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1.0 INTRODUCTION

Instrumented aircraft have been used for measuring atmospheric winds and

turbulence for a number of years. In general, these measurements have been for

straight and level flight where limited range instrumentation can be used to measure

the parameters of interest and linearized equations can be used to reduce the data.

Recently, however, there has been considerable interest in measuring winds along

steep flight paths, for example, with respect to STS wind profile measurements in

support of day-of-launch activities. The purpose of this report is to review aircraft

measurements techniques. Review of past and present applications of instrument

aircraft to atmospheric observations is presented. Questions to be answered relative

to measuring mean wind profiles as contrasted to turbulence measurements are then

addressed. Finally, requirements of instrumentation and accuracy, data acquisition,

data reduction, and theoretical and certainty analysis are considered.

Review of Past and Present Applications of Instrumented Aircraft to

Atmospheric Observations

The past and present use of instrumented aircraft has been primarily to measure

clear air turbulence and winds and turbulence associated with convective storms or

gust fronts. The limitations of these aircraft experiments were primarily straight

level flight with limited range sensors, limited environmental exposure, simplifi-

cation of the trigonometric functions of the aircraft attitude and linearized wind

equations. A review of the scope and objectives of a variety of aircraft measure-

ment programs as reported in the literature follows.

Telford, Wagner, and Vaziri (1977) point out that the measurement of air

motion has now advanced to the stage where routine measurements of the three

components of the velocity of the air can be made from aircraft to an accuracy



of about 0.3 m/s. They further note that techniqueshave advanced,from using a

simple accelerometerat the center of gravity of the aircraft to give an indication

of the updrafts causing the aircraft gust load, to the present inertial platform base

systemsnow is use. Prior to this report, Telford and Wagner (1974) described the

measurementsof horizontal motion near clouds from aircraft. They described the

measurementof air motion for flight in and around small cumulus clouds using a

high quality inertial platform and an integrated data handling system. McBean and

MacPherson (1976) discussmeasurementsof the fluctuations of wind, temperature,

and humidity using an instrumented aircraft at altitudes from 30 to 300 meters

aboveLake Ontario. A NAET-33 turbulence researchaircraft (a single enginemil-

itary trainer) was used for the experiment. As instrumented, this aircraft was

capableof measuring the three orthogonal componentsof the true gust velocity and

the related fluxes of heat, momentum, and water vapor. Other in flight measure-

ments allowed computation of atmospheric pressure, temperature, humidity, and

Doppler wind speedand direction, aswell as the altitude, speed,and orientation of

the aircraft. A description of the aircraft, its instrumentation, and the data analysis

program are available in MacPherson (1973).

Extensive clear air turbulence measurementshave been carried out with an

instrumented NASA B-57B aircraft. Thesemeasurementswere part of the NASA

Langley Research Center's MAT (Measurement of Atmospheric Turbulence) pro-

gram. Measurements were carried out to altitudes ranging as high a 15 km. The

particular emphasis of this program was to extend power spectral measurements of

atmospheric turbulences to wavelengths of at least 9,000 m under several different

meteorological conditions. The flight instrumentation system for acquisition of the

atmospheric turbulence data is given by Meissner (1976). Some of the measure-

ment results are presented in two volumes. The first volume (Davis, Champine
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and Ehernberger (1979)) presents the flight planning, operations, and turbulence

forecasting aspects. The secondvolume (Waco (1979)) presents 27 maps of flights

of particular meteorological interest with narrative summaries and with synoptic

maps and rawinsondesoundingdata.

Winebarger (1986)employedahighly instrumented F-106BDelta Dart airplane

to make thunderstorm penetrations in the storm hazards program. Details on the

F-106B airplane and the criteria used in choosingthe airplane for the mission can

be found in Fisher, Keyser, Gerald, Deal, Perry, Thomas, and Pitts (1980) and

Fisher, Keyser, Gerald, and Deal (1982). The F-106B is equipped with a number

of data systemsto measurethe environmental and electro- magnetic characteristics

of thunderstorms during penetration.

The Royal Aircraft establishment,Woodfield and Vaughn (1983), hasemployed

an HS-125 to conduct both windshear and vortex wake studies for many years. In

addition to basicinstrumentation to measureturbulence in three axis at frequencies

up to 20 Hz, the RAE HS-125 was uniquely instrumented with a laser airspeed

system (LATAS), which detects windshear several hundred meters ahead of the

aircraft and a Marconi AD660 Doppler Velocity Sensorwhich could be usedas the

basis of a ground speed/airspeeddisplay.

Rider, Thomson, and Verinder (1971) fitted a Mirage A-376 with a modifed

nose cone to carry a differential pressuregust probe. The probe was extensively

tested in a transonic wind tunnel and the resultswere confirmed by comprehensive

flight test programs. The instrumented Mirage fighter aircraft carried out three

flights in an area of severeand low level turbulence. True gust velocities were

computed for 540 secondsof recordeddata and power spectral energy distributions

were determined which confirm various levelsof turbulence.

Crooks, Hobfit, and Prophet (1967) describehigh altitude clear air turbulence



(HICAT) flight investigations. A digital instrumentation system for the measure-

ment of CAT in the wavelengthrange from about 100 ft to 60,000ft was utilized.

The program effort required the measurementof CAT velocity components at al-

titudes of 45,000to 75,000ft in sevengeographicalareas. Instrumentation carried

aboard the HICAT aircraft, and Air Force U2 consistedof a PCM system, a iner-

tial navigation system,aerodynamicand aircraft responsesensors(including a fixed

vanegust probe), anoscillograph record, and a digital magnetic tape recorder. The

program objective was to determine the statistical characteristics of high altitude

CAT so as to improve structural designcriteria. Time histories and power spectra

are provided in Volume I of the report while meteorological data and flight track

maps are included in Volume II.

Frost, Chang, and Ringnes (1987)present the analysisof turbulence measured

across the airfoil of a Cambera B-57 aircraft. The aircraft was instrumented with

probes for measuring winds at both wing tips and at the nose. Statistical prop-

erties of the turbulence are reported. These consist of the standard deviations of

turbulence measuredby eachindividual probe, standard deviations and probability

distributions of difference in turbulence measuredbetweenprobes, and auto and

two-point spatial correlations in spectra.

Ganzer, Joppa, and van der Wees(1977) useda similarly equipped aircraft to

measure turbulence. A Beechcraft D-18S, a low wing all-metal semi-mono-coque,

aircraft wasused.The aircraft wasinstrumented to measureand record the variables

necessaryfor the calculation of the turbulence velocity in longitudinal, lateral, and

vertical directions at the wing tips of the aircraft. A detailed description of the

instrumentation and calibration is presented in the report.

Kraus, Hacker,and Hartmarm (1990) carriedout researchflights in the Coorong

coastal area of South Australia to investigate seabreezefronts. The flights yielded
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data sets of the structure of the fronts in the crossfrontal direction with a spatial

resolution of approximately three meters. The study is focused on the budgets of

sensibleand latent heat in the vicinity of the front and on frontogenesis/frontolysis

processeswhich are closely related to budget considerations. A light, well instru-

mented aircraft developedby the Finders Institute for Atmospheric and Marine

Sciences(FIAMS) wasused. The aircraft, a GROB G109B, along with its instru-

mentation and capabilities axedescribed in detail by Hacker and Schwerdtfeger

(1988). Air temperature was measuredusing a fast PT100 sensor, humidity was

measuredwith an A.I.R., Inc. Lyman-a hydrometer and a Meteolab dewpoint mir-

ror. The three dimensional wind vector was sensedby a system consisting of a

five-hole probe, a Rockwell-Collins AHS-85 altitude and heading referencesystem

and a Trimble TANS GPS navigation system (satellite based Global Positioning

Systems). The horizontal wind vector was determined from an algorithm which

utilized high resolution integrated inertial data from the AHRS with the stable low

resolution data from the GPS navigation system. The accuraciesof the instru-

mentation were reported as approximately 0.02 I( ° for temperature and 0.02 g/kg

for humidity. For the wind vector, the reported accuracies were 0.9 m/s for the

horizontal wind and a few centimeters per second for the vertical wind.

Lenschow, Li, Zhu, and Stankov (1987) present measurements of the stable

stratified nocturnal boundaries layer obtained with the Queen Air NCAR aircraft

during the severe environmental storms in a mesoscale experiment (SESAME). The

cases presented were obtained over rolling terrain in central Oklahoma, with a mean

slope of about 0.003. The results are reported to be in general agreement with

previous modeling and observational studies for the mean and turbulence structure

of the nocturnal boundary layer. An exception was that the eddy diffusivity of heat

and consequently the flux Richardson numbers are less than expected.



Stromberg, Mill, Choularton, and Gallagher (1989) made airborne measure-

ments of stably stratified airflow over the Pen.nines using an instrumented glider.

The parameters measured in flight were air temperature, airspeed, vertical accel-

eration, and vertical velocity. Airspeed and pressure altitude were measured using

sensitive pressure transducers and resolution was reported as better than one mil-

libar for altitude and approximately one meter per second for airspeed. Vertical

velocity of the air was measured using the sail plane variometer system. In this

system, the inherent sink rate at a particular speed was automatically subtracted

from the total signal to give the vertical velocity of the air itself. The resolution

was better than 1 meter per second and accuracy to within plus or minus 0.1 meter

per second.

Lenschow and Johnson (1968) made concurrent airplane and balloon measure-

ments of atmospheric boundary layers structure over a forrest. Mean wind profiles

up to a height of 2,000 m and supporting surface layer measurements were observed.

The airplane measurements of vertical and horizontal velocity were obtained from

a pressure differential gust probe mounted on a boom on the nose of a twin engine

Cessina 310 airplane. Further description of the airplane is provided in Dutton and

Lenschow (1962) and Lenschow (1965). The system removes airplane motions from

the air vertical velocity measurements by measuring the pitch angle and vertical

acceleration of the airplane. The technique is limited to wavelengths of less than

1.3 km for airspeeds of 70 m/s primarily because of drift in the _,ro used to measure

pitch angle. The velocity fluctuations were filtered with an RC high-pass filter with

a time constant of 3.0 seconds which results in a half power wavelength of 1.3 km.

Temperature was measured with a thermal couple mounted on the boom less than

50 cm behind the gust probe sensors. The time constant of the thermal couple is

about 1 second.
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Benjamin (1989) reports an objective analysis scheme for meteorological vari-

ables on constant potential temperature surfaces. The analysis uses the form of

multivarient statistical interpretation and is designed to retain mesoscale detail

in various observations including rawinsonde, surface, aircraft, satellite, and wind

profiler data while combining them with a forecast background feld. Commercial

aircraft observations of temperature and wind were used. Aircraft reports of icing

were converted into approximate observations of 100% relative humidity.

Parish and Bromwich (1989) report instrumented aircraft observations of the

katabatic wind region near Terra Nova Bay. Two aircraft missions were flown to

sample the boundary layer dynamics associated with the intense katabatic winds.

An LC-130 instrumented aircraft developed for meteorological research was utilized.

The data system is described in Renard and Foster (1978) and an itemization of

the onboard instrumentation is given in Gosink (1982). The LC-130 is equipped to

record a total of 18 data channels of meteorological and navigational parameters at

1 second intervals on high density magnetic tapes.

Gage and Nastrom (1986) present a theoretical interpretation of the wave num-

ber spectra of winds and temperature obtained from an analysis of data from over

6,900 flights during the global atmospheric sampling program (GASP). Data were

collected automatically on specially instrumented Boeing 747 aircraft in routine

commercial service, with most measurements made in the altitude range between

9 and 14 km. For most flights the flight interval is 75 km and the length scale

sampled range to about 5,000 km. The 6,900 flights in the GASP data base were

made during all seasons and covered a wide variety of latitudes and longitudes.

The proceeding summarizes types of aircraft measurement programs which

have been carried out using a range of aircraft from highly instrumented aircraft,

to gliders to commercial aircraft of "opportunity". The principle of extracting



winds from the measurements,however, is basically the same. This principle is

described in the next section. Essentially, it is a matter of measuring the aircraft

inertial velocity vector and the velocity vector of the air relative to the aircraft. The

differenceis the wind velocity vector. The parameters which need to be measured

and a variety of the instrument types used are described in the next section.
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2.0 INSTRUMENTATION AND PRINCIPLES OF WIND

MEASUREMENT

The principle and governing equations relative to the measurement of winds

from an aircraft are well documented (for example see Axford (1968); Lenschow

(1986); Frost, Chang, and Ringnes (1987)). The basic physical principle is embodied

in the vector relationship

= (2.1)

where l_ is the wind vector, I_¢ is the aircraft inertial velocity vector and V_, is the

relative airspeed vector. The aircraft therefore must be equipped with instruments

that measure ground speed (i.e., inertial) and the speed of the air relative to the

aircraft. Expressing the vectors I_ and 17_ in an appropriate coordinate system to

provide windspeeds in the earth's coordinate system requires that the 6 degree-of-

freedom motion of the aircraft be measured. The system of equations required to

reduce the aircraft measurements into components of windspeed are thus complex.

They have been fully derived, however, and are reported in the previously mentioned

references (Frost, Chang and Ringnes (1987) is an example). This derivation is

partially reproduced in Appendix A.

The fully expanded form of the system of equations for computing the wind

velocity vector components in the earth's frame of reference is:

WN = -- V[cos o_cos fl cos ¢dcos 0 + sin fl(- sin • cos ¢ + cos • sin 0 sin ¢)

+ sin ol cos fl(cos _ sin O cos ¢ + sin • sin ¢)] + VN

- cos0 - 0cos• sinO)

+ lu[O sin ¢ cos 0 cos • + ¢(sin ¢ sin q2 + cos ¢ sin 0 cos _I') (2.2)

- _ (cos ¢ cos _ + sin 0 sin ¢ sin _)]

+ l_[t) cos ¢ cos 0 cos _I' + q_(cos ¢ sin _I' - sin ¢ sin 0 cos ',Is)

+ '_ (sin ¢ cos • - sin 0 cos 0 sin • )]



WE = -- V[cos a cos/3 sin q cos 0 + sin/3(cos q' cos 4' + sin q sin 0 sin q_)

+ sin a cos/3(sin q sin 0 cos ¢ - cos _I, sin ¢)] + VE

-/_(0 sinOsin * - _ cos ¢ cos O)

+/y[t_ sin ¢ cos 0 sin q' + q_(- sin ¢ cos q + cos ¢ sin 0 sin q.') (2.3)

-- _'(cosCsin kI, -- sinOsin Coos 9)]

+ zz[0cos¢ cose sin _ - ¢(cos ¢ cos • + sin _ sin e sin _)

+ #(sin ¢ sin _ + sin 8 cos ¢ cos _,')]

Wz = - V[- cos a cos _3sin 8 + sin/3 cos 8 sin ¢ + sin a cos 3 cos 8 cos ¢]

+ Vz + Z_Ocose-z_[0sin Csin0--Coos ¢cos0) (2.4)

- Iz[0cosCsin0 + _sin¢cose]

where WN, WE, and _Vz represent the north, east, and vertical components, respec-

tively, of the wind velocity vector. Inspection of these equations shows the variables

required in computing wind velocity vector components are those listed and defined

in Table 2.1.

Sections 2.1 and 2.2 describe the basic principles of the various sensors avail-

able for making the required measurements and the advantages and disadvantages

of different types. However, a review of overall systems for measuring wind as

applied to different aircraft as reported in the literature is given first. Brown, et

al. (1974) describes a research gust probe system. The system was installed on a

DC-6 aircraft. It was initially developed and used in the Barbados oceanographic

and meteorological experiment (BOMEX). A digital instead of an analog recording

system was subsequently added and the system was used in the International Field

Year on the Great Lakes project (IFYGL). The system was essentially composed of

a fixed vane sensor mounted on a noseboom. The fixed vane sensor is reported in

Crooks, et al. (1976) and consists of a vertical sensor (a-vane) and a lateral sensor

(fl-vane) attached to a specially constructed strain gauge beam. Ambient pressure

is sensed by a Conrac type 555 T-1 absolute pressure transducer/servo assembly.

A thermistor temperature probe assembly and a microwave cavity instrument to

10



Table 2.1 Variables required for wind computations.

Symbol Description

t

t_

¢

0

P

T

LAT

LONG

vE

vz

V

time(sec)

angle of attack (rad)

sideslip angle (rad)

roll angle (rad)

pitch angle (rad)

heading angle (rad)

roU rate (rad/sec)

pitch rate (rad/sec)

yaw rate (rad/sec)

static pressure (Kpa)

temperature (Kelvin)

latitude (deg)

longitude (deg)

north-south airplane inertial velocity (m/sec)

east- west airplane inertial velocity (m/sec)

vertical airplane inertial velocity (m/sec)

true airspeed (m/sec)
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measure index of refractivity are also mounted on the noseboom. Two Statham

strain gauge accelometers were mounted on the boom to sense normal and lateral

boom accelerations. A third Statham strain gauge accelometer which was tempera-

ture controlled was used to sense longitudinal accelerations of the aircraft. A Litton

LTN-51 inertial navigation system provided the basic information regarding aircraft

motion with respect to the earth. Signals recorded from the INS were vertical ac-

celeration, roll, and pitch. Aircraft angular motions rates of pitch, roll, and yaw

were provided by gyros. Elevator position was also monitored. A model MC013

data acquisition system provided means of measuring up to 64 analog voltages at

sample rates up to 3,200 samples per second (50 scans per second of 64 inputs);

thus provided a recording of all digital forms along with the time, day of the year

and manually entered header data. Recording was carried out on a T-track gapped

tape, IBM compatible.

Gamo, et al. (1975, 1976), Yamamoto, et al. (1977), and Yokoyama, et al.

(1977a, 1977b) describe an airborne measurement system mounted on a Cessna 207

aircraft. The system consisted of a hotwire anemometer used for measuring longi-

tudinal velocity fluctuations (observations are made with the aircraft flying parallel

to the wind), sonic anemometer used to measure vertical fluctuations, horizontal

vanes used to measure the lateral component of the wind, thermistor psychrometer

used to measure mean temperature and humidity, sonic thermometer used to mea-

sure temperature fluctuations, thermocouple thermometer also used to measure

temperature fluctuations, and a radiation thermometer used to measure surface

temperature. The airplane's pitching, rolling, and yaw angles and vertical, lateral,

and longitudinal accelerations were measured with an inertial platform system.

Scott, et al. (1989) describes the meteorological measurement system incorpo-

rated on the NASA ER-2 aircraft. The meteorological measurement system (MMS)

12



consists of a special inertial navigation system, a differential pressuresystem in-

stalled in the noseof the aircraft, a data acquisition system,and airdata instrumen-

tation. The high resolution INS is especially configured with a data bus which is

updated at 25Hz. The differential pressuresystemprovidessensitivemeasurements

of the airflow angles (angle-of-attack and angle-of-sideslip). The data acquisition

system meets the requirements to sample, control, and process45 parameters at a

sampling rate up to 40 Hz. per parameter and store the data in a tape recorder (20

MB.) and a hermetically sealedWinchester hard disk (10 MB.). Special and redun-

dant instrumentation for aircraft and pressuremeasurementsare also installed on

the aircraft.

Poellet (1990) describesthe University of North Dakota, CessnaCitation II, air-

borne weather researchsystem. Parameters of temperature, dewpoint and pressure

are measured by relatively standard methods using state-of-the-art instrumenta-

tion. The position measurementsare basedon a Litton LTN-76 inertial navigation

system. Air motion measurementsare derived from measurementsof acceleration

pitch, roll and yaw combined with angles-of-attackand sideslip and indicated air-

speed. The instrumentation pallet also includes radiation instrumentation, cloud

microphysics measurementequipment, and a forward or side looking video camera

to provide a visual record of flight conditions. Data are sampled at various rates

from 1-24 times per second. The sampling is controlled by the onboard computer

system which also displays the data in real time.

A number of other reports discussevaluation of different instrumentation for

use in atmospheric measurementprograms. Murrow and Rhyne (1975) describe

flight instrumentation for atmospheric measurements;Lenschowand Kelley (1975)

discussatmospheric mesoscalemeasurementsfrom aircraft including instrumenta-

tion and measurement techniques;Bjarke and Ehernberger (1989) discussinflight

13



techniques for wind measurementsin support of the space shuttle program, and

Lenschow (1986) discussesaircraft measurementsin the boundary layer.

The following section describesthe physical principles of someof theseinstru-

ments used in the aforementionedsystems.

2.1 Relative Airspeed

The relative airspeedvector requiresa magnitude and direction measurement.

Magnitude is generally calculated with pitot measurements and direction with either

flow vanes or differential pressure transducers.

Relative airspeed magnitude is computed from the equation

(2.5)

where the measured parameters are total pressure, Po, static pressure, p, and total

temperature, To. Figure 2.1 illustrates schematically the measurements required to

determine airspeed magnitude, and a detailed derivation of Equation 2.5 is given in

Appendix A.

The direction of the air relative to a probe is fixed by the angle-of-attack, a, and

sideslip angle, 3. These angles are generally determined with either a differential

pressures flow angle probe or vanes. A comparison of the flow angle differential

pressure probe versus vane measurements is given in Appendix A. The pressure

differential flow angle probe is illustrated in Figure 2.2(a) and the vane system in

Figure 2.2(b).

A variety of types of flow angle measurement techniques are reported in the

literature. Gracey (1958) reviews and summarizes methods of measuring angle-

of-attack on aircraft. Three types of angle-of-attack sensing devices - the pivoted

vane, the differential pressure tube, and the null seeking pressure tube - are pre-

sented. Flight data on the position errors for three sensors locations (ahead of the

14
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fuselage-nose, ahead of the wing- tip, and on the forebody of the fuselage) are also

presented. Gracey reports that for operations throughout the subsonic, transonic,

and supersonic speed ranges, a position ahem of the fuselage-nose will provide the

best installation. Moreover, if the shape of the fuselage-nose is not too blunt, the

position error will be essentially zero when the sensor is located 1.5 or more fuse-

lage diameters ahead of the fuselage. The report concludes with various methods

of calibrating angle-of-attack installations in flight.

Lenschow (1971) describes two types of vanes that were used to measure the

angle of airstream with respect to an aircraft. One type is a rotating vane that is

free to align itself with the airstream and the angle is sensed by the angle transducer.

The other type is constrained from rotating and the angle is obtained by measuring

the force exerted on the vane by the airstream and dividing by the pitot-static

pressure. It is reported that the free vane measures the angle directly and is not

sensitive to acceleration while the constained vane has a faster response time and

has no bearing friction. With an aircraft speed of 70 m/s, both vanes are able to

resolve changes in angles of less than 0.02 degrees, which corresponds to a gust

velocity of about 2 cm/s, and to respond to within 5% of a step function change in

angle in a distance of less than 5 meters.

Barna and Crossman (1976) carried out experimental studies of the aerody-

namic performance and dynamic response of flow direction sensing vanes. System-

atic investigations of a variety of aerodynamic surfaces were carried out. Single

vanes consisting of flat plates of various plan forms having aspect ratios between

0.5 and 5; bi-vanes with aspect ratio of 2.5; various cones and box vanes; and various

cruciform configurations were all studied. Lift and drag force measurements and

damping and frequency tests were all performed under a variety of flow conditions

in a wind tunnel.
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Lenschow,et al. (1978a) reports the status of air motion measurementson a

NCAR aircraft for three typesof gustsprobe sensors.Measurementof airflow angles

werestudied for: a fixed "constained" vanewhich measuresthe forceof the airstream

on the vane surfaceat varying flow angles,a rotating vanewhich aligns itself with

the airstream, and a differental pressureprobe which sensesthe pressuredifference

acrossa symmetric set of ports at variousflow angles. They concludethat although

the frequency responseof most of the gust probe sensorsis sufficient for turbulence

flux measurements,it is not sufficient for measuring high frequency characteristics

of turbulence such as direct measurementsof viscous dissipation or the variation

in turbulence intensity on very small scales. Lenschow, et al. (1978b) therefore

studied a hot-wire anemometer system capable of measuring two frequencies of

several kilohertz. The sensing elements of the hot-wire anemometer were typically

fine tungsten wires 4 #rn in diameter and 1.25 mm long. These were mounted

transverse to the airflow on a probe attached to the aircraft nose- boom. The nose-

boom mount permitted velocity measurements within a few tens of centimeters

of the standard gust probe sensors at a location that is relatively free of upwash

effects induced by flow around the aircraft. Lenschow, et al. concluded that the

hot-wire anemometer system is an effective means of extending aircraft velocity

measurements to high frequencies and small space scales and that the commercial

tungsten wire probes were found to be sufficiently strong so that breakage was

not a severe problem in clear air. Further applications of the hot-wire system

were reported to consist of measurements of the vertical and transverse velocity

components with multiple wires placed at angles to the flow. Jacobsen (1977)

reports use of a three-wire array mounted on a trailing aircraft to measure vorticities

generated by a large aircraft.

The NASA ER-2 aircraft uses the nose of the aircraft as a differential pressure
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transducer system. This concept has been studied by others. Hillje and Tymms

(1980) investigated the useof a biconic spikeprobe on the noseof the spaceshuttle

external tanks to evaluate ascentairdata. Pressuremeasurementswere calibrated

to obtain vehicle speed, attitude (relative to the local air mass) and dynamic pres-

sure during launch. They describe the geometry of the ascent airdata system and

results of wind tunnel tests carried out for calibration. They concluded that from

wind tunnel calibrations, a 30 degree/10 degree spike measured pressure could be

converted to the desired airdata parameters for post flight analysis. A typical value

for the angle-of-attack error for a Mach range between 0.6 and 1.0 and an a = 3

degrees was estimated at =k 0.32. Other accuracies of the system are presented in

the paper. Hillje and Nelson (1981) provide additional data on the space shuttle

ascent airdata system.

Brown, Friehe, and Lenschow (1983) describe the use of pressure fluctuations

on the nose of an aircraft for measuring the air motion. Measurements of angle-

of-attack and sideslip angles and dynamic pressure are described. The sensing

probe consisted of an array of five pressure holes in the standard radome of a twin

jet research aircraft. Comparisons with air motion measurements (angle-of-attack

and dynamic pressure) obtained from conventional differential pressure flow angle

sensors at the tip of a nose-boom 1.5 fuselage diameters ahead of the aircraft body

are reported. The results indicate that the radome system works well down to

scale sizes slightly larger than the fuselage diameter. Finer scale measurements

were found to be limited by pressure transducer response. It was learned from

comparison of the power spectra determined from the conventional and from the

radome angles-of-attack that the response of the radome system was superior to the

conventional system due to the shorter pressure lines that were used.

Other types of pressure differential probes have been reported. For example,
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Hermann, et al. (1984) describesan airfoil probe for angle-of-attack measurements.

The results of the study showed that a small airfoil probe consisting of a small

canard wing mounted appropriately on an airframe and properly tapped can serve

as a viable probe for sensingangle-of-attack. An NACA 0012 airfoil section was

used in wind tunnel tests. The study reported that differential pressurecoefficients

greater than 3at high angles-of-attackwereachieved.Thesecoefficientsarereported

to be an improvement of a factor of -9-3over comparablecoefficientsobtained from

hemispheric probes.

In addition to the direction of the relative air velocity, the magnitude must

also be measured. Computation of the magnitude of relative airspeed requires a

measurementof total temperature. Total temperature is typically measuredwith

a thermocouple or resistancetemperature device(RTD). Typically, a total temper-

ature probe is designedwith the temperature sensingdevice situated in a volume

where the air is partially stagnated, vented,and shieldedto minimize radiation heat

losses. For example, the NASA F-104 and the NASA ER-2 instrumented aircraft

obtain total temperature measurementsfrom a strut-mounted transducerpositioned

on their respectivefuselages.

The quality of the total temperature measurement,however, is lessimportant

than the quality of the total and static pressuremeasurements,and the uncertainty

in the final wind calculation is virtually independent of small errors in the total

temperature measurement.Therefore,an inexpensivethermocouple generally gives

sufficient performance. Insulation of the thermocouple from the fuselagesis neces-

saxy to prevent the thermocouple from measuring the temperature of the aircraft

instead of the air with eachinstrument calibration is required. Each type of instru-

ment, however,has its own calibration problems. The following briefly summarizes

the literature associatedwith calibration of airborne wind meaurementinstruments.
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Gracey and Scheithauer (1951) present results of a flight investigation of the

variation of static pressure error on a static pressure tube with distance ahead of a

wing and a fuselage. A discussion of the effect of distance in front of the aircraft on

the error of static pressure measurement is presented for both a wing tip installation

and a fuselage-nose installation.

It is reported by Haering (1990) that the airdata calibration required for mea-

suring winds with an instrumented aircraft must be more accurate than that needed

for other aircraft research programs. He reports tower fly-bys with the NASA F-104

aircraft and the use of radar acceleration-decelerations to calibrate Mach number

and total temperature. The F-104 aircraft and instrumentation configuration, flight

test maneuvers, data corrections, calibration techniques and resulting calibration

and data repeatability are discussed. The paper concludes that the Mach number

indicator could be calibrated repeatedly at -t- 0.003 subsonically and -i- 0.005 su-

personically. Total temperature was calibrated and found to have a recovery factor

of 0.986 with a 4- 0.009 scatter in the data. The author recommends, from his

investigation, a number of design and operation procedures for future airdata sys-

tems for aircraft used to measure winds aloft. These include (1) using a nose-boom

with dual angle-of-attack and flank angle-of-attack vanes to reduce the sensitivity

of upwash and sidewash on Mach number; (2) rigidly attaching the nose-boom and

IRU to the same structure to minimize geometric alignment variability.

Geenen and Moulton (1991) describe a system to calibrate airdata probes at

angles-of-attack between 0 and 90 degrees. The system uses a test fixture mounted

to the roof of a ground vehicle which includes an onboard instrumentation and data

acquisition system for measuring pressures and flow angles. The system was de-

signed to provide convenient and inexpensive airdata probe calibrations for projects

which require airdata at high angles-of-attack. The authors note that previous sub-
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sonic data for the NACA standard pitot-static tube with vane type flow direction

indicators was limited to 20 degreesangle-of-attack. The new type of probe intro-

duced wastested to 90degreesangle-of-attack in a wind tunnel and with the ground

vehicle system. They alsoreport an airdata probe with a swiveling pitot-static tube

and the calibration of it with the ground vehiclesystem. They conclude that the

swiveling-headairdata probe'slarger region of total and static pressureinsensitivity

to angle-of-attack and angle-sideslipmake it more suitable for high angle-of-attack

flight than the standard NACA airdata probe.

Moes and Whitmore (1991) present preliminary results from an airdata en-

hancementalgorithm with application to high angle-of-attack flight. The technique

is developed to improve the fidelity of airdata measurementsduring dynamic ma-

neuvers. The technique is reported to be particularly useful for airdata measured

during flight at high angular rates and high angles-of-attack. A Kalman filter was

used to combine information from researchairdata, linear accelometers,angular

rate gyros, and altitude gyros to determine better estimatesof airdata quantities

suchasangle-of-attack, angle-of-sideslip,airspeedand altitude. The paper develops

the state and observationalequationsusedby the Kalman filter and showshow the

state and measurementcoherencematrix wasdetermined from flight data. Flight

data is used to demonstrate the results of the technique and the results are com-

pared to an independentmeasurementsource. Flight test data from the F-18 HARV

were used to show that the Kalman filter-estimated airdata is more realistic than

measuredairdata during high angle-of-attackand high angular maneuvering. This

has been verified using information from radar and meteorological data.

Larson and Ehernberger (1985) describe a flight test technique for controlled

survey runs to determine horizontal atmospheric pressure variations and system-

atic altitude errors that result from space positioning measurements. The survey
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data can be used not only for improved airdata calibration but also for atmospheric

structure and space positioning accuracy performance. The authors report that data

from the survey technique developed indicate that increased accuracy and improved

static pressure position error calibration using radar and rawinsonde pressure mea-

surements was achieved. In addition, the survey technique can be useful in studies

of pressure gradients, atmospheric refraction and radar tracking performance.

Larson, et al. (1987) carried out flight tests with an F-14 aircraft to evaluate

the use of flush pressure orifice on the nose section for obtaining airdata at transonic

speeds over a large range of flow angles. The flight tests provided data to validate

algorithms developed for the shuttle entry airdata system design at NASA Langley

Research Center. Data were obtained for Math numbers between 0.6-1.6 for angles-

of-attack up to 26 degrees and sideslip angles up to 11 degrees. The authors conclude

that with careful calibration of airdata systems with all flush orifices can provide

accurate airdata information over a large range of flow angles. Several orifices on

the nose cap were found to be suitable for determination of stagnation pressure.

Other orifices on the nose section aft of the nose cap were shown to be suitable

for determining static pressure. Pairs of orifices on the nose cap provided the

most sensitive measurement for determining angles-of-attack and sideslip, although

orifices located further aft on the nose section could also be used.

2.2 Inertial Measurements

Vehicle inertial attitude and velocity are typically provided by inertial naviga-

tion systems (INS) for wind measurements from aircraft borne sensors.

Ground speeds and angles, as well as Euler angles and rates, are determined

from the INS. Two types of INS have been used: stable platform systems and

strapped down systems. The NASA B57 Camberra and the NASA ER-2 aircraft

use a stable platform system Carousel IV and Litton LTN-72RH, respectively, while
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the NASA F-104 employed a strapped down, ring laser gyro. A brief description

of an INS system is that the INS utilize inertial elements (i.e., accelerometers and

gyros) to sense vehicle acceleration from which velocity and position can be de-

termined. In the stable platform system these sensors are mounted on gimbaled

platforms, containing at least three gimbals, which isolate them from vehicle mo-

tion and physically locate them in the desired coordinate reference frame. In local

level north pointing systems, this reference frame is the local geodetic frame, and

the gyro and accelerometer input axes are forced to remain as closely coincident as

possible to the north, east, and vertical directions when the vehicle is in motion.

If the sensors are "strapped down" on the carriers directly, no gimbals and

servo-motors are necessary. This type of INS mechanism is called a strapdown

system (SDS). The accelerometer signals are measured in a body-fixed coordinate

frame and transformed to a navigational reference frame by means of the gyro

signals. This results in the following advantages in comparison with the stable

platform systems (Lechner (1980)):

• simple mechanical construction

• the provision of accelerations and angular rates in body-fixed axes

• easy maintenance due to the modular construction

and the economical provision of redundancy by means of skewed sensitivity

axes.

However, against these advantages must be weighed certain drawbacks:

• increased demands on the efficiency of the navigation computer

• and extreme demands on the accuracy of the sensors, which have to mea-

sure the full dynamic environment of the SDS.

Regardless of which type of INS is used, it can introduce significant dynamic

error into the wind vector computed from the measured ground speeds. These errors
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are discussedin detail in the section on error analysis.

Considerable literature is available on INS systems. General descriptions are

given in Puckett and Ramo (1959); O'Donnell (1964); and Pitman (1962).

Gorenshteyn and Shul'man (1970) describe the theoretical principles under-

lining inertial navigation and the basic functional elementsof inertial navigation

systems. Generaland specificrepresentationsof the algorithms for determining the

running coordinates of an object areexamined asapplied to certain practically im-

portant methods of constructing an INS. The classification,analysisof error, prepa-

ration for operation, and aiso problemsof protecting INS from external sourcesis

also discussed.

Lechner, Hotop, and Zenz (1983) provide a description of the instruments and

the data evaluation techniquesfor testing of inertial navigation systemsboth hard-

ware and software. They discussthe inertial navigation system (platform systems)

installed in an aircraft and how it provides signalsfor course and altitude, ground

speed,and position determination. They note that the systemscanbe flight tested

for various criteria: checkingthe system accuracy,determining its reliability, check-

ing the aiding method for increasing the system's accuracy,obtaining knowledge

as to the air behavior of an inertial systemsin flight by means of the use of air

models and optimal filters. They also point out that external measurementaids

are available which include radar tracking systems,cinetheodolites and TACAN for

exact positioning of the aircraft.

A complete description of the Carousel IV inertial navigation system used in

the NASA B-57 aircraft is provided in the System Technical Description Manual,

provided by the manufacturer (AC Electronics, Division of General Motors Cor-

poration). Weber (1975) also reports on statistical studies of the accuracy of the

Carousel IV inertial navigation system. Three CarouselIV inertial navigation sys-
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terns were studied by Weber for accuracy during flights over the north Atlantic.

Errors associatedwith inertial platform are also discussedby Geller (1968). Geller

describes the differential equations for navigation errors of a local level and un-

damped inertial platform that continuously rotates in azimuth. From these, the

time response equations for the vector position error produced by a constant level

gyro drift error, as a function of platform rotation rate, are computed and evalu-

ated. The paper shows that platform rotation attenuates the systems position error

due to gyro bias and that this attenuation is a a nonlinear function of rotation rate.

McCormell (1966) reports on the kinematics of a three axis gimbaled system.

The equations of constraint which must be satisfied during gimbal motion are stud-

ied. The phenomena of gimbal lock and gimbal flipping are considered and demon-

strated for one type of vehicle motion. Curves indicating angular displacement,

velocities and accelerations are computed and presented showing the need of a re-

dundant four axis gimbal system to avoid gimbal lock.

Rhyne (1980) reports an experimental assessment made of two commercially

available inertial navigation systems with regard to their inertial velocity measure-

ment capability. This study was particularly designed for use in wind, windshear,

and long wavelength atmospheric turbulence measurements. The assessment was

based on 52 sets of postflight measurements of velocity (error) during a Schuler

cycle (84 minutes) while the inertial navigation system was still operating but the

aircraft was motionless. A maximum postflight error for the 52 cases was found

to have a root mean square value of 2.82 m/s with little or no correlation of error

magnitude with flight duration in the 1-6 hour range. As discussed in Section 3.2,

this Schuler drift effect in the INS system has a particularly significant influence on

the accuracy of the wind measurements.

Strapdown inertial navigation systems as contrasted to the plateform systems
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are becoming more prevalent. Studies associatedwith error analysis in the strap-

down inertial navigation systemshave beenreported. Shibata (1986) describesthe

strapdown inertial navigation error equations based on a quaternion relationship

between fixed body frame and navigation (local vertical) frame for terrestrial hy-

brid navigation systems. Potter (1982) proposessteady-state Kaimal filters used

as estimators for a strapdown INS. The report describesinvestigations as to the

sensitivity of the steady-stateKaimal filters to inaccuracy in the filter parameters

such asthe dimensional stability derivatives.

Hotop (1985) describes the measuring and data analysis technique used for

flight testing two Litton LTN-90 laser gyro strapdown type navigation systems.

Reference data was produced by the Carousel IV. In the mean, accuracies of 1.4 km

per hour maximum for position, of 1.2 m/s for velocity and of less than 0.1 degrees

for angular position and azimuth were reported for the LTN-90 navigation systems.

Miller (1980) presents a description of an algorithm for attitude and navigation

computations for strapdown inertial navigation systems. Also, Friedland (1978)

presents a brief review of the theory of strapdown and inertial navigation systems.

He shows that the error in the quaternion vector causes a scale factor error and

an equivalent tilt vector error that propagates the same way as the platform tilt

vector in a gimbaled system. A set of equations for error analysis are derived and

interpreted in this paper.

Error equations for the Psi-angle in strapdown inertial navigation systems are

provided by Weinreb and Bar-Itzhack (1978). It is proven in this paper that apart

from a sign change the side angle differential equation in the error analysis of strap-

down inertial navigation systems is identical to the one used in conventional gim-

baled inertial navigation systems.
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3.0 UNCERTAINTY ANALYSIS

The designof an instrument systemrequiresanuncertainty analysis to quantify

the affect of individual instrument uncertainties on the final wind velocity deter-

mined by combining the measuredvalues through the reduction equations. Ap-

pendix B contains a detailed uncertainty analysis procedure. Typical magnitudes

of potential uncertainties arepresentedgraphically in Section 3.1. Other uncertain-

ties resulting during operations and calibration problems also must be considered

in a measurementof wind from an aircraft. The propagation of error from mea-

surements inaccuracy of pressure,temperature, flow angle, angular displacement,

and inertial velocity and discussedin Section 3.1. Error encounteredduring flight

operations are describedin Section3.2.

3.1 Design Uncertainties

Figure 3.1 showsthe effect of pressureand temperature measurementuncer-

tainties on calculated airspeed.The airspeeduncertainty, which is calculated from

the combination of Equations (A.2) through (A.7), is based on the assumptions

that the static and total pressuremeasurementuncertainties are equal and that

supersonic free stream flow is compressedby a normal shock wave before coming

into contact with the ports usedfor pressuremeasurements.

Figure 3.1 also indicates that the minimal airspeed uncertainty is calculated

from measurementsmade near unity Math number. However,becausepitot probes

used for total and static pressuremeasurementsare known to induce localized re-

gions of supersonicflow, the simple one-dimensionaltheory used here may not be

adequate for uncertainty predictions near unity Math number. The uncertainty in

the transonic airspeedcalculation requires testing and indepth analysis.

Figure 3.2 showsthe uncertainty in the squareof the magnitude of the relative
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velocity of the air vector, lAVa[ 2, resulting from the airspeed uncertainty and the

measured flow angle uncertainty. The uncertainty in ]A_?,] (see Equation (A.9) is

based on the assumption that the flow angles, a and/3, are small (< 5 °) and the

flow angle uncertainties, &a and &/3, are equal.

Figure 3.3 shows the uncertainty in the square of the magnitude of the wind

velocity error vector ]A_VI 2. The uncertainty is plotted as a function of the uncer-

tainty in the Euler angles where it is assumed &¢ = A8 = A%b.

Figures 3.1, 3.2, and 3.3 are tools developed for a "back-of-the-envelope" de-

termination of the wind velocity uncertainty from the uncertainties in airborne

measurements. The use of these relations is illustrated by an example.

Assume that the parameters measured on an airpiane have the uncertainties

listed in Table 3.1.

Table 3.1 Example Measurement Uncertainties.

o.5 %
p

0.5 %To

Aa, A/3 0.1 deg.

A¢, A0, A_I' 0.1 (leg

laY l 1 m/s
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Figure 3.3 Wind velocity uncertainty as a function of relative airspeed

velocity uncertainty, inertial velocity uncertainty, euler angle

uncertainty, and airspeed.
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If the airplane is flying at Mach 0.5at sealevel (V_ ,_ 345m/s), the pressure and

temperature measurement uncertainties can be used with Figure 3.1 to determine

the relative airspeed uncertainty of 0.4%.

Figure 3.2 is then used to determine the effect of the angle-of-attack and sideslip

angle uncertainties. For the given flow angle uncertainty of 0.1 deg., the power n

on the abscissa of Figure 3.2 is set equal to -1 and the relative magnitude of the

uncertainty of the relative airspeed velocity is 0.5%. Figure 3.3 is used in a similar

manner, with the uncertainty in the measured Euler angles and in the inertial

velocity, a relative wind velocity uncertainty of -i- 2.3 m/s can be calculated. Note

that no information about the direction uncertainty is contained in the figures.

3.2 Operational and Dynamic Uncertainties

Extensive investigation reported by Chang and Frost (1985); Frost, et M.

(1985); Ringnes and Frost (1985); and Hill (1990) using data gathered with the

Cambera B-57 aircraft has been carried out. The following draws heavily from

these reports.

3.2.1 Sources of Inaccuracy in Data Reduction

Instrumentation errors influence the quantities appearing on the right-hand

side of Equations 2.2, 2.3, and 2.4 and thus the accuracy of the computed wind

velocities. Of these sources of instrumentation errors, the most difficult to correct

is the dynamic error in the velocity inherent in the INS, termed the Schuler error

to which aircraft motions contribute. All other errors can be removed by careful

calibration. The effects on the magnitude of the measured wind and also turbulence

calculations due to the sources of error in the instrumentation are presented next.

3.2.2 Inertial Velocity and Position Errors

The accuracy of the calculations of horizontal winds depends upon the perfor-

mance of the INS and its capability to provide correct measurements of the inertial
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(ground) speed of the aircraft. In recent years mechaslicM and electronic advances

have greatly improved INS accuracy. However, a cumulative oscillation in the INS

stable platform element called the Schuler drift effect, first pointed out in the fa-

mous paper by Schuler (1923), can be quite significant. Inertial navigation theory

including derivation of the Schuler pendulum effects is explained in many textbooks

(see for example, Boxmeyer (1964)). The Schuler error is essentially periodic with

a period near that of an earth radius pendulum, 84.4 minutes. Huber and Bogers

(1983) point out that a platform used in an airplane cannot strictly be kept tuned to

To = 84.4 minutes after takeoff since R (distance between the airplane and center of

the earth) and g (gravitational acceleration) change with altitude. They propose to

define To = 84.4 minutes as the Schuler constant (for the earth). The actual period

of oscillation proposed by these authors for a specific Schuler-adjusted system takes

into account the gravity gradient, the mass distribution in the system, and the cen-

trifugal forces due to the velocity of the carrying vehicle. This is called the actual

oscillation period. The actual oscillation period of a specific Schuler-adjus_ed sys-

tem (acceleration insensitive system.) under specific circumstances is given by them

as:

T= k • 27r _/--g

where k will always have a value between 0.5 and _. The Schuler error behaves

sinusoidMly and will thus change polarity. The error caused by a slow oscillation of

the INS stable platform causes the two horizontal accelerometers to detect a part

of the gravity vector. This false indication of acceleration is carried through the

integration for velocity and produces errors in the WE and WN values. Distance

traveled or geographical position is obtained from a second integration of the mea-

sured accelerations. Thus the Schuler oscillations will create errors in acceleration,

velocity, and position. The following procedures can be used to estimate the velocity
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errors associatedwith Schulerdrift.

Position error can be computed from aircraft data during overflight of land-

marks where exact geographical locations are known. Since acceleration, velocity,

and position errors are all interrelated, the Schulererror can experimentally be in-

vestigated by obtaining data on either oneof the three parametershaving a Schuler

oscillation induced error. The velocity error is generally small but increases with

time, e.g., after several hours of operation it can be on the order of 3 to 5 m/s

(R,hyne (1980) and Lenschow (1983)). The magnitude of the position errors for the

Carousel IV INS used in B-747 aircraft reported by Weber (1975) normally are on

the order of 10 nautical miles or less even after transatlantic flights. These errors

are not critical for pure navigation purposes. But, when the objective is to calculate

wind velocity, the Schuler error can be quite important.

To illustrate the magnitude of in-flight Schuler error, data from a Flight with

the NASA Cambera ]3-57 aircraft are presented (Frost, et al. (1987). A box pattern

flight plan as shown in Figure 3.4 was flown sequentially at 1000 ft levels over

Boulder, Colorado, in February 1984. Details of the flight and results are given

in Chang and Frost (1985). Each time the B-57 flew the leg heading east, an

event marker on the ground was activated to record the moment a north-south

running road lined up perpendicular to the flight path (see Figure 3.4). INS recorded

longitude at the time of the event marker can thus be compared with the known

longitude of the road to construct the Schuler position error (see Figure 3.5a). The

exact latitude of the aircraft at the time of the event markers is less certain. In fact,

it depends upon the ability of the pilot to fly the intended flight path. But, since

the flight paths were flown toward a fixed landmark, only small deviations in the

latitude position of the east-west runs would occur. A similar indication of position

errors has also been plotted for the latitude, Figure 3.5b. In both cases, the error
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appears to have a sinusoidal behavior. A curve fit of the data suggest the latitude

error has a 77-minute period of oscillation, and the longitude has an Ill-minute

period. The latitudinal period is reasonably close to the Schuler constant of 84

minutes, but the longitudinal period does not conform to that for the latitude.

Another flight following the same flight pattern and the same technique for

marking geographical position by event markers is shown in Figure 3.6. The dashed

lines outline sinusoidal trends but are not represented by mathematical equations.

The latitude oscillation compares with a period of approximately 110 minutes which

is similar to the previously reported longitude oscillation. The longitude error con-

tains more scatter in the data, although the period seems to be of roughly the same

length as the latitude oscillation on this flight.

The magnitude INS position errors identified are within a range of less than 15

km or 10 nautical miles. From a commercial aircraft operation standpoint, these

errors are not a large problem, particularly in the proximity of an airport where

other means of navigation are available. However, Schuler position errors are of

significance for wind measurements. Exact ground tracks are needed to determine

terrain effects on turbulence such as wake regions behind mountains, etc. An error

on the order of several kilometers can drastically distort the picture.

The INS velocity errors which are related to position error can be of the same

order of magnitude as the wind speed being measured. An estimate of the velocity

errors are presented in Figure 3.7. The velocity error curves are calculated by taking

the derivative of the position error curve fits illustrated in Figure 3.5. The influence

of these errors is discussed later.

The Schuler error was further investigated with other flights. The aircraft was

tracked by the NASA EPS-16 # 34 tracking radar. The radar track provided the

location and the ground speed of the aircraft throughout the flight. The post-flight
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Schuler velocity errors were investigated. The north-south and east-west velocity

errors of the flight and the ensuing post-flight velocity measurements are plotted in

Figures 3.8 and 3.9. The in-flight velocity errors are obtained by comparing aircraft

and radar data assuming the radar indications are free of error. The data recorded

on the ground is a direct measure of the indicated velocity from the INS while the

aircraft was parked and hence not moving. This velocity fluctuation is attributed

to the Schuler error. The INS was left on during the entire time span covered

in the plots. Both figures show one complete cycle of a near perfect 84-minute

Schuler oscillation in the post-flight data while the vehicle was parked. This is in

keeping with Huber and Bogers (1983) who noted that near the ground without

accelerations involved the Schuler oscillations will have an 84.4-minute period. In

the first half of the flight the errors are more random in their behavior and the

oscillation is irregular. This complicates attempts to model or predict the error in

advance. Lenschow (1972) suggests that post-flight data recorded with a stationary

aircraft be used to back out the error. He proposed to simply trace back a recorded

post-flight error oscillation with an $4-minute period constant amplitude sinusoidal

curve. The Frost, et al. (1987) study shows, however, that both the period and

the amplitude of the velocity error are altered substantially during flight and thus

the Lenschow (1972) approach would not be successful in their case. It should

be noted that while the inertial velocity measurement errors strongly influence the

horizontal wind vector calculations, they generally have little effect on the gust

velocity computations because the effect of the slow variations in velocity is greatly

diminished or eliminated when the average velocity is removed.

3.2.3 Flow Vane Errors

Ringnes and Frost (1985) observed in analyzing the B-57 data that constant

differences existed between the angles of attack measured at the three different
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stations along the wing. The constant offset from the true value again has little

influence on the computed turbulence since the mean value is removed during the

computation. The angle of attack terms have negligible effect on the computed

values and therefore the inaccuracies cause no problems in the total horizontal

wind vector computation. The cause of the angle-of-attack difference, however,

were attributed to misalignment of the wing tip booms.

The average sideslip angles were also found to be different from the expected

value. All aircraft are designed directionally stable and will fly with zero average

sideslip angle unless forcefully kept in a sideslip flight condition. During one flight

an average sideslip angle of 2.23 degrees was recorded. The source of the error is not

clear but boom misalignment or problems with the data acquisition system were

suspected causes.

3.2.4 Influence of Error Corrections

The influence the INS velocity and position, sideslip angle, and airspeed errors

have on the calculation of horizontal winds is discussed next. A series of wind

vectors are plotted before and after corrections have been made along the flight

path recorded by the INS during given flights of the NASA Cambera B-57. Each

vector represents a one-second average from the 40 samples per second data tapes.

In Figure 3.10 one of the box patterns flown on a particulax flight is plotted. In

this figure, no corrections have been made. There are some obvious inconsistencies

in the wind vectors, particularly, at the corners where it is expected that the wind

should agree closer between the two runs. The aircraft made 270-degree turns

between runs which take less than two minutes. The wind direction is not expected

to change significantly during that short of an interval. Instrumentation errors

axe, therefore, the probable cause for the discontinuities in wind direction. Figure

3.11 differs from Figure 3.10 only by removal of the 2.23-degree sideslip error in
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the calculation of the wind vectors. It is debatable whether this correction alone

has improved the wind vectors but it clearly demonstrates that seemingly small

errors have significant effect on the wind vectors. In Figure 3.12 corrections have

been made for all known errors. The discontinuities in the wind vectors at the

comers have all but vanished except for the bottom left-hand comer. However, as

the numerical order of the runs indicates the box pattern was flown in a clockwise

direction; thus, the beginning of the first leg of the run and the last are separated

in time by approximately 15 minutes. Therefore, it is conceivable that the wind

could have changed in that time span.

Discussion of other sources of errors and their magnitudes is given in the afore-

mentioned references. These are less significant in calculating wind velocities and

the interested reader should consult the references directly for more information.
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4.0 DATA COMMUNICATION

4.1 Data Transmission

Communication of transducer data to a ground based data acquisition system

is generally required for an instrumented aircraft measurement program. Therefore,

telemetry techniques capable of transmitting instrumentation data to the gound-

based data acquisition system are required. Although several methods are available,

specifically, three telemetry methods are most promising: pulse-amplitude modula-

tion (PAM), frequency modulation (FM-FM), and pulse-code modulation (PCM).

The PCM telemetry technique is potentially the best for aircraft measurements

based on cost and performance factors, which are discussed in detail in this section.

Several factors influence the choice of telemetry techniques for a specific appli-

cation, including noise, filtering, and sample rate. Signals are especially susceptible

to noise contamination along data transmission lines between the transducer and

amplifier. Standard practices involving the use of twisted-pair wires, shielded ca-

bles, and differential-input amplifiers, can be used to minimize noise picked up by

transmission wires. Since several of the specified transducers have maximum signal

levels in the millivolt range, their signals must be amplified to a level compatible

to the data acquisition system. If the transducer signal is amplified before the

noise is introduced, the problem is greatly reduced early in the transmission path.

For this reason, only transducers with integral amplifiers should be used. Integral-

transducer amplifiers reduce the parts count significantly in addition to reducing

noise.

Additional signal conditioning, such as filtering, is not generally required aboard

the aircraft, but must be performed by the ground- based data acquisition system.

The data acquisition system includes an appropriate mass storage device for later
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retrieval and conditioning of the wind data. Figure 4.1 illustrates the data path

aboard the aircraft.

Although the telemetry data link must introduce a minimal amount of noise,

other constraints on the design are equally important with the telemetry data link.

Specifically, sample rate (when applicable) and cost must be considered. The min-

imum tolerable sample rate of the aircraft's telemetry system is dependent on the

data layer thickness and the speed of the aircraft. For a detectable layer, d, and an

aircraft speed, V, the minimum sample frequency per channel is:

2V

f_- d (4.1)

since a minimum of two samples must be taken for a layer to be detected where

V - speed of the rocket, d - minimum shear layer resolution, and fs = sample

frequency. Figure 4.2 is an example plot of required sampling frequency for an 11-

channel system as a function of vertical ascent rate. This takes into account neither

oversampling, which would be required with a digital filter nor the use of multiple

data channels, which could be used on the aircraft. Oversampling n channels s

times results in a sample frequency

2Vns

f" - d (4.2)

The minimum sample frequency is not a factor if an FM-FM system is used.

FM-FM systems transmit a continuous signal of summed subcarrier oscillator signals

which correspond to individual transducer voltage signals. The minimum detectable

data layer thicknesses depend on the center frequency and modulation index of the

individual subcarrier oscillators. Therefore, provided that the center frequencies

are sufficiently higher than the cutoff frequencies of the corresponding transducers,

no data will be lost due to frequency limitations of the telemetry system.

PAM and PCM are not continuous telemetry schemes and thus must sample

no slower than the minimum sample frequency as described above. PAM is the
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simplest method of time-division multiplexing: the separate transducer outputs are

sequentially switched to a common output which forms a composite waveform of the

individual channels' outputs. The period of the waveform is equal to the sample

interval of one channel times the total number of channels in the system. PCM

operates similarly, with the exception that data is converted from analog signals to

digital signals. Current sample rates of PAM and PCM encoders are up to 200,000

samples/see and 3.2 megabits/sec respectively.

Crosstalk, gain and offset errors, and incidental frequency modulation are

sources of error in data transmission. Of the three telemetry methods considered,

PAM has the poorest absolute accuracy specification: typical errors between 2%

and 5% of full scale can be expected. FM-FM system accuracy, as well as that of

the other two methods, is highly dependent upon proper setup of the transducer

output gain and offset. Depending on how close to launch time the transducer cal-

ibration is made, errors of 1% to 4% can be expected from an FM-FM telemetry

system. If proper setup is obtained with a PCM system, the error induced by this

system will be one least-significant bit (LSB) since the data is converted to a digital

form. For an 8-bit telemetry system, one LSB equals one part in 2s; or about 0.4%.

The recommended telemetry technique is the PCM system, based on reason-

able cost, sufficient sample rate, and superior accuracy to the other methods of

telemetry. This type of system allows more flexibility with the number of data

channels transmitted than the FM-FM system since the latter will require addi-

tional capital expenditures for each additional channel transmitted. Additionally,

the worst-case error of the final data will be due primarily to the transducers instead

of the telemetry system as would be the case with PAM. Table 4.1 summarizes the

characteristics of the three telemetry methods.
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Table 4.1 Telemetry comparison.

Telemetry
Method

PAM

FM-FM

PCM

Data Channel

Capacity

Low

Low

High

Availability

Low

Moderate

High

Accuracy

Low

Moderate

High

Cost

Low

High

Moderate

Other necessary components of an onboard telemetry data link are the trans-

mission antennas and the transmitter. Three blade antennas mounted on the rocket

will transmit the telemetry signal adequately in all directions. The transmitter can

be adjusted to broadcast a selected frequency which must correspond to the fre-

quency of the receiver on the ground. This flexibility in transmission frequency

could prove to be beneficial in regard to the frequency allocation and certification

by the National Telecommunications and Information Administration (NTIA) upon

review by the Spectrum Planning Subcommittee (SPS). The transmission frequency

will typically be in the L or S band in the radio frequency spectrum.

4.2 Data Acquisition

A ground based data acquisition system is required for storing and processing

the telemetered wind parameter data. An appropriate system is described next.

A ground station consisting of a telemetry reception, data acquisition, and data

processing system will produce all desired atmospheric profile data, store historical

atmospheric profiles for future profile predictions, and permit portability to various

sites.
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The choice of data acquisition system is dependenton the type of telemetry

system aboard the aircraft. Even though the transmitter and receiver remain the

same for all types of telemetry considered,the way in which the signal is decoded

to provide data from all channelsis determined by the format used to transform

the data signal to a telemetry signal. SincePCM is recommendedasthe optimum

telemetry schemefor most applications, a data acquisition system compatible with

PCM is discussed.

The fundamental componentsof a PCM data acquisition system consist of the

following:

1. a PCM bit decoderto translate the frequency-modulatedradio signal

into a digital pulse stream,

2. a data decommutator to separatethe digital signal into individual

channel signals,

3. a digital-to-analog converter to transform the digital channel data into

analog data, and

4. a serial time-code reader to provide time correlation with the acquired

data.

In addition to these requirements, other features that will greatly benefit system

quality will be incorporated. These include adaptability to a range of PCM codes,

digital and analog mass storage capability, real-time display of multiple channel

signals, and scaling and manipulation of these channels into desired engineering-

unit parameters. These features will be incorporated into a user-friendly, stand-

alone system, and will result in a highly versatile telemetry system.

Turn-key telemetry data acquisition systems are available which will accom-

modate all requirements for aircrafts data system. One particular system includes

both the hardware and the software which obtains telemetry data. In addition to
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fulfilling all of the cited requirements, the system provides data record arc_hiving

and editing capability, 16 channels of real-time analog output, user-programmable

display formatting, and various scaling and look-up table capabilities. This system

is available as a retrofit to a dedicated IBM PC/AT compatible or as a rackmount-

able 80386 system with a 100 megabyte hard disk drive. The latter option is viewed

as being the more advantageous one since the data acquisition system may be in-

stalled in a single rack with the ground station receiver and a multi-channel analog

tape machine used as a back-up data storage device.
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5.0 SUMMARY

A review of salient features associatedwith measuring winds from aircraft

has been given. Included is a discussionof the typical instruments and systems,

the equations for reducing aircraft measurement to winds in the earth coordinates

system,error analysisfor assessingthe accuracy of instrumentation, aswell as, pro-

ceduresfor correcting and calibrating for errors associatedwith flight operations

and an overview of methods for communicating measurementsfrom the aircraft to

ground station for data processing.Throughout the report a summaryof the litera-

ture pertaining to various techniquesavailable for measuring winds including some

of the measurementprogramsfor which instrumented aircraft havebeendeveloped

and employed is provided. A discussionof the various types of instrumentation

that have beenused in previousprograms, the reported potential errors and meth-

ods of correcting and calibrating the instruments and the problems associatedwith

obtaining accurate ground speedvaluesfrom INS systemsis given.

The report providesa guide to researchersin the processof developinginstru-

mented aircraft for measurementof atmospheric phenomena.
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APPENDIX A

Wind Vector Calculations from an Airborne Platform

Windspeed and direction, based on measurements made from an airborne plat-

form, are calculated from the vector addition

(A.1)

where l_ is the wind velocity with respect to an observer on earth, I7_ is the air

velocity according to an observer on the airborne platform, and I_ is the platform

velocity in the frame of the earth. Measurements from the platform provide the

information for airspeed and direction in a coordinate system that rolls, pitches,

and yaws with the platform. An inertial measurement system on board the air-

craft measures the angles, angular velocity, and linear velocity which describe the

platform motion and orientation with respect to the earth. With the airflow vector

known in the moving coordinate system and the orientation of the moving coordi-

nate system with respect to the earth known, the wind vector in the earthbound

coordinate system can be calculated.

A.1 Body-Fixed Frame

Airspeed in the coordinate system fixed to an aircraft (the true airspeed of the

aircraft), is calculated from total pressure, ambient pressure, and total temperature

measurements. Etkin (1973) calls this coordinate system the body-fixed coordi-

nates, which is defined as having the x-axis pointing forward through the aircraft

nose along the aircraft centerline, the y-axis pointing out the starboard wing, and

the z-axis pointing out the aircraft underside. The origin of the coordinate system

is located at the aircraft center of gravity.

The magnitude of the relative speed of the air to the aircraft, IV_I, is determined
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from the Mach number, Ma, and the sonic speed, c, by:

Va = cMa (A.2)

The Mach number of the airplane is calculated from the total and ambient pressures

according to the expression

II 1Ua = - 1 _ (A.3)

where po is the total pressure, p is the ambient pressure, k is the ratio of specific

heats for air (1.4), and Ma represents the Mach number.

The total pressure and static pressure measurements, or pitot measurements,

are taken, respectively, where the airflow is brought adiabatically and isentropically

to rest and where the flow speed is undisturbed from the free stream flow. When the

vehicle is traveling supersonically, a shock wave in front of the rocket or attached to

the rocket will reduce the total pressure and increase the static pressure, compared

to the total pressure and static pressure on the supersonic side of the shock wave.

The subsonic Mach number calculated from Equation (A.3) is subsequently less

than the free stream Mach number. The shock wave in front of the total and static

pressure transducers, mounted on the rocket nose cone or at the end of a boom, is

assumed to be a normal shock wave. For the airspeed calculation, the free stream

Math number (on the supersonic side of the shock wave) is calculated from the

measured total pressure and measured static pressure from

k--I

Ma22= [(_)-'r--1][k-9-_] (A.4)

and

= (k- 1)M4 + 2
2kMa 2 - (k - 1) (g.5)
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whereMa_ = subsonic Mach number squared at the sensor, and Ma 2 = supersonic

free stream Mach number squared.

The sonic speed is defined by

c= _ (A.6)

where R is the ideal gas constant for air, and T is the static temperature of the air.

Since only total temperature can be measured, the static temperature of the

air is calculated from the relationship between the known Mach number, the total

temperature, and the static temperature:

= Toil + !:f2Ma2] -1 (d.7)T

where To is the airstream total temperature.

With static temperature calculated, the sonic speed can be calculated from

Equation (A.5) and airspeed is calculated from Equation (A.4). The airstream

speed is then calculated from total pressure, static pressure, and total temperature

from the expression

k--i

The direction of the air relative to a probe is fixed by the angle-of-attack, _,

and sideslip angle, /3. In the body-fixed coordinate system the components of the

relative airspeed vector are:

COS _ COS_ 1
VSF = IV,_l _ cosv_sin (A.9)

\ sin c_

The Dryden F-104 and the Ames ER-2 use different methods for measuring c_

and 8. The Dryden F-104 uses flow vanes such as shown in Figure A.1, and the

Ames ER-2 uses differential pressure measurements on the radome (Figure A.2)

which are correlated to particular flow angles.
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Figure A.I Free vanes on an air data probe for flow angle measurements

(Sakamoto, 1976).
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The standard NACA airdata probe, which is used by the Dryden F-104, is

equipped with vanes which measure airflow direction by vane displacement. The

actual flow angle is found by correcting the displacement angle according to wind

tunnel calibrations for varying Mach number, angle-of-attack and sideslip. Figure

A.3 shows typical flow angle errors and indicated flow angles (Sakamoto, 1976).

Similarly to the differential pressure measurement system on the ER-2, probes

are designed to measure flow angles and flight Mach number for aircraft and wind

tunnels from differential pressure measurements. Such a probe, with a hemispherical

head, is illustrated in Figure 2.2. A flow angle in a given plane would be calculated

from (see Scott, et al. (1989))

Ap
a = -- (A.10)

kq

where a is the flow angle, Ap is the differential pressure, k is the airflow angle

sensitivity factor, and q is the dynamic pressure, po -p. The airflow angle sensitivity

factor would be found from wind tunnel calibrations and is roughly constant within

small Mach number domains. Bryer and Pankhurst (1971) recommended that for

high subsonic, transonic, and low supersonic measurements, a hemispherical probe

be used (Figure 2.2).

Before the air velocity is transformed into the earth-surface coordinates, with

the x-axis pointed north, the y-axis pointed east, the z-axis pointed down, and the

origin fixed to an observer on earth, the vehicle rotation rate must be accounted for

in the body-fixed frame. The instruments that measure the pressures and angles

necessary for the wind vector calculation rotate around the vehicle center of gravity.

The linear velocity of the instruments due to the vehicle rotation is

(.4.11)
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Figure A.3 Typical flow angle error from free vanes (Sakamoto,1976).

72



where p is the vehicle rate of roll, q is the vehicle rate of pitch, r is the vehicle rate

of yaw, and F is the position vector of the instruments. The instrument velocity

vector must be added to the relative airspeed velocity vector. The air velocity to

be transformed from the body-fixed to an intermediate frame (the vehicle-centered

vertical frame) is then

[ cos cos #
= Ivol/ cos sin#]k sins

+TxF (.4.12)

A.2 Vehicle-Centered Vertical Frame

The vehicle-centered vertical frame, as defined by Etkin (1972), has its origin

fixed at the aircraft center of gravity, with the x-axis pointed north, the y-axis

pointed east, and the z-axis pointed in the direction of the local gravity vector.

Etkin (1972) gives the transformation of vector components from a body-fixed to a

vehicle-centered vertical coordinates as

cos 0 sin ¢ sin 0 cos q cos ¢ sin 0 cos

- cos ¢ sin tI, + sin 0 sin

Vvc = cos 0 sin q sin _ sin 0 sin tI, cos ¢ sin 0 sin
+ cos ¢ cos q - sin ¢ cos tI,

- sin 0 sin ¢ cos 0 cos ¢ cos 0

where ¢ = aircraft roll angle, 0 = pitch angle, and _I' = yaw angle. The angles 6.

0, and tI,, called the Euler angles.

These angles are typically provided by gyroscopic measurements from an iner-

tim navigation system (INS).

A.3 Earth-Surface Frame

The vehicle-centered vertical frame and the earth-surface frame differ only in

the relative velocity between their respective origins. Thus the transformation of

a vector from the former to the latter involves only the addition of the velocity of

the vehicle-centered vertical frame relative to earth-surface. This relative velocity

is simply the ground speed of the vehicle:
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The vehicle ground speed is determined by integration of acceleration mea-

surements on the aircraft. Typically, an INS provides velocity information in the

earth-surface frame. If acceleration measurements only are used they are trans-

formed from the frame of the vehicle to the earth-surface frame by the same vector

transformation used with the calculated air velocity.
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APPENDIX B

Error Analysis for Instrumentation Requirements for Wind Velocity
Calculation from Measurements Made from an Airborne Platform

The uncertainty in the calculation of a wind vector from measurements made on

an airborne platform is determined herein with the Taylor series error propagation

approximation

(aF) = (B.1)
i=l

where F is the parameter of interest and the set of _i are the independent variables

governing F.

In the case of wind calculations from an airborne platform, the platform being

an airplane or a rocket, Equation (B.1) becomes:

(B.2)

where l_ is the wind vector, I7¢ is the inertial velocity vector of the vehicle (or ground

speed) in the earth- surface frame, and V_ is the relative airspeed vector. The inertial

velocity, which is determined by an INS, radar, radio navigation, or other means,

and is treated in this analysis as a given function of the instrumentation.

The earth-surface frame is defined as a Cartesian coordinate system with the

x-axis pointed north, the y-axis pointed east, and the z-axis pointed down. The

origin of the earth-surface frame is arbitrary since the wind vector is a velocity

rather than a position. The earth-surface frame is not considered curvilinear here,

since the earth can be approximated as flat for the spatial scale of interest.

The error in the vehicle ground speed vector, AI?_, which is dependent on

the instrumentation used for that measurement, is an independent variable in the

error analysis. The relative air velocity vector is also an independent variable in

the error analysis and is a function of the inaccuracies of the relative airspeed
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instrumentation. The error analysis is best carried out in terms of components in

the particular reference frames of interest. Toward this goal the relative airspeed

vector components typically measured in the body-fixed frame are transformed into

the earth fixed frame. The matrix equation is:

where V_r is the relative airspeed column matrix of components measured in the

body-fixed frame, and LvB is the transformation matrix which rotates a vector in

the body-fixed frame to the earth fixed frame.

The body-fixed frame is defined, in terms of an aircraft, as having the x-axis

projected from the aircraft nose along the fuselage centerline, the V-axis projected

from the starboard wing, the z-axis projected from the aircraft underside. The

origin of the coordinate system is at the aircraft center of gravity. Etkin (1973)

derives the transformation matrix L vs as:

cos • sin 0 sin 0 cos _2

- cos _psin

Lvs = cos0sin

- sin 0

sin ¢ sin 0 sin

+ cos ¢ cos

sin ¢ cos 0

cos ¢ sin 0 cos q \

+ sin 0 sin

cos ¢ sin 0 sin

- sin ¢ cos

cos ¢ cos O

(B.4)

where ¢ is aircraft bank, O is aircraft elevation, and e2 is aircraft heading.

The components of _7 in the body fixed coordinates, are defined for conve-

= (B.5)

nience as

and the error as

AV_sF = (AV_,AVy,AVz) (B.6)

The components of V_, in the earth fixed coordinates or vehicle centered coordinates,

are defined as

V_,, c = (V_, V_, V:) (B.7)

76



and

zxyo,,c= (_XV',/',V;,AV') (B.S)

Three equations result from the expansion of Equation (B.3) with substitution

into Equation (B.1) . Using index notation, these equations are

(zxYJ)_= k ovi ] (zxY_)2+ \oxi] (_xx_
(B.9)

where XI = ¢, X2 = 0, and Xs = 9.

The derivatives on the R.H.S. of Equation (B.9) for AV_ are

or" _ cos 0 cos

OV_ = sin e sin 0 cos • - cos 0 sin _,
ov_

ov;
= cos _ sin 0 cos • + sin 4)sin 9,

0½

0V_ = I_(cos _ sin 0 cos • + sin ¢ sin • )
0¢

- V.(sin _ sin 0 cos • + cos _ sin • ),

c_V_ = _ V_:(sin 0 cos • ) + Vy sin ¢ cos 0 cos
00

+ V- cos ¢ cos 0 cos q,

and
0_

-- V_ cosOsin • - Vy(sin q_sin 0sin • + cos ¢cos _)
09

+ V,(- cos ¢ sin O sin • + sin ¢ cos 9)

The derivatives on the R.H.S. of Equation (B.9) for AVd are

ov;
= cos 0 sin 9,

ov_

OV_ _ sin ¢ sin 0 sin _I' + cos ¢ cos 9,
oy_

or;
= cos ¢ sin 0 sin • - sin ¢ cos _,

ovz

(B.10)

(B.II)

(B.12)

(B.13)

(B.14)

(B.i5)

(B.16)

(B.1T)

(B.lS)
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°G = G (cos¢ sin0sin¢ - sin_cos• )
o¢

+ V_(- sin ¢ sin 8 sin 'I' - cos ¢ cos _I'),

(B.19)

ov;_
c9----0-- - V_ sin 0 sin _I' + Vy sin ¢ cos 8 sin _I'

+ Vz cos ¢ cos 0 sin ¢2,

B.20)

and

or;_
c9---_--- V, cos O cos • + V_ (sin ¢ sin O cos ¢2 - cos ¢ sin tg)

+ Vz(cos ¢ sin 0 cos • + sin ¢ sin ¢2)

The derivatives on the R.H.S. of Equation (B.9) for AV_ are

ov"
- sin 0,

oG

OV: _ sin ¢ cos 0,
0G

0g: _ cos ¢ cos 0,
0G

B.21)

B.22)

B.23)

(B.24)

or:
0---_- = I_ cos q_cos 0 - V: sin ¢ cos O,

OV_ = _ V_ cos 0 - Vy sin ¢ sin 0 - V u cos ¢ sin 0,
00

(B.25)

(B.26)

and

OW
---= = 0 (B.27)
0_

With the assumption that the uncertainties in the Euler angles are approxi-

mately equal, Equations (B.10) - (B.27) can be simplified by inspection after sub-

stituting the small angle assumption for the bank, ¢, elevation, 0, and heading, _P,

angles to:

iAvavci_ = laVa.FI2 Jr 2(A¢) 2

The error in the angle measurements are considered equal, i.e., A¢ = A O = A0.

The uncertainty in the angles ¢, 0, and • is dependent on the instruments, usually
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gyroscopes, which are used to measure those angles and thus, A¢, AS, and A_ are

independent variables in the error analysis.

At this point, the rotation rate of the vehicle should be considered in the

error analysis. As the vehicle rotates, a wind vector is induced at the windspeed

instrumentation proportional to the rotation rate and the distance between the

aircraft center of gravity (c.g.) and the windspeed instrumentation. However, the

product of the rotation rate and length between the c.g. and instrumentation is

normally small and the contribution to the measured windspeed is not significant.

Thus, the error contributed by the measured rate of the vehicle rotation will be

neglected here.

The three components of the relative airspeed vector in the body-fixed frame,

V., Vv, and V., are derived from the magnitude of the airspeed Iv_l, the angle-of-

attack, a, and sideslip angle, r:

V u = I_l cos a sin_ (B.28)

sin a

The resultant errors in the calculations of the body-fixed wind vector compo-

nents are:

(AVe) 2 = cos 2 acos 2 fl(A[V.[) _ + [V.[ 2 sin 2 acos 2 fl(Aa) 2

(B.29)

+ IV.[ 2 cos 2 ctsin 2 3(A_3) 2,

(Av,) 2 =cos __sin _Z(zxlv_l)_+ Jv_l_ sin__cos _/_(&_)2
(B.30)

+ Iv.Is cos2_¢os28(zxS)2,

and

( A Vz )2 = sin2 a( &IV_ 1)2 + [Va[ 2 cos 2 a( Ao_)2 (B.31)

Defining IA I7_I2 = (A V_ )2 + ( A Vy )2 + (A V, )2, incorporating Equations (B.29),

(B.30), and (B.31) and normalizing by the vehicle airspeed then with the small

angle approximations, we can write:
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IV l -\ IVol} (B.32)

where it is assumed Aa = A ft.

The errors in the measured angle-of-attack and sideslip angles are functions of

the instruments used to make these measurements and are therefore independent

variables.

The magnitude or absolute value of the airspeed of the vehicle, IVy,I, is calcu-

lated as the product of the local sonic velocity and the vehicle flight Mach number:

IV.I =cMa (B.35)

For convenience which will become apparent, the square of the Mach number will

be used:

Then

or

and

I_l=c IV'_a 2 (B.36)

C 2

(AlVa[)2 = Ma2(Ac) 2 + 4Ma------_(AMa2)2 (B.37)

(AIVal)2 = Ma2(-_)2 + (AMa2) 2 (B.38)

The sonic velocity, c, is calculated from the static temperature of the wind from

c = _ (B.39)

( Ac) 2 = ._4__(kRAT)2 (B.40)

where k = 1.4 is the ratio of specific heats for air, and R is the perfect gas constant

for air. Equation (B.40) can be rearranged from division by Equation (B.39) twice:

The static temperature is calculated from the Mach number and the total

temperature, To, of the air surrounding the vehicle from the relationship
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TOT= 1 + _-_--_ Ma 2 (B.42)

Rearranging Equation (B.42) as
-1

(B.43)

and substituting into Equation (B.1)

(_XT)_ = (zXTo)_ + T:('XMa_) 2
(1+__5_k-1Ma2)2 ( k-l(12 + k_-Ma2)2) 2

(B.44)

Equation (B.42) can be substituted back into Equation (B.44) for

(AT) 2 _ (ATo) 2 + T2o(AMa2) 2
(To�T) 2 (k_21(ro/z)2)2

(B.45)

or

= \-_o ,/ + (k-1)2(14 + £_J-Ma2) 2 (B.46)

Since To is measured, To is an independent variable in the wind velocity caiculations

and the value of ATo is dependent on the accuracy of the total temperature probe

used for that measurement.

The Mach number is calculated as a function of the ratio of the dynamic and

static pressure measured at the aircraft for subsonic flight by:
i--1

(B.47)

If the system is flying supersonically, the free stream Mach number is calculated

with the Rayleigh pitot-tube formula:
k 1

q+l= ---f--,) / \k--_ 1 k-T (B.48)P

where Mal = the supersonic free stream Mach number.

The uncertainty in the subsonic Mach number is calculated from Equation

(B.47):

,] = Ma 2 _ ,] (B.50)
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The uncertainty in the pressureratio _ is evaluated from the two remaining inde-
P

pendent variables in the wind velocity calculation

(B.52)

Likewise, the uncertainty in the supersonic Mach number can be shown to be

Finally, the uncertainty in wind velocity calculations from measurements made

from a airborne platform is determined by the measured parameters 17e, ¢, 0, t9, To,

p, Po, _, and/3, and their measurement uncertainties. This neglects any contribution

to the wind velocity made by the rotation rate of the system, which is generally

small.
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