
N91-25957

HETEROGENEOUS DISTRIBUTED

DATABASES: A CASE STUDY

Tracy R. Stewart
Ravi Mukkamala

Department of Computer Science

Old Dominion University

Norfolk, Virginia 23529.

1 INTRODUCTION

The purpose of this case study is to review alternatives for accessing dis-

tributed heterogeneous databases and propose a recommended solution. Our

current study is limited to the Automated Information Systems Center at

the Naval Sea Combat Systems Engineering Station at Norfolk, VA. This

center maintains two databases located on Digital Equipment Corporation's

VAX computers running under the VMS operating system. The first data

base, ICMS, resides on a VAX 11/780 and has been implemented using VAX

DBMS, a CODASYL based system. The second database, CSA, resides

on a VAX 6460 and has been implemented using the ORACLE relational

database management system (RDBMS).

Both databases are used for configuration management within the U.S.

Navy. Different customer bases are supported by each database. ICMS

tracks U.S. Navy ships and major systems (anti- air, weapons launch, etc.)

located on the ships. CSA tracks U.S. Navy submarines and the major

systems located on the submarines (anti-sub, sonar, etc.). Even though

the major systems on ships and submarines have totally different functions,

some of the equipment within the major systems are common to both ships
and submarines.





2 PROBLEM STATEMENT

Even though the two databases are physically distinct, there a number of

external actions which affect the data in both databases. Keeping the data

consistent across these databases is a major problem. For example, the

same computer is used within many major systems on ships and submarines.

Thus, both CSA and ICMS maintain this information about this computer in

their respective databases. If the U.S. Navy decides to stop buying parts for

this computer from the existing supplier and start buying from an alternate

supplier, this information needs to be updated in both databases. It should
be noted that the two VAX's communicate via DECNET and that critical

data must be updated in real-time up to 2 hours; all other data must be

updated on a daily basis.

3 PROPOSED ALTERNATIVES

We propose two alteranatives.

(1) A global data manager (GDM) resides on one machine and all update

transactions (to either of the systems) are routed through this cen-

tral location. Any transaction that affects only one database is sent

directly to the affected database. Since non-critical updates may be

propagated on a daily basis, it is possible to send them directly to the
affected database.

(2) Require each system to log all local transactions. Each system would

have a local agent GDM that would regularly review each local database

log and determine if a remote database transaction should be gener-

ated. The GDM would also report in the database log, the status of

any transactions issued remotely. This alternative is the most viable

for this environment. The GDM is primarily an initiator of transac-

tions to keep the databases synchronized. The GDM also monitors
the results of the initiated transactions and records the results in the

originating database log. The local data managers (LDM) would be

solely responsible for local transactions and local concurrency control.

The latter alternative appears to be more suitable for the current environ-

ment.

2





4 Sample Data

The ICMS database consists of records, data items and sets. An example of

affected records sets and data items is given below.

SCHEMA NAME IS ICMS_SCHEMA

RECORD NAME IS SITE_DESCRIPTION

WITHIN SITE_INFO

ITEM SITE.IDENTIFICATION TYPE IS CHABACTEK 15

RECORD NAME IS SYSTEM_DESCRIPTION

WITHIN SYSTEM_INFO

ITEM SYSTEM_NAME TYPE IS CHARACTER 26

ITEM SYSTEM_AINAC TYPE IS CHARACTER 2

ITEM SYSTEM_FSCM TYPE IS CHARACTER 5

ITEM SYSTEM_PART_NO TYPE IS CHARACTER 26

ITEM SYSTEM_STOCK_NO TYPE IS CHARACTER 26

ITEM SYSTEM_CATEGORY TYPE IS CHARACTER 5

RECORD NAME IS SYSTEM_INSTALLATION_STATUS

WITHIN INST_AREA

ITEM SYSINST_STATUS TYPE IS CHARACTER 1

ITEM SYSINST_SITE_ID TYPE IS CHARACTER 15

ITEM SYSINST_SYSTEM_NAME TYPE IS CHARACTER 26

ITEM SYSINST_SERIAL_NUMBER TYPE IS CHARACTER 15

SET NAME IS ALL_SITES

OWNER IS SYSTEM

MEMBER IS SITE_DESCRIPTION

INSFATION IS AUTOMATIC RETENTION IS FIXED

ORDER IS SORTED BY

ASCENDING SITE_IDENTIFICATION

DUPLICATES ARE NOT ALLOWED

SET NAME IS SITE_SYSTEM_INST_STAT

OWNER IS SITE_DESCRIPTION

MEMBER IS SYSTEM_INSTALLATION_STATUS

INSERTION IS AUTOMATIC RETENTION IS FIXED





ORDERIS FIRST

SET NAME IS SYSTEM_SITE_INST_STAT

OWNER IS SYSTF_4_DESCRIPTION

MEMBER IS SYSTEM_INSTALLATION_STATUS

INSERTION IS AUTOMATIC RETENTION IS FIXED

ORDER IS SORTED BY

ASCENDING SYSINST_SERIAL_LETTERS

SYSINST_SERIAL_NOS

DUPLICATES ARE LAST

SET NAME IS ALL_SYSTEMS

OWNER IS SYSTEM

MEMBER IS SYSTEM_DESCRIPTION

INSERTION IS AUTOMATIC RETENTION IS FIXED

ORDER IS SORTED BY

ASCENDING SYSTEM_NAME

DUPLICATES ARE LAST

The CSA database consists of tables and data items. Examples of tables

and data items are given below.

TABLE: SITE

Name Null? Type

SITE_IDENTIFIER

SQUADRON

CONFIG_DATA_MANAGER

TYPE_COMMANDER

FLEET_CODE

STD_NAVY_DIST_LIST

LOCATION

CHAR(15)

CHAR(30)

CHAR(20)

CHAR(14)

CHAR(l)

CHAR(8)

CHAR(30)

TABLE: NOMEN_ITEM

Name Null? Type

4





CATEGOKY_TYPE_CODE
PKOGKAM_MANAGEK
TECHNICAL_MANAGER
SYSTEM_INTEGRATION_AGENT
DESIGN_AGENT
ACQUISITION_ENG_AGENT
TECHNICAL_DIRECTION_AGENT
IN_SERVICE_ENG_AGENT_CDDE
IN_SEKVICE_ENG_AGENT_PHONE_NUM
IN_SEKVICE_ENG_AGENT
SPCC_ITEM_MANAGEK_PHONE_NUMBEK
SPCC_ITEM_MANAGEK
DATE_UNDEK_CONFIG_CONTKOL
DATE_OF_LAST_UPDATE
TEST_AND_EVALUATION
BRIEF_NAME
FULL_NAME
NOMEN

TABLE:SITE_INSTALLATION

Name

BELONGS_TO_SITE_ID

SERIAL.NBR

SERIAL_NUMBER

SEKVICE_APPLIC_CODE

NOMEN

NOT NULL CHAR(S)

CHAR(14)

CHAR(14)

CRAK(14)

CHAR(14)

CHAR(14)

CHAR(14)

CHAR(14)

CHAR(12)

CHAR(14)

CHAR(t2)
CHAK(40)

DATE

DATE

CHAR(14)

CHAR(S0)
CHAR(70)

NOT NULL CHAR(26)

Null? Type

NOT NULL CHAR(14)

CHAR(15)

CHAR(15)

CHAR(IO)

CHAK(26)

5 IMPLEMENTATION

The following implementation scheme is proposed to implement the second

method.

A. Log all local transactions that relate to both databases. There will be

one log per database and the log contains a timestamp of when the

local transaction was committed, the node name, transactions (add,

update, delete) and records/tables affected and data items affected.

The key to all transactions is the system/unit nomenclature.





B. Modify each application program, that alters data, to log each trans-

action after it is committed. Sub-transactions must be entered into

the log in the order they were executed on the local machine.

C. Generate list of system/equipment nomenclatures that are common
between each database. The list would reside in a centralized loca-

tion that would contain nomenclatures that are shared between each

database. The Database Administrator (DBA) would maintain the
nomenclature fist.

D. Develop GDM to review the log files and search for transactions against
common nomenclatures. After the GDM determines the transaction

must be issued globally, it generates a remote transaction to be exe-
cuted on the remote machine. GDM must know how to translate a

transaction to be executed on another database.

E. The GDM must formulate the transaction in the appropriate data

manipulation language so it can be executed on the affected database.

F. The GDM must send through DECNET a transaction package that

will execute on the remote machine as a batch job. Set up account

on each system for remote system to use to go into and submit batch

jobs from.

G. The LDM will execute the transaction package as if it were generated

locally.

H. When the transaction completes, the batch program will send a mes-

sage back to the originating machine signifying that the transaction

has completed. Once the message is received, the transaction is re-

moved from the log. Generate a process to run on the other machine

to update the log file.

I. Crash Recovery Procedures - As soon as a system recovers from a

crash, a message will be sent to the other system to signal that pro-

cessing can continue. The GDM will resend any transactions packages

that it did not receive a completion on. If database commits and then

crashes before sending a message, need to determine what to do.





6 RECOMMENDATIONS

The situation exists that two data bases that have multiple occurrences of

the same data must learn to co-exist and keep each other informed of any

changes to their duplicate data by keeping a log file, the internal database

processing software is not affected. The application programs are responsible

for logging the affects of the program.

7




