
NASA Contractor

Rule Groupings:

Engineering

Verification of

Mala Mehrotra

CONTRACT NAS1-18585

MAY 1991

rds

,terns

!

l

I

!

m
m

!
1
|
W
H

i
|
|
!

_. -- _] _ --

m

NASA Contractor Report 4372

Rule Groupings: A Software

Engineering Approach Towards

Verification of Expert Systems

Mala Mehrotra

ViGYAN, Inc.

Hampton, Virginia

Prepared for

Langley Research Center

under Contract NAS1-18585

National Aeronautics and
Space Administration

Office of Management
Scientific and Technical
Information Division

1991

Rule Groupings: A Software Engineering Approach

towards Verification of Expert Systems*

Mala Mehrotra

Vigyan Inc.

Hampton, Va 23665.

Abstract

Currently, most expert system shells do not address software engineering issues for developing

or maintaining expert systems. As a result, large expert systems tend to be incomprehensible,

difficult to debug or modify and almost impossible to verify or validate. Partitioning rule-based

systems into rule groups which reflect the underlying subdomains of the problem should enhance

the comprehensibility, maintainability and reliability of expert-system software. In this paper, we

elaborate our attempts to semi-automatically structure a CLIPS rule base into groups of related

rules that carry the same type of information. Different distance metrics that capture relevant

information from the rules for grouping are discussed. Two clustering algorithms that partition the

rule base into groups of related rules are given. Two independent evaluation criteria are developed

to measure the effectiveness of the grouping strategies. Results of our experiment with three sample

rule bases are presented.

*This research was supported by NASA Contract No. NAS1-18585 at NASA Langley Research Center, Hampton, VA

23665.

1 Introduction

Knowledge-based expert systems are playing an increasingly important role in NASA space and air-

craft systems. They have potential usefulness in fault diagnostics and recovery, monitoring, planning,

scheduling, and control systems, and are already being used as ground-based advisory systems. How-

ever, many of NASA's software applications axe life- or mission-critical, and knowledge-based systems

do not lend themselves to the traditional verification and validation techniques for highly reliable

software[l].

Even relatively small rule-based systems contain hundreds of rules, and as the number of rules

increases, the number of possible interactions between rules increases exponentially. There is also

another dimension of complexity independent of the number of rules in the system. This is the number

of potential matches for each pattern in a rule. As the complexity of these patterns increases, the

number of possible combinations of facts required for testing these patterns increases exponentially.

Therefore, it is infeasible to attempt exhaustive testing of every possible path through the system, much

less every possible combination of inputs. Thus, exhaustive testing is impractical for demonstrating

high reliability of knowledge-based systems, and less computationally intensive analysis techniques

must be employed.

Although the meaning of each rule in isolation may be well understood, the complexity of the rule-

based system stems from the interactions and interdependencies between rules. Therefore, analysis of

the system should focus on understanding those interactions and assuring that they are correct. The

approach we have chosen is to investigate the structuring of a rule-based system into a set of groups.

Such groups would allow one to abstract away from the each rule is a procedure call point of view, and

look at the system from a higher semantic level. This should make explicit the underlying subdomains

of the problem and also aid in understanding the level of knowledge (i.e. deep or shallow reasoning)

that was applied to solve the subproblems. The groupings are made to aid in comprehension of the

2

rule base and have no effect on the execution of the system.

In this paper we describe our attempts to extract the domain knowledge from a rule base by

structuring the rule base into groups of related rules. We present several distance metrics which

measure the relatedness of rules, and we describe two different clustering algorithms.

Related Work

The issues involved in grouping rules have been studied at various levels. Lindell[2] suggests a clustering

algorithm based on keywords contained in comments. Clearly this can work only for well-documented

rule bases and for those where one can succeed in finding appropriate keywords.

Lindenmayer, et al.[3] have proposed a certain methodology for grouping OPS5 rule bases for the

Hubble Space Telescope Project. Different rule couplings are discussed with respect to make, remove

and modify constructs in OPS5. However, dependency between two rules is assumed to exist only from

the consequent of one rule to the antecedent of another.

A more sophisticated approach, by Jacob and Froscher[4_ 5], utilizes more forms of data dependen-

cies of a rule base and groups rules on their informational content. However, Jacob's grouping strategy

also assumes that domain knowledge is in the form of a decision tree, in which chaining of rules takes

place predominantly from the consequent of one rule to the antecedent of another. It presumes a hier-

archical decomposition of domain knowledge, which seems to be well suited for classification problems,

such as the animal identification rule base. However, it does not work well in monitoring or scheduling

problems, where the antecedents of rules generally carry domain information, such as different modes

of failure, while consequents usually give only directives for taking the appropriate actions.

An Overview of Our Approach

We have taken a pattern-matching approach towards grouping of rules[6,7]. In this approach, the

commonality of items in the rules determines the distance between them. Our rule grouping process

consists of three stages. First, the distance between each pair of rules is computed and stored in a

distance matrix. In the second stage, the computed distances are modified so that alldistances satisfy

the triangle inequality. That is,we replace the distance between two rules by a shorter distance, if

there existsan intermediate rule through which a shorter path can be created. Consider three rules rl,

rj and rk with inter-rule distances d_j, d_ and djk. If d_j ÷ djk < d_k, then we replace d_k by d_j +

djk. This method thus extracts the transitive dependency between rules. Finally, we apply a clustering

algorithm to form our groups. There are two approaches we consider for clustering. The first one is an

automatic clustering algorithm based on graph-partitioning approaches. The second requires the user

to designate certain rules as "primary rules" or "seed rules" around which the clustering algorithm will

form groups.

Automatic clustering algorithms work, but optimal clustering is NP-complete, and the resulting

clusters may not conform, in any reasonable way, to the clusters a user would desire. Thus, we

developed a more user-directed approach, in which the user designates some rules as primary rules,

and a cluster is automatically formed around each of these rules. These rules typically reflect key

concepts from the domain; thus, the resulting clusters correspond closely to what the user desires.

The rest of the paper is structured as follows. In the second section, we discuss the design issues

in developing different distance metrics. In section 3, the two different algorithms for clustering are

given. Section 4 describes our experiments on three different rule bases. This section also discusses

various quality measures for determining the "goodness" of groupings. Based on these, a performance

evMuation is done of the different distance metrics on three sample rule bases. Section 5 discusses the

relationship of our efforts to verification and validation issues. Finally, we present our conclusions and

4

future directionsfor research.

2 Design of Distance Metric

In order to allow our system to adapt to different types of rule bases, we have designed different distance

metrics * for measuring the relatedness of rules. Different metrics capture different kinds of information

from the rule base. In this section, we present the motivation for our different distance metrics and

the criteria used in designing them.

Experience with using Jacob and Froscher's grouping algorithm on rule-based systems, such as

ONAVt,and MMU-FDIR _, suggests that different application domains require different distance met-

rics. Finding a single universal metric appears to be impossible, since different expert systems require

one to capture different information.

In our discussions henceforth, we follow the terminology of Giarratano and Riley[10]. A rule base

is made up of rules with antecedents and consequents. Each antecedent or consequent is composed of

patterns which match facts in working memory at run time. Each pattern is further divided into fields

or tokens. In CLIPS § [11] a token can be a word, string or number. We refer to these as items.

Only certain items are relevant for grouping. We ignore all run-time aspects of the rule base, since

the presence of a particular item in a rule appears to be more important to proper grouping than the

way in which it is used. Also, analysis of the run-time behavior of a rule base could be prohibitively

expensive, amounting to direct simulation of all logic paths. Our grouping does not functionally alter

the rule base at all; once the grouping is performed, the user sees rules in their original form. In effect,

we are trying to automate a user's first steps in attempting to comprehend an unknown rule base.

In order to do effective grouping, we need to suppress all information conveyed by key words, such

• The usage of term metrics in this paper does not conform to the strict mathematical definition of metrics.
tOnhoard Navigation Expert System [8]

tManned Maneuvering Unit - Fault Detection, Isolation and Recovery System [9]
i'C' Language Production System

5

as, retract, bind, test; they serve only as run-time directives. For example, a rule asserting a fact A, and

another one testing for the absence of A, would not be temporally grouped together. But statically,

since both rules are referring to the same information, their meaning may be more clear if they are

present in the same group. If the fact A gets modified, then it is important to show that the validity

of the rule testing for the absence of A still holds. A similar justification holds for ignoring keywords.

We do, however, include numeric- and word-type fields in our metrics, since they frequently contain

domain-specific information relevant to static grouping. However, we suppress all strings and variable

names. Strings rarely occur outside of print statements and convey little domain information. Variables

are local to each rule and hence cannot carry information pertinent to the static relationship of rules.

Their bindings take place at run time, and therefore no values can be assigned to them a priori.

Given these fundamental design choices, we cart now state a generic definition of the distance

between two rules, rl and r2, as

d(rl,r2)
Total no. of items in rl and r2

no. of "common" items in rl and r2

where different definitions of "common" give rise to different distance metrics. When there are no

common items between rl and r_, d(rl, r2) is replaced by the maximum number of patterns allowed.

The nature of the domain knowledge enforces a certain programming methodology on the developer

of a rule base. Classification systems, such as the animal identification problem [12], have a hierarchical

structure which yields easily to a data-flow grouping like Jacob's and Lindenmeyer's. Classification

of disease hierarchies also falls in the same application type. The fundamental characteristic of such

systems is that the flow of data takes place from the consequent of one rule to antecedents of other rules.

Three rules from the animal identification rule base are presented in Figure 1 to show the data-flow

aspects of the system. For this type of rule base, it is appropriate to use a distance metric, dat(rl, r2),

(defrule

=>

(defrule

=>

(defrule

=>

rl

(animal gives milk)

(assert(animal is-a mammal))

r2

(animal is-a mammal)

(animal has hoofs)

(assert(animal is-a ungula'ce)))

r3

(animal is-a ungulate)

(animal has blackstripes)

(assert(animal is-a zebra)))

Figure 1: Example Rules from Animal Identification Rule Base

between two rules, rl and r2, defined as,

d (rl, =
Total no. of items in consequent of rx and antecedent of r_

no. of "common" items in consequent of rx and antecedent of r2"

A monitoring system issues different commands depending on the status of different components

of the system being monitored. In such systems, the antecedents of the rules usually search for special

values of flags in the component system, and the consequents assert actions to be taken when different

components fail. Example rules from MMU-FDIR given in Figure 2 illustrate this point.

The bulk of domain information required for grouping is usually present in the antecedents of rules

in a monitoring system. This gives rise to the antecedent distance metric:

= Total no. of items in antecedents of rl and r2

no. of "common" items in antecedents of rl and of r2"

If one wanted to group on different component failures asserted by the consequents of such rules,

(de_u_ eea-a-gyro-input-pitch-pos-2

(aah on) (gyro on)

(gyro movement pitch pos)

(side a on) (side b on)

(rhe roll none pitch none yaw none)

(the x none y none z none)

(vda a 7m on)

=>

(assert (failure cea))

(assert (suspect a)))

Figure 2: Example Rule from MMU-FDIR Rule Base

a consequent distance metric could be defined as well. The antecedents in the above distance metric

would be replaced by the consequents.

In a diagnostic system, a data-flow aspect is present together with a monitoring aspect. A hier-

archical search space reflects the different sub-domains of the problem. Rule interdependency is from

the consequent of one rule to the antecedent of another. Certain other rules are related to each other

through antecedents alone, since they detect similar symptoms from the domain. An example is given

in Figure 3 where the antecedents of the first and second rules need to be fired by a situation match from

working memory. Other rules in the rule base do not assert these patterns. However, there is data-flow

dependency between the consequent of the first rule and the antecedent of the third rule. Since such is

the case for most diagnostic systems, both sides of the rule deserve consideration. Therefore, we have

the following metric to define distance in such a case:

do,,(r,, r2)
Total no. of items in rl and r2

no. of "common" items in rx and r 2"

(defrule

=>

(defrule

=>

(defrule

=>

starter_ok

(starter cranks_engine yes)

(lights dim slightly)

(assert(battery problems no))

(assert(engine is_tight no))

battery_not_ok

(starter cranks_engine yes)

(lights dim considerably)

(assert(battery problems yes))

(assert(engine is_tight yes))

engine_misfires

(battery problems no)

(engine is_tight no)

(engine misfires constantly)

(assert(cylinder problems yes)))

Figure 3: Example Rules from Car Diagnostics Rule Base

According to the distance metrics defined above, relatedness of two rules is inversely proportional

to the distance between them. That is, the more related two rules are, the less the distance between

them.

3 Clustering Algorithm

In order to be useful, a clustering algorithm must break up a rule base into meaningful groups. However,

which particular clustering will prove "meaningful" is strongly dependent on the nature of the rule

base. To address this issue, we perform clustering based on the different distance metrics. By carefully

choosing the right metric, we hope to be able to achieve a clustering well suited to each particular rule

base.

3.1 Automatic Clustering Algorithm

The automatic clustering algorithm starts with each rule in its own group. Groups are then merged

based on the minimum inter-group distance. Here, we define inter-group distance, D(i,j), as follows:

D(i,j) =
E,k, G, E,,_ G i d(rk, rt)

ni * nj

where ni and nj are the number of rules in groups Gi and Gj, respectively.

Using this definition of inter-group distance, we form an automatic clustering algorithm as follows.

In this algorithm, the user provides the total number of groups, M, to be formed, which serves as a

stopping criterion. A high-level view of the algorithm is given below:

Initialize each rule into its own group

While (number of groups > M)

Find groups Gi and Gj with minimum inter-group distance D(i, j)

Merge groups Gi and Gj

We experimented with various other stopping criteria which did not need any user input. However,

none of them seem to work consistently across rule bases. For example, we calculated the mean distance

between the rules in the rule base, and when the intergroup distance exceeded the mean distance, the

algorithm stopped clustering. A similar experiment was done taking the standard deviation of rules as

the stopping criterion. In some instances, the rule base would fragment into very small meaningless

groups; at other times, one would obtain a very skewed grouping with some very large groups and some

very small ones. Since the purpose of our study is to ascertain which distance metric gives the right

grouping for a rule base, penalizing the distance metric for not responding well to a stopping criteria

10

did not seemjustified. Hence,wechosethe optionof requiringthe userto input thenumberof groups

desiredand thenseeingwhichdistancemetric faresbest.

As weshalldiscusslater, it is very difficult to definean optimalgroupingfor a rule base.Even

if onecouldbe defined,implementationof a guaranteedoptimal groupingsolutionfor the rule base

wouldreduceto an optimal graph partitioning problem, which is known to be NP-complete.

3.2 Clustering through Primary Rules Selection

In this strategy, more input by the user is required. Not only is the number of groups provided by the

user, but for each group, a primary rule must be given which captures a concept from the rule base.

These rules then form the seed or context around which clustering can take place.

A high-level view of the clustering algorithm through primary rule selection is as follows:

For each rule ri

Find primary rule rp for which d(r_, rp) is minimized

Merge rule ri into G(rp)

In this algorithm, rules that are equidistant from two or more primary rules are skipped over in the

first pass when all the other rules are clustered. In the second pass, the equidistant rules are resolved

based on the criterion that they minimize the average distance between rules in the group that they

are pulled into.

4 Experimental Results

In order to assess these different approaches to clustering, we tested our algorithms on three sample

rule bases. The largest one is the MMU-FDIR, written by McDonnell Douglas Astronautics, having

104 rules. Correct thruster configurations for the two sides of the Manned Maneuvering Unit and

gyroscope in the primary and backup modes are checked by 73 rules. An additional 14 rules deal with

11

failurerecoveryfor the two controlelectronicsassemblies,and ? rulesdeal with tankthrustertests.

The remaining 10 rulesdo printingand demonstration.These 10 ruleswere removed beforewe began

grouping,forreasonsthathave been mentioned in Section2. The majorityof the rulesin thissystem

have a similarstructure. Each antecedent consistsof testsfor automatic attitudehold, gyroscope

readings, rotational and translational hand controller values, and valve drive amplifier outputs. The

consequent then declares the faulty subsystems.

The second rule base is a car diagnostic expert system we wrote. It has 60 rules to diagnose problems

in 12 subsystems of the car. Typical subsystems include the distributor, carburetor, and ignition

systems. This rule base traverses a search tree which branches first at the root, based on the status of

the headlights and whether or not the starter can crank the engine. The search is guided by various

observations of ammeter readings, lights, spark-plug reversals and others. One of the problems in this

rule base is that rules assert several potential problems. This feature greatly complicates grouping,

but seems typical of fault diagnostic systems. Such complicated couplings mirror the complexity of the

underlying domain.

Our last rule base is the animal classification program[12], a well-known problem in artificial in-

teUigence. It contains 14 rules, which classify an unknown animal as either an ungulate, carnivore,

or bird. Then, having placed a given animal into one of these broad categories, it makes a more pre-

cise classification, deciding, for example, whether an animal is a cheetah or a tiger, based on detailed

characteristics.

A listing of the above rule bases and the groupings obtained are detailed in the Appendices.

4.1 Evaluation Criteria

It is difficult to judge the quality of a rule base grouping; judgement of quality is, in general, highly

subjective. Nonetheless, it appears essential to assess the value of our grouping strategies in a com-

12

paratively rigorous manner. Otherwise, we would be unable to make definitive statements about the

comparative merits of these strategies and of the value of grouping, more generally.

In order to measure the quality of groupings, we have developed two independent measures. The

first of these measures is based on an "ideal grouping," which we generate ahead of time by hand. It

measures the deviation of the computed grouping from our ideal grouping. The second of these measures

the "stability" of groupings obtained by the primary rule algorithm, where we measure stability by

counting the number of rules which migrate between groups as we vary our choice of primary rules.

While some attempt at measuring the quality of a grouping is necessary, there are difficulties with

both of the approaches here. In the first measure, there is obviously some subjectivity inherent in our

choice of an "ideal grouping;" different researchers may produce different "ideal groupings." However,

for rule bases as simple as those used here, people would tend to generate fairly sLmilar "ideal" groups.

The second measure of cluster quality avoids subjectivity, but still begs the question of the quality of a

grouping; highly stable groupings can still be quite poor. In our view, finding a better way of assessing

grouping quality should have as high a priority as that of finding better grouping strategies. Solving

either problem would help solve the other.

Measuring Cluster Quality

In many cases, it is easy to see which rules should be grouped together. However, in other cases rules

cannot be classified unambiguously, since they relate to several key concepts. For example, in the rules

given for the car diagnostic system in Figure 3, we can say that the second rule relates only to battery

problems. However, in the first rule, a faulty battery relates to both starter and light problems; there

is no best way to group this rule.

13

Mathematically, we use the following representation. The rule base consists of a set of rules

R = {rx...,,}

and a set of concepts

c = {c,...c,}.

Rule rl has associated concepts

Co,cepts(,'_) = {C_,...C_,}

where

{Ci, ...Ci_} c_ C.

We define unique rules as those rules that contain only a single concept. Rules that have multiple

concepts associated with them are called ambiguous rules. The Appendices clarify these views by cross

listing each rule with the key concept/concepts contained in it.

To deal with the issue of ambiguous rules, we take as our ideal grouping a grouping of the unique

rules only. This is easy to do and removes some of the subjective component of this approach. Thus,

our ideal grouping has the form:

x = (zl...z,,},

where each 2-j is a disjoint set of unique rules.

Now suppose the observed or computed grouping is denoted as:

o = (o,...om).

Our first step in measuring deviation is to pair each ideal group 2-j with the "closest" observed group,

14

wherewemeasurecloseness using only unique rules. Thus, for each index j, let kj be chosen to

maximize:

I n ok; I.

Now we define the deviation dev(A, B) for groups A and B as:

dev(A,B) = {teA I Concepts(r) n Concepts(B) = ¢},

where the concepts in a set of rules are defined as the union of the concepts in the individual rules in

the set. The total deviation of the observed groups can then be defined as,

Err

tot_dev = _ l dev(Vi, U 2-j) l.
i=1 ilk, =i

The average deviation is thus

tot_dev
ave_dev -

n

where n is the total number of rules.

Measuring Stability of Groups

A group formed by the primary-rule clustering algorithm is stable if the replacement of its primary

rule by any of the non-primary rules in the group causes no migration of rules to other groups when

we rerun the clustering algorithm. Thus, we can measure stability just by counting migration of rules

between groups, as each non-primary rule in each group is in turn allowed to assume the role of primary

rule for that group. To avoid a combinatorial explosion, we vary the primary rule in only one group

at a time. Thus_ measuring the stability of a grouping of an n-rule rule base requires only O(n 3) time,

15

sincethe primary rule grouping algorithm requires O(n 2) time. Assume the set of primary rules are:

= {w...v,,}

where pl = rki. Let G(pi) be the group computed from primary rule Pi. Then we define the stability

of a rule base grouping based on a choice of primary rules r and distance metric d as:

Stability(r, d) = 1 -

E 1 E [(G(pl) \ G(q)) [
i=1 qe(G(pi) _p l)

n--m

Here "V' denotes set differences. That is,

A\B = {alaEAandaq_B }.

4.2 Analysis of Results

In this subsection we describe the performance of the various distance metrics in grouping the three

rule bases using the two clustering algorithms.

Performance of Automatic Rule Clustering

Even if the user is already familiar with the key concepts in a rule base, automatic grouping can provide

much insight into the interactions between those concepts. The most interesting aspect of this strategy

is the way in which groups form around related sets of concepts. For example, we expected that the

rules for battery, starter and engine problems in the car rule base would form independent groups.

However, since the physical coupling between these subsystems is reflected in the rule base, these three

groups combine under the automatic grouping strategy to form a single large group. Perhaps a more

careful choice of distance metric could fix such problems, but we currently have no cure.

16

Distance Average deviation Average deviation Stability

Metric for automatic for primary of primary

clustering clustering clustering

dau 0.05 0.04 0.96

dd/ 0.20 0.84 0.29

d_,,_t 0.05 0.00 0.95

Table 1: Clustering of MMU-FDIR rule base

The effectiveness of the different distance metrics for grouping our three sample rule bases is shown

in Table 1 through Table 3. As expected, the da,,t distance metric worked well for the car and MMU-

FDIR rule base, resulting in average deviation of only 5% from the ideal grouping. Thus, the bulk of

the domain knowledge was indeed carried by the antecedents of the rules. The d_ distance metric did

not do nearly as well for grouping these diagnostic systems.

Because of the chMning nature of rules in the animal rule base, the dane distance metric did not

capture the rule interdependencies well and resulted in 29% deviation from the ideal grouping. However,

as expected, the dd/ distance metric captured this chaining nature very well and resulted in a perfect

grouping.

The automatic strategy has done well with the distance metric dall in all three cases. This appears

to be a more general metric which works well in the absence of more detailed information on the rule

base. Since the deviation between the figures obtained for automatic and primary rule strategies is

not very different, the automatic strategy can be proposed as a viable alternative to the primary rule

strategy when no selection of primary rules is given.

Performance of Primary Rule Clustering

The primary rule strategy does as well as the automatic strategy in most cases. For our experiments,

we did not change the primary rules for the different metrics, because we wanted to judge the metrics

under the same conditions. Given the right distance metric and the right primary rules, the primary

17

Distance

Metric

dall

Average deviation

for automatic

clustering

0.05

Average deviation

for primary

clustering

0.05

0.25

Stability

of primary

clustering

0.73

0.54dd! 0.17

dant 0.05 0.05 0.77

Table 2: Clustering of Car Diagnostic rule base

Distance

Metric

dau

dant

Average deviation

for automatic

clustering

0.00

0.00

0.29

Average deviation

for primary

clustering

0.00

0.07

0.21

Stability

of primary

clustering

0.73

0.55

0.82

Table 3: Clustering of Animal Identification Rule Base

rule clustering gives a perfect grouping for both the animal and MMU-FDIR rule base. For the MMU-

FDIR rule base, the perfect grouping was obtained through the dant metric, and for the animal rule

base, through the dalt metric. For the car rule base both dau and da,_t work well. The data-flow

approach does not succeed here for the reasons given in section 2.

Stability figures for almost all the rule bases are consistent with the deviation figures, except in

the case of the animal problem. For that case our conclusions are limited due to the small set of

rules. We suspect that patterns which are present with both carnivore and ungulate rules, such as

dark-spots and black-stripes, interfere with the grouping process. In the MMU-FDIR and car rule

base, not only do we get meaningful groups but their stability figures are also consistently good. This

means that there is little coupling between the groups produced, as evidenced also by examination

of the rule base. Thruster configuration rules, failure recovery rules, and tank/thruster rules cart be

seen to be structurally different. The data flow metric fails here, because there is no chaining of rules.

Each rule's antecedent creates a situation and the consequent asserts a diagnostic message. There is

18

no relationship, therefore, between the diagnostic performed by one rule, and the situation created by

another rule. The primary rule strategy is effective and robust. The price to be paid for this is the

need for selecting primary rules.

5 Relationship to Verification and Validation

Given an effective grouping for a rule base, one can approach its verification and validation (V_:V) in

a manner similar to that used for conventional software. Conventional software yields more easily to

verification efforts because it is procedure-driven. Modules can be designed in conventional software,

each consisting of a manageable unit with a well-defined interface. These units can then be subjected

to unit/integration testing techniques. In expert systems, rules play a role analogous to procedures.

However, each rule in an expert system is data-driven, since the presence or absence of data controls

the flow of execution. Hence, V_:V techniques for expert systems have to view interactions between

all pairs of rules. For large expert systems this is quite difficult and can be prohibitively expensive.

Difficulties in verifying expert systems are further compounded by the fact that rapid prototyping

and iterative development form a key feature of expert system development. This has led to the

development of ad-hoc expert-system design techniques without any software engineering guidelines.

However, it is our belief that expert system VSzV is not philosophically different from conventional

VSzV, provided certain software engineering guidelines can be defined for programming them and

automated tools developed for verifying them.

Our research efforts have addressed the feasibility of automating the identification of rule groups,

in order to decompose the rule base into a number of meaningful units. Each such group can then

be viewed as a procedure. A minor extension to our software tool would allow identification of the

intra-group and inter-group items for a group of rules, which would be analogous to local variables

and parameters for procedures in conventional software. Once a rule base is decomposed into units

19

with "firewalls," studying the interactionsbetweenrules would become more tractable. Perhaps a

verification-aid tool could then test the behavior of each such unit under all possible values of inputs[13].

The tool CRSV _l [14], for CLIPS is already equipped to provide information on the allowed values for

each field.

The grouping of rule bases can play an important role in verification and validation of flight-critical

systems. In such systems one needs to identify critical regions, assert various criticality levels[l] for

them, and test such regions both analytically and exhaustively. If one is able to isolate the group of

rules that deal with the critical features of the problem domain, certain safety properties of the system

can be verified. Knowledge of the function of a group of rules would allow us to choose the distribution

of inputs in such a way that typical situations where functioning of the system is critical could be

studied in isolation [15]. Moreover_ if support existed for specifying what rules should not get fired

under certain circumstances, backward flow analysis techniques [16] could be used to locate critical

paths. An additional advantage of modularization would be the identification of modules and data

items that are necessary in a degraded (fail-soft) processing mode. Validating such modules is clearly

critical to confidence in the reliability of the software.

6 Conclusions

In this paper we have described semi-automatic grouping of rule-based systems, using two different

approaches. The first was completely automatic, while the second clustered rules around primary rules

selected by the user. We also defined three different distance metrics for our grouping algorithms, each

capturing different kinds of information in the rules. We tested our ideas on three sample rule bases,

and attempted to cluster them using both clustering algorithms, and trying all three metrics for each

algorithm.

$CLIPS Gross Reference Style Analysis and Verification Tool

20

Our experimentshaveshownthat effective grouping can be achieved with both the automatic and

primary rule clustering strategies. The primary rule approach works very well, if a reasonable set of

primary rules can be easily identified. In the absence of a reasonable primary rule set, the automatic

approach could serve as a useful fall-back strategy.

The choice of metric is also important. In the absence of specific knowledge about the nature

of the rule base, a safe approach is to use the distance metric taking all patterns in each rule into

account. However, one can clearly do better by using a metric tuned to the rule base, as our results

have demonstrated.

There are a number of minor problems with our approach to grouping. For example, attributes

irrelevant to the grouping process tend to distort the clustering of groups. In general, the effectiveness

of our approach is fundamentally limited by its reliance on syntactic pattern-matching and cannot take

into account the semantics of the patterns. As noted by Michalski and Stepp [17], "a configuration of

objects forms a class only if it can be closely circumscribed by a conjunctive concept involving relations

on selected object attributes." Moreover, a pattern-matching approach cannot capture the "Gestalt

properties" of rule clusters. In other words, the meaning of the whole is generally greater than the sum

of its parts. A more sophisticated approach is required. Our measurement of deviation of computed

groups from ideal groups contains ideas which could lead to grouping strategies reflecting Michalski

and Stepp's insight; we hope to pursue this in the future.

However, even with these limitations, the techniques we have developed seem effective at grouping

rule bases, not only as judged by our stability measure, but also when judged in terms of the way one

would intuitively group these rule bases. Therefore, we feel that these techniques could be very useful

both in the validation phase and during maintenance of rule bases.

21

Acknowledgments

We would llke to thank Paul Miner and Sally Johnson of NASA, and Shahld Bokhari and John V.

Rosendale of ICASE for their helpful suggestions.

References

[1] S. C. Johnson. Validation of highly reliable, real-time knowledge-based systems. In SOAR 88

Workshop on Automation and Robotics, July 1988.

[2] S. Lindell. Keyword cluster algorithm for expert system rule bases. Technical Report SD-TR-87-36,

The Aerospace Corporation, E1 Segundo, CA., June 1987.

[3] K. Lindenmayer, S. Vick, and D. Rosenthal. Maintaining an expert system for the Hubble space

telescope ground support. In Proceedings of the Goddard Conference on Space Applications of

Artificial Intelligence and Robotics, pages 1-13, May 1987.

[4] R. J. K. Jacob and J. N. Froscher. Developing a software engineering methodology for knowledge-

based systems. Technical Report 9019, Naval Research Laboratory, Washington, D.C., December

1986.

[5] R. J. K. Jacob and J. N. Froscher. A software engineering methodology for rule-based systems.

IEEE Transactions on Knowledge and Data Engineering, 2(2):173-189, June 1990.

[6] M. Mehrotra and S. C. Johnson. Rule groupings in expert systems. In Proceedings of the First

CLIPS Users Group Conference, Aug 1990.

[7] M. Mehrotra and S. C. Johnson. Importance of rule groupings in verification of expert systems.

In Notes for the AAAI-90 Workshop on Verification, Validation and Testing of Knowledge-Based

Systems, July 1990.
22

[8] Knowledge Requirements for the Onboard Navigation Console Expert/Trainer System. Technical

Report JSC-22657, NASA, Lyndon B. Johnson Space Center, Houston, TX., September 1988.

[9] D. G. Lawler and L. J. F. Williams. MMU FDIR Automation Task. Technical Report NAS9-17650,

McDonnell Douglas Astronautics - Engineering Services, Houston, TX., February 1988.

[10] J. Giarratano and G. Riley. Expert Systems Principles and Programming. PWS-KENT Publishing

Company, 1989.

[11] J. C. Giarratano. CLIPS User's Guide. Technical report, Artificial Intelligence Center, NASA,

Lyndon B. Johnson Space Center, Houston, TX., June 1989.

[12] P. H. Winston. Artificial Intelligence. Addison Wesley Publishing Company, 1979.

[13] C. Culbert and R. T. Savely. Expert system verification and validation. In Proceedings of the

Validation and Testing Knowledge-Based Systems Workshop, August 1988.

[14] CLIPS Reference Manual. Technical Report JSC-22948, Artificial Intelligence Center, NASA,

Lyndon B. Johnson Space Center, Houston, TX., June 1989.

[15] D. L. Parnas, J. van Schouwen, and S. Po Kwan. Evaluation of safety-critical software. Commu-

nications of the A CM, 33(6):636-648, June 1990.

[16] N. G. Leveson. Safety-critical software development. In T. Anderson, editor, Safe _ Secure

Computing Systems, chapter 9, pages 155-162. Blackwell Scientific Publications, 1989.

[17] R. S. Michalski and R. E. Stepp. Learning from observation: Conceptual clustering. In R. S.

Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Machine Learning - An artificial Intelli-

gence Approach, chapter 11, pages 331-362. Tioga Publishing Company.

23

Appendix A - ANIMAL IDENTIFICATION RULE BASE

(defrule rl (animal_has_hair) => (animal_is_a_mammal))

(defrule r2 (animal_gives_milk) => (animal_is_a_mammal))

(defrule r3 (animal_has_feather) => (animal_is_a_bird))

(defrule r4 (animal_can_fly)

(animal_lays_eggs) => (animal_is_a_bird))

(defrule r5 (animal_eats_meat) => (a/_imal_is_a_carn))

(defrule r6 (animal_has_pointed_teeth)

(animal_has_claws_forward_eyes)

=> (animal_is_a_carnivore))

(defrule r7 (animal_is_a_mammal)

(animal_has_hoofs)

=> (animal_is_a_ungulate))

(defrule r8 (animal_is_a_mammal)

(animal_is_a_carnivore)

(animal_has_tawny_color)

(animal_has_darkspots)

=> (animal_is a_cheetah))

(defrule r9 (animal_is_a_mammal)

(animal_is_a_carnivore)

(animal_has_tawny_color)

(animal_has_blackstripes)

=> (_nimal_is_a_tiger))

(defrule rlO(animal_is_a_ungulate)

(animal_has_long_neck)

(animal_has_long_legs)

(animal_has_darkspots)

=> (animal_is_a_giraffe))

(defrule rll (animal_is_a_ungulate)

(animal_has_blackstripes)

=> (animal_is_a_zebra))

(defrule r12 (animal_is_a bird)

(animal_can_not_fly)

(animal_has_long_neck)

(animal_has_long_legs)

(animal_has_black_and_white_color)

24

=> (animal_is_a_ostrich))

(defrule r13 (animal_is_a_bird)
(animal_can_not_fly)
(animal_can_swim)
(animal_has_black_and_white_color)
=> (animal_is_a_penguin))

(defrule r14 (animal_is_a_bird)
(animal_can_fly_well)
=> (animal_is_a_albatross))

Key Conceptscarried by each rule :

I mammal
2 mammal
3 bird
4 bird
5 carn
6 carn
7 mammal,ungulate

8 mammal, carn

9 mammal, carn

I0 ungulate

11 ungulate

12 bird

13 bird

14 bird

The primary-rules are:

1 mammal

5 carn

12 bird

**** DISTANCE METRIC => TOTAL ****

rules belonging to the group I are:

1 mammal

2 mammal

7 mammal,ungulate

25

Ii ungulate

rules belonging to the group 5 are:
5 carn
6 carn
8 mammal,carn
9 mammal,cam

rules belonging to the group 12 are:
12 bird
3 bird
4 bird
i0 ungulate
13 bird
14 bird

Averagestability: 0.727273

**** DISTANCEMETKIC=> DATA_FLOW****

rules belonging to the group 1 are:
I mammal
2 mammal
6 cam
7 mammal,ungulate
I0 ungulate
11 ungulate

rules belonging to the group 5 are:
5 carn
8 mammal,cam
9 mammal,carn

rules belonging to the group 12 are:
12 bird
3 bird
4 bird
13 bird
14 bird

Averagestability: 0.545455

**** DISTANCEMETRIC=> LEFT_ONLY****

rules belonging to the group i are:
I mammal
2 mammal
3 bird

26

4 bird

6 cam

rules belonging to the group 5 are:

5 cam

rules belonging to the group 12 are:

12 bird

7 mammal,ungulate

8 mammal,carn

9 mammal,cam

10 ungulate

ii ungulate

13 bird

14 bird

Average stability: 0.818182

ANIMAL : TOTAL : A : 3 groups

**** DISTANCE METRIC => TOTAL ****

The global stopping criteria is 3 groups:

rules belonging to the group I are:

I mammal

2 mammal

7 mammal ,ungulate

8 mammal, cam

9 mammal, carn

11 ungulate

rules belonging to the group 2 are:

3 bird

4 bird

14 bird

I0 ungulate

12 bird

13 bird

rules belonging to the group 3 are:

5 carn

6 carn

27

ANIMAL: LEFT_ONLY: A : 3 groups

**** DISTANCEMETRIC=> LEFT_ONLY****

The global stopping criteria is 3 groups:

rules belonging to the group 1 are:
1 mammal
2 mammal
3 bird
4 bird
5 carn

rules belonging to the group 2 are:
6 cam

rules belonging to the group 3 are:
7 mammal,ungulate
8 mammal,carn
9 mammal,carn
11 ungulate
I0 ungulate
12 bird
13 bird
14 bird

ANIMAL: DATA_FLOW: A : 3 groups

**** DISTANCEMETRIC=> DATA_FLOW****

The global stopping criteria is 3 groups:

rules belonging to the group 1 are:
1 mammal
7 mammal,ungulate
2 mammal
8 mammal,carn
II ungulate
I0 ungulate

rules belonging to the group 2 are:
3 bird
14 bird
4 bird

28

13 bird
12 bird

rules belonging to the group 3 are:

5 carn

9 mammal,carn

6 cam

29

Appendix B - CAR DIAGNOSTICS RULE BASE

(defrule starter_ok ;rule_no I

(starter cranks_engine yes)

(lights dim slightly)

=>

(assert (battery problems no))

(assert (engine is_tight no))

(printout t "battery strength O.K." crlf)

(printout t "battery connections O.K." crlf)

(printout t "speed looks good " crlf)

)

(defrule battery_not_ok ;rule_no 2

(starter cranks_engine yes)

(lights dim considerably)

=>

(assert (battery problems yes))

(assert (engine is_tight yes))

)

(defrule engine_misfires ;rule_no 3

(battery problems no)

(engine is_tight no)

(engine misfires constantly)

=>

(printout t "short one plug at a time; try to locate weak or

misfiring cylinder and firing cylinder" crlf)

(printout t "either locate misfiring cylinder and enter" crlf)

(printout t "cylinder <no> misfiring" crlf)

(printout t "and cylinder <no> isfiring" crlf)

(printout t " or enter engine misfires idle_speedlhigh_speed" crlf)

(assert(cylinder misfiring locate))

)

(defrule engine_misfires2 ;rule_no 4

(battery problems no)

(engine is_tight no)

(engine runs unevenly)

=>

(printout t "short one plug at a time; try to locate weak or

misfiring cylinder and firing cylinder" crlf)

(printout t "either locate misfiring cylinder and enter" crlf)

(printout t "cylinder <no> misfiring" crlf)

(printout t "and cylinder <no> isfiring" crlf)

(printout t " or enter engine misfires idle_speed_high_speed" crlf)

(assert(cylinder misfiring locate))

3O

(defrule to_locate_misfiring_cylinder ;rule_no 5

?z <- (cylinder misfiring locate)

(cylinder misfiring ?x)

(cylinder isfiring ?y)

=>

(retract ?z)

)

(defrule located_misfiring_cylinder ;rule_no 6

?a <- (cylinder misfiring ?x)

?b <- (cylinder isfiring ?y)

=>

(retract ?a ?b)

(printout t "reverse spark_plugs on" ?x ?y "cyliders" crlf)

(printout t "note change of spark_plugs" crlf)

(assert(spark_plug change note))

)

(defrule no_change_in_spark_plugs ;rule_no 7

?z <- (spark_plug change note)

(spark_plug change no)

=>

(assert (cylinder probleml yes))

(assert (distributor probleml yes))

(retract ?z)

)

(defrule distributor_probleml ; no high voltage to spark_plug ;rule_no 8

?z <- (distributor probleml yes)

=>

(printout t "leaking high tension wires" crlf)

(printout t "defective distributor cap" crlf)

)

(defrule cylinder_problems ;compression not good enough for ignition ;rule_no 9

?z <- (cylinder probleml yes)

=>

(retract ?z)

(printout t "worn valve stem or guide" crlf)

(printout t "poor compression caused by" crlf)

(printout t "sticking, warped, burnt or broken valve" crlf)

(printout t "valve tappets set too close " crlf)

(printout t "valve tappets sticking " crlf)

(printout t "valve spring weak or broken " crlf)

(printout t "valve seat cracked " crlf)

31

(printout t "valve seat insert loose " crlf)

(printout t "valve seat warped " crlf)

(printout t "head gasket defective " crlf)

(printout t "cylinder rings broken, stuck or weak " crlf)

(printout t "cylinder valve scoured " crlf)

(printout t "piston broken " crlf)

(printout t "cylinder head or block warped " crlf)

(printout t "cylinder head or block cracked " crlf)

)

(defrule spark_plug_problems_persist ;rule_no i0

?z <- (spark_plug change note)

(spark_plug change yes)

=>

(retract ?z)

(assert(spark_plug probleml yes))

)

(defrule change_spark_plugs ;rule_no 11

?z <- (spark_plug probleml yes)

=>

(retract ?z)

(printout t "try cleaning spark plug " crlf)

(printout t "try adjusting spark plug gap" crlf)

(printout t "replace with new plug having proper heat range " crlf)

(printout t "appearance of porcelian at lower end shows if plug is correct " crlf)

(assert(spark_plug replace yes))

)

(defrule spark_plug_replace ;rule_no 12

?z <- (spark_plug replace yes)

=>

(retract ?z)

(printout t "note the color of spark_plug in <spark_plug porcelian_color x>" crlf)

(assert (spark_plug porcelian_color note))

)

(defrule to_note_spark_plug_color ;rule_no 13

7z <- (spark_plug porcelian_color note)

(spark_plug porcelian_color ?color)

=>

(retract ?z)

)

(defrule spark_plug_choose_cold ;rule_no 14

(spark_plug porcelian_color ashwhite)

=>

(printout t "plug too hot; use colder plug" crlf)

32

(defrule spark_plug_choose_same ;rule_no 15

(spark_plug porcelian_color light_brown)

=>

(printout t "plug just right; replace with same type" crlf)

)

(defrule spark_plug_choose_hot_l ;rule_no 16

(spark_plug porcelian_color black)

=>

(printout t "plug too cold; use hotter plug" crlf)

)

(defrule spark_plug_choose_hot_2 ;rule_no 17

(spark_plug porcelian_color oily)

=>

(printout t "plug too cold; use hotter plug" crlf)

)

(defrule misfiring_at_idle_speed ;rule_no 18

?z <- (cylinder misfiring locate)

(engine misfires idle_speed)

=>

(retract ?z)

(assert(spark_plug problem2 yes))

(assert(ignition_switch problems yes))

(assert(distributor problem2 yes))

(assert(carburetor probleml yes))

(assert(cylinder problem2 yes))

)

(defrule spark_plug_problem2 ;rule_no 19

?z <- (spark_plug problem2 yes)

=>

(retract ?z)

(printout t "spark_plug gaps too wide" crlf crlf)

(printout t "spark_plugs defective" crlf)

)

(defrule ignition_switch_problems ;rule_no 20

?z <- (ignition_switch problems yes)

=>

(retract ?z)

(printout t "ignition_switch defective" crlf)

)

(defrule distributor_problem2 ;rule_no 21

33

?z <- (distributor problem2 yes)

=>

(retract ?z)

(printout t "high tension wires defective " crlf)

(printout t "distributor shaft_bushings worn " crlf)

(printout t "distributor rotor defective " crlf)

(printout t "condenser defective" crlf)

(printout t "breaker points defective" crlf)

(printout t "breaker arm sticking" crlf)

(printout t "breaker point gap incorrect" crlf)

(printout t "spark_advance too far" crlf)

)

(defrule carburetor_probleml ;rule_no 22

?z <- (carburetor probleml yes)

=>

(retract ?z)

(printout t "carburetor adjustments incorrect " crlf)

(printout t "carburetor float incorrect " crlf)

(printout t "carburetor system has_dirt" crlf)

(printout t "carburetor system has_water" crlf)

(printout t "carburetor system is_vapor_locked" crlf)

(printout t "carburetor manifold_intake has_air_leak" crlf)

)

(defrule cylinder_problem2 ;compression not good enough to run well;rule_no 23

?z <- (cylinder problem2 yes)

=>

(retract ?z)

(printout t "valve_intake has_air_leak" crlf)

(printout t "valves sticking or open" crlf)

(printout t "valves burnt or warped" crlf)

(printout t "valves broken" crlf)

(printout t "valve springs weak" crlf)

(printout t "valve springs broken" cr!f)

(printout t "valve_tappet clearance incorrect" crlf)

(printout t "valve seat cracked" crlf)

(printout t "valve seat warped" crlf)

(printout t "valve seat_insert loose" crlf)

(printout t "valve lifter sticking" crlf)

(printout t "piston rings sticking" crlf)

(printout t "piston rings broken" crlf)

(printout t "piston broken" crlf)

(printout t "head_gasket defective" crlf)

(printout t "cylinder walls scoured " crlf)

(printout t "cylinder_head warped" crlf)

)

34

(defrule misfiring_at_high_speed ;rule_no 24

?y <- (cylinder misfiring locate)

?z <- (engine misfires high_speed)

=>

(retract ?y)

(retract ?z)

(assert(spark_plug problem3 yes))

(assert(distributor problem3 yes))

(assert(cylinder problem3 yes))

)

(defrule spark_plugs_problem3 ;rule_no 25

?z <- (spark_plug problem3 yes)

=>

(retract ?z)

(printout t "spark_plugs wrong_type" crlf)

)

(defrule distributor_problem3 ;rule_no 26

?z <- (distributor problem3 yes)

=>

(retract ?z)

(printout t "breaker_arm springs weak" crlf)

(printout t "breaker_points too wide" crlf)

)

(defrule cylinder_problem$;rule_no 27

?z <- (cylinder problem3 yes)

=>

(retract ?z)

(printout t "cylinder has_excessive_carbon" crlf)

(printout t "valve springs weak" crlf)

)

(defrule starter_not_ok_l ;rule_no 28

(starter cranks_engine no)

(lights dim not_at_all) ; lights stay bright

=>

(printout t "starter_switch has_open_circuit" crlf)

(printout t "starter_motor has_open_circuit" crlf)

(printout t "starter_brushes has_no_contact_with armature or rotor" crlf)

)

(defrule starter_not_ok_2 ;rule_no 29

(starter cranks_engine no)

(lights dim slightly)

=>

(printout t "starter may not engage with engine" crlf)

35

(printout t "starter switch resistance too_high" crlf)

)

(defrule starter_not_ok_3_1 ;rule_no 30

(starter cranks_engine no)

(lights dim considerably)

=>

(assert(battery problems yes))

(assert(starter problems yes))

(assert(engine is_tight yes))

)

(defrule starter_not_ok_3_2 ;rule_no 31

(starter cranks_engine no)

(lights dim totally) ; lights go out

=>

(assert(battery problems yes))

(assert(starter problems yes))

(assert(engine is_tight yes))

)

(defrule battery_problems ;rule_no 32

?z <- (battery problems yes)

=>

(retract ?z)

(printout t "battery strength weak" crlf)

(printout t "battery terminals are loose or corroded" crlf)

(printout t "battery cable loose or defective" crlf)

(printout t "battery discharged" crlf)

(printout t "battery connections poor" crlf)

)

(defrule starter_problems ;rule_no 33

?z <- (starter problems yes)

=>

(retract ?z)

(printout t "starter binds shorted" crlf)

)

(defrule engine_tight_problem ;rule_no 34

?z <- (engine is_tight yes)

=>

(retract ?z)

(printout t "engine is too tight" crlf)

)

(defrule engine_lacks_power ;rule_no 35

36

(battery problems no)

(engine is_tight no)

(engine power lacking)

=>

(assert(distributor problem4 yes))

(assert(carburetor problem2 yes))

(assert(cylinder problem4 yes))

(assert(exhaust problems yes))

(assert(engine problems yes))

(assert(drive_train problems yes))

(assert(fuel probleml yes))

)

(defrule distributor_problem4 ;rule_no 36

?z <- (distributor problem4 yes)

=>

(retract ?z)

(printout t "ignition improperly timed" crlf)

(printout t "wrong routing of high tension wires" crlf)

(printout t "ignition points not properly synchronized" crlf)

(printout t "automatic advance not operating properly" crlf)

(printout t "vacuum spark control not operating properly" crlf)

)

(defrule carburetor_problem2 ;rule_no 87

?z <- (carburetor problem2 yes)

=>

(retract ?z)

(printout t "carburetor adjustments incorrect" crlf)

(printout t "air_cleaner clogged" crlf)

)

(defrule cylinder_problem4 ;rule_no 88

?z <- (cylinder problem4 yes)

=>

(retract ?z)

(printout t "valve timing incorrect" crlf)

)

(defrule exhaust_problems ;rule_no 39

?z <- (exhaust problems yes)

=>

(retract ?z)

(printout t "muffler clogged" crlf)

(printout t "exhaust_pipe dented" crlf)

)

3?

(defrule engine_problems ;rule_no 40

?z <- (engine problems yes)

=>

(retract ?z)

(printout t "engine overheating" crlf)

(printout t "engine friction excessive" crlf)

)

(defrule drive_train_problem ;rule_no 41

?z <- (drive_train problems yes)

=>

(retract ?z)

(printout t "clutch slipping" crlf)

(printout t "chassis has_drag which retards free running of car" crlf)

)

(defrule fuel_probleml ;rule_no 42

?z <- (fuel probleml yes)

=>

(retract ?z)

(printout t "vapor lock" crlf)

)

(defrule engine_will_not_run ;rule_no 43

(battery problems no)

(engine is_tight no)

(engine runs not_at_all)

=>

(printout t "remove spark_plug_wire and hold near engine while cranking")

(assert(spark strength type))

)

(defrule weak_spark ;rule_no 44

?z <- (spark strength type)

(spark strength weak)

=>

(retract ?Z)

(assert(distributor problem5 yes))

)

(defrule distributor_problem5 ;rule_no 45

?z <- (distributor problem5 yes)

=>

(retract ?z)

(printout t "distributor rotor defective" crlf)

(printout t "distributor cap defective" crlf)

(printout t "rotor brush broken" crlf)

38

(printout t "coil distributor wet" crlf)

(printout t "points dirty or pitted" crlf)

(printout t "electrical connections poor" crlf)

(printout t "high tension wires defective" crlf)

(printout t "high tension wires wet" crlf)

(printout t "coil defective" crlf)

(printout t "condenser defective" crlf)

)

(defrule no_spark ;rule_no 46

?z <- (spark strength type)

(spark strength none)

=>

(retract ?z)

(assert(ammeter reading note))

)

(defrule ammeter_reading ;rule_no 47

?z <- (ammeter reading note)

(ammeter reading ?x)

(ammeter needle ?y)

=>

(retract ?z)

)

(defrule ammeter_none ;rule_no 48

(ammeter reading none)

(_nmeter needle steady)

=>

(assert(distributor problem6 yes))

)

(defrule distributor_problem_6 ;rule_no 49

?z <- (distributor problem6 yes)

=>

(retract ?z)

(printout t "points are not closing due to" crlf)

(printout t "points dirty, pitted or burnt" crlf)

(printout t "switch defective" crlf)

(printout t "coil_winding open" crlf)

(printout t "primary_wire open" crlf)

(printout t "connections loose" crlf)

)

(defrule ammeter_normal ;rule_no 50

(ammeter reading normal)

(ammeter needle unsteady)

=>

39

(assert(distributor problem7 yes))

)

(defrule distributor_problem7 ;rule_no 51

?z <- (distributor problem7 yes)

=>

(printout t "distributor_rotor defective" crlf)

(printout t "distributor_cap defective" crlf)

(printout t "distributor_coil wet" crlf)

(printout t "high_tension_wire from coil to distributor open or grounded" crlf)

(printout t "coil defective" crlf)

(printout t "condenser defective" crlf)

(printout t "high_tension_wires wet" crlf)

)

(defrule ammeter_discharged ;rule_no 52

(ammeter reading discharge)

(ammeter needle steady)

=>

(assert(distributor problem8 yes))

)

(defrule distributor_problem8 ;rule_no 53

?z <- (distributor problem8 yes)

=>

(retract ?z)

(printout t "breaker points not opening due to" crlf)

(printout t "condenser shorted " crlf)

(printout t "contact_arm grounded" crlf)

(printout t "primary_coil_winding shorted" crlf)

(printout t "primary_circuit shorted" crlf)

)

(defrule good_spark ;rule_no 54

?z <- (spark strength type)

(spark strength good)

=>

(retract ?z)

(printout t "check fuel supply to see if there is gas in carburetor" crlf)

(assert(fuel supply check))

)

(defrule check_gas ;rule_no 55

?z <- (fuel supply check)

(fuel supply ?x)

=>

(retract ?z)

)

4o

(defrule fuel_supply_good ;rule_no 56

(fuel supply good)

=>

(assert(carburetor problem$ yes))

(assert(cylinder problem5 yes))

)

(defrule cylinder_problem5 ;rule_no 57

?z <- (cylinder problem5 yes)

=>

(retract ?z)

(printout t "cylinders have water leaks" crlf)

)

(defrule carburetor_problem8 ;rule_no 58

?z <- (carburetor problem$ yes)

=>

(retract ?z)

(printout t "carburetor flooded" crlf)

(printout t "carburetor has_dirt or has_water" crlf)

(printout t "choke not_operating" crlf)

)

(defrule fuel_supply_empty ;rule_no 59

(fuel supply none)

=>

(assert (fuel problem2 yes))

)

(defrule fuel_problem2 ;rule_no 60

?z <- (fuel problem2 yes)

=>

(retract ?z)

(printout t "fuel_lines clogged" crlf)

(printout t "fuel_filter clogged" crlf)

(printout t "tank_cap has_no_vent" crlf)

(printout t "fuel_supply_unit defective" crlf)

(printout t "tank_line has_air_leak" crlf)

)

I battery,starter,engin

2 battery,starter,engine

3 battery,engine,cylinder

41

4 battery,engine,cylinder

5 cylinder

6 cylinder

7 cylinder,sp_plug,distributor

8 distributor

9 cylinder

I0 sp_plug

II sp_plug

12 sp_plug

13 sp_plug

14 sp_plug

15 sp_plug

16 sp_plug

17 sp_plug

18 engine,cylinder,sp_plug,ignition,carburetor,distributor

19 sp_plug

20 ignition

21 distributor

22 carburetor

23 cylinder

24 engine,cylinder,sp_plug,distributor

25 sp_piug

26 distributor

27 cylinder

28 starter+l

29 starter+l

30 starter,battery,engine

81 starter,battery,engine

82 battery

33 starter

34 engine

35 battery,engine,carburetor,distributor,exhausZ,drive-train

86 distributor

87 carburetor

38 cylinder

39 exhaust

40 engine

41 drive-train

42 fuel

43 battery,engine

44 distributor+s

45 distributor

46 distributor+s

47 ammeter

48 distributor,ammeter

49 distributor

50 distributor,ammeter

51 distributor

42

52 distributor,ammeter

53 distributor

54 fuel+s

55 fuel

56 fuel,carburetor,cylinder

57 cylinder

58 carburetor

59 ammeter

60 ammeter

The primary-rules are:

32 battery

33 starter

40 engine

5 cylinder

I0 sp_plug

20 ignition

22 carburetor

8 distributor

59 ammeter

47 ammeter

39 exhaust

41 drive-train

**** DISTANCE METRIC => TOTAL ****

rules belonging to the group 32 are:

32 battery

I battery,starter,engine

2 battery,starter,engine

3 battery,engine,cylinder

4 battery,engine,cylinder

48 battery,engine

rules belonging to the group 33 are:

33 starter

28 starter+l

29 starter+l

30 starter,battery,engine

81 starter,battery,engine

rules belonging to the group 40 are:

43

40 engine
34 engine
35 battery,engine,carburetor,distributor,exhaust'drive-train

rules belonging to the group 5 are:
5 cylinder
6 cylinder
18 engine,cYlinder'sp-plug'igniti°n'carburet°r'distribut°r
23 cylinder
24 engine,cylinder,sp_plug,distribut°r
27 cylinder
38 cylinder

rules belonging to the group I0 are:
I0 sp_plug
7 cylinder,sp_plug,distribut°r
9 cylinder
II sp_plug
12 sp_plug
13 sp_plug
14 sp_plug
15 sp_plug
16 sp_plug
17 sp_plug
19 sp_plug
25 sp_plug

rules belonging to the group 20 are:
20 ignition

rules belonging to the group 22 are:
22 carburetor
87 carburetor
58 carburetor

rules belonging to the group 8 are:
8 distributor
21 distributor
26 distributor
36 distributor
44 distributor+s
45 distributor
49 distributor
51 distributor
53 distributor

rules belonging to the group 59 are:
59 ammeter 44

42 fuel
54 fuel+s
55 fuel
56 fuel,carburetor,cylinder
57 cylinder
60 ammeter

rules belonging to the group 47 are:
47 ammeter
46 distributor+s
48 distributor,ammeter
50 distributor,ammeter
52 distributor,anuneter

rules belonging to the group 39 are:
89 exhaust

rules belonging to the group 41 are:
41 drive-train

Averagestability: 0.729167

**** DISTANCEMETRIC=> DATA_FLOW****

rules belonging to the group 32 are:
32 battery
I battery,starter,engine
2 battery,starter,engine
34 engine
43 battery,engine
44 distributor+s
28 starter+l
29 starter+l

rules belonging to the group 33 are:
33 starter
30 starter,battery,engine
31 starter,battery,engine

rules belonging to the group 40 are:
40 engine
37 carburetor
42 fuel

rules belonging to the group 5 are:
5 cylinder
3 battery,engine,cylinder
4 battery,engine,cylinder

45

rules belonging to the group i0 are:

I0 sp_plug

6 cylinder

Ii sp_plug

12 sp_plug

13 sp_plug

14 sp_plug

15 sp_plug

16 sp_plug

17 sp_plug

19 sp_plug

24 engine,cylinder,sp_plug,distributor

25 sp_plug

rules belonging to the group 20 are:

20 ignition

18 engine,cylinder,sp_plug,ignition,carburetor,distributor

rules belonging to the group 22 are:

22 carburetor

rules belonging to the group 8 are:

8 distributor

7 cylinder,sp_plug,diszributor

9 cylinder

21 distributor

23 cylinder

26 distributor

27 cylinder

36 distributor

38 cylinder

45 distributor

49 distributor

51 distributor

53 distributor

56 fuel,carburetor,cylinder

57 cylinder

58 carburetor

rules belonging to the group 59 are:

59 ammeter

54 fuel+s

55 fuel

60 ammeter

rules belonging to the group 47 are:

47 ammeter

46

46 distributor+s

48 distributor,ammeter

50 distributor,ammeter

52 distributor,ammeter

rules belonging to the group 89 are:

39 exhaust

rules belonging to the group 41 are:

41 drive-train

35 battery,engine,carburetor,distributor,exhaust,drive-train

Average stability: 0.541667

**** DISTANCE METRIC => LEFT_ONLY ****

rules belonging to the group 32 are:

32 battery

3 battery,engine,cylinder

4 battery,engine,cylinder

35 battery,engine,carburetor,distributor,exhaust,drive-train

43 battery,engine

44 distributor+s

46 distributor+s

54 fuel+s

rules belonging to the group 33 are[

33 starter

1 battery,starter,engine

2 battery,starter,engine

28 starter+l

29 starter+l

80 starter,battery,engine

81 starter,battery,engine

rules belonging to the group 40 are:

40 engine

34 engine

rules belonging to the group 5 are:

5 cylinder

6 cylinder

9 cylinder

18 engine,cylinder,sp_plug,ignition,carburetor,distributor

23 cylinder

24 engine,cylinder,sp_plug,distributor

27 cylinder

38 cylinder

4?

57 cylinder

rules belonging to the group 10 are:

I0 sp_plug

7 cylinder,sp_plug,distributor

11 sp_plug

12 sp_plug

13 sp_plug

14 sp_plug

15 sp_plug

16 sp_plug

17 sp_plug

19 sp_plug

25 sp_plug

rules belonging to the group 20 are:

20 ignition

rules belonging to the group 22 are:

22 carburetor

37 carburetor

58 carburetor

rules belonging to the group 8 are:

8 distributor

21 distributor

26 distributor

36 distributor

45 distributor

49 distributor

51 distributor

53 distributor

rules belonging to the group 59 are:

59 ammeter

42 fuel

55 fuel

56 fuel,carburetor,cylinder

60 ammeter

rules belonging to the group 47 are:

47 ammeter

48 distributor,ammeter

50 distributor,ammeter

52 distributor,ammeter

rules belonging to the group 39 are:

39 exhaust

48

rules belonging to the group 41 are:
41 drive-train

Averagestability: 0.770833

...

AUTOMATIC RULE CLUSTERING

CAR : TOTAL : V : 12 groups

**** DISTANCE METRIC => TOTAL ****

The global stopping criteria is 12 groups:

rules belonging to the group I are:

I battery,starter,engine

2 battery,starter,engine

30 starter,battery,engine

31 starter,battery,engine

28 starter+l

29 starter+l

33 starter

3 battery,engine,cylinder

4 battery,engine,cylinder

43 battery,engine

35 battery,engine,carburetor,distributor,exhaust,drive-train

rules belonging to the group 2 are:

5 cylinder

6 cylinder

7 cylinder,sp_plug,distributor

18 engine,cylinder,sp_plug,ignition,carburetor,distributor

24 engine,cylinder,sp_plug,distributor

10 sp_plug

11 sp_plug

12 sp_plug

19 sp_plug

25 sp_plug

13 sp_plug

14 sp_plug

15 sp_plug

16 sp_plug

17 sp_plug

rules belonging to the group 3 are:

8 distributor

21 distributor

49

26 distributor

36 distributor

45 distributor

49 distributor

51 distributor

53 distributor

47 ammeter

48 distributor,ammeter

52 distributor,ammeter

50 distributor,ammeter

rules belonging to the group 4 are:

9 cylinder

23 cylinder

27 cylinder

38 cylinder

57 cylinder

rules belonging to the group 5 are:

20 ignition

rules belonging to the group 6 are:

22 carburetor

37 carburetor

58 carburetor

56 fuel,carburetor,cylinder

rules belonging to the group 7 are:

32 battery

rules belonging to the group 8 are:

34 engine

40 engine

rules belonging to the group 9 are:

39 exhaust

rules belonging to the group 10 are:

41 drive-train

rules belonging to the group 11 are:

42 fuel

60 ammeter

59 ammeter

55 fuel

rules belonging to the group 12 are:

•44 distributor+s

46 distributor+s
54 fuel+s

CAR: LEFT_ONLY: V : 12 groups

**** DISTANCEMETRIC=> LEFT_ONLY****

The global stopping criteria is 12 groups:

rules belonging to the group I are:
i battery,starter,engine
2 battery,starter,engine
28 starter+l
29 starter+l
30 starter,battery,engine
31 starter,battery,engine
33 szar_er

rules belonging to the group 2 are:
3 battery,engine,cylinder
4 battery,engine,cylinder
43 battery,engine
35 battery,engine,carburetor,distributor,exhaust,drive-train
32 battery
84 engine
40 e_gine

rules belonging to the group 3 are:
5 cylinder
6 cylinder
18 engine,cylinder,sp_plug,ignition,carburetor,distributor
24 engine,cylinder,sp_plug,distributor
9 cylinder
23 cylinder
27 cylinder
38 cylinder
57 cylinder

rules belonging to the group 4 are:
7 cylinder,sp_plug,distributor
I0 sp_plug
13 sp_plug
11 sp_plug
12 sp_plug
19 sp_plug
25 sp_plug

51

14 sp_plug

15 sp_plug

16 sp_plug

17 sp_plug

rules belonging to the group 5 are:

8 distributor

21 distributor

26 distributor

36 distributor

45 distributor

49 distributor

51 distributor

53 distributor

rules belonging to the group 6 are:

20 ignition

rules belonging to the group 7 are:

22 carburetor

37 carburetor

58 carburetor

rules belonging to the group 8 are:

39 exhaust

rules belonging to the group 9 are:

41 drive-train

rules belonging to the group I0 are:

42 fuel

60 ammeter

55 fuel

56 fuel,carburetor,cylinder

59 ammeter

rules belonging to the group II are:

44 distributor+s

46 distributor+s

54 fuel+s

rules belonging to the group 12 are:

47 ammeter

48 distributor,ammeter

52 distributor,ammeter

50 distributor,ammeter

52

CAR : DATA_FLOW : V : 12 groups

**** DISTANCE METRIC => DATA_FLOW ****

The global stopping criteria is 12 groups:

rules belonging to the group I are:

1 battery,starter,engine

3 battery,engine,cylinder

4 battery,engine,cylinder

43 battery,engine

5 cylinder

2 battery,starter,engine

32 battery

31 starter,battery,engine

34 engine

30 starter,battery,engine

33 starter

40 engine

rules belonging to the group 2 are:

6 cylinder

10 sp_plug

ii sp_plug

19 sp_plug

12 sp_plug

13 sp_plug

14 sp_plug

15 sp_plug

16 sp_plug

17 sp_plug

rules belonging to the group 3 are:

Y cylinder,sp_plug,distributor

8 distributor

9 cylinder

21 distributor

23 cylinder

38 cylinder

44 disZributor+s

45 distributor

48 distributor,ammeter

49 distributor

50 distributor,ammeter

51 distributor

52 distributor,ammeter

53 distributor

53

24 engine,cylinder,sp_plug,distributor
25 sp_plug
26 distributor
27 cylinder

rules belonging to the group = are:
18 engine,cylinder,sp_plug,ignition,carburetor,distributor
20 ignition
22 carburetor

rules belonging to the group 5 are:
28 starter+l

rules belonging to the group 6 are:
29 starter+l

rules belonging to the group 7 are:
35 battery,engine,carburetor,distributor,exhaust,drive-train
36 distributor
37 carburetor

rules belonging to the group 8 are:
39 exhaust

rules belonging to the group 9 are:
41 drive-train

rules belonging to the group I0 are:
42 fuel

rules belonging to the group II are:
46 distributor+s
47 ammeter

rules belonging to the group 12 are:
54 fuel+s
55 fuel
59 ammeter
60 ammeter
56 fuel,carburetor,cylinder
57 cylinder
58 carburetor

54

Appendix C - MMU-FDIR RULE BASE

;; The first i0 rules perform input-output and control firing of rules. Hence

;; they do not play a role in the grouping and have not been numbered.

(defrule very-last-rule

(declare (salience -I00))

(fact-name 7name)

=>

(printout crlf "test case is complete, return any character to continue" crlf)

(assert (last-entry =(read)))

(system "cls")

(undeffacts (?name))

(reset)

(system "cls")

)

;;Gathering state information

(defrule next-to-last

(declare (salience -50))

(side a ?state-a)

(side b ?state-b)

=>

(printout crlf "side A is "?state-a crlf)

(printout "side B is "?state-b crlf)

)

;;Print

(defrule print-cea-test

(declare (salience 90))

(print)

=>

(printout crlf "testing cea" crlf)

)

(defrule print-tank-test

(declare (salience -5))

(print)

(not (failure 7))

=>

(printout crlf "testing tank pressure and thrusters"crlf)

)

;;simulation print

(defrule print-zero

55

(declare (salience I00))

(zero)

=>

(system "cls")

(printout crlf **c***)

(printout "Command: "crlf)

(printout "Translation in the poe x direction "crlf crlf)

(printout "Expected failure: "crlf)

(printout "Cea failure - a signal from the valve drive amp on side A '*crlf)

(printout " was not sent to thrusters."crlf crlf)

(printout "Initial state: "crlf)

(printout "Side A is on, side B is on"crlf crlf)

(printout "Expected final state:"crlf)

(printout "Side A off, side B on" crlf)

(printout crlf *'**,

(printout crlf crlf **return any character to continue" crlf)

(assert (print-zero-a =(read)))

(system "cls")

)

(defrule print-one

(declare (salience I00))

(one)

=>

(system "cls")

(printout crlf **

(printout *'Command: "crlf)

(printout "Translation in the posy direction "crlf crlf)

(printout "Expected failure: "crlf)

(printout "Cea failure - uncommanded signal from the valve drive amp on "crlf)

(printout " side B was sent to thrusters."crlf crlf)

(printout "Initial state: "crlf)

(printout "Side A is on, side B is on"crlf crlf)

(printout *'Expected final state:"crlf)

(printout "Side A on, side B off" crlf)

(printout crlf **

(printout crlf crlf '*return any character to continue" crlf)

(assert (print-one-a =(read)))

(system "cls")

)

(defrule print-two

(declare (salience I00))

(two)
=>

(system "cls")

(printout crlf **

(printout "Command: "crlf)

56

(printout "Translation in the neg y direction "crlf crlf)
(printout "Expected failure: "crlf)
(printout "Thruster failure - tank pressure on side A is high, a thruster "crlf)
(printout °' on side A has failed to respond."crlf crlf)
(printout "Initial state: "crlf)
(printout "Side A is on, side B is on" crlf crlf)
(printout "Expected final state:"crlf)
(printout "Side A off, side B on" crlf)
(printout crlf ***"**,**
(printout crlf crlf "return any character to continue" crlf)
(assert (print-two-a =(read)))
(system "cls")
)

(defrule print-three

(declare (salience 100))

(three)

=>

(system "cls")

(printout crlf '**,**

(printout "Command: " crlf)

(printout "Rotation in the poe roll direction " crlf crlf)

(printout *'Expected failure: " crlf)

(printout "Thruster failure - Tank pressure on side B is low. "crlf)

(printout " Possible uncommanded acceleration" crlf)

(printout " or fuel leak has occurred.'* crlf crlf)

(printout '*Initial state: " crlf)

(printout "Side A is on, side B is on" crlf crlf)

(printout "Expected final'state:" crlf)

(printout "Side A on, side B off" crlf)

(printout crlf *'***"or,f)

(printout crlf crlf "return any character to continue" crlf)

(assert (print-three-a =(read)))

(system '*cls")

)

(defrule print-four

(declare (salience 100))

(four)

=>

(system "cls")

(printout crlf "***"crlf)

(printout "Command: "crlf)

(printout "Translation in the poe z direction "crlf crlf)

(printout "Expected failure: "crlf)

(printout "Thruster failure - Tank pressure is low during xfeed. After " crlf)

(printout " isolation, tank pressure on side B is low." crlf)

(printout " uncommanded acceleration" crlf)

57

(printout " or fuel leak has occurred." crlf crlf)

(printout "Initial state: "crlf)

(printout "Xfeed A is open, xfeed B is on"crlf)

(printout "Side A is on, side B is on"crlf crlf)

(printout "Expected final state:"crlf)

(printout "Side A on, side B off" crlf)

(printout crlf ,,****************_******************************_**_****"crlf)

(printout crlf crlf "return any character to continue" crlf)

(assert (print-four-a =(read)))

(system "cls")

)

(defrule print-five

(declare (salience I00))

(five)

=>

(system "cls")

(printout crlf ,,*******_************_*******************_****************"crlf)

(printout "Command: "crlf)

(printout "No command is given"crlf crlf)

(printout "Expected failure: "crlf)

(printout "Cea failure - an uncommanded neg pitch has occurred "crlf)

(printout " attitude hold fails to correct."crlf crlf)

(printout " Both cea-a and cea-b will fail." crlf crlf)

(printout "Initial state: "crlf)

(printout "Side A is on, side B is on"crlf)

(printout "Attitude hold is on, gyro is on" crlf crlf)

(printout "Expected final state:"crlf)

(printout "Side A off, side B off" crlf)

(printout crlf "***"crlf)

(printout crlf crlf "return any character to continue" crlf)

(assert (prinZ-five-a =(read)))

(system "cls")

)

:::

;;improper CEA behavior

::

;logic for (no aah) or (no gyro movement)and(aah on) - prime mode

::

(defrule cea-test-input-null ;rule_no 1

(or (aah off) (and (gyro on)(gyro_movement none none)))

(rhc roll none pitch none yaw none)

(thc x none y none z none)

(vda ?side ?thrust on)

=>

(assert (failure cea))

(printout crlf "failure - vda signal was sent to " crlf)

58

(printout "thrusters without intended command "crlf)

)

::::::::::::::::::::::::::::::::

;;;logic for x, pitch, yaw

::::::::::::::::::::::::::::::::

;pos x input

(defrule cea-a-test-input-posx-null-null-I ;rule_no 2

(or (aah off) (and (gyro on)(gyro_movement none none)))

(side a on)

(side b on)

(rhc roll none pitch none yaw none)

(thc x posy none z none)

(or

(vda a f2 off)

(vda a f3 off)

(vda a ?n_'fl_-f2&-f3&'f4 on)

)

=>

(assert (failure cea))

(assert (suspect a))

(printout crif "failure -during translational command ")

(printout "in the pos x direction" crlf)

)

(defrule cea-b-test-input-posx-null-null-i ;rule_no $

(or (aah off) (and (gyro on)(gyro_movement none none)))

(side a on)

(side b on)

(rhc roll none pitch none yaw none)

(thc x posy none z none)

(or

(vda b fl off)

(vda b f4 off)

(vda b ?n&-fl_~f2&-f3_-f4 on)

)

=>

(assert (failure cea))

(assert (suspect b))

(printout crlf "failure -during translational command ")

(printout "in the pos x direction" crlf)

)

;neg x input

(defrule cea-b-test-input-negx-null-null-2 ;rule_no 4

(or (aah off) (and (gyro on)(gyro_movement none none)))

59

(side a on)

(side b on)

(rhc roll none pitch none yaw none)

(thc x neg y none z none)

(or

(vda b b2 off)

(vda b b3 off)

(vda b ?n&-bl_-b2_-b3&-b4 on)

)

=>

(assert (failure cea))

(assert (suspect b))

(printout crlf "failure -during translational command ")

(printout "in the neg x direction" crlf)

)

(defrule cea-a-test-input-negx-null-null-2 ;rule_no 5

(or (aah off) (and (gyro on)(gyro_movement none none)))

(side a on)

(side b on)

(rhc roll none pitch none yaw none)

(thc x neg y none z none)

(or

(vda a bl off)

(vda a b4 off)

(vda a ?na'bl&~b2a'b3a-b4 on)

)

=>

(assert (failure cea))

(assert (suspect a))

(printout crlf "failure -during translational command ")

(printout "in the neg x direction" crlf)

)

;poe pitch input

(defrule cea-a-test-input-null-pos-null-3 ;rule_no 6

(or (aah off) (and (gyro on)(gyro_movement none none)))

(side a on)

(side b on)

(rhc roll none pitch poe yaw none)

(thc x none y none z none)

(or

(vda a bl off)

(vda a f3 off)

(vda a ?n&-bl&-f3 on)

)

=>

(assert (failure cea))

60

(assert (suspect a))

(printout crlf "failure -during rotational command ")

(printout "in the poe pitch direction" crlf)

)

(defrule cea-b-test-input-null-pos-null-3 ;rule_no 7

(or (aah off) (and (gyro on)(gyro_movement none none)))

(side a on)

(side b on)

(rhc roll none pitch poe yaw none)

(thc x none y none z none)

(vda b ?m on)

=>

(assert (failure cea))

(assert (suspect b))

(printout crlf "failure -during rotational command ")

(printout "in the poe pitch direction" crlf)

)

;neg pitch

(defrule cea-b-test-input-null-neg-nu!l-4 ;rule_no 8

(or (aah off) (and (gyro on)(gyro_movement none none)))

(side a on)

(side b on)

(rhc roll none pitch neg yaw none)

(thc x none y none z none)

(or

(vda b fl off)

(vda b b3 off)

(vda b ?na'b3&'fl on)

)

=>

(assert (failure cea))

(assert (suspect b))

(printout crlf "failure -during rotational command ")

(printout "in the neg pitch direction" crlf)

)

(defrule cea-a-test-input-null-neg-null-4 ;rule_no 9

(or (aah off) (and (gyro on)(gyro_movement none none)))

(side a on)

(side b on)

(rhc roll none pitch neg yaw none)

(thc x none y none z none)

(vda a ?m on)

=>

(assert (failure cea))

(assert (suspect a))

61

(printout crlf "failure -during rotational command ")

(printout "in the neg pitch direction" crlf)

)

;poe yaw

(defrule cea-a-test-input-null-null-pos-5 ;rule_no I0

(or (aah off) (and (gyro on)(gyro_movement none none)))

(side a on)

(side b on)

(rhc roll none pitch none yaw poe)

(thc x none y none z none)

(or

(vda a f2 off)

(vda a bl off)

(vda a ?na'bl&-f2 on)

)
=>

(assert (failure cea))

(assert (suspect a))

(printout crlf "failure -during rotational command ")

(printout "in the poe yaw direction" crlf)

)

(defrule cea-b-test-input-null-null-pos-5 ;rule_no II

(or (aah off) (and (gyro on)(gyro_movement none none)))

(side a on)

(side b on)

(rhc roll none pitch none yaw poe)

(thc x none y none z none)

(vda b ?m on)

=>

(assert (failure cea))

(assert (suspect b))

(printout crlf "failure -during rotational command ")

(printout "in the poe yaw direction" crlf)

)

;neg yaw

(defrule cea-b-test-input-null-null-pos-6 ;rule_no 12

(or (aah off) (and (gyro on)(gyro_movement none none)))

(side a on)

(side b on)

(rhc roll none pitch none yaw neg)

(thc x none y none z none)

(or

(vda b fl off)

(vda b b2 off)

(vda b ?n&'b2&-fl on)

62

)

=>

(assert (failure cea))

(assert (suspect b))

(printout crlf "failure -during rotational command ")

(printout "in the neg yaw direction" crlf)

)

(defrule cea-a-tesZ-input-null-null-pos-6 ;rule_no 13

(or (aah off) (and (gyro on)(gyro_movement none none)))

(side a on)

(side b on)

(rhc roll none pitch none yaw neg)

(thc x none y none z none)

(vda a 7m on)

=>

(assert (failure cea))

(assert (suspect a))

(printout crlf "failure -during rotational command ")

(printout "in the neg yaw direction" crlf)

)

::::::::::::::::::::::::

;logic for y, roll, yaw

::::::::::::::::::::::::

;poe y,

(defrule cea-a-test-inputaposy-null-null-? ;rule_no 14

(or (aah off) (and (gyro on)(gyro_movement none none)))

(side a on)

(side b on)

(rhc roll none pitch none yaw none)

(thc x none y poe z none)

(or

(vda a r2 off)

(vda a r4 off)

(vda a ?n_-r2&'r4 on)

)
=>

(assert (failure cea))

(assert (suspect a))

(printout crlf "failure -during translational command ")

(printout "in the poe y direction" crlf)

)

(defrule cea-b-test-input-posy-null-null-7 ;rule_no 15

(or (aah off) (and (gyro on)(gyro_movement none none)))

63

(side a on)

(side b on)

(rhc roll none pitch none yaw none)

(thc x none y poe z none)

(or

(vda b r2 off)

(vda b r4 off)

(vda b ?n_'r2&-r4 on)

)

=>

(assert (failure tea))

(assert (suspect b))

(printout crlf "failure -during translational command ")

(printout "in the poe y direction" crlf)

)

;neg y

(defrule cea-a-test-input-neg-null-null-8 ;rule_no 16

(or (aah off) (and (gyro on)(gyro_movement none none)))

(side a on)

(side b on)

(rhc roll none pitch none yaw none)

(thc x none y neg z none)

(or

(vda a II off)

(vda a 13 off)

(vda a ?n&~ll_-13 on)

)

=>

(assert (failure cea))

(assert (suspect a))

(printout crlf "failure -during translational command ")

(printout "in the neg y direction" crlf)

)

(defrule cea-b-test-input-neg-null-null-8 ;rule_no 17

(or (aah off) (and (gyro on)(gyro_movement none none)))

(side a on)

(side b on)

(rhc roll none pitch none yaw none)

(thc x none y neg z none)

(or

(vda b 11 off)

(vda b 13 off)

(vda b ?n_-ll&-13 on)

)

=>

(assert (failure cea))

64

(assert (suspect b))

(printout crlf "failure -during translational command ")

(printout "in the neg y direction" crlf)

)

;pos roll

(defrule cea-a-test-input-null-pos-null-9 ;rule_no 18

(or (aah off) (and (gyro on)(gyro_movement none none)))

(side a on)

(side b on)

(rhc roll pos pitch none yaw none)

(thc x none y none z none)

(or

(vda a r2 off)

(vda a 13 off)

(vda a ?n_'r2_-13 on)

)

=>

(assert (failure tea))

(assert (suspect a))

(printout crlf "failure -during rotational command ")

(printout "in the pos roll direction" crlf)

)

(defrule cea-b-test-input-null-pos-nul!-9 ;rule_no 19

(or (aah off) (and (gyro on)(gyro_movement none none)))

(side a on)

(side b on)

(rhc roll pos pitch none yaw none)

(thc x none y none z none)

(vda b ?m on)

=>

(assert (failure cea))

(assert (suspect b))

(printout crlf "failure -during rotational command ")

(printout "in the pos roll direction" crlf)

)

;neg roll

(defrule cea-a-test-input-null-neg-null-lO ;rule_no 20

(or (aah off) (and (gyro on)(gyro_movement none none)))

(side a on)

(side b on)

(rhc roll neg pitch none yaw none)

(thc x none y none z none)

(vda a ?m on)

6.5

=>

(assert (failure cea))

(assert (suspect a))

(printout crlf "failure -during rotational command ")

(printout "in the neg roll direction" crlf)

)

(defrule cea-b-test-input-null-neg-null-lO ;rule_no 21

(or (aah off) (and (gyro on)(gyro_movement none none)))

(side a on)

(side b on)

(rhc roll neg pitch none yaw none)

(thc x none y none z none)

(or

(vda b r4 off)

(vda b 11 off)

(vda b ?n_~r4_-ll on)

)

=>

(assert (failure tea))

(assert (suspect b))

(printout crlf "failure -during rotational command ")

(printout "in the neg roll direction" crlf)

)

::::::::::::::::::::::::::

;logic for z, roll, pitch

::::::::::::::::::::::::::

;poe z,

(defrule cea-a-test-input-posz-null-null-ll ;rule_no 22

(or (aah off) (and (gyro on)(gyro_movement none none)))

(side a on)

(side b on)

(rhc roll none pitch none yaw none)

(thc x none y none z poe)

(or

(vda a dl off)

(vda a d2 off)

(vda a ?n&-d1&'d2 on)

)

=>

(assert (failure cea))

(assert (suspect a))

(printout crlf "failure -during translational command ")

(printout "in the poe z direction" crlf)

)

6G

(defrule cea-b-test-input-posz-null-null-ll ;rule_no 28

(or (aah off) (and (gyro on)(gyro_movement none none)))

(side a on)

(side b on)

(rhc roll none pitch none yaw none)

(thc x none y none z poe)

(or

(vda b dl off)

(vda b d2 off)

(vda b ?na-dla'd2 on)

)

=>

(assert (failure cea))

(assert (suspect b))

(printout crlf "failure -during translational command ")

(printout "in the poe z direction" crlf)

)

;neg z

(defrule cea-a-test-input-neg-null-null-12 ;rule_no 24

(or (aah off) (and (gyro on)(gyro_movement none none)))

(side a on)

(side b on)

(rhc roll none pitch none yaw none)

(thc x none y none z neg)

(or

(vda a u3 off)

(vda a u4 off)

(vda a ?n&-uBa-u4 on)

)

=>

(assert (failure cea))

(assert (suspect a))

(printout crlf "failure -during translational command ")

(printout "in the neg z direction" crlf)

)

(defrule cea-b-test-input-neg-null-null-12 ;rule_no 25

(or (aah off) (and (gyro on)(gyro_movement none none)))

(side a on)

(side b on)

(rhc roll none pitch none yaw none)

(thc x none y none z neg)

(or

(vda b u3 off)

(vda b u4 off)

(vda b ?n_-u3&-u4 on)

)

67

=>
(assert (failure cea))
(assert (suspect b))
(printout crlf "failure during translational command")
(printout "in the neg z direction" crlf)
)

;;;

;;;;gyro movement rules - (axis direction) - prime mode

::

;negative pitch gyro indications

(defrule cea-a-gyro-input-pitch-neg-I ;rule_no 26

(aah on) (gyro on)

(gyro_movement pitch neg)

(side a on)

(side b on)

(rhc roll none pitch none yaw none)

(thc x none y none z none)

(or

(vda a bl off)

(vda a f3 off)

(vda a ?n_-bl_'f3 on)

)

=>

(assert (failure cea))

(assert (suspect a))

(printout crlf "aah failed to correct neg pitch")

)

(defrule cea-b-gyro-input-pitch-neg-1 ;rule_no 27

(aah on) (gyro on)

(gyro_movement pitch neg)

(side a on)

(side b on)

(rhc roll none pitch none yaw none)

(the x none y none z none)

(vda b ?m on)

=>

(assert (failure cea))

(assert (suspect b))

(printout crlf "aah failed to correct neg pitch")

)

;pos pitch gyro indications

(defrule cea-b-gyro-input-pitch-pos-2 ;rule_no 28

(aah on) (gyro on)

68

(gyro_movement pitch poe)

(side a on)

(side b on)

(rhc roll none pitch none yaw none)

(thc x none y none z none)

(or

(vda b fl off)

(vda b b3 off)

(vda b ?n&~b3a-fl on)

)

=>

(assert (failure cea))

(assert (suspect b))

(printout crlf "aah failed to correct poe pitch")

)

(defrule cea-a-gyro-input-pitch-pos-2 ;rule_no 29

(aah on) (gyro on)

(gyro_movement pitch pos)

(side a on)

(side b on)

(rhc roll none pitch none yaw none)

(thc x none y none z none)

(vda a ?m on)

=>

(assert (failure cea))

(assert (suspect a))

(printout crlf "aah failed to correct poe pitch")

)

;neg yaw gyro indication

(defrule cea-a-gyro-input-yaw-neg-3 ;rule_no 30

(aah on) (gyro on)

(gyro_movement yaw neg)

(side a on)

(side b on)

(rhc roll none pitch none yaw none)

(thc x none y none z none)

(or

(vda a f2 off)

(vda a bl off)

(vda a ?n_-bl_'f2 on)

)

=>

(assert (failure cea))

(assert (suspect a))

(printout crlf "aah failed to correct neg yaw")

)

69

(defrule cea-b-gyro-input-yaw-neg-3 ;rule_no 31
(aah on) (gyro on)

(gyro_movement yaw neg)

(side a on)

(side b on)

(rhc roll none pitch none yaw none)

(thc x none y none z none)

(vda b ?m on)

=>

(assert (failure cea))

(assert (suspect b))

(printout crlf "aah failed to correct neg yaw")

)

;poe yaw gyro indication

(defrule cea-b-gyro-input-yaw-pos-4 ;rule_no 32

(aah on) (gyro on)

(gyro_movement yaw poe)

(side a on)

(side b on)

(rhc roll none pitch none yaw none)

(the x none y none z none)

(or

(vda b fl off)

(vda b b2 off)

(vda b ?na-b2_-fl on)

)

=>

(assert (failure cea))

(assert (suspect b))

(printout crlf "aah failed to correct pos yaw")

)

(defrule cea-a-gyro-input-yaw-pos-4 ;rule_no 33

(aah on) (gyro on)

(gyro_movement yaw poe)

(side a on)

(side b on)

(rhc roll none pitch none yaw none)

(thc x none y none z none)

(vda a ?m on)

=>

(assert (failure cea))

(assert (suspect a))

(printout crlf "aah failed to correct pos yaw")

)

7O

;neg roll gyro indication

(defrule cea-a-gyro-input-roll-neg-5 ;rule_no 34

(aah on) (gyro on)

(gyro_movement roll neg)

(side a on)

(side b on)

(rhc roll none pitch none yaw none)

(thc x none y none z none)

(or

(vda a r2 off)

(vda a 13 off)

(vda a ?na'r2a-13 on)

)

=>

(assert (failure cea))

(assert (suspect a))

(printout crlf "aah failed to correct neg roll")

)

(defrule cea-b-gyro-input-roll-neg-5 ;rule_no 35

(aah on) (gyro on)

(gyro_movement roll neg)

(side a on)

(side b on)

(rhc roll none pitch none yaw none)

(thc x none y none z none)

(vda b ?m on)

=>

(assert (failure cea))

(assert (suspect b))

(printout crlf "aah failed to correct neg roll")

)

;pos roll gyro input

(defrule cea-a-gyro-input-roll-pos-6 ;rule_no 36

(aah off) (gyro on)

(gyro_movement roll pos)

(side a on)

(side b on)

(rhc roll none pitch none yaw none)

(thc x none y none z none)

(vda a ?m on)

=>

(assert (failure cea))

71

(assert (suspect a))

(printout crlf "aah failed to correct pos roll")
)

(defrule cea-b-gyro-input-roll-pos-6 ;rule_no 37

(aah off) (gyro on)

(gyro_movement roll pos)

(side a on)

(side b on)

(rhc roll none pitch none yaw none)

(thc x none y none z none)

(or

(vda b r4 off)

(vda b 11 off)

(vda b ?n_-r4&'ll on)

)
=>

(assert (failure cea))

(assert (suspect b))

(printout crlf "aah failed to correct pos roll")

)

:::

;;;; back up mode logic for side a - no gyro

:::

::::::::::::::::::::::::::::

;;logic for x, pitch, yaw

::::::::::::::::::::::::::::

;pos x

(defrule cea-test-input-pos-null-null-side-a-1 ;rule_no 38

(or (aah off) (and (gyro on)(gyro_movement none none)))

(not (checking thrusters))

(side a on)

(side b off)

(rhc roll none pitch none yaw none)

(the x posy none z none)

(or

(vda a f2 off)

(vda a f3 off)

(vda a ?n&-f2_-f3 on)

)
=>

(assert (failure cea))

(assert (suspect a))

(printout crlf "cea failure on side a")

)

72

;neg x
(defrule cea-test-input-neg-null-null-side-a-2 ;rule_no 39

(or (aah off) (and (gyro on)(gyro_movementnone none)))
(not (checking thrusters))
(side a on)
(side b off)
(rhc roll nonepitch none yawnone)
(thc x neg y none z none)
(or
(vda a bl off)

(vda a b4 off)

(vda a ?n&-bl_-b4 on)

)

=>

(assert (failure cea))

(assert (suspect a))

(printout crlf "cea failure on side a")

)

;poe pitch

(defrule cea-test-input-null-pos-null-side-a-3 ;rule_no 40

(or (aah off) (and (gyro on)(gyro_movement none none)))

(not (checking thrusters))

(side a on)

(side b off)

(rhc roll none pitch poe yaw none)

(thc x none y none z none)

(or

(vda a bl off)

(vda a f3 off)

(vda a ?n&-bl_-f3 on)

)

=>

(assert (failure cea))

(assert (suspect a))

(printout crlf "cea failure on side a")

)

;neg pitch

(defrule cea-test-input-null-neg-null-side-a-4 ;rule_no 41

(or (aah off) (and (gyro on)(gyro_movement none none)))

(not (checking thrusters))

(side a on)

(side b off)

(rhc roll none pitch neg yaw none)

(the x none y none z none)

(or

73

(vda a f2 off)

(vda a b4 off)

(vda a ?n&~b4a'f2 on)

)

=>

(assert (failure cea))

(assert (suspect a))

(printout crlf "cea failure on side a")

)

;pos yaw

(defrule cea-test-input-null-null-pos-side-a-5 ;rule_no 42

(or (aah off) (and (gyro on)(gyro_movement none none)))

(not (checking thrusters))

(side a on)

(side b off)

(rhc roll none pitch none yaw poe)

(thc x none y none z none)

(or

(vda a bl off)

(vda a f2 off)

(vda a 7na-bla'f2 on)

)

=>

(assert (failure cea))

(assert (suspect a))

(printout crlf "cea failure on side a")

)

;neg yaw

(defrule cea-test-input-null-null-neg-side-a-6 ;rule_no 43

(or (aah off) (and (gyro on)(gyro_movement none none)))

(not (checking thrusters))

(side a on)

(side b off)

(rhc roll none pitch none yaw neg)

(thc x none y none z none)

(or

(vda a b4 off)

(vda a f3 off)

(vda a ?na'b4_-f3 on)

)

=>

(assert (failure cea))

(assert (suspect a))

(printout crlf "cea failure on side a")

)

74

;;;;;;;;;;;;;;;;;;;;;;;;;
;;logic for y, z, roll
:::::::::::::::::::::::::

;poe y
(defrule cea-rest-input-pos-null-null-side-a-7 ;rule_no 44

(or (aah off) (and (gyro on)(gyro_movementnonenone)))
(not (checking thrusters))
(side a on)
(side b off)
(rhc roll none pitch none yawnone)
(zhc x none y poe z none)
(or
(vda a r2 off)
(vda a r4 off)
(vda a ?n_-r2_'r4 on)

)

=>

(assert (failure cea))

(assert (suspect a))

(printout crlf "cea failure on side a")

)

;neg y

(defrule cea-test-input-neg-null-null-side-a-8 ;rule_no 45

(or (aah off) (and (gyro on)(gyro_movement none none)))

(not (checking thrusters))

(side a on)

(side b off)

(rhc roll none pitch none yaw none)

(thc x none y neg z none)

(or

(vda a ii off)

(vda a 13 off)

(vda a ?n&-ll_'l$ on)

)

=>

(assert (failure tea))

(assert (suspect a))

(printout crlf "tea failure on side a")

)

;poe z

(defrule cea-test-input-null-pos-null-side-a-9 ;rule_no 46

(or (aah off) (and (gyro on)(gyro_movement none none)))

(not (checking thrusters))

(side a on)

(side b off)

75

(rhc roll none pitch none yaw none)

(thc x none y none z poe)

(or

(vda a dl off)

(vda a d2 off)

(vda a 7n&-dl&-d2 on)

)

=>

(assert (failure tea))

(assert (suspect a))

(printout crlf "cea failure on side a")

)

;neg z

(defrule cea-test-input-null-neg-null-side-a-10 ;rule_no 47

(or (aah off) (and (gyro on)(gyro_movement none none)))

(not (checking thrusters))

(side a on)

(side b off)

(rhc roll none pitch none yaw none)

(thc x none y none z neg)

(or

(vda a u3 off)

(vda a u4 off)

(vda a ?n&-uSa-u4 on)

)

=>

(assert (failure cea))

(assert (suspect a))

(printout crlf "cea failure on side a")

)

;poe roll

(defrule cea-test-input-null-null-pos-side-a-ll ;rule_no 48

(or (aah off) (and (gyro on)(gyro_movement none none)))

(not (checking thrusters))

(side a on)

(side b off)

(rhc roll poe pitch none yaw none)

(thc x none y none z none)

(or

(vda a r2 off)

(vda a 13 off)

(vda a ?n&-r2&-13 on)

)

=>

(assert (failure cea))

(assert (suspect a))

76

(printout crlf "cea failure on side a")

)

;neg roll

(defrule cea-test-input-null-null-neg-side-a-12 ;rule_no 49

(or (aah off) (and (gyro on)(gyro_movement none none)))

(not (checking thrusters))

(side a on)

(side b off)

(rhc roll neg pitch none yaw none)

(thc x none y none z none)

(or

(vda a r4 off)

(vda a Ii off)

(vda a ?n&'r4a'll on)

)

=>

(assert (failure cea))

(assert (suspect a))

(printout crlf "cea failure on side a")

)

;;; backup logic for side b - no gyro

;;logic for x, pitch, yaw

..................

;poe x

(defrule cea-test-input-pos-null-null-side-b-I ;rule_no 50

(or (aah off) (and (gyro on)(gyro_movement none none)))

(not (checking thrusters))

(side a off)

(side b on)

(rhc roll none pitch none yaw none)

(thc x poe y none z none)

(or

(vda b fl off)

(vda b f4 off)

(vda b ?n&'fl&-f4 on)

)

=>

(assert (failure tea))

(assert (suspect b))

(printout crlf "cea failure on side b")
)

;neg x

(defrule cea-test-input-neg-null-null-side-b-2 ;rule_no 51

(or (aah off) (and (gyro on)(gyro_movement none none)))

(not (checking thrusters))

(side a off)

(side b on)

(rhc roll none pitch none yaw none)

(the x neg y none z none)

(or

(vda b b2 off)

(vda b b3 off)

(vda b ?na-b2&-b3 on)

)

=>

(assert (failure cea))

(assert (suspect b))

(printout crlf "cea failure on side b")

)

;poe pitch

(defrule cea-test-input-null-pos-null-side-b-3 ;rule_no 52

(or (aah off) (and (gyro on)(gyro_movement none none)))

(not (checking thrusters))

(side a off)

(side b on)

(rhc roll none pitch poe yaw none)

(thc x none y none z none)

(or

(vda b f4 off)

(vda b b2 off)

(vda b ?n&'b2&'f4 on)

)

=>

(assert (failure cea))

(assert (suspect b))

(printout crlf "cea failure on side b")

)

;neg pitch

(defrule cea-test-input-null-neg-null-side-b-4 ;rule_no 53

(or (aah off) (and (gyro on)(gyro_movement none none)))

(not (checking thrusters))

(side a off)

(side b on)

(rhc roll none pitch neg yaw none)

78

(thc x none y none z none)

(or

(vda b fl off)

(vda b b3 off)

(vda b ?n&-fl_-b3 on)

)
=>

(assert (failure cea))

(assert (suspect b))

(printout crlf "Gee failure on side b")

)

;poe yaw

(defrule cea-test-input-null-null-pos-side-b-5 ;rule_no 54

(or (aah off) (and (gyro on)(gyro_movement none none)))

(not (checking thrusters))

(side a off)

(side b on)

(rhc roll none pitch none yaw poe)

(thc x none y none z none)

(or

(vda b f4 off)

(vda b b3 off)

(vda b ?n&-b3&'f4 on)

)
=>

(assert (failure cea))

(assert (suspect b))

(printout crlf "tea failure on side b")

)

;neg yaw

(defrule cea-test-input-null-null-neg-side-b-6 ;rule_no 55

(or (aah off) (and (gyro on)(gyro_movement none none)))

(not (checking thrusters))

(side a off)

(side b on)

(rhc roll none pitch none yaw neg)

(thc x none y none z none)

(or

(vda b fl off)

(vda b b2 off)

(vda b ?n&-fl&'b2 on)

)
=>

(assert (failure cea))

(assert (suspect b))

(printout crlf "cea failure on side b")

79

)

:::::::::::::::::::::::::

;;logic for y, z, roll

:::::::::::::::::::::::::

;poe y

(defrule cea-test-input-pos-null-null-side-b-7 ;rule_no 56

(or (aah off) (and (gyro on)(gyro_movement none none)))

(not (checking thrusters))

(side a off)

(side b on)

(rhc roll none pitch none yaw none)

(the x none y poe z none)

(or

(vda b r2 off)

(vda b r4 off)

(vda b ?n_'r2_-r4 on)

)

=>

(assert (failure cea))

(assert (suspect b))

(printout crlf "cea failure on side b")

)

;neg y

(defrule cea-test-input-neg-null-null-side-b-8 ;rule_no 57

(or (aah off) (and (gyro on)(gyro_movement none none)))

(not (checking thrusters))

(side a off)

(side b on)

(rhc roll none pitch none yaw none)

(thc x none y neg z none)

(or

(vda b II off)

(vda b 13 off)

(vda b ?n&-11&-13 on)

)

=>

(assert (failure cea))

(assert (suspect b))

(printout crlf "cea failure on side b")

)

;poe z

(defrule cea-test-input-null-pos-null-side-b-9 ;rule_no 58

(or (aah off) (and (gyro on)(gyro_movement none none)))

(not (checking thrusters))

8O

(side a off)

(side b on)

(rhc roll none pitch none yaw none)

(thc x none y none z poe)

(or

(vda b dl off)

(vda b d2 off)

(vda b ?na'dla-d2 on)

)

=>

(assert (failure cea))

(assert (suspect b))

(printout crlf "cea failure on side b")

)

;neg z

(defrule cea-test-input-null-neg-null-side-b-lO ;rule_no 59

(or (aah off) (and (gyro on)(gyro_movement none none)))

(not (checking thrusters))

(side a off)

(side b on)

(rhc roll none pitch none yaw none)

(thc x none y none z neg)

(or

(vda b u3 off)

(vda b u4 off)

(vda b ?n_'u3&-u4 on)

)

=>

(assert (failure cea))

(assert (suspect b))

(printout crlf "cea failure on side b")

)

;poe roll

(defrule cea-test-input-null-null-pos-side-b-ll ;rule_no 60

(or (aah off) (and (gyro on)(gyro_movement none none)))

(not (checking thrusters))

(side a off)

(side b on)

(rhc roll poe pitch none yaw none)

(thc x none y none z none)

(or

(vda b r2 off)

(vda b 13 off)

(vda b ?n&-r2a-i3 on)

)

=>

81

(assert (failure cea))

(assert (suspect b))

(printout crlf "tea failure on side b")

)

;neg roll

(defrule cea-test-input-null-null-neg-side-b-12 ;rule_no 61

(or (aah off) (and (gyro on)(gyro_movement none none)))

(not (checking thrusters))

(side a off)

(side b on)

(rhc roll neg pitch none yaw none)

(thc x none y none z none)

(or

(vda b r4 off)

(vda b II off)

(vda b ?n&-r4&-ll on)

)
=>

(assert (failure cea))

(assert (suspect b))

(printout crlf "cea failure on side b")

)

:::

;;;;gyro movement rules - (axis direction) - backup mode

::

;negative pitch gyro indications

(defrule gyro-input-pi_ch-neg-backup-b-1 ;rule_no 62

(aah on) (gyro on)

(gyro_movement pitch neg)

(not (checking thrusters))

(side a off)

(side b on)

(rhc roll none pitch none yaw none)

(_hc x none y none z none)

(or

(vda b f4 off)

(vda b b2 off)

(vda b ?n&-f4&-b2 on)

)
=>

(assert (failure cea))

(assert (suspect b))

(printout crlf "cea failure on side b")

)
82

(defrule gyro-input-pitch-neg-backup-a-1 ;rule_no 63

(aah on) (gyro on)

(gyro_movement pitch neg)

(not (checking thrusters))

(side a on)

(side b off)

(rhc roll none pitch none yaw none)

(thc x none y none z none)

(or

(vda a bl off)

(vda a f3 off)

(vda a ?na-bl&~f3 on)

)

=>

(assert (failure cea))

(assert (suspect a))

(printout crlf "cea failure on side a")

)

;poe pitch gyro indications

(defrule gyro-input-pitch-pos-backup-a-2 ;rule_no 64

(aah on) (gyro on)

(gyro_movement pitch pos)

(not (checking thrusters))

(side a on)

(side b off)

(rhc roll none pitch none yaw none)

(thc x none y none z none)

(or

(vda a f2 off)

(vda a b4 off)

(vda a ?n_-f2&-b4 on)

)

=>

(assert (failure cea))

(assert (suspect a))

(printout crlf "cea failure on side a")

)

(defrule gyro-input-pitch-pos-backup-b-2 ;rule_no 65

(aah on) (gyro on)

(gyro_movement pitch pos)

(not (checking thrusters))

(side a off)

(side b on)

(rhc roll none pitch none yaw none)

(the x none y none z none)

83

(or

(vda b fl off)

(vda b b3 off)

(vda b ?na-fla-b3 on)

)

=>

(assert (failure cea))

(assert (suspect b))

(printout crlf "cea failure on side b")

)

;neg yaw gyro indication

(defrule gyro-input-yaw-neg-backup-b-3 ;rule_no 66

(aah on) (gyro on)

(gyro_movement yaw neg)

(not (checking thrusters))

(side a off)

(side b on)

(rhc roll none pitch none yaw none)

(thc x none y none z none)

(or

(vda b f4 off)

(vda b b3 off)

(vda b ?na~f4&'b3 on)

)

=>

(assert (failure cea))

(assert (suspect b))

(printout crlf "cea failure on side b")

)

(defrule gyro-input-yaw-neg-backup-a-3 ;rule_no 67

(aah on) (gyro on)

(gyro_movement yaw neg)

(not (checking thrusters))

(side a on)

(side b off)

(rhc roll none pitch none yaw none)

(thc x none y none z none)

(or

(vda a f2 off)

(vda a bl off)

(vda a 7n&-f2&-bl on)

)

=>

(assert (failure cea))

(assert (suspect a))

(printout crlf "cea failure on side a")

84

;poe yaw gyro indication

(defrule gyro-input-yaw-pos-backup-a-4 ;rule_no 68

(aah on) (gyro on)

(gyro_movement yaw pos)

(not (checking thrusters))

(side a on)

(side b off)

(rhc roll none pitch none yaw none)

(thc x none y none z none)

(or

(vda a f3 off)

(vda a b4 off)

(vda a ?n_~bd&'f3 on)

)

=>

(assert (failure cea))

(assert (suspect a))

(printout crlf "cea failure on side a")

)

(defrule gyro-input-yaw-pos-backup-b-4 ;rule_no 69

(aah on) (gyro on)

(gyro_movement yaw poe)

(not (checking thrusters))

(side a off)

(side b on)

(rhc roll none pitch non4 yaw none)

(thc x none y none z none)

(or

(vda b fl off)

(vda b b2 off)

(vda b ?n_-b2&-fl on)

)

=>

(assert (failure cea))

(assert (suspect b))

(printout crlf "cea failure on side b")

)

;neg roll gyro indication

(defrule gyro-input-roll-neg-backup-b-5 ;rule_no 70

(aah on) (gyro on)

(gyro_movement roll neg)

(not (checking thrusters))

(side a off)

(side b on)

8.5

(rhc roll none pitch none yaw none)

(thc x none y none z none)

(or

(vda b r2 off)

(vda b 13 off)

(vda b ?na'r2&'l$ on)

)

=>

(assert (failure cea))

(assert (suspect b))

(printout crlf "cea failure on side b")

)

(defrule gyro-input-roll-neg-backup-a-5 ;rule_no 71

(aah on) (gyro on)

(gyro_movement roll neg)

(not (checking thrusters))

(side a on)

(side b off)

(rhc roll none pitch none yaw none)

(thc x none y none z none)

(or

(vda a r2 off)

(vda a 13 off)

(vda a ?n&'r2&-i3 on)

)

=>

(asserZ (failure cea))

(assert (suspect a))

(printout crlf "cea failure on side a")

)

;poe roll gyro input

(defrule gyro-input-roll-pos-backup-a-6 ;rule_no 72

(aah off) (gyro on)

(gyro_movement roll poe)

(not (checking thrusters))

(side a on)

(side b off)

(rhc roll none pitch none yaw none)

(thc x none y none z none)

(or

(vda a r4 off)

(vda a ii off)

(vda a ?n&-r4a-ll on)

)

=>

(assert (failure cea))

86

(assert (suspect a))

(printout crlf "cea failure on side a")

)

(defrule gyro-input-roll-pos-backup-b-6 ;rule_no 73

(aah off) (gyro on)

(gyro_movement roll poe)

(not (checking thrusters))

(side a off)

(side b on)

(rhc roll none pitch none yaw none)

(thc x none y none z none)

(or

(vda b r4 off)

(vda b II off)

(vda b ?na'r4a_ll on)

)
=>

(assert (failure cea))

(assert (suspect b))

(printout crlf "tea failure on side b")

)

:::

;;; cea-failure recovery

:::

;;cea a rules

:::

(defrule test-failure-ceaLsuspect-a ;rule_no 74

?a <- (failure cea)

(suspect a)

(side a on)

?b <- (side b on)

=>

(retract ?a ?b)

(assert (side b off))

(printout crlf "suspected cea failure"crlf)

(printout crlf "turning side-b off "crlf)

(printout crlf "recalling command inputs"crlf)

(printout crlf "testing cea-a"crlf)

)

(defrule test-failure-cea-a-good ;rule_no 75

(not (failure cea))

?x <- (suspect a)

?a <- (side b off)

?b <- (side a on)

=>

8T

(retract ?a ?b ?x)
(assert (side b on))
(assert (side a off))
(assert (cea-a-good))
(printout crlf "cea-a wassuspected and tested but responds correctly")
(printout crlf "turning side-a off, side-b on, testing cea-b"crlf)
)

(defrule test-failure-cea-a-bad ;rule_no 76

?a <- <failure cea)

(suspect a)

?b <- (side b off)

?c <- (side a on)

(not <failure cea-b))

=>

(retract ?a ?b ?c)

(assert (side b on))

(assert (side a off))

(assert (failure cea-a))

(printout crlf "setting side-a off and side-b on , testing cea-b"crlf)

)

(defrule test-a-cea-side-b-good ;rule_no 77

(not (failure cea))

(side b on)

(side a off)

(cea-a-good)

=>

(assert (failure cea-coupled))

(printout crlf "coupled cea failure" crlf)

(printout crlf "side-a is off, side-b is on" crlf)

)

(defrule test-a-cea-side-b-bad ;rule_no 78

(failure cea)

?x <- (side b on)

?y <- (side a off)

(not (suspect b))

=>

(retract ?x ?y)

(assert (side b off))

(assert (side a on))

(printout crlf "cea-b failed, side-a is on")

)

(defrule test-a-cea-side-a-and-b ;rule_no 79

88

(failure tea)

(failure cea-a)

?x <- (side b on)

(side a off)

=>

(retract ?x)

(assert (failure cea-a-b))

(assert (side b off))

(printout crlf "cea-a and cea-b have both failed, call for help" crlf)

)

(defrule print-failure-cea-a ;rule_no 80

(declare (salience -8))

(side a off)

(side b on)

(not (failure cea))

(failure cea-a)

=>

(printout crlf "cea-b responds correctly"crlf)

)

:::::::::::::::::::::

;;;;cea-b rules

:::::::::::::::::::::

(defrule test-failure-cea-suspect-b ;rule_no 81

?a <- (failure cea)

(suspect b)

?b <- (side a on)

(side b on)

=>

(retract ?a ?b)

(assert (side a off))

(printout crlf "suspected cea failure" crlf)

(printout crlf "turning side-a off " crlf)

(printout crlf "recalling command inputs" crlf)

(printout crlf "testing cea-b" crlf)

)

(defrule test-failure-tea-b-good ;rule_no 82

(not (failure cea))

?x <- (suspect b)

?a <- (side a off)

?b <- (side b on)

=>

(retract ?a ?b ?x)

(assert (side a on))

(assert (side b off))

(assert (tea-b-good))

(printout crlf "cea-b was suspected and tested but responds correctly")

89

(printout crlf "turning side-b off, side-a on, testing cea-a"crlf)

)

(defrule test-failure-cea-b-bad ;rule_no 88

?a <- (failure cea)

(suspect b)

?b <- (side a off)

?c <- (side b on)

(not (failure cea-a))

=>

(retract ?a ?b ?c)

(assert (side a on))

(assert (side b off))

(assert (failure cea-b))

(printout crlf "setting side-b off and side-a on , testing cea-a"crlf)

)

(defrule test-b-cea-side-a-good ;rule_no 84

(not (failure cea))

(side a on)

(side b off)

(cea-b-good)

=>

(assert (failure tea-coupled))

(printout crlf "coupled cea failure" crlf)

(printout crlf "side-b is off, side-a is on" crlf)

)

(defrule test-b-cea-side-a-bad ;rule_no 85

(failure cea)

?x <- (side a on)

?y <- (side b off)

(not (suspect a))

=>

(retract ?x ?y)

(assert (side a off))

(assert (side b on))

(printout crlf "cea-a failed, side-b is on")

)

(defrule test-b-cea-side-a-and-b ;rule_no 86

(failure cea)

(failure cea-b)

?x <- (side a on)

(side b off)

=>

(retract ?x)

(assert (failure cea-a-b))

9O

(assert (side a off))

(printout crlf "cea-a and cea-b have both failed, call for help" crlf)

)

(defrule print-failure-cea-b ;rule_no 87

(declare (salience -8))

(side b off)

(side a on)

(not (failure cea))

(failure cea-b)

=>

(printout crlf "side a responds correctly"crlf)

)

:::

;;; thruster-failure

:::

::::::::::::::::::::::::::::::::::::::

;; test for thruster firing failure

::::::::::::::::::::::::::::::::::::::

(defrule no-xfeed-fuel-calculation-side-a ;rule_no 88

(declare (salience I0))

(xfeed-a closed)

(xfeed-b closed)

(vda a ?n on)

(not (read-it a 7n))

(not (failure 7))

?x <- (fuel-used-a 7fuel-a)

=>

(retract ?x)

(assert (read-it a ?n))

(assert (fuel-used-a =(+ 7fuel-a i)))

)

(defrule no-xfeed-fuel-calculation-side-b ;rule_no 89

(declare (salience I0))

(xfeed-a closed)

(xfeed-b closed)

(vda b ?n on)

(not (read-it b ?n))

(not (failure 7))

7x <- (fuel-used-b ?fuel-b)

=>

(retract ?x)

91

(assert (read-it b ?n))

(assert (fuel-used-b =(+ ?fuel-b I)))

)

(defrule no-xfeed-fuel-reading-test-side-a-grt ;rule_no 90

(declare (salience -I0))

(xfeed-a closed)

(xfeed-b closed)

(not (failure ?))

(fuel-used-a ?fuel-a)

(tank-pressure-was a ?p-old)

(tank-pressure-current a ?p-new)

(test (< (- ?p-old ?fuel-a) ?p-new))

?x <- (side a on)

(side b on)

=>

(assert (failure thruster-a))

(printout crlf "pressure in tank a is high, a thruster has not responded"crlf)

(printout crlf "side a failed while executing thruster commands" crlf)

(assert (side a off))

(retract ?x)

(assert (checking thrusters))

)

(defrule no-xfeed-fuel-reading-test-side-a-lss ;rule_no 91

(declare (salience -10))

(xfeed-a closed)

(xfeed-b closed)

(not (failure ?))

(fuel-used-a ?fuel-a)

(tank-pressure-was a ?p-old)

(tank-pressure-current a ?p-new)

(test (> (- ?p-old ?fuel-a) ?p-new))

?x <- (side a on)

(side b on)

=>

(assert (failure thruster-a))

(printout crlf "pressure in tank a is low, " crlf)

(printout "possible uncommanded acceleration or fuel leak" crlf crlf)

(printout "side a failed while executing thruster commands" crlf)

(assert (side a off))

(retract ?x)

(assert (checking thrusters))

)

(defrule no-xfeed-fuel-reading-Zesz-side-b-grt ;rule_no 92

(declare (salience -i0))

(xfeed-a closed)

92

(xfeed-b closed)

(not (failure 7))

(fuel-used-b ?fuel-b)

(tank-pressure-was b ?p-old)

(tank-pressure-current b ?p-new)

(test (< (- ?p-old ?fuel-b) ?p-new))

(side a on)

?X <- (side b on)

=>

(assert (failure thruster-b))

(printout crlf "pressure in tank b is high, a thruster has not responded"crlf)

(printout crlf "side b failed while executing thruster commands" crlf)

(assert (side b off))

(retract ?x)

(assert (checking thrusters))

)

(defrule no-xfeed-fuel-reading-test-side-b-lss ;rule_no 93

(declare (salience -I0))

(xfeed-a closed)

(xfeed-b closed)

(not (failure ?))

(fuel-used-b ?fuel-b)

(tank-pressure-was b ?p-old)

(tank-pressure-current b ?p-new)

(test (> (- ?p-old ?fuel-b) ?p-new))

(side a on)

?x <- (side b on)

=>

(assert (failure thruster-b))

(printout crlf "pressure in tank b is low, " crlf)

(printout "possible uncommanded acceleration or fuel leak" crlf crlf)

(printout crlf "side b failed while executing thruster commands" crlf)

(assert (side b off))

(retract ?x)

(assert (checking thrusters))

)

(defrule xfeed-fuel-reading-test-general ;rule_no 94

(declare (salience -I0))

?x <- (xfeed-a open)

?y <- (xfeed-b open)

(fuel-used-a ?fuel-a)

(fuel-used-b ?fuel-b)

(tank-pressure-was ab ?p-old)

(tank-pressure-current ab ?p-new)

(test (!= (- ?p-old (+ ?fuel-a ?fuel-b)) ?p-new))

(side b on)

93

(side a on)

=>

(retract ?x ?y)

(assert (xfeed-a closed))

(assert (xfeed-b closed))

(assert (failure-thrusters-with-xfeed))

(printout crlf "failure occurred while executing thruster commands")

(printout crlf crlf "xfeed is open, testing sides after closing xfeed")

(printout crlf crlf)

(assert (checking thrusters))

)

I improper tea behavior

2 logic for x, pitch and yaw

5 logic for x

7 logic for x

8 logic for x,

9 logic for x,

I0 logic for x

Ii logic for x

12 logic for x

13 logic for x

14 logic for x

15 logic for y

16 logic for y

17 logic for y

18 logic for y

19 logic for y

20 logic for y

21 logic for y

22 logic for z

23 logic for z

24 logic for z

25 logic for z

26 gyro movement

27 gyro movement

28 gyro movement

29 gyro movement

30 gyro movement

31 gyro movement

32 gyro movement

33 gyro movement

84 gyro movement

35 gyro movement

, pitch and yaw

, pitch and yaw

pitch and yaw

pitch and yaw

, pitch and

, pitch and

, pitch and

, pitch and

, pitch and

roll and

roll and

roll and

roll and

roll and

roll and

roll and

roll and

roll and

roll and

roll and

rules- axis

rules- axis

rules- axis

rules- axis

rules- axle

rules- axis

rules- axis

rules- axis

rules- axis

rules- axle

raw

raw

raw

raw

raw

raw

raw

taw

taw

taw

taw

taw

_itch

_itch

_itch

_itch

direction-

direction-

direction-

direction-

direction-

direction-

direction-

directlon-

direction-

direction-

prime mode

prime mode

prime mode

prime mode

prime mode

prime mode

prime mode

prime mode

prime mode

prime mode

94

36 gyro movementrules- axis direction- prime mode
37 gyro movementrules- axis direction- prime mode
38 back up modelogic for side a - no gyro
39 back up modelogic for side a - no gyro
40 back up mode logic for side a - no gyro

41 back up mode logic for side a - no gyro

42 back up mode logic for side a - no gyro

43 back up mode logic for side a - no gyro

44 back up mode logic for side a - no gyro

45 back up mode logic for side a - no gyro

46 back up mode logic for side a - no gyro

4Z back up mode logic for side a - no gyro

48 back up mode logic for side a - no gyro

49 back up mode logic for side a - no gyro

50 back up mode logic for side b - no gyro

51 back up mode logic for side b - no gyro

52 back up mode logic for side b - no gyro

53 back up mode logic for side b - no gyro

54 back up mode logic for side b - no gyro

55 back up mode logic for side b - no gyro

56 back up mode logic for side b - no gyro

57 back up mode logic for side b - no gyro

58 back up mode logic for side b - no gyro

59 back up mode logic for side b - no gyro

60 back up mode logic for side b - no gyro

61 back up mode logic for side b - no gyro

62 gyro movement rules- axls direction- back-up mode

63 gyro movement rules- axls direction- back-up mode

64 gyro movement rules- axls direction- back-up mode

65 gyro movement rules- axls direction- back-up mode

66 gyro movement rules- axls direction- back-up mode

67 gyro movement rules- axls direction- back-up mode

88 gyro movement rules- axls direction- back-up mode

69 gyro movement rules- axis direction- back-up mode

70 gyro movement rules- axls direction- back-up mode

71 gyro movement rules- axls direction- back-up mode

72 gyro movement rules- axls direction- back-up mode

73 gyro movement rules- axls direction- back-up mode

74 cea-failure recovery; tea a rules

75 cea-failure recovery; cea a rules

76 cea-failure recovery; cea a rules

77 tea-failure recovery; cea a rules

78 cea-failure recovery; cea a rules

79 tea-failure recovery; cea a rules

80 cea-failure recovery; cea a rules

81 cea-failure recovery; cea b rules

82 cea-failure recovery; cea b rules

83 tea-failure recovery; cea b rules

95

84 cea-failure recovery; cea b rules

85 cea-failure recovery; cea b rules

86 cea-failure recovery; cea b rules

87 cea-failure recovery; cea b rules

88 thruster firing failure rules

89 thruster

90 thruster

91 thruster

92 thruster

93 thruster

94 thruster

firing failure rules

firing failure rules

firing failure rules

firing failure rules

firing failure rules

firing failure rules

MMU-FDIR : A

The primary-rules are:

38 back up mode logic for side a - no gyro

82 cea-failure recovery; cea b rules

94 thruster firing failure rules

_ DISTANCE METRIC => TOTAL _

rules belonging to the group 38 are:

38 back up mode logic for side a - no gyro

I improper cea behavior

2 logic for x,

3 logic for x,

4 logic for x,

5 logic for x,

6 logic for x,

7 logic for x,

8 logic for x,

pitch and yaw

pitch and yaw

pitch and yaw

pitch and yaw

pitch and yaw

pitch and yaw

pitch and yaw

9 logic for x, pitch and yaw

10 logic for x, pitch and yaw

II logic for x, pitch and yaw

12 logic for x, pitch and

13 logic for x, pitch and

14 logic for x, pitch and

15 logic for y, roll and

16 logic for y, roll and

17 logic for y, roll and

18 logic for y, roll and

19 logic for y, roll and

20 logic for y, roll and

yaw

yaw

yaw

yaw

yaw

yaw

yaw

yaw

yaw

96

21 logic for y, roll and

22 logic for z, roll and

23 logic for z, roll and

24 logic for z, roll and

25 logic for z, roll and

,aw

_itch

_itch

_itch

_itch

26 gyro movement

27 gyro movement

28 gyro movement

29 gyro movement

30 gyro movement

31 gyro movement

32 gyro movement

33 gyro movement

34 gyro movement

35 gyro movement

36 gyro movement

37 gyro movement

39 back up mode logic

40 back up mode logic

41 back up mode logic

42 back up mode logic

43 back up mode logic

44 back up mode logic

45 back up mode logic

46 back up mode logic

47 back up mode logic

48 back up mode logic

49 back up mode logic

50 back up mode logic

51 back up mode logic

52 back up mode logic

53 back up mode logic

54 back up mode logic

55 back up mode logic

56 back up mode logic

57 back up mode logic

58 back up mode logic

59 back up mode logic

60 back up mode logic

61 back up mode logic

62 gyro movement

63 gyro movement

64 gyro movement

65 gyro movement

66 gyro movement

67 gyro movement

68 gyro movement

69 gyro movement

rules- axls direction- prlme

rules- axis direction- prlme

rules- axls direction- prlme

rules- axle direction- prlme

rules- axle direction- prlme

rules- axle direction- prlme

rules- axle direction- prlme

rules- axls direction- prlme

rules- axls direction- prlme

rules- axis directlon- prlme

rules- axls directlon- prlme

rules- axis directlon- prlme

for side a - no gyro

for side a - no gyro

for side a - no gyro

for side a - no gyro

for side a - no gyro

for side a - no gyro

for side a - no gyro

for side a - no gyro

for side a - no gyro

for side a - no gyro

for side a - no gyro

for" side b - no gyro

for side b - no gyro

for side b - no gyro

for side b - no gyro

for side b - no gyro

for side b - no gyro

for side b - no gyro

for side b - no gyro

for side b - no gyro

for side b - no gyro

for side b - no gyro

for side b - no gyro

rules- axle

rules- axle

rules- axls

rules- axls

rules- axis

rules- axis

rules- axle

rules- axle

mode

mode

mode

mode

mode

mode

mode

mode

mode

mode

mode

mode

direction- back-up mode

direction- back-up mode

direction- back-up mode

direction- back-up mode

direction- back-up mode

direction- back-up mode

direction- back-up mode

direction- back-up mode

97

70 gyro movement rules- axis direction- back-up mode

71 gyro movement rules- axis direction- back-up mode

72 gyro movement rules- axis direction- back-up mode

73 gyro movement rules- axis direction- back-up mode

rules belonging to the group 82 are:

82 cea-failure recovery; cea b rules

74 cea-failure recovery; cea a rules

75 cea-failure recovery; cea a rules

76 cea-failure recovery; cea a rules

77 cea-failure recovery; cea a rules

78 cea-failure recovery; cea a rules

79 cea-failure recovery; cea a rules

80 cea-failure recovery; cea a rules

81 cea-failure recovery; tea b rules

83 cea-failure recovery; cea b rules

84 tea-failure recovery; cea b rules

85 cea-failure recovery; cea b rules

86 cea-failure recovery; cea b rules

87 cea-failure recovery; cea b rules

90 thruster firing failure rules

91 thruster firing failure rules

92 thruster firing failure rules

93 thruster firing failure rules

rules belonging to the group 94 are:

94 thruster firing failure rules

88 thruster firing failure rules

89 thruster firing failure rules

Average stability: 0.956044

**** DISTANCE METRIC => DATA_FLOW ****

rules belonging to the group 38 are:

38 back up mode logic for side a - no gyro

74 cea-failure recovery; cea a rules

rules belonging to the group 82 are:

82 tea-failure recovery; cea b rules

i improper cea behavior

2 logic for x, pltch and yaw

3 logic for x, pitch and yaw

4 logic for x, pitch and yaw

5 logic for x, pltch and yaw

6 logic for x, pltch and yaw

7 logic for x, pitch and yaw

8 logic for x, pltch and yaw

98

9 logic for x,

I0 logic for x,

II logic for x,

12 logic for x,

13 logic for x,

14 logic for x,

IS

16

17

18

19

2O

21

22

23

24

25

26 gyro

27 gyro

28 gyro

29 gyro

30 gyro

31 gyro

32 gyro

33 gyro

34 gyro

35 gyro

36 gyro

37 gyro

39 back

40 back

41 back

42 back

43 back

44 back

45 back

46 back

47 back

48 back

49 back

50 back

51 back

52 back

53 back

54 back

55 back

56 back

57 back

logic for y

logic for y

logic for y

logic for y

logic for y

logic for y

logic for y

logic for z

logic for z

logic for z

logic for z

movement

movement

movement

movement

movement

movement

movement

movement

movement

movement

movement

movement

up mode logic

up mode logic

up mode logic

up mode logic

up mode logic

up mode logic

up mode logic

up mode logic

up mode logic

up mode logic

up mode logic

up mode logic

up mode logic

up mode logic

up mode logic

up mode logic

up mode logic

up mode logic

up mode logic

pitch and yaw

pitch and yaw

pitch and

pitch and

pitch and

pitch and

roll and

roll and

roll and

roll and

roll and

roll and

roll and

roll and

roll and

roll and

roll and

rules- axle

rules- axle

rules- axis

rules- axls

rules- axis

rules- axis

rules- axle

rules- axis

rules- axis

rules- axis

rules- axls

rules- axls

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

yaw

yaw

yaw

yaw

yaw

yaw

yaw

yaw

yaw

yaw

yaw

pitch

pitch

pitch

_itch

direction-

direction-

directlon-

directlon-

direction-

direction-

direction-

direction-

direction-

direction-

direction-

direction-

prime

prlme

prlme

prime

prime

prime

prime

prlme

prlme

prime

prime

prlme

side a - no gyro

side a - no gyro

side a - no gyro

side a - no gyro

side a - no gyro

side a - no gyro

side a - no gyro

side a - no gyro

side a - no gyro

side a - no gyro

side a - no gyro

side b - no gyro

side b - no gyro

side b - no gyro

side b - no gyro

side b - no gyro

side b - no gyro

side b - no gyro

side b - no gyro

99

mode

mode

mode

mode

mode

mode

mode

mode

mode

mode

mode

mode

58 back up mode logic for side b - no gyro

59 back up mode logic for side b - no gyro

60 back up mode logic for side b - no gyro

61 back up mode logic for side b - no gyro

62 gyro movement rules- axls direction- back-up mode

63 gyro movement rules- axls direction- back-up mode

64 gyro movement rules- axls direction- back-up mode

65 gyro movement rules- axls direction- back-up mode

66 gyro movement rules- axls direction- back-up mode

67 gyro movement rules- axls direction- back-up mode

68 gyro movement rules- axis direction- back-up mode

69 gyro movement rules- axls direction- back-up mode

70 gyro movement rules- axls direction- back-up mode

71 gyro movement rules- axis direction- back-up mode

72 gyro movement rules- axis direction- back-up mode

73 gyro movement rules- axis direction- back-up mode

75 cea-failure recovery; cea a rules

76 cea-failure recovery; tea a rules

77 cea-failure recovery; cea a rules

78 cea-failure recovery; cea a rules

79 cea-failure recovery; cea a rules

80 cea-failure recovery; cea a rules

81 cea-failure recovery; cea b rules

83 cea-failure recovery; cea b rules

84 cea-failure recovery; cea b rules

85 cea-failure recovery; tea b rules

86 cea-failure recovery; cea b rules

87 cea-failure recovery; cea b rules

88 thruster firing failure rules

89 thruster firing failure rules

90 thruster firing failure rules

91 thruster firing failure rules

92 thruster firing failure rules

93 thruster firing failure rules

rules belonging to the group 94 are:

94 thruster firing failure rules

Average stability: 0.285714

**** DISTANCE METRIC => LEFT_ONLY ****

rules belonging to the group 38 are:

38 back up mode logic for side a - no gyro

I improper tea behavior

2 logic for x, pitch and yaw

3 logic for x, pitch and yaw

4 logic for x, pitch and yaw

100

5 logic

6 logic

7 logic

8 logic

9 logic

i0 logic

II logic

12 logic

13 logic

14 logic

15

16

17

18

19

20

21

22

23

24

25

26 gyro

27 gyro

28 gyro

29 gyro

30 gyro

31 gyro

32 gyro

33 gyro

34 gyro

35 gyro

36 gyro

37 gyro

39 back

40 back

41 back

42 back

43 back

44 back

45 back

46 back

47 back

48 back

49 back

50 back

51 back

82 back

83 back

for x, pitch and yaw

for x, pitch and yaw

for x, pitch and yaw

for x, pitch and yaw

for x, pitch and yaw

for x, pitch and yaw

for x, pitch

for x, pitch

for x, pitch

for x, pitch

logic for y, roll

logic for y, roll

logic for y, roll

logic for y, roll

logic for y, roll

logic for y, roll

logic for y, roll

logic for z, roll

logic for z, roll

logic for z, roll

and yaw

and yaw

and yaw

and yaw

and yaw

and yaw

and yaw

and yaw

and yaw

and yaw

and yaw

and pitch

and pitch

and pitch

logic for z,

movement

movement

movement

movement

movement

movement

movement

movement

movement

movement

movement

movement

up mode

up mode

up mode

up mode

up mode

up mode

up mode

up mode

up mode

up mode

up mode

up mode

up mode

up mode

up mode

roll and pitch

rules- axis direction-

rules- axis

rules- axis

rules- axis

rules- axle

rules- axis

rules- axis

rules- axis

rules- axis

rules- axle

direction-

direction-

direction-

direction-

direction-

direction-

directlon-

direction-

directlon-

prime

prime

prlme

prime

prime

prime

prime

prlme

pzlme

prime

primerules- axis direction-

rules- axis direction- prime

logic for side a - no gyro

side a - no gyro

side a - no gyro

side a - no gyro

side a - no gyro

side a - no gyro

side a - no gyro

side a - no gyro

side a - no gyro

side a - no gyro

side a - no gyro

side b - no gyro

side b - no gyro

side b - no gyro

side b - no gyro

101

logic for

logic for

logic for

logic for

logic for

logic for

logic for

logic for

logic for

logic for

logic for

logic for

logic for

logic for

mode

mode

mode

mode

mode

mode

mode

mode

mode

mode

mode

mode

54 back up mode logic for side b - no gyro

55 back up mode logic for side b - no gyro

56 back up mode logic for side b - no gyro

S7 back up mode logic for side b - no gyro

58 back up mode logic for side b - no gyro

59 back up mode logic for side b - no gyro

60 back up mode logic for side b - no gyro

61 back up mode logic for side b - no gyro

62 gyro movement rules- axle direction- back-up mode

63 gyro movement rules- axle direction- back-up mode

64 gyro movement rules- axle direction- back-up mode

65 gyro movement rules- axle direction- back-up mode

66 gyro movement rules- axle direction- back-up mode

67 gyro movement rules- axle direction- back-up mode

68 gyro movement rules- axle direction- back-up mode

69 gyro movement rules- axle direction- back-up mode

70 gyro movement rules- axle direction- back-up mode

71 gyro movement rules- axle direction- back-up mode

72 gyro movement rules- axle direction- back-up mode

73 gyro movement rules- axis direction- back-up mode

rules belonging to the group 82 are:

82 cea-failure recovery; cea b rules

74 cea-failure recovery; cea a rules

75 cea-failure recovery; tea a rules

76 cea-failure recovery; cea a rules

77 cea-failure recovery; cea a rules

78 cea-failure recovery; cea a rules

79 cea-failure recovery; cea a rules

80 cea-failure recovery; cea a rules

81 cea-failure recovery; cea b rules

83 cea-failure recovery; cea b rules

84 cea-failure recovery; cea b rules

85 cea-failure recovery; cea b rules

86 cea-failure recovery; cea b rules

87 cea-failure recovery; cea b rules

rules belonging to the group 94 are:

94 thruster firing failure rules

88 thruster firing failure rules

89 thruster firing failure rules

90 thruster firing failure rules

91 thruster firing failure rules

92 thruster firing failure rules

93 thruster firing failure rules

Average stability: 0.956044

102

**** DISTANCEMETRIC=> TOTAL****

Theglobal stopping criteria is 3 groups:

rules belonging to the group I are:
I improper cea behavior
7 logic for x, pitch and yaw
11 logic for x, pitch and yaw
19 logic for y, roll and yaw
9 logic for x, pitch and yaw
13 logic for x, pitch and yaw
20 logic for y, roll and yaw
27 gyro movementrules- axis direction- prime mode
31 gyro movementrules- axis direction- prime mode
35 gyro movementrules- axis direction- prime mode
29 gyro movementrules- axis direction- prime mode
33 gyro movement rules- axis direction- prime mode

36 gyro movement rules- axis direction- prime mode

2 logic for x, pitch and yaw

38 back up mode logic for side a - no gyro

41 back up mode logic for side a - no gyro

43 back up mode logic for side a - no gyro

5 logic for x, pitch and yaw

39 back up mode logic for side a - no gyro

6 logic for x, pitch and yaw

40 back up mode logic for side a - no gyro

I0 logic for x, pitch and yaw

42 back up mode logic for side a - no gyro

22 logic for z, roll and pitch

46 back up mode logic for side a - no gyro

24 logic for z, roll and pitch

47 back up mode logic for side a - no gyro

14 logic for x, pitch and yaw

44 back up mode logic for side a - no gyro

16 logic for y, roll and yaw

45 back up mode logic for side a - no gyro

18 logic for y, roll and yaw

48 back up mode logic for side a - no gyro

49 back up mode logic for side a - no gyro

72 gyro movement rules- axis direction- back-up mode

26 gyro movement rules- axis direction- prime mode

30 gyro movement rules- axis direction- prime mode

63 gyro movement rules- axis direction- back-up mode

103

67 gyro movement rules- axis direction- back-up mode

64 gyro movement rules- axis direction- back-up mode

68 gyro movement rules- axis direction- back-up mode

34 gyro movement rules- axis direction- prime mode

71 gyro movement rules- axis direction- back-up mode

3 logic for x, pitch and yaw

50 back up mode logic for side b - no gyro

4 logic for x, pitch and yaw

51 back up mode logic for side b - no gyro

8 logic for x, pitch and.yaw

53 back up mode logic for side b - no gyro

12 logic for x, pitch and yaw

55 back up mode logic for side b - no gyro

52 back up mode logic for side b - no gyro

54 back up mode logic for side b - no gyro

60 back up mode logic for side b - no gyro

23 logic for z, roll and pitch

58 back up mode logic for side b - no gyro

25 logic for z, roll and pitch

59 back up mode logic for side b - no gyro

15 logic for y, roll and yaw

56 back up mode logic for side b - no gyro

17 logic for y, roll and yaw

57 back up mode logic for side b - no gyro

21 logic for y, roll and yaw

61 back up mode logic for side b - no gyro

37 gyro movement rules- axle direction- prime mode

73 gyro movement rules- axle direction- back-up mode

28 gyro movement rules- axle direction- prime mode

32 gyro movement rules- axis direction- prime mode

62 gyro movement rules- axle direction- back-up mode

66 gyro movement rules- axle direction- back-up mode

65 gyro movement rules- axle direction- back-up mode

69 gyro movement rules- axle direction- back-up mode

70 gyro movement rules- axle direction- back-up mode

rules belonging to the group 2 are:

74 cea-failure recovery; cea a rules

75 cea-failure recovery; cea a rules

85 cea-failure recovery; cea b rules

78 cea-failure recovery; cea a rules

82 cea-failure recovery; cea b rules

?6 tea-failure recovery; cea a rules

83 cea-failure recovery; cea b rules

79 cea-failure recovery; cea a rules

86 cea-failure recovery; cea b rules

81 cea-failure recovery; cea b rules

77 cea-failure recovery; cea a rules

104

84 cea-failure recovery; cea b rules

80 cea-failure recovery; cea a rules

87 cea-failure recovery; cea b rules

90 thruster firing failure rules

91 thruster firing failure rules

92 thruster firing failure rules

93 thruster firing failure rules

94 thruster firing failure rules

rules belonging to the group 3 are:

88 thruster firing failure rules

89 thruster firing failure rules

MMU-FDIR : LEFT_ONLY : V : 3 groups

**** DISTANCE METRIC => LEFT_ONLY ****

The global stopping criteria is 3 groups:

rules belonging to the group 1 are:

I improper cea behavior

7 logic for x, pitch and yaw

9 logic for x, pitch and yaw

ii logic for x, pitch and yaw

13 logic for x, pitch and yaw

19 logic for y, roll and yaw

20 logic for y, roll and yaw

27 gyro movement rules- axis direction- prlme mode

31 gyro movement rules- axis direction- prlme mode

35 gyro movement rules- axis direction- prlme mode

29 gyro movement rules- axis direction- prime mode

33 gyro movement rules- axis direction- prlme mode

36 gyro movement rules- axis direction- prime mode

2 logic for x, pitch and yaw

38 back up mode logic for side a - no gyro

41 back up mode logic for side a - no gyro

43 back up mode logic for side a - no gyro

5 logic for x, pitch and yaw

39 back up mode logic for side a - no gyro

6 logic for x, pitch and yaw

40 back up mode logic for side a - no gyro

I0 logic for x, pitch and yaw

42 back up mode logic for side a - no gyro

18 logic for y, roll and yaw

48 back up mode logic for side a - no gyro

49 back up mode logic for side a - no gyro

105

72 gyro movementrules- axle direction- back-up mode
26 gyro movementrules- axis direction- prime mode
30 gyro movementrules- axis direction- prime mode
63 gyro movement rules- axis direction- back-up mode

67 gyro movement rules- axis direction- back-up mode

64 gyro movement rules- axis direction- back-up mode

68 gyro movement rules- axis direction- back-up mode

34 gyro movement rules- axis direction- prime mode

71 gyro movement rules- axis direction- back-up mode

3 logic for x, pitch and yaw

50 back up mode logic for side b - no gyro

4 logic for x, pitch and yaw

51 back up mode logic for side b - no gyro

8 logic for x, pitch and yaw

53 back up mode logic for side b - no gyro

12 logic for x, pitch and yaw

55 back up mode logic for side b - no gyro

52 back up mode logic for side b - no gyro

54 back up mode logic for side b - no gyro

60 back up mode logic for side b - no gyro

21 logic for y, roll and yaw

61 back up mode logic for side b - no gyro

37 gyro movement rules- axle direction- prime mode

73 gyro movement rules- axis direction- back-up mode

28 gyro movement rules- axls direction- prime mode

32 gyro movement rules- axis direction- prime mode

62 gyro movement rules- axls direction- back-up mode

66 gyro movement rules- axis direction- back-up mode

65 gyro movement rules- axis direcZion- back-up mode

69 gyro movement rules- axis direction- back-up mode

70 gyro movement rules- axzs direction- back-up mode

14 logic for x, pitch and yaw

44 back up mode logic for side a - no gyro

15 logic for y, roll and yaw

56 back up mode logic for side b - no gyro

16 logic for y, roll and yaw

45 back up mode logic for side a - no gyro

17 logic for y, roll and yaw

57 back up mode logic for side b - no gyro

22 logic for z, roll and pitch

46 back up mode logic for side a - no gyro

23 logic for z, roll and pitch

58 back up mode logic for side b - no gyro

24 logic for z, roll and pitch

47 back up mode logic for side a - no gyro

25 logic for z, roll and pitch

59 back up mode logic for side b - no gyro

106

rules belonging to the group 2 are:

74 cea-failure recovery; tea a rules

81 cea-failure recovery; cea b rules

75 cea-failure recovery; tea a rules

85 cea-failure recovery; tea b rules

76 cea-failure recovery; tea a rules

78 cea-failure recovery; tea a rules

82 cea-failure recovery; tea b rules

83 cea-failure recovery; tea b rules

77 tea-failure recovery; tea a rules

84 cea-failure recovery; tea b rules

79 cea-failure recovery; tea a rules

80 tea-failure recovery; tea a rules

86 cea-failure recovery; tea b rules

87 tea-failure recovery; tea b rules

90 thruster firing failure rules

91 thruster firing failure rules

92 thruster firing failure rules

93 thruster firing failure rules

94 thruster firing failure rules

rules belonging to the group 3 are:

88 thruster firing failure rules

89 thruster firing failure rules

MMU-FDIR : DATA_FLOW : V : 3 groups

**** DISTANCE METRIC => DATA_FLOW ****

The global stopping criteria is 3 groups:

rules belonging to the group I are:

i improper cea behavior

rules belonging to the group

2 logic for x, pitch and yaw

2 are :

7 logic for x, pitch and yaw

9 logic for x, pitch and yaw

74 cea-failure recovery; cea a rules

75 cea-failure recovery; tea a rules

77 cea-failure recovery; cea a rules

76 cea-failure recovery; cea a rules

80 tea-failure recovery; cea a rules

78 cea-failure recovery; tea a rules

79 cea-failure recovery; cea a rules

82 cea-failure recovery; tea b rules

107

84 cea-failure recovery; cea b rules

83 cea-failure recovery; cea b rules

8T cea-failure recovery; cea b rules

85 cea-failure recovery; cea b rules

86 cea-failure recovery; cea b rules

81 cea-failure recovery; cea b rules

90 thruster firing failure rules

91 thruster firing failure rules

92 thruster firing failure rules

93 thruster firing failure rules

94 thruster firing failure rules

13 logic for x, pitch and yaw

20 logic for y, roll and yaw

29 gyro movement rules- axis direction- prime mode

33 gyro movement rules- axis direction- prime mode

36 gyro movement rules- axis direction- prime mode

II logic for x, pitch and yaw

19 logic for y, roll and yaw

27 gyro movement rules- axis direction- prime mode

31 gyro movement rules- axis direction- prime mode

35 gyro movement rules- axis direction- prime mode

5 logic for x, pitch and yaw

6 logic for x, pitch and yaw

10 logic for x, pitch and yaw

14 logic for x, pitch and yaw

16 logic for y, roll and yaw

18 logic for y, roll and yaw

22 logic for z, roll and pitch

24 logic for z, roll and pitch

26 gyro movement rules- axis direction- prime mode

30 gyro movement rules- axis direction- prime mode

34 gyro movement rules- axis direction- prime mode

38 back up mode logic for side a - no gyro

39 back up mode logic for side a - no gyro

40 back up mode logic for side a - no gyro

41 back up mode logic for side a - no gyro

42 back up mode logic for side a - no gyro

43 back up mode logic for side a - no gyro

44 back up mode logic for side a - no gyro

45 back up mode logic for side a - no gyro

46 back up mode logic for side a - no gyro

47 back up mode logic for side a - no gyro

48 back up mode logic for side a - no gyro

49 back up mode logic for side a - no gyro

63 gyro movement rules- axis direction- back-up mode

64 gyro movement rules- axis direction- back-up mode

6T gyro movement rules- axis direction- back-up mode

68 gyro movement rules- axis direction- back-up mode

I08

71 gyro movement rules- axis direction- back-up mode

72 gyro movement rules- axis direction- back-up mode

3 logic for x, pitch and yaw

4 logic for x, pitch and yaw

8 logic for x, pitch and yaw

12 logic for x, pitch and yaw

15 logic for y, roll and yaw

17 logic for y, roll and-yaw

21 logic for y, roll and yaw

23 logic for z, roll and pitch

25 logic for z, roll and pitch

28 gyro movement rules- axis direction- prime mode

32 gyro movement rules- axis direction- prime mode

3Z gyro movement rules- axis direction- prime mode

SO back up mode logic for side b - no gyro

51 back up mode logic for side b - no gyro

52 back up mode logic for side b - no gyro

53 back up mode logic for side b - no gyro

54 back up mode logic for side b - no gyro

55 back up mode logic for side b - no gyro

56 back up mode logic for side b - no gyro

57 back up mode logic for side b - no gyro

58 back up mode logic for side b - no gyro

59 back up mode logic for side b - no gyro

60 back up mode logic for side b - no gyro

61 back up mode logic for side b - no gyro

62 gyro movement rules- axis direction- back-up mode

65 gyro movement rules- axis direction- back-up mode

66 gyro movement rules- axis direction- back-up mode

69 gyro movement rules- axis direction- back-up mode

70 gyro movement rules- axis direction- baca-up mode

73 gyro movement rules- axis direction- back-up mode

rules belonging to the group 3 are:

88 thruster firing failure rules

89 thruster firing failure rules

109

Report Documentation Page

1, Reoor_ No. I

INASA CR-4372

4. Title and SuOtztle

2. Government Accession NO.

Rule Groupings" A Software Engineering Approach
Towards Verification of Expert Systems

3. Rec=p_ent's Catalog No.

5. Reuo_ Date

May 1991

6. Performing Organization Coae

7, AutmortsJ

Mala Mehrotra

9. P_rform_ng Organ=zatlon Name aria Aclclress

ViGYAN, Inc.
30 Research Drive, Hampton VA 23666-1325

?2. Soonsonng Agency Name ana Aaare_

National Aeronautics and

Langley Research Center
Hampton VA 23665-5225

Space Administration

J 8.

10.

ll.

13,

14.

Pe_ormmg Organ=zatton Repo_ No.

HQ91-015
Work Unit No.

549-03-31-0'3

Contract or Grant NO.

NASI-18585, Task 59

Type of Re0ort ana Per_oci Covered

Contractor Report

Sponsonng Agency Coae

15. Su_Diementa_ Notes

NASA Langley Technical Monitor: Sally C. Johnson

16. Abstra_

Currently, most expert system shells do not address soRwaze engineering issues for developing

or maintaining expert systems. As a result, large expert systems tend to be incomprehensible,

di_cult to debug or modify and almost impossible to verify or validate. Partitioning rule-based

systems into rule groups which reflect the underlying subdomains of the problem should enhance

the comprehensibility, maintainability and reliabilityof expert-system soRware. In this paper, we

elaborate our attempts to semi-automatically structure s CLIPS rule base into groups of related

rules that carry the same type of information. Di_Terent distance metrics that capture relevant

information from the ¢ules for grouping axe discussed. Two clustering algorithms that paxtition the

rule base into groups of related rules are given. Two independent evaluation criteria axe developed

to measure the effectiveness of the grouping strategies. Results of our experiment with three sample

rule bases are presented.

17. Key WOf_ (Suggest_ by Au_|s}}

rule groups
verification
validation

knowledge-based systems

clustering
pattern-matching

18. Oistmbu_n S_tement

Unclassified - Unlimited
Subject Category 61

19, Security Clas,_f. (of t_is report} 20. Security C]a_r_if, Iof this page} 21. No. of pages

Uncl as si fied Unc] as s i fied lO9

NASA FORM 162S OCT

For sale by the National Technical Information Service, Springfield, Virginia 22161-2171 N AS A-I.,m_gley, 1991

