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cross-sections (RCS) of the surface, comparing the pre- 
dicted and the observed values for the RCS, and im- 
proving the surface model from results of the compari- 
son. Theoretical RCS may be computed from the sur- 
face model in several ways. One RCS prediction tech- 
nique is the method of moments. The method of mo- 
ments can be applied to an unknown surface only if 
some shape information is available from an indepen- 
dent source. The optical image provides the indepen- 
dent information. 

20 Claims, 5 Drawing Sheets 



5,005,147 
Page 2 

OTHER PUBLICATIONS 

“Two Sensor Are Better than One: Example of Integra- 
tion of Vision and Touch”, 1985, P. Allen & R. Bajcsy, 
Proc. Third Int. Symposium on Robotics Research, 
Giralt, Eds., MIT Press: Cambridge, Mass. 
“Model Based Recognition & Localization from Sparse 
Range & Tactile Data”, Fall 1984, W. E. L. Grimson & 
T. Lozano-Perez, Int. Jrnl. of Robotics Research, vol. 
3, No. 3. 
“Search & Sensing Strategies for Recognition & Local- 
ization of Two- and Three-Dimensional Objects”, 
1986, W. Eric L. Grimson and Tomas Lozano-Perez, 
Third Int. Symp. on Robotics Research, pp. 73 & 80, 
MIT Press, Cambridge, Mass. 
“Representation & Maintenance of a Composite 
Model”, 1986, J. L. Crowley, Int. Conf. on Robotics & 
Automation, pp. 1455-1462. 
“On Modelling 3D Objects Using Multiple Sensory 
Data”, 1987, Y .  F. Wang & J. K. Aggarwal. Proc. 
IEEE Int. Conf. on Robotics & Automation, Raleigh, 

“Microwave & Optical Sensor Fusion for Shape Ex- 
traction of 3D Space Objects”, Apr. 1988, Scott W. 

N.C., pp. 1098-1 103. 

Shaw, Doctoral Thesis, Rice University, Houston, 
Texas. 
“Radar Cross Sections of a Rectangular Flat Plate as a 
Function of Aspect Angle”, May 1966, R. A. ROSS, 
IEEE Transactions on Antennas and Propagation, vol. 

“Radar Cross-Section Handbook”, 1970, G. T. Ruck, 
D. E. Barrick, W. D. Stuart, C. K. Kirchbaum, vol. 1, 
Plenum Press, New York. 
“A Monostatic Inverse Scattering Model Based on 
Polarized Utilization”, 1976, S. J. Choudhuri & W. M. 
Boerner, Appl. Phys., vol. 11, pp. 337-350. 
“Field Computation by Moment Methods”, 1968, R. F. 
Harrington, The Macmillan Company, New York. 
“Microwave & Video Sensor Fusion for the Shape 
Extraction of 3D Space Objects”, 1987, Scott W. Shaw, 
Kumar Krishen, Rui J. P. deFigueiredo, SPIE-The 
International Society for Optical Engineering, Cam- 
bridge, Mass., Space Station Automation 111, vol. 851, 

“Robotic Vision/Sensing for Space Applications”, 
1987, Kumar Krishen, Rui J. P. deFigueiredo & Olin 
Graham, IEEE International Conference on Robotics 
& Automation, Raleigh, N.C., vol. 1, pp. 138-150. 

AP-14, NO. 3, pp. 329-335. 

pp. 69-74. 



U.S. Patent Apr. 2, 1991 Sheet 1 of 5 5,005,147 



U.S. Patent Apr. 2, 1991 Sheet 2 of 5 5,005,147 

- P d ~ k e d  RCS 

f \ 
WERlSTlC 
DECISION 
MODULE 

Figm 2 



U S  Patent Apr. 2, 1991 Sheet 3 of 5 5,005,147 

2a 

2b 
Perfectly Conducting 

Flat Plate 

Figure 3 



U.S. Patent Apr. 2, 1991 Sheet 4 of 5 5,005,147 

Source 

c-4 
Microwave Trafwdtter, 

and Rwlever 

Source 

c-4 
Microwave Trafwdtter, 

and Rwlever 

Figure 4 



US. Patent Apr. 2, 1991 Sheet 5 of 5 5,005,147 

Figure 5 



5,005,147 
1 2 

information, they may be divided into two groups. The 
METHOD AND APPARATUS FOR SENSOR first type of fusion system sees the world as a collection 

FUSION of discrete objects and tries to localize these objects. 
The second type attempts to describe the details of 

ORIGIN OF THE INVENTION 5 continuously connected surfaces. The common thread 
ne invention described herein was made by an em- is the attempt to deal with uncertain, conflicting, and 

ployee of the United States Government, and others, incomplete data. Most SF Systems attempt to Sift 
and m y  be manufactured and used by and for the Gov- through a Collection Of tokens representing Spatid prim- 
ernment of the United States of America for govern- itives and, when possible, merge two or more tokens 
mental purposes without payment of any royalties 10 into one. Examples of the tokens used are frames de- 
thereon or therefor. scribing objects and individual surface patch contour 

descriptions. 
Various techniques have been developed to perform 

the fusing of information from different sensors that 
describe the same object. Harmon, et al, (S. Y. Harmon, 
G. L. Bianchini, and B. E. Pinz, “Sensor Data Fusion 
Through a Distributed Blackboard,” Int. conf. on Ro- 
botics and Automation, pp. 1449-1454, 1986) divides the 
approaches into three categories: “averaging”, “decid- 

Related inventions include the fokwing U.S. Pat. 2o bg”, and “guiding”. In “averaging” techniques, confi- 
dence measures are used to weight various estimates of 
the same property to compute an average value that 
may not be exactly equivalent to any individual esti- 

BACKGROUND OF THE INVENTION 
1. Field of the invention 
The present invention relates to image enhancement 

methods and more particularly to image enhancement 
methods using the fusion of data from optical and mi- 
crowave sensors. 

2. Description of the Related Art 

Nos. 4,672,562 and 4,672,564 to Egli, et al, which dis- 
Close Photodetector mays  and include computational 
means for determining spatial information about target 
objects; U.S. Pat. NO. 4,620,285 to Perdue which 
teaches a combined Sonar 

mate. When “deciding”, one is 
and light detection; 25 picked from many others to represent the entire data 

US. Pat. No. 3,981,010 to Michelsen which shows a 
system for locating objects and includes a radar system 
in combination with a television camera having the 
outputs combined in a data processing system to deter- 
mine direction and range to the objects; U.S. Pat. No. 30 marily a 

vision system including twin light beams used to deter- 
mine the coordinates of an object; U.S. Fat. No. 
4,550,432 to Anderson which teaches an image proces- 
sor using a moment generator including processor 35 
means for determining the moments of a geometrical 

U.S. pato N ~ .  4,443,855 to Bishop, et al, which 

set. Again, this choice is based on confidence measures. ne third technique, uSeS one estimate to 
direct the acquisition of further estimates. 

ne present invention is SF method employing pri- 
shape extraction technique. me 

guides the conversion of RCS data into a complete 
surface 

Object Localization Techniques 

4,611292 to Ninomiya, et al, which discloses a robot surface model from optical image data 

Researchers have investigated a variety of statistical 

r i t b  image processor to generate control or metric information about discrete objects. These meth- 
signals. N~~~ of the discovered related art teaches use 40 ods include weighted estimates, confidence measures 
of a first senmr in predicting the output of a second and Bayesian estimation. Other researchers have con- 
Sensor and use of non-hear minimization techniques in centrated on the overall architecture of the resulting 
determining the shape of objects. information-processing system. Both aspects of the 

Sensor Fusion (SF) techniques have been developed Problem n~ust be addressed in order for an efficient 
to combine information from such diverse sources as 45 knowledge and information handling mechanism to use 
optical imagery, laser ranging, structured light, and the most accurate statistical ~KKM 
tactile feedback. The present invention relates to the 
fusion of a set of polarized RCS measurements with 
optical imagery. The polarized RCS yields detailed Shefiar, et al, 6. Shefiar, 0. Khatib, and M. 
information about an object’s surface only if some other 50 Shimojo, “Sensor Fusion and Object Localization”, Int. 
independent surface information is available. An inter- conf. on Robotics and Automation, pp. 1623-1628, 
preter needs information from an alternate source such 1986) have developed a system for determining the six 
as an optical image to convert the RCS into spatial degrees of freedom of an object by combining multiple 
information that a general SF system can use. Once this estimates. The sensory data considered was from tactile 
conversion is completed, the more traditional concepts 55 sensors placed on the robot end-effector. Errors in the 

reveals a sensing and control system using a mask dgo- methods for‘ integrating uncertain and redundant gm- 

Statistical Models 

of SF may be employed. A brief examination of the 
state-of-the-art in SF is provided, along with compari- 
sons between the state-of-the-art and our SF method. 

Sensor Fusion Generally 
The purpose of SF is to combine the interpreted 

outputs of various sensors into a consistent world-view 
that is in some way better than its component interpre- 
tations, for example, the sense of confidence in an inter- 
pretation may be greater, or the resulting composite 
surface or workspace may be more complete than for a 
single sensor, or a combination of both. Although all SF 
systems produce some kind of spatial, or geographic 

positioning of the manipulator lead to uncertain esti- 
mates of attitude and position. These measurement er- 
rors are assumed to be known a priori and are used to 
weight final estimates. Orientation and position esti- 

60 mates are carried out independently. Position estimates 
are computed by a simple weighted average. Orienta- 
tion estimates are derived by representing the rotation 
matrix as a quaternion and solving the resulting linear 
system of equations by a weighted left inverse. This 

65 method assumes much information is provided to the 
system. This information includes complete stored ob- 
ject descriptions and correspondence between sensed 
points and model points. This technique is clearly of the 
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“averaging” variety. A complete sensor fusion system is 
described by Luo, et al. (Ren C. Luo, Min-Hsiung Lh ,  
and Ralph S. Scherp, “The Issues and Approaches of a 
Robot Multi-Sensor Integration,” Proc. IEEE Int. conf. 
on Robotics and Automation, pp. 1941-1946, Raleigh, 
N. C., 1987). The decision process and the statistical 
models are considered together. A group of sensor 
observations is fmt selected based on the task at hand. 
Observations of the same physical property are fused by 
a two-step process. The first step selects observations to 
be fused, and the second step combines them into one 
estimate. Each observation is characterized by a normal 
power distribution function (p.d.f.), and a distance is 
defined between p.d.f.’s. These distances ar then thre- 
sholded and the largest connected group of observa- 
tions is chosen to be fused. The optimal estimate is then 
derived by maximizing the sum of conditional probabili- 
ties for the estimate weighted by the probability of each 
observation. Finally, an attempt is made to compensate 
those observations discarded in the first step of the 
process. This technique constitutes a hybrid between 
“deciding” and “averaging”. 

A complex method for integrating disparate sensor 
observations is presented by Durrant-Whyte (Hugh F. 
Durrant-Whyte, “Consistent Integration and Propaga- 
tion of Disparate Sensor Observations,” Proc. IEEE 
Int. conf. on Robotics and Automation, pp. 1464-1469, 
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1986). Uncertain measurements are combined in such a 
way that geometric consistency is maintained in the 
world-model. To insure robustness, the p.d.f.’s of each 
sensor observation are characterized as the sum of two 
normal distributions, of which, only one covariance is 
known. Observations that fall outside an ellipse enclos- 
ing the mean of the known distribution are discarded. 
The remaining samples are considered jointly normal 
with known covariance. A Bayesian estimate of the 
sensor value is found by minimizing a loss function 
under geometric constraints. Durrant-Whyte empha- 
sizes that he is not solving a recognition problem. The 
SF system deals only with abstract geometric informa- 
tion. This system is also a combination of “averaging” 
and “deciding”. 

Computing Architectures 
Various architectures have been proposed for han- 

dling multiple sensory information. Harmon, et. al. de- 
scribe a system based on a distributed blackboard. Each 
sensor subsystem has its own copy of the up-to-date 
world model, made up of tokens, each of which repre- 
sents an object, a selected object property and its value, 
along with an error range, a confidence factor and a 
time stamp. Communication between subsystems is 
accomplished through a local area network. Subsystems 
share only high-level, abstract information, leaving the 
recognition task to the individual sensors. 

A system using two types of knowledge representa- 
tion is described by Kent, et. al (E. W. Kent, M. 0. 
Shuier, and T. H. Huang, “Building Representations 
from Fusions of Multiple Views,” Proc. IEEE Int. conf. 
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on Robotics and Automation, pp. 1634-1639, 1986). 60 
The purpose of this system is to fuse multiple views of 
the same workspace taken over time. A world model is 
built up and compared to internally stored information. 
The system is also capable of handling objects that have 
no stored model. Spatial information about the work- 65 
space is represented by an octree. Knowledge about 
discrete objects and their features is maintained sepa- 
rately in a list. The system operates by generating pre- 

dictions about the world and then matching these pre- 
dictions with the observed data. The system deals with 
dynamic information in real time, and is updated contin- 

Chiu, et. al. claim that sensor fusion should be repre- 
sented hierarchically as a data-flow process (S. L. Chiu, 
D. J. Morley, and J. F. Martin, “Sensor Data Fusion on 
a Parallel-Processor,” Int. conf. on Robotics and Auto- 
mation, pp. 1629-1633, 1986). They propose that this 
process be implemented on a parallel processor. 

Surface Reconstruction Techniques 
The RCS-Optical system of present invention falls 

into the category of S F  techniques intended to recon- 
struct continuous surfaces rather than collections of 
discrete objects. Previous work in this area has been 
done by Allen and Bajcsy, Grimson, Crowley, and 
Wang and Aggarwal. 

Allen and Bajcsy (P. Allen and R. Bajcsy, “TWO 
Sensor Are Better than One: Example of Integration of 
Vision and Touch,” in Proc. Third Int. Symposium on 
Robotics Research, Giralt, Eds., MIT Press: Cam- 
bridge, Mass., 1985) demonstrated that the combination 
of multiple sensors can produce a 3 0  object description 
that is better than those derived from individual sensors. 
They have used the paradigm of computational stereo 
to build occluding contour descriptions that contain 
gaps and inaccuracies. The interior of the surface and 
the uncertain points on the contours are filled in with an 
active tactile sensor. Coons patches (composite bicubic 
surfaces) are used to interpolate between critical points. 
The resulting object description is a 24 D sketch of the 
unknown object. This is a good example of a “guiding” 
technique, since the optical information controls the 
movement of the tactile sensor. 

By restricting unknown objects to those composed of 
polyhedral faces, Grimson, et al (W. E. L. Grimson, and 
T. Lozano-Perez, “Model Based Recognition and Lo- 
calization from Sparse Range and Tactile Data,” Int. 
Jml. of Robotics Research, Vol. 3, no.3, Fall, 1984) 
were able to generate some constraints that allowed 
sparse isolated surface points and normal estimates to be 
matched with stored models. The surface data could, in 
principle, be derived from any source, the specific cases 
being range and tactile observations. Using heuristics 
derived from the geometry of polyhedral objects, such 
as maximum and minimum distances between pairs of 
points on different facets, consistent normal angles, 
amounts of rotation, etc., the investigators were able to 
prune the search tree of point-facet pairings. With the 
pruning done beforehand, most point labelings need not 
be considered when determining a proper model match. 
Grimson found that even a poor estimate of surface 
normals greatly simplifies the attitude determination 
problem. In a later publication, they expand their 
method to include recognition of partially occluded 
objects (W. Eric L. Grimson and Tomas Lozano-Perez, 
“Search and Sensing Strategies for Recognition and 
Localization of Two- and Three-Dimensional Objects,” 
Third Int. Symp. on Robotics Research, pp. 73,80, MIT 
Press, Cambridge, Mass., 1986). Also, the efficiency of 
the algorithm was improved by estimating possible 
configurations by Hough transforms. 

Crowley (J. L. Crowley, “Representation and Main- 
tenance of a Composite Surface Model,” Int. conf. on 
Robotics and Automation, pp. 1455-1462, 1986) saw the 
need, when combining information from different 
sources, for a standard knowledge representation. He 

uously. 
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RCSAmage Surface Reconstruction used primitives representing planar surface elements 
and contours joining elements. Each attribute of a prim- 
itive is represented as an uncertainty range in which the Examining these previous attempts at sensor fusion, 
exapt number is believed to lie. ne result is surface we are able to make comparisons and draw suggestions 
elements and contours that are not two- and one- 5 from the work that has gone before. Even though our 
dimensional manifolds in three-space, but represent system uses a new combination of information, there 

remain strong similarities with other techniques. In some volume where such manifolds may exist. Both addition there are shared pitfalls. Although our micro- stored knowledge and acquired data may be repre- wave and video SF system may at first appear to be a sented in the Same form* A that is being ‘On- 10 simple Uguiding9* technique, the problem of how to 
stmcted need not be Or represent physi- handle conflicting and uncertain information had to be 

bunding COntom on side, and a contour does not 
need to point to two surface patches- These missing 

cally surface* A surface patch need not have addressed. If a partial surface may be reconstructed 

facts may be inferred, however, in the fusion process, 15 Which interpretation should be given more weight, and 
and incomplete models matched to stored library mod- how are such weights assigned? Also, what is the most 
els. The form of each piece of data remains intact as the efficient and uniform data structure for storing, infer-’ 
surface model is constructed and primitives are added ring, and reconstructing surface-knowledge derived 
and merged. Each primitive has a confidence factor from the optical image, RCS, and library models? 
associated with it, and elements are combined or re- 20 In one particular application of our SF technique, 
moved based on this confidence factor. This SF tech- interior surface patches are reconstructed from the RCS 
nique is of the “deciding” variety. by an iterative minimum error technique. This surface 

Wmg and A g g m a l  also dealt with modeling 3D patch covers a portion of the surface whose optical 
surfaces using diverse sources of information cy. F. image has been degraded in some fashion. The surface 
wag and J. K. Aggarwal, “on Modelling 3D Objects 25 patches to be reconstructed have some predetermined 
Using Multiple Sensory Data,” Proc. IEEE Int. conf. finite support, such as a rectangle, in the Parameter 
on Robtics and Automation,: pp. 1098-1 103, Raleigh, domain. It is unlikely that the degraded portion of the 

to ours in that image will have this exact shape, so the smallest support 
of predetermined shape that completely covers the they used one source of information to determine oc- 

30 degraded portion must be used. This results in overlap- cluding contours, and another source to fill interiors of 

from the RCS, how can it be resolved with the optical 
image surface? Are there points of contradiction? 

c., 1987). n e i r  technique is 

3D objects. The occluding contours are derived from a 
thresholded optical image, and partial surface structures 
are inferred from structured light. Multiple views of an 
object are considered. The partial surface structures are 
allowed to move along an axis defined by the occluding 
contours observed at the same time. The actual position 
of any one surface along its axis is determined by match- 
ing it with the cylindrical volume derived from occlud- 
ing contours in another view. Pairs of surfaces and 
bounding volumes that are most nearly orthogonal to 
each other are combined. This allows one surface struc- 
ture to be positioned to the greatest accuracy without 
relating to other surface structures. 

Wang and Aggarwal mention that efficient data 
structures such as octrees are used to store the surface 
data, but the issue of uniform data representation was 
not directly addressed in their paper. It is possible that 
an octree structure may have to be altered as new sur- 
face data is incorporated at different levels of resolu- 
tion. This may result in some wasted time in a general 
SF system. Most SF systems use lists of tokens of equal 
significance that may be linked bidirectionally in vari- 
ous ways as opposed to an hierarchical data structure 
such as an octree. As new information is added in this 
type of system, relationships may be noted without 
disturbing the links that have already been established. 
The final smooth surface representation is derived by 
spline approximation. Therefore, the spline basis func- 
tions and their knots may be thought of as the surface 
knowledge representation primitives. If conflicting sur- 
face points arise, their weighted average is computed. 
Thus, this SF technique falls into the “averaging” cate- 
gory. It might also be classified as a “guiding” tech- 
nique, since the occluding contours from one view are 
used to guide the placement of partial surface structures 
in another. 

ping areasbetween the optically derived surface and the 
RCS reconstructed surface. Although the two surfaces 
may agree at the initial estimate, the minimization pro- 
cedure could easily produce a surface patch that does 

35 not match the optical surface exactly at its edges. Since 
both surfaces are uncertain to some degree, some con- 
vention must be adopted to resolve these conflicts. If 
the surface is represented by a continuous manifold, an 
“averaging” technique must be used to preserve conti- 

40 nuity. If, however, the surfaces are represented by a 
collection of discrete points, a decision process may be 
applied to choose an appropriate z value at a given 
location. The “averaging” step that preserves continu- 
ity could then be taken care of by spline interpolation. 

45 The weight or confidence assigned to each point de- 
pends on a variety of possible sources of error. For the 
optically derived surface, uncertainties may arise from 
errors in camera positioning, light source location, 
noise, model inaccuracy, and image registration. For 

50 the RCS surface, factors such as detection error, ambi- 
ent reflections, and range uncertainty can contribute to 
RCS measurement error, and inappropriate modeling 
assumptions, numerical inaccuracies, and insufficient 
grid density can produce error in the conversion from 

In simulations of this method, discrete surface point 
samples were used as a means for representing 3D geo- 
metric knowledge. This type of representation lends 
itself well to microwave scattering computations. In 

60 addition to a location in three-space, each surface point 
should carry with it an estimate of surface normal at 
that point. If no surface normal estimate is available, a 
coarse one may be inferred from the surrounding points. 
A token that represents a surface point must also carry 

65 a confidence factor appropriate to the decision process 
to be used. Also, a range of possible values may be 
specified for each numerical attribute in the manner 
adopted by Crowley. This additional information is 

55 RCS to surface. 
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necessary in order to resolve inconsistencies between volves the more complex tasks of matching and shape 
the optical surface and the final surface derived through determination. 
the error minimization process. Low-Level Vision Subsystems 

Utility of Sensor Fusion Image acquisition is the first step in the optical imag- 
One example of the utility of incorporating the micro- ing sequence. In this step, the light that comprises the 

wave RCS into a space robot’s sensory information is image enters the camera through a series of lenses, and 
attempting to Overcome some of the difficulties assmi- is focused onto a sensing element. The Sensing element 
ated with optical imaging in space. converts the light into an electrical signal. Important 

A sensor system for a space robot must be able to 10 characteristics of this stage in the image formation pro- 
gather and interpret information about the spatial loca- cess are the aspect ratio ofthe camera, the focal length 
tion of discrete objects in a scene, their shape and mo- and diameter of the optical lenses, and the type and 
tion. This information must be complete and accurate characteristics Of the light Sensor- 
enough to allow the robot to navigate within its work- The andog video image must then be converted into 
space, and manipulate selected objects. Clekly, the 15 digital form so that the optical information may be 

the type of scene that it expects to encounter. Further- talization, also affects the usefulness of the final image 

tial distribution of the pixels influence the amount of robot must perform. 
The shape extraction system makes use of the assump- 20 information from the analog image which survives into 

the digital image. tion that targets consist of isolated, smooth shapes con- Low-level vision also includes some simple filtering structed of some perfectly conducting material. In real- techniques. These traditional image processing routines ity, more than one target may be present, and the shape are important to the resulting shape interpretation and 
Of these targets may be complex‘ questions must 25 must be given careful consideration. The two low-level 
be amwered about the Scene to be and the processing steps that are relevant to the present inven- 

tem must be able to separate objects from background expected complexity, range, and motion must be deter- 
to approximate their shape for the initial parameter mined. 

The attributes of the individual objects that comprise 3o determination. This is most easily accomplished 

one brightness value, and the dark background another. 
In instances, the numerical shape reconstruction 
system depends heavily on knowledge of the scattering 

35 target’s occluding contours. To determine an object’s 

5 

demands on a space robot sensor system are dictated by 

more, the scene type is dictated by the task that the 

manipulated by computer. This process, known 

product. Parameters such 

did- 

the she, number, and Spa- 

Objects that make these scenes’ For their tion are thresholding and edge detection. A vision sys- 

the Scene are Of interest. Target properties that through thresholding, where a bright object is assigned 
affect the accuracy Of the scattering 
surface roughness, dielectric constant, and motion. Ob- 
jects may in turn be decomposed into components that 
have well-defined properties. 

might encounter in space vary widely. They may be 
simple, or complex in terms of numbers of objects, and 

are 

Typical which an automated Sensor system occluding contours, edge detection is required. 

High-Level Vision Subsystems 
they may be in motion with respect to several degrees High-level vision subsystems are those that not only 
offreedom. In general, the scene characteristics depend 40 process the optical image, but attempt to extract Some 
on the task at hand. The characteristics that must be information regarding the location, shape, motion, etc. 

for each task are ComPlexitY, and of the objects in the image. There are two approaches to 
motion. this problem. The first approach is to compare the opti- 

Jobs that could be automated in space usually fall into image to a library of stored images, or images gener- 
the three broad categories of tracking, retrieval, and 45 ated from a library of stored object models. The second 
servicing. Each of these tasks involve different types of 
scenes which a robot’s sensing system must d4-with.  
Over the life of a given robot mission all three tasks 
could be encountered, but a single vision system should 
only have to interpret one type of scene at a time. Con- 
sider an automated satellite maintenance mission. Such 
a task requires that the robot first track the target from 
a distance, then approach the target at close range, and 
finally dock and execute the necessary servicing opera- 
tions. 

An important aspect of the shape reconstruction 
method of instant invention is the use of optical sensing 
to derive a first approximation to the target shape. A 
computer vision system that is able to even partially 
determine the shape of three-dimensional objects will 
consist of many independent sub-systems. Each of these 
subsystems may be the result of years of research and 
testing, so the literature on this subject is vast. 

Computer vision system components usually fall into 
two categories: those that deal with low-level pro- 
cesses, and those that perform high-level functions. 
Low-level vision includes image acquisition, digitaliza- 
tion, and simple linear filtering. High-level vision in- 

approach is to generate a three-dimensional shape di- 
rectly from the information in the optical image. The 
matching approach is much more reliable, but requires 
a large library of stored models, and a vast amount of 

50 knowledge about the various images these models may 
generate. 

The second approach is manifested in such tech- 
niques as shape-from-shading and photometric stereo. 
These “shape-from” techniques are limited by the qual- 

55 ity of illumination available. They have only proven 
successful in controlled experiments with simple shapes. 
Also, the “shape-from” techniques only generate sur- 
face normals. Reconstructing a unique surface shape 
from these normals is not always possible. 

Another method for generating shape directly from 
the optical image is stereo vision. In stereo vision, simul- 
taneous images from cameras separated by a small dis- 
tance are correlated so that points in the two images 
that correspond to the same physical location are 

65 matched. From knowledge of camera placement and 
the disparity between two matched points, the 3D loca- 
tion of the corresponding physical point can be com- 
puted. The most difficult aspect of this procedure is the 

60 
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correlation between images. Seldom is a perfect match diffraction, moment methods, and physical optics have 
found throughout the image, and specular points pres- been considered. Another limitation on the success of 
ent particularly troublesome matches. Stereo is, how- the method is the type and quality of information input 
ever, a very promising 3D vision technique and most of to the system. However, in a typical application a con- 
the space robotic vision systems under design make use 5 figuration such as the one shown symbolically in FIG. 2 
of it. may be used. 

An application of particular interest is one in which 
Application of Sensor Fusion the method of moments is used to model the RCS. Al- 

A free-flying space robot needs detailed information though this involves the numerical solution of a com- 
about the location of objects in its workspace and the 10 plex integral equation, it is significant because it allows 
shape of individual objects. The most common sensors the computation of microwave scattering from arbi- 
for acquiring this information are electronic cameras trary surfaces. Simpler modeling techniques such as the 
sensitive to optical wavelengths. The space environ- geometrical theory of diffraction or physical optics 
ment, however, presents unique problems to an optical constrain the scattering target to simple geometric 
3D shape sensing system. The lack of atmosphere cre- 15 shapes such as cylinders and plates. The method of 
ates deep shadows and intense illumination. Specular moments requires that the currents on the surface of the 
points become very bright, and shadowed edges are scattering object be expanded in some orthonormal 
indistinguishable against dark backgrounds. These basis. Without some independent shape information, no 
problems cannot always be easily overcome by simple constraints exist on the shape and configuration of these 
image processing or enhanced vision methods. Sensory 20 basis functions. This information must be derived from 
data from some independent physical regime must be the optical image. It can be shown that non-linear error 
used to augment a purely optical robot sensor system. minimization employing the method of moments is sim- 

The goal of a sensor fusion system may be to localize plified if the shape and configuration of the basis func- 
objects within a robot workspace, or to determine the tions remain fixed throughout the procedure (See, “Mi- 
shape of individual objects. The application considered 25 crowave and Optical Sensor Fusion for the Shape Ex- 
here is extracting the shape of 3D objects. Various traction of 3D Space Objects”; a doctoral Thesis of 
sensors which have been studied by researchers for Scott W. Shaw, Rice University; Houston, Tex., April, 
robotic applications include multiple camera views, 1988). These observations indicate that the optical 
multiple processes on a single view, tactile sensors, laser image is essential to the feasibility of this technique. We 
range images, and ultrasonic imaging. Our invention has 30 have employed the assumption that the occluding con- 
focused on the fusion of camera images with electro- tours are known at the outset and can be extracted from 
magnetic scattering data of conventional bandwidths the camera data using standard image processing tech- 
(not high resolution) and frequencies, Le. X band, Ku niques. 
band, etc., to determine the shape of remote 3D objects Several simulations and experiments were performed 
in space. 35 demonstrating the application of the RCS/image sensor 

Ideally, a robot working in space would use high- fusion system. The invention involves a method for 
resolution microwave imaging to augment its tactile building a three-dimensional (3D) surface model of a 
and optical sensors. This type of system requires large remote object from a single digital camera image and a 
bandwidth, multiple viewing angles, and sophisticated set of polarized radar scattering cross-sections. As pre- 
signal processing, and produces an image consisting of 40 viously stated, in space, camera images are difficult to 
intense regions at points of specularity. The technology analyze because light does not behave as it does in the 
and equipment required for such a system is, however, atmosphere. Intensely bright areas and deep shadows in 
prohibitively cumbersome and expensive for many ap- the image create problems for standard shape extraction 
plications, and interpretation techniques lag behind the techniques such as shape-from-shading, photometric 
imaging technology. An alternative to microwave im- 45 stereo, and stereopsis. Often the resulting 3D surface 
aging is the use of polarized radar scattering cross-sec- model is incomplete. Our technique for improving this 
tions (RCSs). The RCSs do not yield high-resolution surface model is to use it as a first approximation in an 
images, but the analysis of depolarization can provide iterative scheme that minimizes the difference between 
important shape information about the scattering sur- theoretically predicted cross-sections and observed 
face; especially at the specular point, where the optical 50 cross-sections. We have demonstrated this technique on 
image often fails. To circumvent the ambiguity of the three problems. The frrst was to determine a missing 
RCS, the incomplete optical image can be used to guide edge of a flat plate. The second was to determine the 
the conversion of RCS into shape. The resulting scatter- size and rotation in the horizontal plane of an ellipsoid. 
ing surface shape description is more complete than can The third was to recover the shape of an interior surface 
be derived from the RCS or the camera image alone. 

The main contribution of this investigation has been Application 1 the development of numerical methods that determine 
some characteristics of a surface from an incomplete This application involved determining an edge of a 
optical image and the observed RCS. This is done by perfectly conducting, rectangular, flat plate that has 
modeling the unknown characteristic of a surface by 60 been lost in shadow. The steps in the process are: 
some parameter vector and applying a non-linear-least- 1. Obtain an approximate orientation of the plate by 
squares algorithm to minimize the difference between 
the observed RCS and a theoretical RCS that results 2. Enhance edges in the camera image. 
from the parameterized surface model. The optical 3. Threshold the edge-enhanced camera image. 
image is used to provide an initial estimate of the param- 65 4. Extract the three visible boundaries of the plate 
eterized surface. The success of such a method depends from the thresholded camera image. 
to a large extent on the accuracy of the theoretical RCS 5. Determine the width of the plate and, hence, the 
model used. Models using the geometrical theory of missing edge, using a GTD scattering model to generate 

55 patch on an arbitrarily shaped scattering target. 

stereopsis. 
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theoretical radar cross-sections of the plate (see R. A. camera images was proposed as a solution to this prob- 
Ross, “Radar Cross Sections of a Rectangular Flat Plate lem. Specifically, the use of polarized radar scattering 
as a Function of Aspect Angle”, IEEE Transactions on cross-sections was suggested. It is an objective of the 
Antennas and Propagation, Vol.AP-14, No. 3, invention to produce sensor fusion resulting in work- 
pp329-335, May, 1966), and minimizing the difference 5 space interpretation which is better than the component 
between these theoretical cross-sections and the ob- interpretations in the sense of either confidence or com- 
served cross-sections using the program “lmdifo pleteness. The goal was to show that such a fusion is 
found in the MINPACK group of programs published possible. Certainly, fusion was achieved. The complete 
by Argonne National Laboratories. surfaces were indeed recovered from the component 

10 interpretations. Also, it could be said that the confi- 
dence in the final surface was increased over the indi- Application 2 

The second application was to build a model of a vidual components. The component interpretations 
perfectly conducting ellipsoid rotated in the horizontal cooperated to achieve a correct solution, i.e. the inde- 
plane. The following steps describe this application: pendent Sensors perceived the same physical object. 

1. Enhance the edges of the camera image. The overall favorable results of the applications, 
2. Threshold the edge-enhanced image. however, should be interpreted in light of the simplifi- 
3. Determine the vertical axis of the ellipsoid directly cations that were made. First of all, the problems were 

from the thresholded, edge-enhanced image. designed with the application in mind, also, these were 
4. Determine the apparent width of the ellipsoid in not the most difficult situations imaginable. In particu- 

the horizontal plane from the thresholded, edge- 20 lar, the plate and ellipsoid were scattering geometries 
enhanced image. which would probably seldom occur in a real space 

5. Determine the other two axes and the rotation in robotic situation, on the other hand, many complex 
the horizontal plane by generating a geometrical optics scattering geometries can be approximated as collec- 
cross-section (see G. T. Ruck, D. E. Barrick, W. D. tions of smaller, simple objects. The cylinder, in particu- 
Stuart, and C. K. Kirchbaum, Radar Cross-section 25 lar, has a well-known and easily predictable RCS; it is 
Handbook, Vol. 1, Plenum Press, New York, 1970), a one of the most thoroughly studied scattering geome- 
first order approximation to the cross-polarized cross- tries in existence since exact solutions to the wave equa- 
section (see S. J. Choudhuri and W. M. Boerner, “A tion are available for this case. The RCS of spacecraft, 
Monostatic Inverse Scattering Model Based on Polar- satellites, etc. are often computed by a scattering code 
ized Utilisation,” Appl Phys., Vol.11, pp337-350, 1976), 30 which models complex objects as connected cylinders 
and minimizing the difference between the theoretically of various shapes. Thus, recovering the shape of simple 
generated cross-sections and the observed cross-sec- scattering geometries is a frrst step to developing solu- 
tions, again using the “lmdifo” routine. tions for more complex geometries. The plate was 

chosen for its well-known and accurate closed-form 
35 RCS expression, but the ellipsoid has no such expres- Application 3 

This application involved building a model of an sion. The ellipsoid remains one of the most difficult 
arbitrary surface given the scattering cross sections and scattering problems, and the prediction of diffraction 
a degraded optical image. The image is degraded only patterns for general ellipsoids is still a research problem. 
around the specular point of the scattering object. The It is encouraging, therefore, that good results were 
reconstruction procedure is: 40 obtained for the ellipsoid, even though gross simplifica- 

1. Using shape-from-shading, photometric stereo, or tions were made in computing the RCS. The time- 
streopsis, construct a model of the visible portion of the domain scattering results were essential here, since the 
target surface everywhere except in a patch surround- mecular return. for which the simDlifications hold. 

15 

ingthe specular point of the target. 
2. Describe the specular patch of the model by a 

spline surface. 
3. Determine the exterior knots of the spline patch 

from the camera-generated model. 
4. Solve for the interior knots of the spline patch by 

generating co-polarized and cross-polarized scattering 
cross-sections by a moment-methods technique (see R. 
F. Harrington, Field Computation by Moment Methods 
The Macmillan Company, New York, 1968), and mini- 
mizing the difference between these theoretical cross- 
sections and the observed cross-sections, again using the 
“lmdifo routine. A reliable moment-method code is 
the “Numerical Electromagnetic Code,” published by 
Ohio State University. 

The first two applications included experimental data 
as well as simulations, whereas the third was simulated 
only. The results show that surfaces can be recovered 
with very little error when the polarized RCS and cer- 
tain parameters from the camera image can be measured 
accurately. 

In developing the invention, it was observed that 
optical sensing in the space environment does not al- 
ways provide enough information to reconstruct 3D 
surfaces. The fusion of radar scattering data with the 

cbuld be separated from the creeping’wave reflection.‘ 
The hidden simplification in the design of the arbi- 

trary surface experiment is that the surface used to gen- 
erate the observations was constructed in the same way 
as the approximation surface. Splines of the same degree 
were used to define both surfaces, so an exact solution 

50 was always possible. A better test of this method would 
be to construct the surface used to generate the observa- 
tions from splines of a higher degree than those used to 
model the scattering response. Alternately, the observa- 
tion-generating surface could be defined arbitrarily, 

55 with no reference to splines, perhaps containing sharp 
comers or other features that cannot be exactly repre- 
sented by continuous functions. The results of a spline 
approximation in such a case would reveal insights 
about the usefulness of the shape reconstruction tech- 

Another simplification that affected the outcome of 
the experiments is the assumption that the scattering 
targets are perfectly conducting. In practice, this condi- 
tion is seldom met, although it may be approximated in 

65 certain space objects. If the target is not perfectly con- 
ducting, its dielectric constant must be determined 
along with the target shape. In addition, the scattered 
field expressions increase in complexity. While this 

45 

60 nique applied to truly arbitrary surfaces. 

- 
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dificulty is not insurmountable, its addition increases The present invention presents a new system for ex- 
the number of surface parameters that must be deter- tracting the 3D shape of space objects using optical 
mined, and therefore places more demands on the num- images and the polarized RSC. The system works by 
ber of observations. describing the unknown surface parametrically and, 

One last assumption that was made and that is seldom 5 using electromagnetic modeling techniques, minimizing 
achieved in a real space situation is target stationary. the error between the predicted and the observed polar- 
usually, objects are rotating about Some & and mov- ized RCS set. The Optical image iS incorporated by 
ing translationally with respect to the sensor. ere- providing an initial estimate of the scattering surface 
ates Doppler shifts in received radar frequency, and shape. Obviously, the success of such a method is highly 
target scintillation. While Doppler shift is desirable in 10 dependent on the modeling technique used. Many 
target tracking situations, it creates problems for RCS choices are available, but the one employed was the 
measuring systems. One way in which this might Method of Moments (MM), (see Roger F. Harrington, 

is to use a laser range sensor to determine “Field Computation by Moment Methods”, The Mac- 
target velocity and predict Doppler shift. millan Company, New York, 1968.) This modeling pro- 

was seen that the purely numerical error . . . tion controlled conditions. The state of the art in electro- 

solution. was by the are obtained for simple, perfectly conducting objects. 

model. However, more powerful computers and micro- 
wave equipment should be available in the future, mak- 
ing much more accurate modeling possible for more 

25 range, range rate, scattered amplitude, and scattered 

on systems that will construct images of remote objects 

variety of scattering angles. These wideband radar im- 
systems would be an ideal complement to optical 

imaging in space. They are, however, extremely com- 
plex and require much signal processing. In addition, 
the resulting image is often difficult to interpret, yield- 
ing intense blobs at the target’s so-called 

be 

In the flat plate and arbitrary surface simulations it l5 cedure has been shown to be accurate under properly 

procedure alone did not always converge to the correct 

error at convergence to a threshold related to the noise 
variance of the data. If the residual was greater than the 2o polygonal 

magnetic modeling is still 

Such simple objects 

and best 

plates, 
and perhaps a 

threshold, the initial parameter was perturbed slightly 
and the numerical procedure started again* This need 

even in the simples? case points out the limitations of a 

have to be in- 

for s’peMsion in Order to global convergence complex targets. Radar systems now for 

Purely algorithm. In Order to imp1ement such phase in polarizations, Research is progressing 

using wideband microwave measurements taken over a 
a supervisory system 

bolically by the intelligent module of FIG. 2. 

there is merit in using information from some indepen- 
dent source to guide the inversion of electromagnetic 
data. Previous work in shape determination from scat- 
tering data has concentrated on the scattered electro- 
magnetic field as the sole source of information. Much 35 centers. A wideband radar image would 

the ill-posed inversion problem The ill-posed nature of 

in a given as represented ’ym- 

Overall, the results of the our work demonstrate that 30 

ofthis previous work consisted of attempts to useful to a space robot, but is difficult and expensive to 

the inGersion problem stems from the lack of complete 
information about the scattered field. If information 
from some other physical regime is available about the 
scattering target it can be used to complement the lim- 
ited scattered field description. In our case, this has been 
accomplished by using the camera information to re- 
duce the number of unknown surface parameters. 

SUMMARY OF THE INVENTION 
The invention comprises method and apparatus for 

fusion of data from optical and radar sensors by error 
minimization procedure. The method has been applied 
to the problem of shape reconstruction of an unknown 
surface at a distance. The method involves deriving a 
surface model (which may be incomplete) from an opti- 
cal sensor. The unknown characteristics of the surface 
are represented by some parameter. The correct value 
of the parameter is computed by iteratively generating 
theoretical predictions of the Radar cross-sections 
(RCS) of the surface, comparing the predicted and the 
observed values for the RCS, improving the surface 
model from results of the comparison, and repeating the 
process until the difference between the predicted and 
observed values are below an acceptable threshold. 
Theoretical RCS may be computed from the surface 
model in several ways. One RCS prediction technique is 
the method of moments. The method of moments can 

obtain. Instead, the present invention utilizes shape 
information that is available from the returns of simple, 
currently available, microwave radar systems. 

Accordingly, it is, therefore, an obiect of the inven- 40 

45 

50 

55  

60 

be applied to an unknown surface only if some shape 65 
information is available from an independent source. 
The optical image provides the independent informa- 
tion. 

tion to employ the use of simple rad& to obtain polar- 
ized RCS for shape determination. 

It is a further objective of the invention to use itera- 
tive error minimization. 

It is a still further object of the invention to integrate 
an optical image and radar data. 

It is a yet further object of the invention to use an 
optical image to provide a first approximation of the 
target shape. 

It is an even further object of the invention to identify 
novel shapes without the requirement of matching an 
image from a preexisting library. 

BRIEF DESCRIPTION O F  THE DRAWINGS 
The objects, advantages and features of the invention 

will become more apparent by reference to the draw- 
ings which are appended hereto and wherein an illustra- 
tive embodiment of the invention is shown, of which: 

FIG. 1 is a schematic diagram of the system. 
FIG. 2 is a symbolic representation of the system for 

use in a working space robot. 
FIG. 3 illustrates a dimensioned, perfectly conduct- 

ing, rectangular flat plate as used in reconstruction 
problem. 

FIG. 4 is a plan view diagram illustrating the flat 
plate edge reconstruction problem. The right-hand 
edge of the plate is lost in shadow and will be deter- 
mined using the method of the invention. 
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FIG. 5 is an illustration of the top portion of an arbi- 
trary surface whose specular region is to be recon- 
structed. The peripheral details are known from the 
optical image, and the central portion is recovered using 
the RCS data by the method of the invention. 

DESCRIPTION O F  THE PREFERRED 
EMBODIMENT 

image processor (6) produces an incomplete surface 
model of the unknown object (1). The surface model is 
a list of digitally stored data, each of which consists of 
three numbers that are the x, y, and z locations of a 

5 point on the object’s surface. The incompleteness of the 
surface model may result from regions on the object’s 
surface that are, for some reason, not understood by the 
high-level image processor (6). The incomplete surface 

The Radar Scattering Cross-section (RCS) is the model is passed on to the initializer (8) by a digital data 
ratio of scattered to incident power normalized for 10 bus (7). 
wavelength, range and antenna gain. The co- and cross- The initializer (8) is a general-purpose computer or 
polarized RCS yield some shape information about the digital circuit that “fills in” the portions of the surface 
scattering object. By considering the RCS in conjunc- model left incomplete by the high-level image processor 
tion with an imperfect optical image, an object surface (6). The unknown areas of the surface model are com- 
characterization is derived which is more reliable and 15 puted by surface functions such as B-splines that depend 
complete than those derived from either data set taken on some numerical parameter p. This surface approxi- 
alone. mation technique is well-known and is described in 

An embodiment of the invention can best be de- books such as “Geometric Modeling” by Michael E. 
scribed in reference to FIG. 1. Mortenson, Wiley, New York, 1985. 

A target object of unknown shape (1) lies in free 20 The surface functions are represented digitally in a 
space. An object of this invention is to determine the form that both the initializer (8) and the computer (16) 
shape of this target in the greatest possible detail. This is understand. The surface functions along with the in- 
done by combining the outputs of an image sensor (2), complete surface model are passed on to the computer 
and a radar measurement system (10-14). The outputs (16) by a digital data bus (9). The computer (16) will 
of these sensors are combined by image processors (4, 25 determine the correct value of the parameter p in the 
6), and a computer (16) for eventual display on a CRT manner hereafter described. 
(U), or use by a Robot (19). Concurrently with collection of the images by the 

The image sensor (2) is composed of one or more cameras (2), a radar cross-section (RCS) of the un- 
cameras which consist of an aperture and a light sensi- known object (1) is being measured by the radar system 
tive element such as a charge-coupled device (CCD) 30 (10-14). The radar system consists of a radar processor 
array. The light sensitive element converts the sensed (14), antennas (10, 11) and waveguides (12, 13). The 
image into an analog video signal. Multiple cameras are radar processor (14) is a widely-available device, and all 
required for stereo imaging, otherwise a single camera of the functions described here can be performed by a 
is used. The analog video signal is transferred to the unit such as the Hewlett-Packard 8510 Network Analy- 
low-level image processor (4) via a coaxial cable (3). 35 zer. The method by which they may be performed is 

The low-level image processor (4) is an electronic described-in Hewlett-Packard’s product note #85 10-2. 
circuit that may be implemented as a general purpose The radar processor (14) generates a microwave signal 
computer with specialized programming or as a series that is transmitted along the waveguide (12) and radi- 
of specialized circuit boards with a fued function. The ated by the transmitting antenna (10). The electromag- 
low-level image processor (4) collects the analog video 40 netic field is diffracted by the object (1) and collected 
signal for each frame and converts it to a digital form. by the receiving antenna (11). The diffracted signal is 
This digital image is an array of numbers stored in the transmitted back to the radar processor (14) by a wave- 
memory of the low-level image processor (4), each of guide (13). The radar processor (14) computes the RCS 
which represents the light intensity at a point on sensing of the unknown object (1). The RCS is represented 
element of camera (2). When stereo imaging is used, this 45 digitally by the radar processor (14), and transferred to 
may be done for multiple video signals simultaneously. the computer (16) by a digital data bus (15). 
The low-level image processor (4) may also perform The computer (16) performs the comparisons and 
certain filtering operations on the digital image such as iterations using two pieces of widely available software. 
deblurring, histogram equalization, and edge enhance- The first is the MINPACK package of non-linear mini- 
ment. These operations are well-known and fully de- 50 mization programs published by Argonne National 
scribed in the literature, see for example, K. R. Castle- Laboratory, and the second is the Numerical Electro- 
man, “Digital Image Processing”, Prentice-Hall, Engle- magnetic Code (NEC) available from Ohio State Uni- 
wood Cliffs, N.J., 1979. versity. The NEC code generates theoretical approxi- 

The diaital image, thus enhanced, is transferred via a mations of the RCS of the object (1) using the surface 
55 model produced by the initializer (8). The MINPACK digital da?B bus ($to the high-level image processor (6). 

The high-level image processor (6) may also be either 
a hard-wired circuit or a general purpose computer. 
The high level image processor (6) takes the enhanced 
digital image and attempts to extract shape information 
from it by various means including shape-from-shading, 
or in the case where multiple cameras are used, stereop- 
sis or photometric stereo. These are also well-known 
operations and are described in the literature, (for exam- 
ple, see Berthold Klaus Paul Horn, “Robot Vision”, 
Cambridge, Mass., MIT Press, 1986.) When multiple 
cameras are used in the image acquisition and process- 
ing system (2-5), the multiple images are combined at 
the high-level image processor (6). The high-level- 

program “lmdif0’’ uses these approximate RCSs to 
compute the correct value of the parameter p by an 
iterative scheme known as “nonlinear least squares”. 
This method allows computation of the correct value of 

60 p by minimizing the difference between the observed 
RCS acquired by the radar system (10-14) and the theo- 
retical RCS computed by the NEC code from the in- 
complete surface model. Using the correct value of p, 
along with the incomplete surface model and surface 

65 functions from the initializer (8), the computer gener- 
ates a complete surface model. 

The Appendices include exemplary listings showing 
the manner in which the invention was implemented in 
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specific embodiments. As with all computer programs, 
they must be written for the particular hardware and 
carefully debugged. The appendices are useful exam- 
ples of one implementation. 

Appendix I contains listings of exemplary program 5 
for determining surface parameter vector from an ob- 
servation vector and for computing the polarized RCS 
for a closed ellipsoid having specular patch and for 
minimizing the sum of squares of the vector. 

to compute the polarized RCS for an ellipsoid with 

Appendix I11 contains listings of exemplary program 
to compute a specular patch for a closed ellipsoid. 

Appendix IV contains listings of exemplary program 
to generate a grid on an ellipsoid surface 

Appendix V contains listings of exemplary programs 
to do a point matching solution to the MFIE on a grid 
on n points p, with normals in the array n. 

While a particular embodiment of the invention has 
been shown and described, various modifications are 

Appendix 11 contains listings of exemplary program 10 within the spirit and scope of the invention. The ap- 
pended claims are, therefore, intended to cover all such 

. specular patch computed with a B-spline fit. modifications. 

Appendix I 
# i n c l u d e  <math.h> 
# d e f i n e  P I  3.141592654 
# d e f i n e  K (2.0*PI/1.28) 
# d e f i n e  B 3.25 
# d e f i n e  N 2 
# d e f i n e  M 3 
# d e f i n e  LWA (M*N+5*N+M) 
# d e f i n e  MAXFEV 1 0 0  
#def ine  MODE 1 / *  variables s c a l e d  i n t e r n a l l y * /  
# d e f i n e  FACTOR 100.0 
# d e f i n e  NPRINT -1 
# d e f i n e  TOL 3.7253e-09 
# d e f i n e  THRESH le-8 
# d e f i n e  PERT (1.25/16.0)  / *  p e r t u r b  by lambda o v e r  1 6  * /  
# d e f i n e  MAXPERT 1 
# d e f i n e  TRUE 1 
# d e f i n e  FALSE 0 
# d e f i n e  BIGNUM 2147483647 
# d e f i n e  SCALE1 1.0 
# d e f i n e  SCALE2 100 .0  
# d e f i n e  SCALE3 1 0 . 0  

double  sigmao [MI , enom-  (1  , g a u s s  ( 1 ; 
double  k, phix ;  
i n t  f c n c n t ;  

double  dpmpar-(i) 
i n t  * i ;  
f 
double  r e s u l t ;  
i f ( * i  == 1 1 1  

r e s u l t  = 1 . 0 ;  
w h i l e (  ( r e s u l t / 2 . 0  + 1 . 0 )  !== 1 . 0 )  

r e t u r n  ( r e s u l t )  ; 
r e s u l t  /= 2.0; 

1 
else i f ( * i  =- I) 

r e t u r n  (TOL) ; 
else 

r e t u r n  (HUGE) ; 
I 

f u n c t i o n  (m, n, x, fvec, i f l a g )  
i n t  *m, *n, * i f l a g ;  
double  x [ I ,  f v e c  [ I  ; 
f 
double  dummy; 
f cncnt++; 
rcs ell ip(l .O,O.O, &fvec[OI , h fvec [ l l  ,x[Ol , x [ l l 1  ; 
fvec[O] *= SCALE1; fvec[OI -= SCALEl*sigmao[Ol; 
f v e c [ l ]  *= SCALE2; fvec[ l l  -= SCALE2*sigmao[ll; 
rcs e l l i p  ( 0.0 , 1.0, &dummy, & f vec [2 1 , x [ 0 1 , x [ 1 1  ; 
f v e c [ 2 ]  *= SCALE3; f v e c  [21 -= SCALE3*sigma0[21; 
i f  ( f c n c n t  > MAXFEV) 

* i f l a g  = -1; 
1 
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20 
/ *  

4 

* /  

A program to determine some surface ParaIWter vector of length N given 
an observation vector of length M. The routine function0 calls a program 
rcs ellip0 vhich computes the polarized RCS for a closed ellisoid with a 
8-spline-fit specular patch. 
knots of the 8-spline patch. Subroutine lmdifl(1 is the Levenberg-Marquardt 
algorithm for minimizing the sum of squares of the vector computed by 
function ( ) . 

The parameters are r-heights for the internal 

main (argc, argv) 
int argc; 
char argv[]; 
( 
static int n-N,m-H,lva - LWA, narg - 1; 
int i, j,info,nfev,iva[N], ('fcn) 0 ;  
int terminate, npert; 
double tol, resid,noise, z; 
double x IN], fvec [MI, wa [LWA] ; 
double enorn; 
/ *  initialize x * /  
for (i-O:icN;i++) ( 

I 
fcn - function; 
for (i-0; i<M; i++) ( 

1 
/ *  add noise to observations * /  
noise - atof(argv[narg++l): 
for (i-O:i<M;i++) 

to1 - TOL; 
/ *  call lmdiff * /  
fcncnt - 0; 
lmdifl-(fcn,&m,&n.x,fvec,&tol,&info,iwa,wa,~lwa); 
resid - enom (&m, fvecl ; 
printf ("\x[Ol-- Zg, xlll - Zg, residual - Zg\n",xIOl,x[l],resid); 
printf("Zd function evaluations",fcncnt): 

x[i] - atof (argv[narg++]) ; 
sigmao [il - atof (argv[narg++] 1 ; 

sigmao[i] +- noise*gauss 0 ; 

1 

Appendix I1 
#include "momth.h" 
#define LAMBDA 1.25 
ldef ine D (A) (delphi+A) 
ldefine MG 5 / *  number of radial grid lines * /  
#define NG 4 / *  radial distance division (NG-1 points on each line) * /  
ldefine NPTS (MG* (NG-ll+lI 

/ *  
A program to compute the polarized RCS for an ellipsoid with specular patch 
computed with a 8-Jpline fit. 

* /  

rcs ellip(hxi,hyi,sigrrmxx,signuxy,pannl,pann2) 
dough hxi,hyi; / *  the incident magnetic field magnitudes * /  
double *sigmaxx,*sigmaxy; 
double pannl,parm2; 
I 
static THREEVEC p[NE'TS], nom[NPTSl; 
static double alpha[NPTS], x0 - 0.0, yo - 0.0, 20 - 25.0,  a - 0.75*LAnBDA, b - O.S*LAMSDA, 
static int n - NPTS; 
CNPLXTHFSEVEC *delphi; 
complex kernel[3*NPTSl [3*NPTSI, h[3*NPTSI, 1[3*NPTS], htransr3*NPTSIr astarx[)*NPTSI, asta 
double d, partzx, partry, xbound, ybound; 
int if j,k; 
delphi - (CMPLXTHREEVEC *)malloc (n*n*sizeof (CMPLXTHREEVEC) ) ; 
n-closed e grid(a,b,c,NG,NG,p) ; 
/*  compuFe-normals */  
for (j-0: j<n-l; j++) ( 
alpha[jI - 1.0; 
partzx - c*c*p[ j l  .x/(a*a*fabs ( p [ j l . r ) ) ;  
partzy - c*c*p[ jl .y/(b*b*fabs(p[jl.zl); 
norm[ j] .x - partzx/sqrt (1.0 + partzx*partzx + partzy*partzy) ; 
norm[!].y - partsy/sqrt(l.O + partzx'partzx + partzy*partzy); 
if(p[Jl.z > 0) 
nonn[j].z - l.O/sqrt(l.O + partzx'partzx + partzy*partzy); 

else 
nonn[j] .z - -l.O/sqrt (1.0 + partzx'partzx + partzy*partzy); 

1 
xbound - a 2.0/3.0; ybound - b sqrt(l.0 - ( 4 . 0 / 9 . 0 ) ) ;  
comp-specgatch (a, b, c,xbound, ybound, parml,pann2, p, norm) ; 
d - zO*zO; 
gradientghi (p, delphf, n, Z.O*PI/LAMBDA) ; 
build-k-matrix (norm, delphi, kernel, nl ; 
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build h -array(h,p,norm,n, 2 .O*PI/LAMBDA,xO,yO, 20, hxi; hyi) ; 
build~a~array(astarx, astary,p,nonn, Z.O'PI/LAMBDA,d,n) ; 
solve-for-1 (kernel, Jstary, I , n )  ; 
henntrans (h, htrans, 3*NPTS,1) ; 
m u l t  (htrans,l,Chscrl,3*NPTS,l); 
'sigmaxx - (hsc.re*hsc.re+hsc.im'hsc.im); 
solve for l(kernel,astarx,l,n); 
henntyansTh, htrans, 3*NPTS, 1) ; 
cnmult (htrans, 1, Chsc, 1,3*NPTS, 1) ; 
'siqmaxy - (hsc .re*hsc.re+hsc .im'hsc.fmI ; 
free (delphi) : 

I 

22 

#def ine ZH (A, 81 c'sqrt 

Appendix I11 

/ *  

* /  

comp spec atch(a,b,c,xbound, ybound,pannl,parmt.p,nOnn) 
doubTe a,<c, xbound, ybound, parml.parm2; 
THREEVEC p[NPTS1,nonnINPTSI; 

This program somput s a specular patch for J closed ellipsoid. 
patch is controlled by the array Pkl[l [I. 

The surface 

{ 
THFEEYEC pk1131[41; 
double u,v,theta; 
int i; 
pkl[O][O].x - -xbound; pkl[Ol [Ol.y - ybound; 
pkl[O][l].x - -xbound/3.0; pkl[O]ll].y - ybound; 
pkl[0][2].x - xbound/3.0; pklIOJ[2].y - ybound: 
pkl[O] [3] .x - xbound: pkllO] [3] .y - ybound; 
pkl[l][Ol.x - -xbound; pklIl1 t0I.y - 0.0; 
pkl(l][l].x - -xbound/3.0; pkl[lllll.y - 0 . 0 ;  
pkl[l] 121 .X - xbound/3.0: pkl[ll 121 .y - 0 . 0 ;  
pkl[lI[3] .x - xbound; pklfl] [31 .y - 0.0; 
pkl[2] [Ol .x - -hound; pkllt] [O] .y - -ybound; 
pkl(21 fl1.x - -xbound/3.0: pkl[2] [l] .y - -ybound; 
pk1[2][2l.x - xbound/3.0; pkll21 l21.y - -ybound; 
pkllt] [SI .x - xbound: pkl[2J (31 .y - -ybound; 
for (i-O;i<MG:i++) [ 
theta - i*2.0*PI/nG; 
v - 0.5 + O.S*cos(theta): 
u - 0.5 - O.S*sin(theta); 
f indpt(u ,v ,rpI i*(NG-I) ! ,pkl ) :  
find_normal(u,v,Cnonn[~' (NG-l)],pkl) ; 

t 
findpt (0 .5 ,0 .  S,&p[NPTS-lI ,pkl) ; 
find-norrml(0.5,0.5,Cnorm[NPTS-ll,pklf; 

1 

Appendix IV 
f .  

A program to generate a grid on an ellipsoidal surface with X, y, and z 
axes equal to a ,b ,  and c respectively. The grid is radial, uith k radiating 
lines of 1-1 points on each. A grid point is also placed at the center. 
The total number of points generated is (k*(l-l))+l. 

* /  
#include "m0meth.h' 
#define EDGEDIST 0 . 9  / *  distance from center fo edge points * /  
#define BACKDIST 0.5 /, distance from center for ring of points on backside */  
#def ine P (A) (p+ (A) 1 

closed-e-grid (a, b, c, k, 1.p) 
double a,b.c; 
int k, 1; 
THREEVEC 'p; 
l 
int i, j,pctr; 
double theta: 
pctr - 0; 
for(i-O:i<k;i++) f 

theta - i*2*PI/k; 
for (j-1; j<l; j+*) I 
if (j -- 1-1) [ 
P (pctr) ->x - BACKDISf*a*cos (theta) ; 
P (pctr) ->y - BACKDIST*b*sin(theta) ; 
~(pctr)->z - - c*sqrt (1.0 - P(pctr)->x*P(pctr)->x/(a+a) - P(pctr)->y*P(pctr)->y 
pctr++; 
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i f ( j  -9 1-2)( / *  place outer points close to edge * /  

I 
else ( 

P (pctr) - > x  - EDGEDIST*a4cos (theta) ; 
P (pctr) ->y - EDGEDIST*b*sin(theta) ; 
P(pctr)->x - (double) j*(l.O/(double)l)*a*cos(theta); 
P(pctr)->y - (double) j*(l.O/(double)l)*b*sin(thetaI; 

I 

‘ 2 4  

1 
1 

P(pctr)->x - 0.0: 
P(pctr)->y - 0.0; 
P(pctr++)->z - c; 
return (pctr) : 

1 

Appendix V 

#include “mommeth. h” 

Xdef ine 
Xdef ine 
#define 

Xdef ine 
tdef ine 

Xdef ine 
#define 

#define 
Xdef ine 
Xdef ine 

/ *  
* A collection of programs to do a point-matching solution to the ME’IE 
* on a grid of n points p, with normals in the array n. 

* /  

build_h-array(h,p,norm,n, klxO,yOt zOlhOxthOY) 
complex *h; / *  h array - to be computed * /  
THREEVEC *pl*norm; / *  p is grid point array, norm is surface normal array*/ 
int n; / *  surface grid dimensions * /  
double k; / *  wavenumber * /  
double xO,yO,zO; / *  source location * /  
double hOx, hOy; / *  linearly polarized components of H inc * /  
( 
int i, j; 
complex templ,temp2; 
for (i-0; i<n; i++) I 

templ.re = 0.0: 
templ.im = k*(P(i)->z - 2 0 ) ;  
cexp(&templ,&temp2); / *  temp2 = expIjkz1 */ 
if (P(i)->z > 0) { 
H(i)->re = -2.0 * N(i)->z * hOy * temp2.re; 
H(i)->im = -2.0 * N(i)->z * hOy * temp2.im; 
H(itn)->re = 2.0 * N(i)->z * hOx * temp2.re; 
H(itn)->im = 2.0 * N(i)->z * hOx * temp2.im; 
H(i+2*n)->re = 2.0 * (N(i)->x*hOy - N(i)->y*hOx) * temp2.re; 
H(it2*n)->im = 2.0 * (N(i)->x*hOy - N(i)->y*hOx) * temp2.im; 

I 
else I 
H(i)->re = 0.0; 
H(i)->im = 0.0; 
H(i+n)->re = 0.0; 
H(i+n)->im = 0.0; 
H(i+2*n)->re = 0.0; 
H(it2*n)->im = 0.0; 

1 
1 

1 
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build-k-matrix (norm, del, a, n) 
THREEVEC *norm; / *  m*n long array of normal vectors * /  

CMPLXTHREEVEC 'del: / *  the gradient of the green's function * /  
complex *a; / *  the a matrix - to be determined */  
int n; / *  dimension of the surface grid */  
I 
complex *BXX, .axy, Oaxz, *ayx, *ayy. *ayz, 'azx, *azy, *azz; 
int i, j; 
allocate-blocks (caxx, aaxy, caxz,cayx, sayy,rayz, cazx, Cazy, aazz, n) ; 
build blocks (axx,axy,axz,ayx,ayy,ayz,azx,azy,azz,norm,del,n) ; 
assemble block3 (a,axx,axy,axz,ayx,ayy,ayz,azx,azy,azz,n) ; 
free blozks (raxx, aaxy,aaxz,Cayx,Cayy,~ayz,cazx,aazy,aazz~; 
for (Z?-o;i<3*n;i++) 

for (j-0: jc3.n; j++) ( 
A(i, j)->re /- 2.0.PI; 
Afi, j)->im /- Z.O*PI; 

allocate-blocks (axx,axy,axz, ayx. ayy,.yz,rzx,azy,azz,n) 
complex **axx, **axy. **axz. **ayx, **ayy, **ayz, **azx, **azy, **azz; 
int n; 
I 
*axx - (complex *)malloc (n*n*sizeof (complex) ; 
*axy - (complex *)malloc (n*n*sizeof (complex) ) ; 
*axz - (complex *)malloc (n*n*sizeof (complex) 1 ; 
*ayx - (complex *)malloc(n*n*sizeof (complex) ) ; 
*ayy 1 (complex *)malloc(n*n*sireof (complex)) ; 
*ayz (complex *)znalloc (n*n*sizeof (complex) ) ; 
*azx - (complex *)malloc(n*n*sireof(complex)); 
*azy - (complex *)malloc(n*n*sizeof (complex) ; 
*azz - (complex 0)malloc (n*n*sizeof (complex) ) ; 

1 

build-blocks (axx, axy, axz, ayx, ayy, ayz, azx, azy, azz, nom, del, n) 
complex *axx, *axy, *axz, *ayx, * a n ,  'ayz, a zx, *azy, *azz; 
THREEVEC *norm; 
CMP LXTHREEVEC *de 1 ; 
int n; 
f 
int i,j: 
for (i-0; i<n: i++) 

for (j-0; j<n: j++) ( 
if (N(j)->z !- O . O ) (  

(axx+i*n+j) ->re - (N(i) ->y* (DEL(i, j) ->re) .y+N(i)->z*DEL(i, j) ->re. z )  
(axx+i*n+ j) ->h (N(i) ->y*DEL(i, j)->h.y+N(i) ->z*DEL(i, 1) ->im. zl  /!I 
(axy+i*n+j)->re - -N(i) ->x*DEL(i, j)->re.x/N(j)->z; 
(axy+i*n+j)->im - -N(i)->x*DEL(i, j)->im.x/N( j)->z; 
(axz+i*n+j)->rt - -N(i)->z*DEL(i, j)->re.y/N( j)->z; 
(axz+i*n+j) ->Fm - -N(i) ->z*DEL(i, j) ->im.y/N( j) ->z; 
(ayx+i*n+j) ->re - -N(i) ->x*DEL (i, j) ->rc.y/N( j) ->z; 
(ayx+i*n+ j) ->fm - - N ( i )  ->x*DEL(i, j) ->im. y/N( j) ->z; 
(ayy+i*n+ j)->re - (N(i) ->z*DEL(i, j) ->re.z+N(il ->x*DEL(i, jl ->re.x) /!: 
(ayy+i*n+ j) ->hi - (N(i) ->z*DEL(i, j) ->im. z+N(i) ->x*DEL (i, j) ->im. X I  /:: 
(ayz+i*n+j)->re - -N(i)->z*DEL(i, j)->re.y/N( j)->z; 
(ayz+i*n+ j) ->im - -N(i) ->z*DEL(i, ))->im.y/N( j) ->z: 
(azx+i*n+ j) ->re - -N(i)->x*DEL(i, j) ->re.z/N( j) ->z; 
(azx+i*n+jl->im - -N(i)->x*DEL(i, j)->im.z/N(j)->z; 
(azy+i*n+ jl ->re - -N(i) ->y*DEL(i, jl ->re .z/N (j) ->z; 
(azy+i*n+j) ->im - -N(i) ->y.DEL(i, ]I ->im. z/N ( j )  ->z; 
(azz+ion+j)->re - (N(i1 ->x*DEL(i, 31 ->re.x+N(i)->y*DEL(i, j l  ->re.y) /rI 
(azz+i*n+ jt ->im - (N (il ->x*DEL(i, jl ->im.x+N (i) ->y*DEL(i, jl ->rm.y) / I I  
1 

I 
I 

assemble-blocks (a,axx,a%y,axz,ayxI ayy,ayz,azx, azy.azz, nl 
complex *a, *axx, *axy,*axz, *ayx. .ayy, *ayz, *azx, *azy, *azz; 
int n; 
I 
int i, j: 
for(i=O;i<n;i++) . 

for(j-0: j<n; j++) I 
A(i, !)->re - (axx+i*n+j)->re: 
A(i,y)->im - (axx+i*n+j)->im; 
A(i, j+n)->re - (axy+i*n+j)->re; 
A(i, j+n) ->im - (axy+i*n+ j) ->im; 
A(i, j+2*n)->re - (axz+i*n+j)->re: 
A(i, j+2*n)->im - (axz+i*n+j)->im; 
A(i+n, j)->re - (ayx+i*n+j)->re: 
A(i+n, 1)->im - (ayx+i*n+j)->im; 
A(i+n, j+n)->re - (ayy+i*n+j)->re: 
A (i+n, j+n) ->im - (ayy+i*n+ j) ->im; 
A (i+n, )+2*n) ->re - (ayz+i*n+ j) ->re: 
A(i+n, j+2*n)->im - (ayz+i*n+j)->im; 
A(i+2*n, j)->re - (azx+i*n+j)->re: 
A(i+Z*n, j)->im - (azx+i*n+j)->im; 
A(i+Z*n, y+n)->re - (azy+i*n+j)->re: 
A(i+2*n, j+n)->im - (azy+i*n+j)->im; 
A(i+2*n, j+2*n)->re - (azz+i*n+j)->re; 
A(i+2*n, j+2*n)->im - (azz+i*n+j)->in; 
1 
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free blocks (axx, axy, axz, ayx, am, ayz, azx, azy, azz)  
compTex *+axx, **axy, **axz, **ayx, +*ayy, **ayz, **a.=x, **azy, **azz: 
L 
free(*axx) ; 
free (*axy) ; 
free(*axz) ; 
f ree (*ayx) ; 
fret (*ayy) ; 
free(*ayz) ; 
free (*azx) ; 
free(*azy) ; 
free(*azz); 

J 

/ *  
A program to compute the gradient of the free space vector Green's 
Function. ri repre3ents the observation point, and rj the source point, or 
variable of integration. 

*/  

gradientghi (p,del, n, k) 

THPEEVEC 'p; / a  n lony array of surface points " /  
Cx?L%THREEVEC 'del; / *  r i  by n array of complex, three component elements * /  
int n: 
double k; / *  wavenumber * /  
I 
in: i, j; 
double dx, dy, dz. d: 
complex templ,temp2,temp3: 
fo:(i-O:i<n;i++) 

f o r  (j-0; j<n; j++) I 
if(i != 

else { 
I 

j) I 
dx = P(i)->x - P(j)->x; 
dy - P(i)->y - P(j)->y: 
dz - P(i)->z - P(j)->z: 
d - sqrt(dx*dx + dyrdy + dz'dz); 
templ .re - 1.0/ (d*d*d) ; 
templ.im - k*l.O/(d*d); 
temp2.re - 0.0: 
temp2.im - -k*d: 
cexp(~temp2,~temp3); / *  temp3 - exp(-jkdI * /  
c m u l t ( ~ t e m p 3 , & t e m p l , C t e m p 2 ) ;  / *  temp2 - templ*temp3 * /  
DEL(i, j)->re.x - dx.temp2.re; 
DEL(i, j)->im.x - dx'ternp2.im: 
DEL(i, j)->re.y - dy*tempZ.re: 
DEL(i,j)->bn.y - dyetemp2.im; 
DEL(i, j)->re.z - dzetemp2.re; 
DEL(i, j)->im.z - dz*temp2.im; 
1 

DEL(i, j)->re.x - 0.0; 
DEL(i, j)->im.x - 0.0; 
DEL(i, j)->re.y - 0.0; 
DEL(i,j)->im.y - 0.0; 
DEL(i,J)->re.z - 0.0: 
DEL(i, j)->im.z - 0.0; 
1 

1 

build-a-array(ax, ay,p,norm, k,d,n) 
complex *ax, *ay; 
THREEVEC *p, *norm; 
double k,d; 
int n: 
I 
complex tempO,templ,temp2,temp3,temp4: 
in: i; 
/ =  

@ /  
teap3.re = 0.0: temp3.im = 0.0; 
tezp4.re = 0.0: temp4.im - 0.0; 
/ *  initialize a arrays * /  
for(i=O:i<3*n;i++) 1 
i\S(i)->re - 0.0; 
AX(i)->im - 0.0; 
AY(i)->re - 0.0; 
AY(i)->im - 0.0; 

Perform numerical integration 

t 
for(i=O;i<n;i++) I 

tempo. r e  - cos (k.P (i)->z) ; 
temp0.im - -sin(k'P(i)->z); 
temp3.re - tempO.re/N(i)->z: 
temp3.im - tempO.im/N(i)->z; 
temp4.re - tempO.rc/N(i)->z; 
temp4.im - tempO.im/N(i)->z: 
temp0.re - 0.0; 
temp0.im - k/(4.O9PI*d); 
templ. re - cos (-k*d) : 
temp1 . im - sin (-k*d) ; 
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cmult(ctempO,&templ.&temp2); 
cmult (btemp3, LtempZ,AX(i)) ; 
cmult(&temp4.&tempZ,AY(i+n) 1; 

I 
I 

30 

/ *  
9 A program to solve for the surface currents given a complex kernel matrix 
* (I-a) - al+ja2, and an h vector h-hl+jh2. We wish to solve the equation 

All dimensions are 3.n. 
(I-al'l-h, where x - xltjx2. 

-/ 

solve f o r  1 (a,  h, 1,n) 
complex *;, *h, '1; 
int n; 
I 
complex *aI, ' 2 ;  
inc *ipvt: 
double rcond: / *  work space for linpack * /  
int i, j: 
int 1da.nn.job; / *  constants for linpack * /  
/ *  

Allocate space for the temporary arrays 
*/  
a1 - (complex *)malloc~3*n*3*n*si:eof(complexl~; 
z - (complex *)malloc(3*n*sizeof (complex)); 
ipvt - (int *)malloc(3*n*sizeof (int) 1 ; 
/ *  compute and transpose a 1  matrix a1 - (I-Altranspose * /  
for(i=O;i<3*n:i++) 

f o r (  j-0; j<3*n; j++) ( 
if (i!-j) 

else 

Al(i,j)->im - A(j,i)->im; 
1 

Al(i, j)->re - -A(j,i)->re; 
Al(i,j)->re - 1.0 - A(j,i)->re; 

I *  Fill x array * I  
f o r  (i-0 ; i<3*n; i++) I 

L(i)->re - H(i)->re: 
L(i)->im = H(i)->im; 

F 
Ida = 3*n; 
nn = 3*n; 
/ *  perform LU decomposition and condition estimation * /  
zgeco-(al, &Ida, &nn, ipvt, &rcond, z )  ; 
if (rcond + 1.0 == 1.0) { 

printf ( "  a is illconditioned, rcond = %g\n%",rcond) ; 
return; 
1 

job = 0; 
/ *  solve complex system of equations */ 
zgesl-(al, &Ida, hnn, ipvt, 1, &job) ; 
/ *  free space */ 
free (all ; 
free ( 2 )  ; 
free (ipvt 1 ; 
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We claim: 
1. A method for determining the shape of a remote 

surface by sensor fusion using incomplete data from a 
plurality of sensors, comprising the steps of 

(a) obtaining from a first sensor a first electronic 
signal representative of the surface, 

(b) constructing a first electronic model of the surface 
using the first electronic signal, 

(c) using first electronic model as a guide, construct- 
ing for a second sensor a predicted electronic signal 
also representative of the surface, 

(d) obtaining from the second sensor an actual elec- 
tronic signal representative of the surface, 

55 

(e) minimizing the difference between the predicted 
electronic signal and the actual electronic signal, 

( f )  constructing an additional electronic model of the 
surface using the result of step (e) as a guide, 

(g) using the additional electronic model of the sur- 
face in constructing an additional predicted elec- 
tronic signal for the second sensor, 

(h) obtaining from the second sensor an additional 
actual electronic signal representative of the sur- 
face, 

(i) minimizing the difference between the additional 
predicted electronic signal and the additional ac- 
tual electronic signal, 
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6) repeating steps (f) through (i) until the difference 

between the final predicted electronic signal and 
the actual electronic signal is below a predeter- 
mined threshold level whereby, the shape of the 
remote surface, represented by the final predicted 
electronic signal, is determined more accurately 
than can be done with either the fust or second 
sensor alone, and 

(IC) displaying the shape of the remote surface. 
2. The method of claim 1, wherein the fust sensor is lo 

(d) thresholding the edge-enhanced optical image, 
(e) extracting the visible portions of the edges of the 

(f) generating a surface shape model of the object 

(g) generating theoretical radar cross-sections of the 

(h) obtaining actual radar cross-sections of the object, 
(i) minimizing the difference between the theoretical 

cross-sections and the observed cross-sections, by 
an optical device and the second sensor is a radar de- refining the surface shape model of the object 
vice. whereby, the shape of the physical object surface, 
3. The method of claim 2, wherein the optical device represented by the surface shape model, is deter- 

mined more accurately than either the optical is a camera and the radar device is a microwave radar. 
4. The method of claim 1 wherein a model is con- image or radar scattering cross sections alone. 

structed using image shaping techniques, the theoretical lo wherein the approximate 
cross-sections are generated using moment-methods shape of the object is obtained by stereopsis techniques, 
techniques, and the difference between the theoretical the model of the object is obtained by use of a Geomet- 
and actual cross-sections are minimized by use of the 2o rical Theory Of Diffraction scattering technique, and 
Ulmdif@9 program from the MINPACK group of pro- minimizing the difference between theoretical and ac- 

tual cross-sections is by use of the “lmdif()” program grams published by Argonne National Laboratories. from the MINPACK group of programs published by 5. The method of claim 4 wherein the moment- Argonne National Laboratories. method technique is the Numerical Electromagnetic 12. Apparatus for determining the shape of a space 
25 object by fusing the optical and microwave signals from Code published by Ohio State University. 

6. The method of claim 5 wherein the image shaping 
(a) optical sensing means for producing an electrical technique is a shape-from-shading technique. 

signal representative of the object, 7. The method of claim 5 wherein the image shaping 
(b) low-level image processing means for enhancing technique is a photometric stereo technique. 

8. The method of claim 5 wherein the image shaping 30 the electrical signal, 
(c) high-level image processing means for extracting technique is a stereopsis technique. 

shape information from the electrical signal and for 9. The method of characterizing the incompletely 
producing a first, incomplete surface model repre- observable surface shape of a physical object compris- 
sentative of the shape of the object, ing the steps of 

(d) initializing means for receiving the surface model (a) obtaining an initial optical image of the object, 
(b) extracting from the initial optical image of the 

object from the thresholded optical image, 

from the visible portions of the object, 

object from the model of the object, 

11* The method Of 

the object comprising 
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. _  
object occluding contours b; threshoiding the 
initial optical image, 

(c) deriving from the initial optical image a partial 
shape description for the object by shape-from- 
shading techniques, 

(d) computing a set of predicted values for RCS from 
digital representation of initial optical image using 
method of moments, 

(e) obtaining a set of polarized radar scattering cross- 
sections from the object, 

(0 minimizing the difference between the set of polar- 
ized radar scattering cross-sections and the set of 
predicted values for RCS, by linear least squares 
technique, to achieve a refined surface description, 

(g) repeating steps (d) through (f), using each succes- 
sively refined surface description in lieu of the 
initial surface description, until the difference ob- 
tained in step (f) is below a predetermined thresh- 
old level whereby, the shape of the physical object 
surface, represented by the refined surface descrip- 
tion, is determined more accurately than either the 
optical image or radar scattering cross sections 
alone. 

10. A method of constructing a representation of the 
surface of a physical object by sensor fusion of an in- 
complete optical image of the surface and radar scatter- 
ing cross-sections of the object comprising the steps of 

(a) obtaining an optical image of the object 
(b) obtaining an approximate shape of the object from 

(c) enhancing the edges of the optical image of the 
the optical image, 

object, 

and for filling in incomplete portions of the surface 
model, 

(e) microwave receiving means for receiving micro-. 
wave signals from the object, 

(f) microwave processing means for producing ob- 
served radar scattering cross sections of the object 
from the microwave signals, 

(g) computing means for producing theoretical ap- 
proximations of the radar scattering cross sections 
of the object using the surface model produced by 
the initializing means, and for generating a refined 
surface model by comparing the observed radar 
scattering cross sections with the theoretical radar 
scattering cross sections and modifying the surface 
model to minimize the difference between the theo- 
retical radar scattering cross sections and the ob- 
served radar scattering cross sections whereby, the 
refined surface model thus produced is a more 
accurate representation of the shape of the space 
object than either the optical signal or the micro- 
wave signal, and 

(h) display means for displaying the shape of the 
object. 

13. The apparatus of claim 12 wherein a final, com- 
plete surface model is produced by successively and 
iteratively refining the surface model, producing theo- 
retical radar scattering cross sections based on the re- 
fined surface model, comparing the theoretical radar 

65 scattering cross sections with the observed radar scat- 
tering cross sections, and modifying the surface model 
to minimize the difference between the theoretical and 
observed radar scattering cross sections. 
14. The apparatus of claim 12 wherein the optical 

4o 

45 

50 

55 

60 



5,005,147 
33 34 

sensing means comprises a plurality of optical devices 18. Apparatus of claim 18 wherein the theoretically 
and the low-level Processing means comprises stereo predicted radar scattering cross sections of the object 
imaging techniques and wherein the ]ow-level Process- are generated by use of the Numerical Electromagnetic 
ing means further comprises analog to digital conver- Code available from Ohio state university. 
sion of the signal and filtering means for deblurring, 19. Apparatus of claim 17 wherein minimizing the histogram equalization, and edge enhancement. difference between the theoretically predicted radar 15. The apparatus of claim 12 wherein the initializa- 
tion for filling in the incomplete surface model scattering cross sections and the actual radar scattering 
employs computation by B-splines surface functions. cross sections of the object is accomplished by use of 
16. The apparatus of claim 12 wherein the theoretical 10 the MINPACK program lmdifo published by the Ar- 

radar scattering cross sections are produced by the gonne National Laboratory. 
Numerical Electromagnetic Code are available from 20. A method for converting electronic signals repre- 
Ohio State University and wherein the refined surface sentative of the incomplete shape of a remote object to 
model is produced by use of the MINPACK program 15 electronic signals representative of a more complete 

shape of lmdifo published by Argonne National Laboratory. 
17. Apparatus for characterizing the shape of a space 

object by fusing optical and microwave data from the (a) obtaining from a first sensor a first electronic 
object, comprising signal representative of the shape of the object, 

optical image sensor means for producing video sig- (b) constructing a first electronic model of the shape 
using the first electronic signal, 

low level image processor means for performing en- (c) using first electronic model as a guide, construct- 
nals representative of the object, 20 

hancement of the video signal, said enhancement 
comprising collecting the video signals, converting 
them to digital form, and for performing image 
filtering operations on the digital signals, 

high level image processor means for extracting 
shape information from the enhanced video signal 
to produce an incomplete first surface shape model 
of the object, 

radar means for measuring actual radar scattering 
cross sections of the object, 

computing means for generating theoretically pre- 
dicted radar scattering cross sections of the object 
from the first surface shape model, for minimizing 
the difference between the theoretically predicted 
radar scattering cross sections and the actual radar 
scattering cross sections of the object, for refining 
the surface model as a result of the minimum differ- 
ence, and for generating a final surface shape 
model by successive iterations of minimizing the 
difference and refining the surface model whereby, 
the final surface model more accurately character- 
izes and represents the shape of the space object 
than either the optical video signals or the radar 
scattering cross sections, and 

output means for outputting the shape characteriza- 
tion. 

ing for a second sensor a predicted electronic signal 
also representative of the shape, 

(d) obtaining from the second sensor an actual elec- 
tronic signal representative of the shape, 

(e) minimizing the difference between the predicted 
electronic signal and the actual electronic signal, 

( f )  constructing an additional electronic model of the 
shape using the result of step (e) as a guide, 

(g) using the additional electronic model of the shape 
in constructing an additional predicted electronic 
signal for the second sensor, 

(h) obtaining from the second sensor an additional 
actual electronic signal representative of the shape, 

(i) minimizing the difference between the additional 
predicted electronic signal and the additional ac- 
tual electronic signal, 

(j) repeating steps (f) through (i) until the difference 
between the final predicted electronic signal and 
the actual electronic signal is below a predeter- 
mined threshold level whereby, the shape of the 
remote object, represented by the final predicted 
electronic signal, is determined more accurately 
than can be done with either the first or second 
sensor alone, and 
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(k) displaying the shape of the remote surface. * * * * *  
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