Turbopump ALS
Advanced Development Program

NASA-CR-183730
KGC4-M-2

National Aeronautics and Space Administration
Marshall Space Flight Center
Huntsville, Alabama, AL 35812

Date of general release 07-91
LIQUID HYDROGEN TURBOPUMP
ALS
ADVANCED DEVELOPMENT PROGRAM

Contract NAS 8-37593
Monthly Progress Report, DR-03
20 May - 23 June 1989

Prepared For:
National Aeronautics and Space Administration
George C. Marshall Space Flight Center
Marshall Space Flight Center, AL 35812

Prepared By:
Nancy R. Shimp
Project Engineer

George J. Claffy
Project Engineer

Reviewed and Approved By:
Colin Faulkner
Program Manager

Aerojet TechSystems
P.O. Box 13222
Sacramento, CA 95813-6000
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2.0 Summary</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Significant Accomplishments</td>
<td>3</td>
</tr>
<tr>
<td>2.2 Schedule</td>
<td>7</td>
</tr>
<tr>
<td>2.3 Manpower</td>
<td>12</td>
</tr>
<tr>
<td>2.4 Planned Work for Next Reporting Period</td>
<td>12</td>
</tr>
<tr>
<td>2.5 Correspondence</td>
<td>12</td>
</tr>
<tr>
<td>3.0 Technical Problems and Proposed Solutions</td>
<td>15</td>
</tr>
<tr>
<td>4.0 Special NASA Concerns</td>
<td>15</td>
</tr>
<tr>
<td>Attachment 1 — Liquid Hydrogen Turbopump Kick-Off Meeting (Charts)</td>
<td>16</td>
</tr>
<tr>
<td>Report Documentation Page</td>
<td>130</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Work Breakdown Structure (WBS)</td>
</tr>
<tr>
<td>2</td>
<td>Point of Departure Concept Design</td>
</tr>
<tr>
<td>3</td>
<td>Feasibility Experiment Impeller Design</td>
</tr>
<tr>
<td>4</td>
<td>Master Schedule</td>
</tr>
<tr>
<td>5</td>
<td>Milestone Dictionary</td>
</tr>
<tr>
<td>6</td>
<td>DR Schedule</td>
</tr>
<tr>
<td>7</td>
<td>Master Network</td>
</tr>
<tr>
<td>8</td>
<td>Total Hour Budget vs. Actual</td>
</tr>
</tbody>
</table>
1.0 **INTRODUCTION**

This is the second, June 1989, Monthly Progress Report submitted as Data Requirement (DR)-03 of the Advanced Launch System (ALS) Liquid Hydrogen Turbopump Advanced Development Program. This program is being conducted by Aerojet TechSystems (AT) for the Marshall Space Flight Center (MSFC), National Aeronautics and Space Administration (NASA), under Contract No. NAS 8-37593.

This activity is defined in the Technical Implementation Plan, DR-15. It is designed to deliver and support two reliable, low cost, maintainable LH$_2$ turbopumps together with Ground Support Equipment (GSE) and Special Test Equipment (STE) packages to Stennis Space Center (SSC) for testing. One turbopump will be heavily instrumented and cold gas tested to measure the internal pump and turbine environments, the second turbopump will be flight type and hot fired. A key additional deliverable will be the LH$_2$ Turbopump Cost Model, which will be calibrated with actual hardware fabrication costs and with data from simulated launch support and production acceptance activities performed at SSC during the test period.

Cost and reliability studies, trades, and tests will be performed. Cost reduction and/or reliability enhancing technologies will be substantiated by the design, fabrication, and test of experimental and demonstration hardware.

The program covers a 40-month period of performance and is structured in two phases:

Phase I (12 mths) - Preliminary design and cost model development

Phase II (28 mths) - Detail design, fab., and full scale demonstration

The program is designed around the Work Breakdown Structure (WBS) shown in Figure 1.

This second month effort can be characterized as one of evolving activity from detail planning into the start of major long lead efforts involved with turbopump design and supporting experimental work.
2.0 SUMMARY

2.1 SIGNIFICANT ACCOMPLISHMENTS

WBS 1.1.1 - The point of departure (POD) turbopump concept was reviewed and finalized during the report period (Figure 2). The basis for the POD was the configuration presented in the Aerojet proposal. After reviewing this proposal concept, several modifications were made. These modifications are outlined below with brief comments on the logic for incorporating them:

a. The dual pump discharge arrangement was changed to a single discharge. The complexity of extra ducting, and flex joints was not justifiable in the STME/STBE engine system. Radial loads resulting from the unsymmetrical pressure gradients are felt to be manageable with the single-discharge, double tongue configuration selected.

b. Commonality of the turbine inlet manifold with the ALS LOX TPA was dropped for this program. The reason was to avoid the inevitable delays which would be experienced in attempting to attain commonality with another contractor's configuration, which is also in a conceptual phase and subject to change. The turbine inlet will be sized specifically for the LH₂ TPA, and will be reduced in size as a consequence.

c. The turbine housing flange arrangement was improved by relocating it away from the first stage nozzles. The large thermal mass, previously in close proximity to the thin nozzle trailing edges, posed a potential cracking problem due to differential thermal expansion.

d. A 10% head margin (5% diameter increase) was built into the impeller design to ensure meeting the required discharge pressure without the need for increasing speed.

e. A 10% turbine power margin was imposed, to be obtained by increasing turbine inlet pressure if required. The impact is a 10% higher design pressure for the turbine inlet manifold and the gas generator.
2.1, Significant Accomplishments (cont)

f. The backup concept, as an alternative to the use of cast impellers, will now incorporate forged/machined shrouded impellers, rather than the unshrouded type originally planned.

Extensive discussions were held with Mechanical Technology Inc. (MTI) on definitization of the scope and cost of their planned participation in the program. MTI will support the program in the areas of bearing/seal analysis and tradeoffs, bearing materials tests, lift-off seal design, instrumentation and test planning. It is anticipated that the MTI effort will commence during the July reporting period.

A meeting was held at Aerojet during the report period with NASA-SSC personnel. A productive discussion of instrumentation and test requirements took place at this session.

WBS 1.1.6 - Conceptual design of the test cart for LH₂ turbopump tests was initiated. Use of off-the-shelf hardware for this unit is being emphasized to minimize cost.

WBS 1.2.2 - Discussions were initiated with candidate test laboratories for performing materials tests on existing PCC-supplied cast Ti-5Al, 2.5Sn test bars.

WBS 1.2.4 - Procurement activity on the cast titanium impellers intensified during the report period. A CAD package (Figure 3) was completed defining a "typical" cast titanium impeller suitable for feasibility testing. The design is as close to the final LH₂ ADP turbopump impeller design as is possible at this stage in the program. Responses were received from all solicited suppliers and viable candidates were identified. The responses indicated a potential schedule problem in this area. This is being worked at present, and is discussed further in Section 3.0 of this report.

WBS 3.1.0 - A program kick-off meeting was conducted at MSFC on 8 June 1989. A copy of the presentation package is included in this monthly progress report (Attachment 1) for record purposes.

On 9 June 1989 a test facility interface meeting was held at MSFC with Stennis Space Center (SSC) personnel in attendance. Requirements for LH₂ TPA
Figure 3. Casting CAD Drawing for Titanium Impeller
2.1, Significant Accomplishments (cont)

testing were discussed, a tentative schedule for future meetings was established, and action items were assigned.

 Aerojet worked on two action items from the test facility interface meeting:

 a. A listing of instrumentation for the LH₂ turbopump tests showing types of sensors, quantities, ranges, and sampling rates.

 b. After receipt of the SSC basic test facility definition, preparation of sketches showing the orientation of the turbopump in the test facility was initiated. This will be delivered in the July reporting period, along with the required fluid flows and conditions at the interface points.

 Cost Account Plans (CAPs) were finalized and put in place during the report period. The required effort is now authorized and proceeding.

 To enhance our simultaneous engineering approach (an essential TQM element) key personnel will be colocated within a dedicated ALS office area next month.

 WBS 4.1.0 - Delivery of data items will henceforth be reported under Section 2.6 "Correspondence".

2.2 SCHEDULE

All tasks are on-schedule at close of this reporting period other than the cost model, which requires NASA input before major effort can commence.

The Master Schedule for the LH₂ Turbopump Program is shown in Figure 4. Milestones are defined in the Milestone Dictionary, Figure 5. The DR delivery schedule is given in Figure 6. Figure 7 shows the percentage completion on the ALS Master Network. All schedules indicate program status as of close of the reporting period.
ALS LIQUID HYDROGEN TURBOPUMP MASTER SCHEDULE

Contract No. NAS8-37593

<table>
<thead>
<tr>
<th>TASK DESCRIPTION</th>
<th>1989</th>
<th>1990</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>J</td>
</tr>
<tr>
<td>WBS MAJOR MILESTONES</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3.1.0 DETAIL PROGRAM PLAN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2.0 STUDIES ANALYSIS, LAB TESTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.0 PRELIMINARY DESIGN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4.0 PRELIMINARY COST MODEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.0 TECHNOLOGY DEVELOPMENT PLAN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASSEMBLE/SUBMIT PRELIMINARY DESIGN REVIEW PACKAGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.0 DATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1.0 WORK PACKAGE MANAGEMENT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- SLIP
- SLIP COMP.
- MAJOR MILESTONE
- PROCUREMENT SCHED
- PROCUREMENT COMP.
- MAJOR MILESTONE
- PERCENT COMP.
- TIME NOW

Figure 4. Master Schedule

<table>
<thead>
<tr>
<th>Initial Date</th>
<th>Rev</th>
<th>Status</th>
<th>Rev Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>05/10/89</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Program Manager:

![Signature]

Date: 7/12/89

Scheduler:

![Signature]

Date: 7/12/89
ALS LIQUID HYDROGEN TURBOPUMP MILESTONE DICTIONARY

CONTRACT No. NAS8-37593

<table>
<thead>
<tr>
<th>MILESTONE NUMBER</th>
<th>DESCRIPTION</th>
<th>REQUIREMENT DATE</th>
<th>STATUS</th>
<th>DATE COMPLETED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ATP</td>
<td>01 MAY 1989</td>
<td>Complete</td>
<td>01 MAY 1989</td>
</tr>
<tr>
<td>2</td>
<td>SUBMIT REVISE IMPLEMENTATION TECH PROGRAM PLAN DR-15</td>
<td>15 MAY 1989</td>
<td>Complete</td>
<td>15 MAY 1989</td>
</tr>
<tr>
<td>3</td>
<td>FACILITIES PLAN DR-04</td>
<td>29 JUN 1989</td>
<td>Complete</td>
<td>23 JUN 1989</td>
</tr>
<tr>
<td>4</td>
<td>GFP MANAGEMENT PLAN DR-06</td>
<td>29 JUN 1989</td>
<td>Complete</td>
<td>23 JUN 1989</td>
</tr>
<tr>
<td>5</td>
<td>LOGIC NETWORK, KEY MILESTONES DR-16</td>
<td>29 JUN 1989</td>
<td>Complete</td>
<td>28 JUN 1989</td>
</tr>
<tr>
<td>6</td>
<td>QUALITY PLAN DR-17</td>
<td>29 JUN 1989</td>
<td>Complete</td>
<td>29 JUN 1989</td>
</tr>
<tr>
<td>7</td>
<td>SYSTEM SAFETY PLAN DR-25</td>
<td>29 JUN 1989</td>
<td>Complete</td>
<td>27 JUN 1989</td>
</tr>
<tr>
<td>8</td>
<td>1st QUARTERLY REVIEW</td>
<td>01 AUG 1989</td>
<td>Open</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>PARTS & MATERIAL TRACEABILITY PLAN DR-18</td>
<td>30 OCT 1989</td>
<td>Open</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2nd QUARTERLY REVIEW</td>
<td>09 NOV 1989</td>
<td>Open</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3rd QUARTERLY REVIEW</td>
<td>01 FEB 1990</td>
<td>Open</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>SUBMIT DATA/DOCUMENTATION FOR PDR DR-27</td>
<td>12 APR 1990</td>
<td>Open</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>INTERFACE CONTROL DOCUMENT DR-28</td>
<td>12 APR 1990</td>
<td>Open</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>CONTRACT END ITEM SPEC DR-26</td>
<td>27 APR 1990</td>
<td>Open</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>PDR/FINAL REPORT DR-24</td>
<td>27 APR 1990</td>
<td>Open</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5. Milestone Dictionary

Initial Date: 05/25/89 Rev #: BASIC Status #: Rev Date: Pgrm Mgr: Date: 07/12/89 Schedule: Date: 07/12/89
<table>
<thead>
<tr>
<th>DR Title</th>
<th>DR No.</th>
<th>1989</th>
<th>1990</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo. Financial Mgmt. Rpt.</td>
<td>01</td>
<td>9</td>
<td>14</td>
</tr>
<tr>
<td>Otr. Financial Mgmt. Rpt.</td>
<td>02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mo. Progress Report</td>
<td>03</td>
<td>16</td>
<td>21</td>
</tr>
<tr>
<td>Facility Plan</td>
<td>04</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Equipment List</td>
<td>05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Govt. Furnished Property Plan</td>
<td>06</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Propellant & Pressurant Use</td>
<td>07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propellant & Pressurant Forecast</td>
<td>08</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Pack, Hndl, Transp Docs & Procs</td>
<td>09</td>
<td>As Required</td>
<td></td>
</tr>
<tr>
<td>Material Usage Agreement</td>
<td>10</td>
<td>As Required</td>
<td></td>
</tr>
<tr>
<td>Accident/Incident Report</td>
<td>11</td>
<td>As Required</td>
<td></td>
</tr>
<tr>
<td>Hazard Analysis Report</td>
<td>12</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Contractor Documentation</td>
<td>13</td>
<td>As Required</td>
<td></td>
</tr>
<tr>
<td>Documentary Photo Req.</td>
<td>14</td>
<td>As Required</td>
<td></td>
</tr>
<tr>
<td>Technical Implementation Plan</td>
<td>15</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Logic Network and Key Milestone Chart</td>
<td>16</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Quality Program Plan</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material & Process Spec List</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material & Process Spec List - Conty.</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acceptance Plan</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Assigned</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturing Plan</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material Control Plan</td>
<td>23</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Final Report</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Safety Plan</td>
<td>25</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Contract End Item Specification</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pack Requirements & Design Reviews</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interface Control Document</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drawing List, Form 1, Specs & Microfilm</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbopump & Cont Effector Sys. Test Plan</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acceptance Data Package</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance Requirements</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Support Documentation</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Result Report</td>
<td>34</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Program Month: 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 6. DR Schedule
Figure 7. Master Network
2.0, Summary (cont)

2.3 MANPOWER

Figure 8 presents our manpower assessment of the program, showing cumulative manhours expended versus those planned. For this accounting month of June 1989 (20 May program start through 23 June), we were 16% under budget.

2.4 PLANNED WORK FOR NEXT REPORTING PERIOD

2.4.1 Place MTI under subcontract and initiate effort.

2.4.2 Select supplier for cast titanium impellers and place under subcontract.

2.4.3 Initiate procurement process on test bars for materials testing program.

2.4.4 Continue baseline turbopump preliminary design effort.

2.4.5 Continue conceptual design of test cart.

2.4.6 Start low cost trade studies effort using POD design as the reference point.

2.4.7 Submit test instrumentation data for SSC.

2.4.8 Initiate cost model work.

2.5 CORRESPONDENCE

The following lists correspondence and data received from and transmitted to NASA during the reporting period:
LIQUID HYDROGEN TURBOPUMP
TOTAL HOUR BUDGET VS ACTUAL 5/19/89

BAC 38758 HOURS (LESS MANAGEMENT RESERVE)

Figure 8. Total Hour Budget vs. Actual
2.5, Correspondence (cont)

<table>
<thead>
<tr>
<th>Date</th>
<th>Subject</th>
<th>Originator</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/22</td>
<td>Contract NAS8-37593, copies for signature</td>
<td>CC Mitchell/NASA-MSFC</td>
</tr>
<tr>
<td>5/25</td>
<td>NAS 8-37593, Appointment of Contracting Officer's Technical Representative</td>
<td>CC Mitchell/NASA-MSFC</td>
</tr>
<tr>
<td>6/5</td>
<td>Contract NAS8-37593</td>
<td>CC Mitchell/NASA-MSFC</td>
</tr>
<tr>
<td>6/9</td>
<td>New Technology Reporting Requirement of Contracts NAS8-37593, NAS8-38073, and NAS8-38074</td>
<td>I Akbay/NASA-MSFC</td>
</tr>
<tr>
<td>6/16</td>
<td>Contract NAS8-37593, Modification No. 1</td>
<td>CC Mitchell/NASA-MSFC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corres. No.</th>
<th>Date</th>
<th>Subject</th>
<th>Originator</th>
</tr>
</thead>
<tbody>
<tr>
<td>9001:0001</td>
<td>6/1</td>
<td>Contract NAS8-37593, Acknowledgement</td>
<td>CS Montgomery</td>
</tr>
<tr>
<td>9001:DM2372</td>
<td>6/16</td>
<td>Contract NAS8-37593, Monthly Progress Report, DR-03</td>
<td>CS Montgomery</td>
</tr>
</tbody>
</table>
3.0 TECHNICAL PROBLEMS AND PROPOSED SOLUTIONS

3.1 Responses from casting suppliers indicate that receipt of production-standard deliverable cast impellers may occur after the planned end date for Phase I. Development castings will be available during Phase I, which will support determination of material properties using test bars extracted from actual castings. The schedule may not, however, support planned spin testing of cast impellers in Phase I.

Aerojet will attempt to improve the schedule in meetings with suppliers during the July report period. One possibility would be to produce the deliverable castings in the supplier's development facility, rather than the production facility as now planned, avoiding the changeover delay.

4.0 SPECIAL NASA CONCERNS

4.1 During the conceptual design effort on the test cart, it became apparent that a cart for each turbopump, cold gas and hot gas, would greatly expedite transportation, handling, and testing of the test articles during Phase II. The present scope calls for fabrication of one test cart only. Aerojet recommends inclusion of a second test cart to improve test operations productivity.

4.2 NASA needs to provide Aerojet with the Contract End Item Specification to facilitate construction of the Cost Model architecture.
Attachment 1

Kickoff Meeting Charts
ADVANCED LAUNCH SYSTEM
ADVANCED DEVELOPMENT PROGRAM
LIQUID HYDROGEN TURBOPUMP
KICK-OFF MEETING

(Contract No. NAS 8-37593)

NASA—George C. Marshall Space Flight Center

8 June 1989
Kick-Off Meeting Objectives

- Implementation Plan Familiarization
- Identify NASA-Aerojet Links on Program
- Identification of Relevant NASA Resources:
 - Data
 - Tools
"When cost is a performance variable in engine design, the challenge is different."

- Col. Jack Wormington, USAF, ALS Program Director

"To achieve our goals for cost reduction, we've got to find new ways of doing business."

- Jerry Thomson, NASA-MSFC
Agenda—AM

<table>
<thead>
<tr>
<th>Program Organization & Overview</th>
<th>C. Faulkner</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHASE I:</td>
<td></td>
</tr>
<tr>
<td>Preliminary Design</td>
<td>N. Shimp</td>
</tr>
<tr>
<td>Studies, Analyses, and Lab. Tests</td>
<td>N. Shimp/G. Claffy</td>
</tr>
<tr>
<td>Technology Development</td>
<td>G. Claffy</td>
</tr>
<tr>
<td>Preliminary Cost Model</td>
<td>C. Faulkner</td>
</tr>
</tbody>
</table>
PHASE II:

Detailed Design

Studies, Analyses and Lab. Tests

Component Test Article Fabrication

Test Planning, Support & Analysis

Detailed Cost Model

CONCLUDING REMARKS

N. Shimp

N. Shimp

G. Claffy

G. Claffy

C. Faulkner

C. Faulkner
Program Organization
And Overview

- Program Goals
- Basic Approach
- The Aerojet Team
- Coordinated Total Plan
Program Objectives

- Provide Proven Low Cost Technologies for Successful LH$_2$ Turbopump:
 - Lowest Cost With Required Reliability
 - Acceptable Performance and Weight
 - NO Compromises With Safety
Technologies Derived From STME/STBE Studies

- Conservative Design Criteria and Margins
- Extensive Use of Castings
- Bolted Assembly/No Assembly Welds
- Standardization Within Turbopump
 - Impeller Castings
 - Rotor Discs
- Proven Materials and Fabrication Processes
- Minimum Weld Joints
- Minimize Plating and/or Coatings
- Participative Supplier Base
- Organization/Specification/Procedure Changes
- Advanced Machining
- Commonality Between Turbopumps
 - Blade Attachment/Dampers
 - Rotor Discs
 - Blade Attachments
 - Bearings
 - Bearing Sets
Reliability Assessments Throughout The Program

• Materials Testing
 — As Processed
 — In Environment
 — Sacrificed Subcomponents

• Early Impeller Development

• Probabilistic Design

• Bearing Development Program

• Proof and Spin Tests During Fab

• Calibration of Analytical Models

• Validation of Internal Environment

• Hot Fire Tests at Full Loads
Cost Is Assessed Throughout The Program

- Quantify Cost Reduction With Trade Studies
- Feasibility Proven Experimentally
 - Fab Experiments
 - Design Iterations
 - Process Development/Supplier Interaction
 - Specification Development
 - Parts Manufactured
 - Inspection Techniques Evaluation
 - Testing at Full Loads
- Cost Model Development
 - 1st Unit Cost Validation
Performance Is Assessed Throughout The Program

- Conventional Analysis
- Advanced Analysis
- Tolerance Analysis
- Cold Gas, Heavily Instrumented Turbopump
 - Calibration of Analytical Model
- Full-Scale Testing (Hot Gas)
 - Unit-to-Unit Variations
Program Is Structured Around WBS

1.0.0 Phase I - Preliminary Design/Cost Model

1.1.0 Preliminary Design (TPA/GSE Package)
- 1.1.1 Baseline Concept
- 1.1.2 Back-up Concept
- 1.1.3 Low Cost Modifications
- 1.1.4 Hot Fire Design
- 1.1.5 Instrumented Concept
- 1.1.6 GSE/Test Cart Design

1.2.0 Studies, Analyses and Lab. Tests
- 1.2.1 Low Cost Studies
- 1.2.2 Materials Testing
- 1.2.3 Bearing and Seal Test Preparation
- 1.2.4 Impeller Tests
- 1.2.5 Turbine Blade Tests

1.3.0 Technology Development Plan

1.4.0 Preliminary Cost Model

2.0.0 Phase 2 - Component Test Article/Detailed Cost Model

2.1.0 Detailed Design (TPA/GSE Package)

2.2.0 Studies Analyses and Lab. Tests

2.3.0 Fabrication

2.4.0 Test Support and Analysis

2.5.0 Detailed Cost Model

2.6.0 Special Studies

2.7.0 Technology Development

3.0.0 Phase I - Program Management

3.1.0 Phase I - Program Management

4.0.0 Phase I - Data

4.1.0 Phase I - Data

KGC-XXX (6.0)
Liquid Hydrogen Turbopump

LEGEND
CUSTOMER REPORTING = * TITLE
WBS # (XXX = SOW NUMBER)

ISSUE DATE: 05/08/85
REVISION #0
REVISION DATE:
PROGRAM MANAGER:
PROGRAM SCHEDULER:
Top Level Program Logic

Phase 1

1.1.0 Preliminary Design
1.2.0 Studies and Analyses
1.3.0 Technology Development Plans
1.4.0 Preliminary Cost Model

C/D Phase

DR-27
Preliminary Design Review

1.1.0

2.1.0 Detailed Design

2.2.0 Analyses and Lab Tests

2.3.0 Component Test Article Fabrication

2.4.0 Test Support and Analysis

2.7.0 Technical Development Plans

Note: WBS numbers included

Phase 2 (Option)

2.4.0 Final Report

2.4.0.38
Coordinated Total Plan

Preliminary Design of TP and GSE w/instrumentation
- Pump dia. Turb Area Margin

Reliability Analysis
- Historical Study
- FMEA
- Identify & Substantiate Life Drivers
- Variability Identification

Detailed Design of TP and GSE, instrumentation
- Spares Ident.

Prob. Anal. of Life Drivers

Reliability Analysis

Performance Analysis
- Model Structure
- Preliminary & Production Cost Prediction
- Preliminary/Material Characterization Plan

Cost Model Calibration
- Manuals/Procedures Handbooks
- Fab STE

Turbine-GGE Interface
- Final Test Plan(s)

CER
- Cold Gas
- Hot Gas
- Anode Support Simulation

Hazard Analysis
- Design Iteration and Test

Materials Test, Ti Unbalance Test

Materials Testing
- Inco 909
- Inco 718
- A286 TMP

Bear and Seal Tester Plans
- 2 Lift-Off Seal Designs
- 2 Bearing and Designs
- Bearing Materials Tests (MTI)
- Damper (TIP) Testing

Technology Development Plan
- A286 TMP Turbine Blades
- Hydrostatic Bearings

Alternate Specifications and Procedures
- Tom Peters

Spares Line

Analysis & Lab Tests
- Low Cost Trades
- Production Options
- In-Process Inspection
- Factory Optimization
- High Speed Balance
- Bearing and Seal Tests
- Lift-Off Seal Tests (2)
- Bearings (2)

Special Studies

Acceptance
- Revise/Resolve Process
- Proof Test and Analyses

Final Report
- Update Final Report
- Inspect/Verify
- Deliver

Preliminary
- TPA Assembly
- GSE
- LH2 Damper Seals
- Loads Measurements
- Performance Measurements

Final Report
- Update Final Report
- Inspect/Verify
- Deliver
Program Organization

Program Manager
Colin Faulkner

- Contracts
 Carolyne Montgomery

- Fiscal
 Steve Niepeth

- Subcontracts
 Greg Wood

- Schedules
 Bob Young

- Data
 Yolanda Palmer

- Safety
 Ken Plake

- ILS
 Lamoine Field

- Cost Model
 Ed Peterson

- QA
 Bill Line

- Reliability
 Duane Wolting

- Manufacturing
 Earl Laing

Chief Engineer
Bill Campbell

Project Engineer
Nancy Shimp
George Clafty

Lead Design Engineer
Bruce Lindley

- Structural Analysis
 Lee Freeman

- Thermal
 John Bibbler

- Dynamics
 Lyn Greenhill

- Materials
 Dan Dennies

- Probabilistic Design
 Brad Boehm

- Instrumentation
 Rick Dallas
Aerojet's Industrial Team

• Aerojet TechSystems
• Mechanical Technology Inc.
• Ingersoll Engineers
• Trimet
• Tom Peters Group
• Participative Supplier Base

— Contractor
— Balancing, Advanced Mfg., Bearings and Seals Support
— Production Planning
— Materials Support
— Organization & Procedures
— Castings, Forgings, etc.
Subcontractors Have Well-Defined Tasks

- INGERSOLL ENGINEERS
 - Cost Substantiation
 - Production Manufacturing Strategy
 - Facility and Equipment Optimization
 - Manufacturing Organization Streamlining
 - Aerospace/Defense and Commercial Cost Data
 - Quality Function Integration

- MECHANICAL TECHNOLOGY INC. (MTI)
 - Bearing and Seal Technologies
 - Instrumentation and Test Planning
 - Advanced Manufacturing Technology
 - In-Process Machine Control
 - On-Machine Inspection
 - Automated Balancing
Emphasis On TQM

- Simultaneous Engineering
- Probabilistic Design
- Colocated Core Team
- Participative Subcontractors and Suppliers
- Organization-Wide Education and "Ideas Gathering"
Key Program Deliverables

- Test Articles Package:
 - Turbopumps Incorporating Results of Studies, Trades, Analyses, and Experiments
 - Test Cart With "Clean" Test Facility Interfacing for Improved Test Productivity
 - Ground Support Equipment, STE

- Results and Analysis of Tests at NASA-SSC

- Materials and Processes Data

- Material Characterization Plan

- Technology Development Plans

- Cost Model Anchored With Program Data:
 - Projected Recurring Production and Operations Costs
 - Recommended Specification and Procedure Savings
Our Program Includes Two Test Articles

- Unit No. 1 - Cold Gas Tests (Heavily Instrumented)
 - Understanding the Internal Turbopump Environment
 - Major Element of Integrated Analysis/Test Effort

- Unit No. 2 - Hot Gas Tests
 - Simulate Actual Engine Operating Environment

Fuel Turbopump Commonality Offers Option to Operate One Test Article in STME (LH₂) and STBE (LCH₄) Modes
The Program

Phase I
(12 Months)

- Preliminary Design
- Analyses and Trades
- Lab. Tests
- Preliminary Cost Model

Phase II - Option
(28 Months)

- Detail Design
- Analyses & Lab. Tests
- Fabricate Two Turbopumps
 - Cold Gas/Instrumented
 - Hot Fire/Flight Type
- Fabricate Test Cart and GS
- Test Support to SSC
- Detailed Cost Model
Preliminary Design
(WBS 1.1.0)

Nancy Shimp

Objective: To Develop a Master Dimensional Layout Based on the Results of the Analyses and Lab Tests
Phase I Program Focuses On Feasibility Of Concept

- Experiments
 - Materials Characterization
 - Impeller Fab
 - Turbine Blade Fab
 - Bearing and Seals

- Trades
 - Design Options
 - Maintainability
 - Commonality

- Preliminary Design
 - Create Master Dimensional Layout
 - Analyses to Determine Feasibility
 - Initial Load Assessment

- Cost Model Development
 - Preliminary Data Base
Program Achieves Phase I Objectives
Update POD Design To Include Latest Results Of Phase A Studies

- Update POD Design
 - Include Results of Phase A Studies
 - Relax Commonality Requirements With LOX Pump

- Pump Collector
 - Single Discharge
 - Volute Type

- Turbine Manifold Redesign
 - Baseline-Integral Cast Nozzles
 - Thermal Growth Allowances
 - Castability
 - Torus Area Reduction

- Turbine Disc Optimization
 - Blade Chord Reduction

- Bearing Load Path
Baseline Design Will Include Developments of Phase A Studies
Reliability And Cost Trades Begin

- Historical Reliability Analyses
- Reliability Allocations
- Develop a Baseline Start Transient
- Finalize the Design Trades List
- Incorporate Appropriate Performance Margins
Update POD Design Serves As Anchor For Low Cost Studies

- Updated POD Will Be Used to:
 - Casting Development Experiments
 - FMEA/CIL
 - LEMD
 - Perform Preliminary Analyses
 - Structural
 - Thermal
 - Dynamics
 - Bearing Life
 - Initial Piece Parts Cost
 - Instrumentation
 - Bearing and Lift-Off Seal Design
 - Low Cost Studies
 - Design Options
 - Maintainability
 - Commonality
 - GSE/Test Cart Concept
A LEMD Document Will Provide A Basis For Analysis

LEMD → Loads, Environmental, Materials Document

- Contains Data Required to Support Design Requirements, Including:
 - Loads on Pump Components
 - Vibratory and Acoustic Environment
 - Uniform Set of Material Properties

- Data for Document Initially Compiled From Several Sources
 - Interface Specifications
 - Pump Design Requirements
 - Previous ATC Experience (Titan)
 - Similar Prior Analyses

- Final Document Intended to Be Revised as New Data Becomes Available
 - Revised Analyses
 - Early Test Data (Hot Fire, Cold Gas)
While the low cost trades are performed, maturity of the POD design improves with analyses.

Baseline Analyses

- Pump Hydraulics
- Turbine Aerodynamics
- Dynamics
- Power Transmission
- Thermal
- Structural
- Reliability
Proven Pump Analysis Codes Will Be Used

<table>
<thead>
<tr>
<th>ANALYSIS CODE NO.</th>
<th>ANALYSIS CODE DESCRIPTION</th>
<th>ANALYSIS CODE OUTPUT</th>
<th>ANALYSIS CODE VERIFICATION BASIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1D Meanline</td>
<td>1D Meanline Pressures, Velocities and Pressure Losses</td>
<td>ATC Experience Base</td>
</tr>
<tr>
<td>2</td>
<td>2D Inviscid - "KATSANIS" "McFARLAND"</td>
<td>Inviscid 2D Pressures, Velocities and Flow Angles</td>
<td>ATC Experience Base Industry/NASA Standard</td>
</tr>
<tr>
<td>3</td>
<td>2D Viscous (Navier Strokes) - "AEROVISC", "PHOENICS", "FIDAP"</td>
<td>Viscous 2D Pressures, Velocities, Flow Angles and Pressure Losses</td>
<td>IR&D Validation Plan for "AEROVISC" Existing Empirical Data Base for "PHOENICS" and "FIDAP"</td>
</tr>
<tr>
<td>4</td>
<td>Quasi 3D Inviscid - "KATSANIS"/ "MERIDL"</td>
<td>Inviscid 3D Pressures, Velocities and Flow Angles</td>
<td>ATC Experience Base Industry/NASA Standard</td>
</tr>
<tr>
<td>5</td>
<td>3D Viscous (Navier Strokes) - "AEROVISC", "PHOENICS", "FIDAP"</td>
<td>Viscous 3D Pressures, Velocities, Flow Angles and Pressure Losses</td>
<td>IR&D Validation Plan for "AEROVISC" Existing Empirical Data Base for "PHOENICS" and "FIDAP"</td>
</tr>
<tr>
<td>6</td>
<td>Design Codes — "IMP1INC", "STA1D", "IMP3D", "VOLUTE", "CROSS"</td>
<td>Geometry - 2D Rotor Blade, 2D Stator Vane, 3D Rotor or Stator, and 3D Volute Shapes</td>
<td>ATC Experience Base</td>
</tr>
<tr>
<td>7</td>
<td>CDF Analysis, Pre and Post Processor Codes - "PATRAN"/ "TRANSLATE", "OTHER ROUTINES"</td>
<td>Advanced Mesh Generation and Color Graphics to Aid in Rapid CFD Design and Analysis</td>
<td>ATC Experience Base</td>
</tr>
</tbody>
</table>
Pump Design Elements Are Integrated Into A Concerted Analysis Effort

<table>
<thead>
<tr>
<th>Element</th>
<th>Input Source</th>
<th>Analysis Codes</th>
<th>Test Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Pump Inlet Flange</td>
<td>SOW, ICD, LEMD</td>
<td>EDC, 1</td>
<td>CGT, HGT</td>
</tr>
<tr>
<td>2. Inducer</td>
<td>CDC, LEMD, PE</td>
<td>EDC, 6</td>
<td>CGT, HGT</td>
</tr>
<tr>
<td>3. Impeller</td>
<td>CDC, LEMD, PE</td>
<td>EDC, 2, 4, 6</td>
<td>CGT, HGT</td>
</tr>
<tr>
<td>4. Vaneless Space</td>
<td>LEMD, PE</td>
<td>EDC, 1</td>
<td>CGT, HGT</td>
</tr>
<tr>
<td>5. Diffuser/Crossover</td>
<td>LEMD, PE</td>
<td>EDC, 2, 4, 6</td>
<td>CGT, HGT</td>
</tr>
<tr>
<td>6. Discharge Collector</td>
<td>LEMD, PE</td>
<td>EDC, 6</td>
<td>CGT, HGT</td>
</tr>
<tr>
<td>7. Discharge Ducts</td>
<td>SOW, ICD, LEMD, PE</td>
<td>EDC, 1</td>
<td>CGT, HGT</td>
</tr>
</tbody>
</table>

SOW = Statement of Work
ICD = Interface Control Document
LEMD = Loads, Environment, and Material Documentation
PE = Previous Element Analyzed
CDC = Conservative Design Criteria
EDC = Empirical Design Correlation
CGT = Cold Gas Tests at Stennis Space Center
HGT = Hot Gas Tests at Stennis Space Center
Proven Turbine Analysis Codes Will Be Used

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1D Meanline</td>
<td>1D Meanline Pressures, Temperature, Velocities and Pressure Losses</td>
<td>ATC Experience Base</td>
</tr>
<tr>
<td>2</td>
<td>2D Inviscid - "KATSANIS"/ "McFARLAND"</td>
<td>Inviscid 2D Pressures, Temperature, Velocities and Flow Angles</td>
<td>ATC Experience Base Industry/NASA Standard</td>
</tr>
<tr>
<td>3</td>
<td>2D Viscous (Navier Strokes) - "AEROVISC", "PHOENICS", "FIDAP"</td>
<td>Viscous 2D Pressures, Temperature, Velocities, Flow Angles and Pressure Losses</td>
<td>IR&D Validation Plan for "AEROVISC" Existing Empirical Data Base for "PHOENICS" and "FIDAP"</td>
</tr>
<tr>
<td>5</td>
<td>3D Viscous (Navier Strokes) - "AEROVISC", "PHOENICS", "FIDAP"</td>
<td>Viscous 3D Pressures, Velocities, Flow Angles and Pressure Losses</td>
<td>IR&D Validation Plan for "AEROVISC" Existing Empirical Data Base for "PHOENICS" and "FIDAP"</td>
</tr>
<tr>
<td>6</td>
<td>Design Codes - "MULTISTG", "OFFTURB"</td>
<td>Geometry - Basic Sizing, Off-Design Performance</td>
<td>ATC Experience Base</td>
</tr>
<tr>
<td>7</td>
<td>CDF Analysis, Pre and Post Processor Codes - "PATRAN"/ "TRANSLATE", "OTHER ROUTINES"</td>
<td>Advanced Mesh Generation and Color Graphics to Aid in Rapid CFD Design and Analysis</td>
<td>ATC Experience Base</td>
</tr>
</tbody>
</table>
Turbine Design Elements Are Integrated Into A Concerted Analysis Effort

<table>
<thead>
<tr>
<th>Element</th>
<th>Input Source</th>
<th>Analysis Codes</th>
<th>Test Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Turbine Inlet Flange</td>
<td>SOW, ICD, LEMD</td>
<td>EDC, 1</td>
<td>CGT, HGT</td>
</tr>
<tr>
<td>2. Turbine Inlet Manifold</td>
<td>SOW, ICD, LEMD, PE</td>
<td>EDC, 1, 5, 7</td>
<td>CGT, HGT</td>
</tr>
<tr>
<td>3. Nozzle Vanes (1st and 2nd Stage)</td>
<td>LEMD, PE</td>
<td>EDC, 2, 6, 3, 5, 7, 8</td>
<td>CGT, HGT</td>
</tr>
<tr>
<td>4. Rotor Blade (1st and 2nd Stage)</td>
<td>LEMD, PE</td>
<td>EDC, 2, 6, 3, 5, 7, 8</td>
<td>CGT, HGT</td>
</tr>
<tr>
<td>5. Turbine Exhaust w/ Guide Vanes</td>
<td>SOW, ICD, LEMD, PE</td>
<td>EDC, 1, 2, 5, 7</td>
<td>CGT, HGT</td>
</tr>
</tbody>
</table>

SOW = Statement of Work
ICD = Interface Control Document
LEMD = Loads, Environment, and Material Documentation
PE = Previous Element Analyzed
EDC = Empirical Design Correlation

CGT = Cold Gas Tests at Stennis Space Center
HGT = Hot Gas Tests at Stennis Space Center
Proven Dynamic Analysis Codes Will Be Used

<table>
<thead>
<tr>
<th>ANALYSIS CODE NO.</th>
<th>ANALYSIS CODE DESCRIPTION</th>
<th>ANALYSIS CODE OUTPUT</th>
<th>ANALYSIS CODE VERIFICATION BASIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>"RODYNE" Dynamic Simulation Code</td>
<td>Campbell Diagrams, Root Loci to Show Critical Speed Margin and Stability</td>
<td>ATC Experience Base SSME HPFTP Benchmark with NASA MSFC</td>
</tr>
<tr>
<td>3</td>
<td>"ANSYS" Finite Element Code</td>
<td>Detailed Stress Response to Dynamic Loading from Hub Motion and Fluid Pressure</td>
<td>Commercial Code Industry/NASA Standard</td>
</tr>
<tr>
<td>4</td>
<td>"RODYNE" Dynamic Simulation Code</td>
<td>Response of Vane/ Hub or Bladed Disc/ Rotor/ Housing to Imbalance, Hydraulic/ Aerodynamic Forces, Rubbing, Transient Operation</td>
<td>ATC Experience Base SSME HPFTP Benchmark with NASA MSFC</td>
</tr>
</tbody>
</table>
Dynamic Analysis Elements Are Integrated Into A Concerted Analysis Effort

<table>
<thead>
<tr>
<th>Element</th>
<th>Input Source</th>
<th>Analysis Codes</th>
<th>Test Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Rotating Assembly Critical Resonances & Mode Shapes, Lateral</td>
<td>CDC, LEMD</td>
<td>Preliminary Design: 1, 2</td>
<td>Detail Design: 1, 2</td>
</tr>
<tr>
<td>2. Rotating Assembly Critical Resonances & Mode Shapes, Torsional</td>
<td>CDC, LEMD</td>
<td>Preliminary Design: 1, 2</td>
<td>Detail Design: 1, 2</td>
</tr>
<tr>
<td>3. Impeller Blade and Shroud</td>
<td>LEMD, PD</td>
<td>Preliminary Design: 3</td>
<td>Detail Design: 1, 3, 4</td>
</tr>
<tr>
<td>4. Diffuser/Crossover</td>
<td>LEMD, TD</td>
<td>Preliminary Design: 3</td>
<td>Detail Design: 3</td>
</tr>
<tr>
<td>5. Pump Volute</td>
<td>LEMD, TD</td>
<td>Preliminary Design: 3</td>
<td>Detail Design: 3</td>
</tr>
<tr>
<td>6. Nozzle Vanes (1st and 2nd Stage)</td>
<td>LEMD, TD</td>
<td>Preliminary Design: 3</td>
<td>Detail Design: 1, 3, 4</td>
</tr>
<tr>
<td>7. Rotor Disc (1st and 2nd Stage)</td>
<td>LEMD, TD</td>
<td>Preliminary Design: 3</td>
<td>Detail Design: 1, 3, 4</td>
</tr>
<tr>
<td>8. Rotor Blades (1st and 2nd Stage)</td>
<td>LEMD, TD</td>
<td>Preliminary Design: 3</td>
<td>Detail Design: 1, 3, 4</td>
</tr>
</tbody>
</table>

CDC = Conservative Design Criteria
LEMD = Loads, Environment, and Material Documentation
PD = Pump Design
TD = Turbine Design
CGT = Cold Gas Tests at Stennis Space Center
HGT = Hot Gas Tests at Stennis Space Center
LT = Laboratory Tests

log 188.611
Proven Power Transmission Codes Will Be Used

<table>
<thead>
<tr>
<th>ANALYSIS CODE NO.</th>
<th>ANALYSIS CODE DESCRIPTION</th>
<th>ANALYSIS CODE OUTPUT</th>
<th>ANALYSIS CODE VERIFICATION BASIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ATC Code</td>
<td>Flowrates, Pressure Drops, Velocities</td>
<td>ATC Experience Base</td>
</tr>
<tr>
<td>2</td>
<td>ATC Code</td>
<td>Axial Thrust Load on Bearings and Balancer</td>
<td>ATC Experience Base</td>
</tr>
<tr>
<td>3</td>
<td>1D Bearing Cooling Flow</td>
<td>1D Pressures Mass Flows and Temperature</td>
<td>ATC Experience Base</td>
</tr>
<tr>
<td>4</td>
<td>2D Viscous (Navier Strokes) - "AEROVISC", "PHOENICS", "FIDAP"</td>
<td>Viscous 2D Pressures, Velocities, and Mass Flows</td>
<td>IR&D Validation Plan for "AEROVISC" Existing Empirical Data Base for "PHOENICS" and "FIDAP"</td>
</tr>
<tr>
<td>5</td>
<td>3D Viscous (Navier Strokes) - "AEROVISC", "PHOENICS", "FIDAP"</td>
<td>Viscous 3D Pressures, Velocities, and Mass Flows</td>
<td>IR&D Validation Plan for "AEROVISC" Existing Empirical Data Base for "PHOENICS" and "FIDAP"</td>
</tr>
<tr>
<td>6</td>
<td>CFD Analysis, Pre and Post Processor Codes - "PATRAN"/ "TRANSLATE", "OTHER ROUTINES"</td>
<td>Advanced Mesh Generation and Color Graphics to Aid in Rapid CFD Design and Analysis</td>
<td>ATC Experience Base</td>
</tr>
<tr>
<td>7</td>
<td>A. B. Jones</td>
<td>Life, Capacity, Stiffness, Cooling Pressure/Flow Characteristics</td>
<td>ATC Experience Base</td>
</tr>
<tr>
<td>8</td>
<td>Shabbreth</td>
<td>Bearing Life and Wear Rates</td>
<td>NASA/SSME</td>
</tr>
<tr>
<td>9</td>
<td>"Groove" Damper Seal and Grooved Seal Design</td>
<td>Leakage and Rotordynamic Coefficients for Turbulent Annular Seals</td>
<td>Published Technical Literature, Test Data</td>
</tr>
</tbody>
</table>
Power Transmission Elements Are Integrated Into A Concerted Analysis Effort

<table>
<thead>
<tr>
<th>Element</th>
<th>Input Source</th>
<th>Analysis Codes</th>
<th>Test Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Axial Thrust Loads</td>
<td>LEMD, TPD</td>
<td>1, 2</td>
<td>1, 2, 4, 6</td>
</tr>
<tr>
<td>2. Balance Piston Loads and Performance</td>
<td>LEMD, TPD, PA</td>
<td>2</td>
<td>2, 4, 6</td>
</tr>
<tr>
<td>3. Radial Loads</td>
<td>LEMD, TPD, PA</td>
<td>4, 6</td>
<td>5, 6</td>
</tr>
<tr>
<td>4. Pump End Bearing Design</td>
<td>LEMD, CDC, PA</td>
<td>3, 7, 8</td>
<td>7, 8</td>
</tr>
<tr>
<td>5. Turbine End Bearing Design</td>
<td>LEMD, CDC, PA</td>
<td>3, 7, 8</td>
<td>7, 8</td>
</tr>
<tr>
<td>6. Damper Seal Design</td>
<td>LEMD, CDC, PA, MTI</td>
<td>9</td>
<td>4, 5</td>
</tr>
<tr>
<td>7. Labyrinth/Damper Seal Design</td>
<td>LEMD, CDC, PA</td>
<td>3</td>
<td>4, 5, 6</td>
</tr>
</tbody>
</table>

LEMD = Loads, Environment, and Material Documentation
TPD = Tubopump Design Definition (Preliminary or Detail)
PA = Previous Analyses (Pump/Turbine Performance, Stress, Thermal, Dynamics)
CDC = Conservative Design Criteria
MTI = Mechanical Technology, Incorporated
CGT = Cold Gas Tests at Stennis Space Center
HGT = Hot Gas Tests at Stennis Space Center
LT = Laboratory Tests
Proven Thermal Analysis Codes Will Be Used

<table>
<thead>
<tr>
<th>ANALYSIS CODE NO.</th>
<th>ANALYSIS CODE DESCRIPTION</th>
<th>ANALYSIS CODE OUTPUT</th>
<th>ANALYSIS CODE VERIFICATION BASIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>"SINDA"</td>
<td>Detailed 2D/3D Temperature Distribution</td>
<td>Industry/NASA Standard</td>
</tr>
<tr>
<td>2</td>
<td>"ONE - D - COND"</td>
<td>1D Transient Temperature Distribution</td>
<td>ATC Experience Base/ATC In-House Code</td>
</tr>
<tr>
<td>3</td>
<td>"PATRAN"</td>
<td>Model Geometry and Input for "P/THERMAL"</td>
<td>Industry/NASA Standard</td>
</tr>
<tr>
<td>4</td>
<td>"P/THERMAL"</td>
<td>2D/3D Temperature Distribution and Stress Analysis Compatible Results</td>
<td>ATC Experience Base Titan Engine Margin Study</td>
</tr>
</tbody>
</table>
Thermal Analysis Elements Are Integrated Into A Concerted Analysis Effort

<table>
<thead>
<tr>
<th>Element</th>
<th>Input Source</th>
<th>Analysis Codes</th>
<th>Test Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Axisymmetric, Transient and Steady State Temperature Profiles</td>
<td>LEMD, TPD</td>
<td>1, 2</td>
<td>2</td>
</tr>
<tr>
<td>2. Turbine Inlet Manifold Transient and Steady State Temperature Profiles</td>
<td>LEMD, TPD</td>
<td>2</td>
<td>3, 4</td>
</tr>
<tr>
<td>3. Nozzle Vanes (1st and 2nd Stage)</td>
<td>LEMD, TD</td>
<td>2</td>
<td>3, 4</td>
</tr>
<tr>
<td>4. Rotor Disc (1st and 2nd Stage)</td>
<td>LEMD, TD</td>
<td>2</td>
<td>3, 4</td>
</tr>
<tr>
<td>5. Turbine Blades (1st and 2nd Stage)</td>
<td>LEMD, TD</td>
<td>3, 4</td>
<td>3, 4</td>
</tr>
<tr>
<td>6. Exhaust Housing w/ Guide Vanes</td>
<td>LEMD, TD</td>
<td>2</td>
<td>3, 4</td>
</tr>
</tbody>
</table>

LEMD = Loads, Environment, and Material Documentation
TPD = Tubopump Design Definition (Preliminary or Detail)
TD = Turbine Design
CGT = Cold Gas Tests at Stennis Space Center
HGT = Hot Gas Tests at Stennis Space Center
Proven Stress Analysis Codes Will Be Used

<table>
<thead>
<tr>
<th>ANALYSIS CODE NO.</th>
<th>ANALYSIS CODE DESCRIPTION</th>
<th>ANALYSIS CODE OUTPUT</th>
<th>ANALYSIS CODE VERIFICATION BASIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Empirical Correlations</td>
<td>Preliminary Stress Levels</td>
<td>ATC Experience</td>
</tr>
<tr>
<td>2</td>
<td>2D Finite Element Models - "ANSYS", "PATRAN"</td>
<td>2D Matrix and Modal Models - Stress Levels</td>
<td>Commercial Code Industry/NASA Standard</td>
</tr>
<tr>
<td>4</td>
<td>"FLAGRO"</td>
<td>Fatigue Life of Cyclically Loaded Structures with Initial Cracklike Defects</td>
<td>NASA</td>
</tr>
</tbody>
</table>

log 188.613
Stress Analysis Elements Are Integrated Into A Concerted Analysis Effort

<table>
<thead>
<tr>
<th>Element</th>
<th>Input Source</th>
<th>Analysis Codes</th>
<th>Test Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Inducer</td>
<td>LEMD, PD</td>
<td>1, 2, 3, 4</td>
<td>FT, CGT</td>
</tr>
<tr>
<td>2. Impeller</td>
<td>LEMD, PD</td>
<td>1, 2, 3, 4</td>
<td>FT, CGT</td>
</tr>
<tr>
<td>3. Diffuser/Crossover</td>
<td>LEMD, PD</td>
<td>1, 2, 3, 4</td>
<td>FT, CGT</td>
</tr>
<tr>
<td>4. Pump Housing</td>
<td>LEMD, PD</td>
<td>1, 2, 3, 4</td>
<td>FT, CGT</td>
</tr>
<tr>
<td>5. Bearing Housing</td>
<td>LEMD, PTD</td>
<td>1, 2, 3, 4</td>
<td>HGT</td>
</tr>
<tr>
<td>6. Turbine Inlet Manifold</td>
<td>LEMD, TD</td>
<td>2, 3, 4</td>
<td>FT, HGT</td>
</tr>
<tr>
<td>7. Turbine Nozzle/Stator</td>
<td>LEMD, TD</td>
<td>2, 3, 4</td>
<td>CGT, HGT</td>
</tr>
<tr>
<td>8. Turbine Disc</td>
<td>LEMD, TD</td>
<td>2, 3, 4</td>
<td>CGT, HGT</td>
</tr>
<tr>
<td>9. Turbine Blades</td>
<td>LEMD, TD</td>
<td>2, 3, 4</td>
<td>LT, CGT, HGT</td>
</tr>
<tr>
<td>10. Turbine Exhaust Housing</td>
<td>LEMD, TD</td>
<td>1, 2, 3, 4</td>
<td>FT, CGT, HGT</td>
</tr>
<tr>
<td>11. Shaft</td>
<td>LEMD, PTD</td>
<td>1, 2, 3, 4</td>
<td>CGT, HGT</td>
</tr>
<tr>
<td>12. Flange/Fasteners</td>
<td>LEMD</td>
<td>1, 2, 3, 4</td>
<td>FT, CGT, HGT</td>
</tr>
<tr>
<td>13. Turbopump Mount</td>
<td>LEMD</td>
<td>1, 2, 3</td>
<td>HGT</td>
</tr>
</tbody>
</table>

Legend:
- **LEMD** = Loads, Environment, and Material Documentation
- **PD** = Pump Design
- **PTD** = Power Transmission Design
- **TD** = Turbine Design
- **CGT** = Cold Gas Tests at Stennis Space Center
- **HGT** = Hot Gas Tests at Stennis Space Center
- **FT** = Fabrication Tests (Proof, Burst, Spin)
- **LT** = Laboratory Tests
MTI Provides Analysis Support For Bearings And Seals

- Bearing Design - Cage Stability
 - CREB or RAPIDRED Computer Codes
- Lift-Off Seals
 - GFACE/SPIRALP Computer Codes
- Damper Seals
 - DSEAL Computer Code
- Bearing Instrumentation
- Bearing Type Trade Study
 - Rolling Element
 - Hybrids
 - Hydrostatic
MTI will conduct tests to evaluate candidate bearing materials

- Bearing Materials Tests
 - Material Candidate Selection
 - Rolling Contact Performance Tests
 - Cryogenic Sliding Wear Tests
 - Cryogenic Rolling Wear Tests
 - Stress Corrosion Cracking Tests
Bearing Materials Will Be Systematically Evaluated

Subtask 2
Conventional
Rolling Contact Fatigue
and Cryogenic Thermal
Shock Tests

Subtask 2
Modified
Rolling Contact
Fatigue/Wear

Two Best
Race/Rolling Element
Hard Coat Combinations

Material
System
Requirements
and Selection
Criteria

Recommendations
for Bearing
Testing Material
Combinations

a - Rolling
Contact
b - Rank
c - Order

Subtask 3
Cryogenic Sliding
Wear Tests

Four Best Race/
Rolling Element
Hard Coat/Soft Coat
Combinations and
Two Best Cage
Materials

Subtask 3
Cryogenic
Rolling Wear
Tests

1 - Wear
2 - Test
3 - Rank
4 - Order

Subtask 1
Candidate
Test
Review

Subtask 1
Candidate
Selection

10 Race/
Rolling Element
Materials

3 Race/
Rolling Element
Materials

3 Hard Coats
2 Soft Coats

10 Coatings

10 Cage Materials

3 Cage Materials
Preliminary Materials Have Been Selected For Evaluation

<table>
<thead>
<tr>
<th>Race Rolling Element Materials</th>
<th>Hard Coats</th>
<th>Soft Coats</th>
<th>Cage Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>440C (Baseline)</td>
<td>Ion Implantation Chrome</td>
<td>Ag</td>
<td>Armalon (Baseline)</td>
</tr>
<tr>
<td>CRB-7</td>
<td>Ion Implantation Titanium/Carbon</td>
<td>MoS₂</td>
<td>Salox-M</td>
</tr>
<tr>
<td>MRC-2001</td>
<td>PVD Cr 203</td>
<td></td>
<td>Silver-Plated Steel or Bronze</td>
</tr>
</tbody>
</table>
Multi-Pronged Approach to Stress Corrosion Cracking Issue

- Minimize Hoop Stress
 - Fit Analysis
 - Ball Bearings
 - Single Interferences
 - Fit Per Bearing
 - Preload Control

- Control Environment
 - Surface Treatment (Test Program)

- Optimize Materials
 - Forged Races (Test Program)
 - Alternates (Test Program)
 - Surface Treatment (Test Program)
Casting Feasibility

- Phase I Impeller Development Program
 - Contact Industry Casting Leaders for Input on Facility Availability and Experience Base
 - Perform Mechanical Properties Tests on Vendor Supplied Coupons
 - Iteration of Casting Practice to Develop Best Mechanical Properties and Component Geometry
 - Destructive Tests of Castings for Metallurgical and Mechanical Properties Evaluation
 - Balance Tests to Verify Symmetry
 - Spin and Burst Tests to Determine Design Margins
- Phase II Casting Development and Refinement
 - Development and Refinement of Cast Impellers, Manifolds, and Housings
Mechanical Properties Evaluation
For Cast Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Material</th>
<th>Phase I</th>
<th>Phase II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impeller</td>
<td>Ti-5Al-2.5 Sn ELI</td>
<td>T*, F*, CG*, Prolongation, Spin, Burst</td>
<td>Prolongation, Spin</td>
</tr>
<tr>
<td>Housing</td>
<td>Inconel 718</td>
<td>T, F, CG</td>
<td>Prolongation, Burst, Proof</td>
</tr>
<tr>
<td>Manifold</td>
<td>Incoloy 909</td>
<td>T, F, CG, SR*</td>
<td>Prolongation, Burst, Proof</td>
</tr>
</tbody>
</table>

Preliminary Material Properties Evaluation, T - Tensile, F - Fatigue (LCF, HCH), CG - Crack Growth, SR - Stress Rupture
Design Approach To Ensure Producibility

- Producibility Engineering Input to Design
- Casting Vendors Review Preliminary Drawings
- Tooling Options to Produce Casting are Considered
- Iterations to Refine Casting Procedures Have Been Included in Casting Program
- Modifications Made to Final Design to Ensure Reliability, Producibility, and Low Cost With Compromise to Performance if Necessary
Parametric Analyses Will Be Used To Select Minimum Cost Design Configurations
Trade Studies Will Be Used To Refine Our Low Cost Concepts

• Inputs
 — Part Costs
 — Part Weight
 — Relative Reliability
 — Turbine Weight Flow

• Constraints
 — Turbopump Reliability
 — Turbine Weight Flow Maximum ≈ TBD
 — Turbopump Weight Maximum ≈ TBD

• Optimize Configuration
 — ADS Code
We Will Perform Design Trade Studies to Ensure a Reliable, Low Cost, Maintainable Design
Maintainability Options Listing

<table>
<thead>
<tr>
<th>Options</th>
<th>Evaluation Parameters</th>
<th>Reliability</th>
<th>Cost</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakaway Torque Movement</td>
<td></td>
<td>With Mechanical, Leakage Potential in Access Port</td>
<td>Quantity Cost Differences; Launch Site Gas vs. Part Cost Increase</td>
<td>No Effect</td>
</tr>
<tr>
<td>• Turbine Driven - Cold Gas*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Mechanical - Wrench</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbine Blade Inspection</td>
<td></td>
<td>Damage to Turbine Blades</td>
<td>Time to Gain Access vs. Inspection Time</td>
<td>No Effect</td>
</tr>
<tr>
<td>• Best Method</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leak Check of External Connections</td>
<td></td>
<td>No Effect</td>
<td>Quantity Differences</td>
<td>Weight Increase With Dual Seals</td>
</tr>
<tr>
<td>• Pressure Between Dual Seals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Gas Chromatography</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Bubble Check</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Seals</td>
<td></td>
<td>Increased Reliability With Dual Seals</td>
<td>Increase Part Cost With Dual Seals</td>
<td>No Effect</td>
</tr>
<tr>
<td>• Dual Seals *</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Single Seals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health Monitoring</td>
<td></td>
<td>Increase in Bearing Life</td>
<td>Cost of Monitoring and Data Analysis</td>
<td>No Effect</td>
</tr>
<tr>
<td>• Bently Probe for Bearing Distress</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle Integration</td>
<td></td>
<td>Likelihood of Undetected Damage</td>
<td>Damage Costs Assembly Costs</td>
<td>No Effect</td>
</tr>
<tr>
<td>• Damage Rate Shipped, Installed, or Pulled from Engine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method of Packing/Shipping</td>
<td></td>
<td>Likelihood of Undetected Damage</td>
<td>Damage Costs</td>
<td>No Effect</td>
</tr>
<tr>
<td>Number and Types of Ground Support Equipment</td>
<td></td>
<td>Complexity and Interfaces</td>
<td>Acquisition and Launch Support Labor Costs</td>
<td>No Effect</td>
</tr>
<tr>
<td>Number and Location of Pre-Flight Checkout</td>
<td></td>
<td>Increase Reliability Due to Additional Checkout; Reduce Breaking into System</td>
<td>Cost of Increased Manhours for Checkout</td>
<td>No Effect</td>
</tr>
</tbody>
</table>

* Selection for Point of Departure Design
Commonality Provides Substantial Development and Life Cycle Cost Benefits

<table>
<thead>
<tr>
<th>Commonality</th>
<th>Level</th>
<th>Options</th>
<th>Reliability</th>
<th>Cost - Development/LCO</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>Common LCH(_4)/LH(_2) TP 100%</td>
<td>LCH(_4) TP Reliability Increases Because TP Operating Derated</td>
<td>Substantial Cost Savings</td>
<td>Significant Adverse TP Weight Impact on LCH(_4) Pump</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Common Turbine Manifold</td>
<td>Reliability Increase on LOX Pumps; Operating Derated</td>
<td>Identical on All 4 Turbopumps</td>
<td>Small Increase in Manifold Pressure Loss in LOX Pumps</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Common Turbine Rotor Discs</td>
<td>Margin Decrease on LOX Turbine Blades; Short Chord</td>
<td>Identical on All 4 Turbopumps and Stages Within Turbopumps</td>
<td>Performance Decrease On Fuel Turbines; Chord Length</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Common Impellers</td>
<td>No Effect</td>
<td>Identical Within Common Fuel Turbopumps</td>
<td>Lower Performance on 2nd Stage Due to Increased Incidence</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Common Bearings</td>
<td>LOX TP DN Higher Than for Optimized LOX TP but Greatly Derated from Fuel Conditions</td>
<td>Identical Within Turbopumps and Between Turbopumps</td>
<td>Increased Weight on LOX Pumps</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Common Lift-Off Seals</td>
<td>Increased Reliability - Improvement/Experience Curve</td>
<td>Between Turbopumps</td>
<td>No Effect</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Common Fir Tree Attachment for Turbine Blades</td>
<td>Increased Reliability - Improvement/Experience Curve</td>
<td>Between Turbopumps</td>
<td>No Effect</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Turbine Blade Dampers</td>
<td>Increased Reliability - Improvement/Experience Curve</td>
<td>Identical Within Turbopumps and Between Turbopumps</td>
<td>No Effect</td>
<td></td>
</tr>
</tbody>
</table>

Legend
- V: Within Vehicle
- E: Within Engine
- P: Within Turbopump
Results Of Low Cost Studies Will Be Incorporated In Baseline Design

- Update Preliminary Design Analyses
- Initial Reliability Estimates
 — Probabilistic Design
- Update Component Costs
- Tooling Concepts - Assembly/Disassembly
- Update GSE/Test Cart Concepts
- Begin Instrumented Design
- PDR
Objective: Determine Feasibility of Selected Technologies

George Claffy

Laboratory Tests (W.B.S. 1.2.0)
Lab Tests Will Be Performed To Support Preliminary Designs

- Casting Feasibility
 - Material Characterization Tests
 - Impeller Spin Tests
- Turbine Blade Tests
- Bearing and Seal Tests
 - MTI Materials Tests
 - Stress Corrosion Cracking Test
Key Issues Addressed In Test Programs

Materials Testing

• Cast Materials Have Insufficient Data Base for Our Applications
 — Incoloy 909 - HEE, High Temp. Fatigue
 — Ti - 5, 2.5 - HEE, Cryo Fatigue and Ductillity
 — Inconel 718 - HEE, Cryo Fatigue and Ductillity

• Additional Data Required on Turbine Blade Material
Key Issues Addressed In Test Programs (Cont)

Impeller Fab and Test

- Feasibility of Casting Impeller Geometry to Net Shape

- Feasibility of Using Titanium Castings for High-Speed Rotating Component
 - Dimensional Uniformity
 - Distortion at Speed
 - Variability of Physical Properties Within Casting
 - Effect of Non-Uniform Cooling Rates on Microstructure
 - Cryogenic Ductility
Key Issues Addressed In Test Programs (Cont)

Turbine Blade Fab and Test

- Feasibility of Forging Blade Geometry to Net Shape
- Sample-to-Sample Variability in A-286 TMP Material
 - Dimensions
 - Physical Properties
 - Natural Frequencies
Key Issues Addressed In Test Programs (Cont)

Bearing/Seal Testing

- Selection of High-Reliability Bearing Materials
 - MTI Sliding/Rolling Tests Will Identify Candidates
 - Candidates Will Be Evaluated in ATC Test Unit Under Simulated Service Conditions
 - Speed
 - Loads
 - Cryogenic Fluid
- Demonstration of Lift-Off Seal Reliability
 - Operate in ATC Test Unit
Tests Will Confirm Properties Of Critical Materials (WBS 1.2.2)

Objectives

• Evaluate Four Materials
 — Incoloy 909 Cast - Verify HEE and High Temperature Properties
 — Stellite 31 (Backup for Incoloy 909)
 — Inconel 718 Cast - Verify HEE and Cryo Temperature Properties
 — Ti 5, 2.5 Cast - Verify HEE, Ductility at Cryo Temp, Uniformity of Properties
 — TMP A-286 - Verify HEE and High Temperature Properties

Approach

• Perform Tests in Simulated Environments
 — HEE - Aerojet Hydrogen Materials Test Facility
 — Turbine Materials - 1200°F Simulated Combustion Gas
 — Pump Materials - LH₂
Materials Tests Address Needs Of Specific Components

<table>
<thead>
<tr>
<th>Material</th>
<th>Principal Component(s)</th>
<th>Tests: Tensile</th>
<th>Fatigue</th>
<th>Crack Growth</th>
<th>Stress Rupture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti-5, 2.5 (Cast)</td>
<td>Turbine Disk</td>
<td>R, C, H</td>
<td>R, C, H</td>
<td>R, C</td>
<td></td>
</tr>
<tr>
<td>Inconel 718 (Cast)</td>
<td>Pump Impellers</td>
<td>R, C, H</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pump Hsg.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R = Room Temperature
E = Elevated Temperature
C = Cryogenic
G = 1200°F Gas
H = HEE (R.T.)
Materials Testing Schedule Supports

Preliminary Design

<table>
<thead>
<tr>
<th>Program Months</th>
<th>Design Milestones (Ref.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inconel 718 Test</td>
</tr>
<tr>
<td></td>
<td>Ti5 Al, 2.5 Sn Test</td>
</tr>
<tr>
<td></td>
<td>A-286 TMP Test</td>
</tr>
<tr>
<td></td>
<td>Procure Specimens</td>
</tr>
<tr>
<td></td>
<td>Procure Specimens</td>
</tr>
<tr>
<td></td>
<td>Procure Specimens</td>
</tr>
<tr>
<td></td>
<td>Test Available Specimens</td>
</tr>
<tr>
<td></td>
<td>Procure New Specimens</td>
</tr>
<tr>
<td></td>
<td>Test New Specimens</td>
</tr>
</tbody>
</table>

Notes:
- POD Update
- POD Analysis
- Finalize Prelim Design
- Low Cost Studies
- Changes
- POD Update

Legend:
- △
Feasibility Of Casting Pump Impellers Will Be Evaluated (WBS 1.2.4)

Objectives

- Develop Tooling and Process for Casting Ti Pump Impellers for ALS
- Produce Several Castings to Demonstrate Repeatability
- Evaluate Structural Integrity by Testing

Approach

- Prepare Preliminary Casting Drawing for Representative Pump Impeller of Ti 5, 2.5
- Prepare Tooling and Pour Trial Pieces. Iterate Tooling and Drawing Based on Results
- Pour Additional Cast Impellers for Testing
- Machine Interfaces for Spin Testing
- Evaluate Structural Integrity by Metallurgical Testing and Spin Tests - Spin One Impeller to Burst
Casting CAD Drawing For Titanium Impeller Is In Progress
Impeller Testing Will Provide Confidence In Cast-Titanium Structural Integrity

- Metallurgical Tests
 - Machine Specimens From Critical Areas of Sectioned Casting to Provide Data on Microstructure and Properties

- Spin Tests
 - Take One Impeller to Burst Speed for Comparison With Value Predicted for Assumed Properties and Dimensional Uniformity
 - Spin Remaining Impellers to Maximum Operating Speed With Strain Gages Incorporated, as a Check on Unit-to-Unit Variations
 - Spin Tests at Cryogenic Temperature Are Desirable. Now Investigating Means of Accomplishing This
<table>
<thead>
<tr>
<th>Program Months</th>
<th>Select Casting Vendor</th>
<th>Fab Wax Injection Tool</th>
<th>Trial Castings</th>
<th>Metallurgical Tests</th>
<th>Deliverable Castings</th>
<th>Machine Drive Interfaces</th>
<th>Select Spin Test Vendor</th>
<th>Spin Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PDR (REF) 2.4.0.40
Turbine Blade Test Approach
Keyed To Analytical Results

• Blade Design Goal Is for All Natural Frequencies to be Above Blade Passing Frequency

• If There Is Insufficient Analytical Margin, a Vibration Survey Will Be Performed on Development Blades to Confirm Predicted Natural Frequency

• In Keeping With Good Design Practice, Dampers Will Be Incorporated During Detail Design—Assuming the Added Tip Mass Does Not Compromise Structural Integrity
Bearing/Seal Test Preparations Will Assure Readiness For Phase II Testing (WBS 1.2.3)

Objectives

- Evaluate Baseline and Alternative Ball Bearing Materials/Configuration

Approach

- Utilize Existing Tester Design and Generic Parts
- Fab All Tester Hardware in Phase I
- Prepare Bearing/Seal Test Plan
- Select Test Facility
Brg/Seal Test Preparation Schedule

Leads to Early Phase II Test

<table>
<thead>
<tr>
<th>Program Months</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepare Bearing Dwgs (Ref.)</td>
<td></td>
</tr>
<tr>
<td>Bearing Procurement</td>
<td></td>
</tr>
<tr>
<td>Test Unit Design</td>
<td></td>
</tr>
<tr>
<td>Hardware Fab.</td>
<td></td>
</tr>
</tbody>
</table>

Build Up Test Unit in Phase II
Technology Development Plan
(WBS 1.3.0)

- Provides Vehicle for Identifying Technology Areas in Need of Further Pursuit
- Anticipate Awareness of Technology Development Needs
- Sufficient Documentation Will be Provided to Support ALS Phase C/D Planning
 - Problem Statement
 - Data Required
 - Recommended Approach
 - Suggested Facilities/Equipment
- One Program Already Identified for Inclusion
 - Extended A-286 TMP Turbine Blade Life
Preliminary Cost Model

Colin Faulkner

Objective: Develop and Anchor Cost Model
Phase I Cost Model Deliverables

- Model Architecture (Preliminary Version)
 - Assumptions Used
- Input Data Sources
- Approach for Evaluating NASA Requirements Impacts
- Approach for Application of Phase II Fabrication Data
- Model Results Uncertainties Identified
Cost Model Basis

- Piece-Part Based
 - Process Flows Developed for Each Part and Assembly
 - Production and Operations Activities
 - Specifications and Procedures Identified for Each Flow Activity

- Spreadsheet Based
 - Records and Manipulates Data (Learning Curves, etc.)

- Titan Data Base
 - Titan Production and Operations Costs Anchor Initial Model and "Test for Reasonableness"

Program Goal: Reduce Magnitude of Cost Uncertainties

Today: 20-30% (STME/STBE Studies)
Phase II End: 5-10%
O&S Costs Will Be Addressed

- O&S Costs Will Be Estimated Using:
 - Historical Data Base
 Titan 1st and 2nd Stage
 SSME
 Defense Logistics Agency Reports
 - Analysis
 Detailed Evaluation of Activities

- Estimates at Maintenance Significant Item (MSI) Level

- Estimates Will Include Mission Model, Launch Rate,
 Service-Free Life, Useful Life, Turnaround Time

- Apportion Propulsion System Level Costs to Component
 Assembly Level
Specifications And Procedures Impacts Analysis

- Concurrently Optimize Design, Fabrication, O&S and Specification Requirements
 - Specifications Analyzed as Up-Front Activity
 - Zero-Base Budget Approach
 - Verify Need for Each Specification Item
 - No Specification Duplication
 - Design to Avoid Sensitive Production Processes
 - Develop Simplified Specification Where Possible
 - Tailor Government Specifications or Substitute Contractor Specifications
Phase I Cost Model Network/Schedule
Phase II

Detail Design, Fabrication, And Test
Phase II Focused On Turbopump Fabrication And Test

- Detail Design
 - Producibility Trades
 - Drawings
 - Supporting Detailed Analyses

- Experiments
 - Bearing Life Testing
 - Seal Development

- Fabrication
 - Fabrication of Two Turbopumps
 - Proof Testing
 - Inspection Technique Development

- Testing
 - Cold Gas - Internal Environment
 - Hot Fire - Full Load

- Cost Model
 - Data Base Development
Detail Design
WBS (2.1.0)

Objective: To Produce All Drawings With Supporting Analyses Required to Make the Two Turbopumps
Detail Design Will
Re-Emphasize Producibility

- Producibility Refinements
 - Casting Options
 - Inspection Techniques
 - Production Enhancers for Cast Parts
 - In-Process Controls
 - MTI
 - Ingersoll
 - In-Process Inspection
 - MTI
 - Factory Floor Optimization and Organization
 - Ingersoll Engineering
 - High Speed Balance
 - MTI
We Will Perform Trade Studies to Enhance Design Productability

<table>
<thead>
<tr>
<th>Options</th>
<th>Evaluation Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reliability</td>
</tr>
<tr>
<td>Casting Technique</td>
<td>Investment Results in Less Variability</td>
</tr>
<tr>
<td>Pump Housing and Turbine Manifold</td>
<td>No Effect</td>
</tr>
<tr>
<td>Slurry Polishing</td>
<td>No Effect</td>
</tr>
<tr>
<td>• Pump Diffuser Vanes</td>
<td>No Effect</td>
</tr>
<tr>
<td>• Turbine Nozzles</td>
<td>No Effect</td>
</tr>
<tr>
<td>• Crossovers</td>
<td>No Effect</td>
</tr>
<tr>
<td>Inducer</td>
<td>No Effect</td>
</tr>
<tr>
<td>• Machined from Billet</td>
<td>No Effect</td>
</tr>
<tr>
<td>• Cast With Machined Leading Edges</td>
<td>No Effect</td>
</tr>
<tr>
<td>Production Enhancers Study for Cast Parts</td>
<td>No Effect</td>
</tr>
<tr>
<td>Hydro/Leak Check With Clamps Before Machining</td>
<td>No Effect</td>
</tr>
<tr>
<td>• Casting Targeting</td>
<td>No Effect</td>
</tr>
<tr>
<td>• CAD/CAM/CAE</td>
<td>No Effect</td>
</tr>
<tr>
<td>• X-Ray or Spin Verification of Part Integrity</td>
<td>No Effect</td>
</tr>
<tr>
<td>• In-Process Controls</td>
<td>No Effect</td>
</tr>
<tr>
<td>• NDE/Dye Pen</td>
<td>No Effect</td>
</tr>
<tr>
<td>In-Process Inspection for Machined Parts Including Electro-Optical Sensors (MTI)</td>
<td>No Effect</td>
</tr>
<tr>
<td>Factory Floor Optimization *</td>
<td>No Effect</td>
</tr>
<tr>
<td>• Work Cells</td>
<td>No Effect</td>
</tr>
<tr>
<td>• Material Handling</td>
<td>No Effect</td>
</tr>
<tr>
<td>• Lead Time</td>
<td>No Effect</td>
</tr>
<tr>
<td>• Inventory, Just-in-Time</td>
<td>No Effect</td>
</tr>
<tr>
<td>• Assembly</td>
<td>No Effect</td>
</tr>
<tr>
<td>• Interface with Suppliers (Ingersoll Engineering)</td>
<td>No Effect</td>
</tr>
<tr>
<td>High Speed Balance (MTI)</td>
<td>Rub Risk Reduced Bearing Loads Reduced</td>
</tr>
</tbody>
</table>

* Selection for Point of Departure Design
Detail Design Provides Drawings For All Equipment Required For Testing At SSC

- Hot Fire Turbopump
 - Supporting Analyses
 - Long Lead Release
 - Probabilistic Design of Life Drivers
 - Assembly Manuals/Tooling Drawings
 - Test Plans

- Cold Gas Turbopump
 - Long Lead Release
 - Assembly Manuals/Tooling
 - Test Plans

- Reliability Predictions

- Test Cart

- GSE
During Detail Design, Additional Technology Development Will Be Identified

- Materials Characterization Plan
- Analytical Model Development Plans
- Technology Development Plans
 - Titanium Housings
- Instrumentation Requirements
Phase II Laboratory Testing Supports Detail Design (WBS 2.2.0)

- Bearing and Lift-Off Seal Test
 - Substantiates Designs of These Elements
 - Provides Ranking of Bearing Material Combinations
 - Baseline: 440C/Armalon
 - Alternative: TBD
 - Operate in Cryogenic Fluid at Rated DN
 - Applied Bearing Loads 100% - 150% of Predicted Values
 - Will Run Duty Cycle Simulating Mission Operation
 - All Hardware Fab and Test Planning Accomplished in Phase I
Bearings and Lift-Off Seal Will Be Rig-Tested

LH₂ TPA 75mm Ball Bearing and Lift-Off Seal Test Plan

<table>
<thead>
<tr>
<th>Test Series</th>
<th>No. of Tests</th>
<th>Duration (Sec)</th>
<th>Bearing Fluid</th>
<th>Bearing Pressure and Flow Rate</th>
<th>RPM</th>
<th>Test Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checkout</td>
<td>4</td>
<td>15-30</td>
<td>LN₂</td>
<td>300 psi/100 gpm</td>
<td>10,000</td>
<td>Ensure Proper Operating Conditions, Including Instrumentation and System Integrity</td>
</tr>
<tr>
<td>Start/Stop and Endurance Test</td>
<td>15</td>
<td>540</td>
<td>LH₂</td>
<td>300 psi/100 gpm</td>
<td>26,700</td>
<td>Evaluate Life Versus Wear of Ball Bearings and Cage Designs</td>
</tr>
<tr>
<td>Bearing Inspection</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Measure Ball Diameters and Races for Wear; Inspect for Cracks</td>
</tr>
</tbody>
</table>

Notes:
- Flow Past Lift-Off Seal Will be Monitored; Also Lift-Off Seal Axial Position Will be Measured.
- Approximately 100-150% Design Radial and Axial Loads Apply to Bearings.
- Existing Facility Drive Turbine Will be Used.
- GN₂ (50-150°F @ 50 psia) Will be Used as Drive Gas.
Brg/Seal Test Schedule Supports

Detail Design

<table>
<thead>
<tr>
<th>Program Months</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assemble Test Unit</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Facility Prep and Installation</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Testing</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Documentation</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Detail Design (Ref.)</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
</tbody>
</table>
Turbopump Fabrication And Testing

G. Claffy

Objective: Fab, Assemble, and Test Two Turbopumps
Prototype Turbopump Fabrication Will Support Test Program And Calibrate Models (WBS 2.3.0)

- Long Lead-Approval Needed by Month 16
- Supplier Screening and Selection
- GSE/STE Detail Design and Fab
- Procure/Fab Hardware for Two Turbopumps Plus Critical Spares Plus Assembly Tooling
Prototype Turbopump Fabrication Will Support Test Program And Calibrate Models (WBS 2.3.0) (Cont)

- Inspection/QA
 - Acceptance Plan (DR-20) - Month 19
 - Acceptance Data Package (DR-31) - Month 32
 - Acceptance Review - Month 34

- Assemble and Deliver Two Turbopumps

- Collect Cost Data/Calibrate Cost Model

- Develop Key Procedures
 - Assy/Teardown
 - Casting Inspection
 - Balancing
 - Transportation/Storage
Summary of Deliverable Hardware

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 01-Cold Gas/Instrumented Turbopump</td>
<td>1</td>
</tr>
<tr>
<td>Unit 02-Hot Gas/Instrumented Turbopump</td>
<td>1</td>
</tr>
<tr>
<td>Critical Item Spares:</td>
<td></td>
</tr>
<tr>
<td>Impeller</td>
<td>2</td>
</tr>
<tr>
<td>Pump Housing</td>
<td>1</td>
</tr>
<tr>
<td>Turbine Manifold</td>
<td>1</td>
</tr>
<tr>
<td>Turbine Exhaust Housing</td>
<td>1</td>
</tr>
<tr>
<td>Turbine Rotor Assembly</td>
<td>2</td>
</tr>
<tr>
<td>Bearings</td>
<td>8</td>
</tr>
<tr>
<td>Seals</td>
<td>misc</td>
</tr>
<tr>
<td>GSE:</td>
<td></td>
</tr>
<tr>
<td>(Subject to Change, Based on Test Cart Design):</td>
<td>1</td>
</tr>
<tr>
<td>Handling Fixture</td>
<td>1</td>
</tr>
<tr>
<td>Maintenance Stand</td>
<td>1</td>
</tr>
<tr>
<td>Closure Kit</td>
<td>1</td>
</tr>
<tr>
<td>Shipping Container</td>
<td>1</td>
</tr>
<tr>
<td>Portable Crane</td>
<td>1</td>
</tr>
<tr>
<td>Work Table</td>
<td>1</td>
</tr>
<tr>
<td>Pallet Mover</td>
<td>1</td>
</tr>
<tr>
<td>STE:</td>
<td></td>
</tr>
<tr>
<td>Pump Discharge Line</td>
<td>1</td>
</tr>
<tr>
<td>Turbine Inlet Line</td>
<td>1</td>
</tr>
<tr>
<td>Test Cart</td>
<td>1</td>
</tr>
</tbody>
</table>
Major Fabrication Milestones are Established

- Long Lead Item Detail Design and Fab - Month 16
- All Detail Drawings Complete, Released for Fab - Month 21
- Hardware Fab and Proof Testing Complete - Month 32
- Test Units Assembled, Delivered, and Installed at SSC - Month 34
- GSE/STE Fab Complete - Month 32
Phase II Turbopump Test Effort Includes Planning, Support, And Analysis (WBS 2.4.0)

- Test Plan Draft (DR-30) Prepared Concurrent With Detail Design

- Critical Experiment Review Will Include Finalized Test Plan

- ATC Personnel Will Support Turbopump Installation and Test, and Perform Data Analysis/Evaluation

 — Installation, Maintenance, and Removal Data Will Be Closely Monitored and Documented (DR-33) for Cost Modeling Inputs

- Test Results Report Will Be Prepared After Conclusion of Testing (DR-34) Including Reliability Update

- Turbopump Will Be Disassembled and Inspected After Testing
Key Test Objectives Defined for Cold-Gas Test

<table>
<thead>
<tr>
<th>Key Parameter Measured</th>
<th>Type Instrumentation Required</th>
<th>Overall Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotor & Stator Study & Dynamic Blade Stresses</td>
<td>• Strain Gages</td>
<td>• Stress Models • Update Probablistic Analysis and Loads/Environment Document</td>
</tr>
<tr>
<td>Bearing Radial Load</td>
<td>• High Freq. Pressure Transducers</td>
<td>• Calibrate CFD Models of Pump Volute and Turbine Inlet • Update Probablistic Analysis and Loads/Environment Document</td>
</tr>
<tr>
<td>Shaft Axial Thrust</td>
<td>• Pressure Transducers • Proximity Gages</td>
<td>• Calibrate CFD Models of Impeller Front & Rear Shroud Cavities Balance Piston Cavities, and Turbine Disk Cavities • Update Probablistic Analysis and Loads/Environment Document</td>
</tr>
<tr>
<td>Bearing/Seal Operating Environment</td>
<td>• Pressure Transducers • Flow Meters • Temp. Sensors</td>
<td>• Calibrate Local CFD Models and Overall Bearing Cooling Scheme Model • Update Probablistic Analysis and Loads/Environment Document</td>
</tr>
<tr>
<td>Turbopump Performance</td>
<td>• Pressure Transducers • Flow Meters • Temp. Probes • Speed • Torque Measurement</td>
<td>• Verify Pump and Turbine Performance Predictions</td>
</tr>
</tbody>
</table>
Cold-Gas Turbopump Preliminary Test Matrix

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Pump (Q/N)/Q(N) des</th>
<th>N/N des**</th>
<th>Turbine (U/C)/(U/C) des</th>
<th>Turbine PR/PR des</th>
<th>Turbine Inlet Pressure (psi)</th>
<th>Turbine Discharge Pressure (psi)</th>
<th>Pump Discharge Pressure (psi)</th>
<th>Turbine Mass Flow (lbm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>0.5</td>
<td>2.38*</td>
<td>1.0</td>
<td>889</td>
<td>207</td>
<td>803</td>
<td>117</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>0.72</td>
<td>3.43*</td>
<td>1.0</td>
<td>3200</td>
<td>744</td>
<td>1665</td>
<td>421</td>
</tr>
<tr>
<td>3</td>
<td>1.1</td>
<td>0.72</td>
<td>3.43*</td>
<td>1.0</td>
<td>3200</td>
<td>744</td>
<td>1582</td>
<td>421</td>
</tr>
<tr>
<td>4</td>
<td>0.8</td>
<td>0.72</td>
<td>3.43*</td>
<td>1.0</td>
<td>2880</td>
<td>670</td>
<td>1830</td>
<td>379</td>
</tr>
<tr>
<td>5</td>
<td>0.8</td>
<td>0.5</td>
<td>2.38*</td>
<td>1.0</td>
<td>800</td>
<td>186</td>
<td>883</td>
<td>105</td>
</tr>
<tr>
<td>6</td>
<td>1.0</td>
<td>0.21</td>
<td>1.0</td>
<td>1.0</td>
<td>78</td>
<td>18</td>
<td>142</td>
<td>10</td>
</tr>
</tbody>
</table>

*2nd Stage Removed for Improved Performance at High U/Lo
**Planned test speed may be adjusted after critical speed analysis
Key Test Objective Defined For Hot-Gas Test

<table>
<thead>
<tr>
<th>Key Parameter(s) Measured</th>
<th>Type Instrumentation Required</th>
<th>Overall Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Environment</td>
<td>• Pressure Transducers</td>
<td>• Functional Validation in Real Engine Environment</td>
</tr>
<tr>
<td></td>
<td>• Flow Meters</td>
<td>• Verification of Probabilistic Design Analysis and Reliability Predictions</td>
</tr>
<tr>
<td></td>
<td>• Speed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Temp. Probes</td>
<td></td>
</tr>
<tr>
<td>Performance</td>
<td>• Speed</td>
<td>• Verification of Performance Scaling</td>
</tr>
<tr>
<td></td>
<td>• Pressure Transducers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Temp. Probes</td>
<td></td>
</tr>
<tr>
<td>Rotodynamic Behavior</td>
<td>• Proximity Probes</td>
<td>• Verify Dynamic Response Characteristics</td>
</tr>
<tr>
<td></td>
<td>• Accelerometers</td>
<td></td>
</tr>
</tbody>
</table>
Detailed Cost Model

Colin Faulkner

Objective: Develop a Verified Data Base for the Cost Model
Phase II—Cost Model Deliverables

- Completed Detailed Cost Model
 - Structure Description
 - Construction Assumptions
 - Input Data Sources
 - NASA Requirements Impacts
- Flight Hardware Cost Estimates
 - Theoretical First Unit Cost
 - Recurring Production Costs (Learning Curve and Rate Effects)
 - Recurring Operations Costs
- Cost Estimate Substantiation
 - Historical
 - "Similar TOS"
 - Phase I and II Fabrication
- Independent Assessment Weights
 - Parts and Assembly Weights
 - Complexity
 - Precision
 - Materials
Multiple Approaches To Reduce The Magnitude Of Uncertainties

<table>
<thead>
<tr>
<th>Uncertainty</th>
<th>Approach</th>
</tr>
</thead>
</table>
| Piece Part Costs | • Prototype Build
| | • Quotes From Multiple Vendors |
| | • Touch Labor and Touch Inspection |
| Learning Curve Effects | • Vendor Quotes on Lot Size and Quantities |
| Lot Size Effect | • Historic Data |
| Productivity | • Historic Data
| | — Scrap, Rework and Repair |
| | — Tooling, and Tool Maintenance |
| | • Documented Productivity Improvements |
| | — Historic Data |
| | — Consultants - Ingersoll Engineering |
| | — MTI |

- Uncertainty Values Are Allocated to Each Piece Part
Emphasis On Production And Operations Costs

- Audit Manufacture of Test Articles at Piece Part Level:
 - Two Turbopumps
 - Test Cart
 - GSE

- Analyze Applications of Advanced Factory Organization, Layout, and Equipment
 - Ingersoll Engineering
 - MTI

- Audit Test Operations at SSC:
 - Test Cart (Projected Acceptance Test Costs)
 - Operation and Maintenance of Turbopumps (Simulated Launch Pad Conditions)

- Audit Specifications and Procedures Impacts
 - Manufacture
 - Operations
 - Tom Peters Group Contributes Unbiased Perspective
Launch Rates and O&S Costs Are Covered

- Bookkeeping
 - Straightforward Within Cost Model
 - Can Adjust for Launch (Production) Rate, Cost Year, Learning Curve Effects

- All O&S Costs Will be Included in Cost Evaluation:
 - Technical Data Revisions
 - GSE Maintenance
 - Base Maintenance
 - Depot Maintenance
 - Spare and Repair Parts
 - Inventory Storage
 - Personnel Training
 - Logistics Down-time
 - Packaging and Preservation
 - Administration
Phase II Cost Model Activities

Prototype Production Cost Strategy
- Engineering, Manufacturing Review
- Collection Review

Reporting Analysis
- ECS Specifications

Cost Specification Impact
- Document Specifications
- Existing Data
- Department Inputs
- Matrix Database

Ranking of Specification Cost Impact

Prototype Database
- Collect
- Data Entry

Reporting Analysis
- Component Cost
- Detail Design Review
- Reports

Actual Production Process
- Collect Actuals

Costing Alternate 1
- Similar Parts Process

Costing Alternate 2
- Detailed Standards

Incorporate Uncertainty of Results
- Manufacturing Build
- Cost Improvement Curves
- O & S
- Economic Indicators

Upgrade Model Capability and Data
- Prototype Data
- User Input/Output Screens
- Incorporate Uncertainty

Cost Model Testing
- Analytical Software
- Input/Output

Component Cost Model
Concluding Remarks

Colin Faulkner
We Have Back-ups for Identified Risks

<table>
<thead>
<tr>
<th>Component</th>
<th>Risk</th>
<th>Alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impellers</td>
<td>Cast Titanium Ductility and Uniformity</td>
<td>Cast or Forged/Machined Shroud Attachment Technique</td>
</tr>
<tr>
<td>Turbine Housing</td>
<td>Adequate HEE Resistance in Cast Form</td>
<td>INCOLOY 909 Baseline and Stellite Back-up</td>
</tr>
<tr>
<td>Pump Housing</td>
<td>Cast Properties Inadequate at Cryogenic Temperatures</td>
<td>INCONEL 718 Baseline and Stainless Steel Back-up</td>
</tr>
<tr>
<td>Turbine Blade</td>
<td>Insufficient Damping</td>
<td>Tip Dampers Design Iterations and/or Tests</td>
</tr>
<tr>
<td>Balancing</td>
<td>Unbalance at Operating Speed Causes Reduced Bearing Life or Dynamic Instability</td>
<td>Early Analyses and Testing to Define Balancing Requirements</td>
</tr>
<tr>
<td>Performance Margin</td>
<td>Not Meeting Required Performance</td>
<td>Design Margin Against "Exhibit B" Requirements with Turbine Horsepower and Pump Discharge Pressure Margin.</td>
</tr>
<tr>
<td>Lift-Off Seals</td>
<td>Short Axial Length; Cocking</td>
<td>Two Interchangeable Concepts</td>
</tr>
<tr>
<td>Test Article</td>
<td>Damage in Transport and/or Test</td>
<td>Two Test Articles</td>
</tr>
</tbody>
</table>
Program Status

- Critical "Long Leads" Started:
 - Impeller Castings (CAD Complete, Procurement Initiated)
 - Titanium Samples in Test Preparation
 - Procurement Initiated for Other Cast Test Bars
 - POD Concept Update Underway (Freeze in 3 Weeks)

- Planning Finalized for Rest of Phase I
Communications

- Interfaces Require Particular Consideration
- We Want to Benefit From SSME and ATP Experience
- We Want to Communicate as Closely as Possible With NASA

- Disciplined System for Effective Follow-Ups
The monthly progress report provides visibility of significant technical and administrative activity occurring during the reporting period and work planned for next period.