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During the period October 1, 1990 - March 31, 1991, we have devoted ourselves to two
major tasks. The first is the completion of a project to produce global maps of the net longwave
radiation at the surface over oceanic areas. This was the thesis topic of Mr. Hui Zhi who
defended his M.S. thesis in December, 1990. This work is being prepared for publication. In
order to summarize his work for this report we have attached the Abstract, Table of Contents,
List of Figures and Tables and all the figures in his thesis. The attachment will provide all the
information that we have obtained from this project.

The second effort undertaken during this grant period has been the analysis of I§CCP C-1
cloud data. We have acquired this data from NSSDC for a period starting in October 1986 to
their most current release. In addition, we have ISCCP and ERBE S-4 daté for selected months.
We have made a preliminary analysis of the distribution of cloud optical depths (or albedo) at
two selected grid points. One is off the coast of California in the marine stratocumulus region.
The other is a tropical convective area in the Western Pacific. We have studied the period July
17-31, 1985 for both areas.

Figure 1 shows the distribution of mean optical depth inferred from daytime GOES
radiances as a function of the cloud fraction of the 2.5° lat x 2.5° long area centered at 36.25N,
126.25W. Figure 2 is a similar plot for the tropical convective area. Both plots show that
exceedingly thick (or bright) clouds occur only when the area is completely filled with clouds.
Current models assign cloud fraction and albedo (or optical depth) independently.

Figures 3 and 4 show the distribution of optical depth for all pixels. These distributions
are very similar to the observations made during field experiments such as FIRE. The stratified

distributions shown in Figures 3b and 4b can perhaps be used to model subgrid scale cloudiness.



0 z
MARINE STRATOCUMULUS :
3IE.2SN  126.25W i
1731 JULY,1885 !
2k
£ i
xR H
z s
ol ‘E
x x . _—
x ¥
x X x x‘ x?
0 x VX - xx.. .- “x\)s.‘
13 l;.l 9.4 ;.B a.n [
CLOUD FRACTICN
] T
MARINE STRATOCUMULUS :
0.6 36.25N  126.25K i
17-31  JULY,1985 i
B :
0.4 o x ) x :
¥ " X f
X i
0.2 | x : x?
» xl :
] . - -
0 n.2 0.4 a.a 0.8 ]
CLOUD FRACTICN
Fig. 1. The distribution of mean optical depth (a) and mean diffuse

albedo (b) versus cloud fraction for a marine stratocumulus
area from ISCCP C-1 data.
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ABSTRACT

Zhi, Hui. M. S., Purdue University, December 1990. o
Cloud Radiative Forcing and the Surface Longwave Radiation.
Major Professor: Dr. Harshvardhan. :

Reliable estimates of the components of the surface radiation
budget are important in studies of ocean-atmosphere interaction,
land-atmosphere interaction, ocean circulation and in the validation
of radiation schemes used in climate models. The methods currently
under consideration must necessarily make certain assumptions
regarding both the presence of clouds and their vertical extent.
Because of the uncertainties in assumed cloudiness, all these
methods involve perhaps unacceptable uncertainties. In this work, a
theoretical framework that avoids the explicit computation of cloud
fraction and the location of cloud base in estimating the surface
longwave radiation has been presented.

Estimates of the global surface downward fluxes and the
oceanic surface net upward fluxes have been made for four months
(April, July, October and January) in 1985-86. These estimates are
based on a relationship between cloud radiative forcing at the top of
the atmosphere and the surface obtained from a general circulation
model. Monthly mean clear sky downward longwave fluxes at the
surface and upward surface emission are computed from the
retrieved profiles (such as temperature and humidity profiles) that

are included in the ISCCP (International Satellite Cloud Climatology



Project) data set. The radiation code is the version used in the
UCLA/GLA general circulation model (GCM). The longwave cloud
radiative forcing at the top of the atmosphere as obtained from
Earth Radiation Budget Experiment (ERBE) measurements is used to
compute the forcing at the surface by means of the GCM-derived
relationship. This, along with clear-sky fluxes from the
computations, yields maps of the downward Ion'gwave fluxes and net
upward longwave fluxes at the surface.

The calculated results are discussed and analyzed. The results
are consistent with current known meteorological knowledge and
explainable on the basis of previous theorétical and observational
works; therefore, it can be concluded that this method is applicable
as one of the ways to obtain the surface longwave radiation fields

from currently available satellite data.
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Figure 4. Longwave CRF at the surface in Wm2 for April,
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Figure 6. Monthly mean clear-sky downward longwave fluxes (Wm-?)
at the surface for April, July, October and January in 1985-86
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Figure 7. Monthly mean downward longwave fluxes (Wm2) at the
surface for April, July, October and January in 1985-86
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Figure 8. The zonal variation of downward longwave fluxes (Wm-2)
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Figure 10. Upward fluxes (Wm2) for April, July, October
and January in 1985-86
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Figure 11. Monthly mean clear-sky net upward longwave
fluxes (Wm2) at the surface for April, July,
October and January in 1985-86
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v~ (L

Ko P . . T P e PRI O
Q l > >

75"; NET UPWARD FLUX . - OCTOBER, 1985

120° € 180° £

Figure 12. Continued



