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The

RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space
Center and local industry to actively support research in the computing and
information sciences. As part of this endeavor, UH-Clear Lake proposed a

partnership with JSC to jointly define and manage an integrated program of research
in advanced data proce_ing technology needed for JSC's main missions, including
administrative, engineering and science responsibilities. JSC agreed and entered into

a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to

jointly plan and execute such research through RICIS. Additionally, under

Cooperative Agreement NCC 9-16, computing and educational facilities are shared
by the two institutions to conduct the research.

The mission of RICIS is to conduct, coordinate and disseminate research on
computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear
Lake, the mission is being implemented through interdisciplinary involvement of
faculty and students from each of the four schools: Business, Education, Human
Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" concept. UH-Clear
Lake establishes relationships with other universities and research organizations,
having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and

research objectives to advance knowledge in the computing and information
sciences. Working jointly with NASA/JSC, RICIS advises on research needs,
recommends principals for conducting the research, provides technical and
administrative support to coordinate the research, and integrates technical results
into the cooperative goals of UH-Clear Lake and NASA/JSC.
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This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Dr. Rodney L. Bown, Associate Professor of

Computer Systems Design at the University of Houston-Clear Lake. Dr. Bown also
served as RICIS research coordinator.

Funding has been provided by the Engineering Directorate, NASA/JSC through

Cooperative Agreement NCC 9-16 between NASA Johnson Space Center and the

University of Houston-Clear Lake. The NASA technical monitor for this activity was

William C. Young, of the Project Integration Office, Flight Data Systems Division,

Engineering Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author and

should not be interpreted as representative of the official policies, either express or

implied, of NASA or the United States Government.
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Discrete Mathematics, Formal Methods, the Z Schema

and the Software Life Cycle.

This paper is submitted in partial fulfilment of RICIS Task

SE.26. The author and principal investigator is Dr. Rod Bown,

University of Houston - Clear Lake.

I. Introduction

This paper discusses the proper role and scope for the use of

discrete mathematics and formal methods to in support of re-

engineering of security and integrity components within deployed

computer systems. It is proposed that the Z (pronounced "Zed")

schema can be used as the specification language to capture the

precise definition of system and component interfaces. This can

be accomplished an object oriented development paradigm. One

such effort is presented in [WOOD90].

II. Reuuirements

The software engineering life cycle starts with a set of

requirements written in precise language using the terminology of

the customer's application domain. The requirements document

serves as the legal technical interface between the customer and

vendor. A third party judge should be able to use the

requirements document to measure success or failure of the

delivered system. For this reason a requirement is a statement

of intent written in such a way that a metric can be used to

measure success or failure of the developed system.

Requirements are captured by system modeling techniques which

include viewpoint analysis and check lists. Controlled

Requirements Expression (CORE) is one methodology that supports

the gathering and analysis of requirements. Requirements can be

supported by diagrams and tables that are understood by the

customer and a potential third party judge. The customer should

be able to understand all requirements without special training.

In a sense, the requirements document is the specification for

the set of tests that will be performed to validate the product.

The requirements document may contain a glossary that provides

precise definitions for all unique terms related to the

application domain.

Each design module or activity will be a response to a

requirement. In accordance with a specified standard, numerical

labels are attached to each requirement and all resulting design

activities. This will allow a software management tool to

automatically provide forward and backward audit trails.
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A rationale subparagraph should be contained in each traceable

requirement. This will provide guidance during the design,

maintenance and enhancement phases of the life cycle. The

rationale serves two purposes. One purpose is to provide the
context in which the requirement was stated in order to restrict

undesirable side effects that could result from modifications to

implemented modules. The second purpose is to act as a forcing
function for future modifications. If the rationale has changed,
the implementation may need modification.

There should be a limited amount of statements related to the

implementation issues of the delivered system. Requirements that
constrain the design alternatives are usually related to
industrial standards for hardware and software interfaces.

This discussion has been provided to substantiate the argument

that requirements will continue to be written in precise natural

language such as English. There are two customers (readers) for

the requirements document: the customer and the design team. It

is the design team that will transform the precise English,
diagrams, and tables into a formal specification document.

III. Specifications

The design team is responsible to transform the external

requirements document into an internal system specification

document. The specification document should use precise

terminology that is based on mathematical, physical, and computer
domains. The terminology of this document need not be understood

by unsophisticated readers. An audit trail is supported by an
assertion that a particular specification is the formal
presentation of a requirement.

As a special note, different terms appear in the literature. One

author uses the terminology of requirements definition and

requirements specification [SOMM89]. The requirements definition

is a natural language description of the requirements. The

requirements specification is a more formal requirements
description.

IV. Formal Methods

Computer systems that control life and property are becoming
common place within society. History indicates that when a

technology enters common usage, society will demand assurance

that the design was completed in accordance with accepted
mathematical and physical models and good design practices
supported by standards. In a like manner software customers

(society) will insist that the design of software systems must be

based on mathematical and physical models that are supported by

some level of formal proof and/or history of proven acceptance.

This will include the use of appropriate standards. During a
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1989 visit to UHCL, Dr. John McHugh presented this point in an

elegant discussion of the software engineering failure that

resulted in the Internet worm incident [McHU89].

Formal or precise methods are becoming a requirement for the

development of safety critical software. The term safety

critical includes the security and integrity issues of software

systems. Woodcock and Loomes in their book define formal methods

as the class of formal systems which have been designed to be

useful specially for the development of complex systems, together

with the associated manuals and courses which give rise to

guidelines for the formal system's use on real problems [WOOD89].

No one formal system is ever likely to be suitable for describing

and analyzing _ aspects of a complex system. A formal method is

not the method which a system designer might choose to use when

developing a system, but _of__ that a designer might wish

to make use of during the process.

Schema and a Small ExamPle

The following discussion has been extracted from [WOOD89] and

modified for this document. In a specification, one can see a

pattern occurring over and over again: a piece of mathematical

s_u_a_ which describes some constrained variables. The

introduction of variables under some constraint is called a

$¢_m_. One schema that shows promise for the specification of

Ada programs is Z (pronounced "Zed").

This section will describe part of a configuration manager that

maintains modules written in a language such as Ada. Modules

have names drawn from the set N_. For this discussion regard

the parameter Name as a parameter of the specification. Such a

parameter is called a _nset, and is regarded as a primitive

type. There is another given set Bod_ of all (syntactically

correct) module bodies.

A module may import definitions (of program functions, procedure,

types, etc.) from other modules. For this example consider three

program modules. The module M__n needs to write a string of

characters to the screen. Since this is such a common thing to

do, there is a standard module that deals with "transput" and

contains the definition of wn_s_. __n imports the

definition from T_p_. T_ in turn implements w_ E in

terms of another lower-level routine called pu_, which is

imported from the first module, Scr_a_r. The reader should

see the analog to the predefined TEXT_IO package in Ada.

At this level of abstraction the text of a module consists of a

triple: the name of the module; a set of names of imported



modules; and the body of the module. A module should not import
itself.

Text" P (Name x (P Name) x Body)

Text = {." Name;, s" P Name;, p" Body l n _ s • (., s, p)}

The three concrete examples of Text are

t I = (ScreenHandler, {),
module ScreenHandler

begin pzoc putchar ... end)

t 2 = (Transput, (ScreenHandler),
module Transput with ScreenHandler

begin pzoa writestring ... putchar ... end)

(Application, (Transput},

module Application with Transput

begin proo ... writestring ... end)

This can be seen in fragment form as

t I module ScreenHandler

begin
ptoc putchar

see

end

t 2 module Transput with ScreenHandler

begin
ptoc writestring

... putchar ...
end

% module Application with Transput
begin

... writestring ...
end

These relations can be described using discrete mathematics.

this example a text imports those modules named in its set of

imports:

For

.imports." Text -- Name

("1, s, p) imports n2 4:* n2 E s



The program fragments provide the following facts about imports:

t, _[ dora imports

t2 imports ScreenHandler

ta imports Transput

Another relationship can be built on _w_, but it is a relation

on T_: one text _ another if it imports the second's name:

.needs. :Text .-.Text

(.l,sl,Pl) needs (._.,sa,p.z) _ (.,,sl,Pl) imports ._

The set of module texts can be divided into "compatible" modules.

One can regard the name of a module and the set of module names

that it imports as constituting the "signature" of a module. Two

modules are compatible if they share the same signature:

.compat_" Text ,-. Text

(nl,st.Pl) compat (n_,s_,p_) ¢_, nl = n_ A Sl = s2

The specification of the configuration manager is continued by

describing its _. The state consists of those data structures

that are maintained by the system; the operations in the system
manipulate these data structures and therefore change the state.

Mathematical data types are used to build a theory of the state

which will have as models suitable realizations in a programming

language. This example will show how the state is initialized

and how the values of the state before and after operations are
related.

The state contains two components: a s_w_ of T_ and a relation

which describes when one stored text is a version which is a

for another stored text:

store" P Text

:uc: Text--Text

The successor can be constrained in the following ways. A module
must never be the successor of itself, for that would introduce

an unbreakable "loop" when searching for the end of the chain.
Thus the tnm__ of _¢ is irreflexive:

suct _ lrreflexive[Text]
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where InT_[X] is the set of all irreflexive relations on X:

trregex  e[X]=- {n" X-- Xl X • xRx)}

If text _ is the successor of another _, then they must be

compatible, that is sac is merely a subset of a_m_:

suc C_ compat

All the nominated modules that have, or are themselves,
successors must reside in the store:

suc C_ store × store

store and_ constitute a proper state of the configuration

manager whenever they satisfy these three constraints:

suct trreflexive[Textl
suc C_ compat

suc C store × store

Discrete mathematics is sufficiently powerful to describe many

aspects of software systems. However, its application to large

scale specifications soon results in unwieldy descriptions that

are difficult to follow. It isn't the language that is at fault,
but rather the human need to comprehend just a small amount of

information at a time. One of the most basic things that can be

done to improve a specification is to identify and name commonly
used concepts and factor them out from the rest of the

description of a system. Comments on mathematical notation are

presented in the Appendix.

In specifications, a pattern occurs over and over again. This is

a piece of mathematical _ which describes some constrained

variables. The introduction of varlables under some constraint

is called a _hmm_. The Z schema uses a template that provides

for the schema, a _ of some variables, and a jww_
constraining their values.

Name

declarattonpan

predicate

6



When there is a change in state, the convention is to "decorate"

the names of the "after" variable with a dash.

The configuration manager has three predicates that characterize

its state, which together form the_te_van_. The state

invariant, together with the declarations off,we and suc form a

schema which is called Con_. This package of definitions is

a mathematical structure that describes all legal values of the

state of the configuration manager:

_ Con�irMa,

store: P Text

.suc : Text .-. Text

Suc t E Irreflexiv_ Text]

suc C_ compat

suc C store × store

This schema is equivalent to that previously presented. Each line

of the predicate forms a conjunct with the other lines.

The initial state of the configuration manager is an empty store

and an empty successor relation. The initialization of a system

can be regarded as a peculiar kind of operation that creates a

state out of nothing; there in no before state, simply an after

state, with its variables decorated with a '. The decoration '

is used for labelling the final state of an operation.

_ InitConjigMan

store' : P Text

_sun'. :Text .-,, Text
i i

There is only one state of the configuration manager that

satisfies this description. There must be at least one,

otherwise we could not implement the system.

If the name of the schema is decorated with ', it is understood

to mean the same mathematical structure, but with component names



so decorated.

operation is described by _u'.

_ Con/igMan'

_suc'_" Text .--. Text
store / • P Text

For the configuration manager, the state after an
In detail this means:

suc' C store' × store"
suC' C cornpat

suc 't E lrreflexive[ Text]

The notation introduced has increased our ability to capture

specification of software systems within a _/_,ma. The Z schema

provides for schema to include previous schemes. This can be
seen in the simple example of a hopper which has been extracted

from [SOMM89]. The specification of a Hopper includes the
schemas for Container and Indicator in its declarative part. The

expanded specification for the Hopper does not use the previous
schemas. The reader can see that the expanded specification

includes all of the details which clutters the presentation.
Additional schemas are included that exhibit the filling

operation of the hopper.

In this paper the discrete mathematics and Z templates have been
extracted from the cited references. This writer assumes that Z

schema editors and proof tools will be available in the

foreseeable future. At the present time, it is not worth the
effort to use Word Perfect to create the mathematics and

templates.

VI. Case Studies

The September 1990 issue of the IEEE Software magazine contained
two articles that presented discussions of successful

applications of the Z schema. The design of an X-ray machine was

discussed by [SPIV90]. The design of an oscilloscope was

presented by [DELI90].

Of special interest to NASA is the case study discussed in

[JACK90]. Jacky has reported on the Clinical Cyclotron Therapy

System at the University of Washington. This is a cyclotron and

radiation therapy facility that provides cancer treatments with

fast neutrons, production of medical isotopes, and physics

experiments. The control system handles over one thousand input
and output signals.

The designs are attempting to achieve high reliability and safety

by applying rigorous software development and quality control

practices. They have been intrigued by the possibility that



formal software development techniques might result in additional

improvements in reliability and safety beyond those achieved

through traditional practices, namely, English like

specifications, subjective design and code reviews, and lots of

testing.

Other important design goals are improved maintainability and

adaptability to future hardware and software modification. This

appears to be a direct analogy to space shuttle enhancement and

space station design goals.

The project is apparently the first application of formal methods
to an accelerator control system. In the literature a few

reports describe acceptance testing from the customer's point of
view; none discuss design internals nor development practices. A

typical presentation emphasizes hardware organization.
Discussion of software is limited to informal treatment. There

is little interest in development methodology; the very concept

of "specification" is practically absent from this literature.

Jacky states that the best known natations are Z and VDM but that
Z appears to be gathering more published tutorials and case

studies. The author has observed that the distinguishing feature

of Z is the sc_m_-ul_, which provides a convenient way to

build up large specifications from textually separate components

called _m_s. In Z, specifications consist of two principle

components: descriptions of abstract data structures that model

the internal state, and definitions of operations that manipulate

the state. For NASA this is the key observation. The schemas

provide a precise modeling technique to support object oriented
design of the software.

The author is not an experienced Z user. He has provided samples

that are intended to show how some of the control system

requirements might be expressed in the Z style, and to reveal

some of the difficulties encountered by self-taught
practitioners.

The article provides Z schemata examples listed below:

Names and definitions for control parameters.
Units and conversion formulae.

Example of schema inclusion. - MACROS
Constraints on values.

The schemata cited above provide documentation for the database.

Z schemata are shown for display (Xi schema - values are

unchanged)

Delta schema, operation changes the state.
A software interlock.

Error messages
timing constraints.



There are difficulties using Z to represent interdependent

collections of serial and parallel operations, event-driven

operations, and concurrency. Note: the LOTOS technique has

constructs that support modelling of concurrent structures.
LOTOS is discussed in a separate report as part of this task.

Jacky reports that writing comprehensive formal specifications is

feasible. An unsolved problem is the proper notation for

concurency. The author chose Petri nets for concurrency. The

specifications for event driven operations were represented by
the Software Cost Reduction (SCR) notation [HENI80]. SPECIAL

NOTE: The SCR or A7 Notation was developed by David Parnas and

colleagues at the Naval Research Laboratory during the late

1970's. During 1989, the SCR technique was used to express the

software specifications in support of the safety verification

effort for the Darlington Nuclear Power plant in Ontario, Canada

[JOANg0]. A recent article by Parnas in the Communications of

the ACM cites the use of SCR to safety critical systems [PARN90].

Narayana and Dharap have reported on the successful application

of the Z schema to a graphical interface [NARA90A] [NARA90B].

Dialog systems are servers for an interface. They are like
operating systems in the concepts they provide. The Z notation

was used for the formal design of the system. The authors

provide Z schemata for INTERACTOR objects, DIALOG, SCREEN,

DISPLAY, PHYSICAL MOUSE and more.

VII. Oblect Oriented Desiqn and Reusability

The Z schema provides a concise mathematical notation that can be

used to support object oriented design with reusable components.

Objects can be decomposed into smaller objects. This supports a

top down divide and conquer design procedure. In addition, large

objects can be composed of small objects. If the Z schema was

used to design the reliable component, the new design will
inherit the associated mathematical verification of the

component. The Z schema offers an opportunity to reuse reliable

software code and its associated verified design specification to
compose reliable systems.

This document has been written to propose that the object should

be chosen as the viewpoint for a system component. Objects can
be decomposed into smaller objects in accordance with a divide

and conquer design paradigm. In addition large objects can be

composed from smaller reliable objects. Objects can provide a

consistent viewpoint across the many phases of specification and

design. The Z schema can support the design and reuse of an

object. Objects can be used to define reliable and safety
critical components and subsystems. Systems can be composed of
reliable subsystems. The use of formal methods and the Z schema

will provide the assurance of reliability that will be demanded
by society for safety critical systems.
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viii. Conclusions and Recommendations

This writer believes that formal methods will be required to

specify trusted systems. In the immediate future, software

designers should apply discrete mathematics by hand using a

proper schema such as Z. This will provide a period of training

and application experience for the designers. As the use of

formal methods is expanded, it is assumed that tool support will

be provided for common schemas. Z editors and proof tools will

become available. The reuse of software will be enhanced by the

use of formal methods to specify reliable components within an

object oriented design paradigm.

IX. Reference _and Educational SUDDQ_t

Discrete mathematics is the foundation for all formal methods.

The mathematics takes the form of propositional and predicate

calculus, set theory, relations, functions, and sequences. This

writer has found that the 1989 book by Woodcock and Loomes is the

easiest to read [WOOD89]. The authors have chosen the Z schema

as the syntax to exhibit the formal specification of a telephone

exchange.

Ince's book was published in the United States in 1988 [INCE88].

Ince claims to take a gentle approach to the subject of formal

specification. The Z schema is chosen to represent the formal

concepts. A Z schema formal specification is shown for a

library.

The 1981 book by Gries is still valid [GRIE81]. It is one of the

required textbooks listed for the Software Engineering Institute

course on Software Validation and Verification. This course is

now being taught by the University of Houston-Clear Lake in the

new and approved Masters of Science degree in Software

Engineering Sciences. The technical staff at Odyssey Research

Associates in Itacha, New York uses Gries' book as a foundation

for their formal mathematics in support of security models and

the Penelope Ada verification software engine [GUASg0]. Odyssey

has performed this development for the U. S. Air Force Rome Air

Development Center.

The book by Spivey presents the syntax of the Z Schema [SPIV89].

One can view Spivey's book as being similar to the Ada Language

Reference Manual. It provides the concepts of Z for tool

builders. It is not a design book. The book is necessary but it
is not sufficient.

Sommerville provides a terse but readable introduction to the

concepts of the Z schema [SOMM89]. Sommerville is not teaching

discrete mathematics or Z in his book. In the first printing of

his book, there are numerical discrepancies between the text and

Ii



the Z templates. A sophisticated reader should be able to ignore
these minor discrepancies. Several Z schema templates are

included in this document.

Reliable systems need to be composed of reliable components.

This concept requires that a reuse paradigm be established to

incorporate known reliable components with all associated design

knowledge and assurances. The Fifth International Workshop on

Software Specification and Design was held in Pittsburgh during

May 1989. Several papers at this workshop relate to the

pragmatic use of formal methods.

The paper by London presents the use of the Z schema to specify

two reusable components and their interfaces [LOND89]. Smalltalk

was the language used by the investigators.

Another paper proposed that software development may be able to

use an analogy to the chemical engineering design process

[D'IP89]. D'Ippolito writes "Chemical engineers are not taught

to design polypropylene plants; they are taught the unit

operations and the objects that provide them usin--'"g" The reader
can interpret this idea as composable design objects and
their defined interfaces.

Mary Shaw of the Software Engineering Institute presented another

paper that proposes that higher level abstractions are necessary
to compose systems from subsystems [SHAW89]. Once again there

seems to be a theme that reliable systems are composed of

reliable components.

The IEEE used formal methods as a theme for their September 1990

issues of Computer, Software, and Transactions on Software

Engineering. The Z schema is well represented in all three

publications. Additional articles that have not been cited

elsewhere in this reprot are [GERH90A], [HALLg0], and [WING90].

X_= Local Symposia and Tutorials

The University of Houston-Clear Lake hosted a Software

Engineering Symposium on November 7 & 8, 1990. The following

tutorials were presented:

Object Oriented Requirement Analysis
Ed Berard, Berard Software Engineering Inc. [BERD90]

Software Reuse

Will Tracz, IBM System Integration Division [TRAC90]

Software Safety

Nancy Leveson, University of California, Irvine [LEVE90]

12



Applying Formal Methods by Hand

John McHugh, Computational Logic Inc. [McHU90]

Speakers included presentations by the Software Engineering

Institute (SEI), the Software Productivity Consortium (SPC), and

the Microelectronics and Computer Technology Corporation (MCC).

Susan gerhart of MCC provided a review of formal methods with an

emphasis on the standards effort that is occurring in the United

Kingdom [GERHg0B]. The tutorials and presentations exhibited a

variety of approaches to produce reliable software. The theme

seems to be objects and formal mathematical support for

specifying objects.

During 90-91, UHCL and CSC are supporting a seminar series in

Information Security, Integrity, and Safety (ISIS). During the

late spring or early fall it is planned to invite Odyssey

Research Associates to present a tutorial on Formal Methods. Two

design examples are used in the presentation:

i) a flight control system

2) secure Network Interface Unit component.

During the summer of 1991, this writer will be teaching a

graduate software engineering course on Formal Methods and

Models. This course will provide a review of formal methods with

an emphasis on a pragmatic application of the Z schema within a

case study.

13
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Software Cost Reduction (SCR) work at the Naval

Research Laboratory.

[SHAW89]

Shaw, Mary. "Larger Scale Systems Require Higher-Level

Abstractions." Proceedinas of theFifth International

Workshop on Software Specification and Desiqn. May 19-20,

1989, Pittsburgh, Pennsylvania. pp. 143-147.

[SOMM89]
Sommerville, Ian. Software Enqineerinq, Third Edition.

Wokingham: Addison-Wesley. 1989.
A terse but readable introduction to Z is contained in

chapter 9.

[SPIV89]

Spivey, J. Michael. The Z Notation. New York: Prentice

Hall. 1989.

Think of this book as a reference manual for the syntax

similar to the Ada Language Reference Manual.

[SPIV90]

Spivey, J. Michael. "Specifying a Real-Time Kernel." IEEE

Software. September 1990. pp. 21-28.

The author provides a report on a case study using the

Z notation to specify the kernel for a diagnostic X-ray

machine.

16



[ TRAC90]
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Appendix A Comments on Notation

To some software designers the Z notation may seem complex. This

short essay is an attempt to put the notation in proper

perspective. All engineers have taken calculus and have learned

the notation of calculus. The calculus notation is then used in

courses such as differential equations, dynamics, strength of

materials, thermodynamics, etc. In addition all engineers have

learned elements of matrix theory. The result is that most

engineers would have not have any difficulty in understanding the

notation of the state transition equation:

x' =Ax + BU

where ' has been used to represent the derivative with

respect to time. Note that Word Perfect has placed a

restriction on notation. A overline "dot" is the usual

notation for the derivative with respect to time. The other

symbols represent:

x - state vector (n by i)

A - The plant: n by n matrix

u - control vector (m by i)

B - control laws: (n by m matrix)

The point is that an engineer routinely uses a high level

notation to abstract from the fundamentals of the "delta" and

scaler notation of calculus. Matrices are represented by single

letters without explicit reference to their size. The size is

implicit within the context of the equation.

The notation for the Z language is based on discrete mathematics.

The attached notation has been extracted from an article

contained in the September issue of the IEEE Transactions on

Software Engineering [Narag0]. The point is that if an

individual claims to be a software engineer, then that individual

needs to be familiar with the mathematical notation of software

engineering. The Z schema provides a specification template

using the notation of discrete mathematics. The notation is not

unique to Z.

[Nara90] Narayana, K.T. and Dharap, S. "Formal Specification of

a Look Manager." IEEETransactions on Software

Enqineerinq. vol 16 no. 9. September 1990. pp 1089-

1103.
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A

k,'

::m

v

3

m , n

U
f3

E

{}.o
{term pred}
_a. b)
#

dts)otm
.4 -- B

A--B

X

f_ x

t" .I.

Z _OT _,TIO'---BRIEFLY

"'Is defined to be or same as."

Logical conjunction.
Logical disjunction.

Logical implication.

Logical equivalence.
U nix ersal quantification.

Existential quantification.
The set of natural numbers.

The set of integers.
The set of natural numbers between m

and n inclusive.

Set inclusion.

Strict set inclusion.

Set union.

Set intersection.
Set difference.

Set membership.

The empty set.

The set of terms such that pred.

Ordered pair.

The cardinality of a set.
Powerset.

Pairwise disjoint.
The set of total functions from ,4 to B.

The set of partial functions from ,4 to
B.

The set of relations from ,4 to B.

The singleton function ("maplet")

which maps a to b.
Lambda abstraction.

Function ]'applied to x.

Function f applied to x.

dora

ran

_

ta X

R"

=

R-

( i

S<R

S ,_R

R>T

R_T

RI÷R,

seq `4
#s

(>

$1-$2

Domain of.

Range of.

Relational (or functional) composition.
Forward relational or functional com-

position-f: g -_"g z f.
Im, erse of relation R.

Identity function on the set X.

Relation R composed with itself k
times.

Reflexive transitive closure of R.

Nonreflexive transitve closure of R.

Image--forR:,4 .-- Band A: (A).

R(:A ') "-: {b:Bl(3a:A. aRbl}.
Restriction of domain of R to S.

Domain subtraction S _] R _-" X \ S <3

RwhereS: (X).

Range restriction of R to T.

Range subtraction of T.

Relation overriding.
Set of sequences drawn from ,4.

Length of sequence s.

Empty sequence.

Concatenation of st and $.,.

The last element of the sequence s.

All but the last element of the sequence
$.

First element of the sequence s.

All but the first element of the sequence
$.

19



SCHEM _ _OT _TIO'.S

5 -_ [D!preds] is a schema defimt)on D )s a set of

declarations, preds are a set of first order formulas on the

vanables of D. The set constitutes a con lunctl_e firs{ or-
der formula.

In the graphical notation, a schema has a name S v, ith

declarations D and predicate set pred and is v. rnten

--S

D
2

! predt

'.i pred,.

I ....

I
i ....

! pred.
i

Schema name and the predicate part are optional+

Schema names usually designate operations. Components

of a schema can be projected using the component names.

pred S defines the predicate part of the schema S.
lJ Combinators on Schemas: A schema can be in-

cluded in another. The resulting schema contains the union

of the declarations and conjunction of the predicate parts+

siP

S: D

S[ new�old ]

.S.'
-,S

SAT

SvT

Schema S with P conjoined to the

predicate part.
Schema S with the declarations D

merged with those of S.

Renaming componentS, the name
old in schema S is renamed to

new ever) where it appears.
Schema S with all names quoted.

Schema S with the predicate pan

negated.
Schema formed by the merging of

declarations and the conjoining

predicate parts of S and T
Schema formed b.,, the merging ot

declarations and the d_jo|nlng

of predicate parts of S and T.

pre S Precondition: All the state after the

dashed variables and outputs are
hidden.

post S Postcondition: All the state com-

ponents undashed variables and --
the inputs are hidden from the

predicate part.

S -_ T Schema overriding -'- S A -_pre T
VT.

S; T" Schema Composition: Schema
formed when the final states of S

become the initial states of T: in

such composition, the base
names of the dashed identifiers

in S and the matching undashed
identifiers in T are renamed and

existentially quantified in the
predicate part.

2) Conventions: The following conventions are used

for variables and predicates in schemas which designate

operations. _

State before the operation.

State after the operation.

Inputs to the operation. ---

Outputs of operation.

undashed

dashed

ending in ?

ending in !

S-T

S\(th, "-..t'.)

Schema formed by merging dec- --
larations and taking pred S =

pred 7"as the predicate part.

Hiding: Schema formed by remov-

ing declarations t'm. • • • . t',, in --

S and existentially, quantifying i
the predicate part of S with re:

spect to those variables.
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Appendix B Z Schema Templates

These templates have been reproduced from [SOMM89]. They are

shown to demonstrate how low level schemata can be incorporated

into higher level schemata within a terse but readable format.

The low level Container and Indicator schemata (objects) have

been used in the definition of the Hopper schema. The expanded

version of the Hopper schema is shown to exhibit the total

definition that results from including the Container and

Indicator signatures into the Hopper definition.

The SafeFillHopper is a schema for a modified fill operation.

The delta on the Hopper means that this operation will change the

state of the Hopper. The OverFillHopper schema is another

example of an operation. The FillHopperOP has a predicate that

provides an error check on the fill operation.

[SOMM89]

Sommerville, Ian. Software Enqineerinq, Third Edition.

Wokingham: Addison-Wesley, 1989.
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_Schema name

Schema signature

_-_Pt_i Schela predicate

o

contents <= capacity I

A Z(Ze.d) schema

m Indicator

light: {off, on}
reading: lq

danger: I_I

light = on <=> reading <= danger

The specification of an indicator.
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._ Hopper

ontainer

' Indicator

reading = contents

capacity = 5000
danger = 50

The specification of a hopper.

Hopper

contents: I_1

capacity: bl
reading: bl
danger:, bl
light:(off, on)

contents <= capacity
light =on<=>reading<=danger
reading = contents
capacity = 5000
danger = 50

The expanded specification of a hopper.
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_,SafeFillHopper

/N Hopper

amount?: bl

contents + amount? <= capacity

contents' = contents + amount?

The specification of hopper fill operation avoiding overflow.

_OverfillHopper

/N Hopper

amount?: N

r! = seq CHAR

capacity < contents + amount?
contents = contents'

r! = "Hopper overflow"

The specification of the hopper overflowing.

FillHopperOP

I SafeFillHopper
v Overfill Hopper

The specification of the hopper filling with error check.
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