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ABSTRACT

Current engine control technology is based on fixed control parameter schedules derived for a nominal pro-

duction engine. Deterioration of the engine components may cause off-nominal engine operation. The result is an

unnecessary loss of performance, because the fixed schedules are designed to accommodate a wide range of engine

health. These fixed control schedules may not be optimal for a deteriorated engine. This problem may be solved

by including a measure of deterioration in determining the control variables. These engine deterioration parameters

usually cannot be measured directly but can be estimated.

This document presents a Kalman filter design for estimating two performance parameters that account for engine

deterioration: high- and low-pressure turbine delta efficiencies. The della efficiency parameters model variations of

the high- and low-pressure turbine efficiencies from nominal values. The filter has a design condition of Mach 0.90,

30,000-ft altitude, and 47 ° power lever angle (PLA). It was evaluated using a nonlinear simulation of the F100

engine model derivative (EMD) engine, at the design Math number and altitude over a PLA range of 43 ° to 55 o.

This work found that known high-pressure turbine delta efficiencies of -2.5 percent and low-pressure turbine

delta efficiencies of -1.0 percent can be estimated with an accuracy of 4-0.25 percent efficiency with a Kalman

filter. If both the high- and low-pressure turbine are deteriorated, then delta efficiencies of -2.5 percent to both

turbines can be estimated with the same accuracy.

INTRODUCTION

Current engine control technology is based on fixed control parameter schedules. These schedules are derived

for a nominal production engine, however, very few engines actually match a nominal engine. Manufacturing tol-
erances lead to variations from a nominal engine. Given two new production engines, one may have better than

nominal performance while the other has less than nominal performance. Larger variations result from deteriora-

tion of the engine components caused by normal component wear. The deterioration may be sufficient to cause

off-nominal engine operation. Thus, the fixed control schedules derived for a nominal engine result in reduced per-

formance for a deteriorated engine. One way to prevent this is to include a measure of deterioration in determining

the control variables.

Engine component performance or deterioration parameters can be used to tune a nominal engine model to match

a specific engine. These performance or deterioration parameters generally take the form of correction terms that

can be added to engine design parameters, such as the low- and high-pressure turbine efficiencies, or compressor

and fan airflows. The engine deterioration parameters are not directly measurable, but can be estimated.

Although several estimation techniques are available, Kalman filter techniques are particularly well suited to this

estimation problem. The low- and high-pressure turbine delta efliciencies are assumed to vary slowly with respect

to time, and thus can be modeled as system biases. Reference 1 addressed the use of Kalman filter techniques to

estimate unknown system biases. If the state vector of a linear engine model is augmented to include the bias, or in

this case, performance parameters, a Kalman filter can be designed to estimate the values. Reference 2 addressed

the estimation problem for the F100 engine model derivative (EMD) engine and proposed a Kalman filter to esti-

mate engine performance variations during flight. Reference 2 estimates five performance parameters, and includes

nonlinear calculations in the filter design.

This report comprehensively documents one possible approach to applying Kalman filter methodology to es-

timating engine deterioration parameters for a F100 EMD engine using simulated data. The study demonstrates

the process, therefore, the number of deterioration parameters estimated is limited to two: high- and low-pressure
turbine delta efficiencies. The delta efficieneies model variations of the high- and low-pressure turbine efficien-

cies from nominal. When other types of deterioration exist, the estimator must be modified to encompass those

types. The estimation process can be expanded to the identification of many more efficiency parameters, limited



only by the observability of the problem. Observability, in turn, is closely related to the number of independent
measurements available.

The design process is presented for a F100 EMD turbofan engine at a flight condition of Mach 0.90, 30,000-ft

altitude, and with a nominal power lever angle (PLA) of 47 °. The design is based on a three-state engine model

and includes more instrumentation than is available on a flight research engine. The results are evaluated using a

comprehensive nonlinear simulation of the F100 EMD engine.

NOMENCLATURE

Symbols

A,B,C,D,L,M

AJ

CIW

e

E{}
K

N1

N2

P

PLA

PT2 .5

PT4

PT6

Q,zz

RCVV

TT2 .5

TT3

TT4

TT4 .5

TT6

TMT

U

UO

I/)1

?.o2

WCFAN

WCHPC

state variable model matrices

nozzle area, in 2

fan inlet guide vane angle, deg

state reconstruction error

expected value

observer or Kalman filter gain matrix

low-pressure turbine rotor speed, rpm

compressor high-pressure turbine rotor speed, rpm

solution to the matrix Riccati equation

power lever angle, deg

compressor inlet total pressure, psia

burner exit total pressure, psia

afterburner inlet total pressure, psia

state covariance matrix

measurement noise covariance matrix

compressor stator vane angle, deg

compressor inlet total temperature, °R

burner inlet total temperature, °R

burner exit total temperature, °R

fan turbine inlet total temperature, °R

afterburner inlet total temperature, °R

composite turbine metal temperature, °R

control vector

control vector trim prediction

process no_se

measurement noise

fan air flow, lb/sec

compressor air flow, lb/sec



WF

_0

yo

gas generator fuel flow. lb/hr

state vector

state vector trim value

measurement vector

measurement vector trim value

Greek

_U

6z

6y

_H

ViL

_j

Su_rscripts

^

T

control vector perturbation

state vector perturbation

measurement vector perturbation

high-pressure turbine delta efficiency, percent

low-pressure turbine delta efficiency, percent

standard deviation of the noise associated with the jth parameter

engine deterioration vector

derivative with respect to time

parameter estimate

transpose of a matrix or vector

ENGINE DESCRIPTION

The engine simulation used represents the F100 EMD engine (fig. 1). It is a low-bypass ratio, twin-spool, after-

burning turbofan derived from the F100-PW- 100 engine (Pratt and Whitney, West Palm Beach, Florida). The engine

is controlled using a digital electronic engine control (DEEC). The DEEC is a full-authority, engine-mounted, fuel-

cooled digital electronic control system that performs the functions of the standard F100 engine hydromechanical,

unified fuel control, and the supervisory digital electronic engine control. A more detailed description of the engine
can be found in reference 3.

The following are the engine variables used in the Kalman filter design:

CIVV

RCVV

Nl

N2
PT2 .s
TT2.5

TT3
WCFAN

WCHPC

WF

fan inlet guide vane angle

compressor stator vane angle

low-pressure turbine rotor speed

high-pressure turbine rotor speed

compressor inlet total pressure

compressor inlet total temperature

burner inlet total temperature
fan airflow

compressor airflow

gas generator fuel flow



P_

TT4

TT4 .5
TMT

PT6

TT6

AJ

burner exit total pressure

burner exit total temperature

fan turbine inlet total temperature

composite turbine metal temperature

afterburner total pressure

afterburner total temperature
nozzle area

The deterioration parameters included in this study are:

r/tt high-pressure turbine delta efficiency

r/L low-pressure turbine delta efficiency

WCFAN WCHPC

igh-pressure turbine

Low-pressure turbine
TMT

I
CIVV RCW

N1

TT2. s

PT2_

PT 4

Tr4

PT 6

l"r 6

Figure 1. The F100 EMD engine.

AJ

m

MODEL DESCRItrrlONS

Two engine models of an uninstalled F100 EMD engine are used in the Kalman filter design. One is a full-

authority, nonlinear engine simulation provided by the engine manufacturer. It simulates engine operation throughout

the entire engine operating envelope. This model is used to validate the filter design.

The second model is a state variable dynamic model (SVDM), also provided by the engine manufacturer. The

SVDM is derived from the nonlinear simulation using perturbation methods. It is a piece-wise linear model contain-

ing 13 power points and simulates the full range of engine operation at the Mach 0.90, 30,000-ft altitude, and standard

day fright condition. Each power point corresponds to a different PLA, and is comprised of dynamic matrices and

trim values for the state, control, and measurement vectors. For this study, only one power point is examine; the
power point selected has a trim PLA of 47". The model point of 47 ° is expected to accommodate engine operation

in the 43 ° to 55 ° trim PLA range. These represent the midpoints between the 47 ° model point and the two adjacent

model points with trim PLAs of 41 o and 64 *, respectively. The study restricts engine operation to this range.

4



The original formulation of the SVDM is expressed as:

,5_ = A_z + BSu (1)

6V = C6x + D6u (2)

where 6x, 6V, and 6u represent the perturbations of the state, measurement, and control vectors, respectively. The

control and measurement perturbations, 8u and 6V, are calculated from the engine data: u, V, and the control and

measurement trim values (u0 Vo) where

6u = u - .o (3)

and

6V = v - !/o (4)

The state vector includes the following variables:

= N2 (5)

TAfT

The control vector includes the following variables:

WF

AJ

u = ClVV

RCVV

The measurement vector includes the following variables:

PY6

PT2.5

PT4

TT2 .5

TT3

Tn

= TT4.5

TT6

WCFAN

WCHPC

N+

N2

TMT

(6)

(7)

KALMAN FILTER DESIGN

Application

The original formulation of the linear engine model is given in equations (1) and (2). Deterioration can be added
to the model as follows:

6:_ = A6x + B6u + L( + wl (8)

6V = C6x + D6u + M_ + w2 (9)

5



wherex is the state vector of dimension n, u is the control vector of dimension r, _ is the measurement vector

of dimension m, ( is the vector of engine deterioration or performance parameters of dimension s, and w_ and

w2 are the state excitation and measurement noise, which are white, uncorrelated, zero-mean, independent Gaus-

sian processes with intensity Qz_ and Q_v, respectively. The A, B, C, D, L, and M matrices are constant, with

appropriate dimensions.

Engine deterioration generally occurs very slowly relative to the dynamics of the state variables. Thus, ( can

be approximated by 0. Engine deterioration can then be modeled as unknown bias terms. Reference 1 addressed

the use of Kalman filters to estimate unknown system biases by augmenting the state vector to include the biases.

The author's methodology can be applied to the estimation of engine performance parameters. If the state vector is

augmented, assuming _ = 0, then equations (8) and (9) can be rewritten as

[6_ wtoo][
and

This system representation can be used as the basis for the Kalman filter design.

(11)

The states, controls, measurements, and deterioration parameters were scaled for the filter implementation.

Design Iterations

Once the linear model has been defined and scaled and the state and measurement covariances established, the

Kalman filter design process is straightforward. The solution to the steady-state Riccati equation

P = O= AP+ pAT+ Qz=c - PCrQvv-lCP (12)

is obtained (ref. 11), and the Kalman gain matrix is calculated from

K = PCTQy_ -l (13)

The variables in the design process are elements of the covariance matrices; the specific matrices selected can greatly

affect the resulting Kalman gain matrix.

The measurement covariance matrix is the simpler of the two to determine. For this work, the simulated sensor

noise is representative of noise found on flight data signals. The noise levels were approximated either from standard
deviation data available from sensor manufacturers or were determined from flight data. The noise levels for the

measured variables N_, N2, PT4, PT6, and TT4.5 were approximated from flight data and are consistent with those

normally obtained from flight data. For each parameter, several time history segments of recorded flight data at Mach

0.90 and 30,000-ft altitude were analyzed for the mean values and the standard deviation (or). The largest standard

deviation values were used to determine the covarianee matrices. Most of the measurements are not commonly

instrumented on actual engines. These are PT2.5 , TT2 .5 , TT3 , TT4 , 7"T'6 , W C FAN , W C tt P C, and T MT. For

these parameters, the ranges of values normally obtained are considered and theoretical noise levels estimated from

sensors that measure similar ranges of values. The measurements tend to be dean, so the noise levels are at most



5 percent of the parameter ranges. The sensor noise estimates for the parameters are

O'n_ =

G1_6

O'PTz .s

G1:_4

GTTs

GT'I"4

GTT4 .s

GTT6

GWCFAN

GWCHPC

oM
crib2

GTMT

0.09

0.1

0.6

1.0

2.5

7.0

5.0

3.75

0.5

0.1

15.0

15.0

7.0

(14)

and the associated measurement covariancematrix is

Qytl = E{ w2w2T} = diag

G1:_6 2

(YFI'2.s2

G P'r4 2

GT_.s 2

G_1,4 2

GTT# .s2

(y_,, 2

GWA._ 2

G W ATz .s 2
2

GN1

GN2 2

GTMT2

(15)

Once the measurement noise levels are established, the state excitation noise levels must be determined. In this

case, the state excitation noise is unknown and is determined by trial and error through an iterative process. For each

design iteration, a particular Qzz is selected, and the Kalman gain matrix calculated. The filter is implemented and
tested with various sets of data. One method of determining the performance of the filter is to compare the simulation

measurements with the reconstructed measurements (y with ._).

A preliminary design process was completed using time history data generated from the linear model given in

equations (8) and (9). The data were generated using simultaneous step inputs to the four control variables, and

with -1.0-percent deterioration to both the high- and low-pressure turbines. The purpose of tic preliminary design

process was to start converging on a value for Q=. This value was determined by an iterative process. The criterion

for evaluating the perfomance of the preliminary design was the quality of the overplots of V and _. The diagonal

elements of Q_,_ were modifed to improve the filter performance by reducing the error between y and _. The state

covariancematrix was initially set to

O,_:diag[ 104 104 40.0 0.5 0.5 ] (16)



After numerous preliminary design iterations, a state covariance matrix of

Q_:=diag[ 2450 900.0 93.75 0.0313 0.0313] (17)

resulted in satisfactory performance.

A final design process was completed using data from a nonlinear engine simulation. Each design iteration was

evaluated with three sets of data from this simulation. The data sets were time histories of the engine response for

different levels of deterioration. In each case, steady-state engine operation was perturbed by the application of a

PLA pulse. The PLA was held constant for 25 see at 47* before a 25-see pulse was applied. The pulse magnitudes

varied for each case. Table 1 shows the pulse magnitudes and the delta efficiency levels used to generate each set of

nonlinear simulation data. The three data sets cover the ranges of deterioration the filter should be able to estimate.

Table 1. Design cases for the final Kalman filter design.

Design Pulse High-pressure turbine Low-pressure turbine

case magnitude, delta efficiency, delta efficiency,

°PLA percent percent
I 8 0.0 0.0

II 4 - 1.0 - 1.0

III 4 -2.5 -2.5

The application of a PLA pulse causes the engine operation to deviate from the trim conditions for the duration

of the pulse. The off-trim operation is reflected primarily in the delta efficiency estimates, and appears as a pulse in

the estimate time history. The estimates not only account for actual deterioration, but also for deviations from the

efficiency trim condition.

The final design was achieved with the following state excitation covariance matrix:

Q_=diao[ 857.5 720.0 31.25 0.0025 0.0031] (18)
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The results of the final design process are good. Figures 2(a) and (b) present time history overplots of the

simulation and reconstructed measurements for the engine parameters TT4.5 and N2 and from ease III. These are

representative of the time history overplots achieved with the final design for all of the engine parameters in the three

evaluation cases. Figures 3(a), (b), and (c) present time history comparisons of the delta efficiency levels input to

the nonlinear simulation and the efficiency estimates for cases I, II, and HI, respectively. The estimates for all three

cases are within the desired accuracy of +0.25 percent of the nominal level.

"rPLA, 47
dog

39
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percent

0
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I I I I I I

k J, . _ _- ma,.

- \
!

\ !

/
l

I I I I I
50 75 100 125 150

Time, _ 000273

(a) Case I.

Figure 3. Efficiency estimates.
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The results for cases I and II are extremely good. In both cases the Kalman filter estimates of the high- and low-

pressure turbine delta efficiencies differ from the nominal values by a few hundredths of 1-percent delta efficiency.

The error is well within the desired accuracy of +0.25-percent efficiency. The results for case IN are also within the

desired limits, but are poorer than the estimates for cases I and II. The estimate errors in case III are approximately

0.15-percent efficiency. The addition of -2.5-percent deterioration to the turbine efficiencies leads to unmodeled

nonlinear effects, so the data begin to exceed the model Unearity. In general, less accurate estimates occur with

increased levels of deterioration, because of the nonlinear nature of engine degradation.

KALMAN FILTER EVALUATION RESULTS

To evaluate the Kalman filter design more thoroughly, two types of test cases were obtained from the nonlinear

engine simulation. The first type represents the engine response to a 25-see PLA pulse about a steady-state condition.

The pulse is applied after 25 sec of steady-state operation, and the level of deterioration is held constant throughout

the time history. The cases differ in the steady-state PLA setting, the pulse magnitude, and the level of added

deterioration. In the second type of test, the PLA is held constant throughout the entire time history, while the

deterioration levels are modeled as step inputs to the system. The magnitude of the deterioration step inputs is

-1.0 percent, and they are applied to the nonlinear simulation after 20 see. Table 2 shows a matrix of the test

cases. For each test case, the initial steady-state PLA is assumed to be the trim PLA. If a PLA pulse is applied, the

magnitude of the pulse is stated. The cases for which the delta efficiences are modeled as step inputs are also noted.

Table 2. Test case matrix for the Kalman filter evaluation.

Low-pressure turbine

delta efficiency, percent

High-pressure turbine

delta efficiency, percent
0.0 -0.5 -1.0 -2.5

0.0 Case 1,

47" PLA,

8 ° PLA pulse.

Case 2,

43" PLA,

8 ° PLA pulse.

-0.5 Case 7,

51 ° PLA,

-9* PLA pulse.

- 1.0 Case 8,

47* PLA,

4 ° PLA pulse.

Case 9,

45 o PLA,

step efficiencies.

-2.5 Case 10,

55 ° PLA,

-7 ° PLA pulse.

Case 3, Case 4, Case 6,

45* PLA, 47* PLA, 43 ° PLA,

4 ° PLA pulse. 4 * PLA pulse. 4 ° PLA pulse.

Case 5,

45 * PLA,

step efficiencies.

Case 11,

47 ° PLA,

4 ° PLA pulse.

Case 12,

47 ° PLA,

4 ° PLA pulse.

Case 13,

45 ° PLA,

step efficiencies.

Case 14,

47 ° PLA,

4 ° PLA pulse.

14



The test cases can be organized into four categories: cases with no added deterioration, cases with added deteri-

oration to the high-pressure turbine efficiency, cases with added deterioration to the low-pressure turbine efficiency,
and cases with added deterioration to both turbine efficiencies. The evaluation results are discussed in four sections,

each addressing one of the categories. To evaluate the quality of the estimates, the time histories of the efficiency

estimates were compared to the nominal level input to the nonlinear simulation. The simulated and reconstructed

measurements were also compared.

Estimation With No Turbine Deterioration

Cases 1 and 2 representengineoperationwithno added high-orlow-pressureturbinedeterioration.The effi-

ciencyestimatesforcase1 arcshown infigure4(a),thoseforcase2 areshown infigure4(b).For bothcasesthe

estimatesarcverygood. The differencesbetweenthenominaland estimateddeltacfficienciesareofthesame order

ofmagnitude.Case Iisgeneratedatthemodel designPLA of47 °.The off-designsteady-statePLA of43°incase2

doesnotlutherdegradetheaccuracyoftheestimatesrelativetocaseI.The measurementreconstructionsforboth

casesarealsoverygood. Figures5(a)and Co)arcrepresentativeof thetimehistorycomparisonofthesimulation

and reconstructedmeasurementsforan undeterioratedengine.Figure5(a)isthetimehistoryoverplotforPT4 for

case 1. Figure 5(b) is the time history overplot for TT4.5 for case 2.
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- _
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SO 7S 100 125 1SO
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(a) Case 1.

Figure 4. Efficiency estimates.
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EstimationWith High-PressureTurbineDeterioration

Cases3, 4, 5, and 6 represent degraded high-pressure turbine efficiency. Figures 6(a)--(d) show the efficiency

estimates for cases 3, 4, 5, and 6. The results for cases 3, 4, and 5 are very good. The filter can easily accommodate

- 1.0-percent added high-pressure turbine deterioration with the desired accuracy of +0.25 percent. The off-design

steady-state operation in cases 3 and 5 does not degrade the accuracy of the efficiency estimates. The estimates

for case 6, particularly 'TL, are poorer than the other cases. The ,H estimate error of 0.11-percent efficiency is still

within the desired accuracy. The ,L estimate has an error of 0.4S-percent efficiency, which exceeds the desired

accuracy. The addition of -2.5-percent high-pressure turbine delta efficiency causes nonlinear effects that exceed

the linear range of the model, adversely affecting the filter estimates. The off-design steady-state 43 o PLA in case 6

may further contribute to the _L estimate degradation. The poor efficiency estimates for case 6 are reflected in the

measurement reconstructions. Many of the measured parameters show noticeable differences between the simulation

and reconstructed measurement values. These parameters are TT3, TT4, TT4.s, WCHPC, and Ne. Figures 7(a)

and Co) present time history overplots of the simulation and reconstructed measurements for TT4 and Ne for case 6.

These figures are representative of the parameters that reflect the poorer efficiency estimates in case 6.
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Estimation of Low-Pressure Turbine Deterioration

Cases 7-10 represent engine operation with degraded low-pressure turbine efficiency. Figures 8(a)-(d) present

the efficiency estimates for cases 7, 8, 9, and 10. The results for cases 7, 8, and 9 are very good. The filter can ac-

commodate - 1.O-percent added low-pressure turbine deterioration. The off-design steady-state operation in cases 7

and 9 does not degrade the accuracy of the efficiency estimates. The r_t¢ estimate for case 10 is also well within the

desired accuracy of +0.25-percent efficiency. The _z estimate for case 10 is poorer than the other cases. The r/L

estimate has an absolute error of 0.43-percent efficiency, exceeding the desired accuracy of-l-0.25-percent efficiency

error. The addition of -2.5-percent low-pressure turbine delta efficiency causes nonlinear effects that exceed the

linear range of the model. The poor r/z efficiency estimate for case 10 is reflected ia several of the measurement

reconstructions. Many of the measured parameters show noticeable increases in difference between the simulation

and reconstructed measurement time histories. These parameters are TT4, TT4.5, TT6, and N2. Figures 9(a) and

(b) present time history overplots of the simulation and reconstructed measurements for TT4.s and N2 for ease 10

and are representative of parameters reflecting the poorer efficiency estimates in case 10.
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Estimation With High- and Low-Pressure Turbine Deterioration

Cases 11-14 represent engine operation with degraded high- and low-pressure turbine efficieneies. Figures 10(a)-

(d) show the efficiency estimates for these cases. The results for cases 11 and 12 are good. The filter can accom-

modate -1.0-percent added high- and low-pressure turbine deterioration at 47 ° design PLA. The _Ts estimate for

case 13 is also very good. The r/L estimate for case 13 and both estimates for case 14, although still within the desired

aeuracy of 4-0.25-percent efficiency, are noticeably poorer. The off-design 45 ° steady-state PLA in case 13 does

not degrade the quality of the r/H estimate, but does degrade the r/L estimate. Case 14 has a design steady-state PLA

of 47 °. The addition of -2.5-percent high- and low-pressure turbine delta efficiency causes nonlinear effects that

exceed the linear range of the model, slightly degrading the quality of the estimates. Figures 11(a) and (b) show rep-

resentative time history comparisons of the simulation and reconstructed measurements for an engine with high- and

low-pressure turbine deterioration. Figure 1 l(a) is the time history comparison of TT2.5 for case 14. Figure 1l(b)

is the time history comparison for WCFAN for ease 14.
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Evaluation Summary

The Kalman filter design was evaluated with data from a nonlinear engine simulation at Mach 0.90, 30,000-ft

altitude, and for trim PLAs in the 43 ° to 55 ° range. The filter is able to estimate 2.5-percent high-pressure turbine

deteriorationwithinthedesiredaccuracyof-4-0.25percentefficiency,independentoftheleveloflow-pressureturbine

deterioration.The filtercan alsoestimateqL withinthedesiredaccuracyifthehigh-and low-pressureturbine

deteriorationlevelsare__ 1.0percent.During tbetimehistory,theestimatesaccountforactualdeteriorationas

wellasfordeviationsfrom thetrimcondition.The off-trimoperationisreflectedprimarilyinthedeltacfliciency

estimates.When largeamounts ofdeterioration(2.5percent)areadded toeitherthehigh-or low-pressureturbine

efficiency,theqL estimateshows errorson theorderof_0.5-percentefficiency.The qL estimateishighlysensitive

totheunmodeled nonlineareffectsproduced by largedeltaefficicncies.Cases 6, I0,and 14 show thatthefilter

can identifybothestimateswiththe desiredaccuracyiflargelevelsof deteriorationarc added toboththe high-

and thelow-pressureturbineefficicneies.The unmodeled nonlineareffectsof thelargedeteriorationinhigh-and

low-pressureturbinedeltacfficiencieson the_L estimateareofthesame orderof magnitudebutoppositeinsign.

The resultsofthefilterdesignevaluationindicatethatitisabletomeet thedesigncriteriaforthehigh-pressure

turbinedeltaefficiencyestimateand nearlymeetsthecriteriaforthelow-pressureturbinedeltaefficiencyestimates.

CONCLUSIONS

A Kalman filterisdesignedtoestimatetheperformancedeteriorationofa simulatedFI00 engine.The filter

design process is straightforward. An important aspect of tuning the Kalman filter is the selection of the state

covariance matrix (Q==) and the measurement noise covariance matrix (Q_v)- The state covariance matrix was

selected through an iterative process by comparing the simulation and measurement reconstruction time histories.

The process was complicated by the coupling between the fan turbine and low-pressure turbine delta efficiency

(WL),and between the high-pressure turbine and high-pressure turbine delta efficiency (Ws). Tuning the Q== matrix

is the most challenging task in the design process, because of this coupling. The Kalman filter was evaluated using

data from a nonlinear engine simulation at Mach 0.90, 30,000-ft altitude, and for trim power lever angles (PLAs)

between 43 ° and 55". The filter accommodates the desired range of trim PLAs with the desired accuracy. The

linear model is valid for engine operation with little or no deterioration. The filter does have some limitations in

accommodating the nonlinear effects of high levels of turbine deterioration, particularly for the T/Lestimate. The

nonlinear effects caused by high levels of deterioration exceed the expected linear range of the model. NASA

Dryden Flight Research Facility

National Aeronautics and Space Administration

Edwards, California, May 9, I990
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APPENDIX

KALMAN FILTER THEORY

The derivation and properties of the Kalman filter are described in references 6-10.

Consider the time-invariant system

6_ = A6z + B6u + wl (A-l)

6V = C6z + D6u + w2 (A-2)

A full-order observer for the system of equations (A-l) and (A-2) can be expressed as

6_ = A6_ + B6u + K [6V - (06_ + D6u) ] (A-3)

where K is the Kalman filter gain matrix. Rearranging equation (A-3)

1[]=
The reconstruction error (e) of the observer is defined to be

e = z- _ = 6z- 64 (A-5)

The observer is asymptotically stable, ife ---, 0 as t --* to for all initial values e(to).

The Kalman filter is an optimal observer in the sense that the value of the K matrix minimizes the mean square

reconstruction error

E{ ere } (A-6)

The solution to the optimal observer problem is

K = pcrQw -' (A-7)

where P is the solution of the matrix Ri_ati equation

P = AP + PA r + Qxz - PCTQ_ -1CP (A-8)

The solution to the Riccati equation, P, is the theoretical state estimator error covatiance matrix. Ifa steady-state

solution exists, then P = 0 for the time invariant case, and hence P, is the solution to the algebraic Riccati equation

0 = AP + PA _r+ Q:_ - PCTQn-ICP (A-9)

The Kalman filter process is shown in figure A-1. The process is implemented as a perturbation formulation.

The 6_ is calculated as a linear function of 6_, 6u, 61/, and 6_

and is then integrated to obtain 6_.. The 6_ is the measurement perturbation estimate constructed from the state

estimate and control perturbations

6_/ = C6_ + D6u (A-11)
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