GRID3D-v2: An Updated Version of the GRID2D/3D Computer Program for Generating Grid Systems in Complex-Shaped Three-Dimensional Spatial Domains

E. Steinthorsson and T.I-P. Shih
Carnegie Mellon University
Pittsburgh, Pennsylvania

and

R.J. Roelke
Lewis Research Center
Cleveland, Ohio

June 1991
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.0</td>
<td>THEORY AND METHODOLOGY</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Boundary Curves and Distribution of Grid Points</td>
<td>3</td>
</tr>
<tr>
<td>2.2</td>
<td>Connecting Curves Based on Tension Spline Interpolation</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Specification of Derivatives at Boundaries</td>
<td>10</td>
</tr>
<tr>
<td>3.0</td>
<td>USING GRID2D/3D-v2</td>
<td>12</td>
</tr>
<tr>
<td>3.1</td>
<td>Generation of a 3-D Grid Using GRID3D-v2</td>
<td>12</td>
</tr>
<tr>
<td>3.2</td>
<td>Example: A Spatial Domain With Irregular Boundaries</td>
<td>13</td>
</tr>
<tr>
<td>4.0</td>
<td>SUMMARY</td>
<td>15</td>
</tr>
</tbody>
</table>

APPENDIXES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Support Programs</td>
<td>15</td>
</tr>
<tr>
<td>A.1</td>
<td>Description of Support Programs</td>
<td>15</td>
</tr>
<tr>
<td>A.2</td>
<td>Listing of PRSURF</td>
<td>20</td>
</tr>
<tr>
<td>A.3</td>
<td>Listing of 3DPREP</td>
<td>28</td>
</tr>
<tr>
<td>A.4</td>
<td>Listing of EDGE</td>
<td>42</td>
</tr>
<tr>
<td>A.5</td>
<td>Listing of EDGPREP</td>
<td>50</td>
</tr>
<tr>
<td>A.6</td>
<td>Listing of GRIDTST</td>
<td>54</td>
</tr>
<tr>
<td>B</td>
<td>Listing of GRID3D-v2</td>
<td>58</td>
</tr>
</tbody>
</table>

REFERENCES 93
1.0 INTRODUCTION

GRID2D/3D (refs. 1 and 2) is a powerful grid-generation package, capable of generating grid systems for complicated geometries in both two and three dimensions. This package, which employs algebraic grid-generation techniques, is computationally efficient and easy to use. Nonetheless, when the geometry is unusually complex (e.g., see fig. 1-1), the partitioning of the geometry into zones or blocks that are suitable for GRID2D/3D becomes very cumbersome. In order to make GRID2D/3D more versatile and readily applicable to geometries like the one shown in figure 1-1, a number of modifications were made to the package. These modifications are as follows:

(1) specification of boundary curves has been made more flexible;
(2) control over grid-point distribution has been increased;
(3) new interpolating functions based on tension splines have been added; and
(4) control over orthogonality at boundary surfaces has been increased.
GRID2D/3D is made up of two programs, GRID2D and GRID3D. GRID2D generates grid systems for two-dimensional (2-D) spatial domains, and GRID3D generates grid systems for three-dimensional (3-D) domains. The aforementioned modifications were made to GRID3D only. In this report, the original version of GRID3D as reported in references 1 and 2 will be referred to as GRID3D-v1. The new modified version will be referred to as GRID3D-v2.

In the remainder of this report, the theory and method behind the modifications are described, and the use of GRID3D-v2 is explained and illustrated by an example.
2.0 THEORY AND METHODOLOGY

In this section, the theory and methodology behind the modifications that were incorporated into GRID3D-v2 are described. First, specification of boundary curves is discussed, and a new approach for controlling distribution of grid points is explained. Next, the functional forms of new tension-spline based connecting curves are derived, and the properties of these functions examined. Finally, control of orthogonality of grid lines at boundaries is discussed.

Note that throughout this section, the reader is assumed to be familiar with the theory behind GRID3D-v1 which is described in reference 1.

2.1 Boundary Curves and Distribution of Grid Points

When generating 3-D grid systems with GRID3D-v1 or GRID3D-v2, we assume that the geometry of the spatial domain for which a grid is to be generated is completely described by the edge curves of the boundary surfaces (as used here, the edge curves are the four plane or twisted curves that define the boundary of a surface). The algorithms used in GRID3D-v1 and GRID3D-v2 were designed to construct grid systems from the edge curves; however, these algorithms differ in the way they specify edge curves and control grid-point distributions. This difference is described in this section.

In GRID3D-v1, the following approach is used:

(1) Each edge curve is given by specifying a set of node points that lie on the curve. From these node points, a parametric description of the curve is constructed by using tension-spline interpolation.

(2) The distribution of grid points within the domain (including edge curves) is controlled by specifying three one-dimensional stretching functions -- one for each family of grid lines (i.e., one for ξ-grid lines, one for η-grid lines, and one for ζ-grid lines).

Although this approach provides flexibility in generating grid systems within complex-shaped spatial domains, it is inadequate in some cases. For example, it does not allow for edge curves to have derivative discontinuities such as those at cusps. Also, it does not provide adequate control over distribution of grid points in regions where geometry changes appreciably. As a specific example, the distribution of grid points on all constant-ξ surfaces must be the same and cannot, even with partitioning, be made to vary from one section of the grid system to the next.
To overcome the shortcomings of GRID3D-v1, the following approach was used in GRID3D-v2:

(1) Each edge curve is defined by specifying the location of the grid points on the curve. This can be done by either one of the following two procedures: (a) Specify a set of node points that lie on the edge curve for interpolation with a tension spline, and specify a stretching function that controls where on the edge curve the grid points lie. (b) Specify the grid points directly (in this case, a stretching function is not specified by the user, rather it is calculated based on arc length as will be shown herein).

(2) The grid point distribution along grid lines of a given family is that obtained by the bilinear interpolation of the stretching functions used for the edge curves belonging to that family.

The specification of edge curves as described under (1(a)) is self explanatory, but the calculation of stretching functions as described under (1(b)) and (2) requires further explanation. For illustration, consider the ζ-family of grid lines. Suppose all edge curves belonging to this family of grid lines are specified by using procedure (1(a)), and suppose the stretching functions $\zeta_{00}(\xi)$, $\zeta_{10}(\xi)$, $\zeta_{01}(\xi)$ and $\zeta_{11}(\xi)$ describe the distribution of the grid points on the edge curves located at $(\xi = 0, \eta = 0)$, $(\xi = 1, \eta = 0)$, $(\xi = 0, \eta = 1)$ and $(\xi = 1, \eta = 1)$, respectively. In GRID3D-v2, the stretching function for a ζ-grid line at any $\zeta-\eta$ location is given by the bilinear interpolation of the stretching functions at the edge curves; namely

$$\zeta_{\xi\eta}(\xi) = \left[\zeta_{00}(\xi) (1-\xi) + \zeta_{10}(\xi) \xi \right] (1-\eta) + \left[\zeta_{01}(\xi) (1-\xi) + \zeta_{11}(\xi) \xi \right] \eta \tag{2.1}$$

Now, instead of all edge curves being defined by (1(a)), suppose that the edge curve at $\xi = 0$ and $\eta = 0$ is defined by using procedure (1(b)); that is, by specifying the grid point coordinates directly. In order to use equation (2.1) for this case, a stretching function must be calculated for the edge curve. Since the stretching function is needed only at the grid point-locations along the edge curve, it can be calculated by using approximate arc length as follows:

$$\zeta_{00}(\zeta_k) = 0 \quad \text{for } k=1 \tag{2.2a}$$

and

$$\zeta_{00}(\zeta_k) = \frac{d_k}{d_{KL}} \quad \text{for } k=2,3,4,\ldots,KL \tag{2.2b}$$

where

$$d_k = \sum_{n=2}^{k} \left[(x_n-x_{n-1})^2 + (y_n-y_{n-1})^2 + (z_n-z_{n-1})^2 \right]^{1/2} \tag{2.2c}$$

and

4
\[\zeta_k = (k-1) \Delta \zeta \quad \Delta \zeta = 1/(KL-1) \quad (2.2d) \]

In equation (2.2), \(k = 1,2,3,\ldots,KL \) denotes the grid points on the edge curve; \(KL \) is the total number of grid points on the curve; and \(x_n, y_n \) and \(z_n \) are the \(x-, y- \) and \(z- \)coordinates of the \(n \)-th grid point on the curve.

The same approach as that just described for the \(\zeta \)-family of grid lines is employed to determine the stretching functions for the \(\xi \)- and \(\eta \)-families of grid lines. This approach gives a smooth distribution of grid points throughout the domain.

Finally, note that all stretching functions available in GRID3D-v1 for controlling the distribution of grid points in the entire domain are available in GRID3D-v2 for controlling the distribution of grid points along edge curves defined by using procedure (1(a)) (i.e., by specifying a set of node points that lie on the edge curve and interpolating with a tension spline). In GRID3D-v2, a stretching function that allows asymmetric clustering of grid points along the edge curve was added. The new stretching function, which was developed by Vinokur (ref. 3), is given here.

Let \(t \in [0,1] \) be normalized distance or any monotonic parameter along a curve, and let \(\xi \in [0,1] \) be the computational coordinate along which grid points are equally spaced. Two user controlled parameters, \(s_0 \) and \(s_1 \), and two secondary parameters, \(A \) and \(B \), are defined as

\[s_0 = \frac{d\xi(t = 0)}{dt} \quad \text{and} \quad s_1 = \frac{d\xi(t = 1)}{dt} \quad s_0, s_1 > 0 \quad (2.3) \]

\[A = \sqrt{s_0/s_1} \quad \text{and} \quad B = \sqrt{s_0 \cdot s_1} \quad (2.4) \]

In terms of these parameters, the functional form of the stretching function can be written as

\[t(\xi) = \frac{u(\xi)}{A + (1-A) u(\xi)} \quad (2.5) \]

where the function \(u(\xi) \) depends on the value of the parameter \(B \), as shown in the following equations.

If \(B > 1.001 \), then

\[u(\xi) = \frac{1}{2} + \frac{\tanh[\Delta y (\xi - \frac{1}{2})]}{2 \tanh[\Delta y/2]} \quad (2.6a) \]
where Δy is obtained from the relation

$$B = \frac{\sinh(\Delta y)}{\Delta y} \quad (2.6b)$$

If $B < 0.999$, then

$$u(\xi) = \frac{1}{2} + \frac{\tan[\Delta x (\xi - \frac{1}{2})]}{2 \tan[\Delta x/2]} \quad (2.7a)$$

where Δx is obtained from the relation

$$B = \frac{\sin(\Delta x)}{\Delta x} \quad (2.7b)$$

Finally, if $0.999 < B < 1.001$, then

$$u(\xi) = \xi \left[1 + 2 (B - 1) (\xi - \frac{1}{2}) (1 - \xi) \right] \quad (2.8)$$

The amount of clustering produced by the stretching function is controlled by the parameters s_0 and s_1 which are defined by equation (2.3). If s_0 and s_1 are greater than one, then grid points are clustered near the boundaries where $t = 0$ and $t = 1$. The greater s_0 and s_1, the greater is the clustering of grid points near the $t = 0$ and $t = 1$ boundaries, respectively. If s_0 and s_1 are less than one, then the grid spacing is larger near the boundaries than in the interior; the smaller s_0 and s_1, the greater the grid spacing near the boundaries.

Frequently, when using the stretching function given by equations (2.3) to (2.8), we must either solve equation (2.6(b)) for Δy, or solve equation (2.7(b)) for Δx. Vinokur (ref. 3) developed approximate analytical relations for both of these inversion problems as follows:

For equation (2.6(b)), which is used when $B > 1.001$, the approximate inverse when $1.001 < B < 2.7829681$ is

$$\Delta y = \sqrt{6\beta} \left(1 - 0.15\beta + 0.057321429\beta^2 - 0.024907295\beta^3
+ 0.0077424461\beta^4 - 0.0010794123\beta^5 \right) \quad (2.9a)$$

where

$$\beta = B - 1 \quad (2.9b)$$
When $B > 2.7829681$,

$$\Delta y = v + (1 + 1/v) \ln(2v) - 0.02041793 + 0.24902722w + 1.9496443w^2 - 2.6294547w^3 + 8.56795911w^4$$ (2.10a)

where

$$v = \ln(B)$$ (2.10b)

and

$$w = (1/B) - 0.028527431$$ (2.10c)

For equation (2.7(b)), which is used when $B < 0.999$, the approximate inverse when $0 < B < 0.26938972$ is

$$\Delta x = \pi [1 - B + B^2 - (1 + \pi^2 / 6) B^3 + 6.794732B^4 - 13.205501B^5 + 11.726095B^6]]$$ (2.11)

When $0.26938972 < B < 0.999$,

$$\Delta x = \sqrt{6} \beta (1 + 0.15\beta + 0.057321429\beta^2 + 0.048774238\beta^3 - 0.053337753\beta^4 + 0.075845134\beta^5)$$ (2.12a)

where

$$\beta = 1 - B$$ (2.12b)

2.2 Connecting Curves Based on Tension Spline Interpolation

Experience has shown that Hermite interpolation (cubic polynomials) as used in GRID3D-v1 sometimes results in connecting curves with too much curvature. In GRID3D-v2, the Hermite interpolation is replaced by tension-spline interpolation. The most attractive feature of tension-spline interpolation is that as the tension parameter is increased from zero to infinity, the interpolation function varies from being a cubic polynomial to being a linear polynomial. Thus, tension-spline interpolation offers increased control over the shape of the grid lines in the grid system. In this section, a derivation of the tension-spline interpolation function is given for the two- and four-
boundary methods. First, the interpolation for an arbitrary variable is derived. Then, the application to algebraic grid generation is illustrated.

The tension-spline interpolation function is derived as follows: suppose the variable X is a function of the parameter s on an interval $[0,1]$, but only $X(0)$, $X(1)$, $X'(0)$ and $X'(1)$ (X' denotes dX/ds) are known. A tension-spline interpolation of $X(s)$ on the interval $[0,1]$ is sought. A tension-spline interpolation of $X(s)$ is traditionally written in terms of $X(0)$, $X(1)$, $X''(0)$ and $X''(1)$, where $X'' = d^2X/ds^2$, as follows (see, e.g., ref. 4):

$$X(s) = \frac{X''(0) \sinh[\sigma(1-s)]}{\sigma^2 \sinh[\sigma]} + \left(X(0) - \frac{X''(0)}{\sigma^2} \right) (1-s)$$

$$+ \frac{X''(1) \sinh[\sigma s]}{\sigma^2 \sinh[\sigma]} + \left(X(1) - \frac{X''(1)}{\sigma^2} \right) s$$

where σ is the tension parameter. By differentiating equation (2.13) and evaluating the resulting equation at the end points $s = 0$ and $s = 1$, we obtain

$$X'(0) = - \frac{X''(0) \cosh[\sigma]}{\sigma \sinh[\sigma]} \left(X(0) - \frac{X''(0)}{\sigma^2} \right) + \frac{X''(1) \cosh[\sigma]}{\sigma \sinh[\sigma]} + \left(X(1) - \frac{X''(1)}{\sigma^2} \right)$$

(2.14a)

and

$$X'(1) = - \frac{X''(0) \cosh[\sigma]}{\sigma \sinh[\sigma]} \left(X(0) - \frac{X''(0)}{\sigma^2} \right) + \frac{X''(1) \cosh[\sigma]}{\sigma \sinh[\sigma]} + \left(X(1) - \frac{X''(1)}{\sigma^2} \right)$$

(2.14b)

The above two simultaneous equations can be solved to give expressions for $X''(0)$ and $X''(1)$ in terms of $X(0)$, $X(1)$, $X'(0)$ and $X'(1)$. Substituting the resulting expressions into equation (2.13) gives

$$X(s) = X(0)h_1(s) + X(1)h_2(s) + X'(0)h_3(s) + X'(1)h_4(s)$$

(2.15)

$$h_1(s) = c_1(1-s) + c_2s + c_2 \left(\frac{\sinh[\sigma(1-s)] - \sinh[\sigma s]}{\sinh[\sigma]} \right)$$

(2.16a)

$$h_2(s) = c_1s + c_2(1-s) - c_2 \left(\frac{\sinh[\sigma(1-s)] - \sinh[\sigma s]}{\sinh[\sigma]} \right)$$

(2.16b)
\[h_3(s) = c_3 \left((1-s) - \frac{\sinh[\sigma(1-s)]}{\sinh[\sigma]} \right) + c_4 \left(s - \frac{\sinh[\sigma s]}{\sinh[\sigma]} \right) \] (2.16c)

\[h_4(s) = -c_4 \left((1-s) - \frac{\sinh[\sigma(1-s)]}{\sinh[\sigma]} \right) - c_3 \left(s - \frac{\sinh[\sigma s]}{\sinh[\sigma]} \right) \] (2.16d)

where

\[c_1 = 1 - c_2 \] (2.17a)

\[c_2 = \frac{\sinh[\sigma]}{2 \sinh[\sigma] - \sigma \cosh[\sigma] - \sigma} \] (2.17b)

\[c_3 = \frac{-\alpha}{(\beta^2 - \alpha^2)} \sinh[\sigma] \] (2.17c)

\[c_4 = \frac{\beta}{(\beta^2 - \alpha^2)} \sinh[\sigma] \] (2.17d)

\[\alpha = \sigma \cosh[\sigma] - \sinh[\sigma] \] (2.17e)

\[\beta = \sinh[\sigma] - \sigma \] (2.17f)

Equations (2.15) to (2.17) can be used to interpolate any function on an interval \([0,1]\), when
the function's values and its first derivatives are known at the end points of the interval. The
application of these equations to algebraic grid generation is straightforward. Consider, for example,
the two-boundary technique (ref. 1). Suppose we want to generate a grid system between two
constant-\(\eta\) boundary surfaces. The formulation in this case can be written as follows:

\[r(\xi, \eta, \zeta) = r(\xi, \eta = 0, \zeta) h_1(\eta) + r(\xi, \eta = 1, \zeta) h_2(\eta) \]

\[+ \frac{\partial r(\xi, \eta = 0, \zeta)}{\partial \eta} h_3(\eta) + \frac{\partial r(\xi, \eta = 1, \zeta)}{\partial \eta} h_4(\eta) \] (2.18)

where
The above equation has the same form as if Hermite interpolation were used, except for the definition of the functions h_1, h_2, h_3, and h_4, which in the case of Hermite interpolation are cubic polynomials (ref. 1). Note, however, that the functions used in tension-spline interpolation (eqs. (2.16) and (2.17)) have the property that as $\sigma \to 0$, h_1, h_2, h_3, and h_4 approach the cubic polynomials used in Hermite interpolation (see ref. 1). Also, as $\sigma \to 0$, $h_1(s) \to (1-s)$, $h_2(s) \to s$, $h_3(s) \to 0$, and $h_4(s) \to 0$, giving rise to linear connecting functions (Lagrange interpolation; see ref. 1).

2.3 Specification of Derivatives at Boundaries

When the two- and four-boundary methods, as described in reference 1, are used to generate grid systems, the first-order derivatives involved (e.g., $\partial r(\xi,\eta = 0,\zeta)/\partial \eta$ and $\partial r(\xi,\eta = 1,\zeta)/\partial \eta$ in equation (2.18)) need to be specified. In GRID3D-v1 and GRID3D-v2, these derivatives are specified such that grid lines intersect boundary surfaces orthogonally. In this section, the methods used in GRID3D-v1 and GRID3D-v2 to calculate these derivatives will be explained. The two-boundary technique given by equation (2.18) will be used to illustrate the concepts.

In GRID3D-v1, the derivatives $\partial r(\xi,\eta = 0,\zeta)/\partial \eta$ and $\partial r(\xi,\eta = 1,\zeta)/\partial \eta$ (eq. (2.18)) are chosen as follows:

$$
\frac{\partial r(\xi,\eta = 0,\zeta)}{\partial \eta} = K_{\eta 1}(\xi,\zeta) \, t_{\eta 1} \quad \frac{\partial r(\xi,\eta = 1,\zeta)}{\partial \eta} = K_{\eta 2}(\xi,\zeta) \, t_{\eta 2}
$$

(2.20)

where

$$
t_{\eta 1} = - \frac{\partial r(\xi,\eta = 0,\zeta)}{\partial \xi} \times \frac{\partial r(\xi,\eta = 0,\zeta)}{\partial \zeta}
$$

(2.21a)

$$
t_{\eta 2} = - \frac{\partial r(\xi,\eta = 1,\zeta)}{\partial \xi} \times \frac{\partial r(\xi,\eta = 1,\zeta)}{\partial \zeta}
$$

(2.21b)

In equation (2.20), the terms $K_{\eta 1}(\xi,\zeta)$ and $K_{\eta 2}(\xi,\zeta)$ -- that is, the K-factors -- are specified by the user and are intended to control the magnitude of the derivatives. However, the magnitude of the
derivatives will also depend on the magnitude of the vectors \(t_{\eta 1} \) and \(t_{\eta 2} \), which in turn depend both on the geometry of the boundary surfaces at \(\eta = 0 \) and \(\eta = 1 \), respectively, and on the grid spacing on the surfaces. Thus, full control cannot be exerted over the magnitudes of the derivative terms \(\partial r(\xi, \eta = 0, \zeta) / \partial \eta \) and \(\partial r(\xi, \eta = 1, \zeta) / \partial \eta \), and for complex-shaped geometries this may pose a problem.

In order to overcome the aforementioned problems, in GRID3D-v2 the derivative terms \(\partial r(\xi, \eta = 0, \zeta) / \partial \eta \) and \(\partial r(\xi, \eta = 1, \zeta) / \partial \eta \) were defined as follows:

\[
\frac{\partial r(\xi, \eta = 0, \zeta)}{\partial \eta} = K_{\eta 1}(\xi, \zeta) \, e_{\eta 1} \quad \frac{\partial r(\xi, \eta = 1, \zeta)}{\partial \eta} = K_{\eta 2}(\xi, \zeta) \, e_{\eta 2}
\]

(2.22)

where \(e_{\eta 1} \) and \(e_{\eta 2} \) are unit vectors that are normal to the boundary surfaces at \(\eta = 0 \) and \(\eta = 1 \), respectively; that is

\[
e_{\eta 1} = \frac{t_{\eta 1}}{|t_{\eta 1}|} \quad e_{\eta 2} = \frac{t_{\eta 2}}{|t_{\eta 2}|}
\]

(2.23)

This approach allows total control over the magnitude of the derivatives \(\partial r(\xi, \eta = 0, \zeta) / \partial \eta \) and \(\partial r(\xi, \eta = 1, \zeta) / \partial \eta \) through the K-factors alone.

Finally, note that in GRID3D-v1, the K-factors were taken to be constants on each boundary surface, even though the authors realized that they could be allowed to vary. In GRID3D-v2, the K-factors are allowed to vary from point to point and can be controlled by the user.

In the next section, we show how GRID3D-v2 is used to generate grid systems. Several auxiliary programs were written to assist grid generation with GRID3D-v2. A description of these programs is given in appendix A. A complete listing of the GRID3D-v2 computer program is given in appendix B.
3.0 USING GRID3D-v2

In this section, the use of GRID3D-v2 is described. The section consists of two parts: first, an explanation of generating 3-D grid system with GRID3D-v2; and second, an example of such a grid system generated by using GRID3D-v2.

3.1 Generating a Three-Dimensional Grid System with GRID3D-v2

When using GRID3D-v2, the user must answer the following questions:

1. Should the two boundary technique or the four boundary technique be used?
2. Should any edge curve be defined by specifying the grid points directly?
3. How many grid points are desired in each of the \(\xi \), \(\eta \), and \(\zeta \) directions?
4. Is any clustering of grid points needed?
5. What K-factors should be used (see section 2.3 and pp. 18 to 20 in ref. 1) and are constant K-factors sufficient?

Once these questions have been answered, an input file for GRID3D-v2 must be constructed. The form of the input file is shown in figure 3-1. The various parameters in the input file are explained in table 3.1. The surface and edge curve numbering scheme embedded in GRID3D-v2 is shown in figure 3-2. Note that some of the edge curves are identical; that is, curves 3 and 9 are identical and so are curves 4 and 13, curves 7 and 10, and curves 8 and 14 (for further explanation of the edge curve numbering scheme, see p. 5 of ref. 2).

In the input file are values for K-factors at boundary surfaces -- a single value is assigned for all grid points on each surface. The user can modify the K-factor for any individual grid point or groups of grid points on each surface by adding FORTRAN statements into subroutine KFACTOR (see listing in Appendix B). Note that in addition to being used to generate grid points in the interior of the spatial domain, K-factors are also used to generate grid points on boundary surfaces themselves. For this latter case, the relevant K-factors are those at grid points that lie on the four edge curves bounding the surface. These K-factors can also be modified in subroutine KFACTOR.

Once an input file has been prepared (and an executable file created for GRID3D-v2 if subroutine KFACTOR was modified), GRID3D-v2 can be executed. Note, GRID3D-v2 reads the input file from unit 7 and writes output to unit 8.
Grid generation is an iterative process; that is, an acceptable grid system is generated by trial and error after generating a series of unacceptable grid systems. Some observations and rules of thumb that might be useful when generating grid systems with GRID3D are as follows:

(1) If it is necessary to partition a spatial domain, then select partitioning surfaces that intersect boundary surfaces as orthogonally as possible. This approach minimizes skewness both at boundaries and in the interior of the domain.

(2) A common boundary between two partitions should be specified in exactly the same way in the input files in order to guarantee a continuous grid across the common boundary.

(3) For improved flexibility in modifying a grid system, the boundary curves should be defined by using node points for tension-spline interpolation and a stretching function (see Section 2.1), rather than specifying grid points directly.

(4) When generating a grid system for a complicated geometry, first find stretching functions and K-factors for edge curves that give the desired distribution of grid points on the boundary surfaces. Afterwards, try to optimize grid-point distribution in the interior by modifying K-factors on boundary surfaces and/or the amount of tension in the connecting curves. If this two-step process does not yield an acceptable grid system, then try to modify grid-point distribution on boundary surfaces and/or re-partition the domain.

(5) Start with low tension and low K-factors. Slowly increase K-factors to improve orthogonality at boundaries and eliminate overlapping grid lines. Increasing the amount of tension in the connecting curves also can eliminate overlapping grid lines by straightening grid lines.

(6) Increased tension tends to straighten out grid lines whereas increased K-factors tend to increase the curvature of grid lines.

(7) If K-factors are too high, then grid lines can overlap.

(8) K-factors affect the grid spacing near the boundary surfaces. Increasing the K-factor at a boundary increases the grid spacing adjacent to that boundary. This effect can be beneficial in some instances but detrimental in others.

(9) K-factors should vary smoothly from grid line to grid line. An exception to this general rule is when a grid line intersects a boundary surface at a cusp in the surface.

3.2 Example: A Spatial Domain With Irregular Boundaries

Figure 1-1 shows a cooling passage in a radial turbine blade. Figure 3-3 shows how this cooling passage was partitioned into blocks or zones for the purpose of grid generation. The partitioning that is shown was deemed necessary in order to get an acceptable grid system.
Figure 3-4 shows the grid system for partition number 18. The input file for this partition is given in table 3-2. The entire grid system generated by using GRID3D-v2 is shown in figures 3-5 and 3-6. The plotting in figures 3-4 to 3-6 were obtained by using 3DSURF -- the plotting package supplied with GRID2D/3D.

4.0 SUMMARY

A new version of the grid generation program GRID3D, which is a part of the grid generation package GRID2D/3D, has been developed. The new program is referred to as GRID3D-v2. This report describes GRID3D-v2 and how to use it. The capability of the program was demonstrated by generating a grid system for a very complicated geometry, namely a cooling passage inside a radial turbine blade.
Appendix A -- Support Programs

A.1 Description of Support Programs

To support the task of grid generation with GRID3D-v2, several auxiliary programs have been developed. Two of these programs, namely PRSURF and 3DSURF, were developed to allow the user to view grid systems generated with the package. Three more programs, namely 3DPREP, EDGE, and EDGPREP, were developed to aid in the preparation of input files for GRID3D-v2. Finally, one program, GRIDTST, was written to test the grid system for problems such as overlapping grid lines. Each of these programs and their use will be described in the following pages.

3DSURF

The program 3DSURF was developed alongside the original version of GRID2D/3D to allow the user to plot grid systems on the computer screen. It was designed for IBM PC, XT and AT computer systems and compatibles. Two-dimensional grid output files from GRID2D/3D are already in the proper format for use with 3DSURF. Three-dimensional grid output files must, on the other hand, be processed using PRSURF (described next) to create input files for 3DSURF. A general description of 3DSURF and its use is given in Section 3.1 in reference 2.

PRSURF

The PRSURF program was written to process output files from GRID3D and create input files for 3DSURF. This program allows the user to select surfaces or parts of surfaces from the grid system (i.e., constant-ξ, constant-η, and constant-ζ surfaces) and to store them in a format compatible with 3DSURF. The program is interactive and self-explanatory.

PRSURF uses three files. The file containing the input to PRSURF (i.e., the output file from GRID3D) is read from unit 7. The output file from PRSURF (which becomes the input file for 3DSURF) is written to unit 9. Last, a file used for temporary storage of data is accessed as unit 8.
Finally, we mention that since 3DSURF is limited to handling surfaces that have 40 grid points per side or less, PRSURF automatically breaks any grid surface into sections that are 40 grid points by 40 grid points or smaller.

3DREP

The user can apply 3DREP to create input files for GRID3D-v2. The program prompts the user for all control parameters such as stretching functions and k-factors. It reads from files the coordinates of points defining the edge curves. These files must have the following format:

```
NP (number of points)
  x1, y1, z1
  x2, y2, z2
  x3, y3, z3
  ...
  xNP, yNP, zNP
```

The program can read data points from these files in both forward and reverse order, and the user can let the program read data from several files (the whole file or only a part of the file) to put together a single edge curve. 3DREP is useful, primarily, when many input files for GRID3D-v2 need to be created from the same set of data.

3DREP is designed to run on the IBM PC, XT, AT, and compatibles, but it can easily be modified to run on other computer systems. The only modification that should be needed in such a case is the insertion of open statements into the program so that the user can interactively specify which files the program must access.

EDGE

The EDGE program was written to aid the user in generating grid points along an edge curve that cannot be represented by a single spline curve (e.g., edge curves possessing derivative discontinuities such as cusps) and which must, therefore, be defined in the input files for GRID3D-v2 by giving the grid point coordinates directly (see Section 2.1). The program was designed to
generate grid points on an edge curve that is composed of several sections, where each section is defined by a set of nodal points that are interpolated by a spline curve. The number of grid points on each section and their distribution within the section is controlled independently.

EDGE, which is designed to run on the IBM PC, XT, AT, and compatibles, reads input data from UNIT 1 and writes the output to UNIT 20. The input file must have the following format:

\[
\text{NS (number of sections)}
\]

\[
\begin{array}{c}
\text{Data for section 1} \\
\text{Data for section 2} \\
\vdots \\
\text{Data for section NS}
\end{array}
\]

where the data for an arbitrary section number \(i \) are the following:

- \(\text{IP}_i \) (number of grid points on section \(i \))
- \(\sigma_i \) (tension parameter for the spline interpolation)
- \(\text{NN}_i \) (number of node points given on section \(i \))
- \(x_1, y_1, z_1 \)
- \(x_2, y_2, z_2 \)
- \(x_3, y_3, z_3 \)
- \(\vdots \)
- \(x_{\text{NN}_i}, y_{\text{NN}_i}, z_{\text{NN}_i} \)
- \(\text{StretchType}_i \)
- \(\text{Beta1}_i, \text{Beta2}_i \)

The meaning of the parameters \(\text{StretchType}, \text{Beta1}, \) and \(\text{Beta2} \) is explained in table 3-1. Note that in EDGE it is assumed that the curve being generated is continuous; that is, the last grid point on one
section must be the same as the first grid point on the next section. Thus the output from EDGE has the following format:

$$\text{IL} \quad \text{(number of grid points on the edge curve)}$$

$$x_{1,1}, y_{1,1}, z_{1,1}$$
$$x_{1,2}, y_{1,2}, z_{1,2}$$
$$x_{1,3}, y_{1,3}, z_{1,3}$$
$$\ldots$$
$$x_{1,1+1}, y_{1,1+1}, z_{1,1+1}$$

$$x_{2,1}, y_{2,1}, z_{2,1}$$
$$x_{2,2}, y_{2,2}, z_{2,2}$$
$$x_{2,3}, y_{2,3}, z_{2,3}$$
$$\ldots$$
$$x_{2,1+1}, y_{2,1+1}, z_{2,1+1}$$

$$x_{NS,1}, y_{NS,1}, z_{NS,1}$$
$$x_{NS,2}, y_{NS,2}, z_{NS,2}$$
$$x_{NS,3}, y_{NS,3}, z_{NS,3}$$
$$\ldots$$
$$x_{NS,1+1}, y_{NS,1+1}, z_{NS,1+1}$$

where $x_{i,j}$, $y_{i,j}$, and $z_{i,j}$ are the coordinates of grid point number j on section number i. The total number of grid points is

$$\text{IL} = 1 + \sum_{i=1}^{NS} (\text{IP}_1-1)$$

18
Intentionally, this is the same format as for the input files for 3DPREP so the output files from EDGE can be read by 3DPREP.

GRIDTST

The GRIDTST program is used to check grid systems of 3-D spatial domains for defects, such as overlapping grid lines, that result in a negative Jacobian, where the Jacobian is defined as follows (for further explanation of the Jacobian, see ref. 1):

\[
J = x_\xi (y_\eta z_\zeta - y_\zeta z_\eta) - x_\eta (y_\xi z_\zeta - y_\zeta z_\xi) + x_\zeta (y_\xi z_\eta - y_\eta z_\xi)
\]

GRIDTST evaluates the Jacobian at every grid point, estimating the derivatives (i.e., \(x_\xi, y_\xi, z_\xi\), etc.) by using central difference approximations for grid points that do not lie on the boundary surfaces of the domain and by using second order accurate one-sided difference formulas where necessary on the boundary surfaces. If any negative Jacobians are found, GRIDTST prints a message on the computer screen, and the Jacobians and the grid point locations are written into a file.

The input into GRIDTST is the grid system generated by GRID3D-v2. The input is read from UNIT 1 whereas the output (if any) is written into UNIT 2. GRIDTST is written to run on the IBM PC, AT, XT, and compatibles, but it can be used on any computer system.
A.2 Listing of PRSURF

PROGRAM PRSURF
C
C This program writes out user picked surfaces from a 3-D grid
C
PARAMETER (IM=11, JM=51, KM=151)
INTEGER i, j, k, IL, JL, KL
REAL X(IM, JM, KM), Y(IM, JM, KM), Z(IM, JM, KM)
C
5001 FORMAT('2',///, ' Please enter:',//,
, $' 1 - if you want the boundary surfaces of the grid',/,
, $' to be saved',///,
, $' 2 - if you want to select surfaces to be saved',///)

IF(IPICK.EQ.1)THEN
 CALL PRGRID(X, Y, Z, IM, JM, KM)
ELSE IF(IPICK.EQ.2)THEN
 CALL PRSRFS(X, Y, Z, IM, JM, KM)
ELSE IF(IERR.EQ.0)THEN
 WRITE(*,*),' You will get one more chance to make a'
 WRITE(*,*),' selection - Please enter any character'
 WRITE(*,*),' and then press RETURN'
 IERR=1
 GOTO 5
ELSE
 STOP
ENDIF
C
STOP
END
C
C
SUBROUTINE PRGRID(XPnt,YPnt,ZPnt,IL2,JL2,KL2)
C
This subroutine reads in grid point coordinates and writes out the
coordinates of the grid points which lie along specified planes.
C
INTEGER i, j, k, IL, JL, KL, IL1, JL1, KL1
REAL XPnt(IL2,JL2,KL2),
, YPnt(IL2,JL2,KL2),
, ZPnt(IL2,JL2,KL2)

20
C Read in the grid size.

 READ(7,*) IL
 READ(7,*) JL
 READ(7,*) KL

C Read in the grid point locations.

 DO 7 i=1,IL
 DO 6 j=1,JL
 DO 5 k=1,KL
 READ(7,*) XPnt(i,j,k),YPnt(i,j,k),ZPnt(i,j,k)
 CONTINUE
 CONTINUE
 CONTINUE

C Calculate the number of sections the grid must be split into for plotting purposes. (Plotting routines can handle only a grid with a maximum dimension of 40. Here it is assumed that only the zeta-coordinate direction can involve more grid points than that)

 KS=(KL-1)/39
 JS=(JL-1)/39

C Print out the number of surfaces.

 IF((KS*39+1).LT.KL) THEN
 NSK=KS+1
 ELSE
 NSK=KS
 ENDIF
 IF((JS*39+1).LT.JL) THEN
 NSJ=JS+1
 ELSE
 NSJ=JS
 ENDIF

 NOSURF=2*NSJ+2*NSK+3*(NSK*NSJ)

 WRITE(9,*), NOSURF

C Print out the grid points.

 DO 21 m=1,NSJ
 j0=39*(m-1)+1
 j1=MIN(j0+39,JL)
 JLM=jl-j0+1
 WRITE(9,*), IL
 WRITE(9,*), JLM
 DO 20 i=1,IL
 DO 10 j=j0,j1
 WRITE(9,25) XPnt(i,j,KL),YPnt(i,j,KL),ZPnt(i,j,KL)
 CONTINUE
 CONTINUE

21
CONTINUE

FORMAT(1X,F10.6,3X,F10.6,3X,F10.6)

DO 29 n=1,NSK

k0=39*(n-1)+1
kl=MIN(k0+39, KL)
KLn=kl-k0+1

WRITE(9,*), IL
WRITE(9,*), KLN

DO 28 i=1, IL
 DO 27 k=k0, kl
 WRITE (9,25) XPnt (i, JL, k), YPnt (i, JL, k), ZPnt (i, JL, k)
 CONTINUE
 CONTINUE
 CONTINUE

DO 44 m=1, NSJ

j0=39*(m-1)+1
jl=MIN(j0+39, JL)
JLm=jl-j0+1

DO 44 n=1, NSK

k0=39*(n-1)+1
kl=MIN(k0+39, KL)
KLn=kl-k0+1

WRITE(9,*), JLM
WRITE(9,*), KLN

DO 43 j=j0, jl
 DO 42 k=k0, kl
 WRITE (9,25) XPnt (IL, j, k), YPnt (IL, j, k), ZPnt (IL, j, k)
 CONTINUE
 CONTINUE
 CONTINUE

DO 110 m=1, NSJ

j0=39*(m-1)+1
jl=MIN(j0+39, JL)
JLm=jl-j0+1

DO 110 n=1, NSK

k0=39*(n-1)+1
kl=MIN(k0+39, KL)
KLn=kl-k0+1

WRITE(9,*), JLM
WRITE(9,*), KLN

CONTINUE
DO 109 j=j0,j1
 DO 108 k=k0,k1
 WRITE(9,25) XPnt(1,j,k),YPnt(1,j,k),ZPnt(1,j,k)
 CONTINUE
CONTINUE
CONTINUE

DO 131 m=1,NSJ
 j0=39*(m-1)+1
 j1=MIN(j0+39,JL)
 JLm=j1-j0+1
 WRITE(9,*), IL
 WRITE(9,*), JLm
 DO 130 i=1,IL
 DO 125 j=j0,j1
 WRITE(9,25) XPnt(i,j,1),YPnt(i,j,1),ZPnt(i,j,1)
 CONTINUE
 CONTINUE
 DO 134 n=1,NSK
 k0=39*(n-1)+1
 k1=MIN(k0+39,KL)
 KLn=k1-k0+1
 WRITE(9,*), IL
 WRITE(9,*), KLn
 DO 133 i=1,IL
 DO 132 k=k0,k1
 WRITE(9,25) XPnt(i,1,k),YPnt(i,1,k),ZPnt(i,1,k)
 CONTINUE
 CONTINUE
 DO 144 m=1,NSJ
 j0=39*(m-1)+1
 j1=MIN(j0+39,JL)
 JLm=j1-j0+1
 DO 144 n=1,NSK
 k0=39*(n-1)+1
 k1=MIN(k0+39,KL)
 KLn=k1-k0+1
 WRITE(9,*), JLm
 WRITE(9,*), KLn
 IH=(IL+1)/2
DO 143 j=j0, jl
 DO 142 k=k0, kl
 WRITE(9,25) XPnt(IH, j,k),YPnt(IH, j,k),ZPnt(IH, j,k)
 CONTINUE
CONTINUE
CONTINUE

STOP
END

C
C
SUBROUTINE PRSRSFS(X,Y,Z,IM,JM,KM)
C This subroutine reads in grid point coordinates and writes out the
C coordinates of the grid points which lie along planes specified
C by the user.

INTEGER i, j, k, IL, JL, KL
REAL X(IM, JM, KM), Y(IM, JM, KM), Z(IM, JM, KM)
C
WRITE(*,5001)
C
C Read in the grid size.

READ(7,*) IL
READ(7,*) JL
READ(7,*) KL
C
C Read in the grid point locations.

DO 3 i=1,IL
 DO 2 j=1,JL
 DO 1 k=1,KL
 READ (7,*) X(i, j, k),Y(i, j, k), Z(i, j, k)
 CONTINUE
 CONTINUE
 CONTINUE

NOSURF=0
5 WRITE(*,5002) IL, JL, KL
READ(*,*) IPICK
IF(IPICK.EQ.1)THEN
 WRITE(*,5003)
 READ(*,*) IPICK2
IF(IPICK2.EQ.1)THEN
 WRITE(*,*)
 WRITE(*,*)'Please enter the value of i'
 READ(*,*) I
 JFIRST=I
 JLAST=JL
 KFIRST=1
 KLAST=KL
ELSE
 WRITE(*,*)
 WRITE(*,*)'Please enter the value of i'
 READ(*,*) I

24
WRITE(*,*)
WRITE(*,*)' Please enter the lower and upper limit'
WRITE(*,*)' for the j coordinate (JFIRST,JLAST)'
READ(*,*)JFIRST,JLAST
WRITE(*,*)
WRITE(*,*)' Please enter the lower and upper limit'
WRITE(*,*)' for the k coordinate (KFIRST,KLAST)'
READ(*,*)KFIRST,KLAST
ENDIF
NSJ=(JLAST-JFIRST)/39
IF(JFIRST+NSJ*39.LT.JLAST)NSJ=NSJ+1
NSK=(KLAST-KFIRST)/39
IF(KFIRST+NSK*39.LT.KLAST)NSK=NSK+1
NOSURF=NOSURF+NSJ*NSK
DO 60 m=1,NSJ
 j0=39*(m-1)+JFIRST
 j1=MIN(j0+39,JLAST)
 JLm=j1-j0+1
 DO 50 n=1,NSK
 k0=39*(n-1)+KFIRST
 k1=MIN(k0+39,KLAST)
 KLn=k1-k0+1
 WRITE(8,*) JLm
 WRITE(8,*) KLn
 DO 40 j=j0,j1
 DO 30 k=k0,k1
 WRITE(8,25) X(I,j,k),Y(I,j,k),Z(I,j,k)
 CONTINUE
 CONTINUE
CONTINUE
IERR=0
GOTO 5
ELSEIF(IPICK.EQ.2) THEN
WRITE(*,5003)
READ(*,*)IPICK2
IF(IPICK2.EQ.1) THEN
 WRITE(*,*)
 WRITE(*,*)'Please enter the value of j'
 READ(*,*)J
 IFIRST=I
 ILAST=IL
 KFIRST=I
 KLAST=KL
ELSE
 WRITE(*,*)'Please enter the value of j'
 READ(*,*)J
 WRITE(*,*)
 WRITE(*,*)' Please enter the lower and upper limit'
 WRITE(*,*)' for the i coordinate (IFIRST,ILAST)'
 READ(*,*)IFIRST,ILAST
 WRITE(*,*)
 WRITE(*,*)' Please enter the lower and upper limit'
 WRITE(*,*)' for the k coordinate (KFIRST,KLAST)'
 READ(*,*)KFIRST,KLAST
ENDIF
NSI=(ILAST-IFIRST)/39
IF(IFIRST+NSI*39.LT.ILAST)NSI=NSI+1
NSK=(KLAST-KFIRST)/39
IF(KFIRST+NSK*39.LT.KLAST)NSK=NSK+1
NOSURF=NOSURF+NSI*NSK
DO 100 m=I,NSI
 i0=39*(m-1)+IFIRST
 il=MIN(j0+39,ILAST)
 ILM=il-i0+1
 DO 90 n=1,NSK
 k0=39*(n-1)+KFIRST
 kl=MIN(k0+39,KLAST)
 KLN=kl-k0+1
 WRITE(8,*) ILM
 WRITE(8,*) KLN
 DO 80 i=i0,il
 DO 70 k=k0,kl
 WRITE(8,25) X(i,J,k),Y(i,J,k),Z(i,J,k)
70 CONTINUE
80 CONTINUE
90 CONTINUE
100 CONTINUE
IERR=0
GOTO 5
C
ELSEIF(IPICK.EQ.3)THEN
 WRITE(*,5003)
 READ(*,*)IPICK2
ENDIF
NSI=(ILAST-IFIRST)/39
IF(IFIRST+NSI*39.LT.ILAST)NSI=NSI+1
NSJ=(JLAST-JFIRST)/39
IF(JFIRST+NSJ*39.LT.JLAST)NSJ=NSJ+1
NOSURF=NOSURF+NSI*NSJ
DO 140 m=1,NSI
 i0=39*(m-1)+IFIRST
ii0

110 CONTINUE
120 CONTINUE
130 CONTINUE
140 IERR=0
GOTO 5
ELSEIF (IPICK.EQ.0 .OR. IERR.EQ.1) THEN
REWIND(8)
WRITE(9,*),NOSURF
DO 1000 N=1,NOSURF
READ(8,*),I1
READ(8,*),I2
WRITE(9,*),I1
WRITE(9,*),I2
DO 999 I=1,I1*I2
READ(8,*),X1,X2,X3
WRITE(9,25) X1,X2,X3
CONTINUE
CONTINUE
1000 CONTINUE
ELSEIF (IERR.EQ.0) THEN
IERR=1
WRITE(*,*) INVALID SELECTION'
WRITE(*,*) You will get one more chance to make a'
WRITE(*,*) selection - Please enter any character'
WRITE(*,*) and then press RETURN'
READ(*,*)
GOTO 5
ENDIF

RETURN

25 FORMAT(1X,F10.6,3X,F10.6,3X,F10.6)
5001 FORMAT('','///,\$
'S' Reading in the grid. Please wait',///)
5002 FORMAT('','///,\$
'S' 1 - if you want to save a constant-i surface',///,
'S' 2 - if you want to save a constant-j surface',///,
'S' 3 - if you want to save a constant-k surface',///,
'S' 0 - if you want to QUIT',///,
'S'(Recall: IL=',I3,', JL=',I3,', KL=',I3,')',///)
5003 FORMAT('','///,\$
'S' 1 - if you want the whole surface saved',///,
'S' 2 - if you want to specify a part of the',///,
'S' surface to be saved',///)
END
A.3 Listing of 3DPREP

PROGRAM PREPARE

DIMENSION TENSION(16),BETA1(16),BETA2(16),
 X1(100),Y1(100),Z1(100),X(16,100),Y(16,100),Z(16,100)
INTEGER STRTYPE(16),N2B(4),TYPE(16),NODES(16)
REAL KXII,KXI2,KETAI,KETA2,KZETAI,KZETA2

WRITE(*,*)
WRITE(*,*)
WRITE(*,*)
WRITE(*,*)
WRITE(*,*)' This program prepares input files for GRID3D by'
WRITE(*,*)' reading the necessary information from the screen'
WRITE(*,*)' and from files.'
WRITE(*,*)
WRITE(*,*)

WRITE(*,*)'What technique is to be used.'
WRITE(*,*)'Enter 2 for the two-boundary technique'
WRITE(*,*)' or 4 for the four-boundary technique'
READ(*,*)ITECH

WRITE(*,*)'Enter IL, JL and KL'
READ(*,*)IL,JL, KL

WRITE(*,*)'Enter SigmaXi, SigmaEta, and SigmaZeta'
READ(*,*)SigXi,SigEt,SigZt

WRITE(*,*)'Enter kXII and kXI2'
READ(*,*)KXII,KXI2
WRITE(*,*)'Enter kETAI and kETA2'
READ(*,*)KETAI,KETA2
WRITE(*,*)'Enter kZETAI and kZETA2'
READ(*,*)KZETAI,KZETA2

WRITE(*,*)'The output file will be UNIT 20'
WRITE(20,*)'ITECH, Technique'
WRITE(20,*)IL, ' IL'
WRITE(20,*)JL, ' JL'
WRITE(20,*)KL, ' KL'
WRITE(20,*)SigXi, ' SigmaXi'
WRITE(20,*)SigEt, ' SigmaEta'
WRITE(20,*)SigZt, ' SigmaZeta'
WRITE(20,*)KXII, ' kXII'
WRITE(20,*)KXI2, ' kXI2'
WRITE(20,*)KETAI, ' kETAI'
WRITE(20,*)KETA2, ' kETA2'
WRITE(20,*)KZETAI, ' kZETAI'
WRITE(20,*)KZETA2, ' kZETA2'

DO 200 NSRF=1,2
 NE1=1+4*(NSRF-1)
200
NE2 = NE1 + 1
NE3 = NE1 + 2
NE4 = NE1 + 3

GET data for edge NE1:

WRITE(*,2002)NE1
WRITE(*,2001)NE1
READ(*,*)ITYPE
IF(ITYPE.NE.1 .AND. ITYPE.NE.2)GOTO 5

IF(ITYPE.EQ.1)THEN
CALL GETGRP(XI,YI,ZI,NOP)
IF(NOP.NE.KL)WRITE(*,*)
 'WARNING --- NUMBER OF GRID POINTS INCONSISTENT -',
 'EDGE',NE1
WRITE(20,3001)ITYPE,NE1
DO 10 K=I,KL
 WRITE(20,3004)XI(K),YI(K),ZI(K),K
10 CONTINUE
X11=XI(1)
Y11=YL(1)
Z11=ZI(1)
X1L=XI(KL)
Y1L=YI(KL)
Z1L=ZI(KL)

ELSEIF (ITYPE.EQ.2) THEN

CALL GETNODES(XI, YI, ZI, NOP)
WRITE(*,2006)NE1
READ(*,*)TENSN
CALL GETSTR(NE1,ISTRI,BETA11,BETA21)

WRITE(20,3001)ITYPE,NE1
WRITE(20,3002)TENSN
WRITE(20,3003)NOP
DO 20 I=I,NOP
 WRITE(20,3004)XI(I),YI(I),ZI(I),I
20 CONTINUE
WRITE(20,3005)ISTRI
IF(ISTRI.NE.4)WRITE(20,3006)BETA11
IF(ISTRI.EQ.4)WRITE(20,3007)BETA11,BETA21
X11=XI(1)
Y11=YL(1)
Z11=ZI(1)
X1L=XI(NOP)
Y1L=YI(NOP)
Z1L=ZI(NOP)

ENDIF

GET data for edge NE2:

WRITE(*,2002)NE2
WRITE (*, 2001) NE2
READ (*, *) ITYPE
IF (ITYPE .NE. 1 .AND. ITYPE .NE. 2) GO TO 25

C
IF (ITYPE .EQ. 1) THEN
 CALL GETGRP (XI, YI, ZI, NOP)
 IF (NOP .NE. KL) WRITE (*, *)
 ' WARNING --- NUMBER OF GRID POINTS INCONSISTENT --',
 ' EDGE', NE2
 WRITE (20, 3001) ITYPE, NE2
 DO 30 K = 1, KL
 WRITE (20, 3004) XI (K), YI (K), ZI (K), K
 CONTINUE
X21 = XI (1)
Y21 = YI (1)
Z21 = ZI (1)
X2L = XI (KL)
Y2L = YI (KL)
Z2L = ZI (KL)

C
ELSEIF (ITYPE .EQ. 2) THEN

C
 CALL GETNODES (XI, YI, ZI, NOP)
 WRITE (*, 2006) NE2
 READ (*, *) TENSN
 CALL GETSTR (NE1, ISTR2, BETA12, BETA22)

C
 WRITE (20, 3001) ITYPE, NE2
 WRITE (20, 3002) TENSN
 WRITE (20, 3003) NOP
 DO 40 I = 1, NOP
 WRITE (20, 3004) XI (I), YI (I), ZI (I), I
 CONTINUE
WRITE (20, 3005) ISTR2
IF (ISTR2 .NE. 4) WRITE (20, 3006) BETA12
IF (ISTR2 .EQ. 4) WRITE (20, 3007) BETA12, BETA22
X21 = XI (1)
Y21 = YI (1)
Z21 = ZI (1)
X2L = XI (NOP)
Y2L = YI (NOP)
Z2L = ZI (NOP)

C
ENDIF

C
Get data for edge NE3:

C
WRITE (*, 2002) NE3
WRITE (*, 2003) NE3
READ (*, *) ITYPE
IF (ITYPE .NE. 1 .AND. ITYPE .NE. 2 .AND. ITYPE .NE. 3) GO TO 45

C
IF (ITYPE .EQ. 1) THEN
 CALL GETGRP (XI, YI, ZI, NOP)
 IF (NOP .NE. IL) WRITE (*, *)
 ' WARNING --- NUMBER OF GRID POINTS INCONSISTENT --',
 ' EDGE', NE3
 WRITE (20, 3001) ITYPE, NE3
 WRITE (20, 3002) NE3
 WRITE (20, 3003) NE3
 READ (*, *) ITYPE
 IF (ITYPE .NE. 1 .AND. ITYPE .NE. 2 .AND. ITYPE .NE. 3) GO TO 45

C
ENDIF

C
Get data for edge NE4:

C
WRITE (*, 2004) NE4
WRITE (*, 2005) NE4
READ (*, *) ITYPE
IF (ITYPE .NE. 1 .AND. ITYPE .NE. 2 .AND. ITYPE .NE. 3 .AND. ITYPE .NE. 4) GO TO 45

C
IF (ITYPE .EQ. 1) THEN
 CALL GETGRP (XI, YI, ZI, NOP)
 IF (NOP .NE. IL) WRITE (*, *)
 ' WARNING --- NUMBER OF GRID POINTS INCONSISTENT --',

'EDGE', NE3
WRITE (20, 3001) ITYPE, NE3
DO 50 I = 1, IL
 WRITE (20, 3004) XI(I), YI(I), ZI(I), I
CONTINUE

ELSEIF (ITYPE.EQ.2) THEN
 CALL GETNODES (XI, YI, ZI, NOP)
 WRITE (*, 2006) NE3
 READ (*, *) TENS
 CALL GETSTR (NE3, ISTR3, BETA13, BETA23)
 WRITE (20, 3001) ITYPE, NE3
 WRITE (20, 3002) TENS
 WRITE (20, 3003) NOP
 DO 60 I = 1, NOP
 WRITE (20, 3004) XI(I), YI(I), ZI(I), I
 CONTINUE
 WRITE (20, 3005) ISTR3
 IF (ISTR3 .NE. 4) WRITE (20, 3006) BETA13
 IF (ISTR3 .EQ. 4) WRITE (20, 3007) BETA13, BETA23

ELSEIF (ITYPE.EQ.3) THEN
 ITYPE = 2
 NOP = 2
 I1 = 1
 I2 = 2
 WRITE (*, 2006) NE3
 READ (*, *) TENS
 CALL GETSTR (NE3, ISTR3, BETA13, BETA23)
 WRITE (20, 3001) ITYPE, NE3
 WRITE (20, 3002) TENS
 WRITE (20, 3003) NOP
 WRITE (20, 3004) XI1, YI1, ZI1, I1
 WRITE (20, 3004) XI2, YI2, ZI2, I2
 X1(1) = XI1
 X1(2) = XI2
 Y1(1) = YI1
 Y1(2) = YI2
 Z1(1) = ZI1
 Z1(2) = ZI2
 WRITE (20, 3005) ISTR3
 IF (ISTR3 .NE. 4) WRITE (20, 3006) BETA13
 IF (ISTR3 .EQ. 4) WRITE (20, 3007) BETA13, BETA23
ENDIF

ENDIF

TYPE (8+NSRF) = ITYPE
NODES (8+NSRF) = NOP
TENSION (8+NSRF) = TENS
STRTYPE (8+NSRF) = ISTR3
BETA1 (8+NSRF) = BETA13
BETA2 (8+NSRF) = BETA23
IF (ITYPE.EQ.1) IMAX = IL
IF (ITYPE.EQ.2) IMAX = NOP
DO 70 I = 1, IMAX
X(8+NSRF, I) = X(I)
Y(8+NSRF, I) = Y(I)
Z(8+NSRF, I) = Z(I)

CONTINUE

Get data for edge NE4:

WRITE(*,2002)NE4
WRITE(*,2003)NE4
READ(*,*),ITYPE
IF(ITYPE.NE.1 .AND. ITYPE.NE.2 .AND. ITYPE.NE.3) GOTO 75

IF(ITYPE.EQ.1) THEN
 CALL GETGRP(XI,YI,ZI,NOP)
 IF(NOP.NE.I1) WRITE(*,*)
 WARNING --- NUMBER OF GRID POINTS INCONSISTENT -'
 ' EDGE', NE4
 WRITE(20,3001) ITYPE, NE4
 DO 80 I=I,IL
 WRITE(20,3004) XI(K), YI(K), ZI(K), K
 CONTINUE
ELSEIF (ITYPE.EQ.2) THEN
 CALL GETNODES(XI,YI,ZI,NOP)
 WRITE(*,2006)NE4
 READ(*,*),TENSN
 CALL GETSTR(NE4,ISTR4,BETA14,BETA24)
 WRITE(20,3001) ITYPE,NE4
 WRITE(20,3002) TENSN
 WRITE(20,3003) NOP
 WRITE(20,3004) XI(I), YI(I), ZI(I), I
 CONTINUE
WRITE(20,3005) ISTR4
IF (ISTR4.NE.4) WRITE(20,3006) BETA14
IF (ISTR4.EQ.4) WRITE(20,3007) BETA14, BETA24
ELSEIF (ITYPE.EQ.3) THEN
 ITYPE=2
 NOP=2
 I1=1
 I2=2
 WRITE(*,2006)NE4
 READ(*,*),TENSN
 CALL GETSTR(NE4,ISTR4,BETA14,BETA24)
 WRITE(20,3001) ITYPE,NE4
 WRITE(20,3002) TENSN
 WRITE(20,3003) NOP
 WRITE(20,3004) XI(I), YI(I), ZI(I), I
 WRITE(20,3004) XI(I), YI(I), ZI(I), I
 XI(1)=XI1
 XI(2)=XI2
 YI(1)=YI1
 YI(2)=YI2
C

ENDIF

C

TYPE(12+NSRF)=ITYPE
NODES(12+NSRF)=NOP
TENSION(12+NSRF)=TENSN4
STRTYPE(12+NSRF)=ISTR4
BETA1(12+NSRF)=BETA14
BETA2(12+NSRF)=BETA24
IF (ITYPE.EQ.1) IMAX=IL
IF (ITYPE.EQ.2) IMAX=NOP
DO 100 I=1,IMAX
 X(16+NSRF,I)=X1(I)
 Y(16+NSRF,I)=Y1(I)
 Z(16+NSRF,I)=Z1(I)
CONTINUE

100 CONTINUE

IF (ITECH.EQ.2) THEN
 WRITE(*,'(//////////)')
 WRITE(*,'(*,*)' Specify stretching parameters for edges'
 WRITE(*,'(*,*)' 11, 12, 15 and 16'
 WRITE(*,'(//////)')
 N2B(1)=11
 N2B(2)=12
 N2B(3)=15
 N2B(4)=16
 DO 201 IE=1,4
 CALL GETSTR(N2B(IE),ISTR,BETA1IE,BETA2IE)
 WRITE(20,3010)ISTR,N2B(IE)
 IF (ISTR.NE.4) WRITE (20, 3006) BETAIIE
 IF (ISTR.EQ.4) WRITE (20,3007) BETAIIE, BETA21E
CONTINUE

201 CONTINUE

ELSEIF (ITECH.EQ.4) THEN

DO 500 NSRF=3,4
 NE1=1+4*(NSRF-1)
 NE2=NE1+1
 NE3=NE1+2
 NE4=NE1+3

C

Write data for edge NE1:

WRITE(20,3001)TYPE(NE1),NE1
IF (TYPE(NE1).EQ.1) THEN
 DO 210 I=1,IL
 WRITE(20,3004)X(NE1,I),Y(NE1,I),Z(NE1,I),I
CONTINUE
210 CONTINUE
ELSEIF (TYPE(NE1) .EQ. 2) THEN
 WRITE (20, 3002) TENSION(NE1)
 WRITE (20, 3003) NODES(NE1)
 DO 220 I=1, NODES(NE1)
 WRITE (20, 3004) X(NE1, I), Y(NE1, I), Z(NE1, I), I
 CONTINUE
 WRITE (20, 3005) STRTYPE(NE1)
 IF (STRTYPE(NE1) .NE. 4) WRITE (20, 3006) BETA1(NE1)
 IF (STRTYPE(NE1) .EQ. 4) WRITE (20, 3007) BETA1(NE1), BETA2(NE1)
ENDIF

Write data for edge NE2:

WRITE (20, 3001) TYPE(NE2), NE2
IF (TYPE(NE2) .EQ. 1) THEN
 DO 230 I=1, IL
 WRITE (20, 3004) X(NE2, I), Y(NE2, I), Z(NE2, I), I
 CONTINUE
ELSEIF (TYPE(NE2) .EQ. 2) THEN
 WRITE (20, 3002) TENSION(NE2)
 WRITE (20, 3003) NODES(NE2)
 DO 240 I=1, NODES(NE2)
 WRITE (20, 3004) X(NE2, I), Y(NE2, I), Z(NE2, I), I
 CONTINUE
 WRITE (20, 3005) STRTYPE(NE2)
 IF (STRTYPE(NE2) .NE. 4) WRITE (20, 3006) BETA1(NE2)
 IF (STRTYPE(NE2) .EQ. 4) WRITE (20, 3007) BETA1(NE2), BETA2(NE2)
ENDIF

Get data for edge NE3:

WRITE (*, 3002) NE3
WRITE (*,*) 'Enter the following:
WRITE (*,*)' 1 if grid points are specified
WRITE (*,*)' 2 if nodes for splining are specified
WRITE (*,*)' 3 if you want to let the end points of'
WRITE (*,*)' edges already entered define the curve'
WRITE (*,*)' 4 if you want to use the end points of'
WRITE (*,*)' edges already defined but add (by ' typying in directly) some points in '
WRITE (*,*)' between'
WRITE (*,*)
WRITE (*,*)
WRITE (*,*)
WRITE (*,*)
WRITE (*,*)'Enter your choice'
READ (*,*) ITYPE
IF (ITYPE.NE.1 .AND. ITYPE.NE.2 .AND. ITYPE.NE.3 .AND. ITYPE.NE.4) GOTO 305

IF (ITYPE.EQ.1) THEN
CALL GETGRP(X1,Y1,Z1,NOP)
IF (NOP.NE.JL) WRITE(*,*)
 / WARNING --- NUMBER OF GRID POINTS INCONSISTENT -',
 / ' EDGE',NE3
WRITE(20,3001) ITYPE, NE3
DO 310 J=1,JL
 WRITE(20,3004) X1(J), Y1(J), Z1(J), J
CONTINUE
ELSEIF (ITYPE.EQ.2) THEN
CALL GETNODES(X1,Y1,Z1,NOP)
WRITE(*,2006) NE3
READ(*,*) TENSN
CALL GETSTR(NE3,ISTR3,BETA13,BETA23)
WRITE(20,3001) ITYPE, NE3
WRITE(20,3002) TENSN
WRITE(20,3003) NOP
DO 320 I=1,NOP
 WRITE(20,3004) X(I), Y(I), Z(I), I
CONTINUE
WRITE(20,3005) ISTR3
IF (ISTR3.NE.4) WRITE(20,3006) BETA13
IF (ISTR3.EQ.4) WRITE(20,3007) BETA13, BETA23
ELSEIF (ITYPE.EQ.3) THEN
ITYPE=2
NOP=2
I1=1
I2=2
WRITE(*,2006) NE3
READ(*,*) TENSN
CALL GETSTR(NE3,ISTR3,BETA13,BETA23)
WRITE(20,3001) ITYPE, NE3
WRITE(20,3002) TENSN
WRITE(20,3003) NOP
WRITE(20,3004) X(NE1,1), Y(NE1,1), Z(NE1,1), I1
WRITE(20,3004) X(NE2,1), Y(NE2,1), Z(NE2,1), I2
WRITE(20,3005) ISTR3
IF (ISTR3.NE.4) WRITE(20,3006) BETA13
IF (ISTR3.EQ.4) WRITE(20,3007) BETA13, BETA23
ELSEIF (ITYPE.EQ.4) THEN
WRITE(_,*) ' How many nodes do you want to add?'
READ(*,*) NOP
DO 330 I=1,NOP
CALL GETNEWND(X1,Y1,Z1,I)

CONTINUE
ITYPE=2
NOP=NOP+2
II=1

WRITE(*,2006)NE3
READ(*,*)TENSN
CALL GETSTR(NE3,ISTR3,BETA13,BETA23)

WRITE(20,3001)ITYPE,NE3
WRITE(20,3002)TENSN
WRITE(20,3003)NOP
WRITE(20,3004)X(NE1,1),Y(NE1,1),Z(NE1,1),II
DO 340 I=2,NOP-1
 WRITE(20,3004)X1(I-1),Y1(I-1),Z1(I-1),I
CONTINUE
WRITE(20,3004)X(NE2,1),Y(NE2,1),Z(NE2,1),NOP
WRITE(20,3005)ISTR3
IF(ISTR3.NE.4)WRITE(20,3006)BETA13
IF(ISTR3.EQ.4)WRITE(20,3007)BETA13,BETA23

ENDIF

Get data for edge NE4:

WRITE(*,2002)NE4

WRITE(*,'Enter the following:')
WRITE(*,'1 if grid points are specified')
WRITE(*,'2 if nodes for splining are specified')
WRITE(*,'3 if you want to let the end points of')
WRITE(*,'edges already entered define the curve')
WRITE(*,'4 if you want to use the end points of')
WRITE(*,'edges already defined but add (by ')
WRITE(*,'typing in directly) some points in '}
WRITE(*,'between')
WRITE(*,'Enter your choice')
READ(*,*)ITYPE

IF(ITYPE.NE.1 .AND. ITYPE.NE.2 .AND. ITYPE.NE.3 .AND. ITYPE.NE.4)GOTO 405

IF(ITYPE.EQ.1)THEN
 CALL GETGRP(X1,Y1,Z1,NOP)
 IF(NOP.NE.JL)WRITE(*,*)
 'WARNING ----- NUMBER OF GRID POINTS INCONSISTENT ----',
 'EDGE',NE4
 WRITE(20,3001)ITYPE,NE4
 DO 410 J=1,JL
 WRITE(20,3004)X1(J),Y1(J),Z1(J),J
 CONTINUE

410
ELSEIF (ITYPE.EQ.2) THEN
 CALL GETNODES(XI,YI,ZI,NOP)
 WRITE(*,2006)NE4
 READ(*,*)TENSN
 CALL GETSTR(NE4,ISTR4,BETA14,BETA24)

 WRITE(20,3001)ITYPE,NE4
 WRITE(20,3002)TENSN
 WRITE(20,3003)NOP
 DO 420 I=1,NOP
 WRITE(20,3004)XI(I),YI(I),ZI(I),I
 CONTINUE
 WRITE(20,3005)ISTR4
 IF (ISTR4 .NE. 4) WRITE (20, 3006) BETA14
 IF (ISTR4 .EQ. 4) WRITE (20, 3007) BETA14, BETA24

ELSEIF (ITYPE.EQ.3) THEN
 ITYPE=2
 NOP=2
 I1=1
 I2=2
 WRITE(*,2006)NE4
 READ(*,*)TENSN
 CALL GETSTR(NE4,ISTR4,BETA14,BETA24)

 WRITE(20,3001)ITYPE,NE4
 WRITE(20,3002)TENSN
 WRITE(20,3003)NOP
 IMAX=I1
 IF (TYPE(NE1) .EQ. 2) IMAX=NODES(NE1)
 WRITE(20,3004)X(NE1,IMAX),Y(NE1,IMAX),Z(NE1,IMAX),I1
 IMAX=I2
 IF (TYPE(NE2) .EQ. 2) IMAX=NODES(NE2)
 WRITE(20,3004)X(NE2,IMAX),Y(NE2,IMAX),Z(NE2,IMAX),I2
 WRITE(20,3005)ISTR4
 IF (ISTR4 .NE. 4) WRITE(20,3006)BETA14
 IF (ISTR4 .EQ. 4) WRITE(20,3007)BETA14,BETA24

ELSEIF (ITYPE.EQ.4) THEN
 WRITE(*,*)' How many nodes do you want to add?'
 READ(*,*)NOP
 DO 430 I=1,NOP
 CALL GETNEWND(X1,Y1,Z1,I)
 CONTINUE
 ITYPE=2
 NOP=NOP+2
 I1=1
 WRITE(*,2006)NE4
 READ(*,*)TENSN
 CALL GETSTR(NE4,ISTR4,BETA14,BETA24)

 WRITE(20,3001)ITYPE,NE4
WRITE (20, 3002) TENS
WRITE (20, 3003) NOP
IMAX=IL
IF (TYPE (NE1).EQ.2) IMAX=NODES (NE1)
WRITE (20, 3004) X (NE1, IMAX), Y (NE1, IMAX), Z (NE1, IMAX), I
DO 440 I=2, NOP-1
 WRITE (20, 3004) X1(I-1), Y1(I-1), Z1(I-1), I
440 CONTINUE
IMAX=IL
IF (TYPE (NE2).EQ.2) IMAX=NODES (NE2)
WRITE (20, 3004) X (NE2, IMAX), Y (NE2, IMAX), Z (NE2, IMAX), I
WRITE (20, 3005) ISTR4
IF (ISTR4.NE.4) WRITE (20, 3006) BETA14
IF (ISTR4.EQ.4) WRITE (20, 3007) BETA14, BETA24
C
500 CONTINUE
ENDIF
C
2001 FORMAT (' Enter the TYPE for edge ',I2,
 $', Enter:',/,,
 $', 1 if grid points along the edge are to be ',
 $', specified',/,,
 $', 2 if nodes for splining are to be ',
 $', specified',/,,
 $', 3 if end nodes of edges already ',
 $', entered ',/,,
 $', define the curve completely',/)
2002 FORMAT(' ',I2,' SPECIFYING EDGE ',I2,'//)
2003 FORMAT (' Enter the TYPE for edge ',I2,
 $', Enter:',/,,
 $', 1 if grid points along the edge are to be ',
 $', specified',/,,
 $', 2 if nodes for splining are to be ',
 $', specified',/,,
 $', 3 if end nodes of edges already ',
 $', define the curve completely',/)
2006 FORMAT (' Enter the TENSION parameter for curve ',I2)
C
3001 FORMAT (' ',I3,' Type - EDGE NO: ',I2,
 $',-------------------------------')
3002 FORMAT (' ',F6.2,' Tension parameter')
3003 FORMAT (' ',I3,' Number of nodes')
3004 FORMAT (3X, 3(F8.5, 3X),',--',I2)
3005 FORMAT (' ',I3,' StretchType')
3006 FORMAT (' ',F8.4,' Stretching parameter BETA')
3007 FORMAT (' ',2(F8.4, 3X),' Stretching parameters BETA1 and',
 $', BETA2')
3010 FORMAT (' ',I3,' StretchType ',I2,' ------------------')
C
STOP
END
C
SUBROUTINE GETNODES (X1, Y1, Z1, NOP)
C
This subroutine reads in and arranges nodal points to define
C an edge.
C
DIMENSION X1(100), Y1(100), Z1(100)
C
INNUM0=10
C

NOP=0
C
WRITE(*,*)'How many sections is the edge composed of?'
READ(*,*)NOSECT
C
DO 100 ISECT=1,NOSECT
C
INNUM=INNUM0+ISECT
WRITE(*,200)ISECT,INNUM
READ(INNUM,*)NP
WRITE(*,201)NP
READ(*,*)N1
WRITE(*,202)
READ(*,*)N2
C
N12=IABS(N2-N1)+1
NOP=NOP+N12
C
IF(N2.GE.N1)THEN
 DO 10 J=1,N1-1
 READ(INNUM,*)
 CONTINUE
 I=NOP-N12
 DO 20 J=N1,N2
 I=I+1
 READ(INNUM,*)X1(I),Y1(I),Z1(I)
 CONTINUE
C
ELSE
 DO 30 J=1,N2-1
 READ(INNUM,*)
 CONTINUE
 I=NOP+1
 DO 40 J=N2,N1
 I=I-1
 READ(INNUM,*)X1(I),Y1(I),Z1(I)
 CONTINUE
ENDIF
C
CLOSE(INNUM)
CONTINUE
C
FORMAT(' Section ',I2,' will be read in from UNIT',I3)
200 FORMAT(' There are ',I2,' points in the file.,/
/ ,,' Enter the number of the point that is to be the',/
/ ,,' the first on the current section.')</n201 FORMAT(' Enter the number of the point that is to be the',/
/ ,,' the last on the current section.')</n202 FORMAT(' Enter the number of the point that is to be the',/
/ ,,' the last on the current section.')</nC
RETURN
END
C
SUBROUTINE GETGRP(X1,Y1,Z1,NOP)
This subroutine reads in grid point coordinates for an edge and stores in either forward or reversed order.

```
DIMENSION XI(100), YI(100), ZI(100)

INNUM0 = 10
NP = 0

WRITE(*,*) 'How many sections is the edge composed of?'
READ(*,*) NOSECT

DO 500 ISECT = 1, NOSECT
  INNUM = INNUM0 + ISECT
  WRITE(*, 200) ISECT, INNUM
  READ(INNUM, *) NP
  WRITE(*, 201) NP
  READ(*, *) NI
  WRITE(*, 202)
  READ(*, *) N2

  NI2 = IABS(N2 - NI) + 1
  NOP = NOP + NI2

  IF (N2 .GE. NI) THEN
    DO 10 J = I, NI - 1
      READ(INNUM, *)
    CONTINUE
    I = NOP - NI2
    DO 20 J = NI, N2
      I = I + 1
      READ(INNUM, *) XI(I), YI(I), ZI(I)
    CONTINUE
  ELSE
    DO 60 J = I, N2 - 1
      READ(INNUM, *)
    CONTINUE
    I = NOP + 1
    DO 70 J = N2, NI
      I = I - 1
      READ(INNUM, *) XI(I), YI(I), ZI(I)
    CONTINUE
  ENDIF
  CLOSE(INNUM)
END!

CONTINUE(INNUM)
```

```
FORMAT(' Section ', I2, ' will be read in from UNIT', I3)
200 FORMAT(' There are ', I2, ' grid points in the file.', /
  ' Enter the number of the grid point that is to be the', /
  ' the first or the current section.' )
201 FORMAT(' Section ', I2, ' will be read in from UNIT', I3)
```
SUBROUTINE GETNEWND(XI,YI,ZI,I)

This subroutine reads in from the screen new points that are
to be included on the edge.

DIMENSION XI(100),YI(100),ZI(100)

WRITE(*,2001) I
READ(*,*)XI(I),YI(I),ZI(I)

2001 FORMAT('Please enter the x, y, and z coordinates for inter-
/','mediate point number ',I2)

RETURN
END

SUBROUTINE GETSTR(NEI,ISTR,BETA1,BETA2)

This subroutine reads information regarding stretching function
along edge NEI.

WRITE(*,2011) NEI
WRITE(*,2020)

100 READ(*,*)ISTR
IF(ISTR.LT.4 .AND. ISTR.GT.0)THEN
 WRITE(*,2031) NEI
 READ(*,*)BETA1
ELSEIF (ISTR.EQ.4) THEN
 WRITE(*,2036) NEI
 READ(*,*)BETA1,BETA2
ELSEIF (ISTR.EQ.0) THEN
 BETA1=1.1
ELSE
 WRITE(*,'') 'Please enter a number from 0 to 4'
 GOTO 100
ENDIF

2011 FORMAT('Enter the STRETCH TYPE for edge ',I2)
2020 FORMAT('/',' Enter: 0 for no stretching','/
/ ',1 for concentration near lower boundary','/
/ ',2 for concentration near upper boundary','/
/ ',3 for concentration near both boundaries','/
/ ',(one parameter stretching function)','/
/ ',4 for concentration near both boundaries','/
/ ',(two-parameter stretching function)')
2031 FORMAT('Enter the stretching parameter (BETA) for edge ','/
/ I2)
2036 FORMAT('Enter the stretching parameters (BETA1 and BETA2) ','/
/ for edge ',I2)

RETURN
END
A.4 Listing of EDGE

PROGRAM EDGE

This program generates grid points along an edge which is given by a set of discrete nodes. The edge can be made up of up to several sections. A parametric tension spline is fit through each section. Each section has its own control parameters such as number of grid points, tension, and stretching functions. NOTE: Subroutines have been adopted from GRID3D (and modified slightly) to generate the grid points on the curves.

PARAMETERS:

- MxBPts - Maximum number of nodes per section
- MxGSiz - Maximum number of grid points per section
- MxSect - Maximum number of sections
- MxBCvs - Should not be modified

PARAMETER (MxBPts=31, MxGSiz=101, MxSect=5, MxBCvs=1)

DIMENSION x(MxSect,MxBPts), y(MxSect,MxBPts),
$ z(MxSect,MxBPts), zx(MxSect,MxBPts),
$ zy(MxSect,MxBPts), zz(MxSect,MxBPts),
$ s(MxSect,MxBPts), Tensn(MxSect)

DIMENSION Diag(MxBPts), OfDiag(MxBPts), Right(MxBPts)

DIMENSION XB(MxGSiz,MxSect), YB(MxGSiz,MxSect),
$ ZB(MxGSiz,MxSect), StrB(MxGSiz,MxBCvs)

INTEGER NDPts(MxSect), ILS(MxSect), StrTp

WRITE(*,*)' Running PROGRAM EDGE'
WRITE(*,*)'
WRITE(*,*)'
WRITE(*,*)' The input data will be read in from UNIT 1'
WRITE(*,*)' The output will be written into UNIT 20'
WRITE(*,*)'
WRITE(*,*)'
READ(1,*)NOSECT

IL=0
DO 200 iS=1,NOSECT
 CALL RdSctIn(x,y,z,NDPts,is,Tensn,l,MxBPts,MxSect,
 $ StrTp,Betal,Beta2,ILS(is))
 CALL PTSpln(x,y,z,s,zx,zy,zz,Diag,OfDiag,Right,NDPts,
 $ Tensn(is),is,MxBPts,MxSect)
 CALL CalcStr2(l,ILS(is),StrTp,Betal,Beta2,
 $ StrB,MxBCvs,MxGSiz)
200 CONTINUE

42
CALL EdgGPts(is,1,ILS(is),XB,YB,ZB,StrB,x,y,z,s,$
 zx,zy,zz,NDPts,Tensn(is),$
 MxBCvs,MxBPts,MxGSiz,MxSect)
 IL=IL+ILS(is)
 CONTINUE
 IL=IL-(NOSECT-I)
 WRITE(20,*)IL,' Number of grid points'
 IP=0
 DO 301 is=I,NOSECT
 DO 300 i=I,ILS(is)-I
 IP=IP+I
 WRITE(20,3001)XB(i,is),YB(i,is),ZB(i,is),IP
 CONTINUE
 CONTINUE
 is=NOSECT
 i=ILS(NOSECT)
 WRITE(20,3001)XB(i, is),YB(i,is),ZB(i, is),IL
 FORMAT(' ',3X,3(F9.6,3X),' ',I3)
STOP
END

C---
C SUBROUTINE CalcS (x,y,z,s,NDPts,CrvNum,MxBPts,MxSect)
This SUBROUTINE calculates the spline parameter, s, as an approximate arc length.

```plaintext
INTEGER NDPts(MxSect), CrvNum, i
REAL  x(MxSect,MxBPts), y(MxSect,MxBPts), z(MxSect,MxBPts), s(MxSect,MxBPts)
s(CrvNum, i) = 0.0

DO 10 i=2,NDPts(CrvNum)
  s(CrvNum, i) = s(CrvNum, i-1) + SQRT( (x(CrvNum, i) - x(CrvNum, i-1)) ** 2
    + (y(CrvNum, i) - y(CrvNum, i-1)) ** 2
    + (z(CrvNum, i) - z(CrvNum, i-1)) ** 2)
10 CONTINUE
RETURN
END
```

This SUBROUTINE forms the parametric tension spline matrix for a particular boundary curve data set.

```plaintext
INTEGER  i, NDPts(MxSect), CrvNum
REAL  Diag(MxBPts), OfDiag(MxBPts), Right(MxBPts),
s(MxSect,MxBPts), T, h, hm

Diag(1) = 1.0
OfDiag(1) = 0.0
Right(1) = 0.0

DO 10 i=2,NDPts(CrvNum)-1
  h = s(CrvNum, i+1) - s(CrvNum, i)
  hm = s(CrvNum, i) - s(CrvNum, i-1)
  Diag(i) = (T*COSH(T*hm)/SINH(T*hm) - 1/hm + T*COSH(T*h)/SINH(T*h)
    - 1/h) / T**2
  OfDiag(i) = (1/h-T/SINH(T*h))/T**2
  Right(i) = (w(CrvNum, i+1) - w(CrvNum, i)) / h
    -(w(CrvNum, i) - w(CrvNum, i-1)) / hm
10 CONTINUE

Diag(NDPts(CrvNum)) = 1.0
OfDiag(NDPts(CrvNum)-1) = 0.0
Right(NDPts(CrvNum)) = 0.0

RETURN
END
```

This SUBROUTINE solves the diagonally dominant parametric tension...
C spline matrix for a given data set using the Gauss-Seidel iteration.
C Convergence is assumed after 20 iterations.
C
C INTEGER i, j, NDPts(MxSect), CrvNum
C
REAL Diag(MxBPts), OfDiag(MxBPts), Right(MxBPts),
Derv2(MxSect,MxBPts)
C
C Initialize the second derivative matrix to all zeroes.
C
DO 10 i=1,NDPts(CrvNum)
 Derv2(CrvNum,i)=0.0
10 CONTINUE
C
C Calculate the second derivative values using 20 iterations of
C the Gauss-Seidel method.
C
DO 30 j=1,20
 DO 20 i=2,NDPts(CrvNum)-i
 Derv2 (CrvNum, i)=(Right (i) -OfDiag (i)*Derv2 (CrvNum, i+1)
 $ -OfDiag (i-1) *Derv2 (CrvNum, i-1))
 $ /Diag (i)
30 CONTINUE
20 CONTINUE
C
RETURN
END

FUNCTION SplVal (s,w,Derv2,sval,T,n,CrvNum,MxBPts,MxSect)
C
C This real function finds the w-value (x-value or y-value) corresponding
C to a specified s-value using the parametric tension spline curve
C generated for a particular boundary curve data set.
C
INTEGER n, CrvNum
C
REAL s(MxSect,MxBPts), w(MxSect,MxBPts), Derv2(MxSect,MxBPts),
$ sval, T, h, Interim, Templ, Temp2
C
Templ=sval-s(CrvNum,n)
h=s(CrvNum,n+1)-s(CrvNum,n)
Temp2=s(CrvNum,n+1)-sval
Interim=Derv2(CrvNum,n)/T**2*SINH(T*Temp2)/SINH(T*h)
$ + (w(CrvNum,n) -Derv2(CrvNum,n)/T**2)*Temp2/h
SplVal=Interim+Derv2(CrvNum,n+1)/T**2*SINH(T*Templ)
$ /SINH(T*h)+(w(CrvNum,n+1)
$ -Derv2(CrvNum,n+1)/T**2)*Templ/h
C
RETURN
END

SUBROUTINE PTSpln(x,y,z,s,XDerv2,YDerv2,ZDerv2,Diag,OfDiag,
$ Right,NDPts,Tensn,CrvNum,MxBPts,MxSect)
C
C This SUBROUTINE forms the main routine for the parametric tension
C spline process.

INTEGER NDPts(MxSect), CrvNum

REAL Diag(MxBPts), OfDiag(MxBPts), Right(MxBPts),
$ \text{XDerv2}(MxSect,MxBPts), \text{YDerv2}(MxSect,MxBPts),$
$ \text{ZDerv2}(MxSect,MxBPts), \text{Tensn},$
$ \text{x}(MxSect,MxBPts), \text{y}(MxSect,MxBPts),$
$ \text{z}(MxSect,MxBPts), \text{s}(MxSect,MxBPts)$

CALL CalcS(x,y,z,s,NDPts,CrvNum,MxBPts,MxSect)
CALL SplMat(Diag,OfDiag,Right,x,s,NDPts,Tensn,CrvNum,
$ \text{MxBPts}, \text{MxSect})$
CALL SplSlv(Diag,OfDiag,Right,XDerv2,NDPts,CrvNum,MxBPts,MxSect)
CALL SplMat(Diag,OfDiag,Right,y,s,NDPts,Tensn,CrvNum,
$ \text{MxBPts}, \text{MxSect})$
CALL SplSlv(Diag,OfDiag,Right,YDerv2,NDPts,CrvNum,MxBPts,MxSect)
CALL SplMat(Diag,OfDiag,Right,z,s,NDPts,Tensn,CrvNum,
$ \text{MxBPts}, \text{MxSect})$
CALL SplSlv(Diag,OfDiag,Right,ZDerv2,NDPts,CrvNum,MxBPts,MxSect)

RETURN
END

C---
SUBROUTINE SplInt(n,s,SValue,NDPts,CurCrv,MxBPts,MxSect)
C
C This SUBROUTINE finds the proper interval in which a point on a specified
C boundary lies. The interval indicates which initial data points the
C point in question lies between and thus which spline coefficients to
C use.

INTEGER i, n, CurCrv, NDPts(MxSect)

REAL Temp, SValue, s(MxSect,MxBPts)

n=1
i=NDPts(CurCrv)

10 IF ((n.EQ.1).AND.(i.GT.1)) THEN
 I=I-1
 Temp=SValue-s(CurCrv,i)
 IF (Temp.GT.0.0) THEN
 n=i
 ENDIF
GOTO 10
ENDIF
RETURN
END

SUBROUTINE FA1New(AlNew,Alpha,B,Str)

46
This SUBROUTINE computes the new Alpha value after stretching as
AlNew. Alpha is a dummy variable representing either Xi, Eta or Zeta.

INTEGER Str

REAL Alpha, Templ, Temp2, B2, AlNew, B

AlNew = Alpha
Templ = (B+1)/(B-1)

IF (Str.EQ.1) THEN
 Temp2 = Templ**(1-Alpha)
 AlNew = ((B+1)-(B-1)*Temp2)/(Temp2+1)*1
ENDIF

IF (Str.EQ.2) THEN
 B2 = 0
 Temp2 = Templ**((Alpha-B2)/(1-B2))
ENDIF

IF (Str.EQ.3) THEN
 B2 = 0.5
 Temp2 = Templ**((Alpha-B2)/(1-B2))
ENDIF

RETURN
END

SUBROUTINE CalcStr2(EdgNum, NGPts, StrTp, Betal, Beta2,
$ StrB, MxBCvs, MxGSiz)

C This subroutine calculates the distribution function base on the
C stretching parameters 'StrTp' and 'Beta'

INTEGER NGPts, StrTp, EdgNum, i

REAL StrB(MxGSiz, MxBCvs), Betal, Beta2, A, B, DZ

StrB(1, EdgNum) = 0.
IF (StrTp.LE.3) THEN
 DO 10 i=1, NGPts-1
 Alpha = (i-1.)/(NGPts-1.)
 CALL FAiNew(AiNew, Alpha, Betal, StrTp)
 StrB(i, EdgNum) = AiNew
 10 CONTINUE
ELSEIF (StrTp.EQ.4) THEN
 CALL Str4Prm(Betal, Beta2, A, B, DZ)
 DO 20 i=2, NGPts-1
 Alpha = (i-1.)/(NGPts-1.)
 CALL Str4(AiNew, Alpha, A, B, DZ)
 StrB(i, EdgNum) = AiNew
 20 CONTINUE
ENDIF

StrB(NGPts, EdgNum) = 1.
SUBROUTINE EdgGPts(CrvNum, EdgNum, NGPts, XB, YB, ZB, StrB, x, y, z, s, zx, zy, zz, NDPts, Tensn, MxBCvs, MxBPts, MxGSiz, MxSect)

This subroutine calculates the grid point location along an edge based on a spline curve fitted through specified nodal points and a given distribution function.

INTEGER CrvNum, EdgNum, NGPts, NDPts(MxSect), i, n
REAL XB(MxGSiz,MxSect), YB(MxGSiz,MxSect), ZB(MxGSiz,MxSect),
StrB(MxGSiz,MxBCvs), x(MxSect,MxBPts), y(MxSect,MxBPts),
z(MxSect,MxBPts), zx(MxSect,MxBPts), zy(MxSect,MxBPts),
zz(MxSect,MxBPts), s(MxSect,MxBPts), Tensn

SRa=S(CrvNum,NDPts(CrvNum))

DO 10 i=1,NGPts
 SB=SRa*StrB(i,EdgNum)
 CALL SplInt(n,s,SB,NDPts,CrvNum,MxBPts,MxSect)
 XB(i,CrvNum)=SplVal(s,x,zx,SB,Tensn,n,CrvNum,MxBPts,MxSect)
 YB(i,CrvNum)=SplVal(s,y,zy,SB,Tensn,n,CrvNum,MxBPts,MxSect)
 ZB(i,CrvNum)=SplVal(s,z,zz,SB,Tensn,n,CrvNum,MxBPts,MxSect)
10 CONTINUE

RETURN
END

SUBROUTINE Str4Prm(S0,SI,A,B, DZ)

REAL S0, SI, A, B, DZ, Y, PI

PI=ACOS(-1.)

A=SQRT(S0/SI)
B=SQRT(S0*SI)

IF(B.GT.1.001)THEN
 IF(B.LE.2.7829681)THEN
 Y=B-1
 DZ=SQRT(6.*Y)*(1.-0.15*Y+0.057321429*(Y**2)
 $-0.024907295*(Y**3)+0.0077424461*(Y**4)
 $-0.0010794123*(Y**5))
 ELSEIF (B.GT.2.7829681) THEN
 V=LOG(B)
 W=1./B - 0.028527431
 DZ=V+(1.+1./V)*LOG(2.*V)-0.02041793+0.24902722*W
 $+1.9496443*(W**2)-2.6294547*(W**3)+8.56795911*(W**4)
 ELSEIF (B.LT.0.999) THEN
 ENDIF
 ELSEIF (B.LT.0.999) THEN

IF (B.LE.0.26938972) THEN
 DZ=PI*(1.-B+B**2-(1.+(PI**2)/6.)*(B**3)+6.794732*(B**4)
-13.205501*(B**5)+11.726095*(B**6))
ELSE
 Y=B-1
 DZ=SQRT(6.*Y)*(1.+0.15*Y+0.057321429*(Y**2)
+0.048774238*(Y**3)-0.053337753*(Y**4)
+0.075845134*(Y**5))
ENDIF
ENDIF
RETURN
END

SUBROUTINE Str4(AiNew, Alpha, A, B, DZ)
REAL AiNew, Alpha, A, B, DZ, U, T

This subroutine calculates the value of the two-sided Vinokur
stretching function based on the value of the parameters A, B,
and DZ, and on the value of the "computational" coordinate Alpha.

IF (B.GT.1.001) THEN
 U=0.5+TANH(DZ*(Alpha-0.5))/(2.*TANH(DZ/2.))
ELSEIF (B.LT.0.999) THEN
 U=0.5+TAN(DZ*(Alpha-0.5))/(2.*TAN(DZ/2.))
ELSE
 U=Alpha*(1.+2.*(B-1)*(Alpha-0.5)*(1-Alpha))
ENDIF
T=U/(A+(1.-A)*U)
AiNew=T
RETURN
END
A.5 Listing of EDGPREP

PROGRAM EDGPREP
PARAMETER (MxNode=100)
INTEGER ISTR, ILS,NOP
REAL TENSION,BETA1,BETA2,
 / Xl(MxNode),Yl(MxNode),Zl(MxNode)

C This program prepares input files for EDGE by reading the
C necessary information from the screen and from files.
WRITE(*,*)'This program prepares an input file for the program'
WRITE(*,*)'EDGE. EDGE generates the grid point coordinates on'
WRITE(*,*)'a curve given by a set of nodes through which'
WRITE(*,*)'a spline curve can be fitted. The spline curve can'
WRITE(*,*)'be made up from several sections.'
WRITE(*,*)'Enter the number of sections'
READ(*,*)NOSECT

WRITE(*,*)'The data will be written into UNIT 20'
WRITE(20,*)NOSECT,' Number of sections'

DO 100 is=1,NOSECT
WRITE(*,*)
WRITE(*,*)'Now enter data for section number',is
WRITE(*,*)'Enter number of grid points to be on the section'
READ(*,*)ILS
CALL GETNODES(XI,YI,ZI,NOP,MxNode)
WRITE(*,2001)is
READ(*,*)TENSION
CALL GETSTR(is,ISTR,BETA1,BETA2)
WRITE(20,3001)ILS,is
WRITE(20,3002)TENSION
WRITE(20,3003)NOP
DO 20 I=1,NOP
 WRITE(20,3004)XI(I),YI(I),ZI(I),I
20 CONTINUE
WRITE(20,3005)ISTR
IF (ISTR.NE.4) WRITE (20, 3006) BETA1
IF (ISTR.EQ.4) WRITE (20, 3007) BETA1, BETA2

CONTINUE

2001 FORMAT //, ' Enter the TENSION parameter for section ', I2)
3001 FORMAT (' ', I3, ' No of gridpts: Section ', I2, $'----------------------')
3002 FORMAT (' ', F6.2, ' Tension parameter')
3003 FORMAT (' ', I3, ' Number of nodes')
3004 FORMAT (3X,3(F8.5,3X),' ---',I2)
3005 FORMAT (' ', I3, ' StretchType')
3006 FORMAT (' ', F8.4, ' Stretching parameter BETA')
3007 FORMAT (' ', 2(F8.4,3X), ' Stretching parameters BETA1 and ', $' BETA2')

STOP
END

REGION GETNODES(X1, Y1, Z1, NOP, MxNode)

This subroutine reads in and arranges nodal points to define two parallel curve sections (one on each blade surface).

INNUM0=10
NOP=0
PI=ACOS(-1.)
WRITE(*,*)'The data for the section can be read in several'
WRITE(*,*)'parts, where each part is a single node point or a'
WRITE(*,*)'series of node points. Note, the node points can'
WRITE(*,*)'be read in both forward and reverse order from'
WRITE(*,*)'the input files.'
WRITE(*,*)'How many parts is the section composed of?'
READ(*,*)NOSECT
DO 100 ISECT=1, NOSECT
INNUM=INNUM0+ISECT
WRITE(*,200) ISECT, INNUM
READ(INNUM,*)NP
WRITE(*,201)NP
READ(*,*)N1
WRITE(*,202)
READ(*,*)N2
N12=IABS(N2-N1)+1
NOP=NOP+N12
IF (N2.GE.N1) THEN
DO 10 J=1,N1-1
 READ(INNUM,*)
10 CONTINUE
C
 I=NOP-N12
 DO 20 J=N1,N2
 I=I+1
 READ(INNUM,*)X1(I),Y1(I),Z1(I)
20 CONTINUE
C
 ELSE
C
 DO 30 J=1,N2-1
 READ(INNUM,*)
30 CONTINUE
C
 I=NOP+1
 DO 40 J=N2,N1
 I=I-1
 READ(INNUM,*)X1(I),Y1(I),Z1(I)
40 CONTINUE
ENDIF
C
CLOSE(INNUM)

CONTINUE
C
200 FORMAT(' Part ',I2, ' will be read in from UNIT',I3)
201 FORMAT(' There are ',I2, ' node points in the file.',/
 ' Enter the number of the node point that is to be the',/
 ' the first on the current part. ')
202 FORMAT(' Enter the number of the node point that is to be the',/
 ' the last on the current part. ')
C
RETURN
END
C
SUBROUTINE GETSTR(NEI,ISTR,BETA1,BETA2)
C
C This subroutine reads information regarding the stretching function
C along curve section NEI.
C
WRITE(*,211)NEI
WRITE(*,2020)
100 READ(*,ISTR)
 IF(ISTR.LT.4 .AND. ISTR.GT.0) THEN
 WRITE(*,2031)NEI
 READ(*,*)BETA1
 ELSEIF (ISTR.EQ.4) THEN
 WRITE(*,2036)NEI
 READ(*,*)BETA1,BETA2
 ELSEIF (ISTR.EQ.0) THEN
 BETA1=1.1
 ELSE
 WRITE(*,'Please enter a number from 0 to 4')
 GO TO 100
 ENDIF
C 2011 FORMAT(' Enter the STRETCH TYPE for section',I2)
2020 FORMAT(/,' Enter: 0 for no stretching',/,
 / ' 1 for concentration near lower boundary',/,
 / ' 2 for concentration near upper boundary',/,
 / ' 3 for concentration near both boundaries',/,
 / ' 4 for two-parameter stretching function')
2031 FORMAT(' Enter the stretching parameter (BETA) for section ',
 / I2)
2036 FORMAT(' Enter the stretching parameters (BETA1 and BETA2)',
 / ' for section ',I2)
C
RETURN
END
A.6 Listing of GRIDTST

PROGRAM GRIDTST
PARAMETER (IM=11, JM=51, KM=151)

C This program is used to test whether all Jacobians for a grid system are positive.

DIMENSION X(IM, JM, KM), Y(IM, JM, KM), Z(IM, JM, KM)

DIMENSION DXDXI(IM), DXDET(IM), DXDZET(IM), DYDXI(IM), DYDET(IM)
/DYDZET(IM), DZDXI(IM), DZDET(IM), DZDZET(IM)

C Read in the grid point coordinates.
READ(1,*), IL
READ(1,*), JL
READ(1,*), KL
DO 5 I=1, IL
DO 5 J=1, JL
DO 5 K=1, KM
 READ(1,*), X(I, J, K), Y(I, J, K), Z(I, J, K)
CONTINUE

DXI=I/FLOAT(IL)
DET=I/FLOAT(JL)
DZET=I/FLOAT(KL)

C Calculate the metric coefficients at the regular grid points.
INEG=0
DO 30 K=1, KL
 DO 20 J=1, JL
 CALL DDXIJK(DXI, IL, JL, KL, X, Y, Z, J, K
/DXDXI, DYDXI, DZDXI, IM, JM, KM)
 CALL DDETJK(DET, IL, JL, KL, X, Y, Z, J, K
/DXDET, DYDET, DZDET, IM, JM, KM)
 CALL DDZETJK(DZET, IL, JL, KL, X, Y, Z, J, K
/DZDXI, DZDET, DZDZET, IM, JM, KM)
 CONTINUE
 DO 10 I=1, IL
 RJACB=
/DXDXI(I)*DYDET(I)*DZDZET(I)-DXDET(I)*DZDZET(I))
 +DYDXI(I)*DZDET(I)*DXDZET(I)-DYDET(I)*DXDZET(I))
 +DXDXI(I)*DYDZET(I)*DXDET(I)-DZDET(I)*DXDET(I))
 IF(RJACB.LE.0) WRITE(2,50) I, J, K, RJACB
 IF(RJACB.LE.0) INEG=INEG+1
CONTINUE
CONTINUE
30 CONTINUE
IF(INEG.GT.0) WRITE(*,'(A)') 'NEGATIVE JACOBIANS FOUND'

54
This subroutine calculates the derivatives of X, Y, and Z (i.e., the coordinates of the Cartesian coordinate system) with respect to the coordinate XI of the transformed coordinates.

```
SUBROUTINE DDXIJK (DXI, IL, JL, KL, X, Y, Z, J, K, DXDXI
, DYDXI, DZDXI, IM, JM, KM)

DIMENSION X(IM, JM, KM), Y(IM, JM, KM), Z(IM, JM, KM)
, DXDXI(IM), DYDXI(IM), DZDXI(IM)

DXI2 = 2. * DXI
DXDXI(1) = (-X(3, J, K) + 4. * X(2, J, K) - 3. * X(I, J, K)) / DXI2
DO 10 I = 2, 1L-I
   DXDXI(I) = (X(I+1, J, K) - X(I-1, J, K)) / DXI2
   DYDXI(I) = (Y(I+1, J, K) - Y(I-1, J, K)) / DXI2
   DZDXI(I) = (Z(I+1, J, K) - Z(I-1, J, K)) / DXI2
10 CONTINUE
DXDXI(IL) = (3. * X(IL, J, K) - 4. * X(IL-I, J, K) + X(IL-2, J, K)) / DXI2
DYDXI(IL) = (3. * Y(IL, J, K) - 4. * Y(IL-I, J, K) + Y(IL-2, J, K)) / DXI2
RETURN
END
```

SUBROUTINE DDETJK (DET, IL, JL, KL, X, Y, Z, J, K, DXDET
, DYDET, DZDET, IM, JM, KM)

This subroutine calculates the derivatives of X, Y, and Z (i.e., the coordinates of the Cartesian coordinate system) with respect to the coordinate ETA of the transformed coordinates.

```
DIMENSION X(IM, JM, KM), Y(IM, JM, KM), Z(IM, JM, KM)
, DXDET(IM), DYDET(IM), DZDET(IM)
```

55
C
C
DET2=2.*DET
IF (J.EQ.1) THEN
 DO 10 I=1,IL
 DXDET(I)=(-X(I,J+2,K)+4.*X(I,J+1,K)
 / -3.*X(I,J,K))/DET2
 DYDET(I)=(-Y(I,J+2,K)+4.*Y(I,J+1,K)
 / -3.*Y(I,J,K))/DET2
 DZDET(I)=(-Z(I,J+2,K)+4.*Z(I,J+1,K)
 / -3.*Z(I,J,K))/DET2
 CONTINUE
10 ELSE IF (J.EQ.JL) THEN
 DO 20 I=1,IL
 DXDET(I)=(3.*X(I,J,K) - 4.*X(I,J-1,K)
 / +X(I,J-2,K))/DET2
 DYDET(I)=(3.*Y(I,J,K) - 4.*Y(I,J-1,K)
 / +Y(I,J-2,K))/DET2
 DZDET(I)=(3.*Z(I,J,K) - 4.*Z(I,J-1,K)
 / +Z(I,J-2,K))/DET2
 CONTINUE
20 ELSE
 DO 30 I=1,IL
 DXDET(I)=(X(I,J+1,K)-X(I,J-1,K))/DET2
 DYDET(I)=(Y(I,J+1,K)-Y(I,J-1,K))/DET2
 DZDET(I)=(Z(I,J+1,K)-Z(I,J-1,K))/DET2
 CONTINUE
30 ENDIF
C
C
RETURN
END
C
C
SUBROUTINE DZDZETJK(DZET, IL, JL, KL, X, Y, Z, J, K, DXDET
/, DYDET, DZDDET, IM, JM, KM)
C
C- This subroutine calculates the derivatives of X, Y, and Z (i.e., the coordinates of the Cartesian coordinate system) with respect to the coordinate ZETA of the transformed coordinates.
C- DIMENSION X(IM, JM, KM), Y(IM, JM, KM), Z(IM, JM, KM)
C- , DXDET(IM), DYDET(IM), DZDDET(IM)
C
DZET2=2.*DZET
IF (K.EQ.1) THEN
 DO 10 I=1,IL
 DXDET(I)=(-X(I,J,K+2)+4.*X(I,J,K+1)
 / -3.*X(I,J,K))/DZET2
 DYDET(I)=(-Y(I,J,K+2)+4.*Y(I,J,K+1)
 / -3.*Y(I,J,K))/DZET2
 CONTINUE
10 ELSE
 DO 20 I=1,IL
 DXDET(I)=(3.*X(I,J,K) - 4.*X(I,J-1,K)
 / +X(I,J-2,K))/DZET2
 DYDET(I)=(3.*Y(I,J,K) - 4.*Y(I,J-1,K)
 / +Y(I,J-2,K))/DZET2
 DZDET(I)=(3.*Z(I,J,K) - 4.*Z(I,J-1,K)
 / +Z(I,J-2,K))/DZET2
 CONTINUE
20 ENDIF
C
C
RETURN
END
C
C
SUBROUTINE DZDZETJK(DZET, IL, JL, KL, X, Y, Z, J, K, DXDET
/, DYDET, DZDDET, IM, JM, KM)
DZDZET(I) = (-2(I,J,K+2) + 4.*Z(I,J,K+1) - 3.*Z(I,J,K))/DZET2

CONTINUE

ELSE IF (K.EQ.KL) THEN
 DO 20 I=1,IL
 DXDZET(I) = (3.*X(I,J,K) + X(I,J,K-2))/DZET2
 DYDZET(I) = (3.*Y(I,J,K) + Y(I,J,K-2))/DZET2
 DZDZET(I) = (3.*Z(I,J,K) + Z(I,J,K-2))/DZET2
 CONTINUE
 ENDIF
ELSE
 DO 30 I=1,IL
 DXDZET(I) = (X(I,J,K+1) - X(I,J,K-1))/DZET2
 DYDZET(I) = (Y(I,J,K+1) - Y(I,J,K-1))/DZET2
 DZDZET(I) = (Z(I,J,K+1) - Z(I,J,K-1))/DZET2
 CONTINUE
ENDIF
RETURN
END
Appendix B -- LISTING OF PROGRAM GRID3D-v2

PROGRAM GRID3D

PARAMETER (MxSrfs=4, MxBCvs=16, MxBPts=21, MxGSiz=31)

This SUBROUTINE generates a three-dimensional grid system using the "two-boundary" or "four-boundary" algebraic grid generation techniques. Boundary surface edge curves are formed from sets of nodal points by using parametric tension splines. Boundary surfaces are formed by using the "bi-directional 3-D Hermite interpolation" technique.

INTEGER CrvNum, SrfNum, NSurfs, InNum, OutNum,
$ StrXi, StrEt, StrZt, StrAA, StrBB, II, JJ, KK, AL, BL,
$ i, j, k, NDPts(4), AAL(MxSrfs), BBL(MxBCvs),
$ NGPts(MxBCvs), Type, StrTp, EdgNum, ZoneNo

REAL EtStep, XiStep, ZtStep, AAStep, BBStep,
$ SigmaXi, SigmaEt, SigmaZt,
$ KXil, KXl2, KEta1, KEta2, KZeta1, KZeta2,
$ BetaXi, BetaEt, BetaZt, BetaAA, BetaBB,
$ h1(MxGSiz), h2(MxGSiz), h3(MxGSiz), h4(MxGSiz),
$ h5(MxGSiz), h6(MxGSiz), h7(MxGSiz), h8(MxGSiz),
$ K5(MxSrfs,MxGSiz,MxGSiz), k1(MxSrfs,MxGSiz),
$ k2(MxSrfs,MxGSiz), k3(MxSrfs,MxGSiz), k4(MxSrfs,MxGSiz),
$ SigmaAA(MxSrfs), SigmaBB(MxSrfs),
$ XB(MxGSiz,4), YB(MxGSiz,4), ZB(MxGSiz,4),
$ X1(MxGSiz), X2(MxGSiz), X3(MxGSiz), X4(MxGSiz),
$ Y1(MxGSiz), Y2(MxGSiz), Y3(MxGSiz), Y4(MxGSiz),
$ Z1(MxGSiz), Z2(MxGSiz), Z3(MxGSiz), Z4(MxGSiz),
$ StrB(MxGSiz,MxBCvs),
$ EtStll(MxGSiz), EtStl2(MxGSiz), EtStl5(MxGSiz),
$ EtStl6(MxGSiz), ZtStl(MxGSiz), ZtSt2(MxGSiz),
$ ZtSt5(MxGSiz), ZtSt6(MxGSiz)

REAL
$ PXSIPE(MxGSiz,MxGSiz), PXS2PE(MxGSiz,MxGSiz),
$ PYSIPE(MxGSiz,MxGSiz), PYS2PE(MxGSiz,MxGSiz),
$ PZSIPE(MxGSiz,MxGSiz), PZS2PE(MxGSiz,MxGSiz),
$ PXS3Zt(MxGSiz,MxGSiz), PXS4Zt(MxGSiz,MxGSiz),
$ PYS3Zt(MxGSiz,MxGSiz), PYS4Zt(MxGSiz,MxGSiz),
$ PZS3Zt(MxGSiz,MxGSiz), PZS4Zt(MxGSiz,MxGSiz)

REAL Tensn(4),
$ Diag(MxBPts), OfDiag(MxBPts), Right(MxBPts),
$ XDerv2(4,MxBPts), YDerv2(4,MxBPts),
$ ZDerv2(4,MxBPts),
$ x(4,MxBPts), y(4,MxBPts),
$ z(4,MxBPts), s(4,MxBPts),
$ z(4,MxBPts), zy(4,MxBPts),
$ z(4,MxBPts)

REAL PX1PBB(MxGSiz), PX2PBB(MxGSiz),
$ PY1PBB(MxGSiz), PY2PBB(MxGSiz),
$ PZ1PBB(MxGSiz), PZ2PBB(MxGSiz),
$ PX1FAA(MxGSiz), PX2FAA(MxGSiz),
$ PY1FAA(MxGSiz), PY2FAA(MxGSiz),
$ PZ1FAA(MxGSiz), PZ2FAA(MxGSiz),
C Specify input and output device unit numbers for Region i. This is convenient for running the program on a PC. For a mainframe, you will need to use the FORTRAN OPEN and CLOSE statements or alter the input to use a namelist.

C
InNum=7
OutNum=8

C Read in the grid control information.
C
CALL RdGrIn(II,JJ,KK,NSurfs,SigmaXi,SigmaEt,SigmaZt,
$ kXil,kXi2,kEta1,kEta2,kZet1,kZeta2,InNum)

C Set various parameters for the grid generation routines.
C
CALL KFctrs(1,kS,k1,k2,k3,k4,kXil,kXi2,kEta1,kEta2,
$ kZet1,kZeta2,MxSrfs,MxGSiz)
SigmaBB(2)=SigmaXi
SigmaBB(3)=SigmaEt
SigmaBB(4)=SigmaEt
NGPts(1)=KK
NGPts(2)=KK
NGPts(3)=II
NGPts(4)=II
NGPts(5)=KK
NGPts(6)=KK
NGPts(7)=II
NGPts(8)=II
NGPts(9)=II
NGPts(10)=II
NGPts(11)=JJ
NGPts(12)=JJ
NGPts(13)=II
NGPts(14)=II
NGPts(15)=JJ
NGPts(16)=JJ

Calculate the grid point spacings in the transformed domain.

XiStep=1.0/(II-1)
EtStep=1.0/(JJ-1)
ZtStep=1.0/(KK-1)

Calculate the boundary surface grid point locations for each surface.

DO 40 SrfNum=1,NSurfs

Read in the edge curve nodal points and form the boundary surface edge curves for surface SrfNum by splining.

DO 30 CrvNum=1,4
 EdgNum=(SrfNum-1)*4 + CrvNum
 READ(InNum,*)Type
 IF(Type.EQ.1)THEN
 CALL RdGrPIn(NGPts(EdgNum),XB,YB,ZB,CrvNum,MxGSiz,InNum)
 CALL CalSt1(NGPts(EdgNum),XB,YB,ZB,CrvNum,EdgNum,
 StrB,MxBCvs,MxGSiz)
 ELSE
 CALL RdCvIn(x,y,z,NDPts,CrvNum,Tensn,InNum,MxBPts,
 StrTp,Betal,Beta2)
 CALL PTSpln(x,y,z,s,xx,zy,zz,Diag,OfDiag,Right,NDPts,
 Tensn(CrvNum),CrvNum,MxBPts)
 CALL CalSt2(EdgNum,NGPts(EdgNum),StrTp,Betal,Beta2,
 StrB,MxBCvs,MxGSiz)
 CALL EdgGPts(CrvNum,EdgNum,NGPts(EdgNum),XB,YB,ZB,StrE,
 x,y,z,s,xx,zy,zz,NDPts,Tensn(CrvNum),
 MxBCvs,MxBPts,MxGSiz)
 ENDIF
30 CONTINUE

Calculate the boundary surface edge derivative values for surface SrfNum.

CALL EdgDer(PX1PAA,PX2PAA,PY1PAA,PY2PAA,P21PAA,P22PAA,
Calculate the boundary surface grid point locations for surface SrfNum.

CALL TwoBnd(XS, YS, ZS, SrfNum, AAL(SrfNum), BBL(SrfNum),
SigmaBB(SrfNum), k1, k2, StrB,
h1, h2, h3, h4, X1, X2, X3, X4,
Y1, Y2, Y3, Y4, Z1, Z2, Z3, Z4, PX1PBB, PX2PBB,
PY1PBB, PY2PBB, PZ1PBB, PZ2PBB, PX1PAA, PX2PAA,
PY1PAA, PY2PAA, PZ1PAA, PZ2PAA, PX3PBB, PX4PBB,
PY3PBB, PY4PBB, PZ3PBB, PZ4PBB,
PX3PAA, PX4PAA, PZ3PAA, PZ4PAA,
MxBCvs, MxGSiz, MxSrfs)

CONTINUE

IF(NSurfs.EQ.2)THEN
 DO 60 SrfNum=3,4
 DO 50 CrvNum=3,4
 EdgNum=(SrfNum-i)*4 + CrvNum
 READ(InNum,*) StrTp
 IF(StrTp.NE.4)THEN
 READ(InNum,*) Betal
 ELSE
 READ(InNum,*) Betal, Beta2
 ENDIF
 CALL CalSt2(EdgNum, NGPts(EdgNum), StrTp, Betal, Beta2,
StrB, MxBCvs, MxGSiz)
 CONTINUE
 CONTINUE
ENDIF

Calculate the interior grid point locations.

CALL TwoSrf(XPnt, YPnt, ZPnt, II, JJ, KK, SigmaEt, kS,
EtSt11, EtSt12, EtSt15, EtSt16,
XiStep, EtStep, ZtStep, XS, YS, ZS, h1, h2, h3, h4,
PX1PE, PX2PE, PY1PE, PY2PE, PZ1PE, PZ2PE,
PZ2PE, MxGSiz, MxSrfs)

IF (NSurfs.EQ.4) THEN
 CALL ForSrf(XPnt, YPnt, ZPnt, II, JJ, KK,
SigmaEt, SigmaZt, kS,
EtSt11, EtSt12, EtSt15, EtSt16,
C
ENDIF
C
CALL PrGrid(XPnt, YPnt, ZPnt, II, JJ, KK, OutNum, MxGSiz)
C
RETURN
END
C
C--C
C
SUBROUTINE TwoSrf (XPnt, YPnt, ZPnt, II, JJ, KK, SigmaEt, kS,
$ EtStll, EtStl2, EtStl5, EtStl6,
$ XiStep, EtStep, ZtStep, XS, YS, ZS,
$ h1, h2, h3, h4, PXs1PE, PXs2PE, PYs1PE, PYs2PE, PZs1PE, PZs2PE,
$ PXs3Zt, PXs4Zt, PYs3Zt, PYs4Zt, PZs3Zt, PZs4Zt,
MxGSiz, MxSrfs)
C
This SUBROUTINE calculates the grid point locations between two specified
surfaces using the "two-boundary technique".
C
INTEGER i, j, k, StrXi, StrEt, StrZt, II, JJ, KK
C
REAL Xi, Eta, Zeta, XiNew, EtaNew, ZetaNew, LL1, LL2,
$ PXs1Xi, PXs2Xi, PYs1Xi, PYs2Xi, PZs1Xi, PZs2Xi,
$ PXs1Zt, PXs2Zt, PYs1Zt, PYs2Zt, PZs1Zt, PZs2Zt,
$ BetaXi, BetaEt, BetaZt, XiStep, EtStep, ZtStep,
$ EtStll(MxGSiz), EtStl2(MxGSiz),
$ EtStl5(MxGSiz), EtStl6(MxGSiz),
$ kS(MxSrfs, MxGSiz, MxGSiz),
$ h1(MxGSiz), h2(MxGSiz), h3(MxGSiz), h4(MxGSiz),
$ PXs1PE(MxGSiz, MxGsiz), PXs2PE(MxGSiz, MxGsiz),
$ PYs1PE(MxGSiz, MxGsiz), PYs2PE(MxGSiz, MxGsiz),
$ PZs1PE(MxGSiz, MxGsiz), PZs2PE(MxGSiz, MxGsiz),
$ XS(MxSrfs, MxGSiz, MxGSiz),
$ YS(MxSrfs, MxGSiz, MxGSiz),
$ ZS(MxSrfs, MxGSiz, MxGSiz),
$ XPnt(MxGSiz, MxGSiz, MxGSiz),
$ YPnt(MxGSiz, MxGSiz, MxGSiz),
$ ZPnt(MxGSiz, MxGSiz, MxGSiz)
C
Calculate the derivative values along the constant Xi/Zeta
boundaries.
C
FXs1Xi = (XS(1, 1, 2) - XS(1, 1, 1))/XiStep
PXs2Xi = (XS(2, 1, 2) - XS(2, 1, 1))/XiStep
PYs1Xi = (YS(1, 1, 2) - YS(1, 1, 1))/XiStep
PYs2Xi = (YS(2, 1, 2) - YS(2, 1, 1))/XiStep
PZs1Xi = (ZS(1, 1, 2) - ZS(1, 1, 1))/XiStep
PZs2Xi = (ZS(2, 1, 2) - ZS(2, 1, 1))/XiStep
FXs1Zt = (XS(1, 1, 2) - XS(1, 1, 1))/ZtStep
PXs2Zt = (XS(2, 1, 2) - XS(2, 1, 1))/ZtStep
PYs1Zt = (YS(1, 1, 2) - YS(1, 1, 1))/ZtStep
PYs2Zt = (YS(2, 1, 2) - YS(2, 1, 1))/ZtStep
PZs1Zt = (ZS(1, 1, 2) - ZS(1, 1, 1))/ZtStep
PZs2Zt = (ZS(2, 1, 2) - ZS(2, 1, 1))/ZtStep

62

62
PZS1Zt = (ZS(1, 2, 1) - ZS(1, 1, 1))/ZtStep
PZS2Zt = (ZS(2, 2, 1) - ZS(2, 1, 1))/ZtStep
LL1 = ((PYS1Xi*PZS1Zt - PZS1Xi*PYS1Zt)**2
 / + (PXS1Xi*PZS1Zt - PZS1Xi*PXS1Zt)**2
 / + (PXS1Xi*PYS1Zt - PYS1Xi*PXS1Zt)**2)*0.5
LL2 = ((PYS2Xi*PZS2Zt - PZS2Xi*PYS2Zt)**2
 / + (PXS2Xi*PZS2Zt - PZS2Xi*PXS2Zt)**2
 / + (PXS2Xi*PYS2Zt - PYS2Xi*PXS2Zt)**2)*0.5

PXSIPE(1, 1) = -kS (1, 1, 1)* (PYS1Xi*PZS1Zt - PZS1Xi*PYS1Zt)/LL1
PXSIPE(1, 1) = -kS (2, 1, 1)* (PYS2Xi*PZS2Zt - PZS2Xi*PYS2Zt)/LL2
PXSIPE(1, 1) = -kS (1, 1, 1)* (PYS1Xi*PYS1Zt - PYS1Xi*PXS1Zt)/LL1
PXSIPE(1, 1) = -kS (2, 1, 1)* (PYS2Xi*PYS2Zt - PYS2Xi*PXS2Zt)/LL2
PXSIPE(1, 1) = -kS (1, 1, 1)* (PYS1Xi*PYS1Zt - PYS1Xi*PXS1Zt)/LL1
PXSIPE(1, 1) = -kS (2, 1, 1)* (PYS2Xi*PYS2Zt - PYS2Xi*PXS2Zt)/LL2

DO 55 i=2, II-1
"
\[
LL2 = ((PYS2Xi*PZS2Zt-PZS2Xi*PYS2Zt)^2 + (PXS2Xi*PZS2Zt-PZS2Xi*PXS2Zt)^2 + (PXS2Xi*PYS2Zt-PYS2Xi*PXS2Zt)^2)^{0.5}
\]

\[
PXS1PE(i,1) = -kS(1,i,1)*(PYS1Xi*PZS1Zt-PZS1Xi*PYS1Zt)/LL1
\]

\[
PXS2PE(i,1) = -kS(2,i,1)*(PYS2Xi*PZS2Zt-PZS2Xi*PYS2Zt)/LL2
\]

\[
SYS1PE(i,1) = kS(1,i,1)*(PXS1Xi*PZS1Zt-PZS1Xi*PXS1Zt)/LL1
\]

\[
SYS2PE(i,1) = kS(2,i,1)*(PXS2Xi*PZS2Zt-PZS2Xi*PXS2Zt)/LL2
\]

\[
PSZ1PE(i,1) = -kS(1,i,1)*(PXS1Xi*PYS1Zt-PYS1Xi*PXS1Zt)/LL1
\]

\[
PSZ2PE(i,1) = -kS(2,i,1)*(PXS2Xi*PYS2Zt-PYS2Xi*PXS2Zt)/LL2
\]

CONTINUE

DO 70 k=2, KK-1

PX1XI = (XS(1,k,2) - XS(1,k,1))/XiStep
PX2XI = (XS(2,k,2) - XS(2,k,1))/XiStep
PY1XI = (YS(1,k,2) - YS(1,k,1))/XiStep
PY2XI = (YS(2,k,2) - YS(2,k,1))/XiStep
PZ1XI = (ZS(1,k,2) - ZS(1,k,1))/XiStep
PZ2XI = (ZS(2,k,2) - ZS(2,k,1))/XiStep
PX12t = (XS(1,k+1,1) - XS(1,k-1,1))/2/ZtStep
PX22t = (XS(2,k+1,1) - XS(2,k-1,1))/2/ZtStep
PY12t = (YS(1,k+1,1) - YS(1,k-1,1))/2/ZtStep
PY22t = (YS(2,k+1,1) - YS(2,k-1,1))/2/ZtStep
PZ12t = (ZS(1,k+1,1) - ZS(1,k-1,1))/2/ZtStep
PZ22t = (ZS(2,k+1,1) - ZS(2,k-1,1))/2/ZtStep
LL1 = ((PYS1XI*PZS12t-PZS1XI*PY12t)**2 + (PXS1XI*PZS12t-PZS1XI*PX12t)**2 + (PXS1XI*PY12t-PYS1XI*PX12t)**2)**0.5
LL2 = ((PYS2XI*PZS22t-PZS2XI*PY22t)**2 + (PXS2XI*PZS22t-PZS2XI*PX22t)**2 + (PXS2XI*PY22t-PYS2XI*PX22t)**2)**0.5

PXS1PE(1,k) = -kS(1,1,k)*(PYS1XI*PZS12t-PZS1XI*PYS12t)/LL1
PXS2PE(1,k) = -kS(2,1,k)*(PYS2XI*PZS22t-PZS2XI*PYS22t)/LL2
SYS1PE(1,k) = kS(1,1,k)*(PXS1XI*PZS12t-PZS1XI*PXS12t)/LL1
SYS2PE(1,k) = kS(2,1,k)*(PXS2XI*PZS22t-PZS2XI*PXS22t)/LL2
PSZ1PE(1,k) = -kS(1,1,k)*(PXS1XI*PYS12t-PYS1XI*PXS12t)/LL1
PSZ2PE(1,k) = -kS(2,1,k)*(PXS2XI*PYS22t-PYS2XI*PXS22t)/LL2

PXS1XI = (XS(1,k,II) - XS(1,k,II-1))/XiStep
PXS2XI = (XS(2,k,II) - XS(2,k,II-1))/XiStep
PY1XI = (YS(1,k,II) - YS(1,k,II-1))/XiStep
PY2XI = (YS(2,k,II) - YS(2,k,II-1))/XiStep
PZ1XI = (ZS(1,k,II) - ZS(1,k,II-1))/XiStep
PZ2XI = (ZS(2,k,II) - ZS(2,k,II-1))/XiStep
PX12t = (XS(1,k+1,II) - XS(1,k-1,II))/2/ZtStep
PX22t = (XS(2,k+1,II) - XS(2,k-1,II))/2/ZtStep
PY12t = (YS(1,k+1,II) - YS(1,k-1,II))/2/ZtStep
PY22t = (YS(2,k+1,II) - YS(2,k-1,II))/2/ZtStep
PZ12t = (ZS(1,k+1,II) - ZS(1,k-1,II))/2/ZtStep
PZ22t = (ZS(2,k+1,II) - ZS(2,k-1,II))/2/ZtStep
LL1 = ((PYS1XI*PZS12t-PZS1XI*PY12t)**2 + (PXS1XI*PZS12t-PZS1XI*PX12t)**2 + (PXS1XI*PY12t-PYS1XI*PX12t)**2)**0.5
LL2 = ((PYS2XI*PZS22t-PZS2XI*PY22t)**2 + (PXS2XI*PZS22t-PZS2XI*PX22t)**2 + (PXS2XI*PY22t-PYS2XI*PX22t)**2)**0.5
\[\text{PXSIPE}(II, k) = -kS(1, II, k) \times (PYSIXi * PZSIZt - PZSIXi * PYSIZt) / LL1 \]
\[\text{PXSIPE}(II, k) = -kS(2, II, k) \times (PYS2Xi * PZS2Zt - PZS2Xi * PYS2Zt) / LL2 \]
\[\text{PXSIPE}(II, k) = kS(1, II, k) \times (PXSIXi * PZSIZt - PZSIXi * PXSIZt) / LL1 \]
\[\text{PXSIPE}(II, k) = kS(2, II, k) \times (PXS2Xi * PZS2Zt - PZS2Xi * PXS2Zt) / LL2 \]

\[\text{DO } 60 \text{ i=2, II-1} \]
\[\text{PXSIx} = (Xs(1, k, i+1) - Xs(1, k, i-1)) / 2 / XiStep \]
\[\text{PXSIx} = (Xs(2, k, i+1) - Xs(2, k, i-1)) / 2 / XiStep \]
\[\text{PYSIXi} = (Ys(1, k, i+1) - Ys(1, k, i-1)) / 2 / XiStep \]
\[\text{PYS2IXi} = (Ys(2, k, i+1) - Ys(2, k, i-1)) / 2 / XiStep \]
\[\text{PZSIXi} = (Zs(1, k, i+1) - Zs(1, k, i-1)) / 2 / XiStep \]
\[\text{PZS2IXi} = (Zs(2, k, i+1) - Zs(2, k, i-1)) / 2 / XiStep \]
\[\text{PXSIz} = (Xs(1, k, i+1) - Xs(1, k, i-1)) / 2 / ZtStep \]
\[\text{PXSIz} = (Xs(2, k, i+1) - Xs(2, k, i-1)) / 2 / ZtStep \]
\[\text{PYSIZi} = (Ys(1, k, i+1) - Ys(1, k, i-1)) / 2 / ZtStep \]
\[\text{PYS2IZi} = (Ys(2, k, i+1) - Ys(2, k, i-1)) / 2 / ZtStep \]
\[\text{PZSIz} = (Zs(1, k, i+1) - Zs(1, k, i-1)) / 2 / ZtStep \]
\[\text{PZS2IZi} = (Zs(2, k, i+1) - Zs(2, k, i-1)) / 2 / ZtStep \]
\[\text{LL1} = ((PYSIXi * PZSIZt - PZSIXi * PYSIZt) ** 2 + (PXSIXi * PZSIZt - PZSIXi * PXSIZt) ** 2 + (PXSIXi * PYSIZt - PYSIXi * PXSIZt) ** 2) ** 0.5 \]
\[\text{LL2} = ((PYS2IXi * PZS2Zt - PZS2IXi * PYS2Zt) ** 2 + (PXS2IXi * PZS2Zt - PZS2IXi * PXS2Zt) ** 2 + (PXS2IXi * PYS2Zt - PYS2IXi * PXS2Zt) ** 2) ** 0.5 \]

\[\text{PXSIPE}(i, k) = -kS(1, i, k) \times (PYSIXi * PZSIZt - PZSIXi * PYSIZt) / LL1 \]
\[\text{PXSIPE}(i, k) = -kS(2, i, k) \times (PYS2IXi * PZS2Zt - PZS2IXi * PYS2Zt) / LL2 \]
\[\text{PXSIPE}(i, k) = kS(1, i, k) \times (PXSIXi * PZSIZt - PZSIXi * PXSIZt) / LL1 \]
\[\text{PXSIPE}(i, k) = kS(2, i, k) \times (PXS2IXi * PZS2Zt - PZS2IXi * PXS2Zt) / LL2 \]

\[\text{CONTINUE} \]

\[\text{PXSIx}(1, KK) = (Xs(1, KK, 2) - Xs(1, KK, 1)) / XiStep \]
\[\text{PXSIx}(2, KK) = (Xs(2, KK, 2) - Xs(2, KK, 1)) / XiStep \]
\[\text{PYSIXi}(1, KK) = (Ys(1, KK, 2) - Ys(1, KK, 1)) / XiStep \]
\[\text{PYS2IXi}(2, KK) = (Ys(2, KK, 2) - Ys(2, KK, 1)) / XiStep \]
\[\text{PZSIXi}(1, KK) = (Zs(1, KK, 2) - Zs(1, KK, 1)) / XiStep \]
\[\text{PZS2IXi}(2, KK) = (Zs(2, KK, 2) - Zs(2, KK, 1)) / XiStep \]
\[\text{PXSIz}(1, KK) = (Xs(1, KK, 1)) / ZtStep \]
\[\text{PXSIz}(2, KK) = (Xs(2, KK, 1)) / ZtStep \]
\[\text{PYSIZi}(1, KK) = (Ys(1, KK, 1)) / ZtStep \]
\[\text{PYS2IZi}(2, KK) = (Ys(2, KK, 1)) / ZtStep \]
\[\text{PZSIz}(1, KK) = (Zs(1, KK, 1)) / ZtStep \]
\[\text{PZS2IZi}(2, KK) = (Zs(2, KK, 1)) / ZtStep \]
\[\text{LL1} = ((PYSIXi * PZSIZt - PZSIXi * PYSIZt) ** 2 + (PXSIXi * PZSIZt - PZSIXi * PXSIZt) ** 2 + (PXSIXi * PYSIZt - PYSIXi * PXSIZt) ** 2) ** 0.5 \]
\[\text{LL2} = ((PYS2IXi * PZS2Zt - PZS2IXi * PYS2Zt) ** 2 + (PXS2IXi * PZS2Zt - PZS2IXi * PXS2Zt) ** 2 + (PXS2IXi * PYS2Zt - PYS2IXi * PXS2Zt) ** 2) ** 0.5 \]

\[\text{PXSIPE}(1, KK) = -kS(1, 1, KK) \times (PYSIXi * PZS1Zt - PZS1IXi * PYS1Zt) / LL1 \]
\[\text{PXSIPE}(1, KK) = -kS(2, 1, KK) \times (PYS2IXi * PZS2Zt - PZS2IXi * PYS2Zt) / LL2 \]
\[\text{PXSIPE}(1, KK) = kS(1, 1, KK) \times (PXSIXi * PZS1Zt - PZS1IXi * PXS1Zt) / LL1 \]
PYS2PE(1, KK) = kS(2, 1, KK) * (PXS2Xi*PYS2Zt-PYS2Xi*PXS2Zt)/LL2
PZS1PE(1, KK) = -kS(1, 1, KK) * (PXS1Xi*PYS1Zt-PYS1Xi*PXS1Zt)/LL1
PZS2PE(1, KK) = kS(2, 1, KK) * (PXS2Xi*PYS2Zt-PYS2Xi*PXS2Zt)/LL2

PXSIPE(I, KK) = kS(I, I, KK) * (PYSIXi*PZSIZt-PZSIXi*PYSIZt)/LLI
PXSIPE(I, KK) = kS(I, I, KK) * (PYSIXi*PZSIZt-PZSIXi*PYSIZt)/LLI
PZSIPE (I, KK) = -kS(I, I, KK) * (PXSIXi*PYSIZt-PYSIXi*PXSIZt)/LLI
PZSIPE (I, KK) = -kS(I, I, KK) * (PXSIXi*PYSIZt-PYSIXi*PXSIZt)/LLI

PZS2PE(I, KK) = -kS(2, I, KK) * (PXS2Xi*PYS2Zt-PYS2Xi*PXS2Zt)/LL2

PXSIPE(I, KK) = kS(I, I, KK) * (PXSIXi*PYSIZt-PYSIXi*PXSIZt)/LLI
PXSIPE(I, KK) = kS(I, I, KK) * (PXSIXi*PYSIZt-PYSIXi*PXSIZt)/LLI
PZSIPE (I, KK) = -kS(I, I, KK) * (PXSIXi*PYSIZt-PYSIXi*PXSIZt)/LLI
PZSIPE (I, KK) = -kS(I, I, KK) * (PXSIXi*PYSIZt-PYSIXi*PXSIZt)/LLI

PZS2PE(I, KK) = -kS(2, I, KK) * (PXS2Xi*PYS2Zt-PYS2Xi*PXS2Zt)/LL2

PXSIPE(I, KK) = kS(I, I, KK) * (PXSIXi*PYSIZt-PYSIXi*PXSIZt)/LLI
PXSIPE(I, KK) = kS(I, I, KK) * (PXSIXi*PYSIZt-PYSIXi*PXSIZt)/LLI
PZSIPE (I, KK) = -kS(I, I, KK) * (PXSIXi*PYSIZt-PYSIXi*PXSIZt)/LLI
PZSIPE (I, KK) = -kS(I, I, KK) * (PXSIXi*PYSIZt-PYSIXi*PXSIZt)/LLI

PZS2PE(I, KK) = -kS(2, I, KK) * (PXS2Xi*PYS2Zt-PYS2Xi*PXS2Zt)/LL2

PXSIPE(I, KK) = kS(I, I, KK) * (PXSIXi*PYSIZt-PYSIXi*PXSIZt)/LLI
PXSIPE(I, KK) = kS(I, I, KK) * (PXSIXi*PYSIZt-PYSIXi*PXSIZt)/LLI
PZSIPE (I, KK) = -kS(I, I, KK) * (PXSIXi*PYSIZt-PYSIXi*PXSIZt)/LLI
PZSIPE (I, KK) = -kS(I, I, KK) * (PXSIXi*PYSIZt-PYSIXi*PXSIZt)/LLI

PZS2PE(I, KK) = -kS(2, I, KK) * (PXS2Xi*PYS2Zt-PYS2Xi*PXS2Zt)/LL2

PXSIPE(I, KK) = kS(I, I, KK) * (PXSIXi*PYSIZt-PYSIXi*PXSIZt)/LLI
PXSIPE(I, KK) = kS(I, I, KK) * (PXSIXi*PYSIZt-PYSIXi*PXSIZt)/LLI
PZSIPE (I, KK) = -kS(I, I, KK) * (PXSIXi*PYSIZt-PYSIXi*PXSIZt)/LLI
PZSIPE (I, KK) = -kS(I, I, KK) * (PXSIXi*PYSIZt-PYSIXi*PXSIZt)/LLI

PZS2PE(I, KK) = -kS(2, I, KK) * (PXS2Xi*PYS2Zt-PYS2Xi*PXS2Zt)/LL2

PXSIPE(I, KK) = kS(I, I, KK) * (PXSIXi*PYSIZt-PYSIXi*PXSIZt)/LLI
PXSIPE(I, KK) = kS(I, I, KK) * (PXSIXi*PYSIZt-PYSIXi*PXSIZt)/LLI
PZSIPE (I, KK) = -kS(I, I, KK) * (PXSIXi*PYSIZt-PYSIXi*PXSIZt)/LLI
PZSIPE (I, KK) = -kS(I, I, KK) * (PXSIXi*PYSIZt-PYSIXi*PXSIZt)/LLI

PZS2PE(I, KK) = -kS(2, I, KK) * (PXS2Xi*PYS2Zt-PYS2Xi*PXS2Zt)/LL2

PXSIPE(I, KK) = kS(I, I, KK) * (PXSIXi*PYSIZt-PYSIXi*PXSIZt)/LLI
PXSIPE(I, KK) = kS(I, I, KK) * (PXSIXi*PYSIZt-PYSIXi*PXSIZt)/LLI
PZSIPE (I, KK) = -kS(I, I, KK) * (PXSIXi*PYSIZt-PYSIXi*PXSIZt)/LLI
PZSIPE (I, KK) = -kS(I, I, KK) * (PXSIXi*PYSIZt-PYSIXi*PXSIZt)/LLI

PZS2PE(I, KK) = -kS(2, I, KK) * (PXS2Xi*PYS2Zt-PYS2Xi*PXS2Zt)/LL2

PXSIPE(I, KK) = kS(I, I, KK) * (PXSIXi*PYSIZt-PYSIXi*PXSIZt)/LLI
PXSIPE(I, KK) = kS(I, I, KK) * (PXSIXi*PYSIZt-PYSIXi*PXSIZt)/LLI
PZSIPE (I, KK) = -kS(I, I, KK) * (PXSIXi*PYSIZt-PYSIXi*PXSIZt)/LLI
PZSIPE (I, KK) = -kS(I, I, KK) * (PXSIXi*PYSIZt-PYSIXi*PXSIZt)/LLI

PZS2PE(I, KK) = -kS(2, I, KK) * (PXS2Xi*PYS2Zt-PYS2Xi*PXS2Zt)/LL2

PXSIPE(I, KK) = kS(I, I, KK) * (PXSIXi*PYSIZt-PYSIXi*PXSIZt)/LLI
PXSIPE(I, KK) = kS(I, I, KK) * (PXSIXi*PYSIZt-PYSIXi*PXSIZt)/LLI
PZSIPE (I, KK) = -kS(I, I, KK) * (PXSIXi*PYSIZt-PYSIXi*PXSIZt)/LLI
PZSIPE (I, KK) = -kS(I, I, KK) * (PXSIXi*PYSIZt-PYSIXi*PXSIZt)/LLI

PZS2PE(I, KK) = -kS(2, I, KK) * (PXS2Xi*PYS2Zt-PYS2Xi*PXS2Zt)/LL2
C Calculate the interior grid point locations.
C
DO 100 k=1,KK
 Zeta=(k-1.)/(KK-1.)
DO 90 i=1,II
 Xi=(i-1.)/(II-1.)
DO 80 j=1,JJ
 EtaNew=(EtStll(j)*(1.-Xi)+EtStl2(j)*Xi)*(1.-Zeta)
$ +(EtStl5(j)*(1.-Xi)+EtStl6(j)*Xi)*Zeta
 CALL FindHs(hl(j),h2(j),h3(j),h4(j),EtaNew,SigmaEt)
 XPnt(i,j,k)=hl(j)
$ *XS(1,k,i)+h2(j)*XS(2,k,i)
$ +h3(j)*XS1PE(i,k)
$ +h4(j)*XS2PE(i,k)
 YPnt(i,j,k)=hl(j)
$ *YS(1,k,i)+h2(j)*YS(2,k,i)
$ +h3(j)*YS1PE(i,k)
$ +h4(j)*YS2PE(i,k)
 ZPnt(i,j,k)=hl(j)
$ *ZS(1,k,i)+h2(j)*ZS(2,k,i)
$ +h3(j)*ZS1PE(i,k)
$ +h4(j)*ZS2PE(i,k)
80 CONTINUE
90 CONTINUE
100 CONTINUE
C
RETURN
END
C
SUBROUTINE ForSrf(XPnt, YPnt, ZPnt, II, JJ, KK, SigmaEt, SigmaZt, kS,
 EtSt11, EtSt12, EtSt15, EtSt16,
 ZtSt1, ZtSt2, ZtSt5, ZtSt6,
 XS, YS, ZS, XiStep, EtStep, ZtStep,
 h1, h2, h3, h4, h5, h6, h7, h8,
 PXS1PE, PXS2PE, PYS1PE, PYS2PE, PZS1PE, PZS2PE,
 PXS3Zt, PXS4Zt, PYS3Zt, PYS4Zt, PZS3Zt, PZS4Zt,
 MxGSiz,MxSrfs)
C
This SUBROUTINE adjusts the grid so that the other two surfaces of the
region are mapped correctly using the "four-boundary technique".
C
INTEGER i, j, k, StrXi, StrEt, StrZt, II, JJ, KK
C
REAL Xi, Eta, Zeta, XINew, ETANew, ZetaNew, LL3, LL4,
 h1(MxGSiz), h2(MxGSiz), h3(MxGSiz), h4(MxGSiz),
 h5(MxGSiz), h6(MxGSiz), h7(MxGSiz), h8(MxGSiz),
 PXS3Xi, PXS4Xi, PYS3Xi, PYS4Xi, PZS3Xi, PZS4Xi,
 PXS3PE, PXS4PE, PYS3PE, PYS4PE, PZS3PE, PZS4PE,
 P2X00, P2X01, P2X10, P2X11, P2Y00, P2Y01, P2Y10, P2Y11,
 P2Z00, P2Z01, P2Z10, P2Z11
REAL BetaXi, BetaEt, BetaZt, XiStep, EtStep, ZtStep,
Calculate the derivative values along the constant Xi/Eta boundaries.

\[
\begin{align*}
PXS3Xi &= (XS(3,2,1) - XS(3,1,1))/XiStep \\
PXS4Xi &= (XS(4,2,1) - XS(4,1,1))/XiStep \\
PYS3Xi &= (YS(3,2,1) - YS(3,1,1))/XiStep \\
PYS4Xi &= (YS(4,2,1) - YS(4,1,1))/XiStep \\
PZS3Xi &= (ZS(3,2,1) - ZS(3,1,1))/XiStep \\
PZS4Xi &= (ZS(4,2,1) - ZS(4,1,1))/XiStep \\
PXS3PE &= (XS(3,1,2) - XS(3,1,1))/EtStep \\
PXS4PE &= (XS(4,1,2) - XS(4,1,1))/EtStep \\
PYS3PE &= (YS(3,1,2) - YS(3,1,1))/EtStep \\
PYS4PE &= (YS(4,1,2) - YS(4,1,1))/EtStep \\
PZS3PE &= (ZS(3,1,2) - ZS(3,1,1))/EtStep \\
PZS4PE &= (ZS(4,1,2) - ZS(4,1,1))/EtStep \\
LL3 &= ((PYS3Xi*PZS3PE-PZS3Xi*PYS3PE)**2 \\
&+ (PXS3Xi*PZS3PE-PZS3Xi*PXS3PE)**2)**0.5 \\
LL4 &= ((PYS4Xi*PZS4PE-PZS4Xi*PYS4PE)**2 \\
&+ (PXS4Xi*PZS4PE-PZS4Xi*PXS4PE)**2)**0.5 \\
PXS3Xi &= (XS(3,II,1) - XS(3,II-1,1))/XiStep \\
PXS4Xi &= (XS(4,II,1) - XS(4,II-1,1))/XiStep \\
PYS3Xi &= (YS(3,II,1) - YS(3,II-1,1))/XiStep \\
PYS4Xi &= (YS(4,II,1) - YS(4,II-1,1))/XiStep \\
PZS3Xi &= (ZS(3,II,1) - ZS(3,II-1,1))/XiStep \\
PZS4Xi &= (ZS(4,II,1) - ZS(4,II-1,1))/XiStep \\
PXS3PE &= (XS(3,II,2) - XS(3,II,1))/EtStep \\
PXS4PE &= (XS(4,II,2) - XS(4,II,1))/EtStep \\
PYS3PE &= (YS(3,II,2) - YS(3,II,1))/EtStep \\
PYS4PE &= (YS(4,II,2) - YS(4,II,1))/EtStep \\
PZS3PE &= (ZS(3,II,2) - ZS(3,II,1))/EtStep \\
PZS4PE &= (ZS(4,II,2) - ZS(4,II,1))/EtStep \\
LL3 &= ((PYS3Xi*PZS3PE-PZS3Xi*PYS3PE)**2 \\
&+ (PXS3Xi*PZS3PE-PZS3Xi*PXS3PE)**2)**0.5 \\
LL4 &= ((PYS4Xi*PZS4PE-PZS4Xi*PYS4PE)**2 \\
&+ (PXS4Xi*PZS4PE-PZS4Xi*PXS4PE)**2)**0.5
\end{align*}
\]

68
\[(PXS3Xi*PYS3PE-PYS3Xi*PXS3PE)**2)\)**0.5\]

\[LL4=((PYS4Xi*PZS4PE-PZS4Xi*PYS4PE)**2+(PXS4Xi*PZS4PE-PZS4Xi*PXS4PE)**2+(PXS4Xi*PYS4PE-PYS4Xi*PXS4PE)**2)**0.5\]

\[PXS3Zt (II, I) = -kS (3, II, I) * (PYS3Xi*PZS3PE-PZS3Xi*PYS3PE)/LL3\]

\[PXS4Zt (II, I) = -kS (4, II, I) * (PYS4Xi*PZS4PE-PZS4Xi*PYS4PE)/LL4\]

\[PYS3Zt (II, I) = kS (3, II, I) * (PXS3Xi*PZS3PE-PZS3Xi*PXS3PE)/LL3\]

\[PYS4Zt (II, I) = kS (4, II, I) * (PXS4Xi*PZS4PE-PZS4Xi*PXS4PE)/LL4\]

\[PZS3Zt (II, I) = -kS (3, II, I) * (PXS3Xi*PYS3PE-PYS3Xi*PXS3PE)/LL3\]

\[PZS4Zt (II, I) = -kS (4, II, I) * (PXS4Xi*PYS4PE-PYS4Xi*PXS4PE)/LL4\]

\[DO 45 i=2, II-1\]

\[PXS3Xi = (XS (3, i+1, 1)-XS (3, i-1, 1))/2/XiStep\]

\[PXS4Xi = (XS (4, i+1, 1)-XS (4, i-1, 1))/2/XiStep\]

\[PYS3Xi = (YS (3, i+1, 1)-YS (3, i-1, 1))/2/XiStep\]

\[PYS4Xi = (YS (4, i+1, 1)-YS (4, i-1, 1))/2/XiStep\]

\[PZS3Xi = (ZS (3, i+1, 1)-ZS (3, i-1, 1))/2/XiStep\]

\[PZS4Xi = (ZS (4, i+1, 1)-ZS (4, i-1, 1))/2/XiStep\]

\[PXS3PE = (XS (3, i, 2)-XS (3, i, 1))/EtStep\]

\[PXS4PE = (XS (4, i, 2)-XS (4, i, 1))/EtStep\]

\[PYS3PE = (YS (3, i, 2)-YS (3, i, 1))/EtStep\]

\[PYS4PE = (YS (4, i, 2)-YS (4, i, 1))/EtStep\]

\[PZS3PE = (ZS (3, i, 2)-ZS (3, i, 1))/EtStep\]

\[PZS4PE = (ZS (4, i, 2)-ZS (4, i, 1))/EtStep\]

\[LL3=((PYS3Xi*PZS3PE-PZS3Xi*PYS3PE)**2+(PXS3Xi*PZS3PE-PZS3Xi*PXS3PE)**2+(PXS3Xi*PYS3PE-PYS3Xi*PXS3PE)**2)**0.5\]

\[LL4=((PYS4Xi*PZS4PE-PZS4Xi*PYS4PE)**2+(PXS4Xi*PZS4PE-PZS4Xi*PXS4PE)**2+(PXS4Xi*PYS4PE-PYS4Xi*PXS4PE)**2)**0.5\]

\[PXS3Zt (i, I) = -kS (3, i, 1) * (PYS3Xi*PZS3PE-PZS3Xi*PYS3PE)/LL3\]

\[PXS4Zt (i, I) = -kS (4, i, 1) * (PYS4Xi*PZS4PE-PZS4Xi*PYS4PE)/LL4\]

\[PYS3Zt (i, I) = kS (3, i, 1) * (PXS3Xi*PZS3PE-PZS3Xi*PXS3PE)/LL3\]

\[PYS4Zt (i, I) = kS (4, i, 1) * (PXS4Xi*PZS4PE-PZS4Xi*PXS4PE)/LL4\]

\[PZS3Zt (i, I) = -kS (3, i, 1) * (PXS3Xi*PYS3PE-PYS3Xi*PXS3PE)/LL3\]

\[PZS4Zt (i, I) = -kS (4, i, 1) * (PXS4Xi*PYS4PE-PYS4Xi*PXS4PE)/LL4\]

\[CONTINUE\]

\[DO 60 j=2, JJ-1\]

\[PXS3Xi = (XS (3, 2, j)-XS (3, 1, j))/XiStep\]

\[PXS4Xi = (XS (4, 2, j)-XS (4, 1, j))/XiStep\]

\[PYS3Xi = (YS (3, 2, j)-YS (3, 1, j))/XiStep\]

\[PYS4Xi = (YS (4, 2, j)-YS (4, 1, j))/XiStep\]

\[PZS3Xi = (ZS (3, 2, j)-ZS (3, 1, j))/XiStep\]

\[PZS4Xi = (ZS (4, 2, j)-ZS (4, 1, j))/XiStep\]

\[PXS3PE = (XS (3, 1, j+1)-XS (3, 1, j-1))/2/EtStep\]

\[PXS4PE = (XS (4, 1, j+1)-XS (4, 1, j-1))/2/EtStep\]

\[PYS3PE = (YS (3, 1, j+1)-YS (3, 1, j-1))/2/EtStep\]

\[PYS4PE = (YS (4, 1, j+1)-YS (4, 1, j-1))/2/EtStep\]

\[PZS3PE = (ZS (3, 1, j+1)-ZS (3, 1, j-1))/2/EtStep\]

\[PZS4PE = (ZS (4, 1, j+1)-ZS (4, 1, j-1))/2/EtStep\]

\[LL3=((PYS3Xi*PZS3PE-PZS3Xi*PYS3PE)**2+(PXS3Xi*PZS3PE-PZS3Xi*PXS3PE)**2+(PXS3Xi*PYS3PE-PYS3Xi*PXS3PE)**2)**0.5\]

\[LL4=((PYS4Xi*PZS4PE-PZS4Xi*PYS4PE)**2+(PXS4Xi*PZS4PE-PZS4Xi*PXS4PE)**2+(PXS4Xi*PYS4PE-PYS4Xi*PXS4PE)**2)**0.5\]

\[CONTINUE\]
\[
\begin{align*}
(+PXS4Xi*PYS4PE-PYS4Xi*PXS4PE)**2)*0.5
\end{align*}
\]

\[
PXS3Zt (1, j)-kS (3, 1, j)*/(PYS3Xi*PZS3PE-PZS3Xi*PYS3PE)/LL3
\]

\[
PXS4Zt (1, j)-kS (4, 1, j)*/(PYS4Xi*PZS4PE-PZS4Xi*PYS4PE)/LL4
\]

\[
PYS3Zt (1, j)= kS (3, 1, j)*/(PXS3Xi*PZS3PE-PZS3Xi*PXS3PE)/LL3
\]

\[
PYS4Zt (1, j)= kS (4, 1, j)*/(PXS4Xi*PZS4PE-PZS4Xi*PYS4PE)/LL4
\]

\[
PZS3Zt (1, j)-kS (3, 1, j)*/(PXS3Xi*PZS3PE-PZS3Xi*PXS3PE)/LL3
\]

\[
PZS4Zt (1, j)-kS (4, 1, j)*/(PXS4Xi*PZS4PE-PZS4Xi*PXS4PE)/LL4
\]

\[
DO 50 i=2, II-1
\]

\[
PX3Xi=(XS (3, i+1, j)-XS (3, i-1, j))/2/XiStep
\]

\[
PXS4Xi=(XS (4, i+1, j)-XS (4, i-1, j))/2/XiStep
\]

\[
PYS3Xi=(YS (3, i+1, j)-YS (3, i-1, j))/2/XiStep
\]

\[
PYS4Xi=(YS (4, i+1, j)-YS (4, i-1, j))/2/XiStep
\]

\[
PZS3Xi=(ZS (3, i+1, j)-ZS (3, i-1, j))/2/XiStep
\]

\[
PZS4Xi=(ZS (4, i+1, j)-ZS (4, i-1, j))/2/XiStep
\]

\[
PXS3PE=(XS (3, i, j+1)-XS (3, i, j-1))/2/EtStep
\]

\[
PXS4PE=(XS (4, i, j+1)-XS (4, i, j-1))/2/EtStep
\]

\[
PYS3PE=(YS (3, i, j+1)-YS (3, i, j-1))/2/EtStep
\]

\[
PYS4PE=(YS (4, i, j+1)-YS (4, i, j-1))/2/EtStep
\]

\[
PZS3PE=(ZS (3, i, j+1)-ZS (3, i, j-1))/2/EtStep
\]

\[
PZS4PE=(ZS (4, i, j+1)-ZS (4, i, j-1))/2/EtStep
\]

\[
LL3=((PYS3Xi*PZS3PE-PZS3Xi*PYS3PE)**2
\]

\[
+ (PXS3Xi*PZS3PE-PZS3Xi*PXS3PE)**2
\]

\[
+ (PXS3Xi*PYS3PE-PYS3Xi*PXS3PE)**2)*0.5
\]

\[
LL4=((PYS4Xi*PZS4PE-PZS4Xi*PYS4PE)**2
\]

\[
+ (PXS4Xi*PZS4PE-PZS4Xi*PXS4PE)**2
\]

\[
+ (PXS4Xi*PYS4PE-PYS4Xi*PXS4PE)**2)*0.5
\]

\[
PXS3Zt (ii, j)-kS (3, ii, j)*/(PYS3Xi*PZS3PE-PZS3Xi*PYS3PE)/LL3
\]

\[
PXS4Zt (ii, j)-kS (4, ii, j)*/(PYS4Xi*PZS4PE-PZS4Xi*PYS4PE)/LL4
\]

\[
PYS3Zt (ii, j)= kS (3, ii, j)*/(PXS3Xi*PZS3PE-PZS3Xi*PXS3PE)/LL3
\]

\[
PYS4Zt (ii, j)= kS (4, ii, j)*/(PXS4Xi*PZS4PE-PZS4Xi*PYS4PE)/LL4
\]

70
PYS4Zt (i, j) = kS (4, i, j) * (PXS4Xi * PZS4Xi * PXS4PE) / LL4
PZS3Zt (i, j) = kS (3, i, j) * (PXS3Xi * PYS3Xi * PXS3PE) / LL3
PZS4Zt (i, j) = -kS (4, i, j) * (PXS4Xi * PYS4Xi * PXS4PE) / LL4

CONTINUE

PXS3Xi = (XS (3, 2, JJ) - XS (3, 1, JJ)) / XiStep
PXS4Xi = (XS (4, 2, JJ) - XS (4, 1, JJ)) / XiStep
PY33Xi = (YS (3, 2, JJ) - YS (3, 1, JJ)) / XiStep
PYS4Xi = (YS (4, 2, JJ) - YS (4, 1, JJ)) / XiStep
PZ33Xi = (ZS (3, 2, JJ) - ZS (3, 1, JJ)) / XiStep
PZS4Xi = (ZS (4, 2, JJ) - ZS (4, 1, JJ)) / XiStep
PXS3PE = (XS (3, 1, JJ) - XS (3, 1, JJ - 1)) / EtStep
PXS4PE = (XS (4, 1, JJ) - XS (4, 1, JJ - 1)) / EtStep
PY33PE = (YS (3, 1, JJ) - YS (3, 1, JJ - 1)) / EtStep
PYS4PE = (YS (4, 1, JJ) - YS (4, 1, JJ - 1)) / EtStep
PZ33PE = (ZS (3, 1, JJ) - ZS (3, 1, JJ - 1)) / EtStep
PZS4PE = (ZS (4, 1, JJ) - ZS (4, 1, JJ - 1)) / EtStep

LL3 = ((PYS3Xi * PZS3PE - PZS3Xi * PYS3PE) ** 2
+ (PXS3Xi * PZS3PE - PXS3Xi * PXS3PE) ** 2) ** 0.5
LL4 = ((PYS4Xi * PZS4PE - PZS4Xi * PYS4PE) ** 2
+ (PXS4Xi * PZS4PE - PXS4Xi * PXS4PE) ** 2) ** 0.5

CONTINUE

PXS3Zt (1, JJ) = kS (3, 1, JJ) * (PYS3Xi * PZPS3Xi * PYS3PE) / LL3
PXS4Zt (1, JJ) = kS (4, 1, JJ) * (PYS4Xi * PZPS4Xi * PYS4PE) / LL4
PYS3Zt (1, JJ) = kS (3, 1, JJ) * (PXS3Xi * PZPS3Xi * PYS3PE) / LL3
PYS4Zt (1, JJ) = kS (4, 1, JJ) * (PXS4Xi * PZPS4Xi * PYS4PE) / LL4
PZ3Zt (1, JJ) = -kS (3, 1, JJ) * (PXS3Xi * PZPS3Xi * PYS3PE) / LL3
PZ4Zt (1, JJ) = -kS (4, 1, JJ) * (PXS4Xi * PZPS4Xi * PYS4PE) / LL4

CONTINUE

PXS3Zt (II, JJ) = -kS (3, II, JJ) * (PYS3Xi * PZPS3Xi * PYS3PE) / LL3
PXS4Zt (II, JJ) = -kS (4, II, JJ) * (PYS4Xi * PZPS4Xi * PYS4PE) / LL4
PYS3Zt (II, JJ) = kS (3, II, JJ) * (PXS3Xi * PZPS3Xi * PYS3PE) / LL3
PYS4Zt (II, JJ) = kS (4, II, JJ) * (PXS4Xi * PZPS4Xi * PYS4PE) / LL4
PZ3Zt (II, JJ) = -kS (3, II, JJ) * (PXS3Xi * PZPS3Xi * PYS3PE) / LL3
PZ4Zt (II, JJ) = -kS (4, II, JJ) * (PXS4Xi * PZPS4Xi * PYS4PE) / LL4
DO 65 i=2,II-1
 PXS3Xi = (XS(3,i+1,JJ) - XS(3,i-1,JJ)) / 2 / XiStep
 PXS4Xi = (XS(4,i+1,JJ) - XS(4,i-1,JJ)) / 2 / XiStep
 PYS3Xi = (YS(3,i+1,JJ) - YS(3,i-1,JJ)) / 2 / XiStep
 PYS4Xi = (YS(4,i+1,JJ) - YS(4,i-1,JJ)) / 2 / XiStep
 PZS3Xi = (ZS(3,i+1,JJ) - ZS(3,i-1,JJ)) / 2 / XiStep
 PZS4Xi = (ZS(4,i+1,JJ) - ZS(4,i-1,JJ)) / 2 / XiStep
 PXS3PE = (XS(3,i,JJ) - XS(3,i,JJ-1)) / EtStep
 PXS4PE = (XS(4,i,JJ) - XS(4,i,JJ-1)) / EtStep
 PYS3PE = (YS(3,i,JJ) - YS(3,i,JJ-1)) / EtStep
 PYS4PE = (YS(4,i,JJ) - YS(4,i,JJ-1)) / EtStep
 PZS3PE = (ZS(3,i,JJ) - ZS(3,i,JJ-1)) / EtStep
 PZS4PE = (ZS(4,i,JJ) - ZS(4,i,JJ-1)) / EtStep
L3 = ((PYS3Xi * PZS3PE - PZS3Xi * PYS3PE) ** 2
 + (PXS3Xi * PZS3PE - PZS3Xi * PXS3PE) ** 2) ** 0.5
L4 = ((PYS4Xi * PZS4PE - PZS4Xi * PYS4PE) ** 2
 + (PXS4Xi * PZS4PE - PZS4Xi * PXS4PE) ** 2) ** 0.5
C
 PXS3z(i,JJ) = -kS(3,i,JJ) * (PYS3Xi * PZS3PE - PZS3Xi * PYS3PE) / LL3
 PXS4z(i,JJ) = -kS(4,i,JJ) * (PYS4Xi * PZS4PE - PZS4Xi * PYS4PE) / LL4
 PYS3z(i,JJ) = kS(3,i,JJ) * (PXS3Xi * PZS3PE - PZS3Xi * PXS3PE) / LL3
 PYS4z(i,JJ) = kS(4,i,JJ) * (PXS4Xi * PZS4PE - PZS4Xi * PXS4PE) / LL4
 PZS3z(i,JJ) = -kS(3,i,JJ) * (PXS3Xi * PYS3PE - PYS3Xi * PXS3PE) / LL3
 PZS4z(i,JJ) = -kS(4,i,JJ) * (PXS4Xi * PYS4PE - PYS4Xi * PXS4PE) / LL4
CONTINUE
C
 P2X00 = 0.0
 P2X10 = 0.0
 P2X01 = 0.0
 P2X11 = 0.0
 P2Y00 = 0.0
 P2Y10 = 0.0
 P2Y01 = 0.0
 P2Y11 = 0.0
 P2Z00 = 0.0
 P2Z10 = 0.0
 P2Z01 = 0.0
 P2Z11 = 0.0
C
C Calculate the grid point locations everywhere.
C
 DO 90 k=1,KK
 Zeta = (k-1.) / (KK-1.)
 DO 80 i=1,II
 Xi = (i-1.) / (II-1.)
 DO 70 j=1,JJ
 Eta = (j-1.) / (JJ-1.)
 EtaNew = (EtSt1(j) * (1.-Xi) + EtSt12(j) * Xi) * (1.-Zeta)
 + (EtSt15(j) * (1.-Xi) + EtSt16(j) * Xi) * Zeta
 ZetaNew = (ZtSt1(k) * (1.-Xi) + ZtSt12(k) * Xi) * (1.-Eta)
 + (ZtSt5(k) * (1.-Xi) + ZtSt6(k) * Xi) * Eta
 CALL FindHs(h1(j),h2(j),h3(j),h4(j),EtaNew,SigmaEt)
 CALL FindHs(h5(k),h6(k),h7(k),h8(k),ZetaNew,SigmaZt)
 XPnt(i,j,k) = XPnt(i,j,k)
 + (XS(3,i,j) - h1(j) * XS(1,1,i)
 - h2(j) * XS(2,1,i))
SUBROUTINE PrGrid (XPnt, YPnt, ZPnt, II, JJ, KK, OutNum, MxGSiz)
C
This SUBROUTINE prints (to output) the grid point x, y, and z coordinates.
C
INTEGER i, j, k, II, JJ, KK, OutNum
C
REAL XPnt(MxGSiz,MxGSiz,MxGSiz),
YPnt(MxGSiz,MxGSiz,MxGSiz),
ZPnt(MxGSiz,MxGSiz,MxGSiz)
C
YPnt (i, j, k) = YPnt (i, j, k)
 + (YS (3, i, j) - h1 (j) * YS (1, 1, i)
 - h2 (j) * YS (2, 1, i)
 - h3 (j) * PYS1PE (i, 1)
 - h4 (j) * PYS2PE (i, 1)) * h5 (k)
 + (YS (4, i, j) - h1 (j) * YS (1, KK, i)
 - h2 (j) * YS (2, KK, i)
 - h3 (j) * PYS1PE (i, KK)
 - h4 (j) * PYS2PE (i, KK)) * h6 (k)
 + (PYS3Zt (i, j) - (h1 (j) * PYS3Zt (i, 1)
 + h2 (j) * PYS3Zt (i, JJ)
 + h3 (j) * P2Y00 + h4 (j) * P2Y01)) * h7 (k)
 + (PYS4Zt (i, j) - (h1 (j) * PYS4Zt (i, 1)
 + h2 (j) * PYS4Zt (i, JJ)
 + h3 (j) * P2Y10 + h4 (j) * P2Y11)) * h8 (k)
ZPnt (i, j, k) = ZPnt (i, j, k)
 + (ZS (3, i, j) - h1 (j) * ZS (1, 1, i)
 - h2 (j) * ZS (2, 1, i)
 - h3 (j) * PZS1PE (i, 1)
 - h4 (j) * PZS2PE (i, 1)) * h5 (k)
 + (ZS (4, i, j) - h1 (j) * ZS (1, KK, i)
 - h2 (j) * ZS (2, KK, i)
 - h3 (j) * PZS1PE (i, KK)
 - h4 (j) * PZS2PE (i, KK)) * h6 (k)
 + (PZS3Zt (i, j) - (h1 (j) * PZS3Zt (i, 1)
 + h2 (j) * PZS3Zt (i, JJ)
 + h3 (j) * P2Z00 + h4 (j) * P2Z01)) * h7 (k)
 + (PZS4Zt (i, j) - (h1 (j) * PZS4Zt (i, 1)
 + h2 (j) * PZS4Zt (i, JJ)
 + h3 (j) * P2Z10 + h4 (j) * P2Z11)) * h8 (k)

CONTINUE
CONTINUE
CONTINUE
RETURN
END
SUBROUTINE RdGrIn(II,JJ, KK, NSurfs, SigmaXi,SigmaEt,SigmaZt, $
 kXil,kXi2,kEtal,kEta2,kZetal,kZeta2,InNum)

This SUBROUTINE reads in the desired grid information for grid control.

INTEGER StrXi, StrEt, StrZt, InNum, II, JJ, KK

REAL kXil, kXi2, kEtal, kEta2, kZetal, kZeta2, $
 BetaXi, BetaEt, BetaZt, SigmaXi, SigmaEt, SigmaZt

READ(InNum,*) NSurfs

READ(InNum,*) II
READ(InNum,*) JJ
READ(InNum,*) KK

READ(InNum,*) SigmaXi
READ(InNum,*) SigmaEt
READ(InNum,*) SigmaZt

READ(InNum,*) kXil
READ(InNum,*) kXi2
READ(InNum,*) kEtal
READ(InNum,*) kEta2
READ(InNum,*) kZetal
READ(InNum,*) kZeta2

RETURN
END

SUBROUTINE RdCvIn(x,y,z,NDPts,CrvNum,Tensn,InNum,MxBPts, $
 StrTp,Betal,Beta2)

C This SUBROUTINE reads in the information concerning discrete points on
the boundaries. This information is used for generating spline-fitted boundary approximation curves.

```
INTEGER  CrvNum, i, NDPts(4), InNum, StrTp

REAL  x(4,MxBPts), y(4,MxBPts),
$ z(4,MxBPts), Tensn(4)

READ(InNum,*) Tensn(CrvNum)
READ(InNum,*) NDPts(CrvNum)

DO 10 i=1,NDPts(CrvNum)
   READ(InNum,*) x(CrvNum,i), y(CrvNum,i), z(CrvNum,i)
10 CONTINUE

READ(InNum,*)StrTp
IF (StrTp.NE.4) THEN
   READ(InNum,*)Beta1
ELSE
   READ(InNum,*)Beta1,Beta2
ENDIF

RETURN
END
```

```
SUBROUTINE CalcS (x,y,z,s,NDPts,CrvNum,MxBPts)

This SUBROUTINE calculates the spline parameter, s, as an approximate arc length.

```
INTEGER NDPts(4), CrvNum, i

REAL x(4,MxBPts), y(4,MxBPts),
$ z(4,MxBPts), s(4,MxBPts)

s(CrvNum,1)=0.0

DO 10 i=2,NDPts(CrvNum)
 s(CrvNum,i)=s(CrvNum,i-1)
 $ +SQRT((x(CrvNum,i)-x(CrvNum,i-1))**2
 $ + (y(CrvNum,i)-y(CrvNum,i-1))**2
 $ + (z(CrvNum,i)-z(CrvNum,i-1))**2)
10 CONTINUE

RETURN
END
```

```
SUBROUTINE SplMat (Diag,OfDiag,Right,w,s,NDPts,T,CrvNum,MxBPts)

This SUBROUTINE forms the parametric tension spline matrix for a particular boundary curve data set.

```
INTEGER  i, NDPts(4), CrvNum
```
REAL Diag(MxBPts), OfDiag(MxBPts), Right(MxBPts),
$w(4,MxBPts), s(4,MxBPts), T, h, hm$

\[
\text{Diag}(1) = 1.0 \\
\text{OfDiag}(1) = 0.0 \\
\text{Right}(1) = 0.0
\]

DO 10 i = 2, NDPts(CrvNum) - 1
 \[
h = s(CrvNum, i+1) - s(CrvNum, i) \\
hm = s(CrvNum, i) - s(CrvNum, i-1)
\]
 \[
\text{Diag}(i) = \left(T \text{COSH}(T \cdot hm) / \text{SINH}(T \cdot hm) - 1 / hm + T \text{COSH}(T \cdot h) / \text{SINH}(T \cdot h) \right) \right) / T^2 \\
\text{OfDiag}(i) = \left(1 / h - T / \text{SINH}(T \cdot h) \right) / T^2 \\
\text{Right}(i) = \left(w(CrvNum, i+1) - w(CrvNum, i) \right) / h \\
\left(-(w(CrvNum, i) - w(CrvNum, i-1)) / hm \right)
\]
 CONTINUE

\[
\text{Diag}(\text{NDPts}(\text{CrvNum})) = 1.0 \\
\text{OfDiag}(\text{NDPts}(\text{CrvNum})-1) = 0.0 \\
\text{Right}(\text{NDPts}(\text{CrvNum})) = 0.0
\]

RETURN
END

SUBROUTINE SplSlv (Diag, OfDiag, Right, Derv2, NDPts, CrvNum, MxBPts)

C This SUBROUTINE solves the diagonally dominant parametric tension
C spline matrix for a given data set using the Gauss-Seidel iteration.
C Convergence is assumed after 20 iterations.

INTEGER i, j, NDPts(4), CrvNum

REAL Diag(MxBPts), OfDiag(MxBPts), Right(MxBPts),
$\text{Derv2}(4,\text{MxBPts})$

C Initialize the second derivative matrix to all zeroes.

DO 10 i = 1, NDPts(CrvNum)
 Derv2(CrvNum, i) = 0.0

CONTINUE

C Calculate the second derivative values using 20 iterations of
C the Gauss-Seidel method.

DO 30 j = 1, 20
 DO 20 i = 2, NDPts(CrvNum) - 1
 Derv2(CrvNum, i) = (Right(i) - OfDiag(i) * Derv2(CrvNum, i+1) $\text{OfDiag}(i-1) * Derv2(CrvNum, i-1)) / Diag(i)
 CONTINUE

CONTINUE

RETURN
END

C---
FUNCTION SplVal (s,w,Derv2,sval,T,n,CrvNum,MxBPts)

This real function finds the w-value (x-value or y-value) corresponding
to a specified s-value using the parametric tension spline curve
generated for a particular boundary curve data set.

INTEGER n, CrvNum

REAL s(4,MxBPts), w(4,MxBPts), Derv2(4,MxBPts),
$ sval, T, h, Interim, Templ, Temp2

Templ=sval-s(CrvNum,n)

h=s(CrvNum,n+1)-s(CrvNum,n)

Temp2=s(CrvNum,n+1)-sval

Interim=Derv2(CrvNum,n)/T**2*SINH(T*Temp2)/SINH(T*h)
$ + (w(CrvNum,n)-Derv2(CrvNum,n)/T**2)*Temp2/h

SplVal=Interim+Derv2(CrvNum,n+1)/T**2*SINH(T*Templ)
$ /SINH(T*h)+(w(CrvNum,n+1)

RETURN

END

SUBROUTINE PTSpln(x,y,z,s,XDerv2,YDerv2,ZDerv2,Diag,OfDiag,
$ Right,NDPts,Tensn,CrvNum,MxBPts)

This SUBROUTINE forms the main routine for the parametric tension
spline process.

INTEGER NDPts(4), CrvNum

REAL Diag(MxBPts), OfDiag(MxBPts), Right(MxBPts),
$ XDerv2(4,MxBPts), YDerv2(4,MxBPts),
$ ZDerv2(4,MxBPts), Tensn,
$ x(4,MxBPts), y(4,MxBPts),
$ z(4,MxBPts), s(4,MxBPts)

CALL CalcS(x,y,z,s,NDPts,CrvNum,MxBPts)
CALL SplMat(Diag,OfDiag,Right,x,s,NDPts,Tensn,CrvNum,MxBPts)
CALL SplSolv(Diag,OfDiag,Right,XDerv2,NDPts,CrvNum,MxBPts)
CALL SplMat(Diag,OfDiag,Right,y,s,NDPts,Tensn,CrvNum,MxBPts)
CALL SplSolv(Diag,OfDiag,Right,YDerv2,NDPts,CrvNum,MxBPts)
CALL SplMat(Diag,OfDiag,Right,z,s,NDPts,Tensn,CrvNum,MxBPts)
CALL SplSolv(Diag,OfDiag,Right,ZDerv2,NDPts,CrvNum,MxBPts)

RETURN

END

SUBROUTINE FindHs(h1,h2,h3,h4,n,s)

This SUBROUTINE computes the h factors used in Hermite interpolation.
C REAL h1, h2, h3, h4, n, s
 / al, a2, a3, a4, a, b, bbbaa, sh, ch, shsn, shsnl
C
IF(s.NE.0)THEN
 sh=sinh(s)
 ch=cosh(s)
 a2=sh/(2.*sh-s*ch-s)
 al=1-a2
 a=s*ch-sh
 b=sh-s
 bbbaa=b*b-a*a
 a3=-a*sh/bbbaa
 a4=b*sh/bbbaa
 shsn=sinh(s*n)/sh
 shsnl=sinh(s*(1.-n))/sh
 h1=a2*(shsn1-shsn)+a1*(1.-n)+a2*n
 h2=a2*(shsn-shsn1)+a2*(1.-n)+a1*n
 h3=a3*((1.-n)-shsn1)+a4*(n-shsn)
 h4=a4*(shsn1-(1.-n))+a3*(shsn-n)
ELSE
 h1= 2*n**3-3*n**2+1
 h2=-2*n**3+3*n**2
 h3= n**3-2*n**2+n
 h4= n**3-n**2
ENDIF
C
RETURN
END

C==
C
SUBROUTINE SplInt(n,s,SVvalue,NDPts,CurCrv,MxBPts)
C
This SUBROUTINE finds the proper interval in which a point on a specified
C boundary lies. The interval indicates which initial data points the
C point in question lies between and thus which spline coefficients to
C use.
C
INTEGER i, n, CurCrv, NDPts(4)
C
REAL Temp, SVvalue, s(4,MxBPts)
C
n=1
i=NDPts(CurCrv)
C
10 IF ((n.EQ.1).AND.(i.GT.1)) THEN
 I=I-1
 Temp=SVvalue-s(CurCrv,i)
C
 IF (Temp.GT.0.0) THEN
 n=i
 ENDF
C
 GOTO 10
ENDIF
C
SUBROUTINE FAiNew(AiNew, Alpha, B, Str)
C
This SUBROUTINE computes the new Alpha value after stretching as
AiNew. Alpha is a dummy variable representing either Xi, Eta or Zeta.
C
INTEGER Str
C
REAL Alpha, Templ, Temp2, B2, AINew, B
C
AiNew=Alpha
Templ=(B+1)/(B-1)
C
IF (Str.EQ.1) THEN
 Temp2=Templ**(l-Alpha)
 AiNew=((B+1)-(B-1)*Temp2)/(Temp2+1)*l
ENDIF
C
IF (Str.EQ.2) THEN
 B2=0
 Temp2=Templ**((Alpha-B2)/(l-B2))
ENDIF
C
IF (Str.EQ.3) THEN
 B2=0.5
 Temp2=Templ**((Alpha-B2)/(l-B2))
ENDIF
C
RETURN
END
C
SUBROUTINE EdgPts(XI,X2,X3,X4,YI,Y2,Y3,Y4,ZI,Z2,Z3, Z4,AL, BL,
 AAStep, BBStep, x, y, z, s, zx, zy, zz, NDPts, Tensn,
 StrAA, StrBB, BetaAA, BetaBB, MxBPts, MxGSiz)
C
This SUBROUTINE calculates the grid point locations along the surface
edges.
C
INTEGER AcT, BCt, n1, n2, n3, n4,
 AL, BL, StrAA, StrBB, NDPts(4)
C
REAL AA, BB, AANew, BBNew, S1, S2, S3, S4, BBStep, AAStep,
 S1AAAR, S2AAR, S3BBR, S4BBR,
 X1(MxGSiz), X2(MxGSiz), X3(MxGSiz), X4(MxGSiz),
 Y1(MxGSiz), Y2(MxGSiz), Y3(MxGSiz), Y4(MxGSiz),
 Z1(MxGSiz), Z2(MxGSiz), Z3(MxGSiz), Z4(MxGSiz),
 x(4,MxBPts), y(4,MxBPts), z(4,MxBPts),
 s(4,MxBPts), zx(4,MxBPts), zy(4,MxBPts),
 zz(4,MxBPts), Tensn(4), BetaAA, BetaBB
S1AAR=s(1,NDPts(1))
S2AAR=s(2,NDPts(2))
S3BBR=s(3,NDPts(3))
S4BBR=s(4,NDPts(4))

C Calculate the grid point locations along boundaries 1 and 2.
C
AA=0.0

DO 10 ACt=1,AL
 CALL FAlNew(AANew,AA,BetaAA,StrAA)
 S1=AANew*S1AAR
 S2=AANew*S2AAR
 CALL SplInt(n1,s,S1,NDPts,1,MxBPts)
 CALL SplInt(n2,s,S2,NDPts,2,MxBPts)
 X1(ACt)=SplVal(s,x,zx,S1,Tensn(1),n1,1,MxBPts)
 X2(ACt)=SplVal(s,x,zx,S2,Tensn(2),n2,2,MxBPts)
 Y1(ACt)=SplVal(s,y,zy,S1,Tensn(1),n1,1,MxBPts)
 Y2(ACt)=SplVal(s,y,zy,S2,Tensn(2),n2,2,MxBPts)
 Z1(ACt)=SplVal(s,z,zz,S1,Tensn(1),n1,1,MxBPts)
 Z2(ACt)=SplVal(s,z,zz,S2,Tensn(2),n2,2,MxBPts)
 AA=AA+AAStep
10 CONTINUE

C Calculate the grid point locations along boundaries 3 and 4.
C
BB=0.0

DO 20 BCt=1,BL
 CALL FAINew(BBNew,BB,BetaBB,StrBB)
 S3=BBNew*S3BBR
 S4=BBNew*S4BBR
 CALL SplInt(n3,s,S3,NDPts,3,MxBPts)
 CALL SplInt(n4,s,S4,NDPts,4,MxBPts)
 X3(BCt)=SplVal(s,x,zx,S3,Tensn(3),n3,3,MxBPts)
 X4(BCt)=SplVal(s,x,zx,S4,Tensn(4),n4,4,MxBPts)
 Y3(BCt)=SplVal(s,y,zy,S3,Tensn(3),n3,3,MxBPts)
 Y4(BCt)=SplVal(s,y,zy,S4,Tensn(4),n4,4,MxBPts)
 Z3(BCt)=SplVal(s,z,zz,S3,Tensn(3),n3,3,MxBPts)
 Z4(BCt)=SplVal(s,z,zz,S4,Tensn(4),n4,4,MxBPts)
 BB=BB+BBStep
20 CONTINUE

RETURN
END

SUBROUTINE EdgDer(PX1PAA,PX2PAA,PY1PAA,PY2PAA,PZ1PAA,PZ2PAA,
PX3PBB,PX4PBB,PY3PBB,PY4PBB,PZ3PBB,PZ4PBB,
X1,X2,X3,X4,Y1,Y2,Y3,Y4,Z1,Z2,Z3,Z4,
AL,BL,MxGSiz)

INTEGER ACt, BCt, AL, BL
REAL AAStep, BBStep, PX3PBB(MxGSiz), PX4PBB(MxGSiz),
 PY3PBB(MxGSiz), PY4PBB(MxGSiz), PZ3PBB(MxGSiz),
 PZ4PBB(MxGSiz), PX1PAA(MxGSiz), PX2PAA(MxGSiz),
$ \text{PY1PAA(MxGSiz), PY2PAA(MxGSiz), PZ1PAA(MxGSiz),} \\
$ \text{PZ2PAA(MxGSiz), X1(MxGSiz), X2(MxGSiz), X3(MxGSiz),} \\
$ \text{X4(MxGSiz), Y1(MxGSiz), Y2(MxGSiz), Y3(MxGSiz),} \\
$ \text{Y4(MxGSiz), Z1(MxGSiz), Z2(MxGSiz), Z3(MxGSiz),} \\
$ \text{Z4(MxGSiz)}$

C Calculate step size in the AA and BB directions.

AAStep = 1. / (AL - 1.)
BBStep = 1. / (BL - 1.)

C Calculate the derivative values along the constant AA boundaries.

PX1PAA(1) = (X1(2) - X1(1)) / AAStep
PX2PAA(1) = (X2(2) - X2(1)) / AAStep
PY1PAA(1) = (Y1(2) - Y1(1)) / AAStep
PY2PAA(1) = (Y2(2) - Y2(1)) / AAStep
PZ1PAA(1) = (Z1(2) - Z1(1)) / AAStep
PZ2PAA(1) = (Z2(2) - Z2(1)) / AAStep

C

DO 10 ACt = 2, AL - 1

PX1PAA(ACt) = (X1(ACt + 1) - X1(ACt - 1)) / 2 / AAStep
PX2PAA(ACt) = (X2(ACt + 1) - X2(ACt - 1)) / 2 / AAStep
PY1PAA(ACt) = (Y1(ACt + 1) - Y1(ACt - 1)) / 2 / AAStep
PY2PAA(ACt) = (Y2(ACt + 1) - Y2(ACt - 1)) / 2 / AAStep
PZ1PAA(ACt) = (Z1(ACt + 1) - Z1(ACt - 1)) / 2 / AAStep
PZ2PAA(ACt) = (Z2(ACt + 1) - Z2(ACt - 1)) / 2 / AAStep

CONTINUE

C Calculate the derivative values along the constant BB boundaries.

PX3PBB(1) = (X3(2) - X3(1)) / BBStep
PX4PBB(1) = (X4(2) - X4(1)) / BBStep
PY3PBB(1) = (Y3(2) - Y3(1)) / BBStep
PY4PBB(1) = (Y4(2) - Y4(1)) / BBStep
PZ3PBB(1) = (Z3(2) - Z3(1)) / BBStep
PZ4PBB(1) = (Z4(2) - Z4(1)) / BBStep

C

DO 20 BCt = 2, BL - 1

PX3PBB(BCt) = (X3(BCt + 1) - X3(BCt - 1)) / 2 / BBStep
PX4PBB(BCt) = (X4(BCt + 1) - X4(BCt - 1)) / 2 / BBStep
PY3PBB(BCt) = (Y3(BCt + 1) - Y3(BCt - 1)) / 2 / BBStep
PY4PBB(BCt) = (Y4(BCt + 1) - Y4(BCt - 1)) / 2 / BBStep
PZ3PBB(BCt) = (Z3(BCt + 1) - Z3(BCt - 1)) / 2 / BBStep
PZ4PBB(BCt) = (Z4(BCt + 1) - Z4(BCt - 1)) / 2 / BBStep

81
PZ4PBB(BCT) = (Z4(BCT+1) - Z4(BCT-1)) / 2/BBStep

CONTINUE

RETURN

END

SUBROUTINE TwoBnd(XS, YS, ZS, SrfNum, AL, BL, SigmaBB, k1, k2,
 $ StrB, h1, h2, h3, h4, X1, X2, X3, X4,
 $ Y1, Y2, Y3, Y4, Z1, Z2, Z3, Z4, PX1PBB, PX2PBB,
 $ PY1PBB, PY2PBB, PZ1PBB, PZ2PBB, PX1PAA, PX2PAA,
 $ PY1PAA, PY2PAA, PZ1PAA, PZ2PAA, PX3PBB, PX4PBB,
 $ PY3PBB, PY4PBB, PZ3PBB, PZ4PBB,
 $ MxBCvs, MxGSiz, MxSrfs)

This SUBROUTINE calculates the interior grid point locations between two specified boundaries (1 and 2) by using transfinite Hermite interpolation.

INTEGER ACT, BCT, AL, BL, StrAA, StrBB, SrfNum, Edgl, Edg2,
 $ Edg3, Edg4

REAL AA, BB, AANew, BBNew, LL1, LL2,
 $ Box1i, Box1j, Box1k, Box2i, Box2j, Box2k,
 $ Temp1i, Temp1j, Temp1k, Temp2i, Temp2j, Temp2k,
 $ k1(MxSrfs,MxGSiz), k2(MxSrfs,MxGSiz),
 $ BetaAA, BetaBB, BBStep, AAStep,
 $ h1(MxGSiz), h2(MxGSiz), h3(MxGSiz), h4(MxGSiz),
 $ X1(MxGSiz), X2(MxGSiz), X3(MxGSiz), X4(MxGSiz),
 $ Y1(MxGSiz), Y2(MxGSiz), Y3(MxGSiz), Y4(MxGSiz),
 $ Z1(MxGSiz), Z2(MxGSiz), Z3(MxGSiz), Z4(MxGSiz)

REAL PX1PBB(MxGSiz), PX2PBB(MxGSiz),
 $ PY1PBB(MxGSiz), PY2PBB(MxGSiz),
 $ PZ1PBB(MxGSiz), PZ2PBB(MxGSiz),
 $ PX1PAA(MxGSiz), PX2PAA(MxGSiz),
 $ PY1PAA(MxGSiz), PY2PAA(MxGSiz),
 $ PZ1PAA(MxGSiz), PZ2PAA(MxGSiz),
 $ PX3PBB(MxGSiz), PX4PBB(MxGSiz),
 $ PY3PBB(MxGSiz), PY4PBB(MxGSiz),
 $ PZ3PBB(MxGSiz), PZ4PBB(MxGSiz),
 $ XS(MxSrfs,MxGSiz,MxGSiz),
 $ YS(MxSrfs,MxGSiz,MxGSiz),
 $ ZS(MxSrfs,MxGSiz,MxGSiz),
 $ StrB(MxGSiz,MxBCvs)

Calculate the step size in the AA and BB directions.

AAStep = 1./(AL-1.)
BBStep = 1./(BL-1.)

Calculate the edge numbers for the surface 'SrfNum'.

Edgl = (SrfNum-1) * 4 + 1
Edg2 = (SrfNum-1) * 4 + 2
Edg3 = (SrfNum-1) * 4 + 3
Edg4 = (SrfNum-1) * 4 + 4
Calculate the derivative values for grid line orthogonality.

AA = 0.0

DO 20 ACT = 1, AL
 Boxli = AA*(PY1PAAL)*PZ4PBB(1) -PZ1PAAL)*PY4PBB(1))
 $+ (1-AA)*(PY1PAAL)*PZ3PBB(1) -PZ1PAAL)*PY3PBB(1))
 Boxlj = AA*(PX1PAAL)*PZ4PBB(1) -PZ1PAAL)*PX4PBB(1))
 $+ (1-AA)*(PX1PAAL)*PZ3PBB(1) -PZ1PAAL)*PX3PBB(1))
 Boxlk = AA*(PX1PAAL)*PY4PBB(1) -PZ1PAAL)*PX4PBB(1))
 $+ (1-AA)*(PX1PAAL)*PY3PBB(1) -PZ1PAAL)*PX3PBB(1))
 Box2i = AA*(PY2PAAL)*PZ4PBB(BL) -PZ2PAAL)*PY4PBB(BL))
 $+ (1-AA)*(PY2PAAL)*PZ3PBB(BL) -PZ2PAAL)*PY3PBB(BL))
 Box2j = AA*(PX2PAAL)*PZ4PBB(BL) -PZ2PAAL)*PX4PBB(BL))
 $+ (1-AA)*(PX2PAAL)*PZ3PBB(BL) -PZ2PAAL)*PX3PBB(BL))
 Box2k = AA*(PX2PAAL)*PY4PBB(BL) -PZ2PAAL)*PX4PBB(BL))
 $+ (1-AA)*(PX2PAAL)*PY3PBB(BL) -PZ2PAAL)*PX3PBB(BL))
 Templi = PY1PAAL*Box1k + PZ1PAAL*Box1j
 Templj = PX1PAAL*Box1k + PZ1PAAL*Box1i
 Templk = PX1PAAL*Box1j + PY1PAAL*Box1i
 Temp2i = PY2PAAL*Box2k + PZ2PAAL*Box2j
 Temp2j = PX2PAAL*Box2k + PZ2PAAL*Box2i
 Temp2k = PX2PAAL*Box2j + PY2PAAL*Box2i
 LL1 = (Templi**2 + Templj**2 + Templk**2)**0.5
 LL2 = (Temp2i**2 + Temp2j**2 + Temp2k**2)**0.5

C

PX1PBB(ACT) = -k1(SrfNum, ACT)*Templi/LL1
PX2PBB(ACT) = -k2(SrfNum, ACT)*Temp2i/LL2
PY1PBB(ACT) = k1(SrfNum, ACT)*Templj/LL1
PY2PBB(ACT) = k2(SrfNum, ACT)*Temp2j/LL2
PZ1PBB(ACT) = k1(SrfNum, ACT)*Templk/LL1
PZ2PBB(ACT) = k2(SrfNum, ACT)*Temp2k/LL2

C

AA = AA + AAStep

20 CONTINUE

Calculate the interior grid point locations.

DO 40 ACT = 1, AL
 DO 30 BCT = 1, BL
 AA = (ACT-1.)/(AL-1.)
 BNEW = STRB(BCT, Edg3) * (1.-AA) + STRB(BCT, Edg4) * AA
 CALL Finds(h1(BCT), h2(BCT), h3(BCT), h4(BCT), BBNew, SigmaBB)
 XS(SrfNum, ACT, BCT) = h1(BCT) * X1(ACT) + h2(BCT) * X2(ACT)
 $+ h3(BCT) * PX1PBB(ACT) + h4(BCT) * PX2PBB(ACT)
YS(SrfNum,ACT,BCt) = h1(BCt) * Y1(ACt) + h2(BCt) * Y2(ACt)
 + h3(BCt) * PY1PBB(ACt) + h4(BCt) * PY2PBB(ACt)

ZS(SrfNum,ACT,BCt) = h1(BCt) * Z1(ACt) + h2(BCt) * Z2(ACt)
 + h3(BCt) * PZ1PBB(ACt) + h4(BCt) * PZ2PBB(ACt)

CONTINUE
CONTINUE
RETURN
END

SUBROUTINE ForBnd(XS, YS, ZS, SrfNum, AL, BL, SigmaAA, SigmaBB, k3, k4, StrB, hl, h2, h3, h4, h5, h6, h7, h8, Xl, X2, X3, X4, YI, Y2, Y3, Y4, ZI, Z2, Z3, Z4, PXIPBB, PX2PBB, PYIPBB, PY2PBB, PXIPAA, PX2PAA, PYIPAA, PY2PAA, PX3PBB, PX4PBB, PY3PBB, PY4PBB, PX3PAA, PX4PAA, PY3PAA, PY4PAA, PZ3PBB, PZ4PBB, PZ3PAA, PZ4PAA, MxBCvs, MxGSiz, MxSrfs)

This SUBROUTINE adjusts the grid so that the other two boundaries (3 and 4) of the surface are mapped correctly using transfinite Hermite interpolation.

INTEGER ACT, BCt, AL, BL, StrAA, StrBB, i, j, SrfNum,
 Edgl, Edg2, Edg3, Edg4
REAL AA, BB, AANew, BBNew, LL3, LL4,
 Box3i, Box3j, Box3k, Box4i, Box4j, Box4k,
 X1, X2, X3, X4, Y1, Y2, Y3, Y4, Z1, Z2, Z3, Z4,
 P2Y00, P2Y01, P2Y10, P2Y11, P2X00, P2X01, P2X10, P2X11,
 P2Z00, P2Z01, P2Z10, P2Z11,
 k3(MxSrfs,MxGSiz), k4(MxSrfs,MxGSiz),
 BetaAA, BetaBB, BBStep, AAStep,
 h1(MxGSiz), h2(MxGSiz), h3(MxGSiz), h4(MxGSiz),
 h5(MxGSiz), h6(MxGSiz), h7(MxGSiz), h8(MxGSiz),
 X1(MxGSiz), X2(MxGSiz), X3(MxGSiz), X4(MxGSiz),
 Y1(MxGSiz), Y2(MxGSiz), Y3(MxGSiz), Y4(MxGSiz),
 Z1(MxGSiz), Z2(MxGSiz), Z3(MxGSiz), Z4(MxGSiz)
REAL PX1PBB(MxGSiz), PX2PBB(MxGSiz),
 PY1PBB(MxGSiz), PY2PBB(MxGSiz),
 PX1PAA(MxGSiz), PX2PAA(MxGSiz),
 PY1PAA(MxGSiz), PY2PAA(MxGSiz),
 PX3PBB(MxGSiz), PX4PBB(MxGSiz),
 PY3PBB(MxGSiz), PY4PBB(MxGSiz),
 PX3PAA(MxGSiz), PX4PAA(MxGSiz),
 PY3PAA(MxGSiz), PY4PAA(MxGSiz),
 XS(MxSrfs,MxGSiz, MxGSiz),
 YS(MxSrfs,MxGSiz, MxGSiz),
 ZS(MxSrfs,MxGSiz, MxGSiz),
 StrB(MxGSiz, MxBCvs)

Calculate the step size for directions AA and BB.
AAStep = 1./((AL-1.))
BBStep = 1./((BL-1.))

Calculate edge numbers for the surface 'SrfNum'
Edg1 = (SrfNum-1)*4 + 1
Edg2 = (SrfNum-1)*4 + 2
Edg3 = (SrfNum-1)*4 + 3
Edg4 = (SrfNum-1)*4 + 4

Calculate the derivative values for grid line orthogonality.
BB = 0.0

DO 20 Bct=1,BL
 Box3i = BB* (PY2PAA(1)*PZ3PBB(BL) - PZ2PAA(1)*PY3PBB(BL))
 + (1-BB)* (PY1PAA(1)*PZ3PBB(1) - PZ1PAA(1)*PY3PBB(1))

 Box3j = BB* (PX2PAA(1)*PZ3PBB(BL) - PZ2PAA(1)*PX3PBB(BL))
 + (1-BB)* (PX1PAA(1)*PZ3PBB(1) - PZ1PAA(1)*PX3PBB(1))

 Box3k = BB* (PX2PAA(1)*PY3PBB(BL) - PY2PAA(1)*PX3PBB(BL))
 + (1-BB)* (PX1PAA(1)*PY3PBB(1) - PY1PAA(1)*PX3PBB(1))

 Box4i = BB* (PY2PAA(1)*PZ4PBB(BL) - PZ2PAA(1)*PY4PBB(BL))
 + (1-BB)* (PY1PAA(1)*PZ4PBB(1) - PZ1PAA(1)*PY4PBB(1))

 Box4j = BB* (PX2PAA(1)*PZ4PBB(BL) - PZ2PAA(1)*PX4PBB(BL))
 + (1-BB)* (PX1PAA(1)*PZ4PBB(1) - PZ1PAA(1)*PX4PBB(1))

 Box4k = BB* (PX2PAA(1)*PY4PBB(BL) - PY2PAA(1)*PX4PBB(BL))
 + (1-BB)* (PX1PAA(1)*PY4PBB(1) - PY1PAA(1)*PX4PBB(1))

 Temp3i = PZ3PBB(Bct)*Box3j+PY3PBB(Bct)*Box3k
 Temp3j = PZ3PBB(Bct)*Box3i-PX3PBB(Bct)*Box3k
 Temp3k = PY3PBB(Bct)*Box3i+PX3PBB(Bct)*Box3j
 Temp4i = PZ4PBB(Bct)*Box4j+PY4PBB(Bct)*Box4k
 Temp4j = PZ4PBB(Bct)*Box4i-PX4PBB(Bct)*Box4k
 Temp4k = PY4PBB(Bct)*Box4i+PX4PBB(Bct)*Box4j

 LL3 = (Temp3i**2+Temp3j**2+Temp3k**2)**0.5
 LL4 = (Temp4i**2+Temp4j**2+Temp4k**2)**0.5

 PX3PAA(Bct) = k3(SrfNum,Bct)*Temp3i/LL3
 PX4PAA(Bct) = k4(SrfNum,Bct)*Temp4i/LL4
 PY3PAA(Bct) = k3(SrfNum,Bct)*Temp3j/LL3
 PY4PAA(Bct) = k4(SrfNum,Bct)*Temp4j/LL4
 PZ3PAA(Bct) = k3(SrfNum,Bct)*Temp3k/LL3
 PZ4PAA(Bct) = k4(SrfNum,Bct)*Temp4k/LL4

BB = BB + BBStep
CONTINUE

Set the cross-derivative terms equal to zero.

P2X00 = 0.0
P2X10 = 0.0
P2X01 = 0.0
P2X11 = 0.0
P2Y00 = 0.0
P2Y10 = 0.0
P2Y01 = 0.0
P2Y11 = 0.0
P2Z00 = 0.0
P2Z10 = 0.0
P2Z01 = 0.0
P2Z11 = 0.0

Calculate the grid point locations everywhere.

DO 40 i = 1, AL
 DO 30 j = 1, BL
 AA = (i - 1.) / (AL - 1.)
 BB = (j - 1.) / (BL - 1.)
 AANew = StrB(i, Edg1) * (1. - BB) + StrB(i, Edg2) * BB
 BBNew = StrB(j, Edg3) * (1. - AA) + StrB(j, Edg4) * AA
 CALL FindHs(h1(j), h2(j), h3(j), h4(j), BBNew, SigmaBB)
 CALL FindHs(h5(i), h6(i), h7(i), h8(i), AANew, SigmaAA)
 XS(SrfNum, i, j) = XS(SrfNum, i, j)
 + (X3(j) - h1(j) * X1(1)
 - h2(j) * X2(1)
 - h3(j) * PX1PBB(1)
 - h4(j) * PX2PBB(1)) * h5(i)
 + (X4(j) - h1(j) * X1(AL)
 - h2(j) * X2(AL)
 - h3(j) * PX1PBB(AL)
 - h4(j) * PX2PBB(AL)) * h6(i)
 + (PX3PAA(j) - (h1(j) * PX3PAA(1)
 + h2(j) * PX3PAA(BL)
 + h3(j) * P2X00 + h4(j) * P2X01) * h7(i)
 + (PX4PAA(j) - (h1(j) * PX4PAA(1)
 + h2(j) * PX4PAA(BL)
 + h3(j) * P2X10 + h4(j) * P2X11) * h8(i)
 YS(SrfNum, i, j) = YS(SrfNum, i, j)
 + (Y3(j) - h1(j) * Y1(1)
 - h2(j) * Y2(1)
 - h3(j) * PY1PBB(1)
 - h4(j) * PY2PBB(1)) * h5(i)
 + (Y4(j) - h1(j) * Y1(AL)
 - h2(j) * Y2(AL)
 - h3(j) * PY1PBB(AL)
 - h4(j) * PY2PBB(AL)) * h6(i)
 + (PY3PAA(j) - (h1(j) * PY3PAA(1)
 + h2(j) * PY3PAA(BL)
 + h3(j) * P2Y00 + h4(j) * P2Y01) * h7(i)
 + (PY4PAA(j) - (h1(j) * PY4PAA(1)
 + h2(j) * PY4PAA(BL)
 + h3(j) * P2Y10 + h4(j) * P2Y11) * h8(i)
 ZS(SrfNum, i, j) = ZS(SrfNum, i, j)
SUBROUTINE XiEtFl (XPnt, YPnt, ZPnt, II, JJ, KK, J1, J2, NKCsps, KCusp,
$ NoIts, MxGSiz)
C
C This SUBROUTINE smooths 3D, constant Zeta grid planes which have been
C disturbed by a constant Zeta cusp in a Xi-Zeta boundary surface. The
C process produces smoother grid lines in the Zeta direction.
C
INTEGER kc, i, j, k, l, II, JJ, KK, NICsps, NoIts,
$ KCusp(MxGSiz), J1, J2
C
REAL XPnt (MxGSiz,MxGSiz,MxGSiz), YPnt (MxGSiz,MxGSiz,MxGSiz),
$ ZPnt (MxGSiz,MxGSiz,MxGSiz)
REAL XPnt (II,JJ, KK), YPnt (II,JJ, KK), ZPnt (II,JJ, KK)
C
DO 30 k=1,NKCps
 kc=KCusp(k)
 DO 20 i=2,II-1
 DO 10 j=J1+1,J2-1
 DO 5 i=1,NoIts
 XPnt (i, j, kc)=0.5*(XPnt (i, j, kc+1)-2*XPnt (i, j, kc)
 +XPnt (i, j, kc-1))+XPnt (i, j, kc)
 YPnt (i, j, kc)=0.5*(YPnt (i, j, kc+1)-2*YPnt (i, j, kc)
 +YPnt (i, j, kc-1))+YPnt (i, j, kc)
 ZPnt (i, j, kc)=0.5*(ZPnt (i, j, kc+1)-2*ZPnt (i, j, kc)
 +ZPnt (i, j, kc-1))+ZPnt (i, j, kc)
 XPnt (i, j, kc-1)=0.25*(XPnt (i, j, kc)-2*XPnt (i, j, kc-1)
 +XPnt (i, j, kc-2))+XPnt (i, j, kc)
 YPnt (i, j, kc-1)=0.25*(YPnt (i, j, kc)-2*YPnt (i, j, kc-1)
 +YPnt (i, j, kc-2))+YPnt (i, j, kc)
 ZPnt (i, j, kc-1)=0.25*(ZPnt (i, j, kc)-2*ZPnt (i, j, kc-1)
 +ZPnt (i, j, kc-2))+ZPnt (i, j, kc)
 XPnt (i, j, kc+1)=0.25*(XPnt (i, j, kc+2)-2*XPnt (i, j, kc+1)
 +XPnt (i, j, kc))
 YPnt (i, j, kc+1)=0.25*(YPnt (i, j, kc+2)-2*YPnt (i, j, kc+1)
 +YPnt (i, j, kc))
 ZPnt (i, j, kc+1)=0.25*(ZPnt (i, j, kc+2)-2*ZPnt (i, j, kc+1)
30 CONTINUE
40 CONTINUE
C
RETURN
END
C
SUBROUTINE RdGrPIn(NGPts, XB, YB, ZB, CrvNum, MxGSiz, InNum)

INTEGER NGPts, CrvNum

REAL XB(MxGSiz,4), YB(MxGSiz,4), ZB(MxGSiz,4)

This subroutine reads in the coordinates of the grid points on one edge.

DO 10 i=1,NGPts
 READ(InNum,*)XB(i,CrvNum),YB(i,CrvNum),ZB(i,CrvNum)
10 CONTINUE

RETURN
END

SUBROUTINE CalStI(NGPts, XB, YB, ZB, CrvNum, EdgNum, StrB,MxBCvs,MxGSiz)

INTEGER NGPts, CrvNum, EdgNum, i

REAL XB(MxGSiz,4), YB(MxGSiz,4), ZB(MxGSiz,4),
 StrB(MxGSiz,MxBCvs)

StrB(1,EdgNum)=0.

DO 10 i=2,NGPts
 StrB(i,EdgNum)=StrB(i-1,EdgNum) +
 $ SQRT((XB(i,CrvNum)-XB(i-1,CrvNum))**2 +
 $ (YB(i,CrvNum)-YB(i-1,CrvNum))**2 +
 $ (ZB(i,CrvNum)-ZB(i-1,CrvNum))**2)
10 CONTINUE

SMax=StrB(NGPts,EdgNum)
DO 20 i=2,NGPts
 StrB(i,EdgNum)=StrB(i,EdgNum)/SMax
20 CONTINUE

RETURN:
END

C===

SUBROUTINE CalSt2(EdgNum, NGPts, StrTp, Beta1, Beta2, $ StrB, MxBCvs, MxGSiz)

C This subroutine calculates the distribution function based on the stretching parameters 'StrTp' and 'Beta'

INTEGER NGPts, StrTp, EdgNum, i

REAL StrB(MxGSiz, MxBCvs), Beta1, Beta2, A, B, DZ

StrB(1, EdgNum) = 0.
IF(StrTp.LE.3)THEN
 DO i = 1, NGPts - 1
 Alpha = (i - 1.) / (NGPts - 1.)
 CALL FAiNew(AiNew, Alpha, Beta1, StrTp)
 StrB(i, EdgNum) = AiNew
 CONTINUE
ELSEIF(StrTp.EQ.4)THEN
 CALL Str4Prm(Betal, Beta2, A, B, DZ)
 DO i = 2, NGPts - 1
 Alpha = (i - 1.) / (NGPts - 1.)
 CALL Str4(AiNew, Alpha, A, B, DZ)
 StrB(i, EdgNum) = AiNew
 CONTINUE
ENDIF
StrB(NGPts, EdgNum) = 1.
RETURN
END

SUBROUTINE EdgGPts(CrvNum, EdgNum, NGPts, XB, YB, ZB, StrB, $ x, y, z, s, zx, zy, zz, NDPts(Tensn, $ MxBCvs, MxBPts, MxGSiz)

C This subroutine calculates the grid point location along an edge based on a spline curve fitted through specified nodal points and a given distribution function.

INTEGER CrvNum, EdgNum, NGPts, NDPts(4), i, n

REAL XB(MxGSiz, 4), YB(MxGSiz, 4), ZB(MxGSiz, 4), $ StrB(MxGSiz, MxBCvs), x(4, MxBPts), y(4, MxBPts), $ z(4, MxBPts), zx(4, MxBPts), zy(4, MxBPts), $ zz(4, MxBPts), s(4, MxBPts), Tensn

SRa = S(CrvNum, NDPts(CrvNum))

DO i = 1, NGPts
 SB = SRa * StrB(i, EdgNum)
 CALL SplInt(n, s, SB, NDPts, CrvNum, MxBPts)
 XB(i, CrvNum) = SplVal(s, x, zx, SB, Tensn, n, CrvNum, MxBPts)
 YB(i, CrvNum) = SplVal(s, y, zy, SB, Tensn, n, CrvNum, MxBPts)
 ZB(i, CrvNum) = SplVal(s, z, zz, SB, Tensn, n, CrvNum, MxBPts)
 CONTINUE
SUBROUTINE Str4Prm(S0, S1, A, B, DZ)

REAL S0, S1, A, B, DZ, Y, PI

This subroutine calculates the parameters A, B, and DZ for the two-sided Vinokur stretching function.

PI=ACOS(-1.)
A=SQR(S0/S1)
B=SQR(S0*S1)

IF (B.GT.1.001) THEN
 IF (B.LE.2.7829681) THEN
 Y=B-1
 DZ=SQR(6.*Y)*(1.-0.15*Y+0.057321429*(Y**2)
 $-0.024907295*(Y**3)+0.0077424461*(Y**4)
 $-0.0010794123*(Y**5))
 ELSEIF (B.GT.2.7829681) THEN
 V=LOG(B)
 W=1./B - 0.028527431
 DZ=V+(1.+1./V)*LOG(2.*V)-0.02041793+0.24902722*W
 $+1.9496443*(W**2)-2.6294547*(W**3)+8.56795911*(W**4)
 ENDIF
ELSEIF (B.LT.0.999) THEN
 IF (B.LE.0.26938972) THEN
 DZ=PI*(1.-B+B**2-(1.+PI**2)/6.)*(B**3)+6.794732*(B**4)
 ELSE
 Y=B-1
 DZ=SQR(6.*Y)*(1.+0.15*Y+0.057321429*(Y**2)
 $+0.048774238*(Y**3)-0.053337753*(Y**4)
 $+0.075845134*(Y**5))
 ENDIF
ENDIF

RETURN
END

SUBROUTINE Str4(AiNew, Alpha, A, B, DZ)

REAL AiNew, Alpha, A, B, DZ, U, T

This subroutine calculates the value of the two-sided Vinokur stretching function based on the value of the parameters A, B, and DZ, and on the value of the "computational" coordinate Alpha.

IF (B.GT.1.001) THEN
 U=0.5+TANH(DZ*(Alpha-0.5))/(2.*TANH(DZ/2.))
ELSE IF (B.LT.0.999) THEN
 U=0.5+TAN(DZ*(Alpha-0.5))/(2.*TAN(DZ/2.))
ELSE
 U=Alpha*(1.+2.*(B-1)*(Alpha-0.5)*(1-Alpha))
ENDIF
T=U/(A+(1.-A)*U)
A1New=T

RETURN
END

SUBROUTINE KFctrs(ZoneNo,kS,k1,k2,k3,k4,kXi1,kXi2,kEta1,kEta2,
 kZeta1,kZeta2,MxSrfs,MxGSiz)
This subroutine is used to set the k-factors that are to be used.
The value of the k-factors is first set equal to the user specified
values of kXi1, kXi2, kEta1, kEta2, kZeta1 and kZeta2. After that
the user can modify the k-factors for individual grid lines as
desired.

INTEGER ZoneNo
REAL kS(MxSrfs,MxGSiz,MxGSiz), k1(MxSrfs,MxGSiz),
$k2(MxSrfs,MxGSiz), k3(MxSrfs,MxGSiz), k4(MxSrfs,MxGSiz),
$kXi1, kXi2, kEta1, kEta2, kZeta1, kZeta2

Set the starting values of the k-factors:
first, k-factors used in generating interior grid points

DO 100 il=1,MxGSiz
DO 100 i2=1,MxGSiz
 kS(1,il,i2)=kEtal
 kS(2,il,i2)=kEta2
 kS(3,il,i2)=kZetal
 kS(4,il,i2)=kZeta2
CONTINUE

then, k-factors used to generate boundary surfaces.

DO 200 il=1,MxGSiz
 k1(1,il)=kXi1
 k2(1,il)=kXi2
 k3(1,il)=kZetal
 k4(1,il)=kZeta2
 k1(2,il)=kXi1
 k2(2,il)=kXi2
 k3(2,il)=kZetal
 k4(2,il)=kZeta2
 k1(3,il)=kEta1
 k2(3,il)=kEta2
 k3(3,il)=kXi1
 k4(3,il)=kXi2
 k1(4,il)=kEtal

91
CONTINUE

Here, the user can make any desired modification of the K-factors to improve the grid that he/she is generating. This part of the subroutine will be case dependent.

RETURN
END
REFERENCES

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Trial value</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>2 (two boundary method)</td>
<td></td>
<td>Controls method used to generate the grid</td>
</tr>
<tr>
<td></td>
<td>4 (four boundary method)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_ξ</td>
<td>$0 \leq \sigma \leq \infty$</td>
<td>0 to 10</td>
<td>Controls the shape (curvature) of grid lines</td>
</tr>
<tr>
<td>σ_η</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_ζ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K_{\xi 1}$ $K_{\xi 2}$</td>
<td>$0 \leq K \leq \infty$</td>
<td>10^{-3}</td>
<td>Control orthogonality at boundaries and curvature of grid lines</td>
</tr>
<tr>
<td>$K_{\eta 1}$ $K_{\eta 2}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K_{\xi 1}^* K_{\xi 2}^*$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(K-factors)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type-i</td>
<td>1 (grid points)</td>
<td></td>
<td>Determines whether edge is defined using grid points or node points for splining</td>
</tr>
<tr>
<td></td>
<td>2 (node points and stretching function)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>StretchType i</td>
<td>0 (no clustering)</td>
<td></td>
<td>Controls the distribution of grid points along Edge i</td>
</tr>
<tr>
<td></td>
<td>1 (clustering near lower boundary)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 (clustering near upper boundary)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 (symmetric clustering near both boundaries)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 (asymmetric clustering near both boundaries)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta1</td>
<td>For StretchType $=1,2$ or 3: $1 < Beta_1 < \infty$</td>
<td>1.1</td>
<td>Controls amount of clustering near boundaries (clustering increases as Beta $1 \rightarrow 1$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta1 Beta2</td>
<td>For StretchType $=4$: $0 < Beta < \infty$</td>
<td>2.5</td>
<td>Control amount of clustering near boundaries (clustering increases as Beta $\rightarrow \infty$)</td>
</tr>
</tbody>
</table>
TABLE 3.2 — Listing of Input File For Generation of Grid System For Zone 18 of Radial Turbine Coolant Passage

<table>
<thead>
<tr>
<th>Type</th>
<th>Technique</th>
<th>SigmaXi 0.000000E+00</th>
<th>SigmaEta 0.000000E+00</th>
<th>SigmaZeta 0.000000E+00</th>
<th>kXI1 2.500000E-03</th>
<th>kXI2 2.500000E-03</th>
<th>kETA1 5.000000E-03</th>
<th>kETA2 5.000000E-03</th>
<th>kZETA1</th>
<th>kZETA2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1.11645</td>
<td>0.01677</td>
<td>0.05842</td>
<td>--2</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.11628</td>
<td>0.01675</td>
<td>0.05843</td>
<td>--3</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.11605</td>
<td>0.01672</td>
<td>0.05844</td>
<td>--3</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.11572</td>
<td>0.01668</td>
<td>0.05845</td>
<td>--4</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.11532</td>
<td>0.01660</td>
<td>0.05843</td>
<td>--5</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.11491</td>
<td>0.01664</td>
<td>0.05853</td>
<td>--6</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.11467</td>
<td>0.01690</td>
<td>0.05878</td>
<td>--7</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.11459</td>
<td>0.01717</td>
<td>0.05902</td>
<td>--8</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.11438</td>
<td>0.01715</td>
<td>0.05904</td>
<td>--9</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.11392</td>
<td>0.01711</td>
<td>0.05907</td>
<td>--10</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.11321</td>
<td>0.01704</td>
<td>0.05911</td>
<td>--11</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.11250</td>
<td>0.01698</td>
<td>0.05915</td>
<td>--12</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.11204</td>
<td>0.01694</td>
<td>0.05918</td>
<td>--13</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.11183</td>
<td>0.01692</td>
<td>0.05920</td>
<td>--14</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.11181</td>
<td>0.01662</td>
<td>0.05894</td>
<td>--15</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.11170</td>
<td>0.01633</td>
<td>0.05870</td>
<td>--16</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.11148</td>
<td>0.01608</td>
<td>0.05851</td>
<td>--17</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.11114</td>
<td>0.01592</td>
<td>0.05842</td>
<td>--18</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.11078</td>
<td>0.01598</td>
<td>0.05853</td>
<td>--19</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.11056</td>
<td>0.01620</td>
<td>0.05877</td>
<td>--20</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.11047</td>
<td>0.01648</td>
<td>0.05902</td>
<td>--21</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.11026</td>
<td>0.01646</td>
<td>0.05904</td>
<td>--22</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.10980</td>
<td>0.01642</td>
<td>0.05907</td>
<td>--23</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.10909</td>
<td>0.01635</td>
<td>0.05911</td>
<td>--24</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.10839</td>
<td>0.01627</td>
<td>0.05915</td>
<td>--25</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.10793</td>
<td>0.01623</td>
<td>0.05918</td>
<td>--26</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.10772</td>
<td>0.01621</td>
<td>0.05920</td>
<td>--27</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.10770</td>
<td>0.01593</td>
<td>0.05894</td>
<td>--28</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.10759</td>
<td>0.01567</td>
<td>0.05869</td>
<td>--29</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.10736</td>
<td>0.01543</td>
<td>0.05850</td>
<td>--30</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.10702</td>
<td>0.01529</td>
<td>0.05842</td>
<td>--31</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.10667</td>
<td>0.01535</td>
<td>0.05853</td>
<td>--32</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.10645</td>
<td>0.01555</td>
<td>0.05876</td>
<td>--33</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.10636</td>
<td>0.01581</td>
<td>0.05902</td>
<td>--34</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.10615</td>
<td>0.01579</td>
<td>0.05904</td>
<td>--35</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.10569</td>
<td>0.01575</td>
<td>0.05907</td>
<td>--36</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.10498</td>
<td>0.01568</td>
<td>0.05911</td>
<td>--37</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.10427</td>
<td>0.01560</td>
<td>0.05915</td>
<td>--38</td>
<td></td>
<td></td>
<td></td>
<td>--1</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>EDGE NO.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>1.0381</td>
<td>0.01556</td>
<td>0.05918</td>
<td>--39</td>
<td>1.0360</td>
<td>0.01554</td>
<td>0.05920</td>
<td>--40</td>
<td>1.0359</td>
<td>0.01531</td>
<td>0.05898</td>
</tr>
<tr>
<td>1.11564</td>
<td>0.01981</td>
<td>0.05843</td>
<td>--3</td>
<td>1.11538</td>
<td>0.01977</td>
<td>0.05843</td>
<td>--4</td>
<td>1.11507</td>
<td>0.01975</td>
<td>0.05845</td>
</tr>
</tbody>
</table>
TABLE 3.2 (continued)

.10358	.01847	.05894	--41
.10345	.01817	.05867	--42
.10315	.01791	.05847	--43
.10274	.01775	.05837	--44
.10234	.01767	.05835	--45
.10199	.01764	.05836	--46
.10170	.01763	.05838	--47
.10147	.01762	.05840	--48
.10130	.01762	.05842	--49

2 Type - EDGE NO: 3 -------------------
20.00 Tension parameter
2 Number of nodes
 | .11645 | .01677 | .05842 | -- 1 |
 | .11596 | .01985 | .05842 | -- 2 |
3 StretchType
1.1000 Stretching parameter BETA
2 Type - EDGE NO: 4 -------------------
20.00 Tension parameter
2 Number of nodes
 | .10181 | .01439 | .05842 | -- 1 |
 | .10130 | .01762 | .05842 | -- 2 |
3 StretchType
1.1000 Stretching parameter BETA
1 Type - EDGE NO: 5 -------------------
.11737	.01347	.05530	-- 1
.11739	.01345	.05530	-- 2
.11688	.01342	.05531	-- 3
.11642	.01337	.05532	-- 4
.11590	.01332	.05533	-- 5
.11545	.01327	.05533	-- 6
.11513	.01324	.05534	-- 7
.11495	.01322	.05534	-- 8
.11486	.01353	.05565	-- 9
.11458	.01375	.05591	--10
.11416	.01376	.05598	--11
.11381	.01354	.05581	--12
.11363	.01324	.05554	--13
.11359	.01292	.05523	--14
.11338	.01290	.05525	--15
.11303	.01287	.05526	--16
.11251	.01283	.05529	--17
.11192	.01278	.05531	--18
.11140	.01274	.05534	--19
.11105	.01271	.05536	--20
.11084	.01269	.05536	--21
.11074	.01297	.05567	--22
.11046	.01317	.05592	--23
.11004	.01318	.05598	--24
.10970	.01298	.05581	--25
.10952	.01270	.05554	--26
.10948	.01241	.05523	--27
.10927	.01239	.05525	--28
TABLE 3.2 (continued)

<table>
<thead>
<tr>
<th>Type</th>
<th>EDGE NO:</th>
<th>6</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11697</td>
<td>0.1656</td>
<td>.05530</td>
<td>-- 1</td>
</tr>
<tr>
<td>11682</td>
<td>0.1654</td>
<td>.05530</td>
<td>-- 2</td>
</tr>
<tr>
<td>11656</td>
<td>0.1652</td>
<td>.05531</td>
<td>-- 3</td>
</tr>
<tr>
<td>11618</td>
<td>0.1648</td>
<td>.05532</td>
<td>-- 4</td>
</tr>
<tr>
<td>11574</td>
<td>0.1643</td>
<td>.05533</td>
<td>-- 5</td>
</tr>
<tr>
<td>11536</td>
<td>0.1639</td>
<td>.05533</td>
<td>-- 6</td>
</tr>
<tr>
<td>11510</td>
<td>0.1637</td>
<td>.05534</td>
<td>-- 7</td>
</tr>
<tr>
<td>11495</td>
<td>0.1635</td>
<td>.05534</td>
<td>-- 8</td>
</tr>
<tr>
<td>11486</td>
<td>0.1666</td>
<td>.05565</td>
<td>-- 9</td>
</tr>
<tr>
<td>11458</td>
<td>0.1689</td>
<td>.05591</td>
<td>--10</td>
</tr>
<tr>
<td>11416</td>
<td>0.1690</td>
<td>.05598</td>
<td>--11</td>
</tr>
<tr>
<td>11381</td>
<td>0.1668</td>
<td>.05581</td>
<td>--12</td>
</tr>
<tr>
<td>11363</td>
<td>0.1637</td>
<td>.05554</td>
<td>--13</td>
</tr>
<tr>
<td>11359</td>
<td>0.1605</td>
<td>.05523</td>
<td>--14</td>
</tr>
<tr>
<td>11338</td>
<td>0.1603</td>
<td>.05525</td>
<td>--15</td>
</tr>
<tr>
<td>11303</td>
<td>0.1600</td>
<td>.05526</td>
<td>--16</td>
</tr>
<tr>
<td>11251</td>
<td>0.1596</td>
<td>.05529</td>
<td>--17</td>
</tr>
<tr>
<td>11192</td>
<td>0.1591</td>
<td>.05531</td>
<td>--18</td>
</tr>
<tr>
<td>11140</td>
<td>0.1587</td>
<td>.05534</td>
<td>--19</td>
</tr>
<tr>
<td>11105</td>
<td>0.1584</td>
<td>.05536</td>
<td>--20</td>
</tr>
<tr>
<td>11084</td>
<td>0.1583</td>
<td>.05536</td>
<td>--21</td>
</tr>
<tr>
<td>11074</td>
<td>0.1610</td>
<td>.05567</td>
<td>--22</td>
</tr>
<tr>
<td>11046</td>
<td>0.1631</td>
<td>.05592</td>
<td>--23</td>
</tr>
<tr>
<td>11004</td>
<td>0.1632</td>
<td>.05598</td>
<td>--24</td>
</tr>
<tr>
<td>10970</td>
<td>0.1613</td>
<td>.05581</td>
<td>--25</td>
</tr>
<tr>
<td>10952</td>
<td>0.1585</td>
<td>.05554</td>
<td>--26</td>
</tr>
<tr>
<td>10948</td>
<td>0.1555</td>
<td>.05523</td>
<td>--27</td>
</tr>
<tr>
<td>10927</td>
<td>0.1554</td>
<td>.05525</td>
<td>--28</td>
</tr>
<tr>
<td>10892</td>
<td>0.1551</td>
<td>.05526</td>
<td>--29</td>
</tr>
<tr>
<td>10840</td>
<td>0.1547</td>
<td>.05529</td>
<td>--30</td>
</tr>
<tr>
<td>Type</td>
<td>EDGE NO:</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1.00</td>
<td>20.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tension parameter</td>
<td>Number of nodes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1000</td>
<td>Stretched parameter BETA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Type - EDGE NO:</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>20.00</td>
<td>Tension parameter</td>
<td>Number of nodes</td>
<td></td>
</tr>
<tr>
<td>1.1000</td>
<td>Stretched parameter BETA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Type - EDGE NO:</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>20.00</td>
<td>Tension parameter</td>
<td>Number of nodes</td>
<td></td>
</tr>
<tr>
<td>1.1000</td>
<td>Stretched parameter BETA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Type - EDGE NO:</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>20.00</td>
<td>Tension parameter</td>
<td>Number of nodes</td>
<td></td>
</tr>
<tr>
<td>1.1000</td>
<td>Stretched parameter BETA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Type - EDGE NO:</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>20.00</td>
<td>Tension parameter</td>
<td>Number of nodes</td>
<td></td>
</tr>
<tr>
<td>1.1000</td>
<td>Stretched parameter BETA</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
TABLE 3.2 (concluded)

2 Type - EDGE NO: 11 -------------
20.00 Tension parameter
4 Number of nodes
.11645 .01677 .05842 -- 1
.11658 .01628 .05799 -- 2
.11719 .01407 .05591 -- 3
.11737 .01347 .05530 -- 4
3 StretchType
1.1000 Stretching parameter BETA
2 Type - EDGE NO: 12 -------------
20.00 Tension parameter
4 Number of nodes
.11596 .01985 .05842 -- 1
.11610 .01936 .05799 -- 2
.11678 .01716 .05591 -- 3
.11697 .01656 .05530 -- 4
3 StretchType
1.1000 Stretching parameter BETA
2 Type - EDGE NO: 13 -------------
20.00 Tension parameter
2 Number of nodes
.10181 .01439 .05842 -- 1
.10130 .01762 .05842 -- 2
3 StretchType
1.1000 Stretching parameter BETA
2 Type - EDGE NO: 14 -------------
20.00 Tension parameter
2 Number of nodes
.10256 .01195 .05582 -- 1
.10212 .01522 .05582 -- 2
3 StretchType
1.1000 Stretching parameter BETA
2 Type - EDGE NO: 15 -------------
100.00 Tension parameter
3 Number of nodes
.10181 .01439 .05842 -- 1
.10253 .01226 .05613 -- 2
.10256 .01195 .05582 -- 3
3 StretchType
1.1000 Stretching parameter BETA
2 Type - EDGE NO: 16 -------------
100.00 Tension parameter
3 Number of nodes
.10130 .01762 .05842 -- 1
.10209 .01552 .05613 -- 2
.10212 .01522 .05582 -- 3
3 StretchType
1.1000 Stretching parameter BETA
Figure 1.1 — Radial turbine coolant passage.
\(n \) (Technique: \(n = 2 \) or \(n = 4 \))

- \(IL \)
- \(JL \)
- \(KL \)
- \(\sigma_\xi \)
- \(\sigma_\eta \)
- \(\sigma_\zeta \)
- \(k_\xi \)
- \(k_\zeta \)
- \(k_\eta \)
- \(k_\zeta_2 \)

Type-1

| Information for Edge 1 |

Type-2

| Information for Edge 2 |

Type-3

| Information for Edge 3 |

...

Type-\(m \)

| Information for Edge \(m \) |

\(m = 8 \) if \(n = 2 \) (two boundary technique)

\(m = 16 \) if \(n = 4 \) (four boundary technique)

Figure 3.1 — Input-file format for GRID3D-v2.
Information for Edge i

if Type-i = 1:

\[
\begin{array}{c}
 x_1 \ y_1 \ z_1 \\
 x_2 \ y_2 \ z_2 \\
 \vdots \\
 x_{NL} \ y_{NL} \ z_{NL} \\
\end{array}
\]

\(NL=IL\) for \(i=3,4,9,10,13\) and 14
\(NL=JL\) for \(i=11,12,15\) and 16
\(NL=KL\) for \(i=1,2,3,4\)

if Type-i = 2:

\[
\begin{array}{c}
 \sigma \\
 NP \\
 x_1 \ y_1 \ z_1 \\
 x_2 \ y_2 \ z_2 \\
 \vdots \\
 x_{NP} \ y_{NP} \ z_{NP} \\
 StretchType \ i \\
 Beta1 \ Beta2
\end{array}
\]

\(\sigma = \) tension for spline
NP = number of node points

Figure 3.1 (concluded)
Figure 3.2 — Edge curve and boundary surface numbering scheme for GRID3D-v2.
Figure 3.3 — Partitioning of the spatial domain of radial turbine coolant passage into zones for grid generation.
Figure 3.4 — Grid system for zone 18 of radial turbine coolant passage.
Figure 3.5 — Grid system for the whole radial turbine coolant passage (2-D view).
Figure 3.6 — Grid system for the whole radial turbine coolant passage (3-D view).
GRID3D-v2: An Updated Version of the GRID2D/3D Computer Program for Generating Grid Systems in Complex-Shaped Three-Dimensional Spatial Domains

E. Steinthorsson, T.I-P. Shih, and R.J. Roelke

In order to generate good quality grid systems for complicated three-dimensional spatial domains, the grid-generation method used must be able to exert rather precise controls over grid-point distributions. In this report, several techniques are presented that enhance control of grid-point distribution for a class of algebraic grid-generation methods known as the two-, four-, and six-boundary methods. These techniques include variable stretching functions from bilinear interpolation, interpolating functions based on tension splines, and normalized "K-factors." The techniques developed in this study were incorporated into a new version of GRID3D called GRID3D-v2. The usefulness of GRID3D-v2 was demonstrated by using it to generate a three-dimensional grid system in the coolant passage of a radial turbine blade with serpentine channels and pin fins.