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ABSTRACT

We continue our earlier work on a class on nonlinearly stable Runge-Kutta local projec-

tion discontinuous Galerkin (RKDG) finite element methods for conservation laws. Two-

dimensional Euler equations for gas dynamics are solved using p1 elements. We discuss

the generalization of the local projection, which for scalar nonlinear conservation laws was

designed to satisfy a local maximum principle, to systems of conservation laws such as the

Euler equations of gas dynamics using local characteristic decompositions. Numerical exam-

ples include the standard regular shock reflection problem, the forward facing step problem

and the double Mach reflection problem. These preliminary numerical examples are chosen

to show the capacity of our approach to obtain nonlinearly stable results comparable with

the modern nonoscillatory finite difference methods. Generalizations to pk elements with

k _ 1 and the use of adaptive triangulations to minimize local errors constitute ongoing

research.
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1. Introduction. In this paper we continue our earlier work [C1], [C21, [C3], [C4],

of constructing and analyzing a class of discontinuous Galerkin finite element method for

solving conservation laws

d

(1.i) u, + _-_(f_(u))_, = o,
i=1

equipped with suitable initial or initial-boundary conditions. We concentrate on two-

dimensional Euler equations of gas dynamics, i.e., in (1.1) with d = 2, u = (p, p q,, P qu, E) t,

fx(u) = q,u+(O,p,O,q,p)*, f2(u) =qyu+(O,O,p,%p) t, where q,,qy are the velocity com-

ponents in the x and y directions, p is the density, E is the total energy,

P (7 1)(E ' 2= _ _ _p(q_ + q2)) is the pressure, and 7 = 1.4 for the air.

One distinctive feature of our approach is a local projection limiting which borrows the

successful non-oscillatory finite difference methodology, guarantees total variation bound-

edness (TVB) for one-dimensional nonlinear scalar equations and linear systems, and yields

a local maximum principle for multi-dimensional scala_ equations. Another feature of our

approach is the use of high-order total variation diminishing (TVD) Runge-Kutta type

time discretizations [S1] which renders the scheme explicit (and hence fully parallelizable)

and computationally efficient. The general framework wasgiven in [C2] for the nonlinear

one-dimensional scalar case. The TVB property and convergence were proven for general

pk elements (which give rise to uniformly (k + 1)-th order accurate schemes). Numeri-

cal results for k = 1 and k = 2 (second and third order) were shown which gave sharp,

monotone shock transitions and uniform high-order accuracy in the smooth part of the

solutions. In [C3], we applied the method to the one-dimensional Euler equations of gas

dynamics by designing the local projection in the local characteristic fields. The resulting

scheme was proven TVB for linear systems with both initial and initial-boundary con-

ditions. Numerical results included both standard shock tube problems and a problem

involving the interactions between a Mach 3 shock and a density wave - a prototype

for shock-turbulence interactions. In all cases, we obtained results comparable to those

obtained by recent nonosciUatory finite difference methods (e.g., [W], [$2]). The crucial

generalization to multi-space dimensions was carried out in [C4], where we introduced a

local projection limiting which does not have a direct counter-part in the current finite

difference schemes, guarantees a local maximum principle for a class of very general trian-

gulation (we called them B-triangulations), and maintains uniform high-order accuracy in

the smooth part of the solution. Numerical results showed the potential of the scheme in

easy handling general triangulations and boundary conditions.

The organization of this paper is as follows. In §2 we briefly describe the formulation

of the scheme. Special attention is paid to the monotone fluxes (approximate Riemann

solvers) across the edges of the triangles and to the local projections associated with them,

since they are distinct from the scalar case considered in [C4]. In §3 we present numerical

results of our P1-RKDG scheme on the the shock reflection problem, the forward facing



step problem, and the double Mach reflection prob!em. We end with some concluding

remarks in §4.

2. The formulation of the scheme. Suppose we are solving the equation (1.1)

(d = 2) on a polygonal domain ft. Let Th = {K} be a B-triangulation of f_ (see [C4] for

the definition), and set Vn = {p E L_(f_) : P[K C Pk(K) VK E Tn} where P_(K) is the

space of polynomials of total degree less than or equal to k on K. In this paper we only

consider k = 1, which yields second-order accurate schemes. Notice that the functions in

Vh can be discontinuous across the edges of the triangles in _. For scalar equations, the

discontinuous Galerkin method consists in finding Uh : [0, T] _-_ Vh satisfying

(2.1)
K

+ E_OK_f(uh(t'x))'ne'Kvh(x)dFe

- / f(uh(t,x))" grad vh(x) dx = O,

K

Vvh C Vh,

where ne,K is the outward unit normal to the edge e and f = (fl,f2). This is obtained

by multiplying (1.1) with a test function vh E Vh, integrating over a triangle K E Tn,

integrating formally by parts, and replacing u by its approximation uh. Since uh can be

discontinuous across an edge e, we replace f(uh(t, z))'ne,g by a monotone flux

(2.2)

which is consistent: he,K(U, u) = f(u) • n,,K; monotone: h,,K(u, v) is nondecreasing in u

and nonincreasing in v; L[pschitz Continuous; and legitimate as a flux:

h_,K(Uh(Xint(K)), uh(x_t(K))) = --h_,K,(Uh(xint(K')), ua(x_t(K'))) for K' 13K = e.

The line integrals in (2.1) are replaced by the two-poirit Gauss quadrature rule, and the

surface integrals replaced by the mid-point quadrature rule. The resulting O.D.E. is then

discretized by the second-order accurate WVDRunge-Kutta method in [S1] and coupled

with a local projection applied at the end of each inner step. This local projection is

crucial for keeping the nonlinear stability (a local maximum principle) of the scheme; it is

described in detail in [C4]. : _: : :

For systems Of equations, (2.1) is satisfied by each component of uh. The monotone

flux (2.2), however, is replaced by an approximate Riemann solver: the relevant quantities
ext(K)f(uh(xint(K),t) • n¢,g and f(uh(z :t)'n_i K are left-multiplied by the left eigenvectors

of some average Jacobian across e (we use the Roe average [Roe] associated with fig and

fi_-,, the cell averages of u in I( and K' whose Common edge is e, in the normal direction

to e), the scalar monotone flux (2.2) (we Use the iocal Lax-Friedrichs flux [C2]) is then

applied in each of the :reSulting local characteristic fields, and the results are projected back
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by using the right eigenvectorsof the sameJacobian. This is essentially a one-dimensional

characteristics procedure across the edge e. Details about it can be found in [C3].

Next we describe the local projection. For the scalar case, a local maximum principle

can be proven if we compute local approximate gradients using OK and Oh-,, where K and

K' are the immediate and some further away neighbors of K, and use them to limit the

deviations of uh evaluated at Gaussian points from the mean ilK. The limiting is performed

in such a way as not to destroy the formal accuracy in smooth regions. The details and

proofs can be found in [C4]. For systems of equations, the limiting should be performed in

the local characteristic fields. We adopt the simplified version of the local projection which

involves only the midpoints of the edges of K instead of all the Gaussian points (as in [C4])

and limits the deviation by considering only the approximate gradient obtained by using

OK, fiK,_ and UK'2, where K'I and K'2 are the two 'forward' facing triangles adjacent to

K; notice that the vector M - BK, where BK is the barycenter of the triangle K, is a

positive combination of the vectors BK,1 -- BK and BK,2 -- BK, see Fig. 1. (In [C4] we

used a projection that uses an additional approximate gradient obtained with backward

facing elements K'I and K'2. Our numerical experience shows that such a projection is

not needed in this framework.) The relaxation factor b, which is the ratio allowed of the

deviation of uh to OK over that computed by the approximate gradient, is chosen to be 1.5

( b > 1 guarantees second-order accuracy in smooth monotone regions). This simplified

projection reduces the computational cost and seems to work well numerically. We again

use the Roe average associated with fiK and fiK,_, where KNK'I = e, along the normal of

e, to perform the characteristic decomposition for the projection limiting at the midpoint

of e; see Fig. 1. The projection limiting is done at each midpoint independently form the

projections at the other midpoints. Then, a simple readjustment is performed to enforce

the eonservativity of the method. This renders the projection limiting simple and efficient.

In all our computations we took M = 50; see [C4].

3. The numerical examples. We use three standard test problems: the regular

shock reflection, flow past a forward facing step, and the double Mach reflection problem,

to display the behavior of our P1-RKDG scheme. We run our code on triangulations

that are obtained, essentially, by taking the usual finite difference grid and dividing its

rectangles into two triangles. (In principle, this should produce a bigger numerical diffusion

and a stronger mesh distorsion; on the other hand, these undesirable effects could be

counterbalanced by the inherent increase of degrees of freedom. Indeed, this seems to

be the case.) The objective is to verify that our scheme gives results comparable to

the results given by the recent nonoscillatory finite difference schemes for these standard

test problems. Except for the second run in Example 1, we deliberately do not use the

alignments of triangles with shock structures in order to carry out a fair comparison with

finite difference schemes. For problems involving complicated geometries and/or boundary

conditions, the advantages of our finite element schemes over finite difference methods

would be more significant. Also, for problems involving both shocks and complicated flow

3
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FIG. 1. Projecting Uh ]K 0 VI) at the midpoint M. The deviation Uh [K (M )-faK
is compared with b times the deviation at M obtained by the approximate gradient

formed with OK, ilK't, and faK, 2.

structures, Pk-RKDG schemes would show their advantage in high resolutions. Research

along these directions is currently being carried out.

In all our computations we have used the CFL-condition At sup_K le[/[K[ <_ 0.3,

where _g is the modulus of the velocity plus the sound speed evaluated at the barycenter

of the traingle K. We use the CRAY2 at the Minnesota Supercomputer Center to carry

out our computations' The code is carefully written so that most of the major loops are

fully vectorized. Due to the local structure of the algorithm, a parallel version of the

CRAY2 code could be written; we plan to do this in the future. Our graphi(is has been

done with the finite element package MODULEF. _,Ve have used 30 isovalues in all our

contour figures.

-Example 1: Regular shock reflection. This well-known example involves an

oblique shock reflecting from the lower boundary of a rectangular domain. The com-

putational domain is 0 < x < 4.12829,0 _< y < 1. The initial condition is p = 1, q_ =

2.9, qy = 0,p =-i-/1.4 throughout the computational domain. The boundary conditions

applied are: inflow boundary condition at x = 0 (prescribe all components of Uh with



valuessameas the initial condition); outflow boundary condition at z = 4.12829 (all com-

ponents are freely flowing out); enforcing the post-shock condition at the upper boundary

y = l(p = 1.7, q_ = 2.61932, qy = -.506339,p = 1.52824); and enforcing a reflection

boundary condition at the lower boundary y = 0 (if an edge e of a triangle is at the lower

boundary y = 0, then the boundary value of ut, at (x, y = 0) is chosen to be the same

as uh from !/ _ 0 + for p, q_, and p but opposite in sign for qy. The exact solution to

this problem is an incoming shock of 29 degrees with the lower boundary and a reflected

shock of 23.28 degrees. The exact solution past the second shock should be p = 2.68732,

q_ = 2.40148, qy = 0 and p = 2.93413.

In Fig. 2b we show the pressure contour computed with a refinement of the triangu-

lation in Fig. 2a corresponding to the uniform Cartesian grid 'Ax =- Ay = 1/40.' Notice

how the incident shock is approximated much better that the reflected one. This is due

to the fact that the triangles are partially aligned with the incident shock and cut the

reflected shock, increasing in this case the numerical diffusion; see Fig. 2b. In order to

see how dramatically the result can improve when triangles are perfectly aligned with the

shocks, we show in Fig. 2d the pressure contour computed with the triangulation in Fig.

2c. In this case, the Ll-error (with only three triangles) is only ten times bigger than the

Ll-error produced by the approximation displayed on Fig. 2.b (which uses 800 triangles).

This test problem is simple in structure: three constant values separated by two shocks.

We use it to test (i) the nonoscillatory property of our simplified local projection, (ii) the

behavior of the numerical reflecting boundary condition at the lower boundary, and (iii)

the effect when triangles are aligned with shocks.

\\\\\\\\\\\\\\\NNN\N,,\_\NN\\N\\N\\\!_\\\
\\\\\\\\,\,\\\_\\\\\\\\_\\\\\_\\_\\\_\\\
_\\\\\\\\\\\\\\\\_N\NNN\N\N\\x\\N\\_N\\\
\\\\\\\\\\\\\\\\\NNN\\NXN\NN\NNNNNNXNN\\
\\\\NNNNNN\N\NN,N_NNNNNxNNN\NNXXN_\_\\\\
\\\\\\\\\_NN\NNN\NN\N\\\N\\NN\\\N\\\_\\\
\\\\\\\\\\NNN_NNNNN\NN\\N_NN\NNNNNNNNNN\
\\\\\\\\\\NNN_NNNN_\_NNN\_NN\\NNNNNNN\\\
\\\\\\\_\\_\\N_\N_\N\\\\N_N\\NN\\NNNN\\
\NNNNNN_NN\N_N_\XNNNN\\X_\XX\NN\XXX\N\\

FIG. 2.A. The triangulation 'Az = Ay --_ 1/10'. The pressure below has been

computed on a iriangulation four times finer than this one.



FIG. 2.B. Pressure contour computed on the triangulation 'Az = Ay -- 1/40'.

Fro. 2.c. The triangles of this triangulation are aligned along $he shocks of

the exact solution.

• m .....

FIG. 2.D. Pressure contours computed on the triangulation of Fig. 2.c.



Example 2: Flow past a forward facing step. This is one of the two-dimensional

problems Woodward and Colella [W] used to test the behavior of various finite difference

0.6, if V < .2schemes. The computational domain is 0 < y < 1, 0 < z < - The
.... 3.0, ify > 0.2

initial condition is a Mach 3 uniform flow: p = 1.4, q_ = 3, qy = 0,p = 1 throughout the

computational domain. The boundary conditions applied are: inflow at z = 0; outflow

at z = 3; and reflecting at the walls y = 1, y = 0, z = 0.6 and y = 0.2. The comer

is a singularity. In [W], Woodward and ColeUa suggested a way to numerically treat the

singularity. We display results without, Fig. 3.b, and with, Fig. 3.c, such a treatment.

Figs. 3.b and 3.c show the density contours at T = 4 computed with a refinement of the

triangulation shown in Fig. 3.a corresponding to the Cartesian grid 'Az = Ay = 1/40'.

We can see that our pI_RKDG scheme produces results comparable with the same order

MUSCL finite difference scheme using the grid 'Az = Ay = 1/40'. We remark that since no

sharpening technique is applied in the linearly degenerate field, the contact discontinuities

are more seriously smeared than shocks. We are currently investigating the application of

Yang's artificial compression ideas [Y].

Example 3: Double Math reflection. This is the second example used in [W] to

compare various finite difference schemes. We use a different computational domain (Fig.

4a) from the one used in [W]. Our domain is physically more natural and computationally

easily manageable for triangulations. This is in contrast with finite difference methods

which would meet complications in using our domain. The initial condition is described

in Fig. 4a. It corresponds to a Mach 10 shock making 60 degrees with the bottom wall.

The boundary conditions applied are: inflow at z = 0; outflow at z = 3; reflecting at the

bottom; and the exact solution of a Mach 10 shock at the top. In Fig. 4c we show the

density contour at T = 0.2. The triangulation used is drawn in Fig. 4b. Again, we do not

try to align the triangles with the shocks, and the number of degrees of freedom used is

close to the middle case (Az = A v = 1/60)in [W]. We again observe a result comparable

with the finite difference schemes, except for the above mentioned smearing of contact

discontinuities.

4. Concluding remarks. We have discussed the generalization of the RKDG method

to two-dimensional systems of conservation laws, using the Euler equations of gas dynamics

as an example. Numerical tests using pl elements on three standard examples show

comparable results with nonosciUatory finite difference schemes and indicate good potential

of our finite element method in handling geometry and boundary conditions.
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///////////////
///////////////
///////////////
///////////////

FIG. 3.A. The triangulation 'Az = Ay = 1/5'. The densities below hve been
computed on a triangulation eight times finer.

FIG. 3.13. Density contours computed on the triangulation 'Az = Ay = 1/40'.
No treatment of the singularity aL the corner is used.

FIc. 3.c. Density contours computed on the triangulation 'Az = Ay = 1/40'.

The treatment of the singularity at the corner suggested in [W] is used.

8
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qy = -4.125 /

p=1.4

q= = 0.0

qy = 0.0

p=l.0

FIG. 4.A. The computational domain and the initial conditions.

(//////// ///
(///////_//////
(/////V/_//////
(/"////i/i//"//1/////
(//////////////

(,///// /V / // // //(//////// /////

/// //////////
/_ /,///// / ./ / // /
/V //'///V / / ////
/t" ////////!7/////
/V/i///////////
/V/////V//////
/////I/////////
/ / / S //V /i//I// /
//////////////
////////////Z/

FIG. 4.s. The triangulation 'Az = Ay = 1/10'. The density below has been

computed of a triangulation six timea finer.

FIc. 4.c. Density contours computed with lhe triangulation "A= : Ay =

1/6o '.
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