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ABSTRACT

The Technical Evaluation Motor No. 7 (TEM-7) test was a full-scale, full-duration

static test firing of a high performance motor-configuration solid rocket motor with

nozzle vectoring. The test took place on 11 Dec 1990 at Thiokol Corporation Static

Test Bay T-97.

This final test report documents the procedures, performance, and results of the

static test firing of TEM-7. All observations, discussions, conclusions, and

recommendations included in this report are complete and final except for the TEM-7

fixed housing unbond investigation, which is reported in TWR-61585.

Included are a presentation and discussion of TEM-7 performance, anomalies,

and test result concurrence with the objectives outlined in CTP-0107, Rev A, Space

Shuttle Technical Evaluation Motor No. 7 (TEM-7) Static Fire Test Plan.
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ACRONYMS AND ABBREVIATIONS

ac
APU . . .
ASRM . .

ATVC. . .

CCP
CEI
CF/EPDM

C02 . .
CP . . .
CTPB .

dc . .
DM .
ET . .
ETM.
FSM
GCP.
HPM
HPU
Hz . .
ID . .
ips .. . .
Ib
Ibm
in
LDI
MAEHS

MAP . .
MEOP .

nun . .
ms . . ,
NA. . ,
NARC

NBR ,

alternating current
auxiliary power unit
Advanced Solid Rocket
Motor
ascent thrust vector
control
carbon-cloth phenolic
Contract End Item
carbon-fiber-filled
ethylene-propylene-
diene monomer
carbon dioxide
circular perforated
carboxyl-terminated
polybutadiene
direct current
development motor
external tank
engineering test motor
flight support motor
glass-cloth phenolic
high performance motor
hydraulic power unit
hertz
inside diameter
inches per second
pound
pound mass
inch
low-density indication
modified aft end
heating system
manual/automatic panel
maximum expected
operating pressure
minute
millisecond
not available
North American Rayon
Corporation
nitrile butadiene rubber

NCPT . . . . Nozzle Component
Program Team

OD . . . . . . . outside diameter
OPT . . . . '. . operational pressure

transducer
PBAN . . . . polybutadiene acrylic

acid acrylonitrile
terpolymer

PFAR postfire anomaly record
PFOR . . . . postfire observation

record
pps pictures per second
psig pounds per square inch

gage
PVM production verification

motor
QM qualification motor
RPRB . . . . Redesign Program

Review Board
RSRM . . . . redesigned solid rocket

motor
RTV room-temperature

vulcanizing rubber
S & A . . . . safe and arm
SAPMD . . . stand-alone pressure

measuring device
SBRE surface burn rate error
sees standard cubic

centimeters per second
sec second
SII SRM ignition initiator
SINDA . . . . Systems Improved

Numerical Differencing
Analyzer

SRB solid rocket booster
SRM solid rocket motor
STS space transportation

system
TEM technical evaluation

motor
TVA thrust vector actuation
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ACRONYMS AND ABBREVIATIONS (cont)

TVC thrust vector control
V volt
1-D one dimensional
1-L first longitudinal
2-D two dimensional
2-L second longitudinal
3-D three dimensional
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INTRODUCTION

Technical Evaluation Motor No. 7 (TEM-7) was successfully static test fired at

1300 hours on 11 Dec 1990 at Thiokol Corporation Static Test Bay T-97. The ambient

temperature at the time of the test was 44 °F and the propellant mean bulk

temperature was 65°F. Ballistics performance values were within the specified

requirements.

The TEM-7 test was a full-scale, full-duration static test fire of a high-

performance motor (HPM)-configuration solid rocket motor (SRM). TEM-7 was the

first full-scale test motor on which all segments were more than five years old and

was the first TEM static test motor with nozzle vectoring. The TEM-7 test

arrangement included the modified aft end heating system (MAEHS) normally used

for static tests with vectored nozzles plus a nozzle-to-case joint heater normally used

for TEM static tests.

The primary purpose of TEM static tests is to recover SRM case and nozzle

hardware for use in the redesigned solid rocket motor (RSRM) flight program;

however, TEM static tests also provide windows of opportunity to evaluate or certify

various design, process, and supplier issues for the RSRM flight program.

Accordingly, TEM-7 was the first full-scale static test for qualification of North

American Rayon Corporation (NARC) rayon in all nozzle carbon-cloth phenolic (CCP)

liners. Two additional full-scale nozzles will be static tested for qualification of the

NARC rayon as outlined in the second source rayon program plan, TWR-18965. Low-

cost nozzle improvements, previously incorporated into the TEM-6 static test, to be

qualified on TEM-7 included a change in the CCP liner ply angle of the cowl, .

improved inner and outer boot ring phenolic cure cycles, and an extended belly band

flexible bearing protector design.

REVISION DOC NO. TWR-17659 I VOL
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Instrumentation measurements consisted of forward and aft end chamber

pressure; igniter chamber pressure; stiffener stub strains; nozzle components

temperatures and strains; temperature for deluge control; nozzle deflections; nozzle

boot cavity temperature and pressure; plume radiation measurements; test stand

water deluge pressure; and timing,

REVISION
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TEST OBJECTIVES

The TEM-7 test objectives of CTP-0107, Rev A, were derived from the objectives of

System Test Summary Sheet TGX-21.6 to satisfy specific requirements of Contract

End Item (CEI) Specification CPW1-3600A, dated 3 Aug 1987.

Qualification objectives of this test were as follows:

A. Certify NARC rayon for use in nozzle CCP liners (CPW1-3600A, Para 3.2.1.4.13,

3.3.6.1.2.7, and 3.3.6.1.2.8).

B. Certify nozzle inner boot ring cure cycle improvement (CPW1-3600A, Para

3.3.6.1.2.8).

C. Certify nozzle outer boot ring cure cycle improvement (CPW1-3600A, Para

3.3.6.1.2.8).

D. Certify the nozzle cowl ring with an ablative liner ply angle change (from 0 to

-50 deg) (CPW1-3600A, Para 3.2.1.4.13 and 3.3.6.1.2.8).

E. Certify the improved nozzle bearing protector (CPW1-3600A, Para 3.3.6.1.2.8).

Other test objectives included:

F. Recover case and nozzle hardware for RSRM flight and static test programs.

G. Obtain data on the effect of five-year storage of loaded SRM case segments upon

motor ignition and performance.

H. Demonstrate the performance of an improved nose assembly-to-cowl assembly

process for the nozzle (CPW1-3600A, Para 3.2.3, 3.2.3.1, and 3.3.1.1).

I. Demonstrate the performance of increased cowl vent hole size (0.375 in. nominal

diameter) for reducing boot cavity delta pressure (CPW1-3600A, Para 3.3.6.1.2.8).

REVISION °°CNO. TWR-17659 I ««•
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J. Obtain additional data on the low-frequency chamber pressure oscillations in the

motor forward end and correlate with chamber pressure oscillation

measurements in the motor aft end.

K Obtain additional data on chamber pressure drop down the bore by the use of

aft end pressure transducers.

L. Obtain additional data on cowl boot cavity/aft end (fixed housing) pressurization

and temperature.

M. Obtain additional data on the performance of the aft stiffener segment with

known outer ligament cracks in the stiffener stubs.

N. Obtain thermal radiation data from the nozzle plume for the Advanced Solid

Rocket Motor (ASRM) program.

ReVIS1ON OOCNO. TWR-17659 I VOL
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EXECUTIVE SUMMARY

3.1 SUMMARY

Inspection and instrumentation data indicate that the TEM-7 static test firing was

successful overall. Data were gathered at instrumented locations during pretest, test,

and post-test operations. The information assembled from the test procedures has

supplied valuable knowledge and understanding about the performance of the HPM-

and RSRM-design components utilized in TEM-7.

Overall, the postburn condition of the NARC rayon nozzle liners was very good

(TWR-61490). The performance margins of safety of all NARC rayon nozzle liners

were positive. The erosion of the throat and throat inlet rings was smooth, with the

typical rippled erosion pattern occurring on the aft 6 in. of the throat ring (0.1 in.

deep maximum). The postburn mean throat diameter was 56.07 inches. This is

within the historical database of RSRM/HPM throat diameters. The throat erosion

rate was 9.20 mils/sec.

Performance margins of safety for the -50-degree cowl ring were positive and

met or exceeded flight baseline experience. The cowl ring erosion was smooth and did

not exhibit the typical wash areas seen on RSRM (0-deg ply wrap) cowls.

The nozzle inner and outer boot rings (improved cure cycles) performed

nominally. The performance margins of safety for the outer boot ring were positive.

Performance of the improved cowl assembly process (joint No. 2) was excellent.

EA 913NA did not mix with the RTV. The RTV extended well below the char line,

full circumference. No blow paths were present.

TEM-7 was configured with a bearing protector in which the belly band was

lengthened and thickened. The belly band was extended to place the region of

maximum erosion in the thickened portion of the bearing protector. On TEM-7 the

REVISION DOC NO. TWR-17659 I VOL
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belly band was additionally thickened to accommodate potential for increased erosion

due to enlarged cowl vent holes. After removal of the TEM-7 fixed housing from the

bearing, the bearing protector was found to be deeply eroded in the areas where gas

impinged from the cowl vent holes. Maximum erosion was centered in this

lengthened and thickened belly band region of the bearing protector. Damage to the

improved nozzle bearing protector and flex bearing resulted in failure to demonstrate

acceptable performance of increased cowl vent hole size (0.375-in. nominal diameter).

After nozzle disassembly, the fixed housing phenolic insulation was found to be

almost 100 percent adhesively unbonded from the metal. This adhesive bondline

failure was attributed to contamination of the fixed housing bonding surface coupled

with the stress concentration induced on the housing by gas pressure through the

four pressure ports. The fixed housing strain gage and the aft end pressure

transducer responses indicated that an anomalous event occurred at approximately 2

sec. Details of the TEM-7 fixed housing unbond investigation study are contained in

TWR-61585.

The TEM-7 ballistic performance was within expected limits and compared well

with previous TEM performance and HPM historical data. The five-year storage of

loaded case segments did not appear to affect motor performance.

Strain gage data for evaluation of stiffener stubs with outer ligament cracks

were obtained. Thermal radiation data from the nozzle plume were successfully

obtained. Only limited aft end and nozzle boot cavity pressure data were recorded

during the TEM-7 test. All pretest requirements for TEM-7 were met.

3.2 CONCLUSIONS

The following conclusions are listed as each specifically relates to the test objectives

and applicable CEI specification (CPW1-3600A) paragraphs. Additional information

about each conclusion can be found in the referenced sections of this report.

REVISION DOC NO. TWR-17659 | VOL
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Objective

A. Certify NARC rayon for
use in nozzle CCP liners

B. Certify nozzle inner
boot ring cure cycle
improvement.

C. Certify nozzle outer
boot ring cure cycle
improvement.

D. Certify the nozzle cowl
ring with an ablative
liner ply angle change
(from 0 to -50 deg).

CEI Paragraph

3.2.1.4.13, Nozzle Liner De-
sign
3.3.6.1.2.7, Nozzle Design
Safety Factors
3.3.6.1.2.8, Nozzle Perfor-
mance Margin of Safety

None. Nozzle performance
margin of safety does not
apply to this component.

3.3.6.1.2.8, Nozzle Perform-
ance Margin of Safety

3.2.1.4.13, Nozzle Liner De-
sign
3.3.6.1.2.8, Nozzle Perform-
ance Margin of Safety

Conclusions

Certification requirements for
this test were met. First of
three full-scale static tests.
Performance margins of safe-
ty were positive and were
equal to or better than base-
line. Post-test condition of
the nozzle liners was nomi-
nal. (Sections 6.6.2, 6.6.3,
6.6.4, 6.6.4.1, 6.6.4.5).

Certification requirements for
this test were met. Second of
three full-scale static tests.
Pre-test X-rays verified no
LDIs. The inner boot ring
performed nominally. (Sec-
tions 6.6.2, 6.6.3, 6.6.4.1).

Certification requirements for
this test were met. Second of
three full-scale static tests.
Performance margins of safe-
ty were positive and equal to
or better than baseline. Pre-
test X-rays verified no LDIs.
Post-test condition of the
outer boot ring was nominal.
(Sections 6.6.2, 6.6.3, 6.6.4,
6.6.4.1, 6.6.4.5).

Certification requirements for
this test were met. Second of
three full-scale static tests.
Performance margins of safe-
ty met or exceeded flight
baseline. The cowl ring sur-
face eroded smoothly and
contained none of the wash
areas typically seen on pres-
ent RSRM cowl rings with
the 0-deg CCP ply wrap.
(Sections 6.6.2, 6.6.3, 6.6.4,
6.6.4.1, 6.6.4.5).
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Objective

E.

H.

Certify the improved
nozzle bearing protector.

Recover case and nozzle
hardware for RSRM
flight and static test
programs.

Obtain data on the ef-
fect of five-year storage
of loaded SRM case
segments upon motor
ignition and perform-
ance.

Demonstrate the perfor-
mance of an improved
nose assembly-to-cowl
assembly process for the
nozzle.

CEI Paragraph

None. Nozzle performance
margin of safety does not
apply to this component

None.

None.

3.2.3, Reliability;
3.2.3.1, Primary Structure,
Thermal Protection, Pressure
Vessels;
3.3.1.1, Selection of Materials,
Parts, and Processes

Conclusions

Invalid test due to possible
effects of other configuration
changes. Gas impingement
was located within the thick-
ened, extended portion of the
bearing protector. Configu-
ration changes to cowl vent
holes (see Objective I) may
have contributed to more se-
vere erosion than anticipated.
(Sections 6.6.2, 6.6.4.1).

Case and nozzle hardware is
available for refurbishment.
(Sections 6.3.2, 6.6.2).

Data obtained. Motor perfor-
mance was nominal Five-
year storage did not appear to
affect motor ignition and
performance. (Sections 6.9.2,
6.9.3, 6.9.4).

Demonstrated. EA-913NA
adhesive did not squeeze out
and mix with the room-tem-
perature vulcanizing rubber
(RTV) in joint No. 2- as is
typically seen. The RTV was
below the char line, full cir-
cumference. No blowpaths
were observed. (Sections
6.6.2, 6.6.4.1, 6.6.4.2).
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Objective

I.

J.

K.

L.

Demonstrate the perfor-
mance of increased cowl
vent hole size (0.375-in.
nominal diameter) for
reducing boot cavity
delta pressure.

Obtain additional data
on the low-frequency
chamber pressure oscil-
lations in the motor
forward end and corre-
late with chamber pres-
sure oscillation mea-
surements in the motor
aft end.

Obtain additional data
on chamber pressure
drop down the bore by
the use of aft end pres-
sure transducers.

Obtain additional data
on cowl boot cavity /aft
end (fixed housing)
pressurization and tem-
perature.

CEI Paragraph

None. Nozzle Performance
Margin of Safety does not
apply to this configuration
change.

None.

None.

None.

Conclusions

Not demonstrated. Boot cavi-
ty pressure (Objective L) was
not obtained to verify perfor-
mance, although 18 of 36
holes remained open com-
pared to the postflight aver-
age of five open vent holes.
However, the increased cowl
vent hole size contributed to
the severe erosion of the
bearing protector (Objective
E). (Sections 6.6.2, 6.6.4.1).

Data partially obtained. No
useable aft end pressure due
to the aft end phenolic insula-
tion unbond. Headend dy-
namic pressure was obtained.
(Sections 4.2, 4.4.1, 6.9.4).

Data partially obtained. Aft
end pressure data were ob-
tained from T - 0 to T + 2
sec only, due to the aft end
phenolic insulation unbond.
(Sections 4.2, 4.4.1, 6.9.4).

Data partially obtained. Boot
cavity pressure data were
obtained by one Teledyne
Taber pressure transducer
from T - 0 to T + 20 sec. No
data were obtained from
three other (two SAPMD and
one Teledyne Taber) trans-
ducers. The thermocouple
data were erratic throughout
the firing. (Sections 4.2,
4.4.1)
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Objective

M. Obtain additional data None,
on the performance of
the aft stiffener segment
with known outer liga-
ment cracks in the stiff-
ener stubs.

N. Obtain thermal radia- None,
tion data from the noz-
zle plume for the ASRM
program.

3.3 RECOMMENDATIONS

CE1 Paragraph Conclusions

Data obtained. The
instrumented stiffener stub
hole strain gages all recorded
data except for the lone refer-
ee strain gage mounted inside
a stiffener stub hole. (Sec-
tions 4.2, 4.4.3, 6.3.2, 6.3.4.1).

Data obtained. Twenty-one of
22 radiometers provided good
data for plume radiation stud-
ies. (Sections 4.2, 4.4.5).

Based on the results of this test, it is recommended that demonstration and qualifica-

tion activities for the following changes continue:

1. NARC rayon for nozzle CCP liners.

2. Inner boot ring cure cycle improvement.

3. Outer boot ring cure cycle improvement.

4. Minus 50-deg cowl ply angle.

5. Improved nose-to-cowl assembly process (joint No. 2).

6. Extended bearing protector belly band.

REVISION
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INSTRUMENTATION

4.1 INTRODUCTION

TEM-7 instrumentation measurements consisted of forward and aft end chamber

pressure; igniter chamber pressure; stiffener stub strains; nozzle component

temperatures and strains; temperature for deluge control; nozzle deflections; nozzle

boot cavity temperature and pressure; plume radiation measurements; test stand

water deluge pressure; and timing.

TEM-7 was instrumented with four aft end chamber pressure transducers

installed through special instrumentation holes drilled through the fixed housing and

phenolic insulation. TEM-6 also contained this arrangement. The objective of this

instrumentation was to obtain aft end chamber pressures for ballistics modelling and

pressure oscillations.

Boot cavity temperature and pressure and aft end chamber pressure

measurements were made for a second time on the TEM program. New, improved

stand-alone units with thermocouples were used for the first time in the cowl boot

cavity. TEM-7 was instrumented to gather data on cracked stiffener stub holes as a

followup on data gathered on Flight Support Motor No. 1 (FSM-1). The metal

component parts on the nozzle using NARC material were instrumented with

temperature sensors and strain gages. Plume radiation measurements were taken

again to enhance data gathered on FSM-1.

4.2 OBJECTIVES/CONCLUSIONS

The objectives and corresponding conclusions from Section 2 regarding

instrumentation performance were:

REVIS.ON ' DOC NO. TWR-17659
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Objective

J. Obtain additional data on the low-
frequency chamber pressure
oscillations in the motor forward
end and correlate with chamber
pressure oscillation measurements
in the motor aft end.

K Obtain additional data on chamber
pressure drop down the bore by the
use of aft end pressure transducers.

L. Obtain additional data on cowl boot
cavity/aft end (fixed housing)
pressurization and temperature.

M. Obtain additional data on the
performance of the aft stiffener
segment with known outer ligament
cracks in the stiffener stubs.

N. Obtain thermal radiation data from
the nozzle plume for the ASRM
program.

REVISION

911520-5.2

Conclusion

There were no useable aft end pressure
oscillation data due to the aft end
phenolic insulation unbond. However,
headend dynamic pressure was obtained.

Aft end pressure data were obtained
from only T - 0 to T + 2 sec, probably
due to the aft end phenolic insulation
unbond. However, those two seconds of
aft end pressure data provided good
insight to the pressure drop down the
bore.

One of two Teledyne Taber pressure
transducers recorded data until T + 20
sec then the data became erratic.
Software anomaly is believed to have
caused both SAPMDs to be inoperable
prior to test. The thermocouple data
were erratic throughout the firing, but
did demonstrate the increased
temperature into the boot cavity
resulting from increased vent hole
diameters. Boot cavity pressure data
were obtained by one pressure
transducer from T - 0 to T + 20 sec. No
data were obtained from three other (two
SAPMD and one Teledyne Taber)
transducers.

The instrumented stiffener stub hole
strain gages all recorded data except for
the lone referee strain gage mounted
inside a stiffener stub hole. There was a
large variation between measured and
predicted strains at holes with outer
ligament cracks. Measured strains at
holes with intact outer ligaments
correlated well to predicted strains.

One of the 22 radiometers failed prior to
the firing, but all other sensors provided
very good data for plume radiation
studies.
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4.3 RECOMMENDATIONS

TEM-7-configured instrumentation for aft end chamber pressures is not planned for

future full-scale static test motors. Detailed analyses must be performed to better

understand hardware impact prior to any future implementation.

4.4 RESULTS/DISCUSSION

4.4.1 Pressure

Forward pressure measurements were nominal, but aft end chamber pressure

measurements dropped off unexpectedly at T + 2 sec. The aft end chamber pressure

transducers were heat affected as a gas path developed in the fixed housing insulation

liner. The data from pressure gages and strain gages gave a time history of the

unbending sequence.

No anomalous conditions were found on the three headend chamber pressure

transducers or their O-rings. No damage to the transducer threads or sealing surfaces

was found. Each secondary O-ring had typical puncture marks caused by the removal

tool.

The igniter pressure transducer secondary O-ring had a typical puncture mark

caused by the removal tool. No damage was found on the primary O-ring. No damage

to the plug threads or sealing surfaces was observed.

The four aft end pressure transducers on the fixed housing were heat affected.

The findings from the heat-affected pressure transducers that were presented to the

Redesign Program Review Board on 9 Jan 1991 were confirmed in the M-53

metallography lab. Two of the four primary seals were heat affected, which was

caused by heating of the transducers and not by direct gas impingement. The other

two primary seals were not heat affected. The worst-case heat-affected pressure

transducer burned through from inside to outside at the primary O-ring groove. It

was also plugged with aluminum slag. No heat effects were found on any secondary

O-ring. The secondary O-ring on the aft end operational pressure transducer
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(OPT)-type pressure transducer was damaged during assembly due to a grease overfill

condition. Details of the lab work are included in this final report.

The installed pressure transducers in the boot cavity and thermocouple were

erratic. One pressure transducer recorded data until T + 20 sec and the other failed.

The thermocouple data were erratic throughout the firing but did demonstrate the

increased temperature into the boot cavity resulting from increased vent hole

diameters.

Two postflight anomaly reports were written; one was on the OPT secondary

0-ring overfill condition, and the other was on the heat-affected primary 0-rings on

two transducers.

4.4.2 Temperature

Temperature data were nominal. The ambient temperature was 44°F and the

propellant mean bulk temperature was 65 °F at T - 0 (ignition). Joint and case

temperature sensors all performed nominally.

Temperature sensors on the nozzle components performed and recorded no

anomalies associated with the unbond anomaly.

4.4.3 Strain

Strain gages near the aft end chamber pressure transducers confirmed the unbond

which occurred to the fixed housing insulation. All other strain gages on the nozzle

components performed and recorded no anomalies associated with the unbond

anomaly.

The instrumented stiffener stub holes strain gages all recorded data except for

the lone referee strain gage mounted inside a stiffener stub hole.

4.4.4 Position

Aft skirt and nozzle positioning measurements all performed as expected.

REV.SION _ DOC NO. TWR- 17659
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4.4.5 Radiometers

One of the 22 radiometers failed prior to the firing, but all other sensors provided

very good data for plume radiation studies.
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PHOTOGRAPHY

Photographic coverage was required to document the test, test configuration,

instrumentation, and any anomalous conditions which may have occurred. The

TEM-7 photographs and video tapes are available from the Thiokol Corporation's

Photographic Services.

5.1 STILL PHOTOGRAPHY

Still color photographs of the test configuration were taken before, during, and after

the test. Photographs were taken of joints each 45 deg minimum and at anomalous

conditions.

5.2 MOTION PICTURES

Color motion pictures of the test were, taken with nine high-speed cameras, two real-

time documentary cameras, and four video cameras. Documentary motion pictures

are recorded on Roll 8330, high-speed motion pictures on Roll 8331, and videotape on

T0118 through T-0121. Cameras are listed in Table 5-1. The camera setup is shown

in Figure 5-1.
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Table 5-1. Photography and Video Coverage

Camera

1

2

3

4

5

6

7

8

9

!0

11

12

13
14

15

Station

7
1

1

2

2

2

3

3

4

4

4

5

7

7

7

Location

Thrust block
North forward
barricade
North forward
barricade
North aft barricade

North aft barricade

North aft barricade

South aft barricade

South aft barricade

South center
barricade
South center
barricade
South center
barricade

South forward
barricade
Thrust block
Thrust block

Thrust block

Type

High speed
High speed

Video

High speed

Documentary

High speed

Documentary

Video

Video

High speed

High speed

High speed

High speed
Video

High speed

Coverage

Igniter port
Center forward and
center joints
Overall motor and
plume
Center aft and
nozzle-to-case
joints
Aft case, nozzle
and plume
Nozzle, 200 ft of
plume
Overall motor and
plume
Aft case, nozzle,
plume, deluge
Aft joint, nozzle,
plume
Nozzle, 200 ft of
plume
Center aft and
nozzle-to-case
joints
Center forward and
center joints
Igniter port
Top of case, nozzle,
and plume
Top of case, nozzle,
and plume

Note: Nine high speed cameras (300 pps); two documentary cameras (24 pps);
four video cameras (real time)
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I / South Aft Bar

North Aft Bar

(Sta 2)

South Center Bar
(Sta 4)

North Forward Bar

(Sta 1)
South Forward Bar

(Sta 5)
(Vid) (HS)

T-Block

(Sta 7) A020563aR1

Code
Doc - Documentary
HS - High Speed
Vid - Video

REVISION

Figure 5-1. T-97 Photography Coverage—TEM-7
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TEST DESCRIPTION AND RESULTS

6.1 TEST ARTICLE DESCRIPTION

The TEM-7 test article was assembled in accordance with Drawing 7U76879. The

motor was instrumented to provide data to satisfy the test objectives. An overall view

of the test article is shown in Figure 6-1. A TEM-7 drawing tree is included in

Appendix A.

TEM-7 consisted of HPM-configuration motor segments that had been

fabricated and loaded with propellant more than five years before the static test firing

on 11 Dec 1990. A listing of each segment, segment flight identification, cast date,

and storage and transportation history is shown in Table 6-1.

Table 6-1. TEM-7 Segment History

TEM-7 Segment

Flight Identification
Casting Date
Shipped to KSC
Shipped to Thiokol
Arrived at Thiokol
Shipped to KSC
Shipped to Thiokol

Forward

SRM-28B
24 Sep 1985
31 Jan 1986
27 Mar 1987
10 Apr 1987
10 Jun 1987
22 Feb 1989
29 Feb 1989

Forward
Center

SRM-28B
21 Oct 1985
10 Jan 1986
18 Jan 1989
25 Jan 1989

«
--

—

Aft
Center

SRM-28B
14 Oct 1985
7 Jan 1986
25 Jul 1989
31 Jul 1989

--
~
--

Aft

SRM-26A
17 Jul 1985
26 Dec 1985
24 Mar 1988
10 Apr 1988

-
--
--

The high-performance SRM static test motor consisted of a lined, insulated,

segmented rocket motor case loaded with solid propellant; an ignition system complete

with electro-mechanical safety and arming device, initiators, and loaded igniter; and

REVISION
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a movable nozzle with flexible bearing and exit cone. For this test, the nozzle was

vectored.

The assembled static test motor was approximately 116 ft in length and 12 ft in

diameter. The test item configuration was controlled by released engineering

drawings (refer to TEM-7 drawing tree) and the test plan, CTP-0107, Rev A.

Deviations to this configuration were processed through the normal configuration

control system and approved by the integration engineer, program manager and

NASA, and are included in this final test report.

Postfire hardware evaluation of TEM-7 was accomplished in accordance with

TWR-60273 and TWR-61209. Observations were recorded on the postfire observation

records (PFOR) included in Appendix E. Any anomalous condition or limits violation

which was a first-time occurrence was documented on a PFAR. A list of PFARs is

included in Appendix E.

6.2 TEST ARRANGEMENT AND FACILITIES

The TEM-7 static test arrangement was assembled in accordance with Drawing

2U129760. T-97 was equipped with a water deluge system and a C02 quench. The

test motor included a government-furnished equipment and United Space Boosters,

Inc.-supplied solid rocket booster (SRB) aft skirt assembly, which contains the thrust

vector control (TVC) subsystem and the heat shield installation. The thrust vector

actuation (TVA) system comprises two SRB actuators and two hydraulic power units

(HPU) located in the aft skirt. The HPU ground test controller, HPU

manual/automatic panel (MAP), and the ascent thrust vector control units (ATVC)

serve as the control units for the TVC subsystem.

6.3 CASE AND CASE SEALS PERFORMANCE

6.3.1 Introduction

The case consisted of 11 individual weld-free segments: the forward dome, six

cylinder segments, the external tank (ET) attach segment, two stiffener segments, and
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the aft dome. The 11 segments were preassembled into four subassemblies to

facilitate propellant casting.

The four loaded assemblies were the forward segment assembly (Drawing

7U76899), the forward center segment assembly (Drawing 1U52566), the aft center

segment assembly (Drawing 1U52566), and the aft segment assembly (Drawing

7U76882). These segments were joined by means of tang and clevis field joints,

which, in turn, were held in place by pins.

Both flanges of the aft stiffener cylinder (1U50185-06, S/N 027) have outer

ligament cracks:

1. At 240 deg on aft stub

2. At 276 deg on aft stub (saw cut through)

3. At 278 deg on aft stub

4. At 280 deg on aft stub

5. At 282 deg on aft stub

6. At 232 deg on forward stub

7. At 288 deg on forward stub (not instrumented)

The motor was equipped with a stiffener T-ring assembly on the flanges which

had the severed outer ligaments. The T-ring is known to help reduce flange stresses,

thus reducing concerns generated by the severed outer ligaments. This is also

representative of the flight configuration (Figure 6-2).

Instrumented outer ligament cracks and instrumented referee holes are

illustrated in Figures 6-3, 6-4, and 6-5.

Systems tunnels were removed from the aft center segment and partially

removed from the aft segment for this test.

The nozzle-to-case joint was formed by bolting the HPM nozzle fixed housing

into the aft dome with 100 axial bolts. The field joints had a standard HPM
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T-ring

Stub Flange

B

Forward

A0320108

Figure 6-2. TEM-7 T-ring Configuration
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insulation configuration, as shown in Figure 6-6. The nozzle-to-case joint had the

standard HPM nozzle joint insulation configuration, as shown in Figure 6-7.

The assembly and joint configuration were as follows:

A. The forward segment and forward center segment were mated to form the forward

field joint. The forward center segment and aft center segment were mated to

form the center field joint. The aft center segment and aft segment were mated

to form the aft field joint. The field joints which connected these segments were

configured with:

• Tang and clevis with long pins (Drawing 1U51055), custom-fit shims (Drawing

1U51899), and hat band pin retainers (Drawing 1U82840).

• Standard HPM insulation configuration with putty joint filler (STW4-3266), as

shown in Figure 6-6.

• Primary and secondary 0-rings were fluorocarbon (STW4-3339).

• Leak check port plugs (Drawing 1U100269)

• Improved field joint heater (Drawing 1U77252).

• Baseline TEM field joint protection system (Drawing 7U77328).

B. Factory joints were configured with the following:

• HPM tang and clevis hardware design.

• Insulation overlaid and cured over interior of the joint.

• HPM pin retainer centered over the short (HPM) pins. Standard shim clips

were used between the clevis outer leg and the tang outside diameter (OD).

C. The nozzle to case joint was configured with:

• Primary (larger diameter RSRM) and secondary 0-ring seals were fluorocarbon

(STW4-3339).

• Standard HPM nozzle joint insulation configuration with putty joint filler

(STW4-3266), as shown in Figure 6-7.

• RSRM-configuration ultrasonic preload axial bolts installed in accordance with

Drawing 7U76882.
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• MS 16142 vent ports at 15, 105, 195, and 285 deg in the fixed housing

(7U76865-02) upstream of the primary O-ring.

• Adjustable vent port plugs and closure screw (Drawings 1U76425 and 1U50159).

• Leak check port plug (Drawing 1U100269).

• Redesigned nozzle-to-case joint heater (7U77118-04).

D. Igniter-to-forward dome joint was configured with:

• Primary and secondary seals of the outer gasket (Drawing 1U51927) are

fluorocarbon.

• Improved igniter-to-case joint heater (Drawing 1U77253).

• Putty joint filler (STW4-3266).

• Ultrasonic bolts (Drawing 1U76598) inner and outer bolt circle.

Corrosion protection consisted of full external paint and a film of grease applied

as specified in Drawing 7U76881 and STW7-3688 (including O-rings, sealing surfaces,

and pin holes).

Case assembly procedures proved adequate, and chamber pressure was contained

during the static test.

6.3.2 Obiectives/Conclusions

The objectives and corresponding conclusions from Section 2 regarding case

performance were:

Objective Conclusion

F. Recover case and nozzle hardware for Case and nozzle hardware is available for
RSRM flight and static test programs. refurbishment.

M. Obtain additional data on the The instrumented stiffener stub holes
performance of the aft stiffener strain gages all recorded data except for
segment with known outer ligament the lone referee strain gage mounted
cracks in the stiffener stubs. inside a stiffener stub hole. There was a

large variation between measured and
predicted strains at holes with outer
ligament cracks. Measured strains at
holes with intact outer ligaments
correlated well to predicted strains.
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6.3.3 Recommendations

It is recommended that the immediate future of stiffener stub testing be refocused

around a hydroproof-type test setup. This would offer several distinct advantages:

1) Slower pressure rise rates

a. Allows much better strain gage performance evaluations.

b. The nonlinear stress/strain behavior at onset of yielding would be easier

to define.

2) A matrix of tests could be performed on the same test setup, including:

a. T-ring installed versus nonring comparisons, to help determine possible

ring influences.

b. Instrumenting and proof testing a new (never proof tested) segment;

monitor initial plastic strains at intact holes.

These types of tests would help to substantiate some of the theories covered in this

report and help to fully understand the seemingly erroneous data measured on several

of the severed outer ligament holes during the TEM-7 firing.

TEM aft segments should have T-rings installed on stiffener stubs with known

outer ligament cracks to minimize risks associated with this condition.

6.3.4 Results/Discussion

6.3.4.1 Cracked Stiffener Stub Holes

Special Issue (TWR-61209, Para 3.2.1, Item 1)

The TEM-7 static test provided an opportunity to gain information concerning the

behavior of stiffener stub outer ligament cracks during an actual motor firing.

Thiokol Corporation has decided not to allow RSRM stiffener case segments with

outer ligament cracks into the flight rotation. This decision was based in part on a

lack of knowledge about the structural effect of the severed outer ligament on the

T-ring/case assembly. In an effort to help fully understand this interaction, the
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severed stub holes as well as several intact stub holes were instrumented with strain

gages to help characterize the strain gradient at the holes. This testing was

requested to help verify analytical models of the region and to provide a better overall

understanding of the problem.

The testing was successful, with only one of the 44 channels of stiffener stub

instrumentation being lost during the test. Each of the gages appears to have

performed well, following the pressure trace and returning, fairly close to the zero

mark at the completion of the firing. The maximum measured strain at an intact

hole was 5,600 microstrain, while the maximum strain at a severed hole was measured

at 7,250 microstrain. The strains were generally less than anticipated, and several

unusual data points were found. The strain-versus-pressure plots for each gage (by

gage number) have been included in Appendix D. Drawing 7U77011 provides a

convenient cross reference for gage number versus gage locations.

The testing has provided further insight into the behavior of the intact as well

as the severed outer ligaments of the stiffener flange 'hole. The severed hole and the

intact hole are fairly well characterized by the elastic strain predictions. This

indicates that the local residual compressive strains induced in the material during

proof test seem to limit the subsequent test/flight load strains within the elastic

range. Formalized documentation of analogue and X-ray diffraction tests need to be

completed to add further credibility to this theory.

The test also establishes that more work must be performed to totally

understand the problem. All predictions, even the elastic strain predictions, were

inflated. Data points from several of the holes are, at this point, unexplainable, and

more testing is required before the results can be totally discounted.

Strip-type strain gages were used to provide added definition to the rapidly

changing strain gradient around stiffener stub holes. Conservative predictions showed

strains approaching the maximum capacity of the strip strain gages; therefore, several
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holes were instrumented with higher capacity single gages strategically positioned to

envelope the possible high-strain regions. The distance of the gage from the hole was

measured and recorded to provide improved accuracy. In all cases the gages were

installed on the forward face of the stub flange, which models have indicated to be the

maximum stress region. Shims were installed between the T-ring and stub to prevent

the ring from crushing the gages during T-ring installation and internal pressure

loading. Figure 6-8 shows the instrumentation layout by illustrating typical gage

locations for severed as well as intact outer ligament holes.

All gages were oriented to measure hoop strains. The severed holes had gages

on the inboard side of the holes only, while the intact holes had both inboard and

outboard gages. The outboard gages on the intact holes provide additional

information on how loads are redistributed around the severed outer ligament. The

test configuration and instrumentation are defined in detail on Drawings 7U76881 and

7U77011, respectively.

Predictions

Several finite element models have been prepared to evaluate this region of the motor

case:

1. Intact outer ligament

a. 3-D Elastic

b. 3-D Plastic

2. Severed outer ligament

a. 2-D and 3-D Elastic

b. 3-D Plastic

The models were prepared using minimum material properties for the case and

ring, as defined in TWR-18011 RSRM Structural Materials Properties Book. Each

also assumes that, maximum expected operating pressure (MEOP) is reached during

the test. The models include the T-ring and attachment hardware as in the test
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hardware. The interface load is transmitted between the T-ring and the stub through

the attach bolts, utilizing gap elements at the ring to stub interface.

The 2-D analysis was chosen for the severed outer ligament elastic predictions

because the boundary conditions hi the 3-D analysis assume that a crack exists at

every hole. This was originally thought to be conservative. However, having a crack

at every hole does not permit the load to be channelled through any of the outer

ligaments; thus, the stress concentration is not properly realized at the hole. For the

intact hole the problem is symmetrical and this concern does not exist; therefore, the

3-D predicted values have been used. To illustrate the changing strain field at the

hole, color plots of the results of the elastic analyses (intact and severed holes) are

included in Figures 6-9 and 6-10.

Data Evaluation

As alluded to earlier, the overall trend was that strains were much lower than

originally anticipated. The measured strains on the intact hole did, however, match

more closely with the predicted elastic strains. The severed hole strains fell below

the elastic predictions and were much less than the elastic-plastic strain predictions.

To illustrate this result, the predicted elastic and elastic-plastic strains have been

graphed over the maximum measured strains for both the intact and severed outer

ligament holes in Figures 6-11 through 6-14. Since the analytical predictions were

based upon reaching MEOP, the data were scaled (by linear interpolation) to reflect

the TEM-7 actual headend pressure of 933.5 psig. This resulted in a pressure scaling

factor of 0.928.

It should be noted that while all of the models predicted plastic behavior at the

edge of the hole for both the severed and intact holes, the models also assumed a

zero-stress state at the start of the test. Analogue tests and X-ray diffraction

examination have shown in a separate test effort (yet to be formally documented) that

the holes, especially the cracked holes, have local residual stresses induced after
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(ui/ui OJDI^) uioj|2 doon

^-^

c
'—
Q)

"c
0)
u
0)

n:

E
Q

^^_

t/1

x:
o
c

^^
c -
.2
"o
0
0i

0)
o>
3
o
o

0>

CO

.2

0)

O
TS

I

o
o

to

I25
0)
O)

1u.
s
I
55

JO
111

(0

Q>

(0
0>

REVISION ooc NO TWR-17659 VOl

SEC PAGE 38



CORPORATION

SPACE OPERATIONS

CO

g
i —
u
Q
LU
a:

co
Z Q
^f

Cd <£>
v— r*^
(/) CN

p °
2 <2
_] 0
LU X

1 1
1 T

«
-,

1 1
o o
o o
0 0
rO CN

O
a
<j
o
CO
u»

CU CO 1) 0) CO O
Q Q Q Q Q

O CN O 00 CN
03 o •<*• r^ 03
CN CN CN CN CN

O O O O O

CU CO CO CO CO

"o "o "o "o "o
X X X X I

1

•f « o » «
1

"»
*^~ *\^ *

"~~" " ^^\ •* ® •
^" ^~ ^^^

*^- ^^^^
X ^s>* * • "

•\ \ '
* \ '

\ \_ ^1
* T •/

^ * \ 4\

< '\ \ }o -x T/

I \ -1
\ * • *

i i i i i i i i i i i
O O O O O O O C' C •!• O
O O O O O O O O C' O Oo o o o o o o o o o o
• — O <75 00 r^ '£> u~) -t I0 ^ i —

O
_ -t
d

o
— 'O

0

0

0

o

o

o
o
o

o
- ~

1

0
C-l

1

o
— !f~>

11

o
""" r̂r

o
— .

1

,-,

1

^"^
CD
c

CU
^^_

c
ni
'*'o
CD

O

E
o

Lu

in
CD

-C
o
c

^_s

c
o

'4T
O
u
0

CD

™t

O
o

0)

(0
g>

— ̂
a3
5
O

2
u

o

"Soo

CO

'5
CO
0)
o>
c
JO
iE

0)

w
S
</)
,0

M
JO
UJ

â>
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splashdown damage and proof test. The analogue tests also appear to show that

despite the prehydro residual stress state (tensile or compressive), the posthydro

stresses are compressive and sometimes quite large. The local compressive residual

stress at the cracked hole is most likely large enough to ensure that the entire next

load cycle (in this case the test) will take place entirely within the elastic range of the

material. Figure 6-15 illustrates this concept for a single-yield and postyield load

cycle. In reality, however, after several uses these holes may have had numerous

yield and postyield cycles.

The previously mentioned testing indicated that th'e local compressive stresses

at the cracked hole may be large enough to induce reverse yielding in the material.

Reverse yielding may cause degradation of the material properties at this local region.

These results are to be documented and elaborated upon in a future report. This

overall effect would explain the large overprediction of strains using the plastic

analysis and the reasonable accuracy when compared to elastic strain predictions. The

results of this test seem to confirm the analogue testing. However, more work is

required to verify this conclusion.

The gages on a number of the severed outer ligament holes resulted in very

peculiar output (278, 280, 232, and 240 deg). The strains were very low, compared

even with the elastic predictions. Several of these holes also indicated a reverse

stress gradient, or, in other words, showed stresses increasing with distance away from

the hole. As mentioned in Section 6, Test Description and Results, these gages (as

well as all the others) appear to have functioned properly otherwise. This trend,

however, does not reflect common engineering experience. There are, as in any test,

a number of sources for possible error in the results. Measures were taken, wherever

possible, to minimize the variables effecting the results. However, a few sources of

error that are worthy of mention in this test are: gage location measurements, the

fact that predictions were based on minimum material properties, and gage accuracy.
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1-2: Loading Induces Plastic Strain

2-3: Load Release—Results in Compressive
Residual Stress

3-4: Post-Yield Loading—Remains Entirely
Within the Elastic Range of the Material

Strain

Figure 6-15. Post-Yield Behavior A032087a
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These alone would not be sufficient to explain the oddities described in the data

above. Therefore, the data have not yet been totally discounted, and further testing

is required before invalidating these results.

All seven cracked stiffener stub holes were visually examined after the test for

new cracks and/or deformation. On several holes (240, 278, and 280 deg),

deformations were noted to exist on the aft face of the flange (near the hole). It was

determined that this condition was a result of a previous usage and not a result of

this test. No new cracks were detected by visual inspection. A gouge was found on

the 240-deg hole on the aft flange. The gouge was located at approximate center of

the flange cross section and raised metal exists. The exact cause of this condition is

not known; however, there is no indication that it was caused by the static test.

6.3.4.2 Forward Field Joint. The TEM-7 forward field joint was disassembled on

16 Jan 1991. Light corrosion was observed in and around the leak check port hole

and on the case at the joint, heater region at 280 through 294 deg. Typical pin hole

slivers were found intermittently around the circumference of the clevis and tang pin

holes. This is caused by installation of the pins at assembly. Putty was observed in

intermittent contact with the primary O-ring for approximately 60 percent of the

joint. Putty in contact with the primary O-ring is a typical condition. The grease on

the O-rings and sealing areas was as prescribed in STW7-3688. No anomalous

conditions were observed.

6.3.4.3 Center Field Joint. The TEM-7 center field joint was disassembled on

14 Jan 1991. The condition of the joint was nominal. No hot gas or soot reached the

primary O-ring. No damage was found on the primary or secondary O-rings while in

the groove. No corrosion was observed on the tang or clevis joints. Typical pin hole

slivers were found intermittently around the circumference of the clevis and tang pin

holes. This is caused by installation of the pins at assembly. The grease on the

O-rings and sealing areas was as prescribed in STW7-3688. Putty was found over the

REVISION DOC NO. TWR-17659 I VOL

SEC PAGE

911520-6.11



CORPORATION
SPA CE OPERA TIONS

full circumference up to, but not past, the primary O-ring. The leak check plug and

port were in nominal condition.

6.3.4.4 Aft Field Joint. The TEM-7 aft field joint was disassembled on 10 Jan 1991.

No hot gas or soot reached the primary O-ring. There was no evidence of damage to

the 0-rings while in the groove. No corrosion was observed on the tang or clevis

joints. Pin hole slivers were found at 48, 50, 86, 88, and 228 deg. This is caused by

installation of the pins at assembly. The grease on the O-rings and sealing areas was

as prescribed in STW7-3688. Putty was found in the leak check through hole

obstructing all but a very small portion of the hole. Before port hole assessment the

joint had shifted approximately 0.5 inches. (Pin holes were misaligned by

approximately 0.5 in. at 0 deg.) The putty apparently extruded into the through hole

when the joint shifted because no trace of putty was found on the clevis between the

primary and secondary O-rings. PFAR TEM07-05 was written because this condition

is outside the engineering limits.

6.3.4.5 Aft Segment Disassembly Assessment. No heat effect or erosion was observed

on any of the joint O-rings or metal surfaces. M-clip fretting was observed on each

joint. The aft dome-to-stiffener joint had M-clip fretting over the full circumference

of the joint. The stiffener-to-stiffener joint had M-clip fretting from 8 through

28 deg. The ET-to-stiffener joint had M-clip fretting over the full circumference of

the joint. Medium to heavy corrosion was observed in the ET-to-stiffener joint

downstream of the secondary O-ring groove and upstream of the pinholes at 356

through 0 through 4 deg. No other anomalous conditions were observed.

6.4 CASE INTERNAL INSULATION PERFORMANCE

The internal insulation system included case acreage insulation, joint insulation, and

propellant stress relief flaps. The insulation material used for these components was

an asbestos-silica-filled acrylonitrile butadiene rubber (NBR) (STW4-2621). Carbon-

fiber-filled ethylene propylene diene monomer (CF/EPDM) (STW4-2868) was bonded
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to the NBR in a sandwich-type construction under the propellant stress relief flaps in

both center segments. CF/EPDM was also used in a sandwich construction in the aft

dome. The CF/EPDM was installed to reduce the erosion of the insulator near the

submerged nozzle in the aft dome and under the stress relief flaps in the center

segments.

The liner material specified in STW5-3224 was an asbestos-filled carboxyl

terminated polybutadiene (CTPB) polymer which bonded the propellant to the

internal insulation in the SRM. The forward-facing full web inhibitors were made of

NBR. They were located on the forward ends of the center and aft segments.

The aft-facing partial web castable inhibitors were made of a material (STW5-3223)

similar in type (CTPB polymer) to the liner. They were HPM configuration and were

located on the aft end of the forward and center segments.

6.4.1 Introduction

The four TEM-7 segments had been insulated and cast with propellant more than five

years before the TEM-7 static test.

6.4.1.1 Field Joint Assembly. The case insulation of the three HPM-configuration

field joints consisted of asbestos-silica-filled NBR (Figure 6-16). Prior to mating, the

joints were inspected per STW7-2831, Rev NC, the flight motor insulation criteria for

the HPM joints. Putty was applied to the clevis joints per STW7-3746, as shown in

Figure 6-17, and the joints were mated. After mating, each joint (Figure 6-18) was

inspected from the bore for discontinuities and the putty was tamped.

6.4.1.2 Nozzle-to-Case Joint Assembly. The putty layup for the nozzle-to-case joint,

shown in Figure 6-7, was performed to the dimensions of STW7-3745, as were

previous TEMs. Figure 6-19 shows the putty layup used throughout the HPM

program. The TEM-7 nozzle was mated to the aft segment with no apparent

anomalies. Because of inaccessibility, the nozzle-to-case joint was not inspected nor

• tamped as the field joints were.
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Propellant

• EPDM (center segments only)

Liner.

i

Tang

Castable Inhibitor

0-rings

A0198513

A019851a-3R1

Clevis

Figure 6-16. HPM Field Joint
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0.31
0.23

Putty

NBR Insulation

A0198S13-2R1

Figure 6-17. Clevis Joint Filler Putty Lay up
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Propellant

EPDM Flap-
(center
segments
only)

Castable Inhibitor

Putty Squeezeout

Putty Sag

A0l9971a

Figure 6-18. Assembled HPM Field Joint
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Similar to TEM-5 and TEM-6, the nozzle-to-case joint incorporated four vent

ports in the fixed housing. The vent ports were left open during assembly to exhaust

entrapped air from within the joint. This concept was intended to reduce the

potential for O-ring damage from gas flow through putty blowholes.

6.4.1.3 Prefire Inspection/Joint Putty Tamping. A prefire bore inspection was

performed to assess the putty fiow/layup of each field joint. The inspection occurred

after the chocks were removed and the final leak check had been performed. This did

not include the nozzle-to-case joint, which was inaccessible during this operation. The

putty in the field joints was inspected for grease, discontinuities, bubbles, blowholes,

etc.

All volcanoes, bubbles, and possible bubbles were tamped closed with a putty

tamping tool. No grease contamination was found in any of the joint putty and the

field joint putty, condition was nominal. The overall prefire insulation condition of

TEM-7 was similar to previous TEMs.

6.4.2 Objectives/Conclusions

There are no objectives from Section 2 concerning case internal insulation. From an

insulation standpoint, TEM-7 performed as expected. The performance in all three

field joints and nozzle-to-case joint was excellent; no gas penetration to the seals was

observed. The joints functioned within the HPM experience.

6.4.3 Recommendations

None.

6.4.4 Results/Discussion

6.4.4.1 Postfire Internal Insulation Inspection. An internal walkthrough inspection

was performed. The internal acreage insulation, center and aft segment NBR

inhibitors, and stress relief flaps (center and forward segments) appeared to be in

normal condition from the walkthrough inspection. A small amount of castable
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inhibitor remained attached to the forward center segment flap. Castable inhibitor

remained attached intermittently full circumference to the forward segment flap.

Two large pieces of castable inhibitor were found lying loose in the middle of the

forward and forward center segments. The slag pool extended the full length of the

aft segment and 39 in. into the aft center segment. The size of the slag pool and the

amount of slag appeared to be typical of previous static test TEMs. The final slag

weight in the aft segment was 1,813 Ib.

6.4.4.2 Aft Field Joint Insulation. The aft field joint was disassembled and inspected

on 10 Jan 1991. The joint insulation and putty were in normal condition, showing

normal heat effects, charring, and erosion. The putty exhibited a constant olive green

color with normal tack. The putty failure at disassembly was 15 percent adhesive

(tang side) and 85 percent cohesive. One terminated blowhole was present at 155 deg

measuring 2.1 in. circumferentially by 0.65 in. radially. The blowhole terminated

approximately 0.10 in. inboard of the insulation ramp. The gas penetration was

between the tang insulation and the putty. Heat effects with slight erosion to the

NBR insulation were present on the tang side of the joint in the region of the

blowhole. Heat-affected and eroded putty were present on the clevis side. The

terminated blowhole is within the experience of the HPM design field joints and had

no adverse effect on joint performance. No clevis or tang edge separations were

detected. The aft center segment stress relief flap and the aft segment NBR inhibitor

were in normal condition. The flap was eroded normally back to the flap bulb full

circumference. The NBR inhibitor was eroded uniformly, showing approximately 8 to

10 in. remaining. No tears were present on either the flap or inhibitor.

6.4.4.3 Center Field Joint Insulation. The center field joint was disassembled and

inspected on 14 Jan 1991. The joint insulation and putty were in normal condition,

showing normal heat effects, charring, and erosion. Gas penetrated into the bondline

0.80 in. maximum outboard of the remaining material on the clevis side from 280

through 0 to 74 deg. Gas did not reach the step in the insulation. The putty
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exhibited a consistent olive green color with normal tack. The putty failure at

disassembly was 2 percent adhesive and 98 percent cohesive. No clevis or tang edge

separations were detected. The forward center segment stress relief flap and the aft

center segment NBR inhibitor were in normal condition. The entire flap remained

from 270 through 0 to 90 deg. The NBR inhibitor was eroded uniformly, showing

approximately 20 to 25 in. remaining. No tears were present on either the flap or

inhibitor.

6.4.4.4 Forward Field Joint Insulation. The forward field joint was disassembled and

inspected on 16 Jan 1991. The joint insulation and putfty were in normal condition,

showing normal heat effects, charring, and erosion. Gas penetrated slightly into the

joint bondline between the clevis insulation and the putty from 262 to 280 deg. The

average depth of the gas penetration was 0.30 in. (0.40 in. maximum) outboard of the

remaining material. Heat-affected NBR on the clevis side and heat-affected putty on

the tang side were present in this region. The putty exhibited a consistent olive

green color with normal tack. The putty failure at disassembly was 2 percent

adhesive and 98 percent cohesive. The tang insulation on this joint had several

prefire edge separations over 0.50 in. in axial depth (0.75 in. max). These separations

were repaired before joint assembly. No clevis or tang edge separations were detected

upon postfire inspection, indicating the repair procedure was adequate. The forward

segment stress relief flap and the forward center segment NBR inhibitor were in

normal condition. The entire flap remained full circumference with heat affected and

slightly blistered NBR underneath. Castable inhibitor was present intermittently.

The NBR inhibitor was eroded uniformly with approximately 25 to 30 in. remaining.

No tears were present on either the flap or inhibitor.

6.4.4.5 Nozzle-to-Case Joint Insulation. The nozzle-to-case joint was disassembled

and inspected on 15 Jan 1991. The joint insulation and putty were in normal

condition, showing normal heat effects and sooting at the forward edge of the

bondline. There was no evidence that gas had penetrated the joint insulation
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bondline (putty). The putty exhibited a consistent olive green color with normal tack.

The putty failure at disassembly was 5 percent adhesive and 95 percent cohesive.

Three voids in the putty were found on the fixed housing at the step extending

forward. The largest void was located at 186 deg and measured 2.2 in.

circumferentially by 0.7 in. axially.

6.4.4.6 Igniter Outer Joint and Chamber Insulation. Disassembly of the igniter outer

joint (igniter adapter-to-forward dome joint) revealed one blowhole through the putty

at 272 deg. The blowhole measured 1.90 in. longitudinally and ranged from 0.14 in.

wide circumferentially at the forward end to 0.35 in. wide circumferentially near the

aft end. The blowhole resulted in sooting forward of the putty from 112 to 272 to

353 deg. The putty was in good condition, exhibiting 100 percent cohesive failure and

normal color and tack.

The igniter boss insulation was also in good condition. No tears, ply

separations, edge unbonds, or areas of abnormal erosion were identified.

The igniter chamber insulation was in good condition with no tears, gouges, ply

separations, or abnormal erosion. Blistering was evident from 320 through 0 through

50 deg on the aft half of the inner chamber insulation. Blistering on the inner

chamber insulation is common and is considered to be the result of normal heat

effects.

6.4.4.7 Igniter Inner Joint and Adapter Insulation. Disassembly of the igniter inner

joint (igniter adapter-to-igniter chamber joint) showed the putty to be in good

condition, with no blowhole or voids evident. Slight moist soot was seen in contact

with the inner side of the putty, a result of the C02 quench blast. The putty

exhibited 100 percent cohesive failure and normal color and tack.

The igniter adapter insulation was in good condition. The insulation appeared

cleaner than flight adapter insulation because some of the char layer was removed by
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the CO2 quench blast. No tears, ply separations, or areas of abnormal erosion were

identified.

6.5 LEAK CHECK PERFORMANCE

6.5.1 Introduction

Leak check port plugs (1U100269-03) with the Nylock® locking feature were installed

in the leak check ports of all three field joints and the nozzle-to-case joint.

After each pressure vessel joint was assembled, a leak test was performed to

determine the integrity of the seals. The leak tests consisted of a joint volume

determination and a pressure decay test. The volume and pressure information was

combined with temperature and time data collected during the test and used in the

calculation of a leak rate expressed in terms of standard cubic centimeters per second

(sees). Each leak test has a maximum leak rate allowed.

Some specifications require only a maximum pressure decay over time. This

method has been determined as sufficient based on the small, constant volumes and

the equivalent leak rates, which are conservative when using all worst-case variables.

Table 6-2 lists all joints leak tested on TEM-7, corresponding leak test

specifications, and the equipment used. The leak tests are discussed in detail in

Section 6.5.4. The case factory joints were tested after the original assembly.

This report does not discuss the results of those tests. The majority of the nozzle

internal joints (joints No. 1 through 4) were of RSRM configuration and tested to the

accompanying requirements. Nozzle internal joint No. 5 was a combination of HPM

and RSRM hardware and could not be leak tested because it only contained a single

O-ring.

6.5.2 Obiectives/Conclusions

There are no objectives from Section 2 concerning seals/leak check.
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Table 6-2. TEM-7 Seal Leak Testing

Joint

Case Field Joints
Nozzle-to-Case Joint
Nozzle Joint 1
Nozzle Joint 2
Nozzle Joint 3
Nozzle Joint 4
Ignition System

Inner Gasket
Outer Gasket

Special Bolt Installation
S&A Device Joint
Transducer Assembly
Barrier-Booster

Specification

STW7-3682
STW7-3682
STW7-2375
STW7-3476
STW7-3477
STW7-3478

STW7-3632
STW7-3632
STW7-3632
STW7-3633
STW7-2853
STW7-2913

Equipment

8U75902
2U129714
8U76248
2U129714
2U129714
2U129714

2U126714
2U129714
2U129714
8U76500
2U65686
2U65848

6.5.3 Recommendations

None.

6.5.4 Results/Discussion

The case field joint leak test results are shown in Table 6-3. The TEM field joints

were tested at lower pressures (185 psig) than RSRM field joints (1,000 psig) because

of their configuration. These joints were tested with and without the assembly stands

(chocks) in place. This was done because previous HPM motors showed the potential

for leaking after the stands were removed. The results of the leak tests for the field

joints were acceptable.

The field joint tests were performed with a variation of the 8U75902 Ground

Support Equipment leak test system. For testing of the TEMs, the equipment was

modified to include a pressure relief valve to preclude the possibility of

over-pressurizing the joint.
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Table 6-3. TEM-7 Case Field Joint Leak Test Results

Pressure
(psig)

185
30

Maximum Leak
Rate (sees)

0.1
0.0082

Actual Leak Rates (sees), Prechock/Postchock

Forward

0.0121/0.0084
0.005/-0.002

Center

0.0023/0.0101
-0.002/0.0000

Aft

0.0128/0.0089
0.0003/-0.0001

The ignition system leak test results are shown in Table 6-4. The tests were

performed with the new leak test equipment shown in Table 6-2. The equipment was

identical to that used to test most of the RSRM joints. All results were within the

limits.

Table 6-4. TEM-7 Igniter and S&A Device Leak Test Results

Joint Seal

Inner
Outer
Transducer Installation
OPT**

Barrier-Booster

S&A Device

Allowable Leak Rate
(sees), High/Low*

0.10/0.0082
0.10/0.0082
0.10/0.0082

10 psi/10 min/1 psi/10 min

1 psi/10 min
0.10/0.0082

Actual Leak Rate
(sees), High/Low*

0.0043/-0.0002
0.0070/-0.0005
0.0085/-0.0001

1.0/0.0
2.0/0.0
3.0/0.0
2.0/0.0

Not available
0.0040/-0.0001

*High = 1,000 psig, Low = 30 psig
**OPTs tested at 1,024 psig and 30 psig; leak rate units are psi/10 min

Table 6-5 lists the results of the TEM-7 nozzle-to-case joint leak test. This joint

was tested at a maYimnm pressure of 185 psig. This differs from the RSRM nozzle-to-

case joint leak tests, which are performed at 920 psig. The TEM-7 nozzle-to-case leak
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test was performed after the first torque sequence, when the axial bolts are torqued to

25 ft-lb. This procedure prevented the occurrence of a metal-to-metal seal between

the fixed housing and the aft dome when the axial bolts were fully torqued. All leak

test results were within the allowable limits.

Table 6-5. TEM-7 Nozzle-to-Case Leak Test Results

Pressure
(psig)

185
30

Allowable Leak
Rate (sees)

0.072
0.0082

Actual Leak
Rate (sees)

0.0091
0.0000

The 2U129714 equipment was used to test the TEM-7 nozzle-to-case joint. This

is the new equipment used to test all RSRM nozzle-to-case joints starting with

360L006A.

The nozzle internal joint leak test results are shown in Table 6-6. The tests

were performed with the new leak test equipment as shown in Table 6-2. The

equipment was identical to that used to test most of the RSRM joints. All results

were within the limits.

Table 6-6. TEM-7 Nozzle Internal Joint Leak Test Results

Joint

No. 1
No. 2
No. 3
No. 4

Maximum Test
Pressure

83
920
740
144

Allowable Leak Rate
(sees), High/Low*

0.029/0.0082
0.084/0.0082
0.070/0.0082
0.053/0.0082

Actual Leak Rate
(sees), High Low*

0.0025/0.0006
0.0007/-0.0003
0.0010/-0.0008
0.0032/0.0002

* High = 1,000 psig, low = 30 psig
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6.6 NOZZLE PERFORMANCE

6.6.1 Introduction

The nozzle assembly (Drawing 7U76738) was a partially submerged convergent/

divergent movable design with an aft pivot point flexible bearing (Drawing 1U52840).

The phenolic liners were RSRM configuration with exceptions defined by the Low

Cost Improvement Program Plan, TWR-19524B. All metal hardware was RSRM

except for the fixed housing, which was an HPM configuration modified to mate with

the HPM aft segment.

The TEM-7 nozzle incorporated many modifications (Figure 6-20). The most

significant feature was incorporation of NARC rayon into all CCP liners: forward exit

cone, outer boot ring, cowl, fixed housing, nose, aft exit cone, and throat (Drawings

7U76736, 7U76608, 7U76609, 7U76865, 7U77266, 7U77267, and 7U77310).

Metal housings associated with the major nozzle phenolic assemblies (fixed

housing, forward exit cone, aft exit cone, nose, throat) were instrumented with strain

and temperature sensors.

The nozzle included changes in accordance with Low. Cost Improvement

Program Plan (TWR-19524B) and MSFC directives as follows:

• Minus 50-deg ply angle change on cowl (Drawing 7U76609) second wrap

• Full cure on CCP first wrap outer boot ring (Drawing 7U76608)

• Delayed pressure cure on glass-cloth phenolic (GCP) inner boot ring

(Drawing 7U76608)

• Bearing protector extended belly band (Drawing 7U76864), as shown in

Figure 6-21

• Improved nose-to-cowl assembly process (Figure 6-22)

• Boot cavity pressure (Drawings 7U76827, 7U76983) and temperature

measurement instrumentation (Figure 6-23)
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Flex Bearing
Thermal Protector

Increased Length
and Thickness

Was: 0.67 in. Thick Minimum
Now: 1.0 in. Thick Minimum

Was: 2.1 in. Length +/- 0.1
Now: 2.7 in. Length +/- 0.1

Cowl Insulation
(silica-cloth
phenolic)

A029981aR1

1— Vent Hole Size Increased: Was 0.312-in Dia,
Now 0.375-in Dia

Cowl Ring Liner
(Carbon Cloth Phenolic)

Ply Angle

Was: 0 Deg
Now: -50 Deg

Figure 6-21. Cowl Liner/Flex Bearing Thermal Protector
Area Configuration Changes
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• Fixed housing pressure (Drawing 7U76902) measurement instrumentation

(Figure 6-23)

The 36 vent holes in the cowl were increased in size from a nominal 0.312 in.

diameter to 0.375 in. diameter to alleviate boot cavity differential pressure.

Supporting analyses for this change were documented in TWR-60857, Cowl Vent Hole

Study and TEM-2 nozzle boot cavity pressurization.

TEM-7 was configured with a bearing protector in which the extended belly

band was also thickened. The belly band was extended to place the region of

maximum erosion in the thickened portion of the bearing protector. The belly band

was additionally thickened from 0.67 in. minimum to 1.0 in. minimum to

accommodate any potential for increased erosion due to the larger vent holes.

A 7U76865-02 nozzle fixed housing was created by machining four MS-16142-

type vent ports forward of the primary O-ring to facilitate venting of the cavity

between the joint putty and the primary O-ring when assembling the nozzle to the

case. Adjustable vent port plugs.with the Nylok locking feature (1U76425-03 and -02)

and closure plugs (Drawing 1U50159) were installed in the four RSRM vent ports of

the nozzle fixed housing.

The nozzle-to-case joint was assembled with RSRM axial bolts with preload

measuring capability. The assembly preload was a nominal 120,000 Ib.

The linear shaped charge was not added to the aft exit cone (Drawing 7U77267)

assembly for this test.

The axial test motor included an SRB aft skirt assembly identified on MSFC-

NASA Drawing 14A30649-02. The aft skirt assembly contained the TVC subsystem

and the heat shield installation.

The TVA system (Figure 6-24) was comprised of two SRB actuators and two

auxiliary power units (APU) located in the aft skirt.
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The APU ground test controller, APU MAP, and the ATVC served as the

control units for the TVC subsystem. This is the first TEM nozzle to have a TVC

system for vectoring capability.

6.6.2 Objectives/Conclusions

The objectives and corresponding conclusions from Section 2 regarding nozzle

performance were:

Objective

Certify NARC rayon for use in nozzle
CCP liners (CPW1-3600A, Para
3.2.1.4.13, 3.3.6.1.2.7, 3.3.6.1.2.8).

B. Certify nozzle inner boot ring cure
cycle improvement (CPW1-3600A,
Para 3.3.6.1.2.8).

C. Certify nozzle outer boot ring cure
cycle improvement (CPW1-3600A,
Para 3.3.6.1.2.8).

Conclusion

Certification requirements for this test
were met. First of three full-scale static
tests. The performance of the nozzle
liners was nominal. There were no
abnormal erosion patterns, and the
performance margins of safety were
equal to or better than baseline. X-ray
results and post test comparisons verified
better than average components.

Certification requirements for this test,
were met. Second of three full-scale static
tests. The inner boot ring performed
nominally. A delamination along a GCP
ply was due to forward movement of the
fixed housing liner and was not cure
cycle related. There were no LDIs
disclosed by pre-test X-rays.

Certification requirements for this test
were met. Second of three full-scale static
tests. The outer boot ring performed
nominally. The structural support ring
remained attached to the overwrap.
There were no LDIs disclosed by pretest
X-rays.
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Objective
D. Certify the nozzle cowl ring with an

ablative liner ply angle change (from
0 to -50 deg) (CPW1-3600A, Para
3.2.1.4.13, 3.3.6.1.2.8)

Conclusion
Certification requirements for this test
were met. Second of three full-scale static
tests. The cowl ring surface eroded
smoothly and contained none of the wash
areas typically seen on present RSRM
cowl rings with the 0-deg CCP ply wrap.
Performance margins of safety met or
exceeded flight baseline.

E. Certify the improved nozzle bearing
protector (CPW1-3600A, Para
3.3.6.1.2.8).

F. Recover case and nozzle hardware for
RSRM flight and static test programs.

H. Demonstrate the performance of an
improved nose assembly to cowl
assembly process for the nozzle
(CPW1-3600A, Para 3.2.3, 3.2.3.1,
3.3.1.1).

I. Demonstrate the performance of
increased cowl vent hole size
(0.375-in. nominal diameter) for
reducing boot cavity delta pressure
(CPW1-3600A, Para 3.3.6.1.2.8).

Invalid test due to possible effects of other
configuration changes. The greater
erosion areas due to gas impingement
were located within the thickened,
extended portion and did not overlap into
the thinner areas as on RSRM bearing
protectors. Configuration changes (see
Objective I) may have contributed to
more severe erosion than anticipated.

Case and nozzle hardware is available for
refurbishment.

Demonstrated. Due to the improved cowl
bonding process, EA 913NA adhesive did
not squeeze out and mix with the RTV
in joint No. 2 as is typically seen. RTV
penetrated uniformly all the way into the
joint as intended. The RTV was below
the char line over the full circumference.
No blowpaths were observed.

Not demonstrated. Boot cavity pressure
(Objective L) was not obtained to verify
performance, although 18 of 36 holes
remained open, compared to the
postflight average of five open vent holes.
However, the increased cowl vent hole
size contributed to the severe erosion of
the bearing protector (Objective E). The
erosion was > 0.4 in. at 230 through 0
through 10 deg and burned through the
bearing protector at 280 and 330 deg.
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6.6.3 Recommendations

Demonstration and qualification activities should continue for the following nozzle

features:

A. NARC rayon in nozzle CCP liners.

B. Nozzle inner boot ring and outer boot ring cure cycle improvements.

C. The nozzle cowl ring with the -50-deg angle CCP ply wrap.

D. The improved (extended) nozzle bearing protector (without the thickened portion).

E. The improved nose assembly-to-cowl assembly process for the nozzle.

The larger cowl vent holes (0.375 in.) are not planned for use on future static

test or flight nozzles.

6.6.4 Results/Discussion

Overall, the postburn condition of the nozzle liners was very good. Only two small,

shallow wash areas were found on the aft exit cone liner, and no surface ply lifting

was observed. The erosion of the throat and throat inlet rings was smooth, with the

typical rippled erosion pattern occurring on the aft 6 in. of the throat ring (0.1 in.

deep maximum). The postburn mean throat diameter was 56.07 inches. This is

within the historical database of RSRM/HPM throat diameters. The throat erosion

rate was 9.20 mils/sec. Typical minor wash areas (0.1 in. deep maximum) were

observed on the forward portions of the nose cap. The cowl ring erosion was smooth

and did not exhibit the typical wash areas as seen on RSRM (0-deg ply wrap) cowls.

All postfire flow surface gaps between phenolic components were uniform

around the circumference and were within the historical database.

A discussion of the nozzle subassemblies and joint conditions follows. Design

configuration/modifications are in parentheses. All liner performance margins of

safety were zero or greater (meets CEI specification Para 3.3.6.1.2.8).
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6.6.4.1 Nozzle Subassemblies

Aft Exit Cone (RSRM configuration/linear shaped charge (LSC) removed).

Performance margins of safety were positive for all stations of the aft exit cone. The

forward 12 in. showed typical, but less pronounced, dimpled erosion extending from

the forward exit cone. The remainder of the liner exhibited smooth erosion with no

surface ply lifting and no evidence of subsurface ply lifting. Two minor wash areas

were found. The first was at 240 deg and measured 7 in. axially by 5 in.

circumferentially by 0.02 in. deep. The second was at 260 deg and measured 12 in.

axially by 1 in. circumferentially by 0.1 in. deep. Core samples taken at the wash

areas and at other locations showed that no subsurface ply lifting had occurred.

There were no wedgeouts observed.

The postburn exit plane diameters (determined from sectioned liner

sections) were:

• 0 to 180 deg: 149.76 in.

• 90 to 270 deg: 149.83 in.

Forward Exit Cone (RSRM configuration/no snubber assembly). All performance

margins of safety were positive. The forward 17 in. showed smooth erosion. The aft

17 in. had typical dimpled erosion approximately 0.1 in. deep. There were no

wedgeouts observed.

Throat/Throat Inlet Rings (RSRM configuration). All performance margins of safety

were positive. The throat inlet ring and the forward 10 in. of the throat ring showed

smooth erosion. The aft 6 in. of the throat ring had typical rippled erosion measuring

approximately 0.1 in. deep. There were no wedgeouts observed. The postfire throat

diameters were as follows:

• 0 deg: 56.075 in.
• 45 deg: 56.108 in.
• 90 deg: 55.998 in.
• 135 deg: 56.105 in.
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The average throat diameter is 56.07 in. (erosion rate of 9.20 mils/sec based on

action time of 120.2 sec). The postfire throat diameters for RSRM and HPM have

ranged from 55.787 to 56.124 inches.

Nose Inlet Assembly (RSRM configuration). All performance margins of safety were

positive. The forward nose and aft inlet rings exhibited smooth erosion, with no

wedgeouts observed. Typical minor wash areas were seen on the nose cap OD forward

8 in. and measured approximately 0.15 in. deep. The remainder of the liner showed

smooth erosion. The aft 1.6 in. had typical intermittent postburn popped up, charred

CCP, but there were no wedgeouts observed.

Cowl Ring (-50-deg ply wrap: vent holes increased to 0.375 in. diameter). Performance

margins of safety were positive. The surface had smooth erosion, with no wash areas

observed. Eighteen of the 36 enlarged (from 0.315- to 0.375-in. diameter) cowl vent

holes were still open, with diameters ranging from 0.05 to 0.20 inch. Boot cavity

pressure was not obtained to verify that the enlarged cowl vent holes successfully

vented the boot cavity pressure during motor pressure tailoff. There were no

wedgeouts observed. The flow surface gap measurement between the cowl ring and

nose cap was 0.1 in., which is typical. This indicates there was no forward movement

of the nose cap, as was seen on TEM-6.

Outer Boot Ring/Flex Boot (RSRM configuration /full cure on outer boot ring CCP

first wrap). All performance margins of safety were positive. The outer boot ring was

intact, and the surface exhibited smooth erosion with no wash areas. The cowl-to-

outer boot ring bondline was also intact and showed no evidence of flow or erosion.

The flow surface gap measurement between the cowl and outer boot ring was 0.20 in.,

which is within the historical database. The aft end had typical postburn

delaminations along the 35-deg plies. The aft tip adjacent to the flex boot typically

fractured off postburn. There were no wedgeouts observed.

Sections of the liner showed the structural support ring intact and attached to

the overwrap portion, with no anomalies associated with the full cure cycle.
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The flex boot OD eroded evenly around the circumference, leaving three intact

NBR plies. The minimum performance margin of safety for the flex boot is 0.19. The

inside diameter (ID) side of the flex boot showed typical sooting and minor charring of

the NBR near the middle of the boot.

Fixed Housing (four pressure ports drilled through the liner and housing; four

pressure transducers installed). The fixed housing liner surface eroded smoothly and,

typically, had only a light coat of slag along the aft end. All performance margins of

safety were positive.

Examination of the aft end after nozzle-to-case joint demate showed a bondline

separation between the EA 913NA adhesive (STW5-3292) and the metal housing of

approximately 0.20 in. around the full circumference. Soot was seen extending from

the separation. The liner had moved forward approximately 0.20 in., allowing gas to

enter the separation through the pressure ports. All pressure ports were found to be

plugged with slag during the inspection. The forward movement caused the inner

boot ring to delaminate along a GCP ply and also move forward. This condition was

written up in PFAR TEM07-07. The aft portion of the inner boot ring was still

attached to the fixed housing liner, and the forward portion remained attached to the

metal housing. There is no evidence of a cure cycle association with this delamination

in the inner boot ring.

The pressure inlet tips of the four pressure transducers were heat affected and

eroded due to the gas flow from the pressure ports to the backside of the liner. The

primary O-rings on two of the transducers (at 80 and 260 deg) were also heat affected.

These conditions were written up in PFARs TEM07-02 and TEM07-04.

The fixed housing unbond failure was attributed to contamination of the fixed

housing bonding surface coupled with the stress concentration induced on the housing

by gas pressure through the four aft end chamber pressure ports.

Detailed results of the unbond investigation will be documented in TWR-61585.
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Bearing Protector (thicker and extended belly band). The bearing protector showed

severe erosion at some of the gas impingement points in line with the cowl

vent holes. Two locations (280 and 330 deg) were burned through the thickened

portion. The erosion was > 0.4 in. from 230 to 0 to 10 deg. This condition was

written up in PFAR TEM07-11. The impingement points were located within the

modified belly band and did not overlap onto the thinner areas of the bearing

protector.

The bearing protector burnthrough is considered to be an anomalous condition

and not a failure. Performance of the extended belly band was determined to be

unique to TEM-7 because of the cowl vent hole and bearing protector thickness

changes, which resulted in increased erosion of the bearing protector. The larger cowl

vent hole diameter (change from 0.315 to 0.375 in.) resulted in a 44.5-percent increase

in flow area. It is hypothesized that vectoring may have created a circumferential

flow condition in the boot cavity due to delta pressure. This condition could have

contributed to increased erosion, particularly in localized areas. However, boot cavity

pressure was not obtained to verify this theory. Also, the increased bearing protector

thickness brought the surface of the protector closer to the exit plane of the vent

holes. Spreading of the exiting gas jet was reduced due to the decreased distance

between the protector and vent hole, resulting in more direct gas impingement and

greater concentration on the surface of the bearing protector.

Flex Bearing (RSRM configuration). One flex bearing rubber pad at 280 deg was

eroded approximately 0.15 in. due to the burnthrough condition of the bearing

protector. The metal shims did not appear heat affected. This was written up in the

same PFAR as the bearing protector.

6.6.4.2 Aft Exit Cone Field Joint and Nozzle Internal Joints. A discussion of

observations made after each nozzle joint disassembly follows. Figure 6-25 shows the

joint configurations and designations.
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Snubber Assy

Forward Exit Cone Assy

Flex Boot

Fixed Housing Assy

Bearing Protector

Cowl Assy

Nose, Inlet
Housing

Forwai
End Ring

• Primary O-ring
• Secondary O-rlng

; Leak Check Port

EA946
Flex Bearing Assy

Cowl Housing
EA913NA

Joint 2 — Nose Inlet Assy-to-Flex
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Figure 6-25. TEM Nozzle Internal Joints
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Forward Exit Cone-to-Aft Exit Cone Field Joint (joint No. 1). The postfire evaluation

of the TEM-7 aft exit cone-to-forward exit cone joint was conducted on 3 Jan 1991.

The sealing surfaces were visually inspected and found to be in good condition with no

evidence of damage, corrosion, or excess grease coverage. No damage was found on

the primary or secondary 0-rings. RTV backfill extended below the joint char line

and was found up to the primary seal but not past the primary O-ring over the full

circumference. No pressure path (blowpath) was found through the RTV rubber.

A postburn cohesive separation in the aft exit cone polysulfide occurred over a

242 deg circumferential arc. The maximum radial width of the separation was

0.14 in., which is within the static test historical database.

A metal-to-EA 946 adhesive (STW5-2931) postburn separation of 0.08 in.

maximum was observed on the aft end of the forward exit cone over the full

circumference.

There was no corrosion on the joint metal surfaces.

Forward End Ring-to-Nose Inlet Housing Joint (joint No. 2). The TEM-7 forward end

ring-to-nose inlet housing joint was disassembled on 17 Jan 1991. No anomalous

conditions were observed. Light to medium corrosion was observed intermittently

around the circumference from 348 through 0 to 36 deg and 84 to 210 deg on the

forward end ring forward face upstream of the primary sealing surface area. Grease

partially plugged the leak check port through hole and was also observed on the

bottom tip of the port plug.

The RTV backfill extended below the char line over the full circumference of

the joint. The RTV extended to the nose inlet housing/glass cloth phenolic interface.

No blowpaths were observed in the joint.

No bondline separations were observed on this joint.
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Intermittent light to medium corrosion was present on the forward end ring

joint flange. Minor scratches caused by jacking screws during disassembly were

located in four equally spaced locations on the nose inlet housing aft surface.

Nose Inlet Housing-to-Throat Support Housing Joint (joint No. 3). The TEM-7 nose

inlet housing-to-throat support housing joint was disassembled on 17 Jan 1991. A

0.15-in.-long radial scratch at 130 deg was seen on the primary O-ring sealing surface

on the forward end of the throat support housing. The scratch could be felt with a

5-mil brass shim stock. PFAR TEM07-08 was written on this anomaly.

The RTV backfill extended below the char line over the complete

circumference. There was no evidence of grease interfering with the flow of RTV into

the joint. No blowpaths were present.

There were no bondline separations present on either the nose inlet (-504 ring)

or throat inlet.

No corrosion was observed.

Forward Exit Cone-to-Throat Support Housing Joint (joint No. 4). The TEM-7

forward exit cone-to-throat support housing joint was disassembled on 16 Jan 1991.

The RTV backfill extended below the char line over the complete circumference of

the joint. Scalloping of the RTV was present, with evidence of grease on the throat

phenolic surface interfering, up to 0.75 in. upstream of the primary seal, with the flow

of RTV into the joint at 22 to 42, 220 to 225, and 275 to 300 deg, circumferentially.

PFAR TEM07-09 was written on this condition. The RTV reached the primary O-ring

except where grease was present on the phenolics. There were no blowpaths present.

No bonoUine separations were present on the aft end of the throat housing

assembly. A metal-to-adhesive separation of 0.05 in. maximum was. observed on the

forward end of the forward exit cone assembly over the full circumference.

No corrosion or damage to the metal components was observed.
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Fixed Housing-to-Aft End Ring Joint (joint No. 5). The TEM-7 fixed housing-to-aft

end ring joint was disassembled on 16 Jan 1991. RTV reached the primary O-ring at

210 to 215 deg and was found past the primary O-ring footprint area, for a length of

1 in. at 210 deg, on the corresponding sealing area of the mating surface on the fixed

housing. It was determined that this anomaly occurred during the assembly process.

PFAR TEM07-10 was written on this condition. No RTV adhered to the fixed housing

seal surface, indicating that the RTV did not inhibit the sealing action of the O-ring.

The only evidence of RTV across footprint was a red stain on the O-ring.

Intermittent voids were present in the RTV from the assembly process, but there

were no blowpaths. Grease coverage was nominal and did not interfere with the RTV

fill in the joint.

Joint No. 5 packing with retainers had typical seal damage due to the

disassembly process.

There were no bondline separations seen at the forward end of the inner boot

ring. However, the inner boot ring had sheared along a GCP ply and moved forward

approximately 0.30 in., although the bondline gap opened up to 0.20 inch. The

shearing of the ring was associated with the fixed housing liner separation.

No corrosion or metal damage was present.

6.6.4.3 Results of Special Issues (TWR-61209. Para 3.3). The following items were

designated Special Issues unique to the TEM-7 nozzle that were to be evaluated in

conjunction with the standard postfire evaluation. This section lists the condition as

written in TWR-61209 and the resulting evaluation.

3.3.8-Condition: 0.15 in. of insulation was removed from the SAPMD to eliminate
interference with the bearing protector.

-Results: The thin areas of the insulation were found to be heat affected as a
result of the insulation separating along the laminated bondlines,
and opened up, allowing soot to reach the SAPMDs. The SAPMDs
were not heat affected.
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3.3.9-Condition: A pre-1980 process was used to seat the aft exit cone shell onto the
aft exit cone liner.

--Results: No anomalies were identified to show that this was an inadequate
process.

3.3. ID-Condition: 1) One of four rolls of CCP had shear strength in excess of
8,000 psi. 2) Two of four rolls of CCP had compressive strength in
excess of 65,000 psi.

-Results: The aft exit cone liner performance was very good. There were no
severe wash areas and no ply lifting observed. The higher shear
and compressive strengths were not detrimental to the performance
of the CCP.

3.3.11-Condition: LDIs in the aft exit cone GCP.

-Result: The LDIs were found not to be delaminations or separations, but
were resin-rich areas.

3.3.12-Condition: LDIs (voids) in the nose cap-to-forward nose ring bondline at 273
and 343 deg.

-Result: These voids were contained within the char depth region of the
joint and therefore were no longer present. Char depths were
normal and there were no anomalies seen which could be associated
with the voids.

6.6.4.4 NCPT Assessment and RPRB Recommendations. The NCPT reviewed all

observations documented in this report. Violations of the nozzle postfire engineering

evaluation limits contained in TWR-60273, Vol II and III were documented on PFAR

forms and presented to the RPRB on 30 Jan 1991 for concurrence (refer to memo

E623-FY91-161). The RPRB agreed with the classifications and recommendations of

the NCPT. A list of the PFARs is included in Appendix A.

6.6.4.5 TEM-7 Nozzle Strain Gage Response Summary. The TEM-7 nozzle metal

parts were RSRM configuration except for the fixed housing, which was SRM design.

Review of strain gage data shows expected performance except for the fixed housing

assembly.

TEM-7 hoop (circumferential) and meridional (axial) strain gages were located as

follows:
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Motor
Station

1962.8
1902.2
1865.0
1839.39
1839.0
1842.5
1867.0

Circumferential Location
(deg)

0, 90, 180, 270
0, 90, 180, 270
0, 90, 180, 270
0, 90, 180, 270
0, 90, 180, 270
0, 90, 180, 270
80, 170, 260, 350

Assembly

Aft exit cone
Aft exit cone housing
Forward exit cone housing
Throat housing
Nose inlet housing
Nose inlet housing
Fixed housing

Figures 6-26 through 6-37 show measured strain data (mean value of four gages)

versus the RSRM predicted values for those gage locations. Overall, the data

correlated very well. Figures 6-38 and 6-39 show the actual strain data for the fixed

housing.

Hoop strain at aft exit cone Stations 1962.8, 1902.2, and forward exit cone

Station 1865.0 (Figures 6-26, 6-28, and 6-30) match predicted values for 10- and 20-sec

time slices. Subsequent time slices do not match predicted magnitudes as well;

however, the strain profile and magnitude are indicative of strains from previously

observed test motors. The meridional strain profiles for the same station locations

(Figures 6-27, 6-29, and 6-31) match predictions very well. The meridional strain

profile at Station 1962.8 is shifted down slightly from the predicted. Gage preload is

one possible explanation for this; however, the 100-microstrain shift is negligible.

Hoop strain data for throat housing Station 1839.39 (Figure 6-32) match

predicted values extremely well. The meridional strains for this same location are,

once again, shifted down approximately 80 microstrain maximum (Figure 6-33). This

shift is not a problem because the hoop strains match so well and the actual data

profile follows the predicted profile.

Strain data from the nose inlet housing aft end (Station 1842.5) was comparable

to previous test measurements. Hoop strain (Figure 6-34) matched predictions.
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Meridional strains at Station 1842.5 (Figure 6-35) were less severe than predicted

values, which is typical for this location.

Nose inlet housing hoop strain at Station 1839.0 (Figure 6-36) showed a tensile

shift of approximately 60 to 130 microstrain. Hoop strain at this location on the

nozzle nose inlet housing is compressive. The shift occurred at ignition and was

tensile, which would indicate that the instrumentation experienced a problem not

impacting the nozzle hardware itself. Meridional strains at Station 1839.0

(Figure 6-37) matched predicted values.

Strain data at Station 1867.0 on the fixed housing shows an anomalous

occurrence approximately 2 sec into motor burn. Both the hoop and meridional

strains (Figures 6-38 and 6-39) increased sharply in magnitude at 2 sec. Extensive

structural analysis, fracture mechanics analysis, and postfire observations showed that

the EA 913NA adhesive bondline failed between the fixed housing and the GCP

insulation. This failure was attributed to contamination of the fixed housing bonding

surface coupled with the four pressure transducers installed through the fixed

housing (test configuration only). This configuration created both a stress

concentration and a gas path to the adhesive bond interface. Predicted strains at the

gage location, prior to 2 sec, match TEM-7 measurements; also, predicted strains with

pressure in the bondline match the strain data after 2 sec (Figures 6-40 and 6-41).

6.6.4.6 Nozzle TVC Performance. The TVC system performed as planned and

followed the specified duty cycle.

6.7 IGNITION SYSTEM PERFORMANCE

6.7.1 Introduction

The SRM ignition system was a modified HPM igniter assembly (Drawing 1U50776).

It contained a single nozzle, steel chamber, external and internal insulation, and solid

propellant (TP-H1178 (STW5-2833)) igniter containing a case bonded 40-point star

grain (Figures 6-42 and 6-43).
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Outer Gasket

Inner Gasket

Special Bolt

OPT-

S&A Device

Packing With
Retainers and
Special Washer

REVISION

Packing With Retainers

Inner Bolt
Inner Gasket
Leak Check Port

Outer Gasket
Leak Test Port

Outer Bolt

Outer Gasket

Forward Segment

Figure 6-42. Ignition System Components and Seals
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The forward-mounted solid-rocket-type igniter (Drawing 1U50776) was modified

with a CO2 quench port. Ultrasonically torqued bolts fastened the igniter adapter to

the igniter chamber. A286 bolts in the igniter adapter-to-case joint were replaced

with higher strength MP159 bolts which were ultrasonically preloaded to a higher

level. This was the first TEM static test motor with ultrasonic bolts in the inner and

outer igniter bolt circles.

An S&A device utilizing Krytox grease to lubricate the barrier-booster shaft

0-rings was installed on the igniter (Figure 6-44).

Velostat or pink poly plastic sheets were wrapped and tightly sealed around the

forward thrust adapter to simulate the thermal protection provided to the igniter and

S&A device by flight configuration.

6.7.2 Objectives/Conclusions

There are no objectives from Section 2 concerning the ignition system.

6.7.3 Recommendations

None.

6.7.4 Results/Discussion

6.7.4.1 S&A Device Cycle Times. Performance of the Krytox grease on the barrier-

booster shaft was excellent. S&A device cycle times were within the engineering

requirements of 2.0 sec or less at 24 Vdc (TWR-17656, Table III).

6.7.4.2 S&A Device Removal. The S&A device was removed on 17 Dec 1990. No

anomalous conditions were found during the evaluation of the S&A device sealing

surfaces and gasket. Heavy soot was found on the gasket aft face, over the full

circumference, up to the primary seal. Cadmium plating was missing inward of the

gasket aft face primary seal, 0.020 in. from the seal cushion at 175 deg. No soot was

found on the gasket forward face to the primary seal. Heavy soot was found on the
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retainer ID over the full circumference. No damage to the gasket seals or the S&A

device sealing surfaces was found.

6.7.4.3 S&A Device Disassembly . The TEM-7 S&A device was disassembled on

20 Dec 1990. One anomalous condition was observed during the disassembly

assessment: a small axial scratch was found at 300 deg on the primary seal surface of

the barrier-booster housing bore, the scratch was less than 0.1 in. in length and could

be felt with a 0.005-in.-thick brass shim. PFAR TEM07-01 was written on the scratch.

Typical soot was seen to have reached the rotor shaft forward primary 0-ring.

Soot was also observed to reach both SRM ignition initiator (SII) primary O-rings.

However, no soot or blowby was observed past any seal. There was no evidence of

damage to the rotor shaft or the SII O-rings.

Typical circumferential galling was found on the land between the primary and

secondary seal surfaces of both SII ports. This is an acceptable condition per the

barrier-booster refurbishment specification.

Special Issue (TWR-61209. Para 3.2.3. Item 1). An assessment was made at

disassembly to determine if any contamination was present in the SII port leak test

through holes. (Refer to DR No. 400579.) No contamination was found.

6.7.4.4 Igniter Special Bolts . No damage was found on the primary 0-rings and no

damage to the bolt threads or sealing surfaces was observed.

6.8 JOINT PROTECTION SYSTEM PERFORMANCE

6.8.1 Introduction

Field joint heater closeout consisted of cork strips retained with Kevlar straps. The

external joint temperatures were sensed by two sensor assemblies mounted adjacent

to the heater. Improved field joint heaters (Drawing 1U77252), igniter-to-case joint

heater (Drawing 1U77253), and nozzle-to-case joint heater (Drawing 7U77118) were

installed in accordance with Drawing 7U77328. These heaters consisted of redundant,

REVISION _ OOCNO. TWR- 17659 [

ii£

911520-7.12

PAGE 100



CORPORATION
SPACE OPERATIONS

chemically etched foil circuits which were superimposed upon one another and

laminated in polyamide plastic sheets. The underside Kapton surface of the field joint

and nozzle-to-case joint heaters was coated with a pressure-sensitive adhesive. This

adhesive provided bonding to the case during assembly. The lead wires extended from

the heaters and were terminated in electrical connectors.

RSRM joint protection system power cables (1U76702-01, 1U76702-02, 1U76703-

01, 1U76703-02, 1U76704-01, 1U76704-02, 1U76705-01, 1U76705-02, 1U76706-01, and

1U76706-02) were installed to provide 208 vac to the RSRM field joint and igniter-to-

case joint heaters.

6.8.2 Objectives/Conclusions

There are no objectives from Section 2 concerning the joint protection systems.

6.8.3 Recommendations

None.

6.8.4 Results/Discussion

The joint protection systems performed within specifications and maintained the joint

temperatures within the required temperature range at the time of motor ignition.

A post-test inspection with the field joint protection system still on the motor

revealed no evidence of damage.

6.9 BALLISTICS/MASS PROPERTIES PERFORMANCE

6.9.1 Introduction

The SRM propellant, TP-H1148 (STW5-3343), was a composite-type solid propellant

formulated of polybutadiene acrylic acid acrylonitrile terpolymer (PBAN) binder, epoxy

curing agent, ammonium perchlorate oxidizer, and aluminum powder fuel.
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Approximately 0.25 percent by weight (exact amount determined by standardization)

of burning rate catalyst (iron oxide) was added to achieve the targeted propellant burn

rate of 0.368 in./sec at 625 psia and 60°F (TWR-19121 and TWR-19838).

The propellant grain design consisted of an 11-point star with a smooth bore-to-

fin-cavity transition region that tapered into a circular perforated (CP) configuration

in the forward segment (Drawing 1U52565). The two center segments (Drawing

1U52566) were double-tapered CP configurations, and the aft segment (Drawing

1U52757) was a triple-taper CP configuration with a cutout for the partially

submerged nozzle.

6.9.2 Obiectives/Conclusions

The objectives and corresponding conclusions from Section 2 regarding ballistics/mass

properties were:

Objective

G. Obtain data on the effect of five-year
storage of loaded SRM case segments
upon motor ignition and performance.

J. Obtain additional data on the low-
frequency chamber pressure
oscillations in the motor forward end
and correlate with chamber pressure
oscillation measurements in the
motor aft end.

K Obtain additional data on chamber
pressure drop down the bore by the
use of aft end pressure transducers.

Conclusion

Motor performance was nominal. Five-
year storage did not appear to affect
motor ignition and performance.

There was no useable aft end pressure
oscillation data due to the aft end
phenolic insulation unbond. However,
headend dynamic pressure was obtained.

One of two Teledyne Taber pressure
transducers recorded data until T + 20
sec, then the data became erratic.
Software anomaly is believed to have
caused both SAPMDs to be inoperable
prior to test. The thermocouple data
were erratic throughout the firing but
did demonstrate the increased
temperature into the boot cavity
resulting from increased vent hole
diameters.
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6.9.3 Recommendations

Propellant and grain design in the existing HPM cast segments cannot be altered.

The remaining HPM segments should be used on future TEM static tests.

6.9.4 Results/Discussion

TEM-7 ballistic performance was within expected limits. The TEM-7 ballistic

performance compared well with previous TEM performance and HPM historical data.

The aft end pressure gauges provided very little useful ballistics data due to the aft

end anomalous condition. The five-year storage of loaded case segments did not

appear to affect motor performance. The measured slag weight in the aft segment

was 1,813 Ibm.

TEM-7 exhibited chamber pressure oscillations similar to previously tested

Space Shuttle HPMs. The first longitudinal (1-L) mode oscillations were typical for an

HPM. In general, HPM 1-L mode amplitudes are lower than those for RSRMs. The

magnitudes of the TEM-7 oscillations were among the lowest experienced in HPMs.

The aft end pressure oscillations could not be analyzed due to lack of data.

A comparison of TEM-7 performance with predicted values and with the

nominal HPM performance revealed few differences. The predicted burn rate for

TEM-7 was 0.370 in./sec at 625 psia and 60°F, the target burn rate was 0.368 in./sec,

and the delivered burn rate was 0.371 in./sec. Predicted and measured performance

compared well and was within the current HPM Specifications.

Table 6-7 is a summary of the measured ballistic and nozzle performance data.

Figure 6-45 is a comparison of measured and predicted pressure-time histories. The

measured and predicted performance compared well for this motor. Thrust was not

measured for this static test; only reconstructed thrust based on nominal thrust-to-

pressure ratios is available.

Figures 6-46 and 6-47 contain plots of the analytical reconstruction of TEM-7

performance. The analytical model calculated the motor burn rate and surface burn
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Table 6-7. Summary of Measured Ballistic and Nozzle Performance Data

A. Ambient conditions

Time and date at fire pulse
Ambient temperature
Measured mean bulk temperature
Measured ambient pressure

1300 hours, 11 Dec 1990
44.00
65.00
12.28

°F
°F
psia

B. Weight data

Total loaded propellant weight
Total expended weight
Unexpended propellant residue (slag)
Expended inert weight

1. Forward segment
2. Forward center segment
3. Aft center segment
4. Aft segment (including nozzle from field joint

forward)
5. Total expended inerts

Total expended propellant weight

1,109,826.0
1,114,176.0
2,000.0

718.0
598.0
962.0
4,072.0

6,350.0
1,107,826.0

Ib
Ib
Ib

Ib
Ib
Ib
Ib

Ib
Ib

C. Nozzle data

Initial throat area
Final throat area
Web time average throat area
Action time average throat area
Total time average throat area
Initial exit area
Final exit area
Total time average exit area
Web time average throat radial erosion rate
Action time average throat radial erosion rate
Total time average throat radial erosion rate
Initial expansion ratio
Web time average expansion ratio
Action time average expansion ratio
Action time average nozzle efficiency
Total time average nozzle efficiency

2,280.3
2,469.3
2,378.5
2,386.9
2,387.1
17,586.5
17,681.8
17,634.2
0.00972
0.00910
0.00905
7.7123
7.4138
7.3878
0.97292
0.97305

in.2

in.2

in.2

in.2

in.2

in.2

in.2

in.2

ips
ips
ips
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Table 6-7. Summary of Measured Ballistic and Nozzle Performance Data (cont)

D. Time and ballistic data

Time at first indication of headend pressure
Ignition delay time
Time at 90 percent maximum igniter pressure
Ignition interval time
Ignition rise time
Time when headend chamber pressure achieves 563.5 psia

during ignition
Time at last indication of headend pressure
Time at web bisector
Web time
Action time
Total time
Tailoff thrust decay time
Maximum change in thrust over 10 ms during ignition
Maximum igniter pressure
Maximum measured headend pressure
Time at maximum headend pressure
Maximum thrust
Time at maximum thrust
Maximum thrust corrected to vacuum.
Maximum thrust corrected to sea level
Maximum stagnation pressure
Web time average headend chamber pressure
Action time average headend chamber pressure
Web time average nozzle stagnation pressure
Action time average nozzle stagnation pressure
Initial thrust
Initial thrust corrected to vacuum
Initial thrust corrected to sea level
Web time average thrust
Web time average thrust corrected to vacuum
Action time average thrust
Action time average thrust corrected to vacuum
Characteristic exhaust velocity

0.029-
-0.023
0.052
0.235
0.206
0.235

120.951
109.049
108.813
120.203
120.922

0.512
271,759

1,840
933.20

0.652
3,165,676

16.504
3,381,797
3,123,085

863.7
680.58
632.04
663.86
616.82

2,942,746
3,158,717
2,900,184
2,443,689
2,660,180
2,259,953
2,471,540
5,079.31

sec
sec
sec
sec
sec
sec

sec
sec
sec
sec
sec
sec
Ib
psia
psia
sec
Ib
sec
Ib
Ib
psia
psia
psia
psia
psia
Ib
Ib
Ib
Ib
Ib
Ib
Ib
ft/sec
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Table 6-7. Summary of Measured Ballistic and Nozzle Performance Data (cont)

E. Impulse data

Measured total impulse
Total impulse corrected to vacuum
Measured impulse at 20 sec
20-sec impulse corrected to vacuum
Measured impulse at 60 sec
60-sec impulse corrected to vacuum
Web time impulse
Web time impulse corrected to vacuum
Action time impulse
Action time impulse corrected to vacuum
Specific impulse
Specific impulse corrected to vacuum
Web time specific impulse
Web time specific impulse corrected to vacuum
Action time specific impulse
Action time specific impulse corrected to vacuum
Propellant specific impulse
Propellant specific impulse corrected to vacuum

271.792
297.302
61.497
65.814

162.382
175.353
265.906
289.462
271.653
297.087
243.940
266.836
245.379
267.117
243.981
266.824
245.338
268.366

Mlb-sec
Mlb-sec
Mlb-sec
Mlb-sec
Mlb-sec
Mlb-sec
Mlb-sec
Mlb-sec
Mlb-sec
Mlb-sec
sec
sec
sec
sec
sec
sec
sec
sec

F. Pressure integral data

Total time pressure integral
Web time pressure integral
Action time pressure integral

76,024.1
74,056.6
75,982.6

psia-sec
psia-sec
psia-sec
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Table 6-7. Summary of Measured Ballistic and Nozzle Performance Data (cont)

D. Time and ballistic data (corrected to 40 °F)

Time at first indication of headend pressure
Time when headend chamber pressure achieves 563.5 psia during
ignition
Time at last indication of headend pressure
Time at web bisector
Web time
Action time
Maximum measured headend pressure
Time at maximum headend pressure
Maximum thrust corrected to vacuum
Maximum nozzle stagnation pressure
Web time average headend chamber pressure
Action time average headend chamber pressure
Web time average nozzle stagnation pressure
Action time average nozzle stagnation pressure
Web time average thrust corrected to vacuum
Action time average thrust corrected to vacuum

0.031
0.247

124.320
112.186
111.940
123.572
906.10
0.670

3,283,433
838.6

660.67
613.84
644.44
599.06

2,582,354
2,400,403

sec
sec
sec
sec
sec
sec
psia
sec
Ib
psia
psia
psia
psia
psia
Ib
Ib

E. Impulse data (corrected to 40 °F)

Total impulse corrected to vacuum
20-sec impulse corrected to vacuum
60-sec impulse corrected to vacuum
Web time impulse corrected to vacuum
Action time impulse corrected to vacuum
Specific impulse corrected to vacuum
Web time specific impulse corrected to vacuum
Action time specific impulse corrected to vacuum
Propellant specific impulse corrected to vacuum

296.831
63.837

170.935
289.068
296.622
266.413
266.705
266.412
267.940

Mlb-sec
Mlb-sec
Mlb-sec
Mlb-sec
Mlb-sec
sec
sec
sec
sec
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Table 6-7. Summary of Measured Ballistic and Nozzle Performance Data (cont)

D. Time and ballistic data (corrected to 60 CF)

Time at first indication of headend pressure
Time when headend chamber pressure achieves

563.5 psia during ignition
Time at last indication of headend pressure
Time at web bisector
Web time
Action time
Maximum measured headend pressure
Time at maximum headend pressure
Maximum thrust corrected to vacuum
Maximum nozzle stagnation pressure
Web time average headend chamber pressure
Action time average headend chamber pressure
Web time average nozzle stagnation pressure
Action time average nozzle stagnation pressure
Web time average thrust corrected to vacuum
Action time average thrust corrected to vacuum

0.029
0.238

121.619
109.649
109.411
120.864
927.72
0.656

3,361,900
858.6

676.60
628.38
659.98
613.25

2,644,611
2,457,255

sec
sec

sec
sec
sec
sec
psia
sec
Ib
psia
psia
psia
psia
psia
Ib
Ib

E. Impulse data (corrected to 60 °F)

Total impulse corrected to vacuum
20-sec impulse corrected to vacuum
60-sec impulse corrected to vacuum
Web time impulse corrected to vacuum
Action time impulse corrected to vacuum
Specific impulse corrected to vacuum
Web time specific impulse corrected to vacuum
Action time specific impulse corrected to vacuum
Propellant specific impulse corrected to vacuum

297.197
65.402

174.446
289.350
296.993
266.741
267.033
266.740
268.270

Mlb-sec
Mlb-sec
Mlb-sec
Mlb-sec
Mlb-sec
sec
sec
sec
sec
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Table 6-7. Summary of Measured Ballistic and Nozzle Performance Data (cont)

D. Time and ballistic data (corrected to 90 °F)

Time at first indication of headend pressure
Time when headend chamber pressure achieves

563.5 psia during ignition
Time at last indication of headend pressure
Time at web bisector
Web time
Action time
Maximum measured headend pressure
Time at maximum headend pressure
Maximum thrust corrected to vacuum
Maximum nozzle stagnation pressure
Web time average headend chamber pressure
Action time average headend chamber pressure
Web time average nozzle stagnation pressure
Action time average nozzle stagnation pressure
Web time average thrust corrected to vacuum
Action time average thrust corrected to vacuum

0.026
0.224

117.670
106.040
105.815
116.931
961.12
0.634

3,483,113
889.5

700.99
650.74
683.77
635.08

2,739,954
2,544,695

sec
sec

sec
sec
sec
sec
psia
sec
Ib
psia
psia
psia
psia
psia
Ib
Ib

E. Impulse data (corrected to 90 °F)

Total impulse corrected to vacuum
20-sec impulse corrected to vacuum
60-sec impulse corrected to vacuum
Web time impulse corrected to vacuum
Action time impulse corrected, to vacuum
Specific impulse corrected to vacuum
Web time specific impulse corrected to vacuum
Action time specific impulse corrected to vacuum
Propellant specific impulse corrected to vacuum

297.744
67.820 .

179.915
289.929
297.552
267.232
267.523
267.231
268.764

Mlbf-sec
Mlbf-sec
Mlbf-sec
Mlbf-sec
Mlbf-sec
sec
sec
sec
sec
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rate error (SBRE) factor. The calculated burn rate of 0.3709 in./sec at 625 psia and

60°F was approximately 0.3 percent above the predicted value of 0.3697 in./sec, well

within burn rate variation. The calculated SBRE table compared well with the

nominal HPM table, as expected, since the propellant grain geometry was the same.

Figure 6-48 shows measured aft end chamber pressure with reconstructed

headend pressure and the corresponding aft end pressure data The reconstruction is

forced to match the headend pressure, not aft end pressure. The TEM-6 motor

provided good insight to the measured aft end pressure, and the reconstructed aft end

data shown in Figure 6-48 are believed to be accurate for TEM-7.

The actual TEM-7 aft end pressure data are scattered. At 2 sec in burn the

pressure data rapidly decrease and then recover to a point. After each gauge recovers

from the initial pressure drop, all consistently lag headend pressure. Postflight

inspection did reveal plugged port holes and heat-affected transducers. As shown in

the figure, all aft end pressure readings maintained a higher-than-ambient pressure

after the test. Gauge PNNAR006 drops below the other aft end gauges, as was seen

on TEM-6.

The ballistics code shows the reconstruction of PSN to be higher than actual

measured data, but the reconstruction of pressure at axial location 1577 in.

(aft segment factory joint) is very close to measured aft end pressure. The ballistics

model is a one-dimensional (1-D) code that does not accurately model the flow field in

the aft end of the aft segment. (The 1-D model shows a pressure recovery after

location 1,577 inches.) Previous strain gauge data have shown no increase in pressure

hi this region; thus, the pressure at the factory joint models the aft end pressure very

well.

All aft end gauges were acoustically quiet (due to partial plugging), and no

oscillation analysis could be made.
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The motor average subscale burn rates, full-scale motor burn rates (determined

from post-test curve matching), and resulting scale factors for SRM-15 to SRM-24

used to predict the TEM-7 burn rate are listed in Table 6-8. The full-scale motor

burn rates were determined form post-test curve matching, in which the analytical

model was forced to match the measured motor performance. The mean scale factor

was 1.0175 with a sigma 0.00440 and a coefficient of variation of 0.432 percent.

A plot of the measured data comparing the ignition transients of the TEM static

tests is shown in Figure 6-49. The TEM-7 transient was very similar to previously

measured motor ignition performance. The TEM-7 maximum pressure rise rate was

80.62 psi/10 ms. The historical three-point average pressure rise rate is

90.07 psi/10 ms, with a variation of 6.80 psi/10 ms. TEM-7 had the second lowest

measured pressure rise rate but was within two standard deviations of the population

average. Table 6-9 is a summary table showing the historical pressure rise rates,

thrust rise rates, and ignition intervals. A summary of the TEM-7 ignition events is

shown in Table 6-10.

The TEM-7 igniter grain configuration was identical to the HPM flight and

static test igniter design. The igniter was cast from propellant batch D760006 using

TP-H1178 propellant. The delivered maximum mass flow rate was 330.0 Ibm/sec at

65°F for the TEM-7 igniter (65°F is the assumed propellant mean bulk temperature

for the igniter). The TEM-7 igniter performance characteristics were within the

expected ranges. Comparison of TEM-7 igniter performance at 80 °F with the igniter

limits at 80°F is shown in Figure 6-50. TEM-7 is within the limits at 80°F.

A comparison of the igniter pressure-versus-motor headend and nozzle

stagnation pressure for the first 1.4 sec of motor operation is shown in Figure 6-51.

The slight mismatch between igniter and headend chamber pressure values from 0.6

to 1.4 sec is within allowed transducer error. A plot of headend and nozzle stagnation

pressure for the full duration of the static test is shown on Figure 6-52. These curves

are characteristic of the ratio of the headend-to-nozzle stagnation pressures from

previous SRM static test motors.
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Table 6-8. Burn Rate Data Comparison-Subscale to Full Scale (625 psia, 60 °F)

Motor

SRM-15A
SRM-15B
SRM-16A
SRM-16B
SRM-17A
SRM-17B
SRM-18A
SRM-18B
SRM-19A
SRM-19B
SRM-20A
SRM-20B
SRM-21A
SRM-21B
SRM-22A
SRM-22B
SRM-23A
SRM-23B
SRM-24A
SRM-24B

Burn Kate (in./sec)

SRM
Target

0.368
0.368
0.368
0.368
0.368
0.368
0.368
0.368
0.368
0.368
0.368
0.368
0.368
0.368
0.368
0.368
0.368
0.368
0.368
0.368

5-in. CP
Standard

0.366
0.366
0.365
0.365
0.363
0.362
0.362
0.363
0.364
0.364
0.368
0.366
0.367
0.365
0.362
0.362
0.364
0.364
0.360
0.361

SRM
Predicted

0.370
0.370
0.369
0.369
0.367
0.366
0.367
0.368
0.369
0.369
0.373
0.371
0.370
0.368
0.365
0.365

. 0.367
0.367
0.365
0.366

SRM
Delivered

0.3701
0.3709
0.3684
0.3688
0.3680
0.3694
0.3693
0.3690
0.3703
0.3704
0.3742
0.3744
0.3737
0.3744
0.3675
0.3697
0.3713
0.3721
0.3678
0.3674

Scale Factor

5-in. CP
Standard
(in./sec)

1.0112
1.0134
1.0093
1.1040
1.0138
1.0204
1.0202
1.0165
1.0173
1.0176
1.0168
1.0230
1.0183
1.0258
1.0152
1.0213
1.0201
1.0223
1.0217
1.0177

Average scale factor = 1.0175, Sigma = 0.00440, % coefficient of variation = 0.432

ETM-1
DM-8
DM-9
QM-6
QM-7
PVM-1
TEM-1
TEM-2
TEM-3
TEM-4
TEM-5
TEM-6
FSM-1
TEM-7

0.368
0.368
0.368
0.368
0.368
0.368
0.368
0.368
0.368
0.368
0.368
0.368
0.368
0.368

0.365
0.360
0.362
0.360
0.358
0.360
0.362
0.362
0.362
0.362
0.362
0.361
0.364
0.363

0.372
0.366
0.368
0.366
0.364
0.366
0.368
0.368
0.368
0.369
0.368
0.367
0.370
0.370

0.3681
0.3677
0.3691
0.3665
0.3657
0.3677
0.3659
0.3664
0.3672
0.3681
0.3654
0.3667
0.3701
0.3709

1.0085
1.0214
1.0196
1.0181
1.0215
1.0214
1.0116
1.0122
1.0155
1.0160
1.0105
1.0166
1.0165
1.0208
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Table 6-9. Historical Three-Point Average Thrust and Pressure Rise Rate Data

Motor
Occurrence

Time
Pressure
Rise Rate

Occurrence
Time

Thrust
Rise Rate

Ignition
Interval

Static Test Motors
DM-2
QM-1
QM-2
QM-3
QM-4
ETM-1A
DM-8
DM-9
QM-6
QM-7
PVM-1
TEM-1
QM-8
TEM-2
TEM-3
TEM-4
TEM-5
TEM-6
FSM-1

0.1480
0.1560
0.1640
0.1560
0.1505
0.1520
0.1680
0.1640
0.1480
0.1480
0.1520
0.1520
0.1720
0.1520
0.1520
0.1480
0.1560
0.1600
0.1520

85.30
86.38
93.58
94.45
91.96
86.72
77.00
81.00
87.40
99.60
92.80
85.13
72.30
94.40
88.51
81.52
87.12
84.49
97.06

0.1480
0.1560
0.1720
0.1520
0.2225
0.1560
0.1760
0.1720
0.1520

NA
0.1520
0.1520

NA
0.1520

NA
0.1520

NA
0.1520
0.1440

245,380
246,128
234,950
245,615
234,438
230,023
257,272
275,525
211,476

NA
294,664
238,583

NA
288,772

NA
279,764

NA
273,946
250,453

0.2330
0.2362
0.2391
0.2287
0.2192
0.2279
0.2424
0.2436
0.2321
0.2230
0.2338
0.2255
0.2517
0.2280
0.2272
0.2283
0.2299
0.2342
0.2278

Flight Motors
SRM-1A
SRM-1B
SRM-2A
SRM-2B
SRM-3A
SRM-3B
SRM-5A
SRM-5B
SRM-6A
SRM-6B
SRM-7A
SRM-7B
SRM-8A
SRM-8B
SRM-9A
SRM-10A
SRM-10B
SRM-13B
RSRM-1A
RSRM-1B
RSRM-2A
RSRM-2B
Number
Average:
Standard Deviation:
% Coefficient of Variation:
TEM-7

0.1530
0.1500
0.1530
0.1660
0.1500
0.1500
0.1530
0.1660
0.1530
0.1470
0.1500
0.1500
0.1530
0.1500
0.1530
0.1530
0.1500
0.1410
0.1501
0.1596
0.1564
0.1501

0.1600

87.58
91.57
90.74
90.27
91.05
89.68
95.10
84.43
92.72
88.22
99.90
99.32
106.29
91.06
92.31
92.89
84.56
98.85
99.0
80.5
87.3
100.2
43

90.07
6.80
7.55

80.62 NA

11
246,732
22,627

9.17
NA

0.2373
0.2358
0.2348
0.2345
0.2308
0.2271
0.2361
0.2380
0.2342
0.2329
0.2282
0.2276
0.2224
0.2196
0.2303
0.2373
0.2342
0.2115
0.2296
0.2310
0.2390
0.2342

35
0.2321
0.0076
3.27

0.2359
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Table 6-10. Measured SRM Ignition Performance Data at 65°F

Parameter

Maximum Igniter Mass Flow Rate (Ibm/sec)
Ignition Transient (sec) (0 to 563.5 psia)
Maximum Pressure Rise Rate (psi/10 ms)
Pressure Level at Start of Maximum Rise Rate (psia)
Time Span of Maximum Pressure Rise (ms)
Equilibrium Pressure at 0.6 Sec (ignition end) (psia)
Time to First Ignition (sec) (begin pressure rise)

TEM-7

330.0
0.2359
80.6
231

160-170
931

0.029

Specification
Requirement

NA
0.170-0.340

109
NA
NA
NA
NA

TEM-7 was instrumented with three pressure transducers for headend pressure

measurement (PNCAC001 through PNCAC003) and one gage for igniter pressure

measurement (PNCAC005). The signal from the headend OPT data channel

(PNCAC001) was split to provide both ac coupled data (for chamber pressure

oscillation data) and mean pressure. TEM-7 was also instrumented with four aft end

pressure gages (PNNAR003 through PNNAR006), and again the aft end OPT data

channel (PNNAR006) was split to provide both oscillatory aft end chamber pressure

data and mean data. However, aft end data were not useful for dynamic analysis on

this test. In addition, the mean pressure data channels are used to calculate dynamic

pressure and to verify the accuracy of the ac coupled data.

Data acquired from gage PNCAC001 are displayed in a waterfall plot format in

Figure 6-53. The 1-L and second longitudinal (2-L) acoustic modes can be observed at

about 15 and 30 Hz, respectively. This waterfall plot is fairly typical of HPM designs.

The magnitudes on this static test were among the lowest experienced on HPMs.

Figures 6-54 and 6-55 describe the running, instantaneous, peak-to-peak

oscillation amplitudes of the 1-L and 2-L acoustic modes, respectively, for the TEM-7

motor headend pressure. This type of analysis is more representative of

instantaneous oscillations than are the time averaged oscillations presented in a

waterfall plot.
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When using waterfall plots to compare static test motor oscillation amplitudes, it

is important to remember that this format uses an averaging method of analysis. This

presents no difficulty for steady state signals but has an attenuating effect on

transient signals. Since most of the data obtained from an SRM are transient, any

oscillation magnitudes referred to as maxima are, in fact, not true but averaged values

over a given time slice. These numbers are, nonetheless, very useful for comparison.

Table 6-11 shows such a comparison for recent static test motors and the flight

motors. This table contains the most recent data. DM-6 and DM-7 were filament

wound case motors.

A comparison of TEM-7 thrust data at 60°F and a burn rate of 0.368 in./sec, at

625 psia and 60°F, with the CEI Specification CPWl-3300, dated 15 Jan 1986, and

thrust-time limits at 0.368 in./sec is shown on Figure 6-56. The TEM-7 performance

was within average population limits. Note that the limits are for the average of the

historical SRM population, not an individual motor. The historical motor population

is well within the limits. None of the individual motor performance tolerances and

limit parameters were exceeded. TEM-7 ignition performance satisfied the ignition

interval and the maximum pressure rise rate requirements, as shown in Table 6-10.

6.10 STATIC TEST SUPPORT EQUIPMENT

6.10.1 Introduction

The deluge system and related instrumentation were similar to previous TEMs.

Deluge system nozzle arrangement is shown in Figure 6-57.

This was the first TEM static test motor with nozzle vectoring. As a result, the

TEM-7 test arrangement included the MAEHS normally used for static tests with

vectored nozzles. A nozzle-to-case joint heater (Section 6.8.1), normally used for TEM

static tests, was also installed. TEM-7 was the first use of both the MAEHS and a

nozzle-to-case joint heater.
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Table 6-11. Maximum Pressure Oscillation Amplitude Comparison

Motor

TEM-7

FSM-1*

TEM-6

TEM-6
(Aft)

TEM-5

TEM-4

TEM-3

STS-29
(left)

STS-29
(right)

TEM-2

QM-8*

TEM-1

STS-27
Geft)

STS-27
(right)

Source of
Measurement

Waterfall
PNCAC002

Waterfall
PNCAC001

Waterfall
PNCAC001

Waterfall
PNNAR005

Waterfall
PNCAC005

Waterfall

Waterfall

Waterfall
acOPT

Waterfall
acOPT

Waterfall

Waterfall
(P000002)

Waterfall

Waterfall
acOPT

Waterfall
acOPT

Mode

1-L
2-L

1-L
2-L

1-L
2-L

1-L
2-L

1-L
2-L

1-L
2-L

1-L
2-L

1-L
2-L

1-L
2-L

1-L
2-L

1-L
2-L

1-L
2-L

1-L
2-L

1-L
2-L

Time of
Measurement

(sec)

85
100

100
79

92
98/99

92
98/99

81
100

115
87

106
102

86
89

85
83

78
100

104
55

79
95

82
82

82
83

Frequency
(Hz)

15.5
29.5

14.0
29.5

15.0
29.5

15.0
29.5

16.0
29.5

14.5
29.5

15.0
30.0

15.5
28.0

15.5
29.5

16.0
29.5

14.5
27.5

15.5
29.5

15.5
29.5

15.5
29.5

Maximum
Pressure
(psi, 0

to peak)

0.45
0.53

0.64
0.74

0.41
0.67

0.31
0.44

0.46
0.57

0.37
0.96

0.36
0.58

0.31
0.44

0.38
0.54

0.43
0.68

1.32
0.47

0.37
0.78

0.37
0.60

0.57
0.72

* RSRM static test motors
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Table 6-11. Maximum Pressure Oscillation Amplitude Comparison (cont)

Motor

STS-26
(left)

STS-26
(right)

PVM-1*

QM-7*

QM-6*

DM-9*

DM-8*

ETM-1A

DM-7**

DM-6**

QM-4

Source of
Measurement

Waterfall
acOPT

WaterfaU
acOPT

Waterfall

WaterfaU
P000001

WaterfaU

WaterfaU

WaterfaU

WaterfaU

WaterfaU

WaterfaU

Waterfall

Mode

1-L
2-L

1-L
2-L

1-L
2-L

~1-L
2-L

1-L
2-L

1-L
2-L

1-L
2-L

1-L
2-L

1-L
2-L

1-L
2-L

1-L
2-L

Time of
Measurement

(sec)

79
95

83
94

99
79

93
79

107
85

107
96

78
97

84
101

77
96

76
86

81
80

Frequency
(Hz)

16.0
29.5

15.0
30.0

14.5
29.5

14.5
29.5

14.5
29.5

14.5
30.0

16.0
29.5

15.5
29.5

15.5
29.0

15.5
29.0

15.5
29.5

Maximum
Pressure
(psi, 0

to peak)

0.70
0.87

0.54
0.47

1.23
0.77

1.40
0.95

1.05
0.53

0.81
0.64

0.58
0.62

0.45
0.61

0.90
0.62

0.51
0.78

0.31
0.30

• RSRM static test motors
** Filament wound case HPM motors
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6.10.2 Objectives/Conclusions

There are no objectives from Section 2 concerning static test support equipment.

6.10.3 Recommendations

A nozzle-to-case joint heater, used only on TEM static tests, should continue to be

used on future TEM motors. TEM motors with nozzle vectoring should use the

MAEHS in addition to a nozzle-to-case joint heater.

Case data sampling is recommended from one month prior to the test through

ignition. Nozzle region sensor data sampling is recommended to be extended through

a four-hr period following motor firing.

6.10.4 Results/Discussion

The nozzle-to-case joint heater and MAEHS performed as designed.

The deluge system operated as expected with no measured or observed

indications of hot spots on the case. No anomalous temperature data were recorded

by the deluge system instrumentation prior to, during, or following its operation. The

recorded initial and peak TEM-7 case temperatures were 50° and 265°F, respectively.

The weight of slag accumulation was measured to be 1,813 Ibm. The expected

peak case temperature corresponding to this slag weight was approximately 174 °F.

Figure 6-58 shows peak minus initial case temperature versus slag weight for static

motor firings. (Only test motors fired since the redesign of the deluge system are

included.) TEM-7 represents a normal slag accumulation of the 12 test firings (data

points) presented.

Nozzle region temperature plots show no unexpected or unusual temperature

rise. Table 6-12 shows these temperatures at motor ignition and at the end of

motor burn. As can be seen in Table 6-12 and in Figure 6-59, a circumferential

gradient existed prior to and at motor firing. The operation of the aft skirt purge did

not appear to significantly alter the natural existing gradient present in the T-97

Test Bay. At the time of motor firing the sensors controlling the operation of the
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nozzle-to-case joint heater, located on the aft dome, registered temperatures of 76°

and 77°F. At the same time the six nozzle-to-case joint sensors, located.at 60-deg

intervals on the fixed housing, recorded temperatures between 79° and 88°F. The

upper temperature of 88°F did not violate the 85°F maximum as no temperature

requirement existed at this location. One reason why these six sensors registered

higher temperatures than the controlling sensors on the aft dome due is the fact that

the strip heater is attached to the fixed housing, and a temperature drop would be

expected across the nozzle-to-case joint.

There was a concern, prior to motor firing, that TVC system temperatures

would drop below the 50 °F minimum temperature before the TVC could be serviced

three to four hr following motor firing. This test showed that the nozzle region of

the motor returned to the ignition temperatures six hr following motor firing.

Figure 6-59 shows temperature as a function of time at a nozzle-to-case joint

heater control sensor. This plot indicates the long term temperature environment

existing in the nozzle region following motor firing. This was a concern because of

the fixed housing debond issue.

The final predicted PMBT at the time of motor firing, using hygrothermograph

data, was 65°F (Figure 6-59). A reconstructed propellant mean bulk temperature,

using the available case temperature sensor data between November 29 and

December 7, resulted in a final propellant mean bulk temperature of 68°F

(Figure 6-60). Figures 6-61 and 6-62 graphically show these two analyses. The

difference between these two predictions demonstrates the need to use the most

accurate method, which is case temperature sensor data.
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Drawing

1U76705

1U76706

1U77252

1U77253

1U82840

1U100269

2U65686

2U65848

2U65040

2U129361

2U129363

2U129714

2U129760

2U129764

2U129765

4U69505

7U76321

7U76608

7U76609

7U76736

7U76738

7U76827

Title

Cable Assembly, Power, Electrical, Branched-Heater, Aft Ctr
Segment

Cable Assembly, Power, Electrical-Heater, Aft Segment

Heater-Field Joint

Heater-Igniter to Case Joint

Band Pin Assembly Retainer

Plug, Machine Thread

Transducer Leak Test Fixture

Leak Test Assy-Barrier Booster Assy, S/A Device

Assembly Fixture—Nozzle

CO2 Quench System T-97

Water Deluge System

Assembly, RSRM Joint Leak Check System

Static Test Arrangement

Aft Test Stand Ass'y Sequence T-97

Forward Test Stand Sequence

Shield, Deluge System

Transducer, Pressure

Boot Assy, Flexible Bearing, Nozzle

Cowl, Flexible Boot, Nozzle

Exit Cone Assy, Fwd Section

Nozzle Assembly, Final

Boot Cavity Pressure Transducer Assy
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Drawing

7U76864

7U76865

7U76879

7U76881

7U76882

7U76899

7U76902

7U76983

7U77011

7U77118

7U77266

7U77267

7U77310

7U77328

8U75902

8U76500

Specification

CPW1-3600A

STW4-2621

STW4-2868

STW4-3266

Title

Bearing Protector, Flexible

Housing Assembly, Modified-Nozzle, Fixed

Test Assembly, TEM

Motor Assy, Test, TEM

Nozzle Assembly Segment, TEM

Igniter/Fwd Segment Assy, TEM

Transducer Assy, Pressure

Insulated SAPMD

Instrumentation Assembly, TEM-07

Heater-Field Joint, Nozzle and Igniter, Refurbished

Nose Inlet Assembly

Exit Cone Assy, Aft-Modified

Throat-Inlet Assy, Nozzle

Joint Protection Systems, Technical Evaluation Motor

Leak Check System, Installation

Leak Check System, Safe & Arm Device, Installation

Prime Equipment Contract End Item Detail Specification
(CEI)

Insulation, Acrylonitrile Butadiene Rubber (NBR), Asbestos
and Silicon Dioxide-Filled

Thermal Insulation, Ethylene Propylene Diene Monomer
(EPDM)-Neoprene Rubber, Carbon Fiber-Filled

Putty and Caulking or Glazing Compounds, Other
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Specification

STW4-3339

STW5-2833

STW5-2931

STW5-3223

STW5-3224

STW5-3292

STW5-3343

STW7-2831
No Change

STW7-2853

STW7-2913

STW7-3475

STW7-3476

STW7-3477

STW7-3478

STW7-3632

STW7-3633

REVISION

Title

Rubber, Fluorocarbon, Elastomer; High Temperature and
Compression Set Resistant

TP-H1178 Propellant, Solid Rocket Motor, Igniter Space
Shuttle Project

Adhesive Liquid Epoxy Resin, Silicon Dioxide Filled

Inhibitor, UF-3267, Solid Rocket Motor, Space Shuttle
Projects

Liner, Solid Rocket Motor, Space Shuttle Project.

Adhesives, Epoxy

Propellant, Solid Rocket Motor, TP-H1148

Inspection and Process Finalization
Criteria, Insulated Components, Space Shuttle Solid
Propellant Rocket Motor

Leak Test, Pressure Transducer Assemblies, Space Shuttle
Project SRM

Procedure, Leak Test of Barrier-Booster Redundant Seals

Leak Testing, Forward-to-Aft-Exit-Cone Joint, Space Shuttle
Redesigned Solid Rocket Motor

Leak Testing, Forward-End-Ring-to-Nose-Inlet Housing Joint,
Space Shuttle Redesigned Solid Rocket Motor

Leak Testing, Nose-Inlet-to-Throat Support Housing Joint,
Space Shuttle Redesigned Solid Rocket Motor

Leak Testing, Throat-Support-Housing-to-Forward-Exit-Cone
Joint, Space Shuttle Redesigned Solid Rocket Motor

Leak Test, Inner and Outer Igniter Joints, Space Shuttle
Project Solid Rocket Motor

Leak Test, S&A
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Specification

STW7-3682

STW7-3688

STW7-3745

STW7-3746

Document

TWR-17656

TWR-18011

TWR-18965

TWR-19121

TWR-19524B

TWR-19838

TWR-60273

TWR-60857

TWR-61209

TWR-61490

TWR-61585

CTP-0107

Title

Leak Testing, Field and Case to Nozzle Joints

Grease Application and O-Ring Installation, Field and Case to
Nozzle Joints

Putty, Aft Segment and Nozzle Assembly Joint, Application of

Putty, Vacuum Seal, Field Joint Assembly, Application of

TEM-07 Flash Report

RSRM Structural Material Properties Data Book

Program Plan for Development and Qualification of a Second
Source Rayon Supplier (1650 Denier)

Predicted Ballistic Performance Characteristics for TEM-7

Program Plan for Low Cost Nozzle Improvements
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