
United States Patent [191 [i l l Patent Number: 5,031,089
Liu et al. [45] Date of Patent: Jul. 9, 1991

I I
I I

NETWORK
I N T E R F A C E J ~ ~ ~

E ‘ 2 TASK 3 ALLOCATION ~ 2 8
0 6 TRANSKR

1
LOGIC

WAKEUP WORKLOAD
LOGIC INDICATOR

30
\

QUEUE -22
34 TASK

[54] DYNAMIC RESOURCE ALLOCATION
SCHEME FOR DISTRIBUTED
HETEROGENEOUS COMPUTER SYSTEMS

[75] Inventors: Howard T. Liu, San Marino; John A.
Silvester, Los Angeles, both of Calif.

[73] Assignee: United States of America as
represented by the Administrator,
National Aeronautics and Space
Administration, Washington, D.C. .

[21] Appl. NO.: 292,124

[22] Filed: Dec. 30,1988

[51] Int. (3 . 5 .. G06F 12/00
[52] U.S. Cl. 364/200, 364/281.3;

364/281; 364/28 1.6; 3644/28 1.8
[58] Field of Search ... 364/200 MS File, 900 MS File,

364/281.3, 281, 281.6, 281.8, 975.5

[561 References Cited
U.S. PATENT DOCUMENTS

4,099,235 7/1978 Hoschler et al. 364/200
4,403,286 9/1983 Fry et al. ; 364/200

4,495,570 1/1985 Kitajima et al. 364/200
4,577,272 3/1986 Ballew et al. 364/200
4,839,798 6/1989 Eguchi et al. 364/200
4,852,001 7/1989 Tsushima et al. 364/401

. 4,413,318 11/1983 Herrington 364/200

Primary Examiner-Joseph A. Popek
Assistant Examiner-Rebecca L. Rudolph

12’

1 2’
\

Attorney, Agent, or Firm-Thomas H. Jones; Harold W.
Adams; John R. Manning
[571 ABSTRACT
In a distributed heterogeneous computer system having
a plurality of computer nodes each operatively con-
nected through a network interface to a network to
provide for communications and transfers of data be-
tween the nodes and wherein the nodes each have a
queue for containing jobs to be performed, an improve-
ment for dynamically reallocating the system’s re-
sources for optimized job performance. There is first
logic at each node for dynamically and periodically
calculating and saving a workload value as a function of
the number of jobs on the node’s queue. Second logic is
provided at each node for transfering the node’s work-
load value to other nodes on the network at the request
of the other nodes. Finally, there is third logic at each
node operable at the completion of each job. The third
logic includes, logic for checking the node’s own work-
load value, logic for polling all the other nodes for their
workload value if the checking node’s workload value
is below a preestablished value indicating the node as
being underutilized and available to do more jobs, logic
for checking the workload values of the other nodes as
received, and logic for transfering a job from the queue
of the other of the nodes having the highest workload
value over a preestablished value indicating the other of
the nodes as being overburdened and requiring job
relief to the que of the checking node. The third logic is
also operable periodically when the node is idle.

16 Claims, 3 Drawing Sheets

NETWORK

30 34

I
TASK =

0 k TRANSFER
ALLOCATION ~ 2 8

LOGIC

WAKEUP WORKLOAD
LOGIC INDICATOR

34 . 30
- \

TASK
QUEUE -22

US, Patent July 9, 1991 Sheet 1 of 3 5,031,089

c

0

-\

00

T' I

b

US. Patent July 9, 1991 Sheet 2 of 3 5,031,089

I 1

US, Patent July 9, 1991 Sheet 3 of 3 5,03 1,089

FIG. 5

OBTAIN
WORKLOAD
OF OTHER

NODES

HIGHEST Q
i

EXIT

TRANSFER -t- JOB IN

i
EX1 T

5,03 1,089
1

DYNAMIC RESOURCE ALLOCATION SCHEME
FOR DISTRIBUTED HETEROGENEOUS

COMPUTER SYSTEMS

ORIGIN OF THE INVENTION
The invention described herein was made in the per-

formance of work under a NASA contract, and is sub-
ject to the provisions of Public Law 96-517 (35 USC
202) in which the Contractor has elected not to retain
title.

TECHNICAL FIELD
The invention relates to resource allocation in c o w

puter systems and, more particularly, to a method and
associated apparatus for shortening response time and
improving efficiency of a heterogeneous distributed
networked computer system by reallocating the jobs
queued up for busy nodes to idle, or less-busy nodes. In
accordance with a novel algorithm, the load-sharing is
initiated by the server device in a manner such that
extra overhead is not imposed on the system during
heavily-loaded conditions.

BACKGROUNDART
In distributed networked computer systems there is a

high probability that one of the workstations will be idle
while others are overloaded. Thus, the response times
for certain tasks are longer than they should be if all the
capabilities in the system could be shared fully. As is
known in the art, the solution is to reallocate tasks from
queues connected to busy computers to idle computer
queues.

As depicted in FIG. 1, a distributed computer system
10 consists of several computers 12 with the same or
different processing capabilities, connected together by
a network 14. Each of the computers 12 has tasks 16
assigned to it for execution. In such a distributed multi-
computer system, the probability is high that one of the
computers 12 is idle while another computer 12 has
more than one task 16 waiting in the queue for service.
This probability is called the “imbalance probability”.
A high imbalance probability typically implies poor
system performance. By reallocating queued tasks or
jobs to the idle or lightly-loaded computers 12, a reduc-
tion in system response time can be expected. This tech-
nique is called “load sharing” and is one of the main foci
of this invention. As also depicted in FIG. 1, such redis-
tribution of the tasks 16 on a dynamic basis is known in
the art. Typically, there is a control computer 18 at-
tached to the network 14 containing task lists 20. On
various bases, the control computer 18 dynamically
reassigns tasks 16 from the lists 20 to various computers
12 within the system 10. For example, it is known in the
art to have each of the computers 12 provide the con-

puter systems according to the known prior techniques
for load distribution and redistribution. Their finding
will now be set forth by way of example to provide a
clear picture of the background and basis for the present

The imbalance probability, IP, for a heterogeneous
system can be calculated by mathematical techniques
well known to those skilled in the art which, per se, are
no part of the novelty of the present invention. There is

10 a finite, calculatable probability that I out of N comput-
ers comprising a networked system are idle. There is
also a finite probability that all stations other than those
I stations are busy, as well as a probability that there is
exactly one job in each one of the remaining (N-I) sta-
tions, i.e. a finite probability that at least one out of (N-I)
stations has one or more jobs waiting for service. By
summing over the number of idle stations, from I to N,
the imbalance probability for the whole system can be
obtained. By way of example, in a homogeneous system,

2o all the nodes (i.e. computers 12) have the same service
rate and the same arrival rate. As the number of nodes
increases, the peak of the imbalance probability goes
higher. As the number of nodes increases to twenty, the
imbalance probability approaches I when the traffic

25 intensity (arrival rate divided by the service rate at each
node) ranges from 40% to 80%. The statistical curves
also indicate that the probability of imbalance is high
during moderate traffic intensity. This occurs due to the

3o fact that all nodes are either idle (i.e. there is low traffic
intensity) or are busy (i.e. there is high traffic intensity).

If the arrival rate is not evenly distributed, the imbal-
ance probability becomes even higher. In the imbalance
probability of a two-node heterogeneous system, the

35 faster node is twice as fast as the slower one and the
work is evenly distributed. If the work is not balanced,
it has been observed that the imbalance probability goes
even higher during high traffic intensity at the slower
node. At this point, the slower node is heavily loaded
even though the faster node is only 50% utilized.

Numerous studies have addressed the problem of
resource-sharing in distributed systems. It is convenient
to classify these strategies as being either static or dy-
namic in nature and as having either a centralized or

45 decentralized decision-making capability. One can fur-
ther distinguish the algorithms by the type of node that
takes the initiative in the resource-sharing. Algorithms
can either be sender-initiated or server-initiated. Some
algorithms can be adapted to a generalized heteroge-

50 neous system while others can only be used in a homo-
geneous system. These categories are further explained
as follows:

StaticDynamic: Static schemes use only the infor-
mation about the long-term average behavior of the

5 invention.

55 system, i.e. they ignore the current state. Dynamic
trol computer 18 with a Gdicator oi the amount of schemes differ from static schemes by determining how
computing time on tasks that is actually td&g place. and when to transfer jobs based on the time-dependent
The control computer 18, with knowledge of the current system state instead of the average behavior of
amount of use of each computer 12 available, is then the system. The major drawback of static algorithms is
able to reallocate the tasks 16 as necessary. In military 60 that they do not respond to flucruations of the work-
computer systems, and the like, this ability to reconfig- load. Dynamic schemes attempt to correct this draw-
ure, redistribute, and keep the system running is an back but are more difficult to implement and may intro-
important part of what is often referred to as “graceful duce additional overhead. In addition, dynamic
degradation”; that is, the system 10 continues to operate schemes are hard to analyze.
as best it can to do the tasks at hand on a priority basis 65 CentralizedDecentralized: In a system with central-
for as long as it can. ized control, jobs are assumed to arrive at the central

The inventors herein did a considerable amount of controller which is responsible for distributing the jobs
statistical analysis and evaluation of networked com- among the network’s nodes; in a decentralized system,

3
5,03 1.089

jobs are submitted to the individual nodes and the deci-
sion to transfer a job to another node is made locally.
This central dispatcher approach is quite restrictive for
a distributed system.
Homogeneous/Heterogeneous system: In the homo-

geneous system, all the computer nodes are identical
and have the same service rate. In the heterogeneous
system, the computer nodes do not have the same pro-
cessing power.

Sender/Server Initiated: If the source node makes a
determination as to where to route a job, this is defined
as a sender-initiated strategy. In server-initiated strate-
gies, the situation is reversed, i.e., lightly-loaded nodes
search for congested nodes from which work may be
transferred.

The prior art as discussed in the literature (set Listing
of Cited References hereinafter) will now be addressed
with particularity.

First, there are the static strategies. Stone [Ston 781
developed a centralized maximum flow algorithm for
two processors (i.e. computer nodes) by holding the
load of one processor fixed and varying the load on the
other processor. Ni and Hwang [Hwan 811 studied the
problem of load balancing in a multiple heterogeneous
processor system with many job classes. In this system,
the number of processors was extended to more than
two. Tantawi and Towsley [Tant 851 formulated the
static resource-sharing problem as a nonlinear program-
ming problem and presented two efficient algorithms,
the parametric-study algorithm and the load-balancing
problem. Silva and Gerla [Silv 841 used a downhill
queueing procedure to search for the static optimal job
assignment in a heterogeneous system that supports
multiple job classes and site constrains. Recently,
Kurose and Singh [Kuro 861 used an iterative algorithm
to deal with the static decentralized load-sharing prob-
lem. Their algorithm was examined by theoretical and
simulation techniques.

Next, there are the dynamic strategies. Chow and
Kohler [Chow 791 used a queueing theory approach to
examine a resource-sharing algorithm for a heteroge-
neous two-processor system with a central dispatcher.
Their objective was to minimize the mean response
time. Foschni and Salz [Fosc 791 generalized one of the
methods developed by Chow and Kouler to include
multiple job dispatchers. Wah [wah 841 studied the
communication overhead of a centralized resource-
sharing scheme designed for a homogeneous system.
Load-balancing of the Purdue ECN (Engineering Com-
puter Network) was implemented with a dynamic de-
centralized RXE (remote execution environment) pro-
gram [H a m 821. With the decentralized RXE, the load
information of all the processors was maintained in each
network machine’s kernel. One of the problems with
this approach is the potentially high cost of obtaining
the required state information. It is also possible for an
idle processor to acquire jobs from several processors
and thus become overloaded. Ni and Xu [Ni 851 pro-
pose the “draft” algorithm for a homogeneous system.
Wah and Juang [wah 851 p r o p a window control
algorithm to schedule the resource in local computer
systems with a multi-access network. Wang and Moms
[wang 851 studied ten different algorithms for homoge-
neous systems to evaluate the performance differences.
Eager, et al. [Eage 861 addressed the problem of decen-
tralized load sharing in a multiple system using dynam-
ic-state information. Eager discussed the appropriate
level of complexity for load-sharing policies and

4
showed that schemes that use relatively simple state
information do very well and perform quite closely to
the optimal expected performance. The system configu-
ration studied by Eager, et al. was also a homogeneous

5 system. Towsley and Lee [Tows 861 used the threshold
of the local job queue length at each host to make deci-
sions for remote processing. This computer system was
generalized to be a heterogeneous system.

In summary, most of the work reported in the litera-
10 ture has been limited to either static schemes, central-

ized control, homogeneous systems, or to two-proces-
sor systems where overhead considerations were ig-
nored. All of these approaches make assumptions that
are too restricted to apply to most real computer system
installations. The main contribution of this reported
work is the development of a dynamic, decentralized,
resource-sharing algorithm for a heterogeneous multi-
ple (Le. greater than two) processor system. Because it
is server-initiated, this approach thus differs signifi-
cantly from the sender-initiated approach described in
[Tows 861. The disadvantage of this prior art server-
initiated approach is that it imposes extra overhead in
the heavily-loaded situation and therefore, it could
bring the system to an unstable state.

LIST O F CITED REFERENCES
[wah 851 Baumgartner, K. M. and Wah, B. W. “The

Effects of Load Balancing on Response Time for Local
3o Computer Systems with a Multiaccess Network,”

IEEE International Comm. Conf. 1985, pp.

[Chow 791 Chow, Y. C. and Kohler, W. H. “Models
for Dynamic Load Balancing in a Heterogeneous Multi-

35 ple Processor System,” IEEE Trans. computers, Vol.
C-28, No. 5 , pp. 345-761, May 1979.

[Eage 861 Eager, D. L., Lazowska, E. D., and Zahor-
Jan, J. “Adaptive Load Sharing in Homogeneous Dis-
tributed Systems,” IEEE Trans. on Software Eng., Vol.

[Eage 851 Eager, D. L., Lazowska, E. D., and Zahor-
jan, J. “A Comparison of Receiver-Initiative and Send-
er-Initiative Dynamic Load Sharing,” Tech Report No.
85-04-01, Dept. of Computer Science, University of

[Fisc 781 Foschini, G. J. and Salz, J. “A Basic Dy-
namic Routing Problem with Diffusion,” IEEE Trans.
Commun., Vol. Com-26, pp. 320-327, March 1978.
[Huan 821 Hwang, K. and Wah, B. “A UNIX-Based

50 Local Computer Network with Load Balancing,”
IEEE Computer, April 1982.

[Hwan 811 Hwang, K. and Ni, L. M. “Optimal Load
Balancing Strategies for a Multiple Process System,”
Proc. of Intel. Conf. on Parallel Processing, August

[Hwan 821 Hwang, K. and Croft, W. J., et al. “A
UNIX-Based Local Computer Network with Load
Balancing,” IEEE Computer magazine, April 1982.

[Kari 851 Karian, Z. A. “GPSS/PC: Discrete-Event

[Klei 751 Kleirock, L. “Queueing System”, Vol I:
Theory John Wiley & Sons, 1975.

[Kuro 861 Kurose, J. and Singh, S. “A Distributed
Algorithm for Optimal Static Load Balancing in Dis-

65 tributed Computer Systems,” IEEE Infocom, April
1986.

[Ni 811 Ni, L. M. and Hwang, K. “Optimal Load
Balancing Strategies for a Multiple Processor System,”

25

10.1.1-10.1.5.

40 SE-12, No. 5, May 1986.

45 Washington, April 1985.

55 1981.

60 Simulation on the IBM PC,” Byte, October 1985.

5,03 1,089
5 6

Proc. Tenth Int’l Conf. Parallel Processing, pp. capability. One can further distinguish the algorithms
352-257, August 1981. employed by the type of node that takes the initiative in

[Ni 851 Ni, L. M. “A Distributed Drafting Algorithm the resource-sharing. Algorithms can be either sender-
for Load Balancing,” IEEE Trans. on Software Eng., initiated or receiver-initiated. Some algorithms can be
Vol. SE-11, No. IO, October 1985. 5 adapted to a generalized heterogeneous system while

[Silv 841 Silva, E. S. and Gerla, M. “Load Balancing others can be used only in a homogeneous system.
in Distributed Systems with Multiple Classes and Site These categories are further addressed with respect to
COnstraints”, PafOrmance 84 (North Holland), PP. the above-referenced prior art patents as follows.
17-33, 1984. CentralizedDecentralized: In a system with central-

Processor Distributed Systems,” IEEE, Trans. of soft- central control computer 18 which is responsible for
ware Engiaetring, Vol. SE-4, No. 3, PP. 254-2589 May distributing the jobs among the network nodes. In a
1978. decentralized system, jobs are submitted to the individ-

[Tows 861 TowdeY, and Lee* J* “A ComPari- ual nodes and the decision to transfer a job to another
son Of priority-Based Decentralized Load Balancing l5 node is made locally. The central dispatcher approach is
policies,” AcM Performance Evaluation Review, vole quite restrictive for a distributed system. In the teach-
14, No. 1, pp. 70-77, May 1986. ings of their patent, Kitajima, H. and Ohmachi assign a vows 1 Towsley* and Lee, K. J* “On the Analysis processing request allocator to be the single controller
Of a Decentralized policy in Heteroge- of their centralized scheme. One of the problems with

the required state information. It is also possible for an of Computer.
[Tant ”1 ** N’ and D’ “Optimal idle processor to acquire jobs from several processors Static Load Balancing in Distributed Computer,” and thus become overloaded.

Homogeneous/Heterogeneous system: In a homoge- JACM, Vol. 32, No. 2, pp. 445-465, A p d 1985.
[Triv 821 Trivedi, S. “Probability and Statistics with 25 neOuS system, all computer nodes must be identical and

tem, the computer nodes do not have the same process- tions,” Prentice-Hall, Inc., 1982.

ing power. In their patent, Fry, S. M., Hempy, H. O., [Wah 851 Wah, B. and Lien,, Y . N. “Design of Dis-
tributed Database on Local Computer Systems with a Multi-Access Network”, IEEE Trans. Software Engi- 3o and Kittinger, B. E. disclose a scheme to balance data-

processing workloads on a homogeneous environment. neering. Vol. SE-11, No. 7, July 1985.
and yuang, J. y. L6ReSOUrCe Sched- Sendermeceiver Initiated: If the source node makes

for Local Computer Systems with a Multi-Access a determination as to where to route a job, this is de-
Network,” IEEE Trans. on Computers, vel, C-34, N ~ . fined as a sender-initiated strategy. In receiver-initiated
12, December 1985. 35 strategies, the situation is reversed, i.e., lightly-loaded

[wmg 851 wang, y. T. and ~ ~ r r i ~ , R. J. T. “Load nodes search for congested nodes from which work
Sharing in Distributed Systems,,* IEEE T ~ ~ ~ ~ . on corn- may be transferred. In their patent, Hoschler, H., Rai-
puters, Vol. C-34, pp, 204-217, March 1985. mar, W., and Brandmaler disclose a sender-initiated

from the literature scheme. The inventors herein have proved that the
are only aenerally relevant for background discussion M receiver-initiated approach is superior at medium to

[Ston 781 Stone, H. s. “critical Load Facton in TWO- 10 ked control (as shown in FIG. 1) jobs arrive at the

neouS D i b u t e d Systems,” Submited to IEEE, Trans. 20 this approach is the high cost of obtaining

Queueing and Computer Science Applica- have the Same service rate, the heterogeneous sys-

[Wah 851 wah,

me foregoing articles and

purpos& and, since copies are not readily available to
applicants for filing herewith, they are not being pro-
vided. In addition to the foregoing non-supplied articles
from the literature, however, copies of the following
relevant U.S. Letters Patent are being provided here-
with:

[l] Hoschler, H., Raimar, W., and Bandmaler, K.
“Method of Operating a Data Processing System,” U.S.
Pat. No. 4,099,235, July 4, 1978.

[2] Kitajima, H. and Ohmachi, K. “Processing Re-
quest Allocator for Assignment of Loads in a Distrib-
uted Processing System,” US. Pat. No. 4,495,570, Jan.
22, 1985.

[3] Fry, S. M., Hempy, H. O., and Kittinger, B. E.
“Balancing Data-Processing Workloads”, U.S. Pat. No.
4,403,286, Sept. 6, 1983.

With respect to the above-listed U.S. Patents and the
teaching thereof vis-a-vis the present invention to be
described hereinafter, the inventors herein have in-
vented a new dynamic load-balancing scheme for a 60
distributed computer system consistingof a number of
heterogeneous hosts connected by a local area network
(LAN). As mentioned above, numerous studies have
addressed the problem of resource-sharing in distrib-
uted systems. For purposes of discussion and distin- 65
guishing, it is convenient to classify these strategies as
being either static or dynamic in nature and as having
either a centralized or decentralized decision-making

.-
high loads and, therefore, have incorporated such an
approach in their invention in a novel manner.

StaticDynamic: Static schemes use only the infor-
mation about the long-term average behavior of the

45 system, i.e. they ignore the current state. Dynamic
schemes differ from the static schemes by determining
how and when to transfer jobs based on the time-
dependent current system state instead of the average
behavior. The major drawback of static algorithms is

50 that they do not respond to fluctuations of the work-
load. Dynamic schemes attempt to correct this draw-
back.

STATEMENT OF THE INVENTION
Accordingly, an object of the invention is the provid-

ing of a dynamic decentralized resource-sharing algo-
rithm for a heterogeneous multi-processor system.

It is another object of the invention to provide a
dynamic decentralized resource-sharing alaorithm for a

55

heterogeneous multi-processor systemkhTch is receiv-
er-initiated in heavy load so that it does not impose
extra overhead in the heavily-loaded situation and,
therefore, will not bring the system to an unstable state.

Another object of the present invention is to prevent
an idle node in a heterogeneous multi-processor system
from becoming isolated from the resource-sharing pro-
cess, as can happen with the systems of Fry and
Kitajima by providing a wakeup timer used at each idle

7
5,03 1,089

8
node to periodically cause the idle node to search for a for short), will now be presented. A queueing analysis
job that can be transferred from a heavily-loaded node. of the algorithm’s performance is presented and the

Still another object of the present invention is to use result is validated by the reporting of simulation results.
the local queue length and the local service rate ratio at The basic environment is as depicted in FIG. 2; that is,
each node as a more efficient workload indicator. 5 there are a plurality of computer nodes 1 2 distributed

It is yet a further object of the invention to provide a across a network 14 without the need for a control
dynamic decentralized resource-sharing algorithm for a computer 18 as in the prior art of FIG. 1.
heterogeneous multi-processor system which dynami- As observed earlier herein, most of the work of the
d y adjusts to the traffic load and does not generate prior art has been limited to either static schemes, cen-
extra overhead during high traffic loading conditions 10 tralized control, or homogeneous systems. All of these
and, therefore, cannot bring the system to an unstable approaches make assumptions that are much too restric-
State. tive to apply to most real computer system installations.

The foregoing objects have been achieved in a dis- The main contribution of the present invention is the
tributed heterogeneous computer system having a plu- providing of a dynamic, decentralized, resource-sharing
d t y of computer nodes each operatively connected 15 algorithm for a heterogeneous, mdti-processor, com-
through a network interface to a network to provide for puter system (such as that generally indicated as 10’ in
communications and transfers of data between the FIG. 2). The algorithm employed in the present inven-
nodes and wherein the nodes each have a queue for tion uses a dual-mode, server-initiated approach which
containing jobs to be performed, by the improvement of is clearly novel over anything taught or suggested by
the present invention for dynamically reallocating the 20 the prior art. Jobs are transferred from heavily bur-
system’s resources for optimized job performance. dened nodes (Le. over a high threshold limit) to low
There is first logic at each node for dynamically and burdened (or idle) nodes at the initiation of the receiv-
periodically calculating and saving a workload value as ing node when (1) a job finishes at a node which is
a function of the number of jobs on the node’s queue. burdened below a pre-established threshold level or (2)
Second logic is provided at each node for transfering 25 a node has been idle for a period of time as established
the node’s workload value to other nodes on the net- by a wakeup timer at the node. The important advan-
work at the request of the other nodes. Finally, there is tage of this approach is that, unlike the prior art ap-
thud logic at each node operable at the completion of proaches, it does not impose extra overhead in the
each job. The third logic includes, logic for checking heavily-loaded situation. Therefore, it cannot bring the
the node’s own workload value, logic for polling all the 30 system to an unstable state. The algorithm also has two
other nodes for their workload value if the checking important advantages over the prior art. First, to pre-
node’s workload value is below a pre-established value vent an idle node from becoming isolated from the
indicating the node as being underutilized and available resource-sharing process, the wakeup timer is included.
to do more jobs, logic forchecking the workload values As will be addressed in greater detail shortly, the
of the other nodes as received, and logic for transfering 35 wakeup timer is used at each idle node to periodically
a job from the queue of the other of the nodes having cause the idle node to search for a job that can be trans-
the highest workload value over a pre-established value ferred from a heavily-loaded node. Second, this inven-
indicating the other of the nodes as being overburdened tion uses a combination of the local queue length and
and requiring job relief to the queue of the checking the local service rate ratio at each node as the workload
node. The third logic is also operable periodically when 40 indicator. In a heterogeneous computer system, it is
the node is idle. more efficient to use this workload indicator rather than

Other objects and advantages of the present invention just the local queue length as employed in the prior art.
will become apparent from the description which fol- It was determined by the inventors herein that an
lows hereinafter when taken in conjunction with the ideal resource-sharing algorithm should have the fol-

.

drawing figures which accompany it . 45 lowing characteristics:
1) Dynamic: the load distribution should adapt to

BRIEF DESCRIPTION OF THE DRAWINGS raDid load
FIG. 1 is a simplified block diagram of a prior art i) Decentralized: each processing computer node

distributed computer system employing a control com- should determine, on its own, whether to process a job
puter to distribute and redistribute the tasks among the 50 locally or to send the job to some other node for pro-
computer nodes on the network. cessing. There is no need for a central dispatcher. Since

the central dispatcher is not required, the problem of a
computer system according to the present invention. potential single point of failure is eliminated.

3) Server-initiated: a good scheme should only re-
from the system of FIG. 2 pointing out the portions 55 quest job relocation when there are idle processors
thereof related to the present invention. available to serve the relocated jobs. By using the serv-

FIG. 4 is a functional block diagram of the system of er-initiated approach, the danger of sender-initiated
FIG. 2 showing the is which tasks are dynamically schemes, i.e. that all the nodes are overloaded and each
reallocated accord dual mode approach of the present attempts to give away jobs causing unproductive over-
invention. 60 head which simply further saturates the already over-

FIG. 5 is a flowchart of the logic of the method of the loaded system, is eliminated.
present invention. The following is an outline of the basic SIDA algo-

FIG. 2 is a simplified block diagram of a distributed

FIG. 3 is a functional block diagram of a computer

rithm in a computer language type of form:

65 N=Number of total nodes in the heteroneneous system:
DETAILED DESCRIPTION OF THE GIVEN---

INVENTION -
The new and novel resource-sharing algorithm of the

present invention, which the inventors call the Server-
H=Service rate of node i;
Q=Queue length at node i.

Initiated Dynamic Resource-Sharing Algorithm (SIDA WHILE---

5,03 1,089
9 10

([(a job completes at node i) or wakeup-timeout] and this prior art assumption and teaching, however, for
SIDA it is necessary and preferred to assign the highest
priority level to the resource-sharing process. This is
because, otherwise, the lightly-loaded nodes 12’ could

5 not receive the workload indicators 30 from the other
nodes 12‘ upon which to base a decision and jobs would
never be transferred from the heavy-loaded nodes 1 2 in
a timely manner, i.e. before the heavily-loaded nodes 12’
become lightly-loaded.

VALIDITY TESTING RESULTS END
END. The present invention and its novel algorithm were
The environment of the present invention is shown in verified by simulation modeling. A multiple processor

greater detail in FIGS. 3 and 4 while the dual mode heterogeneous system was considered in which the
algorithm logic is shown in flowchart form in FIG. 5. 15 service rates of the nodes are not necessarily identical.
Each computer node 12’ includes a task queue 22. Point- Each node was modeled as a queueing center. For a
ers are provided to the top of queue (TOQ), end of particular station m, new jobs were assumed to arrive at
queue (EOQ), and bottom of queue (BOQ). The length rate rm. The average service rate was sm and the inter-
of the active contents of the queue 22 at any time can be wakeup time, which was the same for all nodes, was
determined by subtracting TOQ from BOQ. The per- 20 l/r, The state of the system was defined to be the num-
centage of the active contents of the queue 22 at any ber of jobs in a node, either in the queue or being served.
time is, of course, easily calculated as BOQ-TOQ- The objective of the performance analysis was to deter-
/EOQ-TOQ. As depicted in FIG. 3, the operating mine the effects of resource-sharing according to the
system 24, for example, can provide a service rate 26 for method of the present invention on the average system
the node 12, i.e. the ratio (percentage) of computational 25 response time. These effects are a function of the traffic
usage of the node 12‘ compared with its potential. The intensity, which is defined as the ratio of the job arrival
SIDA as incorporated into the block labelled TASK rate to the job service rate.
ALLOCATION AND TRANSFER LOGIC 28, uses The basic assumptions made in this performance
the length of the local queue 22 and the local service study were as follows:
rate 26 at each node 1 2 as the workload indicator 30 for 30 a) There is only one class of tasks. The task arrival
that node 12’. When a job finishes at a node 12, the rate to each processor is exponentially distributed. The
logic 28 of the node 1 2 checks the workload indicator arrival rates at each processor may be different.
30 obtained by dividing the queue length by the service b) The resource service rates are exponentially dis-
rate. If the workload indicator 30 is less than a certain tributed and may be different for each resource proces-
low threshold level, the lightly-loaded node 12‘ initiates 35 sor.
a search for the most busy node 12’. c) The average inter-wakeup rate rw for each idle

As depicted in FIG. 4, in the system 1 0 of the present
invention, the task allocation and transfer logic 28 of d) Each job needs only one resource.
each node 12 is connected to the network 14 through a e) The network transmission delay in propagating
network interface 32. Thus, as configured, the task 40 requests, probing the status of other nodes, and return-
allocation and transfer logic 28 of each node 1 2 can ing results is negligible. This assumption is valid if the
access the last calculated workload indicator 30 of all transmission bandwidth is large compared to the traffic
the other nodes 1 2 on the network 14. To accomplish a on the network.
search for the most busy node 12’, the task allocation f) All processing overhead for probing, packing and
and transfer logic 28 of a node 12 simply requests the 45 unpacking data, request and result transfer are ignored.
workload indicators 30 of all the other nodes 12’ on the This assumption is valid if the processing required to
network 14. If the workload indicator 30 of the most pack and unpack the job is significantly less than the
busy node 12’ is above a certain high threshold, a job processing required to process the job.
from the task queue 22 of that busy node 12’ is trans- g) For simplicity, only the queue length was used as
ferred to the lightly-loaded node 12’. To prevent an idle 50 the workload indicator.
node 12 from becoming isolated from the resource- h) Lightly-loaded nodes polled jobs from any heavi-
sharing process, the wakeup timer 34 is used at each idle ly-loaded node rather than selecting only the most
node 12’ to periodically cause the idle node 12’ to search heavily-loaded one.
for a job which can be transferred from a heavily loaded i) The low threshold is assumed to be 0. In other
node 12’. Thus, SIDA provides a method which bal- 55 words, a node tries to poll a job from other nodes while
ances the workload among the nodes 12’, resulting in a
beneficial and substantial improvement in the response j) The high threshold is assumed to be 2.
time and throughput performance of the total system. It Exact analysis of the algorithm was quite complex
should be noted that SIDA adjusts dynamically to the since one is faced with an N-dimensional Markov chain.
traffc load Qf each node 12. When the workload indi- 60 The inventors employed a simplified approximate
cator of every node 12’ is greater than a certain thresh- model which they proved to their satisfaction to be
old level, the algorithm generates no overhead-an quite accurate in performance prediction. The approach
important and novel advantage over the prior art. characterized the iteration between the various queues

In the prior art, such as reported in Wah’s research in terms of their steady-state occupancy probabilities.
[Wah 851, the priority level of the load-balancing pro- 65 Iteration was then used to update estimates of the inter-
cess is assumed to be lower than that of regular jobs, action. To account for the load from other nodes, the
thereby preventing the resource-sharing procedure inventors divided by the expected number of nodes that
from inhibiting normal operation. In direct contrast to have more than one job. The findings were as follows.

[Q/HZLOW-THRESHOLD])
DO

probe Q for k-1 to N, k=i;
identify the node, j, with the MAX(Q);
if Q /H Z HIGH-THRESHOLD then

transfer 1 job from node j to node i;
(*job is processed at node i and the results are returned

Do

to node j*) 10

node is the same and is exponentially distributed.

it is idle.

5.03 1,089
11

When the last job is completed and the node is about
to leave state 1, node m always probes all other nodes.
There are three detailed procedures that take place
during this state transition:

1) The last local job finishes.
2) Node m probes all the other nodes to check

whether any other node has more than one job. Note,
there is a probability that at least one of the remote
nodes has one or more jobs waiting in queue for service.

3) If a remote node has more than one job, the algo-
rithm transfers one job from the remote node to the
local node and the node remains in state 1. There is a
probability that node m cannot find an overloaded node
and therefore node m transfers to state 0 with the ser-
vice rate sm.

While in an idle state, node m “wakes up” frequently
at the average wakeup rate rw In all cases, after
wakeup, this idle node should be able to poll a job from
a remote node with the exception of the case where all
other nodes are either idle & only have one job.

The inventors saw that the transition rates, and hence
the steady state solution, for node m depended on the
steady state probabilities of the other queues in the
system. Iteration was used to produce a, hopefully,
close approximate result. From the state-transition dia-
gram, the inventors calculated the steady-state probabil-
ities, and found that the results verified the exwcted

value is below a pre-established value indicating
the node as being underutilized and available to do
more jobs;

c) for checking the said workload values of the other

d) for transfering a job from the queue of the other of
the nodes having the highest said workload value
over a pre-established value indicating said other of
the nodes as being overburdened and requiring job
relief to the queue of the checking node.

3. The improvement to a distributed heterogeneous

said means at each node for dynamically and periodi-
cally calculating and saving a workload value as a
function of the number of jobs on the node’s queue
comprises means for dividing the number of jobs
on the node’s queue by the service rate of the node.

4. The improvement to a distributed heterogeneous

5 nodes as received; and,

10

computer system of claim 1 wherein:

_ _ computer system of claim 1 wherein:
20

2s

performance of the algorithm embodied in the present
invention.

We claim: 30
1. In a distributed heterogeneous computer system

having a plurality of computer nodes each operatively
connected through a network interface to a network to
provide for communications and transfers of data be-
tween the nodes and wherein the nodes each have a 35
queue for containing jobs to be performed, the improve-
ment for dynamically reallocating the system’s re-
sources for optimized job performance comprising:

a) means at each node for dynamically and periodi-
cally calculating and saving a workload value as a 40
function of the number of jobs on the node’s queue;

b) means at each node for transfering the node’s said
workload value to other nodes on the network at
the request of said other nodes; and,

c) means at each node operable at the completion of 45

.

each job,
cl) for checking the node’s own said workload

value,
c2) for polling all the other nodes for their said

workload value if the checking node’s said work-
load value is below a pre-established value indi-
cating the node as being underutilized and avail-
able to do more jobs,

c3) for checking the said workload values of the
other nodes as received, and

c4) for transfering a job from the queue of the other
of the nodes having the highest said workload
value over a pre-established value indicating said
other of the nodes as being overburdened and
requiring job relief to the queue of the checking
node.

2. The improvement to a distributed heterogeneous
computer system of claim 1 and additionally comprising
means at each node periodically operable when the
node is idle:

a) for checking the node’s own said workload value;
b) for polling all the other nodes for their said work-

load value if the checking node’s said workload

50

5s

60

a)the jobs to be performed by the nodes are assigned
priority levels; and,

b) said polling of all the other nodes for their said
workload value by a node is accomplished by the
node as a job at the highest priority level.

5. A distributed heterogeneous computer system hav-

a) network means for providing a communications
path for computer;

b) a plurality of computer nodes each operatively
connected through a network interface to said
network means whereby to communicate and
transfer data between said nodes, said nodes each
having a queue for containing jobs to be per-
formed;

c) means at each said node for dynamically and peri-
odically calculating and saving a workload value as
a function of the number of jobs on said node’s
queue;

d) means at each node for transfering said node’s said
workload value to other nodes over said network
at the request of said other nodes; and,

e) means at each node operable at the completion of
each job,
el) for checking said node’s own said workload

value,
e2) for polling all the other said nodes for their said

workload value if the checking node’s said work-
load value is below a pre-established value indi-
cating said node as being underutilized and avail-
able to do more jobs,

e3) for checking the said workload values of the
other said nodes as received, and

e4) for transfering a job from said queue of the
other of said nodes having the highest said,work-
load value over a pre-established value indicat-
ing said other of said nodes as being overbur-
dened and requiring job relief to said queue of
the checking node.

6. The distributed heterogeneous computer system of

ing dynamic resource allocation comprising:

claim 5 and additionally comprising m e k at each said
node periodically operable when said node is idle:

a) for checking said node’s own said workload value;
b) for polling all the other said nodes for their said

workload value if the checking node’s said work-
load value is below a pre-established value indicat-
ing said node as being underutilized and available
to do more jobs;

65

13
5,03 1,089

14
c) for checking the said workload values of the other

said nodes as received; and,
d) for transfering a job from said queue of the other of

said nodes having the highest said workload value
over a pre-established value indicating said other of
said nodes as being overburdened and requiring job
relief to said queue of the checking node.

7. The distributed heterogeneous computer system of

said means at each node for dynamically and periodi-
cally calculating and saving a workload value as a
function of the number of jobs on said node’s queue
comprises means for dividing the number of jobs
on said node’s queue by the service rate of said 15
node.

10 claim 5 wherein:

8. The improvement to a distributed heterogeneous

a) the jobs to be performed by said nodes are assigned

b) said polling of all the other nodes for their said
workload value by a node is accomplished by said
node as a job at the highest priority level.

9. In a distributed heterogeneous computer system
having a plurality of computer nodes each operatively 25
connected through a network interface to a network to
provide for communications and transfers of data be-
tween the nodes and wherein the nodes each have a
queue for containing jobs to be performed, the method
of operation for dynamically reallocating the system’s
resources for optimized job performance comprising
the steps of:

a) at each node, dynamically and periodically calcu-

computer system of claim 5 wherein:

priority levels; and, 20

30

lating and saving a workload value as a function of 35
the number of jobs on the node’s queue;

b) transfering the node’s workload value to other
nodes on the network at the request of the other
nodes; and,

c l) checking the node’s own workload value,
c2) polling all the other nodes for their workload

value if the checking node’s workload value is
below a pre-established value indicating the
node as being underutilized and available to do 45
more jobs,

c3) checking the workload values of the other
nodes as received, and

c4) transfering a job from the queue of the other of
the nodes having the highest the workload value 50
over a pre-established value indicating the other
of the nodes as being overburdened and requir-
ing job relief to the queue of the checking node.

10. The method of operating a distributed heteroge- 55
neous computer system of claim 9 and when the node is
idle additionally comprising the steps of:

c) at each node at the completion of each job, 40

checking the node’s own workload value;
b) polling all the other nodes for their workload value

nodes as being overburdened and requiring job
relief to the queue of the checking node.

11. The method of operating a distributed heteroge-
neous computer system of claim 9 wherein said step of
dynamically and periodically calculating and saving a
workload value as a function of the number of jobs on
the node’s queue comprises the step of:

dividing the number of jobs on the node’s queue by

12. The method of operating a distributed heteroge-
neous computer system of claim 9 wherein the jobs to
be performed by the nodes are assigned priority levels
and:

said step of polling of all the other nodes for their
workload value by a node is accomplished by the
node as a job at the highest priority level.

13. In a distributed heterogeneous computer system
having a plurality of computer nodes each operatively
connected through a network interface to a network to
provide for communications and transfers of data be-
tween the nodes and wherein the nodes each have a
queue for containing jobs to be performed, the improve-
ment for dynamically reallocating the system’s re-
sources for optimized job performance comprising:

a) first logic means at each node for dynamically and
periodically calculating and saving a workload
value as a function of the number of jobs on the
node’s queue;

b) second logic means at each node for transfering the
node’s said workload value to other nodes on the
network at the request of said other nodes; and,

c) third logic means at each node operable at the
completion of each job, said third logic means
including,
c l) means for checking the node’s own said work-

load value,
c2) means for polling all the other nodes for their

said workload value if the checking node’s said
workload value is below a pre-established value
indicating the node as being underutilized and
available to do more jobs,

c3) means for checking the said workload values of
the other nodes as received, and

c4) means for transfering a job from the queue of
the other of the nodes having the highest said
workload value over a pre-established value
indicating said other of the nodes as being over-
burdened and requiring job relief to the queue of
the checking node.

14. The improvement to a distributed heterogeneous

said third logic means is also operable periodically

15. The improvement to a distributed heterogeneous

said first logic means at each node comprises means
for dividing the number of jobs on the node’s queue
by the service rate of the node.

16. The improvement to a distributed heterogeneous

the service rate of the node.

computer system of claim 13 wherein:

when the node is idle.

computer system of claim 13 wherein:

, - -
if the checking node’s the workload value is below 60 computer system of claim 13 wherein the jobs to be
a pre-established Value indicating the node as being performed by the nodes are assigned priority levels and
underutilized and available to do more jobs; wherein additionally:

c) checking the workload values of the other nodes as said means for polling of all the other nodes for their
received; and, said workload value by a node of said third logic

d) transfering a job from the queue of the other of the 65 means includes means for accomplishing said pol-
nodes having the highest workload value over a ling as a job at the highest priority level.
pre-established value indicating the other of the * * * * *

