not Defined

Exposition after student action: Not Defined

Action: Switch Menu Find Indicator Replace TestEquipment FreePlay
Tolerance: @

Action time start: @

Action time end: 2147483647

Time to wait after action: 0.0

Simulator status: On

Leave the Identifying text field undefined for now. Click on the Action field.
The item editor window will disappear and a message will appear in the left
window asking you to select from the options menu or to throw a switch.
Click on Find Object in the options menu, as shown below. A menu will
pop up asking what type of action this is: finding one named object, finding
several objects, or finding a region.

178

RAPIDS Il Authoring Manual — August 1990

View Done Save Exit Object Scratchpad

What type of action is this?

X

ind the named object
Find one of several abjects
Find several objects
Find the region

Clock DisplayWindow

ACTION ITEM 0:0:16 . |eft Start Button

New Edit Move Delete r/ _77

Click on Find the named object. The message window will then ask you
to ‘Select the object that the student must find." The left start button is the
switch at the top left of the simulation scene (see the figure above). Click on
this switch.

The item editor window will now reappear. The identifying text field will
have in it the phrase ‘Find the Left Start Button.” You can now click in the
identifying text field and edit this phrase to say whatever seems appropriate,
such as ‘Find the switch that starts the left engine’ Very often, authors are
happy with the automatically generated phrase, and no editing is necessary.

Identifying text; Find the Left Start Button.

Exposition before student action: Not Oef ined

E xposition after student action: Not Defined

Action: Switch Menu Indicator Replace TestEquipment FreePlay
Tolerance; @

Action time start: 8

Action time end: 2147483647

Time to wait after action: 9.4

Simulator status: 0On

Finding One Sometimes you may want to ask the student a question for which there is
of Several more than one correct selection. Suppose, for example, that you want to ask
Objects the student to click on one of the possible sources of electrical power in the

EngineStarter simulation. RAPIDS II lets you author a Find Object type
student action that accepts any of a set of objects as the correct answer.

To begin authoring your ‘Find a source of electric power’ item, choose the
New command to create a new item. Click on the Action field in the item
editor window, and choose Find Object in the option menu, just as you did

179

7. Authoring Instructional Content

RAPIDS II Authoring Manual — August 1990

for the single-object find action above.
When the type of action menu (shown
at right) pops up, choose the second
option.

7. Authoring Instructional Content

Find the named object
Find one of several objects
Find several objects

Find the region

You will then be prompted to select all the objects that would constitute
correct student actions for this content item. This prompt appears in the

message window, as shown below.

View Done

Save Exit

Left Generator
Right Generator
External Power
Emergency Power

What type of action is this?

Select all the objects that would be correct
responses for the student. When all objects
have been selected, click on "Dane".

There are three possible sources of electrical power in the EngineStarter
system: the two generators and the external power unit. Click on each of these

in the simulator window.

Y hd
Generator Generator
GebeThor Genepator
eNeraAtor
External > Light Light
Power i 1 0 1
Kill

O

As you click on these objects, their names will appear in the message

window.

After you have designated all the correct choices, click on the Done command
in the menu bar above. You have finished authoring that student action, so the
item editor window reappears. The identifying text shown for all the Find one
of types of student action is ‘<noun> that <condition>.’ This prompt reminds
you that you should edit this field so that RAPIDS II will ask the student to
pick one of the objects that meets some constraint.

180

RAPIDS II Authoring Manual — August 1990 7. Authoring Instructional Content

temEcitor

Identifying text: <noun> that <condition>.

Exposition before student action: Not Defined

Exposition after student action: Not Defined

Action: Switch Menu Indicator Replace TestEquipment FreePlay
Tolerance: @

Action time start: @

Action time end; 2147483647

Time to wait after action: 8.0

Simulator status: 0On

In this case, you should change this identifying text to read ‘the sources of
electrical power.’

Finding Several You can also create a student action that requires that several object

Objects designations be made. The Find several objects choice makes it possible
to require that the student select all or some specified number of a set of
objects in a simulation. When you choose this type of Find action, the
message window asks you to select all the objects that meet the condition of
interest. (See the figure below.)

View Done Save Exit
What type of action is this?

Select all the objects that would be correct
responses for the student. When all objects
have been selected, click on "Done™.

Left Generator

Right Generator
How many of these cbjects must the studen
t find? 2,

ACTION ITEM I 0:0:16 \

Click on all the objects in the simulation window that meet the condition. (If
you are working with a multi-scene simulation, use View to change scenes,
if necessary.) When you have selected all the objects that would constitute
correct responses to the find instruction, click on Done. A message in the
window above the simulation window will ask how many of these objects are
required in this content item. In other words, how many object selections that
meet the specification should RAPIDS II ask the student to perform?

Type in a number and press the Enter key. You have finished authoring that
student action, so the item editor window reappears. The identifying text
shown will be ‘<noun> that <condition>.” Replace this with text that would
make sense when preceded by the instruction “Find n _ ” where n is the
number of required identifications. If your identifying text is “parts that

181

ORIGIiNAL PAGE IS
OF POOR QUALITY

RAPIDS Il Authoring Manual — August 1990 7. Authoring Instructional Content

provide electrical power under normal flying conditions” and » for a Find
several objects content item is 2, then RAPIDS II will ask students to

Find 2 parts that provide electrical power

under normal flying conditions
Using Find several objects, you can require identifying all of a class (without
constraining the order in which students make their selections), simply by
setting n to the number of objects in the class. You can also require only that a
certain number of the objects described be selected by the students. RAPIDS
IT will permit these selections to be made in any order.

Finding a Reglon It is also possible in RAPIDS II to ask the student to click anywhere in a
region on the simulation window. The third option in the type of action menu
is Find the region. When you make this choice, the mouse pointer changes
shape and you are asked to drag out a rectangle that surrounds the region in
which you want the student to click.

When you finish dragging out the window, the item editor window returns.
The generated identifying text specifies the region that is to be selected. (See
the figure below.) You can edit this text to create a more interpretable prompt
for the student.

Performing Your lessons can also require specific switch manipulations by the student.

Switch Changes Unlike a Find Object action, a switch manipulation will actually affect the state
of the simulation, both during authoring and in the student environment. It is
therefore easy to author a sequence of related simulation actions in a content
unit.

Try authoring the actions of a ‘Left engine start on ground’ unit for the
EngineStarter course. To carry out this example, begin by selecting New to
create a new content unit.

Unit Editor

Name:

Comment:

System Configuration: Initial State
Exposition before student action: Not Def ined
Exposition after student action: Not Def ined
Order of presentation: Random
Present identifying text in test mode? No

Give the new unit the name ‘Left Start On Ground’ and then choose New
from the menu bar again. This time the item editor window will open, as in
the figure below.

RAPIDS II Authoring Manual — August 1990 7. Authoring Instructional Content

Ctem Editor
Identifying text:

Exposition before student action: Not Defined

£ xposition after student action: Not Oefined

Action: Switch Menu Find Indicator Replace TestEquipment FreePlay
Tolerante: ©

Action time start: 0

Action time end: 2147483647

Time to wait after action: ©.0

Simulator status; 0On

To author the required student action, first click on the Switch option in the
Action field. The message window will prompt you to ‘throw the desired
switch’.

One of the strengths of the RAPIDS II
approach to authoring is that it lets you specify
many student actions by performing them. All
you have to do to author this student action is
to click on the left start button (the object at the
top left corner of the simulation window).

Simulation Window
————_en olafl unon

Rt

After the effects of the switch throw have occurred, click in the clock window
to stop the simulation. This marks the end of the required student action.

Identifying text: Set switch Left Start Button to Pressed,

Exposition before student action: Not Defined

Exposition after student action: Not Defined

Action: Menu Find Indicator Replace TestEgquipment FreePlay
Tolerance: @

Action time start: @

Action time end: 2147483647

Time to wait after action: 11.591

Simulator status; orf

Just as with Find Object authoring, authoring of simulation actions also
generates identifying text automatically. Naturally, you can edit these phrases
if you want to. Click Done in the top menu bar to end the creation of this
switch-based content item.

Replacing an Your RAPIDS II lessons can require that the student replace a specified

Object object. This feature is used in maintenance training sessions that call for the
student to follow a sequence of troubleshooting actions that includes one or
more replacements. Authoring such a student action is straightforward. First
select Replace from the options menu.

183

ORIGINAL PAGE IS
OF POOR QUALITY

RAPIDS Il Authoring Manual — August 1990 7. Authoring Instructional Content

Then, in response to the prompt in the message window, click on the object in
the simulation window that the student should replace. When the simulated
effects of the replacement have occurred, click in the clock window to stop the
simulation. Then the item editor window will reappear and you can edit the
identifying text.

indicator Tests You can require that a student identify the value displayed by an indicator.
RAPIDS II will help you compose a menu of choices for the student,
including the value actually displayed.

You can experiment with this authoring capability using the EngineStarter
system. Create a new item in an existing content unit. Click on the Indicator
button in the actions menu. You will then be instructed to

Select the indicator.
After you make an indicator selection (by clicking on the object), identifying
text will appear in the top field of the Item Editor window. This text can be
edited.

Item Editor

identifying text: Find the Left Engine Instruments and check its state.
Exposition before student action; Not Defined

Exposition after student action; Not Defined

Action: Switch Menu Find Repiace TestEquipment FreePlay
Tolerance: @

Action time start: @

Action time end; 2147483647

Time to wait after action: 0.9

Simulator status: 0On

Menus: Multiple- In RAPIDS II, you can present multiple-choice questions to the student. The

Choice choices are always presented in the form of a menu. RAPIDS II supports four

Questions types of multiple-choice questions. When you begin authoring a student
action and pick the Menu command from the options menu, you will see a
menu of four choices appear in the scratchpad area:

‘Name the highlighted object
One of one
One of several
Al of several

Whichever of these four types of menu-response student action you choose,
you will be asked to build a menu of possible choices. The student interface
for building these menus is the same as that used for authoring test equipment
values, as described above.

One highlighted object. After you choose the option, you will be asked
to select the object that should be highlighted. Indicate the object by clicking
on it. You can then edit the menu of choices, which will include the name of
the item you indicated. You won't be able to exit menu editing until you
provide at least one other choice.

184

RAPIDS Il Authoring Manual — August 1990 7. Authoring Instructional Content

View Done Save Exit

To add a menu entry, select “Add Menu
Entry", then type the new entry.

To change a menu entry, select it, then
type the new entry.

To delete a menu entry, select it, then type

"Delete". KA R
When the menu is correct, select "Menu is Emerg%qcy Power Circuit
OoK™. ight Relay

Menu item>> Emergency Power Circuit SpaceShuttle

Menu item>> SpacaShuttle Add Menu Entry
Menu is CK

The editor will next ask you to indicate the correct choice in your menu. The
item editor window will then reappear with the identifying text, “Name the
highlighted object.” You might want to change this to be more contextually
appropriate.

One of one. This type of menu offers a set of text choices, with only one
correct answer. When you choose this option, you are given the opportunity
to construct a menu of text items. When you indicated that Menu is OK,
you will be asked to pick the right answer from the menu.

The identifying text constructed for multiple choice menus should be edited to
something more readable. It often makes sense to make use of the pre-
exposition in defining a menu-type content item, as well.

Identifying text: <{nouns> that <(condition>.

Exposition before student action: Not Oefined

E xposition after student action; Not Defined

Action: Switch Menu Indicator Replace TestEquipment FreePlay
Tolerance: @

Action time start: @

Action time end; 2147483647

Time to wait after action: 9.0

Simulator status: On

One of several. This option is to be used when you are happy to take any
one of several correct menu responses from the student. You will use the
standard menu-construction options to build up your menu. Then, after you
have chosen Menu is OK, you will be asked to select all the correct
answers. When you have picked them all, click on No More Answers, at
the bottom of the menu.

185

RAPIDS Il Authoring Manual — August 1990

View Daone Save Exit

Menu item>)> Lett Start Button
Menu item>> Right Start Button
Menu item)>)> Left Throttle
Menu item>> Right Throttle
Menu item>> Emergency Switch

What are the correct choices from this
menu?

Left Start Button
Right Start Button

7. Authoring Instructional Content

Select gne or more

Emergency Switch
Left Start Button
Left Throttle
Right Start Button

ight Throttle
No More Answers

As in the case of single-answer menus, the composed identifying text will

need to be edited.

All of several. This type of menu-based student action is one that
requires that the student click on more than one answer in the menu. After
you compose the menu using the same approach outlined above, you will be
asked to designate all the choices that will be required for this menu.

Such a menu might be used to provide answer choices to a question such as
“What are the possible power sources for a normal (non-emergency) engine

start operation?”

186

RAPIDS II Authoring Manual — August 1990 7. Authoring Instructional Content

Expositions

The RAPIDS II exposition editor is automatically invoked whenever you click
on an exposition field in the unit editor window or in the item editor window.
The exposition editor appears as a set of windows and menus to the left of the
simulation window, in the same area that is used (in the student environment)
by the message window.

DisplayWindow

Clock
CU EXPOSITION 0:0:16 -fLeft Start Button
Add Done Move

Edit Delete Run t r?u.m.
o+ Throttle

Text:Take some time to look over the engine
starter system schematic shown at the right, 3 T S §
Note the names of the slements, and , Timer

* I EX
L

:

Using this editor, you can create expositions that

» present text in the message window

» clear the message window

» wait for a student click

+ wait for a specified amount of time

* play a videodisc segment

« highlight an object in the simulation window

+ highlight an arbitrary region in the simulation window
« change the scene displayed

« perform a floating window operation

Expositions consist of sequences of exposition elements. You can select an
element by clicking on it. [n the exposition shown below, a floating window
element (one that opens a window) has been selected. When you choose the
Add menu item, a pop up menu with two choices: Before and After appears.
The new exposition item you are about to create can be placed either before or
after the selected item.

187
OR!GINAL PAGE IS
OF POOR QUALITY

RAPIDS Il Authoring Manual — August 1990 7. Authoring Instructional Content

CU EXPOSITION | 0:0:16

Add TDone Move
Edit Delete Run

Clear-Text:

Text:

Take some time to look over the engine starte
r system schematic shown at the right. Note t
he names of the elements, and try to understs
nd the flow of electrical power through the s
ystem. When you are ready to identify a few p
arts, click the left mouse button,

¥ait-for-student:

After you choose Before or After, you will see a menu that offers the choice
of all the different types of exposition items, as shown below.

[Whichtypez |
Text

Clear-Text
Wait-for-student
Wait
Video
Highlight/Unhighlight-Object
Highlight/Unhighlight-Region
Show-Scene
Floating-Window

If you choose Text, you will be invited to type your text element in the area
just under the exposition window menu bar. The text word wraps
automatically, so you don't have to use the return key. Typing the return key
ends the entry of the text element. At this point the text you have entered will
appear as an element in the list of exposition elements in the exposition editor.
It will be preceded by Text: in bold, as you can see in the accompanying

figures.

If you choose Clear-Text, the element label Clear-Text: will appear in the
list of exposition elements. In the student environment, a Clear-Text element
will have the effect of erasing the message window.

Wait-for-student, will also simply add a label to the list of exposition
elements. At run-time, this element will make the cursor shape change to a
mouse with the left button highlighted, signalling that the student must click to
go on.

188

RAPIDS II Authoring Manual — August 1990 ‘ 7. Authoring Instructional Content

If you choose Wait, you will be asked how many seconds the exposition
should wait before preceding to the next exposition element. Type a number
and the return key. '

The Video option in the Which Type? menu is used
to specify an exposition element that will play a
video segment to the student. When you choose this
option, a menu will pop up that lets you specify
which video segment you want to play.

On
Off
Single-Frame
Frame-Sequence

If you select Highlight/Unhighlight-Object, then you will be prompted
to click on the object that you want to highlight or unhighlight.

If you choose Highlight/Unhighlight-Region, then you will be asked to
drag the mouse pointer from the top left to the bottom right of the rectangular
area that you want to have highlighted.

The Show-Scene command on the Which Type? menu has the effect of
changing the simulation scene displayed (both in the authoring and in the
student environments). Use this command to change scenes under the control
of an exposition.

If you select Floating-Window from the Which Type? menu, you will be
presented with another menu that offers you the choice of floating menu
operations. See the figure below.

CU EXPOSITION Fm_gzm

Add “Lone Move
Edit Delete Run
Clear-Text:
Text:

Thare ars four possibie sources of electrical
power for the engine starting system.

VYait-for-student:
Highlight/Unhighlight-Object: External Power
Floating-¥indow: clear window
Floating-¥indow: reshape: (-1 265 169 92)
Floating-¥indow: show text:

¥hen the aircraft is on the ground and its en

gines are off, an external power unit provide
s slectrical power,

189

RAPIDS II Authoring Manual — August 1990 7. Authoring Instructional Content

A floating window is a window of a shape and size determined by the author
that ‘floats’ above the simulation scene. When you want to create and use a
new floating window, your exposition will typically contain a sequence of
Floating-Window operations: first a Shape, then an Open, followed by a
Text action. If you want to, you can re-use the floating window, clearing it,
moving it, and sending text to it again. Eventually, you will want to Close
the floating window.

DisplayWindow
0.0.7 -EE. L eft Start But
* »

CONTENT UNIT

New Edit _ Gop Delete Fla \’\’
H—iT

[3
There are four possible sources of electrical k:{:m
power for the engine starting system.

y
Timer

Find the External Power.

» r S *
4

~

When the aircraft is
on the ground and its
engines are off, an
external power unit
provides electrical
power.

T KYTT

A Floating Window with Text

190

RAPIDS Il Authoring Manual — August 1990 7. Authoring Instructional Content

Using Play to After building a content unit, it is a good idea to Play the unit in the content
Test a Unit editor. After you select the Play option, you will be asked what mode you
want to use. See Chapter 2 for a discussion of the three instructional modes.

View Done Save Exit

Do you want to play this content unit in
INSTRUCT, DRILL or TEST mode?

Instruct
Drill

Test

DisplayWindow

- {eft Start

) ' *
Left
=i Throttle

L 4 \
Timer

CONTENT UNIT 0:0:16

New Edit Cop Delete Pla
Content Units

Introduction to Parts

The Global Editor Commands

The menu bar at the top of the simulation window contains three commands,
Done, Save, and Exit. As you have already seen, Done means that you are
done defining a content item when the item editor window is open, and it
means that you are done defining a content unit when the unit editor window
is open.

Save Save will save the current set of content units, preserving any changes you
made since the last save.

Exit Exit will close the content editor, ending the current authoring session. You
will be asked whether you want to save changes.

191

|

Instructional Organization

This chapter deals with creating and editing instructional plans. A training
course must have an instructional plan (or instructional organization), which
determines under what conditions each content unit will be presented to a
student. A course's instructional organization also determines in what mode a
content unit will be presented: instruct mode, drill mode, or test mode.

As Chapter 1 pointed out, instructional plans can be authored before, after, or
in step with content unit editing.

Simulation
Construction

Instructional
Organization
Authoring

Content
Authoring

.‘

Plan Before Content

Simulation
Construction

\

Content
Authoring

Instructional
Organization
Authoring

Content Before Plan

Simulation
Construction

" T~

Instructional
T, — Content
Organization | .g— | Authoring
Authoring
Parallel Development

In the figure above, the darker boxed items represent the process of building
instructional plans.

192

RAPIDS 1I Authoring Manual — August 1990 8. Instructional Organization

A Sample Instructional Organization

The figure below displays an example of an instructional plan that takes
advantage of defined content units created for a course called

ENGINESTARTER.

Exit

Save
AddUnit
DeleteUnit
MoveToParent
MOVQTOTOP 4 soeessraarse .‘...(-; i
MoveToNade Intro to Operation e TR L i
SetDepth
RepositionUnit
CourseParams

Name: Elesentary 0r11)

Comment:

Order of presentation: Randos

Content:

Unit Weight Mode Condition Maximum Minimum Limit Accuracy Speed
Start Left Ory 1 Dri1} Not def ined —— 1 —— ~—- -
Start Right Dr 1 Dril Not def ined - 1 - .- -

Starting the Plan To start the instructional organization editor, use the Plan Editor option in the
Editor RAPIDS II tools menu. You will have to provide two parameters, PlanFile
: and ContentFile. PlanFile is the name of the file that has the plan for the
course; ContentFile is the name of the file containing the content units that the
course should contain. ContentFile does not have to be specified if it has the

same name as PlanFile.

RAPIDS Il Toois

imod File: STARTERPLAN
Content Unit Fue: STARTERTASK&

Generic Edito

Scene Editor Plan Editor

Build Simulation Run Instruction

Run Simulation

193
ORIGINAL PAGE IS

OF POOR QUALITY

RAPIDS Il Authoring Manual — August 1990 8. Instructional Organization

Alternatively, one can start the organization editor for the simple
EngineStarter course, by typing

(ImodEditor 'STARTERPLAN 'STARTERTASKS)
in an Exec window. The same name can be used for both files. The
actual file names on disk have appended three-letter extensions that
serve to specify which type of data they contain — instructional plan or
content units. Most authors will prefer to use the RAPIDS If Tools

menu.
The Editor's The largest window of the instructional plan editor is its tree window. This
Windows window displays a tree of organizational units that organize the content of a

course in a hierarchical fashion.

To the left of the tree window is the instructional plan editor's menu. The top
two commands (Exit and Save) apply to the planning session as a whole.
The other commands have effects on particular nodes in the plan.

Above the tree window is a message window for the display and entry of text.

Below these windows is an organizational unit editor window. Here data
associated with particular nodes can be entered and edited.

Creating a New Instructional Organization

One way to get acquainted with the instructional plan editor is to build a plan
from scratch. Begin by starting the editor with a new PlanFile name. For
example:

(ImodEditor 'MYSTARTERCOURSE 'ENGINESTARTER)
The editor window will open with a display that includes only the top node of
the new instructional organization, as in the figure below.

Exit

Save

AddUnit
DeleteUnit
MoveToParent
MoveToTop
MoveToNode
SetDepth
RepositionUnit
CourseParams .Fw_"ml

If you click on the node, a new window will open below, showing the data
associated with the selected node. As the figure below shows, the top node

194

RAPIDS Il Authoring Manual — August 1990 8. Instructional Organization

will be highlighted to show that it is selected. The organizational unit editor
window below lists the data fields associated with an instructional unit.

Exit

Save

AddUnit
DeleteUnit
MoveToParent
MoveToTop
MoveToNode
SetDepth
RepositionUnit

CourseParams |

Name: Top Node

Comment:

Order of presentation: Randos

Caontent:

Unit ‘Weight Mode Condition Maximum Minimum Limit Accuracy Speed

Associated with each unit called in a plan are these data fields:

» weight: the importance of the called unit (relative to the others in
the list)

» mode: whether to execute a called content unit in Instruct, Drill,
or Test mode

« condition: an optional expression that controls whether to present
the unit

« maximum: the maximum number of times to present the unit

» minimum: the minimum number of times to present the unit

o limit: the time limit for the unit, in minutes

 accuracy: the accuracy score (%) required to complete the content
unit successfully

» speed: the speed score required to complete the content unit
successfully

Certain of these fields apply only to content units. The mode, accuracy, and
speed fields have undefined values for organizational units. The data fields
used to control the presentation of organizational units are condition,
maximum, minimum, and limit. (Although accuracy requirements for
organizational units are not authored as field values, accuracy scores
computed and returned in the student environment.)

195

RAPIDS Il Authoring Manual — August 1990 8. Instructional Organization

Menu Commands The menu to the left of the organizational tree window
in the AddUnit lists the top level commands of the instructional plan
Instructional Plan DeleteUnit editor. The effects of most of these commands are with
Editor eleteUn reference to the currently selected node. Add Unit,
for example, adds a new descendent of the currently

MoveToParent selected unit. Delete Unit deletes the selected unit.

MoveToTop

MoaoveToNade

SetDepth

RepositionUnit

CourseParams

Try adding a unit to the top node in your otherwise-empty course. When you
click on Add Unit, you will be asked whether the new unit is to be an
organizational unit or a content unit. Click the left button if you want an
organizational unit; click the right button if your want a content unit.

Click left button Tor an Urganizationai Unit—— click right button for a Content Unit,
Bxit

Save

Choose the left button now, to specify that you want a new organizational
unit. You will be asked to name the unit. Type the Return key when you have
finished entering the name.

Please name the new Organizational Unit >>
Exit

Type in the name ‘Device Organization’ now. Notice that the unit editor
window for the top node now displays data for the new node you have
created, as is shown in the figure below.

196

RAPIDS II Authoring Manual — August 1990

Exit

Save

AddUnit
DeleteUnit
McveToParent
MoveToTep
MoveToNade
SetDepth
RepositionUnit

CourseParams

Organizational Unit
Name: Top Node

Comment:

Order of presentation: Randos

Content:

Unit Weight Mode Candition Maximum Minimum Limit Accuracy Speed
Device Organiz 1 oM Mot def tned — B ! — n/A N/A

Use the same actions to create two new organizational nodes, one called ‘Intro
to Operations’ and the other ‘Operation Drill.” Information about these units
will also appear in the organizational unit editor window for the top node, as
in the bottom of the figure below.

Exit

Save

AddUnit
DeleteUnit
MoveToParent
MoveToTop
MoveToNode
SetDepth

evice Organization]

RepaositionUnit e vo Operationy
CourseParams peration Ori1)] .

Name: top Node

Comment:

Order of presentation: Randoa

Content:

Unit Welgn Mode Condition Maximum Minimum Limit Accuracy Speed
Device Organiz 1 orimn Not def ined — 1 —

Intro to Opers 1 ori11 Not def ined — 1 —_

Operation Dril 1 o1l Not def ined — 1 —_—

197 ORIGINAL PAGE IS
OF POOR QUALITY

8. Instructional Organization

RAPIDS Il Authoring Manual — August 1990

All three of these nodes created thus far were descendents of the top node. To
create a descendent of the ‘Device Organization’ node, first click on that node
to select it. Then choose the Add Unit command. This time, click on the
right button to specify that the new node will be a content unit. Give the node
a name like ‘Intro to Parts.” At this point, your screen should show something
like the figure below.

Exit

Save

AddUnit
DeleteUnit
MaoveTcoParent
MoveToTop
MoveToNode
SetDepth
RepositionUnit

fey e UranFatior

“ [ntro to Operationg
Operation Dri1]

CourseParams _
Cirrarisaboral it
Name: Oesvice Organization

Comment:

Order of presentation: rRandos EEUSIERE

Content:

Unit Weight Mode Condition Maximum Minimum Limit Accuracy Speed
Intro to Parts 1 ortN Not def ined cm— 1 ———

Create another new content unit called ‘Diverter Valve Intro’ and then select
the ‘Intro to Parts’ content unit in the organizational tree. A window with
content unit information will open below the tree window, in place of the
organizational unit editing window. As is shown in figure below, the actual
content of the ‘Intro to Parts’ node is not yet defined.

198

8. Instructional Organization

RAPIDS II Authoring Manual — August 1990 8. Instructional Organization

Exit

Save

AddUnit
DeleteUnit
MoveToParent
MoveToTop
MoveToNode
SetDepth

:lntrojtu Parts

Davice Organization|

RepositionUnit
|CeurseParams |

Operation Drill

Name: Intro to Parts
Content: not defined

To define the content, you must associate the content unit node in the tree with
one of the content units defined with the content unit editor (see Chapter 3).
The instructional plan editor knows about the content units in the file referred
to by the ContentFile parameter that was specified when the editor was
invoked. (In this example, the file of content units is called ENGINESTAR-
TER.) If you click the mouse in the area to the right of the Content label
(where it says ‘not defined’ in this example), a list of the content units in that
content file will appear, as shown below.

Introduction to Parts
Otverter Valve Interactions
Left Engine Start on Ground
Right Engine Start on 8round

Start vhen engines die in the air
Exit EngineStarter Test

Save

AddUnit
DeleteUnit
MoveTcParent
MoveTaoTop
MoveTcoNode
SetDepth

RepositionUnitiro—y o

CourseParams

Name: iIntro to Parts

Content: not defined

199
ORIGINAL PAGE IS
OF POOR QUALITY

RAPIDS II Authoring Manual — August 1990 8. Instructional Organization

This list is a menu for the content of the selected unit in the tree window. In
this case, click on the first item in the menu ‘Introduction to Parts.’ The ‘not
defined’ in the bottom window will be replaced by the name you have chosen
from the menu, as shown below.

Exit

Save

AddUnit
DeleteUnit
MoveToParent
MoveToTop
MoveToNcede

SetDepth
Osvice Orq‘niunodw

RepositionUnitirro==oq ntro to Operations]
CourseParams

Name: Intro to Parts
Content: Introduction to Parts

Carry out a similar sequence of actions to assign the content unit called
‘Diverter Valve Interactions’ to the instructional plan node of the same name:

SetDepth {Tners G0 Pares)
Qevice Organtzatio

RepositionUnit Intro to Operation

CourseParams Operation Dri1l

Name: Divercer Valve Intro
Content: Diverter Valve Interactions

As you continue to add nodes to the instructional plan, you will observe that
the tree automatically spreads out to accommodate the newly defined
elements. A course something like the one shown below is included in the
release, with the name 'ENGINESTARTER.

200

RAPIDS II Authoring Manual — August 1990 8. Instructional Organization

ooooooooooooooooooooooooo

- “Tntro to Parts
Davice Ur‘gan‘ization ////////////////1///////1:4 sevsssnr,
‘Oiverter Yalve Intro:

..................................
VP vesresrssss sttt tsi,

Start Left Int.ro

’////I////l////////////////// (4

Start R1ght Intro:

'uu

Operation Orill

In this course, the same content units often serve as the content of different
nodes. For example, a content unit called ‘Left Engine Start on Ground’ is
used as the content of two nodes in the instructional plan above. Both ‘Start
Left Intro’ and ‘Start Left Drill’ have this content unit as their content. The
difference between them is the mode in which the content unit is to be played.

Mode There are three modes that a content unit can be played in: Instruct, Drill, and
Test. You can choose the mode that you want by clicking the mouse on the
current value shown in the Mode column of data in the organizational unit
editor window. A menu of the three mode choices will pop up. In the figure
below, the default value of Drill has been changed to Instruct for one of the
two content units.

MoveToTop ‘Star
MoveToNode Top Node Intro to Operations Star
~Start
SetDepth
St
: : Elementary Dr1'11]-</m
Repositio
P nUnit Operation Orill St
CourseParams Advanced Drillf———iStar
Organizational Unit
Name: Elementary
Comment:
Order of presentation: Randoms
Content:
Unit Weight Mode Condition Maximum Minimum
__
Start Left Inti 1 Instruct Not defined -—— 1
Start Right In 1 Drill Not defined -—— 1

201

RAPIDS II Authoring Manual — August 1990 8. Instructional Organization

Student Evaluation in RAPIDS 1i

As a student works through a RAPIDS II course, a number of data on his
performance are recorded. The scoring of content items and content units is
automatic. As an author, you can determine what should be presented to a
student, based on his or her performance.

Iltem Scoring When an item is completed in Drill or Test mode, it returns two values:
1. an accuracy score: 1 if the student got the item correct on the first
attempt; 0.5 if the item was correct on the second attempt; else 0
2. aspeed score: the time required for the student to complete the item.
(The completion time of an item is the time at which the student
either gets the item right, gets it wrong twice, asks for the answer by
clicking on Don't Know, or exceeds the time limit of the item.

If an item is not attempted within a certain amount of time, then RAPIDS II
performs the action and presents the next item. The time limit for an item is
two times the time limit for its parent content unit, divided by the number of
items in the unit.

Content Unit The accuracy score for a content unit is the percent correct, computed as

Scoring the number of items performed correctly, divided by the number of items in
the content unit (thus items not attempted due to time limits count as
incorrect). For a content unit that is attempted multiple times, the score is the
higher of a) the last complete performance of the unit, and b) the score of the
final, incomplete attempt. This algorithm recognizes a learner that nearly
finished a final round, and performed well on it, even though the previous
attempt was poorly done. It also does not unfairly charge a learner who has a
low score on a final round that was just begun; instead it uses the score on the
last complete round if it is higher.

The speed score for a content unit is the total response time of all the
items in the unit. If a content unit is not completed, the items not attempted
are essentially assigned the average time of the completed items. If a unit is
attempted multiple times, and the final round is not complete, then the speed
score for the unit is the speed score for whichever round was used in counting
the accuracy score.

Starting, Since the instructional plan might require that a unit in progress be terminated
Repeating, and prior to completion, due to a time limit at some level, RAPIDS II must guard
Scoring Units against starting or repeating a unit when there is almost no time available. If a

unit has no time limit, or the time limit is less than 3 minutes, then it is started
unless a condition causes it to be skipped or unless the time available is less
than the time limit. Thus short units are not started unless there is time to
complete them. If a unit has a time limit greater than 3 minutes then the unit is
started as long as there are at least 3 minutes available. Thus we avoid starting
a unit and then ending it just minutes later because time has expired.

202

RAPIDS Il Authoring Manual — August 1990 8. Instructional Organization

The following process is followed if 1) there are no Conditions that control
initiation of the unit, and 2) there are at least 3 minutes available for the unit,
or it has no time limit specified:

A unit presents all of the member items or units at least one time, unless its
time limit (or a higher-level unit's time limit) is reached prior to completing the
first presentation. If the minimum number of presentations is greater than 1,
then the unit is repeated until the minimum is reached or time expires. At the
conclusion of the minimum number of presentations, the student's
performance is compared to the criteria to determine if the unit should be
repeated further. An accuracy score is computed for all units as the weighted
average of the accuracy scores of the completed units. A speed score is
computed for content units as the total response times of all the called items in
the unit.

The Unit is passed successfully and not repeated if:
« the accuracy score meets or exceeds the criterion, and
« the total response time is equal to or less than the criterion

If this test fails, then the Unit is repeated (and the student scores are
recomputed) if:

» the unit has not been presented the maximum number of times, and

« the time limit for the unit, or a higher-level unit, has not been reached

Otherwise, the Unit is terminated, returning either the score on the previous
repetition or the score on the last, incomplete, presentation, whichever is
higher.

Example:

Here is the body of a particular organizational unit. It lists the member units
and the parameters which control presentation of those units:

ynit wt mode cond max min limit _accuracy speed

1.1.2 - 1 - - 1 20 - -
1.1.2 1 D - 4 1 15 &5 7
1.2 2 - - 1 1 20 - -

This unit first presents Unit 1.1.2 in Instruct (I) mode. The student may study
for up to 20 minutes, but, because the maximum number of repetitions was
not specified, it will be presented only once. Then the same unit is presented
in Drill (D) mode as many as 4 times. When the student can get 85% of the
items correct, completing the unit in under seven minutes, the Drill is not
repeated further. If the student cannot attain this proficiency in 15 minutes, or
after 4 repetitions, then the Drill is ended.

Finally, unit 1.2 is presented. It is an organizational unit, and it is presented
just once over the course of 20 minutes. It might consist of several content
units or even more organizational units. If the student can learn the material
and get through any drills or tests presented within the 20 minutes, then unit
1.2 ends successfully.

203

RAPIDS I Authoring Manual — August 1990 8. Instructional Organization

The student's score on this unit is a weighted average of the score on unit
1.1.2 (weight 1) and unit 1.2 (weight 2). Notice that the sum of the time
limits of the parts of this example unit is 55 minutes. A planner might allocate
55 minutes to this unit, theretore. If s/he did, then the strategy would be to
work through each unit until passed or until time runs out on that unit. But the
time limit of a parent unit need not be the sum of its parts. By assigning more
time to the unit than the sum of its component units, the planner can execute
the following instructional strategy:

ork on each part for the specified time and number of repetitions.
If the student can't reach proficiency on a unit in the time allocated to
the unit, go on to the next unit. When all units have been presented,
see if there is time remaining for the parent unit. If so, go back and
work on the units that were not passed.

Thus a relatively rich set of instructional alternatives are provided, all achieved
by the setting of a few values, rather than by involving programming-like
skills.

204

RAPIDS Il Authoring Manual — August 1990 8. Instructional Organization

Authoring Conditional Course Sequences

Your RAPIDS II course can be authored so that certain content units are
presented only to those students who need additional exposure to the material
that those units deliver. This control over course sequence is determined by
the conditions you place on units in the instructional plan.

Conditions You can author conditions that determine whether or not a unit will be
delivered. A condition is an expression that will evaluate to either ‘True’ or
‘False.” A simple RAPIDS II condition might be
Accuracy of Intro to Parts < 0.8

Here we follow the steps required to build such a condition. The author has
decided that the unit called ‘Start Left Intro’ can be skipped unless the student
was less than 80% accurate on the earlier ‘Intro to Parts’ unit. The condition
is created entirely by making selections in pop-up menus. When the ‘Not
Defined’ condition is selected, the first menu pops up, as shown below.

MoveToTop <S“"”
. ntary) L0002,
MoveToNode |mooae Intro to Operations]<-—"‘ﬁ.§%‘$£.
‘Start
SetDepth ek,
St
Elementary Ur111|’<?’”'

RepositionU
positionUnit Operation Orill St
CoursePara iR Advanced Orill v

Organizationai L NOT

Name: Eilend (

Comment;: Number

Order of pr{ Parameter yoq

Content:

Unit Weight Mode Condition Maximum Minimum
Start Left Int 1 Instruct -—- 1
Start Right In- 1 Instruct Not def ined -—— 1

This menu lets the user begin forming a condition. .
The simple condition to be formed here (Accuracy
of Intro to Parts is less than 0.8) begins with a
reference to a parameter associated with another
unit, the Accuracy that the student exhibited in that Parameter

unit. Unit

205

ORIGINAL PAGE IS
OF POOR QUALITY

RAPIDS Il Authoring Manual — August 1990 8. Instructional Organization

As soon as Parameter has been selected, the menu titled Select next symbol
disappears, and a Select parameter menu appears in its place.

Accuracy is just one of four built in parameters that

Accuracy conditions can refer to. Accuracy on a unit is always a

Performances | number between 0 and 1. It reflects the ratio of the

Speed number of items correct to the total number of items.
TimelnUnit Performances is a count of the number of times that a

unit has been attempted. Speed is the time it took to complete the unit the last
time that it was completed. TimelnUnit is a measure of the total amount of
time the student spent in the unit in this session.

When the Accuracy parameter iS Select parameter

selected, its menu goes away and Top Node
another one appears that lists all the Device Organization
units in the course. The author chooses Intro to Parts
the one that the parameter —Accuracy, Diverter Valve Intro
in this case — is to refer to. Choose Intro to Operations
* ‘Intro to Parts’ in this menu. (As you Elementary
complete portions of the condition, Start Left Infro
you will see them appear in the top | - Start Right Intro
window.) Advanced

Start When Dead in Air Intro
Operation Drill
Elementary Drill
Start Left Drill
Start Right Drill
Advanced Drill
Start When Dead in Air Drill

I The next symbol that this condition can contain is
O one of those in the menu that is then presented.

- Choose the less than symbol, <.

(=
dm

>
<

+

»
/

The next step in building this condition is to
specify what the accuracy of the Intro to Parts is to
be compared to. We could compare it with the
value of a parameter of some other unit, by
choosing Parameter from this menu. Since we
want to compare it with 0.8, we should choose
Number.

Select next symbaol

(

Number
Parameter

206

RAPIDS II Authoring Manual — August 1990 8. Instructional Organization

This number pad will appear. Its initial
bs cIr{l value is 0. You can click on *." and ‘8’ to
2 3 enter the number. If you accidentally click
on an unwanted digit, you can use ‘bs’ to
backspace or ‘clr’ to clear the display.

o 1

~ 8-
0w N

[~
(=
r

bs cir
3
6
9
ok

When you have composed the number in
the keypad display, click on ‘ok’ on the

pad to accept it. The pad will disappear, |
and the next menu will pop up.

0.8 |

~ £)
Qoo

Select next symbol

OR At this point, you could begin to build a complex
AND condition — one with several condition parts,
separated by ‘OR’ or ‘AND.’ For this simple

+
condition, however, you can simply choose the

* menu item Done. The completed condition will be
7 displayed in the top window of the editor.
Done
Accuracy of Intro to Parts € 8.8
Exit
Save

Organizational Unit

Name: Elementary The condition
Comment: data element for
Order of presentation: Random the ‘Start Left
Content: Intro’ unit will
Unit Weight Mode Condition now be marked
as ‘Defined.
Start Left Inti 1 Instruct Def ined
Start Right In 1 Instruct Not defined

207

RAPIDS II Authoring Manual — August 1990 8. Instructional Organization

Course You may have noticed that there is no way to specify parameters for the top

Parameters node in the tree in the organizational unit editor window. When you select the
top node, the organizational units displayed in the editor window are its
descendents. Of course, not all the options in that window would make sense
for the top node. For example, it wouldn't make sense to define a condition
for doing the course at all, since the condition could only refer to the values of
performances in parts of the course. It may make sense, however, to be able
to set a time limit for the course as a whole, and to determine how many times
the course must be (may be) repeated. The Course Params menu command
provides these features.

When you click on Course Params, you are
presented with a menu that asks which
parameters you want to set. You can determine
the maximum and minimum number of
repetitions for the course and its time limit.

Which Parameter?
Maximum Repetitions
Minimum Repetitions
Time Limit

208

RAPIDS Il Authoring Manual — August 1990 8. Instructional Organization

Local Editing in Large Trees

In large RAPIDS II courses, tree structures in the instructional plan editor
may be very large. Naturally, you can use the scroll bars to move to any point
that you want to work on in the tree, but this can take some time.
Furthermore, it may be that you would rather not view large amounts of
instructional plan material that are not relevant to the portion that you are
editing. Every time you add, delete, or move a unit in a tree, the entire tree is
redrawn. This drawing time can be noticeable and annoying in a large course.

MoveToParent The solution offered by the instructional plan editor is

MoveToTop to permit local editing of trees. Several of the the
editor commands are related to these local editing
MoveToNode options.

SetDepth

Set Depth The SetDepth command determines how much of the tree will be drawn
during editing. The default setting is 1000. This means that 1000 levels of the
tree will be displayed. You can greatly reduce the time it takes to redraw after
a change is made by setting the depth to 3 or 4. Only that many levels of the
tree will then be displayed in the window.

Focus If only a few levels of the tree are being drawn, you need to be able to change
the focus of the editor. That is, you need a way to describe what part of the
tree you want to work on. You do this by making a node the current focus.
This node will serve as the root in the displayed portion of the tree. Focus is
not the same as selection. The selected node is the one you last clicked on and
it is highlighted in the tree window. The focused node is the one that is
displayed as the root of the tree in the tree window. You select a node in order
to do something to it or to examine data associated with its descendents. You
focus on a node in order to change what part of the tree is being displayed.

Focus is changed by using one of the three menu commands Move to
Parent, Move To Top, and Move To Node. These commands only
change what part of the tree is being displayed in the tree window of the
editor; they don't have any effect on the structure of the course.

Move To Parent This command has the effect of changing the focus to the parent of the node
that is currently the focus. Notice that it does not change the focus to the
parent of the currently selected node.

209

RAPIDS II Authoring Manual — August 1990 8. Instructional Organization

Start Left lntro [Intro_to Operations

Stace Rigne [nerol
Before MoveToParent After MoveToParent
Move To Top The Move To Top command has the effect of making the top or root node of

the tree the focus of the editor's tree window. It does not change the depth, so
portions of the tree furthest from the top node might not be displayed.

Move To Node Choosing Move To Node has the effect of making the currently selected
node the focus of the tree window. In other words, that node will be shown at
the left edge of the window, as though it were the root of the currently
editable tree. Remember that you can always move above this focus by using
the commands Move To Parent or Move to Top.

210

Instructor Utilities

In the process of building a course, you will test the content units you are
constructing by using the Play command in the content editor. In order to test
the instructional plan, you'll want to run the course in the student
environment. Finally, when the entire course is complete, you'll need to
install a turnkey instructional environment on the computers that will be used
by students. This chapter describes how to test a course and how to build a
turnkey training environment. '

One feature of the RAPIDS runtime environment is specifically designed for
instructors. By starting a session in a certain way, an instructor can examine
the performance of selected students. This performance report is cast in terms
of the structure of the course that is specified in the instructional plan. This
feature is described later in this chapter.

Testing a Course

Course contents can be tested in isolation in the content editor, using the Play
command described in Chapter 3. Testing an entire course, however,
observing the sequence of unit presentations under a variety of actual
performance conditions, must be done in the RAPIDS student environment.

You can test a course by clicking on the Run Instruction command on the
RAPIDS Il Tools Menu.

211

RAPIDS I Authoring Manual — August 1990 9. Instructor Ultilities

RAPIDS It Tnals

Generic Editor Content Editor
Scene Editor Plan Editor
Build Simulation Run instruction

Run Simulation

This will set up a training environment based on the simulation that has been
built in your system. The executive and prompt windows will disappear from
the screen. Then a number pad opens so that a student number can be entered.

(See the figure below.)
a
T Enter Student Number.
1 2 3
4 5 6
7 8 9
ok 0 cir

Click on ‘0’ and then on ‘ok.” The student number O has the special
characteristic that it inhibits the recording of student data. You can carry out a
student exercise to test a course without preparing a student disk. RAPIDS
will prompt you to type the name of the course. In many cases, there will be
only one course associated with the simulation.

The set of windows that constitutes the student training environment
(discussed in Chapter 2) will then appear on your screen. You can work
through the course in the same way that a normal student would.

212

RAPIDS II Authoring Manual — August 1990 9. Instructor Utilities

You can stop the course either by selecting Quit from the options menu or by
picking the Stop Session choice from the menu that is presented after each
unit. The student environment windows will close and you will then be
presented with the number pad for the next student.

You can resume editing a course or a content unit file by typing in the
appropriate command. In order to do this you will have to type in an exec
window. The easiest way to do this is to get back your old exec window by
typing a control-E, killing the RunRapids session. An alternative approach is
to open a new exec window by using the right button menu in the screen

background.

Building a Turnkey Training Environment

Once your course is completely debugged, you will want to create turnkey
environments that cannot be disturbed by ordinary students. A different
command (Rapids, not RunRapids) is used to set up such an environment.

The command

(Rapids)
works much like RunRapids (see above) except that it does not require a
parameter. It builds the simulation and creates a clean student environment,
without exec or prompt windows, and then it opens the student number pad.
In addition, it locks the machine environment so that it cannot be altered. (For
those of you familiar with Interlisp-D, it does a (SAVEVM) and a
(VMEM.PURE.STATE T).)

Once the student environment has been locked in this way, it is impossible for
students to do anything that will have a long-term negative effect on the
environment. Even if a student somehow manages to open a Break window,
you can always resort to hitting the Reset button on the computer to restore
the environment to its initial state.

Student data is saved to a file with the name ‘STUDENT#’ where # represents
the student number. This file is saved to a directory specified by the global
variable StudentFileDirectory. If you do not set this variable, student data files
will be saved to the current directory. If you want to store student data on a
floppy, you must first set the directory variable, as in

(SETQ StudentFileDirectory ‘{FLOPPY})

213

RAPIDS II Authoring Manual — August 1990 9. Instructor Utilities

Examining Student Data

Course authors and instructors can examine
student data in the RAPIDS training [Examine Student Data
environment. Begin by signing on as student | Run Rapids Session
99. You will then be asked to select the Done
instructor activity that you would like to carry
out.

Choose Examine Student Data. You must then specify which student's data
you would like to examine. The student number pad will appear again. Enter
the number of the student whose performance data you would like to see. You
will then be asked for which course you want to examine the data. Select the
appropriate course name from the menu.

Select course
ENGINESTARTER <{suspended)

In the case shown above, the ENGINESTARTER course was suspended by
the student.

After you select the course you want, a set of windows will open that are
reminiscent of the instructional plan editor. In fact, the tree displayed is the
instructional plan of the course.

Exit

When you click on one of the nodes in this course tree, the node is
highlighted (see the figure below) and the performance data associated with
that node (for the specified student) is displayed in the window just to the
right of the tree window.

214

RAPIDS II Authoring Manual — August 1990

9. Instructor Utilities

In this figure, the ‘Intro to Parts’ unit has been presented once. It was
successfully completed in fifteen seconds with 100% accuracy.

Exit

fevice Organization

! Intro to Parts:
“0Diverter Valve Intro:

Unit Name: Intro to Parts
Number of Presentations: 1
Successfully Completed: Yes
Total Time in Unit: 15 seconds
Accuracy score: 100,0%
SpeedScore: 9 seconds

eervscsae,

....................................
;;;;;;;;;

rStart
f////////l
Tntro to Operations Srart
Operation Orill
The sibling node to ‘Intro to Parts’ is ‘Diverter Valve Intro.’ The depicted data
shows that a student got only an accuracy of only 50% on this node.
Exit
Unit Name: Diverter Valve intro
Number of Presentations: 1
Successfully Completed: Yes
Total Time in Unit: 24 seconds
Accuracy score: S0,0%
SpeedScore:; 19 seconds
{Intro to Parts’
Device Organization ; il
2 Diverter Valve
Operation Orill

. Clicking on the parent node to these two nodes shows the performance

measures interprete

d for that node. Time is the sum of the times spent in the

descendent nodes. Accuracy is the weighted average of the accuracy scores of
the descendent nodes.

215

ORIGINAL PAGE IS
OF POOR QUALITY

RAPIDS I Authoring Manual — August 1990 9. Instructor Utilities

Exit

Unit Name: Device Organization
Number of Presentations: 1
Successfully Completed: Yes
Total Time in Unit: 39 seconds
Accuracy score: 75.0%
SpeedScore: N/A

“Intro to Parts:
YOOOIIIIELPIIIPPIPPOLI Ll 00000 0000 ‘e
“0iverter Valve Intro:

..................... vorrreered

Device Organtzation

Operation Drill

Experiment with this student data browser to learn more about how RAPIDS
scores and evaluates student performance.

216

RAPIDS II Authoring Manual — August 1990 9. Instructor Ulilities

References

Hollan, J. D. 1983. STEAMER: An Overview with Implications for AI Applications in Other
Domains. Presented at the Joint Services Workshop on Artificial Intelligence in
Maintenance, Institute of Cognitive Science, Boulder, CO: October 4-6, 1983.

Hollan, J. D., Hutchins, E. L., and Weitzman, L. 1984. STEAMER: An Interactive Inspectable
Simulation-based Training System, The Al Magazine, 1984, 2.

Norman, D. A. and Draper S. W. (Eds.) User-centered system design: New perspectives on
human-computer interaction.. Hillsdale, NJ: Lawrence Erlbaum Associates, 1986.

Kieras, D. E. What mental model should be taught: Choosing instructional content for complex
engineered systems. In J. Psotka, L. D. Massey & S. Mutter, (Eds.) Intelligent Tutoring
Systems: Lessons Learned. 1988, Hillsdale, NJ: Lawrence Erlbaum Associates.

Towne, D. M. A generalized model of fault-isolation performance. Proceedings, Artificial
Intelligence in Maintenance: Joint Services Workshop, 1984.

Towne, D. M. A generic expert diagnostician. In The Proceedings of the Air Force Workshop
on Artificial Intelligence Applications for Integrated Diagnostics, 1986.

Towne, D. M. The generalized maintenance trainer: Evolution and revolution. In W. B. Rouse
(Ed.), Advances in man-machine systems research, Vol 3, JAI Press, 1986.

Towne, D. M. and Johnson, M. C. Research on computer-aided design for maintainability
(Technical Report No. 109). Los Angeles: Behavioral Technology Laboratories, University
of Southern California, February 1987.

Towne, D. M. and Munro, A. Generalized maintenance trainer simulator: Development of
hardware and sofrware. (Technical Report No. 81-9) San Diego: Navy Personnel Research
and Development Center, 1981.

Towne, D. M. and Munro, A. Preliminary design of the advanced ESAS System. (Technical
Report No. 105) Los Angeles: Behavioral Technology Laboratories, University of
Southern California, December 1984.

Towne, D. M. and Munro, A. The Intelligent Maintenance Training System. InJ. Psotka, L. D.
Massey & S. Mutter, (Eds.) Intelligent Tutoring Systems: Lessons Learned. 1988,
Hillsdale, NJ: Lawrence Erlbaum Associates.

Towne, D. M. & Munro, A. Artificial intelligence in training diagnostic skills. In D. Bierman, J.
Breuker, & J. Sandberg (Eds.) The Proceedings of the Fourth International Conference on
Artificial Intelligence and Education. Amsterdam: 10S, 1989a.

Towne, D. M. & Munro, A. RAPIDS: A simulation-based instructional authoring system for
technical training. Technical Report No. 112, Los Angeles: Behavioral Technology
Laboratories, University of Southern California, 1989b.

217

RAPIDS Il Authoring Manual — August 1990 9. Instructor Utilities

Towne, D. M. & Munro, A. Tools for Simulation-Based Training. Technical Report No. 113,
Los Angeles: Behavioral Technology Laboratories, University of Southern California,
September 1989c.

Towne, D. M. & Munro, A. Two approaches to simulation composition for training. In J.
Psotka and M. Farr (Eds.), Intelligent instruction by computer: From theory to practice.
London: Taylor and Francis, in press.

Towne, D. M., Munro, A, Johnson, M. C. Generalized maintenance trainer simulator: Test
and evaluation. (Technical Report No. 98) Los Angeles: University of Southern California,
Behavioral Technology Laboratories, 1982.

Towne, D. M., Munro, A., Pizzini, Q. A., & Surmon, D. S. Development of intelligent
maintenance training technology: Design study. Technical Report No. 106, Los Angeles:
Behavioral Technology Laboratories, University of Southern California, May 1985.

Towne, D. M., Munro, A,, Pizzini, Q. A, & Surmon, D. S. Representing system behaviors
and expert behaviors for intelligent tutoring. Technical Report No. 108, Los Angeles:
Behavioral Technology Laboratories, University of Southern California, February 1987.

Towne, D. M., Munro, A, Pizzini, Q. A., Surmon, D. S, Coller, L. D., & Wogulis, J. L.
Model-building tools for simulation-based training. Interactive Learning Environments,
1990, 1, 33-50.

Towne, D. M., Munro, A,, Pizzini, Q. A., Surmon, D. S., & Wogulis, J. L. ONR Final Report:
Intelligent maintenance training technology. Technical Report No. 110, Los Angeles:
Behavioral Technology Laboratories, University of Southern California, March 1988.

Towne, D. M., Munro, A, Johnson, M. C,, and Lahey, G. F. Generalized Maintenance Trainer
Simulator: Test and Evaluation in the Laboratory Environment. (NPRDC TR 83-28) San
Diego: Navy Personnel Research and Development Center, August 1983.

218

accuracy 206, 215

of Instructional unit 14, 195
accuracy score 202
Action 177 - 186
Add New Object (generic editor) 37
Add New State 48
Add Unit 196
adding objects in the scene editor 91
advantages of RAPIDS Il 2
Affects Commands 133
All of several (menu) 186
appearances 29
arrow drawing primitive 57
Attribute vii, 64

author-defined 100
attribute and rule operations 129
Attribute Data View 101
Attribute Graphics View 103
Attribute Handle 101,140-162
Attribute Operations menu 119, 129
attributes for test equipment 159
Background (generic editor Window Op) 61
background elements, in scene editor 92
bitmap drawing primitive 57
box drawing primitive 58
Build Simulation 17, 163
BuildRapidsSimulation 15
Bury

generic editor Window Op 61

scene editor Window Op 137
Change Scene Name

scene editor Window Op 137
ChangeGridSize 62
Check Syntax 71,78
circle drawing primitive 59
Clear-Text (in expositions) 188
clock (simulation) 97
Comment (content unit) 169
Compile

scene editor 114
computer aided instruction 1
Condition (instructional unit) 13, 195, 205
conditional connection 143
conditional course sequences 205-208
configuration options 173
connecting attributes 140

Index

with the mouse 143-153
constant assignment rule 117
Content Editor 164
content item 9, 168, 177

Content Items menu 175
content unit 8, 165-174

exposition 173

editor 163, 164

scoring 202 -
continuous appearances vii, 49-52
continuous controls — rules 72
Continuous State 49-52
Copy

content unit editor 167

drawing primitive 60

generic editor 38, 52

scene editor 109
Copy to File (generic editor) 47
corrective feedback 28
course 17
course authoring 3
Course Params 208
Create

scene editor 109
Create Page

generic editor Window Op 62
Crosshairs 62
curve drawing primitive 59
Cycle

generic editor 38, 52

scene editor 109
deep simulation vi
Delete

generic editor 38, 52

scene editor 109
Delete

content item 167, 176

drawing primitive 60

unit 196
Display Window Actions

scene editor 113
Display-Window Operations 137-139
DisplayGrid 62
Don't Know 27
Done

generic editor 63

219

RAPIDS I Authoring Manual — August 1990

drawing primitive 60
drawing operations 57-60
drill mode 28
Edit
content item 175-177
content unit 166-174
scene editor Window Op 138
Edit Pause Condition 130
Editor Operations Menu
scene editor 84, 107-108
elementary rule actions 78
emphasis in authored presentations 24
EngineStarter 19
error feedback 23
examining student data 214
Expand 133
exposition 9-10, 187-191
exposition types 188
external rules 74-78
Find Object 178
Find One 179
Find several objects 181
Find the named object 179
Find the region 182
floating window 10, 24, 189-190
generic behavior rules 30, 66-74
generic editor 29-63
generic objects 29-56
Generic Objects menu 89
graphic rule actions 78
Graphic Utilities
generic editor Window Op 62
Grid
generic editor Window Op 61
scene editor Window Op 139
Grid - On/Off
generic editor Window Op 61
scene editor Window Op 139
Handle
generic editor 52
handle data view 100
handle graphic view 101
Handle Operations
generic editor 44, 54
handles 4
Hardcopy
generic editor Window Op 62
scene editor Window Op 139

hiding objects
generic editor 37
Highlight/Unhighlight-Object 189
Highlight/Unhighlight-Region 189
highlighting 24
how simulation works 96-99
identifying text 9, 174, 177
ImodEditor 194
IMTS vi
indicator 184
Inspect 132
installing RAPIDS Il 14-15
Instruct mode 28
instructional content editor 8, 163-191
instructional organization 11, 192-210
instructional plan 4, 11, 192-210
instructor utilities 211-216
intelligent tutoring system 1
internal rules 66
invisible object 48
item editor window 175
item expositions 177
item scoring 202
Label
scene editor 110
levels of representation 7
library of generic objects 6
limit (instructional unit) 14, 195
line drawing primitive 59
ling-width drawing primitive 60
local editing in large plans 209-210
locality of effect vi
Make Connection 154-159
map file 163
maximum (instructional unit) 14, 195
menu selection 25
message window 18
minimum (instructional unit) 14, 195
mode 13, 192, 195, 201
modeling at the element level 4
modes of instruction 28
mouse actions, simulation mode 111
mouse connections 151
Move
generic editor 44, 55
generic editor Window Op 62
scene editor 110
content item editor 176

Index

220

RAPIDS Il Authoring Manual — August 1990

move drawing primitive 60
Move To Node 210
Move to Page 47
Move to Parent 209
Move To Top 210
multi-scene simulation 134-137
multi-state object 33
multiple-choice questions 26, 184
Name (content unit editor) 169
needed attributes 122
New

Content ltem 175

Content Unit 166
new configuration 170
Next Page

generic editor Window Op 62
object attributes

generic editor 38
object bundle 133
object data view 100
object designation 20
object graphic view 100
Object Graphics

Generic Editor 40
Object Handles

generic editor 41
Object Info 100

object info window 86
Object Operations

generic editor 36-48

scene editor 108-110
object scratchpad 18
One highlighted object (menu) 184
One of one (menu) 185
One of several (menu) 185
Open

scene editor 110
options menu 27
organizational unit 12
out of bounds values 120
pause attributes 115
Pause On/Off 132
Pause Rules 115
Pause/UnPause 112
pauses in the Scene Editor 130
performances 206
Play (Content Unit) 167
presentation order 174

Index

Previous Page
Generic Editor Window Op 62
Primitive-Ops Menu 57
Probe 113, 160
processes viii, 65, 97
propagation of effect 4
range of rotation 50
range of translation 50
real-time rule actions 79
Redisplay
generic editor Window Op 62
scene editor Window Op 139
Rename
generic editor 44, 55
scene editor 110
Replace (content item action)183
Restore State
scene editor 115
Resume simulation 120
Rotate
drawing primitive 60
generic editor 45, 55
scene editor 110
rule authoring 64-79
by menu 66-77
rule data view 104
rule graphics view 107
rule operations menu 130
rule syntax 80-82
Rules
generic editor 45
scene editor 110
run-time corrections 117-123
Save State
scene editor 115
Scale 46
drawing primitive 60
generic editor command 56
scene editor command 110
scaled scene window 121, 137
scene 83
Scene Editor command 88
scene editor windows 84
scene icons 83, 134
scene map 135
scene navigation 135
Schedule 79
scheduled events 97

221

RAPIDS [l Authoring Manual — August 1990

scoring units 202
script (exposition) 11
SEdit editor 105
Set 133
Set attribute value 119
SetDepth 209
Show-Scene (in expositions) 189
Shrink
generic editor 63
generic editor Window Op 62
scene editor Window Op 139
simulation attribute data view 104
simulation attributes 97
simulation construction 83-137
simulation data 98-106
simulation debugging 124-134
simulation mode, scene editor 95, 111-116
Simulation Operations 87
scene editor 111-116
simulation window 18
Snap
scene editor 114
specific test equipment 160
speed (instructional unit) 14, 195
speed score 202
StartProcess 79
Stats Graphics 30, 56
State Operations (generic editor) 48-56
STEAMER 4
StopProcess 79
student action 10, 178-186
student evaluation 202-204
student interface 17-28
student number 212
surface simulation vi
switch changes 182
switch sequence 172
switch settings 22
system attributes 100
system configuration 9, 169
System Trace 116
test equipment 159-162
test mode 28
Text (in expositions) 188
text drawing primitive 59
time limit for an item 202
Trace Attributes 116
Trace On/Off 133

turnkey training environment 213
undefined attribute window 117
undefined attributes 117
undefined value 119
Unscheduls 79
V-Flip

scene editor 109
Video (in expositions) 189
View 27
viewing simulation data 99-107
Wait (in expositions) 189

Wait-for-student (in expositions) 188

weight (instructional unit) 13, 195
Who Affects Me 102, 133
Whom Do | Affect 102, 133
window operations

generic editor 61-63

scene editor 137-139

.Index

222

Copies of this publication have been deposited with the Texas State Library in
compliance with the State Depository Law.

