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SUMMARY

This report presents the details and results of an extension of the general-purpose finite clement STructural Anal-
ysis RoutineS (STARS) to perform a complete linear aeroelastic and acroscrvoelastic analysis. The earlier version
of the STARS computer program enabled effective finite element modeling as well as static, vibration, buckling,
and dynamic response analysis of damped and undamped systems, including those with pre-stressed and spinning
structures. Additions to the STARS program include acroclastic modeling for flutter and divergence solutions, and
hybrid control system augmentation for acroservoelastic analysis.

Numerical results of the X-29A aircraft pertaining to vibration, flutter—divergence, and open- and closed-loop
aeroservoelastic controls analysis are compared to ground vibration, wind-tunnel, and flight-test results. The open-
and closed-loop aeroservoelastic controls analyses are based on a hybrid formulation representing the interaction of
structural, aerodynamic, and flight control dynamics.

NOMENCLATURE
A plant dynamics matrix in body-fixed coordinatcs
A (k) aerodynamic influence coefficient matrix
A; coefficient matrices of acrodynamic approximation, (7 =0,1...)
A plant dynamics matrix in inertial frame of reference
A solution to acrodynamic approximations A; from equation (10)
Az, Ay A, body axis accelerations
AERO7 six-degree-of-freedom, wind-tunnel based acrodynamic simulation data
AIC aeroelastic influence coefficients
ASE aeroservoelastic analysis
Gz,0y,0, body axis perturbation accelerations
B control influence matrix in body-fixed coordinatcs
B, effective stiffness correction matrix defined in equation (A-26)
B control influence matrix in inertial frame of reference
b wing span
C output state matrix in body-fixed coordinates
Cq elastic damping matrix
¢ generalized damping matrix
¢ C + giA,
Cp,C.,Cy coefficients of drag, lift, and side force
Ce,Cm, Chr coeflicients of roll, pitch, and yaw moment
CPM constant pressurc method
c mean aerodynamic chord
D output control matrix in body-fixed coordinates

DLM doublet lattice method
dB decibel
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degree of freedom

column of identity matrices

force matrix

finite-element model

feedback controller matrix

ground vibration survey

gravity vector

aeroelastic damping

open-loop transfer function matrix of plant and all analog elements
closed-loop transfer function matrix
hybrid loop gain matrix

high frequency crossing (see table 6)
high gain crossing (see table 6)
identity matrix

imaginary part

V-1

elastic stiffness matrix

generalized stiffness matrix

K + GAo (see equation (15))
effective stiffness matrix

knots equivalent airspeed

reduced frequency

discrete set of reduced frequencies
low frequency crossing (see table 6)
low gain crossing (see table 6)
elastic inertia matrix

generalized mass matrix

M + 3($)%A; (see equation (15))
forcing function for elastic dynamics
generalized forcing function

total roll, pitch, and yaw rate
reference (trim) roll, pitch, and yaw rate
perturbation roll, pitch, and yaw rate
generalized aerodynamic force matrix
approximation of Q

real and imaginary parts of Q

Q without the rigid air loads
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stacked matrix of Q for a discrete set of reduced frequencies
generalized force

displacement vector

modal displacements at sensor location
dynamic pressure

velocity and accelerations

matrix (see equation (18))

real part

reference input vector

position vector

see equations (6) and (7)

reference area of wing

STructural Analysis RoutineS

Laplace variable

thrust vector

inertial to body-fixed coordinate transformation matrices for rigid body states, 1 =1, 2,3
(see appendix B)

inertial to body-fixed coordinate transformation matrices for combined rigid, elastic, and
aerodynamic lag states

sensor interpolation matrix

sample time for digital controller

total velocities in body-fixed frame of reference

reference (trim) velocities in body-fixed frame of reference
system input vector

perturbation velocities in body-fixed frame of reference
virtual work

vibration modes (see tables 1 and 2)

System state vector in body-fixed reference frame

system state vector in inertial frame

jthlag state vector

longitudinal, lateral, and directional displacement

system output vector

angle of attack

trim angle of attack

equivalent downwash

angle of sideslip

aerodynamic lag terms

inertial to body-fixed coordinate transformation matrices, s = 1, 2 (see appendix B)
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Aircraft systems are becoming increasingly complex because of the integration of distinct technologies used
to attain numerous objectives in the areas of performance, control, flying qualities, maneuver techniques, fuel ef-
ficiency, and various mission requirements. The design process must respond to specifications from all disciplines
to achieve these diverse goals and integrate accordingly. Design procedures must account for conflicting objectives
and the interaction of dynamics from the control system, structure, and aerodynamics. Coupling between these dy-
namic elements of the model can be treated passively with structural modifications and passive filtering, or actively
with control mechanisms driven by appropriate control laws. Analysis of the consequences of the design is essential
to perform safe and effective mission tasks. Aecroservoelastic analysis is used to investigate the potential problems
arising from high bandwidth control of relatively flexible aircraft by combining linear models of structure, unsteady

acrodynamics, and control system into one dynamic system. The models are augmented to address stability and

control surface deflection

generalized coordinate vector

total pitch, roll, and yaw angles

reference (trim) pitch, roll, and yaw angles

perturbation pitch, roll, and yaw angles

inertial to body-fixed coordinate transformation matrices, 1 = 1, 2 (see appendix B)
system time delay

angular velocity matrices

frequency

damping

Subscripts

body-fixed frame of reference

drag

elastic

inertial frame of reference

lift

pitch rate

real part of a complex number (inertial frame of reference in appendix B)
rigid

coordinate system
Superscripts

matrix transpose

matrix inverse

INTRODUCTION

performance issues.



Vibration, aeroelastic, and aeroservoelastic analyses are presented in this report, computed with the STructural
Analysis RoutineS (STARS) program, an integrated analysis tool evolved from an earlier (ref. 1) finitc element
structural analysis program. A number of available computer programs perform only individual aspects of these
analyses (refs. 2-5). The STARS program was created to analyze complex practical systems such as aircraft and
is designed as a unified, compact, modular, and highly graphics oriented analysis tool. Extensive verification and
application of the program has been made at the NASA Dryden Flight Research Facility in support of flight programs,
such as the X-29A, through correlation of analysis with ground-test and flight-test data. The formulation of the
mathematical procedures, a program outline and description, and sclected results of these analyses are presented.

FORMULATION OF NUMERICAL PROCEDURE

Extensions made to the STARS program include aeroelastic modeling and control system augmentation to the
aero-structural dynamics. An approximation for the unstcady aerodynamics is performed with a Padé fit to the
aerodynamic influence coefficients (AIC) to generate a state-space aero-structural dynamic model. This model is
transformed from the inertial to body-axis coordinate system for control system augmentation. Aeroservoelastic
analysis is achieved for either analog or digital controllers with hybrid frequency responses and ei genvalue solutions
for closed-loop modal behavior.

The matrix equation of motion for structures relevant to the current analysis has the following form

M{ + Cq + Kq + gA.(k)q = P (1) (D
in which
M is the inertia matrix,
Cq the damping matrix,
K the elastic stiffness matrix,
d dynamic pressure,
k reduced frequency 7“1‘9,- w and ¢ being the natural frequency and mean chord length, respectively,
A (k) the aerodynamic influence coefficient matrix calculated for a given
Mach number and set of & values,

q the displacement vector, and
P(t) the external forcing function.

The free vibration solution is first affected (refs. 1 and 6) on the matrix formulation
Mg+ Kq=0 (2)
yielding the frequencies, w, and mode shapes &. Applying a transformation
q=2=oq (3)
to equation (1) and pre-multiplying both sides by ®7 yields the generalized equation of motion
Mij+ Ci+ Kn+ gQ(k)n=P(1) (4)

where M = @M@, € = #TC®, K = #7K®, Q = ®TA,d, P = &TP, the modal matrix & = [ &, DDs],
and the generalized coordinate n = |n,n,n,], thereby incorporating rigid body, elastic, and control surface motions,
respectively. A general Lagrangian formulation of the equations of motion for an aircraft maneuver analysis is given
in appendix A.



The ggnerali_zed aerodynamic force matrix Q(k) may be approximated (ref. 7) with Padé polynomials in
k(=35 = 3% Where the Laplace variable s = 1*w)

*k ik

k) = Ao + i*kA; + (i*k)%A YE A
Q(k) = Ao + i*kAL + (i7k) 2t 5+ kT

Ag + --- (5)

with aerodynamic lag terms S, (assume j = 1, 2), and

ik _ K kB
k+ B k24 B kB

The rigid airload coefficients assume the following form

Ao = Qgr(kr)
A _Qk) A5 A
! ki B B2

where k; is the smallest reduced frequency, with a value near zero, used to compute Ajforj=0,1,2,... Separating
real and imaginary parts in equation (5) yields

Qr(k) = Qr(k) — Ao

2 k* % Az
= [ -1 g -,—Mﬂzl ] :3
4
= Sg(k)A 6)
~ 0k
b = L2 4,
Az
:[o F‘%{I F%E%—I] A3
Ay
= Si(k)A (M

The unknown coefficients A3 and A4 can be determined by substituting the previous expression for A; into
equation (7). However, the resulting solution is sensitive to the choice of B; for approximating rigid airloads. If the
elements of the acrodynamic damping matrix A; are replaced with known damping coefficients (steady aerodynamic
derivatives), then the solution for rigid airloads becomes insensitive to the B; values.

For a chosen number of values of reduced frequencies k;, equations (6) and (7) may be combined as

Qr(k2) Sr(k2)
Qr(k2) Sr(k2) A,
: = : Az (8)
Qr(knr) Sr(knF-1) Aq
| Qi(kwr) | | Si(knp-1) |
or )
Q=SA (9



and a least-square solution .

A =[STS17'8TQ (10)
yields the required coefficients A, A3, A4. The procedure is easily extended for a larger number of lag terms, if
desired. Equation (4) may then be rewritten, assuming simple harmonic motion, as

=\ 2
Mi+ Ci+ Ko+ glAon+ A o n+A2(8C> N+ Asxy + Agxp + -] = 0 (11)
2V 2V
such that s
Xj = — (12)
s+-—ﬂ,
from which
X; + (27‘/) Bix; = 1 (13)

Collecting like terms gives

_ -\ 2
(K+qu)n+<C+q—c—A1> M+q(c> Az | i+ GAsx; + GAgxz + - =0 (14)
2V 2V
or A . .
Kn+ Ci+ Mij+ Asx; + Agxa +---= 0 (15)
Rewriting equations (13) and (15) as one matrix equation
I 7 0 I 0 0
M n _ —K —C ——qA3 -—qA4 (16)
I X, 0 I -¥a1 0 X
Ij|*% 0 I 0 -Igr]lx
or
M'x’ = K'x' (17
and
x-l - (M')_IK’X'
= Rx' (18)
Now rearranging the state-space vector x’ as
X” = L(nrneﬁrﬁeXIXZ) (n6n5)J
= |Xu]| 19)
equation (18) may be partitioned as
% Rii1 Ry X
= ! ! 20

where the first matrix equation denotes the plant dynamics and the second represents the dynamics of control modes.
In the case of plant dynamics, the state-space equations become

= A% + Bu (21)



the associate matrices and vectors being defined as

plant dynamics matrix

control surface influence matrix
generalized coordinates in inertial frame
control surface motion input into plant

= 0

and in which the terms Ak and Bu represent the airplane dynamics and forcing function due to control surface
motion, respectively.

Coordinate Transformation

To incorporate control laws designed to control body-axis motions, it is necessary to transform equation (21)
from the Earth-fixed (inertial) to the body-fixed coordinate system. Since no transformations are applied to elastic
and aerodynamic lag state vectors, a transformation of the form

X = TZ—I(ATl — T:;)X + Tz“ﬁu
= Ax + Bu (22)

| T, O
Coordinate transformation matrix T, yields the required state-space equation in the body coordinate system. A
detailed description of the transformation procedure is given in appendix B.

in which

Determination of Sensor Outputs

The structural nodal displacements are related to the generalized coordinates by equation (3) and the related
sensor motion can be expressed as

q; = T;®q
= Cox (23)

where Co = [T,®000], and in which T, is an interpolation matrix. Similar relations may be expressed for sensor

velocities and acceleration as
4 | _ [ Te@n
Qs T,

(24)
= Cx (25)
where
T, 0 0 0
C =
0 T, 0 0
Pre-multiplying equation (22) by C,
C]X = Cle + C1Bu
= C;x + Dyu (26)



Adjoining equations (23) and (25)
d.
e 0 27
y=1| 4, _{Cz}x+[Dz]u (27)

y=Cx + Du (28)

which is the required sensor output relationship signifying motion at the sensors due to body motion (C) and control
surface motions (D).

or

Augmentation of Analog Elements and Controller

Equations (22) and (27) represent the complete state-space formulation for the aircraft incorporating structural
and aeroelastic effects. To conduct an aeroservoelastic analysis, it is essential to augment such a formulation with
associated analog elements such as actuators, sensors, notches, and pre-filters along with the controller. Denoting
the state-space equation of one such typical element in series as follows

M = A Wx® 4 BOL®
y® = XD 4 pOY® (29)

which can be augmented to the plant equations (22) and (27) as

X A 0 X B
[ % } = { BHOC AW ] { x () ]*‘ [ BWD } [u] (30)
or
X = AmXi) + Bpu (31)

noting that u(? =y from equation (27). Also
y | _ C 0 x |, D [u]
y® | T | poOc ¢c® || x® DOD

Yy = Coyx(iy + Depyu (32)

or

becomes the new sensor output expression.

All analog elements, including a controller, can be augmented similarly at the input and the output of the plant.
Figure 1 shows a typical feedback control system with controller G . For such a system the three sets of relevant
matrix equations are

x = Ax + Bu
y = Cx + Du
u=r -Gy (33)

where equation (32) is the feedback equation. The required transfer functions may be obtained by Laplace transformation

sx(s) = Ax(s) + Bu(s)
y(s) = Cx(s) + Du(s)
u(s) =r(s) — G(s)y(s) (34)



From equation (33)
x(s) = [sI —A] 'Bu(s) (35)

and substituting equation (34) in equation (33) yields the required open-loop frequency response for zero
initial conditions

y(s) =[C(sl —A)"'B + D]u(s)
= H(s)u(s) (36)

where H (s) is the open-loop transfer function without the controller. To obtain the closed-loop frequency response,
equation (35) is first substituted in equation (33) to get

u(s)

r(s) — G(s)H(s)u(s)
[1+G(s)H(s)] 'r(s) (37)

and then using equation (36) gives

y(s) = H(s)[I + G(s)H(s)]17'r(s)
= H(s)r(s) (38)

in which H (s) is the closed-loop transfer function. The frequency response plots can be obtained from the transfer
matrices H (s) or H(s) as the case may be. Associated damping and frequency values of the system may also be
calculated by solving the eigenvalue problem of the relevant A matrix for various k; values or dynamic pressures
and observing the changes in sign of the real part of an eigenvalue to detect instabilities.

In the case of a digital controller, a hybrid approach is adopted for the frequency response solution. Thus if A’,

B’, C’, and D' are the state-space matrices associated with the controller, the related transfer function is simply
given by

G(2)=C'[z2 —A']7'B'+ D’ (39)

and the frequency response formulation (ref. 8) for the hybrid analog—digital system with time delay T and sample
time T" can be written as

H ZOH
¥(8) = G(2)[, =0y (_(_s)_[F___]> u(s)
= G(s,TYH*(s,7,T)u(s) (40)
in which
H(s) is the plant transfer function with all analog elements

[ZOH]  is the zero-order hold complex expression (= e“”ﬂ)

s

and where H*(s, 7, T') is now the loop gain transfer function of the hybrid system. The closed-loop frequency
response may be obtained as before by using equations (33) and (39)

y(s) = {H*(s,7, DL + G(s,DH*(5,7, 7)) } r(s)
=H*(s,7,T)r(s) 41)
To calculate the damping and frequencies, modes with natural frequencies much beyond the Nyquist frequency
are truncated. The analog plant dynamics matrix A is then transformed into the z-planc by standard discretization

procedures and augmented to controller dynamics A’. Appropriate ecigenproblem solution of the final matrix yields
the required results, as previously discussed.
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DESCRIPTION OF THE STARS PROGRAM

The STARS program primary modules are shown in figure 2. The associated schematic for the aeroservoelastic
analysis is shown in figure 3. Some highlights of each module are presented herein.

Preprocessor

This module enables automatic generation of finite element mesh and associated STARS input data for any con-
tinuum. The interactive graphics program is capable of generating complex structural systems through interpolation,
duplication, mirror-imaging, and cross-sectioning of modular representative forms using menu or command options.
This program is designed to run on a wide variety of commonly used graphics terminals.

Finite Element Modeling

This module is made up of many finite elements which are suitable for modeling complex practical structures.
Some basic elements are as follows

1. One-dimensional rods, bars, and beam elements,

2. two-dimensional, triangular and quadrilateral elements pertaining to membranes, shear, plate bending, and
shells including sandwich and composites,

3. three-dimensional, tetrahedron, prism, and hexahedron elements, and

4. one- and two-dimensional finite dynamic elements.

The desirable features of this module include random data input, bandwidth minimization, multiple coordinate
Systems, mechanical and thermal loading, general interdependent deflection boundary conditions, automatic node,
and element generation as well as plot of geometry,

Aeroelastic Analysis

A newly developed constant pressure method (CPM) (ref. 9) is used for computing unsteady aerodynamic forces
for the supersonic flow, whereas the doublet lattice method (DLM) (ref. 5) is used for the corresponding subsonic
case. Both k and p-k aerodynamic stability (flutter and divergence) solution methods are available in this module.

Aeroservoelastic (ASE) Controls Analysis

In this module, the aerostructural problem is recast in the Laplace domain and the unsteady generalized aerody-
namic forces are curve fitted, using Padé and least-square approximations, to compute state-space matrices. Such
matrices are augmented with analog elements such as actuators, sensors, prefilters, and notch filters.

For an analog controller, the State-space matrices are appropriately augmented into that of the entire system and
the related transfer function produces the open- and closed-loop frequency responses as desired. The associated
modal frequency and damping values may also be derived by solving the eigenvalue problem of the relevant state-
space (A ) matrix involving the plant dynamics.

In the case of a digital controller, a hybrid approach is adopted in which the associated transfer function is suitably
combined with that of the original analog system. This combination yields the hybrid transfer function from which

11



the open- and closed-loop frequency responses may be computed as desired. To obtain the modal frequency and
damping values, the analog A matrix is first discretized and added to the corresponding matrix for the controller.

Furthermore, stability analyses for open-loop flutter and divergence or closed-loop control augmentation aero-
servoelastic analysis (ASE) can be performed by solving the appropriate eigenvalue problem. The former analysis
can be compared with the aeroelastic analysis using k and p-k methods, whereas the latter analysis proves to be
useful for comparing relevant flight-test results of such unstable aircraft as the X-29A.

Postprocessor

Extensive interactive plotting facilities are available for solution results pertaining to each module of the STARS
program. These facilities include contour lines of deformations and stresses as well as time-dependent functions of
dynamic responses, mode shapes, flutter and divergence plots for k, p-k and root locus methods, and phase and gain
plots pertaining to the ASE analyses as well as the corresponding damping and frequency plots.

NUMERICAL RESULTS

The presently developed integrated aero-structural-control analysis program STARS has been used extensively
to solve related problems of the X-29A forward-swept wing research aircraft (refs. 10 and 11) (fig. (4)). The X-29A
aircraft has thin wings of composite materials that are aeroelastically tailored to eliminate structural divergence
within the flight envelope. Full-span, double hinged, variable-camber flaperons and strake flaps operate with full-
authority variable-incidence canards to yield minimum trim drag. The presence of the supercritical airfoil enables
cfficient transonic cruise performance and high transonic maneuvering. The canard configured aircraft is up to 35-
percent statically unstable, thus requiring appropriate feedback controls for augmented static stability. Whereas
these combined technologies result in significant improvement in overall aerodynamic and structural performance,
they may also cause adverse dynamic interaction of the flight controls with the flexible structure if not integrated
properly. Therefore an ASE analysis assumes a very important role in the design process.

In this report a comparison of ASE as well as vibration and aeroelastic analysis of the X-29A aircraft between
the STARS calculated results and test results is presented in detail.

Structural Dynamics and Aeroelastic Analysis

A finite element model of the X-29A aircraft is shown in figure 5. This somewhat reduced dynamic model
(approximately 3000 dof) was derived from the detailed stress model (7100 dof) by using an equivalent shell method
for the various appendages to reduce free vibration analysis time. The fuselage was modeled with line elements and
the vibration problem for the entire structure was solved by a block Lanczos procedure (refs. 1 and 12). A summary
of such free vibration analysis results is compared with those obtained by the ground vibration survey (GVS) as
shown in tables 1 and 2 for the symmetric and antisymmetric cases, respectively. The corresponding node line
comparisons are shown in figures 6 and 7. A more detailed presentation of the vibration results can be found in
reference 13.

Extensive aeroelastic analyses were performed to determine flutter and divergence speeds of the aircraft em-
ploying the k, p-k, and root-contour methods for comparison purposes; associated STARS unsteady aerodynamic
paneling is shown in figure 8. Such results from the STARS model are compared with GVS results in tables 3 and 4,
where the column labeled STARS (ASE) represents the results of the eigensolution of the plant A matrix, whereas
figures 9 through 12 show the various flutter solution plots.

In general, good correlation of results for various cases was observed from the results presented herein. A more
detailed mode-by-mode comparison of these results is presented in reference 13.

12



AEROSERVOELASTIC ANALYSIS-COMPARISONS WITH MEASURED DATA

The [A,B,C, D] dynamic system computed by STARS is compared with measured data in the form of a lin-
earized aerodynamic database for the X-29A aircraft, called AERO7, and flight data. The AERQ7 is a nonlinear,
six dof, rigid body wind-tunnel database with flexibility corrections to the rigid data, heretofore denoted as flexibi-
lized data. The comparisons consist of

1. Open-loop roots: the rigid body modal characteristics from linearized AERQO7 data, the STARS rigid body
modes, and the STARS model with all rigid and elastic modes included, are represented.

2. Frequency responses: loop gain and longitudinal closed-loop responses are computed with measured GVS
and STARS modal data aircraft dynamics augmented to a digital flight control system. Stability margins are
also compared.

3. Flight dataresponses: longitudinal loop gains computed from STARS are compared with those generated from
flight data and linearized AERO7 data, and

4. Flight measured modal data: flight determined modal damping and frequency results are compared to STARS
results for the first two symmetric modes and first three antisymmetric modes.

The four flight conditions analyzed are

1. Mach 0.7 at 40,000-ft altitude,
2. Mach 0.9 at 30,000-ft altitude,
3. Mach 0.9 at 15,000-ft altitude, and
4. Mach 1.2 at 30,000-ft altitude.

Condition 1 is a low dynamic pressure case, 2 is the X-29A aircraft design point, 3 is a high dynamic pressure
condition, and 4 is a supersonic point where the CPM was used to calculate the theoretical data.

Open-Loop Roots

The rigid body roots are tabulated in tables 5(a), (b), (c), and (d) for the longitudinal modes (phugoid and short
period) and lateral—directional modes (spiral, roll, and dutch roll). Complex poles are written as (w, ¢). The STARS
roots are compared to linearized rigid (without flexibility corrections) and flexibilized AERO7 data. The STARS
rigid body model (rigid) contains all unsteady lag states on the rigid body and control modes, but no elastic modes or
AEROT7 flexibilized data corrections to the generalized aerodynamic stiffness and damping matrices (appendix C)
are included. The models generated with lag states on only rigid and control modes by incorporating AERO7 flexibi-
lized stability derivatives into the generalized aerodynamic stiffness and damping matrices are designated as Rigid—
flexibilized in the tables. The flexible model (flexible) consists of all rigid, elastic, and control modes with lag states
included. Flexible models are corrected with rigid AERO7 derivatives (not flexibilized) since the flexibility effects
are already modeled by incorporation of the elastic modes.

The columns labeled Full contain roots computed from a full-order model, either containin g only the rigid modes
(rigid and rigid/flexibilized) or both rigid and elastic modes (flexible). Columns designated Reduced represent roots
computed from a reduced form of the full-order model by only including the static contribution of the excluded

13



states. Those states describing rigid body dynamics are retained and all other states are excluded in the reduced-
order model to represent the static contribution of flexibility as well as unsteady aerodynamics on the rigid model.
Hence, the state vector is partitioned into rigid body states (r), and all other states (o) in the model, as

<= (%)

and the A, B, C system is similarly partitioned as

Ay Aro _ B, _
Az(Am Am) B-(Bo> C = (C, Co)

where D is unchanged. Then the reduced model is given by

%= (Arr — AroAg'Acr) Xr
+ (B - AxAL'Bo)u

y = (c, - COA;,‘A,,,) X,
+ (D - C.A5'B,)u

Residualization of the states in this way results in a reduced-order model reflecting the effects of the deleted elastic
as well as unsteady dynamics on the rigid body modes. The coupling may be significant especially when the aircraft
is relatively flexible (ref. 14).

The root comparisons between the STARS corrected models and AERO7 models are quite good for all modes
except the phugoid and spiral modes. In fact, STARS predicts totally damped phugoid characteristics instead of the
expected oscillatory behavior. These very low frequency modes are difficult to predict with a Padé fit over a wide
reduced frequency range. Results using the generalized forces at one or two of the lowest reduced frequencies with
zero or first-order Padé fits show more reasonable behavior for both phugoid and spiral modes. This procedure is
recommended if aeroelastic effects are being investigated on only these low frequency modes. The other modes with
more reduced frequencies included, however, are reproduced very well with the present STARS implementation of
AERO7 data.

The uncorrected STARS model does not have a well defined phugoid because the forces in the forward velocity
dof are zero (appendix C). Hence, a root at zero is evident in all cases. The other root is therefore meaningless.
A comparison of the rigid AERO7 model and the uncorrected rigid STARS model shows how well the theoretical
STARS aerodynamic model compares to a wind-tunnel derived model. The roll and dutch roll modes demonstrate
excellent agreement, while the short period is not as close in agrecment, but reasonable.

Aeroelastic effects are most noticeable at flight condition 3, the high dynamic pressure transonic condition, where
differences between rigid AERO7 and flexibilized AERO7 are most evident, but still not significant. The STARS
program also demonstrates flexible effects when comparing the rigid roots with flexible model roots. Similar minor
differences between full-order and reduced-order solutions are also evident, showing that flexibility effects on rigid
body stability are essentially negligible.

In general, the comparisons validate the ability of STARS to reproduce rigid body dynamics with
flexibility effects.

Frequency Responses

Loop gains and longitudinal closed-loop frequency responses were computed and stability margins determined
for the four flight conditions with the digital normal mode (ref. 11) control system augmented to the aircraft states.
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The longitudinal and lateral-directional control system block diagrams are shown in figures 13 and 14, respectively.
Hybrid frequency responses (ref. 8) were calculated to account for aliasing effects of dynamics with frequencies
higher than the Nyquist frequency of 20 Hz (126 rad/sec). Points designated OL in the diagrams represent open-
loop response locations. The C;, locations in figure 13 are the longitudinal closed-loop input—output signals from
filtered pilot stick position to aircraft pitch rate response since pitch rate is the dominant feedback variable.

Stability margins for all augmented models are displayed in tables 6(a), (b), (c), and (d). Loop gains are plotted in
figures 15 to 18 (longitudinal), figures 19 to 22 (lateral), and figures 23 to 26 (directional) for all four fli ght conditions
analyzed, using measured GVS modal data and modes generated from the STARS. Aircraft dynamics include all
rigid, elastic, and control modes with lag states and AERO7 flexibilized data incorporated. Control system dynamics
include all elements shown in figures 13 and 14.

Longitudinal frequency response overplots in figures 15 to 18 show some dissimilarity between 30 and 100 rad/sec
due to the first two symmetric elastic modes. Pitch rate response from the first wing bending and first fuselage ver-
tical bending modes is more pronounced from the measured GVS modal data than from STARS modes. Notch
filters were designed for the X-29A aircraft to gain stabilize all modal responses to less than —6 dB in the loop gains
throughout the flight envelope. Condition 3 at Mach 0.9, 30,000-ft altitude was one of the most critical points in
the longitudinal axis. Lateral responses in figures 19 to 22 show fairly benign modal contributions to feedbacks,
and the measured model is not dramatically different from the STARS model. Supersonic condition 4 shows some
offset between the gain curves due to differences in aileron effectiveness. The directional responses in figures 23 to
26 demonstrate a much more significant discrepancy between 50 and 100 rad/sec, amounting to 20 to 30 dB in this
frequency range. Modal contributions from the first three antisymmetric elastic modes to the yaw rate feedback are
10 to 30 times greater from the measured GVS data than from the STARS model.

These observations demonstrate an important aspect of the ASE modeling process. A critical issue for an accurate
analysis is the sensor feedback motion caused by modal dynamics. Since the feedback sensors are usually located
in the fuselage, the fuselage motion at the sensor locations must be determined precisely. Sufficient accuracy is
difficult to obtain from a finite element model of the fuselage. A very detailed high-order stress model is needed to
obtain the proper sensor motion due to fuselage dynamics. Slight differences in mode shapes between the model and
actual aircraft can result in significant discrepancies in feedback dynamics betwecn the model prediction and actual
aircraft. A ground test is essential to determine the actual feedback due to modal dynamics. The X-29A aircraft
ground tests demonstrated that the discrepancies were extremely significant (ref. 4).

Longitudinal closed-loop plots in figures 27 to 30 for all four flight conditions reveal the flexibility of the GVS
aircraft model compared to the STARS model. Closed-loop models are significantly different representations of the
dynamic interaction between the digital control system and flexible~unsteady effects, in contrast to the equivalent
open-loop description, since the dynamics beyond the Nyquist frequency are propagated through all discrete and
continuous elements simultaneously. The consequences of sampling and aliasing on these dynamics contribute to
the modal interaction between the controller and aircraft model. Analysis using the entire closed-loop spectrum
may expose possible problems in the feedback mechanism due to the interface of discrete and continuous dynamics.
The relatively small differences between STARS and GVS models in the longitudinal loop gains of figures 15 to 18
are magnified when the loops are closed in the corresponding closed-loop plots of figures 27 to 30, yet closed-loop
modal damping is adequate as a result of notch filter design. In these cases, closed-loop plots seem to exaggerate
minor differences in modal damping between GVS and STARS models, which also depend on phase relationships
between modal dynamics and feedback sensor motions.

Flight Data Responses

Loop gains were computed for the longitudinal axis from flight data (ref. 15) and are compared with the aug-
mented flexible (including all rigid, elastic, control, and lag states) STARS models in figures 31 to 34 for all flight
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conditions analyzed. Correlation is excellent for the spectrum range of the measured data. The AERO7 models are
overplotted for reference. The STARS models match the flight data as well as AERO7 models for all flight conditions
shown. These STARS models are corrected with rigid AERO7 coefficients as outlined in appendix C. Hence, the
plots show that STARS models flexibilized by incorporating the calculated mode shapes properly represent the rigid
body motion.

Flight Measured Modal Data

Figures 35 and 36 portray good agreement between flight measured modal results and STARS calculations for the
symmetric wing first bending and fuselage first vertical bending modes. The STARS data are obtained by calculating
the roots of the flexible model augmented to the digital control system. This procedure is possible only for those
modes with natural frequencies up to and near the Nyquist frequency. Such similarities between STARS and flight
results validate the STARS formulation for the entire flight envelope. Antisymmetric correlations shown in figures 37
to 39 for the antisymmetric wing first bending, fuselage first lateral bending, and fin first bending also show the
effectiveness of STARS to predict elastic behavior. The only noticeable difference between the STARS results
and flight data is in the antisymmetric wing first bending damping and frequency at lower altitudes. The STARS
program predicts a higher damping and lower frequency and is therefore less conservative at these conditions. At
higher altitudes the correlation is much better for this mode.

CONCLUDING REMARKS

The mathematical formulation of the procedures to perform vibration, aeroelastic, and aeroservoelastic analy-
ses with the structural analysis routines program has been presented, along with numerical results for the X-29A
aircraft. Interaction of structural dynamics, aerodynamics, and flight control systems is modeled using both a finite
element model and measured modes to predict flutter—divergence and aeroservoelastic phenomena. Correlation with
measured data from ground tests as well as flight measured results is used to validate the capability of STARS to
analyze complex dynamical systems such as flexible aircraft controlled with digital control systems.

Dryden Flight Research Facility
National Aeronautics and Space Administration
Edwards, California, March 20, 1989.
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Table 1. Free vibration analysis results for X-29A symmetric half-aircraft.

STARS GVS

Primary frequency, frequency,

motion Hz Hz
Rigid body 0.00 n/a
Wing first bending (W 1B) 8.96 8.61
Fuselage first vertical bending (F'1B) 12.87 11.65
Fuselage second vertical bending (F2B) 19.03 24.30
Canard pitch (CP) 21.02 21.70
Wing second bending (W2B) 26.28 26.30
Wing first torsion (W 1T) 30.30 36.70
Canard bending pitch (CBP) 47.70 42.20
Wing third bending (W3B) 49.52 51.50

Table 2. Free vibration analysis results for X-29A antisymmetric half-aircraft.

STARS GVS

Primary frequency, frequency,

Motion Hz Hz
Rigid body 0.00 n/a
Wing first bending (W1B) 10.08 11.3
Fuselage first bending (F1B) 12.35 12.5
Fin first bending (Fin1B) 17.18 15.2
Canard pitch (CP) 21.52 21.9
Wing first torsion (W 17T) 27.15 26.8
Wing second bending (W2B) 32.88 34.8
Fin second bending (Fin2B) 41.58 452
Wing third bending (W3B) 45.85 51.7
Fin first torsion (Fin17") 48.95 50.0
Inboard flap torsion (IFT) 50.83 51.0

Table 3. X-29A aircraft flutter and divergence speeds for symmetric modes.

Divergence point, KEAS Flutter point, KEAS
Mode STARS STARS STARS STARS
k ASE  GVS k ASE  GVS

W1B 833 819 865 -—= -
CP 912 910 1017 e
CBP --—- - ___ —e— -~ 694
W3B --- - ___ 1275 1231 1222




Table 4. X-29A aircraft flutter and divergence speeds for antisymmetric modes.

Divergence point, KEAS Flutter point, KEAS
Mode STARS STARS STARS STARS
k ASE GVS k ASE GVS
wWi1B 838 833 808 -——- -_—— -
F1B  ——- -—— - 848 797 924
CP 913 918 980 -——- -—— ——-=
w2B —-- - === 1143 1157 1315

Table 5. Comparison of rigid body modal characteristics between STARS
and linearized aerodynamic database for X-29A aircraft.

Model
Linear Linear
Mode rigid STARS rigid flexibilized STARS rigid/flexibilized STARS flexible
AERO7 Full Reduced AERO7 Full Reduced Full Reduced
(a) Mach = 0.7, altitude = 40,000 ft.
Phugoid (0.7,0.08) 0.0,0.11 0.0,0.12 (0.07,008) -001-0.12 —0.001,-0.12 —0.001,-0.12 —0.001,-0.12
Short period  2.1,-2.7 0.9,-13 0.9,—-13 2.1,-27 2.3,-27 2.3,-26 2.3,-2.7 2.3,-26
Spiral 0.03 0.0005 0.0005 0.03 0.5 0.003 0.5 -0.001
Roll —-11 —1.1 —-13 —-11 —-13 -09 —-13 -10
Dutch roll (1.9,0.05) (1.6,0.07) (1.6,0.07) (1.9,0.05) (2.2,0.05) (2.0,0.08) (2.2,0.05) (2.0,0.08)
(b) Mach = 0.9, altitude = 30,000 ft.
Phugoid (0.08,0.17) 0.0,0.32 0.0,0.35 (0.080.17) —0.003,~0.28 -0.003,-0.28 —0.003,-0.31 —0.003,-0.32
Short period  3.2,—-4.5 1.1,-23 1.1,-23 33,-46 36,—-4.6 35,-44 36,-45 35,-43
Spiral 0.01 0.000 0.000 0.01 0.3 0.002 0.3 -0.003
Roll -24 —2.4 2.5 -24 -20 -19 —-22 -22
Dutch roll (2.9,0.05) (2.7,0.08) (2.7,0.08) (2.9,0.05) (3.4,0.07) (3.0,0.13) (3.4,0.07) (3.1,0.12)
(c) Mach = 0.9, altitude = 15,000 ft.
Phugoid (0.09,026) 0.0,—0.002 0.0,-0.002 (0.08,0.27) —0.005,—0.48 —0.005-0.50 —0.005,—0.60 —0.005,—-0.62
Shortperiod 4.2,—6.5 1.7,-3.1 1.7,-3.1 4.4-69 5.1,-7.0 49,—6.5 49,-6.8 47,-63
Spiral 0.01 0.0002 0.0002 0.01 0.2 0.002 0.2 -0.009
Roll —49 —44 —4.6 -49 —-34 -36 —~43 —4.7
Dutchroll  (38,0.07) (37,0100 (37,009 (3.8,007) (4.4,0.08) (3.8,0.15) (4.4,0.06) (4.0,0.14)
(d) Mach = 1.2, altitude = 30,000 ft.
Phugoid (0.07,022) 0.0,-0.32 0.0,-031 (0.08,0.22) 0.0,-0.40 0.0,-0.39 0.0,-0.37 0.0,-0.37
Short period 2.4,-4.0 1.7,-2.4 1.7,-2.5 24,-4.1 3.0,-52 30,-49 29,-52 2.9,-49
Spiral 0.006 —0.0003 —0.0003 0.006 0.208 0.003 0.16 —0.034
Roll -4.1 —4.0 -39 —-4.1 -32 -32 —4.0 —4.0
Dutch roll (4.2,0.08) (3.9,0.09) (3.8,0.10) (3.8,0.08) (4.6,0.08) (3.7,0.15) (4.4,0.08) (3.5,0.14)
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Table 6. Comparison of gain/phase margins between STARS models and models based
on linearized aerodynamic data for X-29A aircraft.

Model

STARS
Axis AERQ7 rigid/ STARS
flexibilized flexibilized  flexible

(a) Mach = 0.7, altitude = 40,000 ft.

Pitch
LF X/gain margin 1.26/7.84 1.15/6.38  1.15/6.41
HF X/gain margin 239/11.2  24.1/11.3 242/114
Gain X 5.89 5.53 5.54
Phase margin 490 48.5 48.6
Roll
Frequency X 15.2 14.9 15.0
Gain X 2.45 2.13 2.09
Gain margin 179 19.2 19.4
Phase margin 78.8 74.5 75.3
Yaw
Frequency X 11.1 11.2 11.0
Gain X 3.87 4.13 4.06
Gain margin 12.0 10.8 10.9
Phase margin 62.1 63.9 64.6
(b) Mach = 0.9, altitude = 30,000 ft.
Pitch
LF X/gain margin 223/7.88  2.01/6.54  2.01/6.74
HF X/gain margin 23.8/6.65  23.6/6.49  23.5/647
Gain X 9.64 9.16 9.33
Phase margin 413 412 40.3
Roll
Frequency X 13.7 14.0 14.0
Gain X 2.69 25 2.33
Gain margin 17.0 189 19.6
Phase margin 68.0 573 61.4
Yaw
Frequency X/gain margin  13.2/11.3 13.6/10.5  13.6/11.2
LG X/phase margin 1.46/268.0 1.47/262.0 1.50/261.0

HG X/phase margin 5.64/56.1  5.94/60.10 5.65/62.7
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Table 6. Concluded.

Axis

Model

STARS
AERO7 rigid/ STARS
flexibilized flexibilized flexible

(c) Mach = 0.9, altitude = 15,000 ft.

Pitch
LF X/gain margin
HF X/gain margin
Gain X
Phase margin

Roll
Frequency X
Gain X
Gain margin
Phase margin

Yaw
Frequency X
LG X/phase margin
HG X/phase margin
Gain margin

2.85/7.17  2.29/5.37 3.20/5.76
26.4/6.47  26.1/6.22  25.6/5.97

12.3 113 11.7
38.7 39.6 375
133 12.9 133
347 342 293
15.0 16.5 18.2
66.0 48.2 59.9
13.1 13.8 13.7

2.36/248 2.38/241  2.46/239
591/542  5.84/66.2 5.45/69.4
12.6 12.2 134

(d) Mach = 1.2, altitude = 30,000 ft.

Pitch
LF X/gain margin
HF X/gain margin
Gain X
Phase margin

Roll
Frequency X
Gain X
Gain margin
Phase margin

Yaw
Frequency X
LG X/phase margin
HG X/phase margin
Gain margin

2.08/9.98 1.49/7.85  2.33/8.07
2471728  24.4/7.03 24.9/7.67

9.26 8.66 8.17
45.8 448 435
12.5 12.5 12.3
2.62 275 2.13
16.9 18.4 20.4
72.0 57.3 72.3
13.2 13.8 13.7

2.25/248 2.21/245  2.29/243
6.73/48.2  6.99/54.7 6.30/60.3
10.3 9.45 11.0




APPENDIX A
FORMULATION OF THE EQUATIONS OF MOTION

The equations of motion of an aircraft or a flight vehicle can be derived by considering various forces acting
on the system. In classical mechanics, a Lagrangian definition of the equations enables a suitable derivation of the
equilibrium state of a flying vehicle. This derivation requires certain physical concepts leading to the definition of
the energy and the kinematics. The energy can be expressed in terms of kinetic energy, potential cnergy, and the
virtual work done. The kinematics are generally expressed with respect to an inertial coordinatc system which is
assumed to be at rest. In the study of space-bound vehicles, such an inertial system is referenced to a distant star.
However, in the case of an Earth-bound vehicle, the inertial system can be fixed to the center of the Earth where

it is assumed that the angular velocitics and the linear motions of the Earth have little effect on the dynamics of
the aircraft.

Coordinate System and Kinematics

Let the position vector of a mass point on the aircraft be described by

Fi =T + I+ q,, (A-1)
where
I is the position vector of the mass point 5
Ty is the position vector of the rigid body-fixed coordinate system origin O with respect to inertial space
I, is the position vector of mass point i with respect to origin O
Ge, is a vector of the deformation of the mass i with respect to the rigid body-fixed coordinate system

If P, Q, and R are the angular velocities of the aircraft measured about the rigid body-fixed axis system, then
the velocity of the mass can be written as

£ = %(r.-)ﬂb’xf'} (A-2)

where & = Pi + Qj + Rk. Equations (A-1) and (A-2) in matrix notation for all mass points can be written as

q=d.q, + q, (A-3)
q= D,q, + q. + Q((qur +q.) (A-4)
for
. 0
Q = o (A-5)
0
and
0 -R Q@
w = R 0 —-P (A-6)
-@Q P 0

where q, and ¢, are rigid body displacement and velocity vectors, respectively, @, is a rectangular matrix of the
rigid body mode shapes, and q, is the elastic coordinates vector.
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Kinetic Energy

Assuming that the mass matrix M for the aircraft system is known, the kinetic energy (KE) of the system is
given by

1
KE=E(']M('1 (A7)

To simplify the algebra in the following development, the displacement vector q and the corresponding velocity
q will be expressed in the generalized coordinate system, that is

a=| ""](?f):‘b” (A-8)

e

where ®, is a rectangular matrix of the vibration modes. The velocity vector in terms of the generalized coordinates
is given by
G = O+ QdPy (A-9)
Substituting equation (A-9) into (A-7) gives the kinetic energy
1
KE=z[®n+ QonTM @7+ QD] (A-10)
Potential Energy
If the stiffness matrix of the aircraft system is denoted by K, the potential energy of the system is
1 1
PE= EqTKq = Eanﬂ'chn (A-11)
Virtual Work

The external forces acting on the system can be classified as those dependent on the elastic deformation and the
oscillatory motion of the aircraft, and those independent of the motion. The motion dependent forces are:

1. rigid body aecrodynamic forces,

2. unsteady aerodynamic forces, and
3. body forces.

Motion independent forces are:

1. atmospheric gust loads and

2. engine thrust.
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Rigid Body Air Loads

The computed air loads in a rigid configuration involve several parameters such as angle of attack (o), angle of
sideslip (3), angular velocities P, @, and R, and the control deflections 8e, 8a, and ér related to the clevalor, aileron,
and rudder, respectively. Since the aerodynamic forces are nonlinear functions of these parameters, a sct of panel
loads are computed at discrete values of these parameters and stored in a matrix array. In the analysis the air load
vector for derived values of the parameters is computed by interpolation. Hence the rigid air load vector (air/rigid)

symbolically is represented by
Fair/rig{d =F (ax By P1 Q: R) 66) 60‘) 6T)

The virtual work done by this force is
VWi = 17 @7 Fairrigia (A-12)

Unsteady Aerodynamic Forces

The acrodynamic forces arising from elastic deformation and oscillatory motion can be given by
Foirjiez = GAe(k)q (A-13)

where A (k) is an influence coefficient matrix and g is the dynamic pressure. The contribution to the virtual work
from the unsteady forces is

VW2 = gn" ®TA(k) o7
=gn" [Q(k)]n
where Q (k) are the generalized forces due to n, and n, coordinates. As k approaches 0, Q (k) corresponds to

the steady aerodynamic loads. However the air load due to the rigid body modes such as pitch and yaw is already
included in the F;, /0,4 vector. Therefore the steady air load components caused by 7, should be subtracted from

Q (k) to give

_ L3 e
b = b - g5 o (A-14)
Then the virtual work is
VWa = gn" Q(k)n (A-15)

Body Forces

Let ¢, 6, ¢ be the Euler angles defining the orientation of the body-fixed axis with respect to the Earth. Then the
gravity vector is

—sin 6
g = g| cosfsing¢ (A-16)
cos 0 cos ¢
The body forces are then given by
Fyoq, = MEg (A-17)
I

where E = | Is |, The virtual work due to body forces is

VWs = 0TMEg (A-18)
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Gust Loads

The dynamic loads in the gust environment (discrete or random) can be computed based on the unsteady aero-
dynamic influence coefficients discussed earlier. The contribution to the virtual work from the gust loads is

VWi = 1" @TA (k) a(w) Ggyst (A-19)
where o(w) is an equivalent downwash computed from the gust environment and Gg,,; is a measure of the

gust intensity.

Engine Thrust

Future tactical fighters are expected to employ thrust vectoring to achieve superior maneuverability. There-
fore the work done in more than one axis system is an important factor in the analysis of stability and maneuver
performance. The virtual work contributed by the engine thrust is then

VWs = nToTT (A-20)

where T is a vector representing the components of the thrust at specified points.
Equations of Motion

Having defined the expressions for the energy, it is then permissible to derive the equations of motion using the
Lagrangian principle, that is

d /0L oL
— (=) _ = = A-21
dt (87'1) an 0 ( )
where
L =KE-PE-VW (A-22)

in which K F is the kinetic energy given by equation (A-10), PE is the potential energy given by cquation (A-11),
and VW is the virtual work as the sum of the terms given by equations (A-12), (A-15), (A-18), (A-19), and (A-20).
Performing the indicated differentiation with respect to each component of the generalized coordinates (n) and sim-
plifying, the following equations of motion are obtained

d)T qFair/rigid"" MEE + E’.’; _QQGGgust =
body force thrust gust

oMo (T?’)+ oT| Ma+Q™ ¢<T.">
e — Rl ik

Te - . .
general mass cenfrifugal inertia

(4

+ oTKe + oTaTMae +§ Q(k) "’) (A-23)
N et N ! N
general stiffness inertial stiffness  ynsteady

These equations have the same form as equation (4) in the main text for describing the structural dynamics, yet
also include the additional terms to perform a nonlinear maneuver analysis. Structural damping can be included
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with the velocity components. The inertial stiffness matrix given by &TQTM Q® is of significant importance for
the design of the feedback control system because this term contributes to the nonlinear stiffness property of the
control surfaces.

The centrifugal inertia given by &7 [MQ + QTM] & is nonlinear in angular velocities p, g, and r, and gives
rise to the load factor imposed on the system. The equations of motion defined by equation (A-23) can be reduced to
a first-order differential equation and solved for the state velocities. However, for performing a maneuver analysis
the velocity and acceleration terms (1i.and#j) of the elastic modes may be assumed to be small compared to the
corresponding rigid body terms. The second set of equations in equation (A-23) can then be solved for n, and
substituted in the first set of equations resulting in the following equations of motion in the rigid body coordinates

Mil = T [qFuirrigia — MEZ + Fr— (M@ + Q™™M) @, (A-24)
where T is the aeroelastic correction matrix
r = [of +7Q.B~'®]] (A-25)
in which )
B = Kee —3Qcc(k=0) (A-26)

The stiffness matrix K., is an effective stiffness including the centrifugal effects.

The expression given by equation (A-26) can be treated as an eigenvalue problem for the determination of the
wing divergence speed (Ggsy ).

The rigid body velocity and acceleration vectors can be written as

U

14

N 4
Mr = P
Q

R

and .
U

14

R 4
r = P
Q

R

Thus equation (A-24) reduces to a first-order equation in the state velocities. For a given time history of the control
variables, a transient maneuver performance of the aircraft can be determined.

If the inertia term M 4, is set to zero, equation (A-24) reduces to a nonlinear steady trim equation.
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APPENDIX B
INERTIAL-TO-BODY-FIXED COORDINATE TRANSFORMATION

The inertial frame reference axes are used to compute the aerodynamic forces resulting from the free vibration
modes of unconstrained elastic bodies. However, for stability and control analysis the preferred coordinate system
is the body-fixed coordinate system. If the inertial frame and reference axes are inclined with respect to each other
in a trim state through the Euler angles (¥, ©, &), then the velocities at the aircraft center of gravity in the inertial
frame and body-fixed reference axes are related by

X U
Y =T (¥Y,0,0) 14
Z I w B
in which
COSWCcos @ cos¥sin®sind —sin ¥cosd cos ¥ sin O cos © + sin ¥ sin @
r = sin ¥ cos ©® sin ¥ sin © sin ® + cos ¥ cos @  sin ¥ sin © cos ® — cos ¥ sin &

—sin @ cos O sin ¢ cos © cos @

Similarly, the accelerations in the inertial frame are given by

X U U
Y | =T(¥,0,9) Vi+al| Vv
z /. w w B
Az
=T (¥,0,0) Ay
where Q is the skew-symmetric angular velocity matrix. Considering the accelerations in the body coordinate system
A U U
Ay =V |+ V
A B W/ w
v [ 0 -R Q U
= V + R 0 -P vV
w) |-@ P 0 w
U\ |[-RV+Qw
=| V + RU - PW
w J | QU+ PV

Now with reference to a trim state at orientation (¥, 0, ®;),

WO v gQ £ OO
1}
S
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the perturbations are

® + ¢
=06 +40
=¥ + ¢
=U +u
=V1+v
+ w
=P +p
= Qi +4¢
R1+r

O vS Q€ o o
1]
X

The perturbed velocities in the inertial frame become

I

forTy = I (¥,0;,¢1), and
Arg Azg Agy
Ay = Ayg Ayo Ayy
Az,d: Az,ﬂ Az,¢

The elements of A; are as follows

Az g = Vi(cos @ sin ©; cos ¥, + sin @, sin ¥)
+ Wi(cos @ sin ¥, — sin @ sin ©; cos ¥;)
Az = —Uj sin ©; cos ¥; + V; sin &, cos O, cos ¥,
+ W1 cos @ cos ©; cos ¥,
Azy = —Ui cos Oy sin ¥; — Vi(sin ®; sin ©; sin ¥, + cos ®; cos ¥))
+ Wi (sin ®; cos ¥, — cos @, sin ©; sin ¥)
Ay g = Vi(cos @; sin O sin ¥| — sin ®; cos ¥,
— Wi (sin @ sin O sin ¥; + cos @, cos ¥)
Ay g = —U: sin ©; sin ¥, + V; sin ®; cos O sin ¥,
+ W) cos &y cos O sin ¥,
Ayy = Uj cos ©; cos ¥,
+ Vi(sin @y sin ©; cos ¥; — cos ®; sin ;)
+ Wi(cos @, sin ©; cos ¥; + sin @, sin ¥)
Az ¢ = Vicos @ cos ©; — W sin @ cos ©,
Az = ~Uj cos ©1 — V; sin @; sin ©; — W, cos @, sin O,
Ay =0

These equations are consistent with the formulation contained in reference 15 for general reference conditions
with the inertia axes initially oriented to coincide with the body axes through I'y.
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The body-axis perturbation accelerations are

az 4 u p
ay =l o |+Q| v |+A] g
e: / g w w T
where "
0 -Ri G
Q = R 0 -h
| -Q: A O
and )
0 Wy =W
A =| -Wi 0 Uy
v - 0

Perturbed accelerations in the inertial frame then become

T ax
Y =TI Qy
F4 I Az B
n u D
=TI ] + IQ v + A q
w w T

The state-space equations of motion in the inertial frame are given by
X5, = A,x; + B.u

and the required state-space equations in the body-fixed coordinate system are obtained by the follow-
ing transformations

X1, = T]XB'

\ (

NS e Na R
il
e

o 3 E L] ='$\<b-e-\N A B

é
\v/ \r
where the primed coordinates denote inertial displacement components of the aircraft center of gravity projected
onto the body coordinate system, and the relevant matrices are given as

L 0 0 0
0o I 0 O
T, = 0 7\1 rnn o

0 Az 0 I
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with
1 sind;tan ©; cos dytan O,
=0 cos @, — sin @

sin <& cos @
0 Ccos 61 cos O,
. W
O tan 64 m 0
Kz = —‘I"’l cos O 0 0

o ,
m Y tan®;, 0

and

Similarly for state-space velocities
x5, = Ta2xp, + Tsxp,

where
¥} 0 0 ¢
.| 0 oo
2" I A, 0
0 0 0 I
and .
0 A, 0 O
|0 A 0 0
=10 0 00
0 0 0 O

In the following analysis no transformations are applied to elastic and acrodynamic lag state vectors. Thus the
full-state vector transformations are given by

« [T o]
Tr=19
- [T, 0]
=19 1
= [T 0]
=19 0 |
Then
XI=AXI+]A3U
T2X3=AT1XB — T3XB + ﬁu
Tzf(3= (AT] - T:;) Xg + fiu
or

XB=T{I (AT] — T3)XB + T{lﬁu
= Axg + Bu

and outputs are given by
y= CT] Xp + Du

=Cxg + Du
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APPENDIX C
STABILITY DERIVATIVES

Determination of Static and Dynamic Stability Derivatives
Longitudinal Derivatives

A brief outline is given of the relations used in the evaluation of the longitudinal stability derivatives from un-
steady generalized acrodynamic forces. For small perturbations of pitch rate, assuming a wings-level trim condition,
(¢ = 6) and the rate of change of angle of attack (c), the lift and moment cocfficients of an aircraft can be written
in the Maclaurin series as

&e e
Ci=Cu,+ Cria+ O (55) + Ci, (ﬁ) -1
&t ¢
CMz CMo + CMaa + CM‘., (ﬁ) + CMv (W) (C-Z)

where ¢ is the mean acrodynamic chord and V is the flight velocity. For harmonically oscillating motion at reduced
frequency k

¢

6 = eoe*'“*,ﬁ = k8 (C-3)
a = aoeM,%} = ika (C-4)

Substituting equations (C-3) and (C-4) into (C-1) and (C-2) and omitting the constant terms Cp, and Cy,, the
first-order lift and moment coefficicnts can be written as

Cp =Cr,a + tkCp,a + 1kCp 0 --- (C-5)
Cy = Cy,a + 1kCy,a + 'ikCng (C-6)

For pure pitching motion (§ = «) and pure plunge (h)

Cr = % = [c1, + ik (C, + C1,)] @ (C-7)
Cy = _g"" = [Cu, + ik (Cu, + Cu,)] @ (C-8)

where S is the area of the wing and Q. is the generalized force acting on mode m due to mode n, written with
respect to an inertial axis system aligned with the body axes (ref. 15) at o = 0. The first rigid body mode is the pure
plunge mode and the second is the pure pitch motion.

For a unit value of «, the stability coefficients are written as

_ Re(Qro)

Cr. 5

(C-9)
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o, = —Be(Qeo) (C-10)

Ma 5
Cr, + Cr, = ff_’.‘_g_@ (C-11)
Cu, + O, = ‘_II%Q“). (C-12)

For pure harmonic plunging motion h = h,e*™, the angle of attack («) can be written as

- ik (ﬁ) (C-13)

h
|4 c

x =

and
¢=20
then from equations (C-5) and (C-6), the lift and moment coefficients for plunging motion are given by

Cr = (ikCy, - KC1,) (%) - _% (C-14)
Cu = (ikCu, — K Cag,) (36.'1) - Qo (C-15)
Letting (2%) = 1, the dynamic stability derivatives can be written as
Cp, = Re—;gﬁ (C-16)
Cwm, = —%%‘,"') (C-17)

Finally from equations (C-11) and (C-12)
_ Im(Qnrg) Re(Qnr)

T (C-18)
I R
Cu, = — m,(cg”) + e]:?;") (C-19)

Thus the six longitudinal stability derivatives can be determined from the pure plunge and pitching oscillatory mo-
tions at an infinitesimally small reduced frequency.

Lateral-Directional Derivatives

The side force, rolling moment, and yawing moment cocfficients under small perturbation assumptions can be
represented by

Cr=Cy,B + C, (%) ¥ Cy, (%) + Oy, (%) (C-20)
Cy = Czﬂﬁ + Cgﬂ (%) + G, (%) + Cgp <-2—€/) (C-21)
Ch = CogB + Ca, (f—") + Co, (-zf—f;) + Oy (2£"’_> €22)
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As in the longitudinal case, Q.. Will be used to represent the generalized force acting upon mode m due to
the motion of mode n. The rigid modes (y, ¢, 1) are orthogonal to each other. The area of the wing is S, b is the
span, V the velocity, and k is a reduced frequency. The side force generated by pure yawing motion (8 = —4)is
written as

QQ_WJE
[ReQw,‘/) Ime,w]

Cv(Y) = -

=y | p) + I ﬂ)]

=y'§‘ifgﬂ(—ﬂ> I",‘c?s”‘b( )( ﬂ)]

_ | BeQu 5, ImQyy (T ( Bb _
| s Pt Ths (b) (2v)] (€23

Rewrite equation (C-20) as

Cr = CyyB + Cy, (fg) Cy, (Zf/b)

= Cy,8 + (Cy, — Cr,) (2[’3) . (C-24)

Comparing equations (C-23) and (C-24), for a unit value of y one obtains

CYp = (M) (C-25)
S
and ImQ _
— = —-—-m vy S -2
o - o = (552 (3) (€20
To evaluate Cy’ and Cy, the side force due to pure harmonic lateral motion is considered, (y = yoe™t),
p=35 ik (29) (c27)
v ¢
and
p =r = 0
then equation (C-20) becomes
. b 2y Q
- 2 = >y . -
Cy = [szyp — k Cy’ (E):' (?) =g (C-28)
Let (ECV-) = 1toget
Re(Qyy) (E)
= —=2— | -2
W= s \b (€29
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and from equation (C-26)

Cy,

The side force generated by pure rolling motion (p = $) is

Co ) = _!/Qy¢¢

- (5 - 59 )

RCQwS ¢ IMQy¢ ¢}

-Rer¢¢ + ,k‘[nl:gv¢¢]

= —y :Re§y¢¢ ImQy¢ ( %"7) é

kS

- () ()

_ [ReQys, . ImQye (T [ $b
=-y|—g b+ ”(b)(

since ReQ 4 is zero. Now comparing the like term in equation (C-20), and unit y,

Hence, all four side-force derivatives are extracted from equations (C-25), (C-29), (C-30), and (C-32).

The rolling moment generated by pure yawing motion (8 = —1) is written as

Rewrite equation (C-21) as

ImQye (€
o = -5 (5)

Ce(P) = —
S [Reg¢¢¢ N z_Imgw,w]

¢Qpy¥
S

L S kS

_ [ReQep o . ImQqy (T
175 P* s (b>

Ce=Cuyb + C, (”3) c, (

- ¢[Bdet gy 4 1T p)]

- ¢[Bde gy + T (120 (-p)

()]
)

._[31,
2V

= Cg,8 + (Cgﬂ - Cz,) (%)

(C-30)

(C-31)

(C-32)

(C-33)

(C-34)
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Comparing equations (C-33) and (C-34), for ¢ one obtains

o - (232

o, . - (534) ()

From equation (C-27), equation (C-21) becomes

and

Cp = [ikCga — kG, (9] (3}) _ _%

Let (161) = 1 to get

and from equation (C-36)

o - - 28 )
& k28 kS ] \b
The rolling moment generated by pure rolling motion (p = @) is
Cu(p) = ~2et
R Im
-, e§¢¢¢ Q¢¢ ¢]

-4 Rede, Ime ¢]

B 5

28 ()2

since ReQ g4 is zero. Now comparing the like terms in equations (C-21) and (C-40), and unit ¢,

__MG)
Cey = kS \b

Hence, all four rolling moment derivatives are extracted from equations (C-35), (C-38), (C-39), and (C-41).

The yawing moment generated by pure yawing motion (8 = —1)) is written as
Caly) = - L2082
Re Im
o[y o dnn,

=y RCQW( B) + kI’"QW( ﬁ)]

kS

_ . [ ReQyy ImQyy (TN ( B
VTS Pt s (E)(zv)}
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_[ReQgs, . ImQes () (b
=TS T ks (b) <2v)}

=¢_R6Q"’¢( B + I'"Q‘W(ZV)( =]

(C-35)

(C-36)

(C-37)

(C-38)

(C-39)

(C-40)

(C-41)

(C-42)



Rewrite equation (C-22) as

3b —fb
Cn = CoyB + Co, (%) + Ca, (%)

Bb
= CnyB + (Cn,, - C,,,) (ﬁ
Comparing equations (C-42) and (C-43), for a unit value of 4 one obtains

o - (25

o, - . - (25) (3

Again from equation (C-27), equation (C-22) becomes

and

Let (3}) = 1 to get
c. = eQuy) (E)
" kzS b
and from equation (C-26)

o - S - )

The yawing moment generated by pure rolling motion (p = ) is

Cn(d)):“
_ [ReQyg AmQyy
= | Ty 4 I ¢]

YQyed
S

__y[BeQus, . . ImQyy
= o [Tt 4 1Ty

o[ 5 ()

__y|BeQus, . ImQys 2\ [ db
=75 ** ks (E)(zv)}

8 () ()

since ReQy4 is zero. Now comparing the like term in equation (C-22), and unit o,

_ _ImQy <£>
Crp = kS \b

(C-43)

(C-44)

(C-45)

(C-46)

(C47)

(C-48)

(C-49)

(C-50)

Hence, all four yawing moment derivatives are extracted from equations (C-44), (C-47), ( C-48), and (C-50).
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Aerodynamic Derivative Representation

The relationship between airplane forces and moments in the inertial axis system and airplane stability denva-
tives is summarized in tables C-1 and C-2 for the longitudinal (symmetric) and lateral-directional (antisymmetric)
analyses, respectively. The quantity o is the trim angle of attack. Column headings designate rigid body deflec-
tion dof, and row labels represent direction of resulting air loads whether they be linear forces or angular moments
caused by the deflections. The generalized forces at a very low reduced frequency (k <0.01) define the generalized
aerodynamic stiffness and damping matrices from which stability derivatives can be evaluated. If the derivatives
are available from other sources, such as wind-tunnel or flight-test results, they may be incorporated in preference to
the theoretically derived values. For coefficients pertaining to different reference points on the aircraft, corrections
must be made to the derivatives (ref. 16). The inertial and body axis coordinate systems are aligned with each other
at trim o .

It is implicitly assumed in tables C-1 and C-2 that the derivatives are defined with reference to the body axes.
Longitudinal stability coefficients defined with respect to the stability axes remain unchanged, yet lateral-directional
coefficients must be adjusted as a function of angle of attack, as in table C-3, for a proper implementation into the
generalized aerodynamic matrices defined in the inertial axis system.

Whether or not elastic modes are included will determine which stability derivatives (rigid or flexibilized) should
be implemented into the matrices of tables C-1, C-2, or C-3. When all elastic modal dof (elastic generalized coordi-
nates) are included in the dynamic analysis, the derivatives used should be only rigid coefficients (not flexibilized).
The elastic modes included in the analysis will include the elastic increments to the rigid body derivatives through
the generalized displacements at low values of reduced frequency. A rigid body analysis, without elastic modal dof,
requires using the flexibilized derivatives from another source to account for elastic static deformation. No z-dof
aeroelastic forces exist since the panel aerodynamics that are not perpendicular to lifting surfaces are not computed.
Hence, the generalized matrix coefficients for the z-dof generalized coordinate must include the elastic increment
for rigid and elastic analyses. The forces corresponding to the z-dof are therefore zero for all but the lowest reduced
frequency. When a combined rigid-elastic analysis is required with a small subset of elastic modes included, such
as when closed-loop roots are desired in a digital system, the rigid coefficients from another source should be used.
In all analyses, the correction rigid body data is smoothed into the real and imaginary force matrices at the lowest
reduced frequencies.

Flight control applications require an accurate description of stability characteristics over a frequency range
dependent on the dynamics of the controller. In the STARS formulation, the three symmetric dof (z, z, ¢) and three
antisymmetric dof (y, ¢, ¥) are combined to model linear six-dof motion about a reference flight condition. Various
methods exist to approximate flexibilized dynamics with residual approximations when some modes are deleted
from the analysis. Presently STARS can be run with all flexible modes included or some truncated, but residual
stiffness or flexibility effects are not used as a reduced order approximation of elastic dynamics.
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Table C-1. Stability derivative representation in the rigid-body symmetric generalized
aerodynamic stiffness and damping matrix elements.

(a) Rigid body, symmetric generalized aecrodynamic stiffness matrix.

T oz 6 )
z 0 0 S(Cp,—aiCp,~uCi, +02C1,) S(Cp—aiCy,)
z 0 0 S(C,-oCi+aCp,—a?Cp) S(Ci,+ a1Cp,)
6 0 O St (—Cpm, + 21Cr,) —SECm,
(b) Rigid body, symmetric generalized acrodynamic damping matrix.
z z 0 6
z f}:— (Cp, — a1 Cy,) ﬁ;— (Cp, — a1 Cy, — C1) 2%1- (CD, +Cp, —a1C, — CL(:) 0
z % (CL, + @1Cp,) 1‘791— (Ci, + 1Cp,) 2%51— (C’Lq +Cp, + a1Cp, + achd) 0
6 ~ -2C, ~ -5Cm, 5352 (~Cm, — Cm,) 0

Table C-2. Body axis derivative representation in the rigid-body antisymmetric generalized
aerodynamic stiffness and damping matrix elements.

(a) Rigid body, antisymmetric generalized aerodynamic stiffness matrix.

y ¢ ¥ §
y 0 S(-Cr-aCyp)a SCy, -SCy
$ 0 —SbCya SbCy,  —SbHC,
v 0 —SbChy v SbCry  —SbCh

(b) Rigid body, antisymmetric generalized aerodynamic damping matrix.

y ¢ Y 8
1/} —-ﬁgl-CY, ZSI’% (—-Cy, _ anyﬂ) 2%; (—Cy, + Cyﬂ) 0

6 —8C, A (-C,-Cym) b (-Ch+Cy) O
v —fCh  AEb(-Ch —Chm)  Fb(-Cn+Ch,) O
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Table C-3. Stability axis derivative representation in the rigid-body antisymmetric
generalized aerodynamic stiffness and damping matrix elements.

(a) Rigid body, antisymmetric generalized acrodynamic stiffness matrix.

v ¢ 14 8

y 0 S (01— aiCy,) SCy, ~SCy,
$ O Sb(-Cycosar+ Cosinan)ar  Sb(Ceycosar — Cpy sin a1)  Sb(~Cgycos ay + Crg sin cn)

v 0 Sb (—C,,‘, coS oy — Ceﬁ sin al) o Sh (C’,,,ﬂ coS oy + Cgp sin a1) Sb (—Cy cos ay — Cy, sin ar)

(b) Rigid body, antisymmetric generalized aerodynamic damping matrix.

y ¢ Y 8

Y —%CY, 2%)1’ (—Cyp — alcyﬂ) % (—Cy' + Cyﬁ) 0

) gfb (—Ceﬁ cos a;) Z%Ib (—Cep cos al) 2%)1_” (—C4, cos ay)
+ 50 (Cupsinan)  + 575 (Cry sin ar) + b (Cn, sin )

b (Ceﬂ(COS al)al) + Q%Tb (Czﬂ cosS a;) 0

i
+2%’1-b (C,,ﬂ(sin a;)an) —QSUbl'b (C"‘B sin a‘)

Y USfb (—C’,.p cos a;) 25[’7’1-6 (—Cﬂ,, cos al) T‘%}—b (—Cy, o8 ay)
”I%b (Cgﬁ sin al) ~2‘%’l—b C, sin al) —%b (Ce, sin ay)

(
— 5y (Onﬁ(cos ax)al) +2%’1‘b (C"ﬁ cos a‘) 0
(

_%b Ce,(sin al)al) +2%1‘b (Clp sin al)
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Figure 2. Major modules and capabilities of STARS.
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Figure 9. X-29A aircraft flutter solution plots using STARS calculated modal data (symmetric case).
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Figure 10. X-29A aircraft flutter solution plots using GVS measured modal data (symmetric case).
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Figure 11. X-29A aircraft flutter solution plots using STARS calculated modal data (antisymmetric case).
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Figure 12. X-29A aircraft flutter solution plots using GVS measured modal data (antisymmetric case).
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Figure 15. Longitudinal loop gains computed with GVS and STARS models for flight condition 1.
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Figure 16. Longitudinal loop gains computed with GVS and STARS models for flight condition 2.
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Figure 17. Longitudinal loop gains computed with GVS and STARS models for flight condition 3.
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Figure 18. Longitudinal loop gains computed with GVS and STARS models for flight condition 4.
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Figure 19. Lateral loop gains computed with GVS and STARS models for flight condition 1.
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Figure 20. Lateral loop gains computed with GVS and STARS models for flight condition 2.
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Figure 21. Lateral loop gains computed with GVS and STARS models for flight condition 3.
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(b) Phase angle, deg.

Figure 22. Lateral loop gains computed with GVS and STARS models for flight condition 4.
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Figure 23. Directional loop gains computed with GVS and STARS models for flight condition 1.
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Figure 24. Directional loop gains computed with GVS and STARS models for flight condition 2.



—— STARS flexible
20 ~-=-=GVS

Gain, _
dB 30

.90 1 11 1ELl A L1 UITIN
1 10 100 1000
Frequency, rad/sec

9426

(a) Gain, dB.

. —— STARS
-30 |- ] flexible
-60 | | —--Gvs

Phase
angle,
deg

i

.360 L 5o 1 N
1 10 100 1000

Frequency, rad/sec

9427
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Figure 25. Directional loop gains computed with GVS and STARS models for flight condition 3.
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(b) Phase angle, deg.

Figure 26. Directional loop gains computed with GVS and STARS models for flight condition 4.
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Figure 27. Longitudinal closed-loop responses calculated using GVS and STARS flexible models for flight condi-
tion 1.
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Figure 28. Longitudinal closed-loop responses calculated usin

tion 2.
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Figure 29. Longitudinal closed-loop responses calculated usin

tion 3.
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Figure 30. Longitudinal closed-loop responses calculated using GVS and STARS flexible models for flight condi-
tion 4.
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Figure 31. Longitudinal loop gains from flight data, AER07, and STARS for flight condition 1.
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Figure 32. Longitudinal loop gains from flight data, AERO7, and STARS for flight condition 2.
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Figure 33. Longitudinal loop gains from flight data, AER07, and STARS for flight condition 3.
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Figure 34. Longitudinal loop gains from flight data, AERO7, and STARS for flight condition 4.
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Figure 36. Modal damping and frequency comparisons between flight measured data and STARS for fuselage
vertical bending.
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Figure 37. Modal damping and frequency comparisons between flight measured data and STARS for antisymmetric
wing first bending.
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Figure 38. Modal damping and frequency comparisons between flight measured data and STARS for fuselage lateral
bending.
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Figure 39. Modal damping and frequency comparisons between flight measured data and STARS for fin first bending.
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