U. S. and Foreign Alloy Cross-Reference Database

Contract NAS8-36166

Final Report

by

Dr. John M. Springer and Dr. Steven H. Morgan

May 31, 1991

Submitted by the Department of Physics

Fisk University

Nashville, Tennessee 37208

Prepared for

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812
U. S. and Foreign Alloy Cross-Reference Database

Contract NAS8-36166

Final Report

by

Dr. John M. Springer and Dr. Steven H. Morgan

May 31, 1991

Submitted by the Department of Physics

Fisk University

Nashville, Tennessee 37208

Prepared for

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812
TABLE OF CONTENTS

I. INTRODUCTION .. 1

A. Overview
B. Type of data gathered
C. Software
D. Hardware requirements

II. DATA COLLECTION .. 2

A. Sources
B. Procedures

III. ALLOY CROSS-REFERENCING 4

A. General Problem
B. Existing References
C. Composition Matching
D. Heat treatments/conditions

IV. SOFTWARE ... 7

V. RESULTS .. 7

VI. CONCLUSIONS .. 10

APPENDICES

A. Reference Index .. 12
B. Cross-Reference Publications 33
C. Data Collection/Entry Manual Extract 34
D. Abbreviations List .. 48
E. Software Listings .. 51
I. INTRODUCTION

A. Overview: Marshall Space Flight Center and other NASA installations have a continuing requirement for materials data from other countries involved with the development of joint international Spacelab experiments and other hardware. This need includes collecting data for common alloys to ascertain composition, physical properties, specifications, and designations. This data is scattered throughout a large number of specification statements, standards, handbooks, and other technical literature which make a manual search both tedious and often limited in extent. In recognition of this problem, a contract was awarded to Fisk University to develop a computerized database of information on alloys along with the software necessary to provide the desired functions to access this data. The intention was to produce an initial database covering aluminum alloys, along with the program to provide a user-interface to the data, and then later extend and refine the database to include other nonferrous and ferrous alloys.

B. Type of Data Gathered: The data elements for each alloy record to be delivered to NASA included the items noted in the list below.

- Designation
- UNS number if available
- Originating organization
- Specification number or standard
- Composition (minimum and maximum values, when specified)
- Form
- Alloy type
- Condition
- Yield strength (Minimum, maximum and typical values)
- Tensile strength (Minimum, maximum and typical values)
- SCC rating per MSFC specification 522A
- Temper
- U. S. equivalent alloy (for foreign designations)
In addition, included in the records are indications of where the equivalence, chemical composition, and mechanical property values were found or how they were determined.

C. **Software:** The original scope of the contract and the collection and analysis of the data itself required a software package to be developed to make it possible to add records, search the database, modify data, and perform the other usual operations expected on a functioning database. It was determined that the Digital Equipment database query language Datatrieve (TM) would be used and imbedded in a more user-friendly environment coded in FORTRAN. As the project developed, the decision was made to combine this database with other materials databases at MSFC using the ORACLE (TM) database language. After this point program development at Fisk concentrated on improving the FORTRAN program to use on-site for database maintenance.

D. **Hardware requirements:**
The alloy cross-reference database was stored in a Digital Equipment VAX-Datatrieve accessible format at Fisk, and delivered to NASA/MSFC on 1/2" magnetic tape for transfer to the ORACLE system.

II. DATA COLLECTION

A. **Sources:** Alloy data was mainly collected by evaluating
specifications issued by standards organizations, government publications and, to a lesser extent, manufacturers. A list of these sources is given in Appendix A. The data records themselves give the individual standards and specifications that were referenced in their preparation. It was originally planned that sources of collected data already available from technical associations would be purchased when they meet the needs of this project, but it was found impossible to do this except on a yearly licensing basis, which was not acceptable to MSFC. For reference, some cross-referencing collections available from various publishers are listed in Appendix B.

B. Procedures: Once appropriate metals standards or other data sources were identified and obtained, the limited data needed for the database was extracted and compiled on hand-written datasheets. This information was then added as new records on the database, printed out, and verified by comparing the printout to the original sources. Two internal status fields were used to keep track of whether the data had been verified, was sufficiently complete to put on the NASA/MSFC database, and whether the US/Foreign equivalency had been either established or determined to in all probability not exist. A more detailed description of this process, as given in an extract from the instruction manual created for our student workers, is presented in Appendix C. At the end of this manual are illustrations of each of the standard forms that were developed during the preparation of the database.
These forms included the basic datasheet, a multiple-entry form for recording records that differed only in a few characteristics, a verification form, a country form for summarizing standard terms used for fields such as form and condition, and a standards assessment form used to note relevant information about individual standards and specifications.

CHAPTER III - ALLOY CROSS-REFERENCING

A. General Problem: A major task at hand in preparing the database was to furnish cross-referencing between equivalent US and foreign alloys. While superficially a simple task, in practice it was not so straightforward due to two major difficulties. These difficulties were that (1) the meaning of the term "equivalent" when applied to alloys is so greatly subject to the final application that alloys will be used for, and (2) that different national standards organizations use differing philosophies in determining standards criteria. The latter problem meant that in principle one had to compare standards in which the key indicators of alloy identification were different. For instance, a German specification might use mechanical properties as the basis for determining compliance with the standard while composition was given considerable latitude. The comparable US standard might hold to a strict compositional requirement while considering mechanical properties as a derivative specification. Such problems requiring a detailed standards analysis have been addressed in a publication
by the NSTI, in which very few nominally equivalent materials were found to be truly equivalent for the purpose of ship building.

The former problem of dealing with the ramifications of nominally equivalent alloys in specific applications is to some extent even more of an intractable problem than that of differing rationales in designing standards. This is because it would require foreknowledge of the use to which an alloy will be put, which is impossible in an open access database. Thus while two alloys might be nominally equivalent for general purpose use, some specific difference in properties or tolerances might render them incompatible for a specific application.

B. Existing References: Several compilations of US/Foreign alloy designations with cross-referencing have been published, but very little is published on the rationale for considering different alloys to be equivalent. These may be purchased from the publishers, but were of little direct use in this effort due to copyright problems. A summary of them is furnished in Appendix B. In some cases, foreign standards are self-cross-referencing to US or non-US standards. Although even these are not always unambiguous, when such internal cross-referencing was provided in the standard it was generally used. In addition, certain foreign standards have been written whose sole purpose is to provide cross-referencing.

C. Composition Matching: The system used for most cross-
referencing is composition matching. This may fail, of course, where the standard is specific for mechanical properties and allows considerable latitude in composition. For this database, however, it was the primary means of either finding matching alloys or verifying that alloys linked by other sources were reasonable matches. A program was written to search for compositionally equivalent alloys that had been placed on the database to aid in the cross-referencing. This program allowed matching tolerances in accordance with ASTM standards but was not entirely successful as the database grew due to the long searching time that it required. Another technique was simply to sort the records of a given alloy type by composition and manually compare adjacent groups of records. This was useful, but depended greatly on the order of the sort (in terms of the elements) on the classes of alloys that would be grouped together. All of these techniques required individual attention to each alloy at some point to verify the matching that was done.

C. Heat Treatments/Conditions: A subsidiary part of the alloy matching process was to also match heat treatments and other conditioning methods. Since the behavior of a metal and its mechanical properties depend so much on the specific conditions of its manufacture, we attempted to provide an equivalent condition in terms of its US nomenclature for each alloy record on the database. In some cases this was not very difficult, as for instance the temper designating systems for aluminum that are used in many countries. In other cases, one could only make a rough comparison
since the condition specifications allowed considerable latitude in their application. In many cases, there was a one-to-many or many-to-one problem in which the foreign condition codes encompassed many more detailed domestic codes or vice versa.

CHAPTER IV - SOFTWARE

The database program to be used with the data was originally specified to be written in Fortran using embedded Datatrieve statements. It was to have the usual database functions, including record searching, entry, deletion, updating, and report generation. With the transition of the materials database at MSFC to an ORACLE (TM) environment, development of the Fisk program was reduced to those activities needed to make it more responsive to the data collection and analysis effort. A simple block diagram of the main parts of the program is on the next page. The data entry and updating routines are the parts that have been most important to data collection, and have been written in a full screen forms-type environment for Digital Equipment VT series terminals. Program listings are given in Appendix E.

CHAPTER V - RESULTS

A. SUMMARY OF DATA: Approximately 10,000 aluminum data records, 10,000 steel records, and 2000 copper records were collected from
DATABASE PROGRAM

MAIN MENU

DATA ENTRY

UPDATE/MODIFY

DELETE RECORD

SCREEN REPORT

PRINTED REPORT
standards and specifications. Examples of the data are shown in the table on the next page. The first entry shows data for the US ferrous alloy 405 stainless steel, in the plate form and in the annealed condition. The next entry shows the printed record for the West German alloy X6CrAl13, which is equivalent to the US 405 steel. The third figure shows another alloy, this time from France, which is also nominally equivalent to the 405 designation. As all three records have the same form and condition, their mechanical properties as well as their compositions can be compared to further evaluate their equivalence for a particular application.
COMPARISON OF DATA FOR THREE SIMILAR ALLOYS

Rec#: 30215
Design: 405
Altdesign:
Cond: Annealed
Form: Plate
UNS: S40500
IRRM: NA
Country: U.S.A.
Alcat: Stainless Steel
Org: ASTM
US-Eqv: 405
Eqvtemp: Annealed
Type: Fe

COMPOSITION:

<table>
<thead>
<tr>
<th>Element</th>
<th>MIN</th>
<th>MAX</th>
<th>C</th>
<th>Co</th>
<th>Mo</th>
<th>W</th>
<th>P</th>
<th>S</th>
<th>B</th>
<th>Be</th>
<th>Ga</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>11.5</td>
<td>14.5</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>0.1</td>
<td>0.3</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.08</td>
<td>0.04</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>0.1</td>
<td>0.3</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>0.08</td>
<td>0.04</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sn</td>
<td>0.03</td>
<td></td>
</tr>
</tbody>
</table>

Specs:

Yield Strength	25 ksi
Tensile Strength	60 ksi
Hardness	% Test Piece:

Notes:

Eqvref: S1
Ref1: S1
Ref2: S1
Status: VZ
RC: S
Updated: 1-Jul-1989

Rec#: 47262
Design: X6CrAl13
Altdesign:
Cond: Annealed
Form: Plate
UNS: S40500
IRRM: NA
Country: West Germany
Alcat: Stainless Steel
Org: DIN
US-Eqv: 405
Eqvtemp: Annealed
Type: Fe

COMPOSITION:

<table>
<thead>
<tr>
<th>Element</th>
<th>MIN</th>
<th>MAX</th>
<th>C</th>
<th>Co</th>
<th>Mo</th>
<th>W</th>
<th>P</th>
<th>S</th>
<th>B</th>
<th>Be</th>
<th>Ga</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>11.5</td>
<td>14.5</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>0.1</td>
<td>0.3</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.08</td>
<td>0.04</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>0.1</td>
<td>0.3</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>0.08</td>
<td>0.04</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sn</td>
<td>0.03</td>
<td></td>
</tr>
</tbody>
</table>

Specs:

Yield Strength	36 ksi
Tensile Strength	58 ksi
Hardness	% Test Piece:

Notes:

Mech Prop for <= 0.472" thickness
Eqvref: H34
Ref1: S1
Ref2: S1
Status: V
RC: R
Updated: 7-Jan-1991

Rec#: 34020
Design: Z6CA13
Altdesign:
Cond: Annealed
Form: Plate
UNS: S40500
IRRM: NA
Country: France
Alcat: Stainless Steel
Org: NF
US-Eqv: 405
Eqvtemp: Annealed
Type: Fe

COMPOSITION:

<table>
<thead>
<tr>
<th>Element</th>
<th>MIN</th>
<th>MAX</th>
<th>C</th>
<th>Co</th>
<th>Mo</th>
<th>W</th>
<th>P</th>
<th>S</th>
<th>B</th>
<th>Be</th>
<th>Ga</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>11.5</td>
<td>14.5</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>0.1</td>
<td>0.3</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.08</td>
<td>0.04</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>0.1</td>
<td>0.3</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>0.08</td>
<td>0.04</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sn</td>
<td>0.03</td>
<td></td>
</tr>
</tbody>
</table>

Specs:

Yield Strength	33 ksi
Tensile Strength	61 ksi
Hardness	% Test Piece:

Notes:

Mech Prop for 0.197-0.394" thickness
Eqvref: S2
Ref1: S1
Ref2: S1
Status: V
RC: S
Updated: 1-Jul-1989
CHAPTER VI - CONCLUSIONS/LESSONS LEARNED

A. Size of Database: The number of distinct designations for the three alloy types we dealt with is very large, in the several tens of thousands if one counts commercial names. This meant that the problems of data control were very difficult to handle without constant attention. In the university environment, where the academic cycle makes a constant level of management virtually impossible, these data control problems are even harder to deal with.

B. Non-uniformity of Data Sources: We obtained much of our data on composition and properties from international standards written in various formats and languages. Each of these documents had to be at least partially translated and prepared for the data entry personnel, who were students for the most part. This made it necessary to first enter the data onto standard data sheets to assure a uniform format for data entry. This therefore greatly increased the time needed to get raw data on the database over the case where direct entry from the original documents would have been possible. It also created problems in trying to keep to a standard format when differing sources used slight variations in the format of designations. For example, the designation A199.9 in one standard might be written A199,9, with the period changed to a comma.

C. Changing Standards: Standards are continually being created, revised and canceled. Canceled standards were difficult to obtain, and made a historically complete database extremely difficult, if not
impossible. On the other hand, revised and updated standards presented the problem of aiming at a moving target. As standards evolve, quite basic alloy properties such as composition may change. This meant that back-checking data records against recently revised standards often gave the impression that the original records were incorrect, while in actual fact the standard are simply been adjusted to better reflect modern metallurgical practice.
APPENDIX A
REFERENCE INDEX FOR US/FOREIGN CROSS-REFERENCE DATABASE

This list gives the meanings of the publication codes used in the three reference fields in each data record.

H01
Handbook of Aluminum (Alcan)

H02
Handbook of International Alloys Composition and Designations, Vol 3
Harold J. Hucek, Editor
Metals and Ceramics Information Center: Columbus

H03
Handbook of Soviet Alloy Compositions
Douglas Joslyn, Jr and Marshall J. Wahll
Metals and Ceramics Information Center: Columbus
1980

H04
William H. Cubberly, Hugh Baker, et. al, editors
American Society For Metals: Metals Park
1979

H05
Worldwide Guide to Equivalent Nonferrous Metals and Alloys
Paul M. Unterweiser, Staff Editor
American Society For Metals: Metals Park
1980

H06
Key to Aluminum Alloys
W. Hufnagel
Aluminium-Zentrals: Dusseldorf
1982

H08
Sourcebook on Industrial Alloy and Engineering Data
American Society For Metals: Metals Park
1978

H09
The Properties of Aluminium and Its Alloys
The Aluminium Federation: Birmingham UK
1983

H10
Aluminium-Taschenbuch
Herausgeber und Bearbeiter
Aluminium-Zentrale: Dusseldorf
1983

H11
JIS Ferrous Materials and Metallurgy
Japanese Standards Association
1986

H12
JIS Non-Ferrous Materials and Metallurgy
Japanese Standards Association
1986

H13
Aluminum Properties and Physical Metallurgy
John E. Hatch
American Society For Metals: Metals Park
1984

H14
Metals and Alloys in the Unified Numbering System, Fourth Edition
Alvin G. Cook, Chairman UNS Advisory Board
Society of Automotive Engineers, Inc.: Warrendale
1986

H15
Handbook of Comparative World Steel Standards, Vol 6
International Tech Information Institute: Tokyo
1985

H16
Military Handbook 694A(MR)
1966

H17
Light Alloys Metallurgy of the Light Metals
I. J. Polmear
American Society For Metals: Metals Park

H18
Alcoa Aluminum Handbook
Aluminum Company of America: Pittsburgh
1967

H19
Bruce P. Bardes, Editor
American Society For Metals: Metals Park
1978

H20
David Benjamin, Senior Editor
American Society For Metals: Metals Park
1980

H22
Worldwide Guide to Equivalent Nonferrous Metals and Alloys,
Second Edition
Harold M. Cobb, Consulting Editor
ASM International: Metals Park
1987

H23
Engineering Properties of Steel
Philip D. Harvey, Editor
American Society For Metals: Metals Park
1982

H24
Material Properties Handbook, Vol 1
The Royal Aeronautical Society: Hamilton Place
1959

H25
The Royal Aeronautical Society: Hamilton Place
1960

H26
Military Handbook 694A(MR)
1966

H27
Metals Data
Samuel L. Hoyt, Technical Advisor
Reinhold Publishing Corp: New York
1952

H28
ASM Metals Handbook
1964

H34
Heat Treaters's Guide
Paul M. Unterweiser, Senior Editor
American Society For Metals: Metals Park
1982

H35
Steel Products Manual: Stainless and Heat Resisting Steels
American Iron and Steel Institute: Washington
1974
H39
Metals Databook
Colin Robb
The Institute of Metals: London
1987

H42
Wolman's Engineering Alloys, Sixth Edition
Robert C. Gibbons, Editor
American Society for Metals: Metals Park
1979

H45
Metals and Alloys in the Unified Numbering System, Fifth Edition
Alvin G. Cook, Chairman UNS Advisory Board
Society of Automotive Engineers, Inc.: Warrendale
1989

M06
Aluminum Standards and Data, Seventh Edition
The Aluminum Association: Washington
1982

M07
Aluminum Standards and Data, First Edition
The Aluminum Association: Washington
1978

M08
Aluminum Standards and Data, Second Edition
The Aluminum Association: Washington
1986

M09
Standards for Aluminum Sand and Permanent Mold Castings, Eleventh Edition
The Aluminum Association: Washington
1986

R01
International Metallic Materials Cross Reference, Second Edition
James V. Arcuri and Daniel L. Potts
Genium Publishing Corporation: Schenectady
1984

R02
Materials Selection List For Space Hardware Systems, Vol 6
Marshall Space Flight Center: Huntsville
1984

R08
| R09 | Stahlschlussel: Key to Steel
C. W. Wegst
Verlag Stahlschlussel Wegst GmbH
1986 |
| R10 | Registration Record of International Alloy Designations and
Chemical Composition
The Aluminum Association: Washington
1987 |
| R11 | Registration Record of AA Designations and Chemical
Composition Limits
The Aluminum Association: Washington
1987 |
| R15 | Nomenclature Internationale Des Alliages D'Aluminum De Fonderie,
Fourth Edition
Patrick Bertrand
Centre Technique Des Industries De La Fonderie
1986 |
| R16 | Structural Aluminum Design
Karl Angermayer
Reynolds Metals Company
1962 |
| R17 | Design Criteria for Controlling Stress Corrosion Cracking
Marshall Space Flight Center: Huntsville
1977 |
| R18 | L'Aluminium, Tome 1
M. Pierre Barrand
Editions Eyrolles: Paris
1964 |
| R19 | The Aluminum Data Book
G. W. Birdsall, Editor
Reynolds Metals Company: Richmond
1965 |
R20
Metallurgy of Aluminum Alloys
Marc Van Lancker
John Wiley and Sons:
1967

R22
ASM Metals Reference Book
William Cubberly, Director Reference Publications
American Society For Metals: Metals Park
1983

R23
Multilingual Glossary of Heat Treatment Terminology
Prof. Dr. Ing. Habil. Eugeniusz Tyrkiel, Editor
The Institute of Metals: London
1986

R29
Registration Record of Aluminum Association Alloy Designations
 and Chemical Composition Limits for Aluminum Alloys in the Form
 of Castings and Ingot
The Aluminum Association: Washington
1987

S01
NF A35-604
Tool Steels - Comparison of French and Foreign Standard Grades
Association Francaise De Normalisation: Paris
1978

Note: Each entry is preceded by the index symbol by which it is
 referred to in the database. The index symbols are not
 consecutive because some references on our publications
 list are not used in the database.
National Standards by Country

<table>
<thead>
<tr>
<th>Country</th>
<th>Aluminium Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>AS 1734</td>
<td>JIS H2211</td>
</tr>
<tr>
<td>AS 1865</td>
<td>JIS H2212</td>
</tr>
<tr>
<td>AS 1866</td>
<td>JIS H4000</td>
</tr>
<tr>
<td>AS 1867</td>
<td>JIS H4040</td>
</tr>
<tr>
<td></td>
<td>JIS H4080</td>
</tr>
<tr>
<td></td>
<td>JIS H4090</td>
</tr>
<tr>
<td></td>
<td>JIS H4100</td>
</tr>
<tr>
<td></td>
<td>JIS H4120</td>
</tr>
<tr>
<td></td>
<td>JIS H4140</td>
</tr>
<tr>
<td></td>
<td>JIS H4160</td>
</tr>
<tr>
<td></td>
<td>JIS H4170</td>
</tr>
<tr>
<td></td>
<td>JIS H4180</td>
</tr>
<tr>
<td></td>
<td>JIS H5114</td>
</tr>
<tr>
<td></td>
<td>JIS H5202</td>
</tr>
<tr>
<td></td>
<td>JIS H5302</td>
</tr>
<tr>
<td></td>
<td>JIS H5402</td>
</tr>
<tr>
<td></td>
<td>JIS Z3232</td>
</tr>
<tr>
<td></td>
<td>JIS Z3263</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alcan</td>
</tr>
<tr>
<td></td>
<td>CSA HA.1</td>
</tr>
<tr>
<td></td>
<td>CSA HA.2</td>
</tr>
<tr>
<td></td>
<td>CSA HA.3</td>
</tr>
<tr>
<td></td>
<td>CSA HA.4</td>
</tr>
<tr>
<td></td>
<td>CSA HA.5</td>
</tr>
<tr>
<td></td>
<td>CSA HA.6</td>
</tr>
<tr>
<td></td>
<td>CSA HA.7</td>
</tr>
<tr>
<td></td>
<td>CSA HA.7.1</td>
</tr>
<tr>
<td></td>
<td>CSA HA.8</td>
</tr>
<tr>
<td></td>
<td>CSA HA.9</td>
</tr>
<tr>
<td></td>
<td>CSA HA.10</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NS 17005</td>
</tr>
<tr>
<td></td>
<td>NS 17010</td>
</tr>
<tr>
<td></td>
<td>NS 17011</td>
</tr>
<tr>
<td></td>
<td>NS 17105</td>
</tr>
<tr>
<td></td>
<td>NS 17205</td>
</tr>
<tr>
<td></td>
<td>NS 17210</td>
</tr>
<tr>
<td></td>
<td>NS 17215</td>
</tr>
<tr>
<td></td>
<td>NS 17220</td>
</tr>
<tr>
<td></td>
<td>NS 17225</td>
</tr>
<tr>
<td></td>
<td>NS 17305</td>
</tr>
<tr>
<td></td>
<td>NS 17310</td>
</tr>
<tr>
<td></td>
<td>NS 17405</td>
</tr>
<tr>
<td></td>
<td>NS 17410</td>
</tr>
<tr>
<td></td>
<td>NS 17510</td>
</tr>
<tr>
<td></td>
<td>NS 17512</td>
</tr>
<tr>
<td></td>
<td>NS 17520</td>
</tr>
<tr>
<td></td>
<td>NS 17525</td>
</tr>
<tr>
<td></td>
<td>NS 17532</td>
</tr>
<tr>
<td></td>
<td>NS 17535</td>
</tr>
<tr>
<td></td>
<td>NS 17550</td>
</tr>
<tr>
<td></td>
<td>NS 17552</td>
</tr>
<tr>
<td></td>
<td>NS 17570</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JIS H2102</td>
</tr>
<tr>
<td></td>
<td>JIS H2103</td>
</tr>
<tr>
<td></td>
<td>JIS H2111</td>
</tr>
<tr>
<td></td>
<td>JIS H2117</td>
</tr>
<tr>
<td></td>
<td>JIS H2118</td>
</tr>
<tr>
<td></td>
<td>JIS H2206</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AIR 3350</td>
</tr>
<tr>
<td></td>
<td>AIR 9050</td>
</tr>
<tr>
<td></td>
<td>NF A50-411</td>
</tr>
<tr>
<td></td>
<td>NF A50-451</td>
</tr>
<tr>
<td></td>
<td>NF A50-701</td>
</tr>
<tr>
<td></td>
<td>NF A50-901</td>
</tr>
<tr>
<td></td>
<td>NF A57-350</td>
</tr>
<tr>
<td></td>
<td>NF A57-702</td>
</tr>
<tr>
<td></td>
<td>NF A57-703</td>
</tr>
<tr>
<td></td>
<td>NF A02-002</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>SIS 144008</td>
<td>UNITED KINGDON</td>
</tr>
<tr>
<td>SIS 144010</td>
<td>BS 1470</td>
</tr>
<tr>
<td>SIS 144015</td>
<td>BS 1471</td>
</tr>
<tr>
<td>SIS 144017</td>
<td>BS 1472</td>
</tr>
<tr>
<td>SIS 144020</td>
<td>BS 1473</td>
</tr>
<tr>
<td>SIS 144021</td>
<td>BS 1474</td>
</tr>
<tr>
<td>SIS 144022</td>
<td>BS 1475</td>
</tr>
<tr>
<td>SIS 144024</td>
<td>BS 1490</td>
</tr>
<tr>
<td>SIS 144054</td>
<td>BS 2897</td>
</tr>
<tr>
<td>SIS 144055</td>
<td>BS 2898</td>
</tr>
<tr>
<td>SIS 144067</td>
<td>BS 2L55</td>
</tr>
<tr>
<td>SIS 144102</td>
<td>BS 2L77</td>
</tr>
<tr>
<td>SIS 144103</td>
<td>BS 2L80</td>
</tr>
<tr>
<td>SIS 144104</td>
<td>BS 2L83</td>
</tr>
<tr>
<td>SIS 144106</td>
<td>BS 2L84</td>
</tr>
<tr>
<td>SIS 144107</td>
<td>BS 2L85</td>
</tr>
<tr>
<td>SIS 144120</td>
<td>BS 2L87</td>
</tr>
<tr>
<td>SIS 144133</td>
<td>BS 2L89</td>
</tr>
<tr>
<td>SIS 144134</td>
<td>BS 2L90</td>
</tr>
<tr>
<td>SIS 144140</td>
<td>BS 2L91</td>
</tr>
<tr>
<td>SIS 144146</td>
<td>BS 2L92</td>
</tr>
<tr>
<td>SIS 144163</td>
<td>BS 2L93</td>
</tr>
<tr>
<td>SIS 144212</td>
<td>BS 2L95</td>
</tr>
<tr>
<td>SIS 144225</td>
<td>BS 2L96</td>
</tr>
<tr>
<td>SIS 144244</td>
<td>BS 2L97</td>
</tr>
<tr>
<td>SIS 144245</td>
<td>BS 2L98</td>
</tr>
<tr>
<td>SIS 144250</td>
<td>BS 2L99</td>
</tr>
<tr>
<td>SIS 144251</td>
<td>BS 3L51</td>
</tr>
<tr>
<td>SIS 144252</td>
<td>BS 3L52</td>
</tr>
<tr>
<td>SIS 144255</td>
<td>BS 3L54</td>
</tr>
<tr>
<td>SIS 144260</td>
<td>BS 3L58</td>
</tr>
<tr>
<td>SIS 144261</td>
<td>BS 3L59</td>
</tr>
<tr>
<td>SIS 144262</td>
<td>BS 3L60</td>
</tr>
<tr>
<td>SIS 144263</td>
<td>BS 3L62</td>
</tr>
<tr>
<td>SIS 144282</td>
<td>BS 3L61</td>
</tr>
<tr>
<td>SIS 144283</td>
<td>BS 3L63</td>
</tr>
<tr>
<td>SIS 144337</td>
<td>BS 3L78</td>
</tr>
<tr>
<td>SIS 144338</td>
<td>BS 3L80</td>
</tr>
<tr>
<td>SIS 144355</td>
<td>BS 3L81</td>
</tr>
<tr>
<td>SIS 144425</td>
<td>BS 3L86</td>
</tr>
<tr>
<td>SIS 144438</td>
<td>BS 4300/4</td>
</tr>
<tr>
<td>SIS 144438</td>
<td>BS 4300/6</td>
</tr>
<tr>
<td>SIS 144438</td>
<td>BS 4300/7</td>
</tr>
<tr>
<td>SIS 144438</td>
<td>BS 4300/8</td>
</tr>
<tr>
<td>SIS 144438</td>
<td>BS 4300/14</td>
</tr>
<tr>
<td>SIS 144438</td>
<td>BS 4L35</td>
</tr>
<tr>
<td>SIS 144438</td>
<td>BS 4L36</td>
</tr>
<tr>
<td>SIS 144438</td>
<td>BS 4L44</td>
</tr>
<tr>
<td>SIS 144438</td>
<td>BS 4L53</td>
</tr>
<tr>
<td>SIS 144438</td>
<td>BS 4L54</td>
</tr>
<tr>
<td>SIS 144438</td>
<td>BS 4L56</td>
</tr>
<tr>
<td>SIS 144438</td>
<td>BS 5L16</td>
</tr>
<tr>
<td>DTD</td>
<td>AMS 4057</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>DTD 5094A</td>
<td>AMS 4058</td>
</tr>
<tr>
<td>DTD 5100A</td>
<td>AMS 4062</td>
</tr>
<tr>
<td>DTD 5104A</td>
<td>AMS 4063</td>
</tr>
<tr>
<td>DTD 5110</td>
<td>AMS 4064</td>
</tr>
<tr>
<td>DTD 5114</td>
<td>AMS 4065</td>
</tr>
<tr>
<td>DTD 5120B</td>
<td>AMS 4066</td>
</tr>
<tr>
<td>DTD 5124</td>
<td>AMS 4067</td>
</tr>
<tr>
<td>DTD 5130A</td>
<td>AMS 4068</td>
</tr>
<tr>
<td>DTD 716B</td>
<td>AMS 4069</td>
</tr>
<tr>
<td>DTD 722B</td>
<td>AMS 4070</td>
</tr>
<tr>
<td>DTD 727B</td>
<td>AMS 4071</td>
</tr>
<tr>
<td>DTD 731B</td>
<td>AMS 4079</td>
</tr>
<tr>
<td>DTD 735B</td>
<td>AMS 4080</td>
</tr>
<tr>
<td>DTD 745A</td>
<td>AMS 4081</td>
</tr>
<tr>
<td></td>
<td>AMS 4083</td>
</tr>
<tr>
<td></td>
<td>AMS 4084</td>
</tr>
<tr>
<td></td>
<td>AMS 4085</td>
</tr>
<tr>
<td></td>
<td>AMS 4087</td>
</tr>
<tr>
<td></td>
<td>AMS 4090</td>
</tr>
<tr>
<td></td>
<td>AMS 4094</td>
</tr>
<tr>
<td></td>
<td>AMS 4095</td>
</tr>
<tr>
<td></td>
<td>AMS 4096</td>
</tr>
<tr>
<td></td>
<td>AMS 4100</td>
</tr>
<tr>
<td></td>
<td>AMS 4101</td>
</tr>
<tr>
<td></td>
<td>AMS 4102</td>
</tr>
<tr>
<td></td>
<td>AMS 4107</td>
</tr>
<tr>
<td></td>
<td>AMS 4108</td>
</tr>
<tr>
<td></td>
<td>AMS 4110</td>
</tr>
<tr>
<td></td>
<td>AMS 4111</td>
</tr>
<tr>
<td></td>
<td>AMS 4112</td>
</tr>
<tr>
<td></td>
<td>AMS 4113</td>
</tr>
<tr>
<td></td>
<td>AMS 4114</td>
</tr>
<tr>
<td></td>
<td>AMS 4115</td>
</tr>
<tr>
<td></td>
<td>AMS 4116</td>
</tr>
<tr>
<td></td>
<td>AMS 4117</td>
</tr>
<tr>
<td></td>
<td>AMS 4121</td>
</tr>
<tr>
<td></td>
<td>AMS 4125</td>
</tr>
<tr>
<td></td>
<td>AMS 4127</td>
</tr>
<tr>
<td></td>
<td>AMS 4130</td>
</tr>
<tr>
<td></td>
<td>AMS 4131</td>
</tr>
<tr>
<td></td>
<td>AMS 4134</td>
</tr>
<tr>
<td></td>
<td>AMS 4135</td>
</tr>
<tr>
<td></td>
<td>AMS 4136</td>
</tr>
<tr>
<td></td>
<td>AMS 4138</td>
</tr>
<tr>
<td></td>
<td>AMS 4139</td>
</tr>
<tr>
<td></td>
<td>AMS 4140</td>
</tr>
<tr>
<td></td>
<td>AMS 4142</td>
</tr>
<tr>
<td></td>
<td>AMS 4145</td>
</tr>
<tr>
<td></td>
<td>AMS 4146</td>
</tr>
<tr>
<td></td>
<td>AMS 4147</td>
</tr>
<tr>
<td></td>
<td>AMS 4148</td>
</tr>
</tbody>
</table>
AMSE SB209
AMSE SB209
AMSE SB211
AMSE SB221
ANSI/AWS A5.1-88
ANSI/AWS A5.3-80
ANSI/AWS A5.8-81
ANSI/AWS A5.10-80
ASME SB209
ASME SB210
ASME SB211
ASME SB221
ASME SB234
ASME SB241
ASME SB247
ASTM B85
ASTM B85-60
ASTM B108
ASTM B108-59T
ASTM B178-49T
ASTM B179
ASTM B179-60
ASTM B209
ASTM B210
ASTM B210-49T
ASTM B211
ASTM B211-49T
ASTM B221
ASTM B221-49T
ASTM B230
ASTM B233
ASTM B234
ASTM B234-48T
ASTM B236
ASTM B241
ASTM B247
ASTM B26
ASTM B26-60T
ASTM B275
ASTM B275-63
ASTM B313
ASTM B314
ASTM B316
ASTM B317
ASTM B324
ASTM B345
ASTM B373
ASTM B396
ASTM B398
ASTM B404
ASTM B429
ASTM B483
ASTM B491
ASTM B531
ASTM B547
ASTM B609
ASTM B632
MIL-C-211808
MIL-A-81596
MIL-A-12545
MIL-A-12545C(MR)
MIL-A-15153A
MIL-A-21180C
MIL-A-22771D
MIL-A-22774
MIL-A-25995
MIL-A-45225
MIL-A-46027
MIL-A-46083
MIL-A-46104
MIL-A-52242A(MR)
MIL-A-63547(AR)
MIL-A-81596
MIL-A-8882
MIL-B-20148C
MIL-C-211808
MIL-E-16053
MIL-F-17132
MIL-P-22771
MIL-P-25995
MIL-T-50777
MIL-T-7081
MIL-W-23351
MIL-W-85
QQ-A-1876
QQ-A-200/1
QQ-A-200/2
QQ-A-200/3F
QQ-A-200/4
QQ-A-200/5
QQ-A-200/6
QQ-A-200/7
QQ-A-200/8
QQ-A-200/9
QQ-A-200/10
QQ-A-200/11
QQ-A-200/12
QQ-A-200/13
QQ-A-200/14
QQ-A-200/16
QQ-A-200/19
QQ-A-20D/1C
QQ-A-224/6
QQ-A-225/1
QQ-A-225/2
QQ-A-225/3
QQ-A-225/4
QQ-A-225/5
QQ-A-225/6
QQ-A-225/7
QQ-A-225/8
QQ-A-225/10
QQ-A-225/14
QQ-A-250/1
QQ-A-250/2
QQ-A-250/10
QQ-A-250/11
QQ-A-250/12
QQ-A-250/13
QQ-A-250/14
QQ-A-250/15
QQ-A-250/16
QQ-A-250/17
QQ-A-250/18
QQ-A-250/20
QQ-A-250/21
QQ-A-250/22
QQ-A-250/28
QQ-A-250/29A
QQ-A-250/3
QQ-A-250/30
QQ-A-250/4
QQ-A-250/5
QQ-A-250/6
QQ-A-250/7
QQ-A-250/8
QQ-A-250/9
QQ-A-367
QQ-A-371D
QQ-A-371F
QQ-A-430
QQ-A-566
QQ-A-591B
QQ-A-591E
QQ-A-591F
QQ-A-596B
QQ-A-596D
QQ-A-596E
QQ-A-601
QQ-A-601B-1
QQ-A-601E
QQ-A-825
QQ-A-900/5F
QQ-B-655
QQ-B-825
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QQ-Q-200/17</td>
<td>WL 3.1254 Beiblatt 1</td>
<td>UNI 3041</td>
<td></td>
</tr>
<tr>
<td>QQ-R-566</td>
<td>WL 3.1324/1</td>
<td>UNI 3043</td>
<td></td>
</tr>
<tr>
<td>SAE 201</td>
<td>WL 3.1324/100</td>
<td>UNI 3044</td>
<td></td>
</tr>
<tr>
<td>SAE B547</td>
<td>WL 3.1354/1</td>
<td>UNI 3045</td>
<td></td>
</tr>
<tr>
<td>SAE J452</td>
<td>WL 3.1354/100</td>
<td>UNI 3046</td>
<td></td>
</tr>
<tr>
<td>SAE J454</td>
<td>WL 3.1354/2</td>
<td>UNI 3048</td>
<td></td>
</tr>
<tr>
<td>SAE J4540</td>
<td>WL 3.1354/3</td>
<td>UNI 3049</td>
<td></td>
</tr>
<tr>
<td>SAE J459C</td>
<td>WL 3.1354/4</td>
<td>UNI 3050</td>
<td></td>
</tr>
<tr>
<td>SAE J460E</td>
<td>WL 3.1364/1</td>
<td>UNI 3051</td>
<td></td>
</tr>
<tr>
<td>WW-T-700/1</td>
<td>WL 3.1364/100</td>
<td>UNI 3052</td>
<td></td>
</tr>
<tr>
<td>WW-T-700/2</td>
<td>WL 3.1854</td>
<td>UNI 3054</td>
<td></td>
</tr>
<tr>
<td>WW-T-700/3</td>
<td>WL 3.1854</td>
<td>UNI 3055</td>
<td></td>
</tr>
<tr>
<td>WW-T-700/4</td>
<td>WL 3.1854 Beiblatt 1</td>
<td>UNI 3058</td>
<td></td>
</tr>
<tr>
<td>WW-T-700/5</td>
<td>WL 3.2374/1</td>
<td>UNI 3059</td>
<td></td>
</tr>
<tr>
<td>WW-T-700/6</td>
<td>WL 3.2374/100</td>
<td>UNI 3567-66</td>
<td></td>
</tr>
<tr>
<td>WW-T-700/12</td>
<td>WL 3.2374/2</td>
<td>UNI 3568</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WL 3.2374/3</td>
<td>UNI 3569-66</td>
<td></td>
</tr>
<tr>
<td>USSR</td>
<td>WL 3.2374 Beiblatt 1</td>
<td>UNI 3570</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WL 3.2384/1</td>
<td>UNI 3571</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WL 3.2384/100</td>
<td>UNI 3572</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WL 3.2384/3</td>
<td>UNI 3573</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WL 3.3214/1</td>
<td>UNI 3574</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WL 3.3214/100</td>
<td>UNI 3575</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WL 3.3214/2</td>
<td>UNI 3576</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WL 3.3214/3</td>
<td>UNI 3577</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WL 3.3214/4</td>
<td>UNI 3579</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WL 3.3214/5</td>
<td>UNI 3581</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WL 3.3214 Beiblatt 1</td>
<td>UNI 3582</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WL 3.3354</td>
<td>UNI 3583</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WL 3.3354 Beiblatt 1</td>
<td>UNI 3584</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WL 3.3524/1</td>
<td>UNI 3735</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WL 3.3524/2</td>
<td>UNI 3736</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WL 3.3524 Beiblatt 1</td>
<td>UNI 4507</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WL 3.4144/1</td>
<td>UNI 4508</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WL 3.4144/100</td>
<td>UNI 4509</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WL 3.4144 Beiblatt 1</td>
<td>UNI 4513</td>
<td></td>
</tr>
<tr>
<td>WEST GERMANY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIN 1712/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIN 1712/3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIN 1714 (Sup. 1)</td>
<td>WL 3.3214 Beiblatt 1</td>
<td>UNI 3582</td>
<td></td>
</tr>
<tr>
<td>DIN 1725/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIN 1725/2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIN 1725/3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIN 1725/5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIN 1732/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIN 1745/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIN 1746/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIN 1747/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIN 1747/3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIN 1748/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIN 1749/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIN 1788</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIN 1788/3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIN 5513</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIN 8512</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIN 8513</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIN 8566/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIN SS13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VDS Liste</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHDL Teil 1, Band 2</td>
<td>WL 3.4394/1</td>
<td>UNI 5074-74</td>
<td></td>
</tr>
<tr>
<td>WL 3.1124/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WL 3.1124/100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WL 3.1254/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WL 3.1254/100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WL 3.1254/2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITALY</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UNI 7257-73
UNI 7369-74/1
UNI 7369-74/2
UNI 7369-74/4
UNI 7369-74/5
UNI 7788
UNI 7789
UNI 7790
UNI 7791
UNI 7963
UNI 8024
UNI 9001/1
UNI 9001/2
UNI 9001/3
UNI 9001/4
UNI 9003/2
UNI 9005/1
UNI 9006/4

BELGIUM
NBN 437.01
NBN P21-101

NETHERLANDS
NEN 6021
NEN 6022
NEN 6026

PORTUGAL
NPI-1230

ISO
ISO 2779
ISO 3335
ISO 3522
ISO R209
ISO R827
ISO R829
ISO TR2136
ISO TR2778
COPPER SPECIFICATIONS

JAPAN

JIS H3100
JIS H3110
JIS H3130

UNITED KINGDOM

BS 2870
BS 2875

USA

AMS 4500
AMS 4501
AMS 4505
AMS 4507
AMS 4510
AMS 4520
AMS 4530
AMS 4532
AMS 4544
ASTM B21
ASTM B36
ASTM B96
ASTM B103
ASTM B121
ASTM B122
ASTM B133
ASTM B135
ASTM B152
ASTM B169
ASTM B187
ASTM B194
ASTM B249
ASTM B291
ASTM B422
ASTM B466
ASTM B534
ASTM B591
ASTM B592
ASTM B747

WEST GERMANY

DIN 17675
<table>
<thead>
<tr>
<th>STEEL SPECIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUSTRALIA</td>
</tr>
<tr>
<td>AS 1204</td>
</tr>
<tr>
<td>AS 1443</td>
</tr>
<tr>
<td>AS 1444</td>
</tr>
<tr>
<td>AS 1446</td>
</tr>
<tr>
<td>AS 1449</td>
</tr>
<tr>
<td>AS 1450</td>
</tr>
<tr>
<td>AS 1548</td>
</tr>
<tr>
<td>AS 1594</td>
</tr>
<tr>
<td>AS 1595</td>
</tr>
<tr>
<td>AS 1835</td>
</tr>
<tr>
<td>AS 1836</td>
</tr>
<tr>
<td>CANADA</td>
</tr>
<tr>
<td>CAN/CSA-G40.20</td>
</tr>
<tr>
<td>CAN/CSA-G40.21</td>
</tr>
<tr>
<td>FRANCE</td>
</tr>
<tr>
<td>NF A33-101</td>
</tr>
<tr>
<td>NF A35-051</td>
</tr>
<tr>
<td>NF A35-501</td>
</tr>
<tr>
<td>NF A35-502</td>
</tr>
<tr>
<td>NF A35-551</td>
</tr>
<tr>
<td>NF A35-552</td>
</tr>
<tr>
<td>NF A35-553</td>
</tr>
<tr>
<td>NF A35-554</td>
</tr>
<tr>
<td>NF A35-561</td>
</tr>
<tr>
<td>NF A35-562</td>
</tr>
<tr>
<td>NF A35-564</td>
</tr>
<tr>
<td>NF A35-571</td>
</tr>
<tr>
<td>NF A35-573</td>
</tr>
<tr>
<td>NF A35-574</td>
</tr>
<tr>
<td>NF A35-575</td>
</tr>
<tr>
<td>NF A35-576</td>
</tr>
<tr>
<td>NF A35-577</td>
</tr>
<tr>
<td>NF A35-578</td>
</tr>
<tr>
<td>NF A35-580</td>
</tr>
<tr>
<td>NF A35-581</td>
</tr>
<tr>
<td>NF A35-582</td>
</tr>
<tr>
<td>NF A35-584</td>
</tr>
<tr>
<td>NF A35-590</td>
</tr>
<tr>
<td>NF A35-600</td>
</tr>
<tr>
<td>NF A35-601</td>
</tr>
<tr>
<td>NF A35-602</td>
</tr>
<tr>
<td>NF A35-604</td>
</tr>
<tr>
<td>NF A35-610</td>
</tr>
<tr>
<td>NF A36-204</td>
</tr>
<tr>
<td>JAPAN</td>
</tr>
<tr>
<td>JIS G3103</td>
</tr>
<tr>
<td>JIS G3108</td>
</tr>
<tr>
<td>JIS G3115</td>
</tr>
<tr>
<td>JIS G3118</td>
</tr>
<tr>
<td>JIS G3120</td>
</tr>
<tr>
<td>JIS G3123</td>
</tr>
<tr>
<td>JIS G3124</td>
</tr>
<tr>
<td>JIS G3126</td>
</tr>
<tr>
<td>JIS G3127</td>
</tr>
<tr>
<td>JIS G3201</td>
</tr>
<tr>
<td>JIS G3203</td>
</tr>
<tr>
<td>JIS G3444</td>
</tr>
<tr>
<td>JIS G3463</td>
</tr>
<tr>
<td>JIS G4051</td>
</tr>
<tr>
<td>JIS G4052</td>
</tr>
<tr>
<td>JIS G4102</td>
</tr>
<tr>
<td>JIS G4103</td>
</tr>
<tr>
<td>JIS G4104</td>
</tr>
<tr>
<td>JIS G4105</td>
</tr>
<tr>
<td>JIS G4106</td>
</tr>
<tr>
<td>JIS G4107</td>
</tr>
<tr>
<td>JIS G4109</td>
</tr>
<tr>
<td>JIS G4303</td>
</tr>
<tr>
<td>JIS G4304</td>
</tr>
<tr>
<td>JIS G4305</td>
</tr>
<tr>
<td>JIS G4306</td>
</tr>
<tr>
<td>JIS G4307</td>
</tr>
<tr>
<td>JIS G4309</td>
</tr>
<tr>
<td>JIS G4311</td>
</tr>
<tr>
<td>JIS G4312</td>
</tr>
<tr>
<td>JIS G4318</td>
</tr>
<tr>
<td>JIS G4401</td>
</tr>
<tr>
<td>JIS G4403</td>
</tr>
<tr>
<td>JIS G4404</td>
</tr>
<tr>
<td>JIS G4804</td>
</tr>
<tr>
<td>JIS G5010</td>
</tr>
<tr>
<td>JIS G5111</td>
</tr>
<tr>
<td>JIS G5121</td>
</tr>
<tr>
<td>JIS G5122</td>
</tr>
<tr>
<td>JIS G5131</td>
</tr>
<tr>
<td>JIS G5151</td>
</tr>
<tr>
<td>JIS G5152</td>
</tr>
<tr>
<td>JIS G5201</td>
</tr>
<tr>
<td>JIS G5202</td>
</tr>
<tr>
<td>JIS 10010</td>
</tr>
<tr>
<td>JIS 12101</td>
</tr>
<tr>
<td>JIS 12111</td>
</tr>
<tr>
<td>JIS 12120</td>
</tr>
<tr>
<td>JIS 12122</td>
</tr>
<tr>
<td>JIS 12123</td>
</tr>
<tr>
<td>JIS 12124</td>
</tr>
<tr>
<td>JIS 12142</td>
</tr>
<tr>
<td>JIS 12143</td>
</tr>
<tr>
<td>JIS 12153</td>
</tr>
<tr>
<td>JIS 12501</td>
</tr>
<tr>
<td>JIS 12502</td>
</tr>
<tr>
<td>JIS 12536</td>
</tr>
<tr>
<td>JIS 12542</td>
</tr>
<tr>
<td>JIS 12546</td>
</tr>
<tr>
<td>JIS 12555</td>
</tr>
<tr>
<td>JIS 12569</td>
</tr>
<tr>
<td>JIS 13205</td>
</tr>
<tr>
<td>JIS 13234</td>
</tr>
<tr>
<td>JIS 13244</td>
</tr>
<tr>
<td>JIS 13254</td>
</tr>
<tr>
<td>JIS 13840</td>
</tr>
<tr>
<td>JIS 13860</td>
</tr>
<tr>
<td>JIS 13882</td>
</tr>
<tr>
<td>JIS 14001</td>
</tr>
<tr>
<td>JIS 14002</td>
</tr>
<tr>
<td>JIS 14115</td>
</tr>
<tr>
<td>JIS 14210</td>
</tr>
<tr>
<td>JIS 14230</td>
</tr>
<tr>
<td>JIS 14240</td>
</tr>
<tr>
<td>JIS 14310</td>
</tr>
<tr>
<td>JIS 14325</td>
</tr>
<tr>
<td>JIS 14330</td>
</tr>
<tr>
<td>JIS 14350</td>
</tr>
<tr>
<td>JIS 14355</td>
</tr>
<tr>
<td>JIS 14360</td>
</tr>
<tr>
<td>JIS 14450</td>
</tr>
<tr>
<td>JIS 14455</td>
</tr>
<tr>
<td>JIS 14460</td>
</tr>
<tr>
<td>NORWAY</td>
</tr>
<tr>
<td>NS 10010</td>
</tr>
<tr>
<td>NS 12101</td>
</tr>
<tr>
<td>NS 12111</td>
</tr>
<tr>
<td>NS 12120</td>
</tr>
<tr>
<td>NS 12122</td>
</tr>
<tr>
<td>NS 12123</td>
</tr>
<tr>
<td>NS 12124</td>
</tr>
<tr>
<td>NS 12142</td>
</tr>
<tr>
<td>NS 12143</td>
</tr>
<tr>
<td>NS 12153</td>
</tr>
<tr>
<td>NS 12501</td>
</tr>
<tr>
<td>NS 12502</td>
</tr>
<tr>
<td>NS 12536</td>
</tr>
<tr>
<td>NS 12542</td>
</tr>
<tr>
<td>NS 12546</td>
</tr>
<tr>
<td>NS 12555</td>
</tr>
<tr>
<td>NS 12569</td>
</tr>
<tr>
<td>NS 13205</td>
</tr>
<tr>
<td>NS 13234</td>
</tr>
<tr>
<td>NS 13244</td>
</tr>
<tr>
<td>NS 13254</td>
</tr>
<tr>
<td>NS 13840</td>
</tr>
<tr>
<td>NS 13860</td>
</tr>
<tr>
<td>NS 13882</td>
</tr>
<tr>
<td>NS 14001</td>
</tr>
<tr>
<td>NS 14002</td>
</tr>
<tr>
<td>NS 14115</td>
</tr>
<tr>
<td>NS 14210</td>
</tr>
<tr>
<td>NS 14230</td>
</tr>
<tr>
<td>NS 14240</td>
</tr>
<tr>
<td>NS 14310</td>
</tr>
<tr>
<td>NS 14325</td>
</tr>
<tr>
<td>NS 14330</td>
</tr>
<tr>
<td>NS 14350</td>
</tr>
<tr>
<td>NS 14355</td>
</tr>
<tr>
<td>NS 14360</td>
</tr>
<tr>
<td>NS 14450</td>
</tr>
<tr>
<td>NS 14455</td>
</tr>
<tr>
<td>NS 14460</td>
</tr>
<tr>
<td>SPAIN</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SWEDEN</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
SIS 142564 2S514 BS 4659
SIS 142570 2S515 BS 4670
SIS 142614 2S516 BS 6323
SIS 142615 2S517 BS 970
SIS 142624 2S92 BS 970/1
SIS 142625 2S93 BS 970/1 1955
SIS 142632 2S97 BS 970/1 1983
SIS 142634 2S98 BS 970/5
SIS 142642 2T57 HC1
SIS 142644 2T66 HC10
SIS 142652 2T68 HC101
SIS 142654 3S102 HC102
SIS 142662 3S105 HC103
SIS 142664 3S132 HC104
SIS 142710 3S61 HC105
SIS 142715 3S62 HC106
SIS 142722 3S70 HC2
SIS 142723 3S79 HC3
SIS 142736 3S91 HC4
SIS 142912 3S95 HC5
SIS 142940 3T53 HC6
SIS 219701 3T60 HC7
SIS 219703 4S106 HC8
 4S14 HC9
 4S28 S125
 4S99 S126
 4T45 S127
 5S15 S128
 5S21 S133
 5S82 S134
 5T2 S138
 7S1 S139
 BS 1449/1 S141
 BS 1449/2 S148
 BS 1501/1 S150
 BS 1501/2 S151
 BS 1501/3 S152
 BS 1503 S153
 BS 1504 S154
 BS 1506 S155
 BS 1506 S156
 BS 1554 S157
 BS 2803 S158
 BS 2901/1 S159
 BS 3100 S201
 BS 3111/1 S202
 BS 3601 S203
 BS 3603 S204
 BS 3604 S205
 BS 3605 S524
 BS 4360 S525
 BS 4534 S527
<table>
<thead>
<tr>
<th>T64</th>
<th>S528</th>
<th>AMS 5045</th>
</tr>
</thead>
<tbody>
<tr>
<td>T67</td>
<td>S529</td>
<td>AMS 5047</td>
</tr>
<tr>
<td>T69</td>
<td>S530</td>
<td>AMS 5053</td>
</tr>
<tr>
<td>T72</td>
<td>S531</td>
<td>AMS 5060</td>
</tr>
<tr>
<td>T73</td>
<td>S532</td>
<td>AMS 5069</td>
</tr>
<tr>
<td>T74</td>
<td>S533</td>
<td>AMS 5070</td>
</tr>
<tr>
<td>T75</td>
<td>S534</td>
<td>AMS 5075</td>
</tr>
<tr>
<td>T76</td>
<td>S535</td>
<td>AMS 5077</td>
</tr>
<tr>
<td>T77</td>
<td>S536</td>
<td>AMS 5080</td>
</tr>
<tr>
<td></td>
<td>S537</td>
<td>AMS 5082</td>
</tr>
<tr>
<td></td>
<td>S538</td>
<td>AMS 5085</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T64</th>
<th>USA</th>
<th>AMS 5110</th>
</tr>
</thead>
<tbody>
<tr>
<td>T67</td>
<td></td>
<td>AMS 5112</td>
</tr>
<tr>
<td>T69</td>
<td></td>
<td>AMS 5115</td>
</tr>
<tr>
<td>T72</td>
<td></td>
<td>AMS 5121</td>
</tr>
<tr>
<td>T73</td>
<td></td>
<td>AMS 5122</td>
</tr>
<tr>
<td>T74</td>
<td></td>
<td>AMS 5331</td>
</tr>
<tr>
<td>T75</td>
<td></td>
<td>AMS 5333</td>
</tr>
<tr>
<td>T76</td>
<td></td>
<td>AMS 5335</td>
</tr>
<tr>
<td>T77</td>
<td></td>
<td>AMS 5336</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T64</th>
<th>USA</th>
<th>AMS 5339</th>
</tr>
</thead>
<tbody>
<tr>
<td>T67</td>
<td></td>
<td>AMS 5342</td>
</tr>
<tr>
<td>T69</td>
<td></td>
<td>AMS 5343</td>
</tr>
<tr>
<td>T72</td>
<td></td>
<td>AMS 5344</td>
</tr>
<tr>
<td>T73</td>
<td></td>
<td>AMS 5355</td>
</tr>
<tr>
<td>T74</td>
<td></td>
<td>AMS 5376</td>
</tr>
<tr>
<td>T75</td>
<td></td>
<td>AMS 5501</td>
</tr>
<tr>
<td>T76</td>
<td></td>
<td>AMS 5503</td>
</tr>
<tr>
<td>T77</td>
<td></td>
<td>AMS 5504</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>USA</th>
<th>USA</th>
<th>AMS 5507</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AMS 5510</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5511</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5512</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5513</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5514</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5515</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5516</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5517</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5518</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5519</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5520</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5521</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>USA</th>
<th>USA</th>
<th>AMS 5522</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AMS 5523</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5524</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5525</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5526</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5527</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5528</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5529</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5532</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5546</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>USA</th>
<th>USA</th>
<th>AMS 5547</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AMS 5548</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5549</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5554</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5556</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5557</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5558</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5559</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5560</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5561</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5562</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5563</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5564</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5565</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5566</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5567</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5568</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5570</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5571</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5572</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5573</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5574</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5575</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5576</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5577</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5591</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5592</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5595</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5604</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5610</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5611</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5612</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5613</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5615</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5618</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5620</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5621</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5622</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5624</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5626</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5627</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5628</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5629</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5630</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5631</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5632</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5635</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5636</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5637</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5638</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5639</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 5640</td>
</tr>
<tr>
<td>AMS 5641</td>
<td>AMS 5774</td>
<td>AMS 6417</td>
</tr>
<tr>
<td>AMS 5642</td>
<td>AMS 5776</td>
<td>AMS 6429</td>
</tr>
<tr>
<td>AMS 5643</td>
<td>AMS 5777</td>
<td>AMS 6435</td>
</tr>
<tr>
<td>AMS 5644</td>
<td>AMS 5780</td>
<td>AMS 6437</td>
</tr>
<tr>
<td>AMS 5645</td>
<td>AMS 5790</td>
<td>AMS 6440</td>
</tr>
<tr>
<td>AMS 5646</td>
<td>AMS 5794</td>
<td>AMS 6443</td>
</tr>
<tr>
<td>AMS 5647</td>
<td>AMS 5804</td>
<td>AMS 6444</td>
</tr>
<tr>
<td>AMS 5648</td>
<td>AMS 5805</td>
<td>AMS 6446</td>
</tr>
<tr>
<td>AMS 5649</td>
<td>AMS 5812</td>
<td>AMS 6447</td>
</tr>
<tr>
<td>AMS 5650</td>
<td>AMS 5813</td>
<td>AMS 6448</td>
</tr>
<tr>
<td>AMS 5651</td>
<td>AMS 5821</td>
<td>AMS 6449</td>
</tr>
<tr>
<td>AMS 5652</td>
<td>AMS 5824</td>
<td>AMS 6450</td>
</tr>
<tr>
<td>AMS 5653</td>
<td>AMS 5825</td>
<td>AMS 6455</td>
</tr>
<tr>
<td>AMS 5654</td>
<td>AMS 5861</td>
<td>AMS 6470</td>
</tr>
<tr>
<td>AMS 5655</td>
<td>AMS 6250</td>
<td>AMS 6485</td>
</tr>
<tr>
<td>AMS 5656</td>
<td>AMS 6260</td>
<td>AMS 6487</td>
</tr>
<tr>
<td>AMS 5657</td>
<td>AMS 6263</td>
<td>AMS 6488</td>
</tr>
<tr>
<td>AMS 5659</td>
<td>AMS 6264</td>
<td>AMS 6490</td>
</tr>
<tr>
<td>AMS 5673</td>
<td>AMS 6272</td>
<td>AMS 6491</td>
</tr>
<tr>
<td>AMS 5674</td>
<td>AMS 6274</td>
<td>AMS 6512</td>
</tr>
<tr>
<td>AMS 5678</td>
<td>AMS 6275</td>
<td>AMS 6514</td>
</tr>
<tr>
<td>AMS 5680</td>
<td>AMS 6276</td>
<td>AMS 6520</td>
</tr>
<tr>
<td>AMS 5685</td>
<td>AMS 6277</td>
<td>AMS 6526</td>
</tr>
<tr>
<td>AMS 5686</td>
<td>AMS 6280</td>
<td>AMS 6530</td>
</tr>
<tr>
<td>AMS 5688</td>
<td>AMS 6281</td>
<td>AMS 7240</td>
</tr>
<tr>
<td>AMS 5689</td>
<td>AMS 6290</td>
<td>AMS 7301</td>
</tr>
<tr>
<td>AMS 5690</td>
<td>AMS 6294</td>
<td>AMS 7304</td>
</tr>
<tr>
<td>AMS 5691</td>
<td>AMS 6317</td>
<td>AMS 7477</td>
</tr>
<tr>
<td>AMS 5692</td>
<td>AMS 6322</td>
<td>AMS 7478</td>
</tr>
<tr>
<td>AMS 5693</td>
<td>AMS 6325</td>
<td>AMS 7482</td>
</tr>
<tr>
<td>AMS 5694</td>
<td>AMS 6327</td>
<td>ASTM A108</td>
</tr>
<tr>
<td>AMS 5695</td>
<td>AMS 6350</td>
<td>ASTM A128</td>
</tr>
<tr>
<td>AMS 5696</td>
<td>AMS 6351</td>
<td>ASTM A135</td>
</tr>
<tr>
<td>AMS 5697</td>
<td>AMS 6355</td>
<td>ASTM A148</td>
</tr>
<tr>
<td>AMS 5700</td>
<td>AMS 6356</td>
<td>ASTM A167</td>
</tr>
<tr>
<td>AMS 5713</td>
<td>AMS 6358</td>
<td>ASTM A176</td>
</tr>
<tr>
<td>AMS 5716</td>
<td>AMS 6359</td>
<td>ASTM A178</td>
</tr>
<tr>
<td>AMS 5719</td>
<td>AMS 6360</td>
<td>ASTM A182</td>
</tr>
<tr>
<td>AMS 5731</td>
<td>AMS 6361</td>
<td>ASTM A192</td>
</tr>
<tr>
<td>AMS 5732</td>
<td>AMS 6362</td>
<td>ASTM A20</td>
</tr>
<tr>
<td>AMS 5734</td>
<td>AMS 6365</td>
<td>ASTM A202</td>
</tr>
<tr>
<td>AMS 5735</td>
<td>AMS 6370</td>
<td>ASTM A203</td>
</tr>
<tr>
<td>AMS 5736</td>
<td>AMS 6371</td>
<td>ASTM A204</td>
</tr>
<tr>
<td>AMS 5737</td>
<td>AMS 6372</td>
<td>ASTM A211</td>
</tr>
<tr>
<td>AMS 5738</td>
<td>AMS 6373</td>
<td>ASTM A213</td>
</tr>
<tr>
<td>AMS 5743</td>
<td>AMS 6381</td>
<td>ASTM A217</td>
</tr>
<tr>
<td>AMS 5744</td>
<td>AMS 6382</td>
<td>ASTM A220</td>
</tr>
<tr>
<td>AMS 5745</td>
<td>AMS 6390</td>
<td>ASTM A225</td>
</tr>
<tr>
<td>AMS 5762</td>
<td>AMS 6395</td>
<td>ASTM A240</td>
</tr>
<tr>
<td>AMS 5764</td>
<td>AMS 6412</td>
<td>ASTM A249</td>
</tr>
<tr>
<td>AMS 5768</td>
<td>AMS 6414</td>
<td>ASTM A250</td>
</tr>
<tr>
<td>AMS 5769</td>
<td>AMS 6415</td>
<td></td>
</tr>
<tr>
<td>ASTM A268</td>
<td>ASTM A517</td>
<td>ASTM A844</td>
</tr>
<tr>
<td>ASTM A27</td>
<td>ASTM A519</td>
<td>MIL-S-22141</td>
</tr>
<tr>
<td>ASTM A276</td>
<td>ASTM A53</td>
<td>MIL-S-25043</td>
</tr>
<tr>
<td>ASTM A283</td>
<td>ASTM A533</td>
<td>MIL-S-46850</td>
</tr>
<tr>
<td>ASTM A284</td>
<td>ASTM A534</td>
<td>MIL-S-5059</td>
</tr>
<tr>
<td>ASTM A285</td>
<td>ASTM A537</td>
<td>MIL-S-7393</td>
</tr>
<tr>
<td>ASTM A29</td>
<td>ASTM A538</td>
<td>MIL-S-862</td>
</tr>
<tr>
<td>ASTM A297</td>
<td>ASTM A553</td>
<td>MIL-S-8955</td>
</tr>
<tr>
<td>ASTM A299</td>
<td>ASTM A569</td>
<td>QQ-S-766</td>
</tr>
<tr>
<td>ASTM A302</td>
<td>ASTM A570</td>
<td>SAE J118</td>
</tr>
<tr>
<td>ASTM A304</td>
<td>ASTM A571</td>
<td>SAE J1249</td>
</tr>
<tr>
<td>ASTM A312</td>
<td>ASTM A572</td>
<td>SAE J1397</td>
</tr>
<tr>
<td>ASTM A313</td>
<td>ASTM A573</td>
<td>SAE J217</td>
</tr>
<tr>
<td>ASTM A320</td>
<td>ASTM A580</td>
<td>SAE J403</td>
</tr>
<tr>
<td>ASTM A322</td>
<td>ASTM A581</td>
<td>SAE J404</td>
</tr>
<tr>
<td>ASTM A324</td>
<td>ASTM A582</td>
<td>SAE J405</td>
</tr>
<tr>
<td>ASTM A331</td>
<td>ASTM A6</td>
<td>SAE J4125</td>
</tr>
<tr>
<td>ASTM A333</td>
<td>ASTM A600</td>
<td>SAE J413</td>
</tr>
<tr>
<td>ASTM A335</td>
<td>ASTM A605</td>
<td>SAE J467b</td>
</tr>
<tr>
<td>ASTM A336</td>
<td>ASTM A611</td>
<td>Steel Product Manual</td>
</tr>
<tr>
<td>ASTM A351</td>
<td>ASTM A612</td>
<td>USSR</td>
</tr>
<tr>
<td>ASTM A352</td>
<td>ASTM A619</td>
<td>MCIC-HB-05</td>
</tr>
<tr>
<td>ASTM A353</td>
<td>ASTM A620</td>
<td>WEST GERMANY</td>
</tr>
<tr>
<td>ASTM A355</td>
<td>ASTM A621</td>
<td>DIN 1623</td>
</tr>
<tr>
<td>ASTM A356</td>
<td>ASTM A622</td>
<td>DIN 1624</td>
</tr>
<tr>
<td>ASTM A36</td>
<td>ASTM A633</td>
<td>DIN 1651</td>
</tr>
<tr>
<td>ASTM A366</td>
<td>ASTM A645</td>
<td>DIN 1652</td>
</tr>
<tr>
<td>ASTM A368</td>
<td>ASTM A662</td>
<td>DIN 1654</td>
</tr>
<tr>
<td>ASTM A370</td>
<td>ASTM A666</td>
<td>DIN 1654/1</td>
</tr>
<tr>
<td>ASTM A387</td>
<td>ASTM A668</td>
<td>DIN 1654/3</td>
</tr>
<tr>
<td>ASTM A389</td>
<td>ASTM A681</td>
<td>DIN 1654/4</td>
</tr>
<tr>
<td>ASTM A412</td>
<td>ASTM A682</td>
<td>DIN 1681</td>
</tr>
<tr>
<td>ASTM A414</td>
<td>ASTM A686</td>
<td>DIN 1692</td>
</tr>
<tr>
<td>ASTM A423</td>
<td>ASTM A693</td>
<td>DIN 1693</td>
</tr>
<tr>
<td>ASTM A426</td>
<td>ASTM A709</td>
<td>DIN 1694</td>
</tr>
<tr>
<td>ASTM A436</td>
<td>ASTM A715</td>
<td>DIN 17100</td>
</tr>
<tr>
<td>ASTM A439</td>
<td>ASTM A732</td>
<td>DIN 17102</td>
</tr>
<tr>
<td>ASTM A441</td>
<td>ASTM A734</td>
<td>DIN 17102/10</td>
</tr>
<tr>
<td>ASTM A442</td>
<td>ASTM A735</td>
<td>DIN 17111</td>
</tr>
<tr>
<td>ASTM A455</td>
<td>ASTM A736</td>
<td>DIN 17120/10</td>
</tr>
<tr>
<td>ASTM A473</td>
<td>ASTM A737</td>
<td>DIN 17140</td>
</tr>
<tr>
<td>ASTM A479</td>
<td>ASTM A738</td>
<td>DIN 17155/2</td>
</tr>
<tr>
<td>ASTM A480</td>
<td>ASTM A743</td>
<td>DIN 17200</td>
</tr>
<tr>
<td>ASTM A493</td>
<td>ASTM A747</td>
<td>DIN 17210</td>
</tr>
<tr>
<td>ASTM A500</td>
<td>ASTM A757</td>
<td>DIN 17211</td>
</tr>
<tr>
<td>ASTM A501</td>
<td>ASTM A769</td>
<td>DIN 17212</td>
</tr>
<tr>
<td>ASTM A505</td>
<td>ASTM A781</td>
<td>DIN 17224</td>
</tr>
<tr>
<td>ASTM A510</td>
<td>ASTM A782</td>
<td></td>
</tr>
<tr>
<td>ASTM A512</td>
<td>ASTM A788</td>
<td></td>
</tr>
<tr>
<td>ASTM A514</td>
<td>ASTM A832</td>
<td></td>
</tr>
<tr>
<td>ASTM A515</td>
<td>ASTM A837</td>
<td></td>
</tr>
<tr>
<td>ASTM A516</td>
<td>ASTM A842</td>
<td></td>
</tr>
<tr>
<td>DIN 17240</td>
<td>WL 1.4454/100</td>
<td>WL 1.4943/100</td>
</tr>
<tr>
<td>DIN 17243</td>
<td>WL 1.4504/1</td>
<td>WL 1.4943/2</td>
</tr>
<tr>
<td>DIN 17245</td>
<td>WL 1.4504/100</td>
<td>WL 1.4943/3</td>
</tr>
<tr>
<td>DIN 17280</td>
<td>WL 1.4514</td>
<td>WL 1.4943 Beiblatt 1</td>
</tr>
<tr>
<td>DIN 17350</td>
<td>WL 1.4534</td>
<td>WL 1.4944/1</td>
</tr>
<tr>
<td>DIN 17440</td>
<td>WL 1.4534 Beiblatt 1</td>
<td>WL 1.4944/2</td>
</tr>
<tr>
<td>DIN 17441</td>
<td>WL 1.4544/1</td>
<td>WL 1.4944/3</td>
</tr>
<tr>
<td>DIN 17445</td>
<td>WL 1.4544/2</td>
<td>WL 1.4944 Beiblatt 1</td>
</tr>
<tr>
<td>DIN 17465</td>
<td>WL 1.4544/3</td>
<td>WL 1.4954</td>
</tr>
<tr>
<td>DIN 2391/2</td>
<td>WL 1.4545/1</td>
<td>WL 1.4954 Beiblatt 1</td>
</tr>
<tr>
<td>DIN 2393/2</td>
<td>WL 1.4545/100</td>
<td>WL 1.4956</td>
</tr>
<tr>
<td>DIN 488/1</td>
<td>WL 1.4546/1</td>
<td>WL 1.4956</td>
</tr>
<tr>
<td>WL 1.1144</td>
<td>WL 1.4546/3</td>
<td>WL 1.4957</td>
</tr>
<tr>
<td>WL 1.1144 Beiblatt 1</td>
<td>WL 1.4546 Beiblatt 2</td>
<td>WL 1.4957 Beiblatt 1</td>
</tr>
<tr>
<td>WL 1.1174</td>
<td>WL 1.4548/1</td>
<td>WL 1.4974/1</td>
</tr>
<tr>
<td>WL 1.1174 Beiblatt 1</td>
<td>WL 1.4548/100</td>
<td>WL 1.4974/2</td>
</tr>
<tr>
<td>WL 1.1194</td>
<td>WL 1.4548/2</td>
<td>WL 1.44974 Beiblatt 1</td>
</tr>
<tr>
<td>WL 1.1194 Beiblatt 1</td>
<td>WL 1.4548/3</td>
<td>WL 1.44974 Beiblatt 1</td>
</tr>
<tr>
<td>WL 1.1274/1</td>
<td>WL 1.4549</td>
<td>WL 1.4984/1</td>
</tr>
<tr>
<td>WL 1.1274/100</td>
<td>WL 1.4549 Beiblatt 1</td>
<td>WL 1.4984/2</td>
</tr>
<tr>
<td>WL 1.1274 Beiblatt 1</td>
<td>WL 1.4554</td>
<td>WL 1.4984 Beiblatt 1</td>
</tr>
<tr>
<td>WL 1.3504/1</td>
<td>WL 1.4554 Beiblatt 1</td>
<td>WL 1.5924</td>
</tr>
<tr>
<td>WL 1.3504/2</td>
<td>WL 1.4554/100</td>
<td>WL 1.5924 Beiblatt 1</td>
</tr>
<tr>
<td>WL 1.3505/1</td>
<td>WL 1.4554 Beiblatt 2</td>
<td>WL 1.5934</td>
</tr>
<tr>
<td>WL 1.3505/2</td>
<td>WL 1.4554 Beiblatt 1</td>
<td>WL 1.5934 Beiblatt 1</td>
</tr>
<tr>
<td>WL 1.3514/1</td>
<td>WL 1.4554 Beiblatt 1</td>
<td>WL 1.6351</td>
</tr>
<tr>
<td>WL 1.3514/2</td>
<td>WL 1.4554 Beiblatt 1</td>
<td>WL 1.6351 Beiblatt 1</td>
</tr>
<tr>
<td>WL 1.3544/1</td>
<td>WL 1.4554 Beiblatt 1</td>
<td>WL 1.6354</td>
</tr>
<tr>
<td>WL 1.3544/2</td>
<td>WL 1.4554 Beiblatt 1</td>
<td>WL 1.6354 Beiblatt 1</td>
</tr>
<tr>
<td>WL 1.3544/100</td>
<td>WL 1.4554 Beiblatt 1</td>
<td>WL 1.6359/1</td>
</tr>
<tr>
<td>WL 1.3550/1</td>
<td>WL 1.4554 Beiblatt 1</td>
<td>WL 1.6359/1 Beiblatt 1</td>
</tr>
<tr>
<td>WL 1.3550/100</td>
<td>WL 1.4554 Beiblatt 1</td>
<td>WL 1.6359/2</td>
</tr>
<tr>
<td>WL 1.3551</td>
<td>WL 1.4554 Beiblatt 1</td>
<td>WL 1.6359/2 Beiblatt 1</td>
</tr>
<tr>
<td>WL 1.3551 Beiblatt 1</td>
<td>WL 1.4554 Beiblatt 1</td>
<td>WL 1.6604/1</td>
</tr>
<tr>
<td>WL 1.3552/1</td>
<td>WL 1.4554 Beiblatt 1</td>
<td>WL 1.6604/2</td>
</tr>
<tr>
<td>WL 1.3554</td>
<td>WL 1.4554 Beiblatt 1</td>
<td>WL 1.6604 Beiblatt 1</td>
</tr>
<tr>
<td>WL 1.3934</td>
<td>WL 1.4554 Beiblatt 1</td>
<td>WL 1.6607</td>
</tr>
<tr>
<td>WL 1.3934 Beiblatt 1</td>
<td>WL 1.4554 Beiblatt 1</td>
<td>WL 1.6607 Beiblatt 1</td>
</tr>
<tr>
<td>WL 1.4014/1</td>
<td>WL 1.4591</td>
<td>WL 1.6657/1</td>
</tr>
<tr>
<td>WL 1.4014/100</td>
<td>WL 1.4591 Beiblatt 1</td>
<td>WL 1.6657/100</td>
</tr>
<tr>
<td>WL 1.4014/2</td>
<td>WL 1.4591 Beiblatt 1</td>
<td>WL 1.6658/1</td>
</tr>
<tr>
<td>WL 1.4014 Beiblatt 1</td>
<td>WL 1.4592</td>
<td>WL 1.6658/100</td>
</tr>
<tr>
<td>WL 1.4044</td>
<td>WL 1.4592 Beiblatt 1</td>
<td>WL 1.6722</td>
</tr>
<tr>
<td>WL 1.4044 Beiblatt 1</td>
<td>WL 1.4592 Beiblatt 1</td>
<td>WL 1.6722/1</td>
</tr>
<tr>
<td>WL 1.4314/1</td>
<td>WL 1.4593/1</td>
<td>WL 1.6722/100</td>
</tr>
<tr>
<td>WL 1.4314/100</td>
<td>WL 1.4593/1 Beiblatt 1</td>
<td>WL 1.6723</td>
</tr>
<tr>
<td>WL 1.4314/2</td>
<td>WL 1.4593/2</td>
<td>WL 1.6723</td>
</tr>
<tr>
<td>WL 1.4314/3</td>
<td>WL 1.4593 Beiblatt 1</td>
<td>WL 1.6723/1</td>
</tr>
<tr>
<td>WL 1.4314/4</td>
<td>WL 1.4593 Beiblatt 1</td>
<td>WL 1.6723/100</td>
</tr>
<tr>
<td>WL 1.4324/1</td>
<td>WL 1.4593 Beiblatt 1</td>
<td>WL 1.6723 Beiblatt 1</td>
</tr>
<tr>
<td>WL 1.4324/2</td>
<td>WL 1.4593 Beiblatt 1</td>
<td>WL 1.6944/1</td>
</tr>
<tr>
<td>WL 1.4324/3</td>
<td>WL 1.4593/1</td>
<td>WL 1.6944/1</td>
</tr>
</tbody>
</table>
WL 1.6944/2 UNI 5867
WL 1.6944/3 UNI 6407
WL 1.6944/4 UNI 7070
WL 1.6944 Beiblatt 1 UNI 7382
WL 1.6964 UNI 7500
WL 1.6964 Beiblatt 1 UNI 7845
WL 1.6974 UNI 8317
WL 1.6974/1 UNI EU28
WL 1.6974/100
WL 1.6974 Beiblatt 1 ISO
WL 1.7214/1
WL 1.7214/100 ISO 630
WL 1.7214/2 ISO 2604/2
WL 1.7220 ISO 2604/3
WL 1.7220 Beiblatt 1 ISO 3573
WL 1.7224/1 ISO 3755
WL 1.7224/100 ISO 4950/2
WL 1.7254/1 ISO 4951
WL 1.7254/100 ISO 4950/3
WL 1.7324 ISO 4960
WL 1.7324/100 ISO 4995
WL 1.7324 Beiblatt 1 ISO R683/1
WL 1.7334 Beiblatt 1 ISO R683/2
WL 1.7734/1 ISO R683/3
WL 1.7734/100 ISO R683/4
WL 1.7734 Beiblatt 1 ISO R683/5
WL 1.7736/1 ISO R683/7
WL 1.7744/1 ISO R683/8
WL 1.7744/100 ISO R683/9
WL 1.7744 Beiblatt 1 ISO R683/10
WL 1.7784/1 ISO R683/11
WL 1.7784/100 ISO R683/13
WL 1.7784/2 ISO R683/14
WL 1.7784/3
WL 1.7784/4
WL 1.7784/5
WL 1.7784 Beiblatt 1
WL 1.8154
WL 1.8154 Beiblatt 1
WL 1.8514
WL 1.8514 Beiblatt 1
WL 1.8544
WL 1.8544 Beiblatt 1
WL 1.8564
WL 1.8564 Beiblatt 1

ITALY

UNI 3608
UNI 4838
UNI 5462-64
APPENDIX B
AVAILABLE CROSS-REFERENCE PUBLICATIONS

International Metallic Materials Cross Reference, 3rd ed
D. L. Potts, J. G. Gensure, editors
Genium Publishing Corporation
PO Box 1436 Schenectady, NY 12301

Worldwide Guide to Equivalent Nonferrous Metals and Alloys
ASM International
Materials Park, Ohio 44073

Worldwide Guide to Equivalent Irons and Steels
ASM International
Materials Park, Ohio 44073
APPENDIX C
EXTRACT FROM MANUAL FOR DATA ENTRY

INTRODUCTION

Data Accuracy and Validity

The accuracy and validity of the database is extremely important. As the file is built, the record will be matched for consistency with the original data sheets and appropriate corrections will be made. However, getting the data entered correctly the first time will save much time in the long run.

1. DATA COLLECTION

Alloy data are to be extracted from the standards currently on hand. The ALLOY DATA SHEETS are used to record all information about an alloy to be stored in the data file. Each sheet should have a pre-assigned record number which shall be keyed when the record containing that data is entered. These sheets may be obtained from Data Control.

The following pages show sample data sheets. Extreme caution should be taken when writing information onto the data sheets as these are the primary building blocks for the data file.

New records may be created using either of two methods.

1. The ALLOY DATA SHEET should be used when a designation is to be entered for the first time. All information for the designation should be written on the data sheet.

2. The MULTIPLE ENTRY ALLOY DATA SHEET may be used when a record which has characteristics similar to those of an existing record is to be written and only a few changes are required. Only the changes should be written on the data sheet. "Record Number" refers to the "new" record number. "Master Record Number" refers to the record from which the duplicates to be made.

Prior to completing these data sheets it is necessary to have an adequate understanding of the format for writing such information as alloy designation, condition, etc. as the formats vary from one country to another. Given this, a FORMAT GUIDE PER COUNTRY form and STANDARDS ASSESSMENT FORM must be completed by Data Control before work is begun on any group of alloys. (See Figure 1.1 and Figure 1.2)

The STANDARDS ASSESSMENT FORM is especially crucial when working on steel alloys. Because of the more complex nature of steels, there is a lesser degree of uniformity in the writing of standards. Each foreign standard must be paired with its potentially equivalent U.S. standard and analyzed on the basis of equivalence in chemical and mechanical properties.

Listed below are general guidelines. Refer to Appendix A (DATA SHEET GLOSSARY) for detailed explanations of these terms. Designations should be written according to the format given in the source Standard. (See FORMATS GUIDE PER COUNTRY.) Chemical Name designations should be written in upper/lower case letters with the first letter of each element being capitalized. (E.g., AlMg) Form should be written in upper/lower case letters. To provide consistency throughout the database, a FORM MODIFICATION notebook which contains all forms to be used in the database has been developed. You must refer to "Forms Summary" in the notebook to ascertain that all forms which you write are valid. Condition should be that terminology given in the source Standard. (See Figure 1.1 FORMAT GUIDE PER COUNTRY.)

Typical conditions for Aluminum are:
F - as fabricated.
O - annealed/recrystallized; may be followed by an integer indicating how it was annealed.
H# - strain hardened, where # represents an integer designation of the type of treatment applied to the alloy.
T - Thermally treated to produce stable tempers other than F, O or H, followed by one or more digits indicating specific treatment applied.
W - Solution heat-treated; an unstable temper applicable to alloys which spontaneously age at room temperature after solution heat treatment. May be followed by a value indicating the period of natural aging (e.g., W 1/2 hr).

Eqv-Cond indicates the U.S. condition code equivalent to the code for similar treatments by which foreign aluminum alloy producers achieve a desired result. The EQVTEMP program (in the TEMPER directory) is used to determine condition equivalence for aluminum alloys. Standards organizations handle steel conditions differently from aluminum conditions. Condition codes are not systematically written so as to represent a given set of treatments which a steel alloy undergoes. Instead, more general terms (e.g., "quenched & tempered") are given and supplemental tables of temperature and time ranges required to achieve specific conditions must be used.

EQV-COND for steel should be determined as follows:

a) Data Control shall perform a comparative analysis of similar foreign/U.S. standards and assess the literal meanings discussed therein. As a result of this analysis, conditions which have different phrasing, under proper circumstances, may be regarded as equivalent. E.g., Solution Heat Treated might be equivalent to Annealing if temperature and time ranges, yield strength, tensile strength, etc. are the same.

b) Otherwise, the EQV-COND should be worded the same as the condition. I.e., "Quenched and Tempered" equals "Quenched and Tempered". Data Control has compiled a list of steel condition abbreviations to be used. (See "Steel Conditions" in Appendix A)

ALLOY CATEGORIES

Aluminum Alloys included in the database fall into one of two categories: 1) Wrought Alloy or 2) Casting Alloy. The diagram below is a pictorial representation of these two groups. This illustration is not inclusive of all forms in which alloys are available; however, these are some of the most common. It is necessary to distinguish between these two categories as the designation formats oftentimes differ for wrought and casting alloys.

UNS Number applies to the U.S. designations. In foreign records the UNS-No is that number for the US-Equivalent listed in the record (UNS-Unified Numbering System).

Country Name indicates the name of the country in which the alloy originated. (ISO-International Standards Organizations is treated with the same regard as country.)

US-Equiv. should be obtained from the specification, Matching Program or indexed reference materials. All US-Equivalents given in foreign records must also exist in the U.S. data file. If no such U.S. alloy exists, consult Data Control.

Eqv. Ref. refers to the source index representing the publication listing the US-Equivalent for a given alloy.
Alloy Type refers to the primary material in an alloy's composition.

Country Code indicates the unique two-digit numerical code assigned to the country by Data Control.

Orig-Org refers to the (abbreviated) standard organization under which the alloy was developed or the company whose Trademark is used.

Status - Records in their final stage of the verification process shall contain the letter "V". When the record is entered for the first time it is given a status code "VECMT" where

- C indicates the Chemical Composition has not been verified.
- D appears in the Status field when the duplicate feature of SCRNENTR is used to create a new record (VECMDT).
- E indicates the US-Equivalent has not been verified.
- M indicates the Mechanical Properties have not been verified.
- T indicates the equivalent U.S. temper has not been added to the US-Equivalent. An asterisk (*) in the "T" position indicates no equivalent US temper exists for the foreign temper shown in the record.

As the related fields are verified, the corresponding status code is removed from the status field. (E.g., when the chemical composition has been verified, the "C" should be removed from the status field.)

Specifications refer to Standards which contain information about the alloy. See FORMAT GUIDE PER COUNTRY for the proper format. (Figure 1.1)

Composition Unit = 1 (% of element contained in alloy by weight).

Composition Values should be written as follows:

Add leading zero for values less than 1.0, e.g., 0.25, 0.1
At least one digit should follow the decimal, e.g., 1.0, 1.25
Do not add trailing zero when there is at least one digit already following the decimal.

Correct: 1.5
Incorrect: 1.50

The Min-Al value equals REM whenever composition table lists "Remainder" for that field.

The OTHER1, OTHER2 and OTHER3 fields are used to record chemical composition information for miscellaneous elements. "Each Othr" indicates the limits for non-specified impurities on an individual basis. "Total Othr" indicates total limits for non-specified impurities. Sometimes a standard will give limits for impurities not defined in the FADB record structure. The chemical symbol should be written in the OTHER1 field and the min/max values should be written in the min-ol/max-ol fields. When recording additional chemical composition data record the miscellaneous elements first, then "Each Othr", followed by "Total Othr". If more than the three fields are needed, enter the remaining data in the NOTES field.

Yield/Tensile Strength should always contain units equal to "ksi" in the final verification stage of the record. Record the information on the data sheet as it appears in the standard. That is, if the standard has Yield/Tensile values in MPa, kp or kgf units, key them into the record that way. There are two exceptions:

1. N/mm² is the same as MPa. Replace N/mm² with MPa on the data sheet.
2. Some standards give Yield/Tensile values in psi units. These numbers are 1000 times the ksi values.
Example: 85,000 psi equals 85 ksi

When writing the data sheets, divide by 1000 (i.e., drop the three zeros) and change the psi units to ksi on the data sheets as in the example above. Convert all "MPa", "kp", "kgf", etc. units using the appropriate conversion procedure stored in Datatrieve.

Whenever multiple thickness ranges are given and the Yield/Tensile values change with thickness, the values corresponding to the smallest thickness range should be used. As shown in the example below the following entry would be made in the record.

<table>
<thead>
<tr>
<th>Thickness (mm)</th>
<th>Min. Yield (MPa)</th>
<th>Min. Tensile (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00 through 12.50</td>
<td>185</td>
<td>230</td>
</tr>
<tr>
<td>12.50 through 25.00</td>
<td>215</td>
<td>245</td>
</tr>
<tr>
<td>over 25.00</td>
<td>250</td>
<td>300</td>
</tr>
</tbody>
</table>

MIN-YLD field should contain "185 MPa". MIN-TNS field should contain "230 MPa".

NOTES fields should contain: Mech Prop for 1.00-12.50mm thickness

Notice the spacing and punctuation in the NOTES field. All information stored in the database in its final form should be in English units. The CONV-MPA-KSI procedure should be used to convert the values in the Yield and Tensile field to "ksi" units. This procedure is executed in Datatrieve (at the "DTR>" prompt). The NOTES program should be used to convert millimeters to inches in the Notes field (at the "$" prompt).

IRR Designation is the International Registry Record number. These designations are registered with the Aluminum Association (international). The number stored in the IRR field in the database is a compositional equivalent to the alloy designation in that record. This field provides information on similar alloys in the absence of or in addition to the US Equivalent data.

ALCAT indicates Alloy Category. This field is used for Ferrous designations to further distinguish product types. Examples of Alloy Categories include "Stainless Steel", "Carbon Steel", etc.

RC (Ready-Code) indicates the "tape" status of the record. The following codes are currently being used.

- R = record is ready to be placed on tape to NASA
- S = record has been sent to NASA on previous tape

A blank entry or one which contains a code other than the above indicates the record either has not been completed and reviewed.

3. DATA VERIFICATION

This phase of the project begins when all data have been entered and the full report printed. The Verification Record Form should be used to record all necessary changes.

The Verification Record Form has seven items which should be completed when recording a change.

PG# -- The computer-generated page number on which the record appears in the report.
RECORD NUMBER -- The number which was assigned during the Data Entry phase.

COUNTRY -- The numeric code assigned to the country of origin.

Country Codes

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Australia</td>
<td>02</td>
<td>Canada</td>
<td>03</td>
<td>China</td>
</tr>
<tr>
<td>04</td>
<td>Denmark</td>
<td>05</td>
<td>East Germany</td>
<td>06</td>
<td>Finland</td>
</tr>
<tr>
<td>07</td>
<td>France</td>
<td>08</td>
<td>Japan</td>
<td>09</td>
<td>Mexico</td>
</tr>
<tr>
<td>10</td>
<td>New Zealand</td>
<td>11</td>
<td>Norway</td>
<td>12</td>
<td>South Africa</td>
</tr>
<tr>
<td>13</td>
<td>Spain</td>
<td>14</td>
<td>Sweden</td>
<td>15</td>
<td>Switzerland</td>
</tr>
<tr>
<td>16</td>
<td>United Kingdom</td>
<td>17</td>
<td>U.S.A.</td>
<td>18</td>
<td>U.S.S.R.</td>
</tr>
<tr>
<td>19</td>
<td>West Germany</td>
<td>20</td>
<td>Italy</td>
<td>21</td>
<td>Belgium</td>
</tr>
<tr>
<td>22</td>
<td>Netherlands</td>
<td>23</td>
<td>Portugal</td>
<td>30</td>
<td>ISO</td>
</tr>
</tbody>
</table>

RECORD STATUS CODE -- The two-digit code listed at the bottom of the Verification Record Form corresponding to the data category. (E.g., "01" indicates a change of some kind in the Designation field.)

RECORD STATUS CORRECTION -- The correct data for that field. (See the Record Layout for list of field names.)

RECORD CORRECTED -- Upon making the correction as specified on the Verification Record Form, the person keying the change should write his/her initials and the date the change was keyed.

TOTAL RECORDS -- When all spaces of the Verification Record Form have been used, the total number of records (not the number of changes) should be written in the space in the upper right corner of the form.

SAMPLE VERIFICATION RECORD FORM ENTRIES

<table>
<thead>
<tr>
<th>PG#</th>
<th>RECORD NUMBER</th>
<th>COUNTRY</th>
<th>DOCUMENT</th>
<th>RECORD STATUS CODE</th>
<th>RECORDED</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1345</td>
<td>17</td>
<td>ASTM B209</td>
<td>10 Min-Si=0.1</td>
<td>XX mm/dd/yy</td>
</tr>
<tr>
<td>39</td>
<td>7782</td>
<td>17</td>
<td>AMS 3099</td>
<td>11 Min-Yld=315</td>
<td>XX mm/dd/yy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01 218.5</td>
<td>XX mm/dd/77</td>
</tr>
</tbody>
</table>

Occasionally, the situation arises when the same change must be made to several records. In such cases, this problem should be recorded on an ALLOY DATABASE PROJECT PROBLEM REPORT and will be resolved by Data Control.

VERIFICATION RECORD TOTAL RECORDS:_____

<table>
<thead>
<tr>
<th>PG#</th>
<th>RECORD NUMBER</th>
<th>COUNTRY</th>
<th>DOCUMENT</th>
<th>RECORD STATUS CODE</th>
<th>RECORDED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Record Status Codes)
"PG#" refers to the computer-generated page number on which the alloy data appear in the report.

"Record Number" refers to the four-digit number assigned to the record in the data file.

"Country" refers to the numeric code assigned to the country from which the alloy originated. (U.S. code is "17".)

"Verifying Document" indicates the publication used to verify information for the alloy.

"Record Status" indicates whether the record is in a correct or an incorrect status. The record status codes are listed at the bottom of each verification record form. The two-digit number corresponding to the field in question should be listed on the verification form under the "code" heading and the correct information should be written under the "correction" heading.

E.g., a record with an incorrect designation code of 1111 which should have read 2222 would appear as follows on the verification form:

<table>
<thead>
<tr>
<th>RECORD NUMBER</th>
<th>COUNTRY DOCUMENT</th>
<th>VERIFYING DOCUMENT</th>
<th>RECORD STATUS CODE</th>
<th>RECORD CORRECTION</th>
<th>RECORD CORRECTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>###</td>
<td>co</td>
<td>document</td>
<td>01</td>
<td>2222</td>
<td>xx date</td>
</tr>
</tbody>
</table>

In such cases when there are errors in a field containing multiple items of information such as Composition, Yield Strength, Tensile Strength, etc. the code should be listed and all necessary corrections listed individually on the following lines.

E.g., the above record also contained a minimum value of .40 for zinc which should have been .04, a maximum value of .55 for copper which should have been .50 and a minimum value of .19 for iron which should have been .10. The verification form would then show:

<table>
<thead>
<tr>
<th>RECORD NUMBER</th>
<th>COUNTRY DOCUMENT</th>
<th>VERIFYING DOCUMENT</th>
<th>RECORD STATUS CODE</th>
<th>RECORD CORRECTION</th>
<th>RECORD CORRECTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>###</td>
<td>co</td>
<td>document</td>
<td>01</td>
<td>2222</td>
<td>xx date</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>min-ZN = .04</td>
<td>xx date</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>max-CU = .50</td>
<td>xx date</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>min-FE = .10</td>
<td>xx date</td>
</tr>
</tbody>
</table>

(NOTE: Aluminum composition percentage should contain a minimum value "REM" [for Remainder] unless otherwise specified in the composition table.)

Verification Form Guidelines

Record Status Code "D" indicates duplicate record. Such records may
be of three types:

Type I Record is identical to another record.
Action: Delete the duplicate.

Type II Alloy has entries for multiple Tempers.
Action: Enter one record from each Temper class.
Delete any subsequent records for the alloy.

Type III* Temper class has multiple thicknesses. Action: Note [notes]
the "Mechanical Property Limits are based on thicknesses having minimum value
'x'" ('x' = smallest thickness range). Enter the corresponding Yield [11] and
Tensile [12] strengths for that thickness. Delete subsequent records for that
alloy and temper.

The Specification code (09) should be used to add or correct data in the spec
field.

1. Specs should be listed with the most fundamental ones first.
2. Standard naming conventions should be used from one record to the next.
 a. Use spaces (which should be notated by " ") instead of a period.
 b. Check to see that every spec consists of the issuing standards
organization's abbreviation followed by the specification number.
 (E.g., ASTM B209)

"Record Corrected" should contain the initials of the person making the
correction and should have the date on which the correction was made.

*Items in [] should be written under the "Code" heading on the
Verification Record Form.
FADB - Fisk Alloy Database Reference Number (or RECNO, record number).

This is an arbitrary sequential number which is used for bookkeeping purposes. Each sheet should have a unique number assigned to it before it is filled out. The database program will not allow duplicated FADB numbers.

UNS - Unified Numbering System

This stands for Unified Numbering System, and is a general numbering system designed to provide one common unique designation for an alloy that may be known by several different designations under various systems of nomenclature.

DESIG - Designation

An alloy designation is the name by which it is identified. Since the same alloy may be described by several standards organizations which have different systems of nomenclature, it may have several identifying designations. It is important that the designations for a given alloy be included under the specifications heading. In general, for U.S. alloys the Aluminum Association of America designation will be used.

FORM - Form

This indicates the shape or type of product into which the alloy is made. The form is usually specified by one of the specifications. One designation may have several forms, requiring separate records.

CONDITION - Condition

The physical properties of an alloy are in part determined by heat treatments and work or strain hardening after the alloy is formed. The history of work hardening and treatments that a particular alloy has undergone in reaching its final useable state is called its condition.

Typical conditions for Aluminum are:

- **F** - As fabricated
- **O** - Annealed/recrystallized - May be followed by an integer indicating how it was annealed.
- **H#** - Strain hardened, where # represents an integer designation of the type of treatment applied to the alloy.
- **T** - thermally treated to produce stable tempers other than F, O, or H, followed by a digit or digits indicating specific treatments applied.
- **W** - Solution heat treated - An unstable temper applicable to alloys which spontaneously age at room temperature after solution heat treatment. May be followed by a value indicating the period of natural aging, eg. W 1/2 hr.

Tempering affects certain physical properties, so different conditions of the same alloy will require separate data sheets. Although the same principles apply to steel alloys as for aluminum, the coding for steel conditions is not simply achieved. This is due mostly to the more complex nature of steel alloys. Refer to the table - "Steel Conditions" for a list of condition and condition codes used in the database.

EQVCOND - Equivalent Condition
This field is used to cross reference similar foreign and domestic treatments.

Originating Organization -

This is the company or governmental organization that has introduced the alloy.

Country of Origin - The country in which the originating organization is located.

Both the country and its two digit code should be entered on the datasheet. These codes include:

C Data definition for Country Codes Table

<table>
<thead>
<tr>
<th>Code</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Australia</td>
</tr>
<tr>
<td>2</td>
<td>Canada</td>
</tr>
<tr>
<td>3</td>
<td>China</td>
</tr>
<tr>
<td>4</td>
<td>Denmark</td>
</tr>
<tr>
<td>5</td>
<td>East Germany</td>
</tr>
<tr>
<td>6</td>
<td>Finland</td>
</tr>
<tr>
<td>7</td>
<td>France</td>
</tr>
<tr>
<td>8</td>
<td>Japan</td>
</tr>
<tr>
<td>9</td>
<td>Mexico</td>
</tr>
<tr>
<td>10</td>
<td>New Zealand</td>
</tr>
<tr>
<td>11</td>
<td>Norway</td>
</tr>
<tr>
<td>12</td>
<td>South Africa</td>
</tr>
<tr>
<td>13</td>
<td>Spain</td>
</tr>
<tr>
<td>14</td>
<td>Sweden</td>
</tr>
<tr>
<td>15</td>
<td>Switzerland</td>
</tr>
<tr>
<td>16</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>17</td>
<td>USA</td>
</tr>
<tr>
<td>18</td>
<td>USSR</td>
</tr>
<tr>
<td>19</td>
<td>West Germany</td>
</tr>
<tr>
<td>20</td>
<td>Italy</td>
</tr>
<tr>
<td>21</td>
<td>Belgium</td>
</tr>
<tr>
<td>22</td>
<td>USSR</td>
</tr>
<tr>
<td>23</td>
<td>Portugal</td>
</tr>
<tr>
<td>30</td>
<td>ISO</td>
</tr>
</tbody>
</table>

U. S. Equivalent -

For foreign alloys, the designation of the closest United States equivalent. If this is given in the reference, include it. If a U.S. equivalent is unknown, this should be left blank. The designation of the equivalent alloy should be written using the same rules for entering alloy designations so that a search on this field will find a match if it exists.

Specifications -

The specifications for an alloy are the set of procedures and tests that completely define it. The specifications may refer to the title of a specifying document, such as an ASTM number, or an alternate designation by which the alloy is also known.

Composition -

The composition is the proportion of chemical elements that make up the alloy. This will usually be specified as a range of minimum and maximum percentages of the elements the alloy. These percentages may be specified as either a weight percent or an atomic number percent, i.e., relative numbers of atoms of each element in the mixture.

Yield Strength - When forces are applied to a bar which tend to stretch it, the bar undergoes deformations or strains. These strains are proportional to the applied forces when they are small, and the bar will return to its original length when the forces are removed. As the tensile forces grow, however, a point will be reached where the bar undergoes a disproportionate increase in length and suffers permanent distortion. The force at which this inelastic deformation occurs is called the metal's yield strength. It will have units of force / area, usually in Mega-Pascals (MPa) or thousands of pounds per square inch (ksi). Yield strengths will in general be specified within a maximum-minimum range or be given as typical values.

Tensile strength - This quantity refers to the tensile or longitudinal stress at which the cohesive forces within the metal decrease suddenly, but before the metal actually fractures. It will have the same units as the yield strength.

SCC Rating - Stress Corrosion Cracking Rating - This is a letter code which indicates the susceptibility of an alloy to surface crack formation in a corrosive environment.
FORMS USED FOR DATABASE PREPARATION

ALLOY DATASHEET:

This form is used as the basic record of data taken from standards and specifications. Once completed, the datasheet will be used as the source for a single record on the database.

MULTIPLE ENTRY ALLOY DATASHEET:

This form is used when a new record which has similar characteristics as an existing record is to be created. A new record number is assigned as with the Alloy Data Sheet. The master record number (record being copied) must also be written in the appropriate area. However, unlike with the Alloy Data Sheet, only those fields to be changed need be re-keyed. (E.g., it would not be necessary to repeatedly enter composition values for new records created in this manner.)

PROBLEM REPORT:

Occasionally, records contain errors of the same type. Example, the form shown in a record should correspond to those listed on the FORM LIST. Required changes may be done globally using Datatrieve as opposed to making changes one by one using JSMAINDUP. The records in error are recorded on the Problem Report form and recommended actions are determined on a group basis.

STANDARDS ASSESSMENT:

This form is used to record special relevant information about specific standards.

VERIFICATION RECORD FORM

After all data have been entered, a report is generated. It is necessary to verify the accuracy of the stored data. This is achieved through the use of the Verification Record Form. All required changes are recorded here and keyed at a later date.
ALLOY DATA SHEET

FADB-NO.________________________

Designation ___________________________ **UNS No.**________________________

Alt Desig ___________________________ **IRR No.**________________________

Form ___________________________

Condition ___________________________

AIType ___________________________ **AIcat**________________________

Country Name ___________________________ **Code**________________________ **Orig. Org.**

U.S. Equiv ___________________________ **US Eqv. Condition**________________________

Specifications: 1) ___________________________ 2) ___________________________

3) ___________________________ 4) ___________________________ 5) ___________________________

COMPOSITION Wt% 1

<table>
<thead>
<tr>
<th>Element</th>
<th>Min</th>
<th>Max</th>
<th>Element</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td></td>
<td></td>
<td>Pb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td></td>
<td></td>
<td>Sn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td></td>
<td>Co</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td></td>
<td></td>
<td>Mo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td></td>
<td></td>
<td>W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td></td>
<td></td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td></td>
<td></td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MECH PROPERTY MIN MAX TYPICAL UNITS

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
<th>TYPICAL</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield Strength</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensile Strength</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Elongation Long</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trans</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test piece:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mech Prop Notes:

SCC RATING:

Data References: Eqvref Cref MPref

Notes: ___________________________ **OPERATOR:**________________________
MULTIPLE ENTRY ALLOY DATASHEET

Master Designation:

New Record Number:

Master Record Number:

CHANGES

Designation:

Form:

Condition:

UNS No.:

Alt Desig:

US Equiv Desig:

US Equiv Cond:

Orig. Org.:

Spec1:

Spec2:

Composition:

<table>
<thead>
<tr>
<th>Element</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Min-Yld:

Max-Yld:

Typ-Yld:

Min-Tns:

Max-Tns:

Typ-Tns:

Min-Hrd:

Max-Hrd:

H-Units:

%Elongation:

Test Piece:

Mech Prop Notes:

Eqvref:

CRef:

MRef:

Notes:

OPERATOR:
<table>
<thead>
<tr>
<th>PG#</th>
<th>RECORD NUMBER</th>
<th>COUNTRY</th>
<th>VERIFYING DOCUMENT</th>
<th>RECORD STATUS CODE</th>
<th>RECORD CORRECTION</th>
<th>RECORD CORRECTED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Record Status Codes)

00 NO CHANGE 04 COUNTRY NAME 08 STATUS 12 TENSILE STRG.
01 DESIGNATION 05 COUNTRY CODE 09 SPECIFICATION 13 IRR DESIG.
02 FORM 06 US EQUIVALENT 10 COMPOSITION 14 DATA REF.
T2 CONDITION 07 ORIGINATING ORG. 11 YIELD STRG. 15 NOTES
03 UNS NO. EC EQV CONDITION RC READY-CODE D DUPLICATE
STANDARDS ASSESSMENT FORM
Fisk Alloy Database

COUNTRY:_________ ALLOY CATEGORY:__________________

STANDARD NUMBER:__________________ ISSUE DATE:______________

TITLE:__

__

FORMS:__

COMPARABLE STANDARDS:

U.S. STANDARDS

FOREIGN STANDARDS

REMARDS:
ORGANIZATIONAL ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>The Aluminum Association</td>
</tr>
<tr>
<td>AFC</td>
<td>A.F.C., Societe des</td>
</tr>
<tr>
<td>AIA</td>
<td>Apex International Alloys Inc.</td>
</tr>
<tr>
<td>AISI</td>
<td>American Iron and Steel Institute</td>
</tr>
<tr>
<td>ALCAN</td>
<td>Aluminum Co. of Canada, Ltd.</td>
</tr>
<tr>
<td>ALPAX</td>
<td>Alais, F</td>
</tr>
<tr>
<td>AMS</td>
<td>Aerospace Materials Specifications</td>
</tr>
<tr>
<td>AP</td>
<td>Aluminum Pechiney</td>
</tr>
<tr>
<td>AS</td>
<td>Standards Association of Australia</td>
</tr>
<tr>
<td>ASM</td>
<td>American Society for Metals</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing Materials</td>
</tr>
<tr>
<td>AWS</td>
<td>American Welding Society</td>
</tr>
<tr>
<td>BSI</td>
<td>British Standards Institute</td>
</tr>
<tr>
<td>CSA</td>
<td>Canadian Standards Association</td>
</tr>
<tr>
<td>CTC</td>
<td>Carpenter Technology Corp.</td>
</tr>
<tr>
<td>DIN</td>
<td>Deutsches Institut fur Normung</td>
</tr>
<tr>
<td>DOD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>DS</td>
<td>Dansk Standardiseringsrad</td>
</tr>
<tr>
<td>DTD</td>
<td>Department of Trade and Industry</td>
</tr>
<tr>
<td>GE</td>
<td>Gillett & Eaton Inc.</td>
</tr>
<tr>
<td>GI</td>
<td>Gould Inc., Engine Parts Division</td>
</tr>
<tr>
<td>GOST</td>
<td>Staatliches Komitee fur Standardisierung</td>
</tr>
<tr>
<td>HDA</td>
<td>High Duty Alloys Ltd.</td>
</tr>
<tr>
<td>HW</td>
<td>Honsel-Werke AG., Leichtmetallwerke</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>IRR</td>
<td>International Registration Record</td>
</tr>
<tr>
<td>ISO</td>
<td>International Standards Organization</td>
</tr>
<tr>
<td>JIS</td>
<td>Japanese Industrial Standards</td>
</tr>
<tr>
<td>KLAL</td>
<td>Koch Light Alloys Ltd.</td>
</tr>
<tr>
<td>MCIC</td>
<td>Metals and Ceramics Information Center</td>
</tr>
<tr>
<td>MNC</td>
<td>Metallnormcentralen</td>
</tr>
<tr>
<td>MSA</td>
<td>Montecatini Settore Alluminio</td>
</tr>
<tr>
<td>NBN</td>
<td>Belgium Standards</td>
</tr>
<tr>
<td>NEN</td>
<td>Nederlands Normalisatie-instituut</td>
</tr>
<tr>
<td>NF</td>
<td>Association Francaise de Normalisation</td>
</tr>
<tr>
<td>NS</td>
<td>Norwegian Standards Association</td>
</tr>
<tr>
<td>SAE</td>
<td>Society of Automotive Engineers Inc.</td>
</tr>
<tr>
<td>SAL</td>
<td>Swiss Aluminum Ltd.</td>
</tr>
<tr>
<td>SIS</td>
<td>Svensk Standard</td>
</tr>
<tr>
<td>SML</td>
<td>Sterling Metals Ltd.</td>
</tr>
<tr>
<td>SN</td>
<td>Schweizer Norm</td>
</tr>
<tr>
<td>STONE</td>
<td>Stone Manganese Marine</td>
</tr>
<tr>
<td>UNE</td>
<td>Instituto Espanol De Normalization</td>
</tr>
<tr>
<td>UNI</td>
<td>Ente Nazionale Italiano Di Unificazione</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>VASA</td>
<td>Veneto per Azioni, Soc. Alluminio</td>
</tr>
<tr>
<td>VDS</td>
<td>Vereinigung Deutscher Schmelzhütten</td>
</tr>
<tr>
<td>VL</td>
<td>Vereinigte Leichtmetallwerke</td>
</tr>
<tr>
<td>WL</td>
<td>Werkstoff-Leistungsblatt</td>
</tr>
</tbody>
</table>
STEEL CONDITION ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Austenite Conditioned</td>
</tr>
<tr>
<td>AUSTN</td>
<td>Austenitized</td>
</tr>
<tr>
<td>BF</td>
<td>Bright Finished</td>
</tr>
<tr>
<td>BRI</td>
<td>Bright</td>
</tr>
<tr>
<td>CD</td>
<td>Cold Drawn</td>
</tr>
<tr>
<td>CF</td>
<td>Cold Finished</td>
</tr>
<tr>
<td>CR</td>
<td>Cold Rolled</td>
</tr>
<tr>
<td>CW</td>
<td>Cold Worked</td>
</tr>
<tr>
<td>DECAR</td>
<td>Decarburized</td>
</tr>
<tr>
<td>GRND</td>
<td>Ground</td>
</tr>
<tr>
<td>HDN</td>
<td>Hardened</td>
</tr>
<tr>
<td>HDTMP</td>
<td>Hard Tempered</td>
</tr>
<tr>
<td>HF</td>
<td>Hot Finished</td>
</tr>
<tr>
<td>HOMGEN</td>
<td>Homogenized</td>
</tr>
<tr>
<td>HR</td>
<td>Hot Rolled</td>
</tr>
<tr>
<td>HTR</td>
<td>Heat Treated</td>
</tr>
<tr>
<td>INTMP</td>
<td>Intermediate Tempered</td>
</tr>
<tr>
<td>NA</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>NF</td>
<td>Not Found</td>
</tr>
<tr>
<td>NORM</td>
<td>Normalized</td>
</tr>
<tr>
<td>NS</td>
<td>Not Specified</td>
</tr>
<tr>
<td>NWH</td>
<td>No Work Hardening</td>
</tr>
<tr>
<td>PHDN</td>
<td>Precipitation Hardened</td>
</tr>
<tr>
<td>PHTR</td>
<td>Precipitation Heat Treated</td>
</tr>
<tr>
<td>Q</td>
<td>Quenched</td>
</tr>
<tr>
<td>RVA</td>
<td>Reversion Annealed</td>
</tr>
<tr>
<td>SFT</td>
<td>Softened</td>
</tr>
<tr>
<td>SHTR</td>
<td>Solution Heat Treated</td>
</tr>
<tr>
<td>SPH</td>
<td>Spheroidized</td>
</tr>
<tr>
<td>STR</td>
<td>Stress Relieved</td>
</tr>
<tr>
<td>STRAINHDN</td>
<td>Strain Hardened</td>
</tr>
<tr>
<td>TMP</td>
<td>Tempered</td>
</tr>
</tbody>
</table>
APPENDIX E - PROGRAM LISTINGS

C***
C* CONTROL PROGRAM (MAIN PROGRAM)*
C***
C Program Name: NASAMAIN.FOR
C Date Written: August, 1985
C Designer/Programmer: Joseph K. Amanfu, Fisk University, Nashville
C Revised by: J. M. Springer
C 9/1/88 - Changed default domain to STEEL
C This Program Displays the Main Menu: After a Processing Option has been selected by the user, the program Calls the corresponding Subroutine
C***
C The following subroutines are available:
C
C 1. SUBROUTINE CHOOSE: - Shows available domains and prompts the User to select a domain name to be Readied
C 2. SUBROUTINE DELETE: - Enables the user to PERMANENTLY remove records from the database
C 3. SUBROUTINE INSERT: - Enables the user to insert new records into the database
C 4. SUBROUTINE MODIFY: - Enables the user to modify one or more fields within one or more records
C 5. SUBROUTINE REPORT: - Enables the user to generate an unlimited number of reports from the data base; Such reports may be displayed on the video screen or printed on a local printer
C
C NOTES:
C Subroutine features 2, 3, and 4 are restricted operations; only users with specific access rights may use them
C***

100 INCLUDE 'DTR$LIBRARY:DAB'

C Declare Variables
CHARACTER*31 DOMAIN
CHARACTER*1 CHOICE
CHARACTER*2 ANSWER
INTEGER STATUS

C Initialize the DATATRIEVE Call Interface
CALL LIB$ERASE_PAGE (1,1)
type *,''
type *,'Please stand by'
type *,''
INIT_OPTS =
1 +DTR$SK_SEMI_COLON_OPT
2 +DTR$SK_UNQUOTED_LIT
3 +DTR$K SYNTAX PROMPT

C PORT #1
C Declare a PORT PT1 for STOREing the number records in any
C collection to be established by user with an Rse,
C e.g. in SBREPORT

CALL DTR$COMMAND (DAB, 'DECLARE PORT PT1 USING ')
CALL DTR$COMMAND (DAB, '01 NUM PIC 9(4) COMP.,')
CALL DTR$DTR (DAB, DTR$M_OPT_CMD)

C Choose and Ready the Domain

300 CALL LIB$ERASE_PAGE (1,1)
 type '*', ' ' type '*', 'Please stand by'
 DOMAIN = 'COPPER' ! New file with fadb-no primary key
 ! and all character record
 CALL DTR$COMMAND (DAB, 'READY ICMD SHARED;', DOMAIN)
 CALL DTR$DTR (DAB, DTR$M_OPT_CMD)

C Clear the Screen and Build the Main Menu

600 CALL LIB$ERASE_PAGE (1,1)

700 TYPE 750,DOMAIN
750 FORMAT (T29,' WELCOME TO THE'
 /T18,' NASA ALLOY DATABASE MANAGEMENT SYSTEM'
 /T23,'Default domain = ',A
 '/ Main Features:
 /' -----------'
 /T15,'I = Insert New Records Into The Database'
 /T15,'D = Delete One or More Records From The Database'
 /T15,'M = Modify Existing Record[s] '
 /T15,'S = Search Database To Display or Print Reports'
 /T15,'C = Select or Change Domain'
 /T15,'H = Help - I Need Guidance'
 /T15,'E = Exit - if finished Using the System'
 /T15,'Please Enter The Letter Corresponding To Your Choice'
 /T15,'Then Hit the RETURN Key')

800 ACCEPT 850,CHOICE
850 FORMAT (A)

IF ((CHOICE .EQ. 'I') .OR. (CHOICE .EQ. 'i')) THEN
 CALL JSINMOD(DOMAIN,1)
ELSE IF ((CHOICE .EQ. 'D') .OR. (CHOICE .EQ. 'd')) THEN
 CALL JSDELETE (DOMAIN)
ELSE IF ((CHOICE .EQ. 'M') .OR. (CHOICE .EQ. 'm')) THEN
 CALL JSINMOD(DOMAIN,2)
ELSE IF ((CHOICE .EQ. 'S') .OR. (CHOICE .EQ. 's')) THEN
 CALL JSREPORT (DOMAIN)
ELSE IF ((CHOICE .EQ. 'C') .OR. (CHOICE .EQ. 'c')) THEN
 CALL JSCHOICE (DOMAIN)
 GO TO 600
ELSE IF ((CHOICE .EQ. 'H') .OR. (CHOICE .EQ. 'h')) THEN
 CALL LIB$ERASE_PAGE (1,1)
 CALL LIB$SPAWN ('fullhelp')
ELSE IF ((CHOICE .EQ. 'E') .OR. (CHOICE .EQ. 'e')) THEN
 CALL DTR$FINISH (DAB)
 CALL LIB$ERASE_PAGE (1,1)
 TYPE 1000
1000 FORMAT (' Goodbye ... exiting to the operating'
 ' system')
GO TO 9999
ELSE
 type *, 'Wrong selection, Please hit RETURN to try again'
 accept 2000, answer
 format (A)
END IF
CALL DTR$COMMAND (DAB, 'RELEASE ALL; ')
CALL DTR$COMMAND (DAB, 'FINISH :CMD;', DOMAIN)
GO TO 200
9999 END

C***
SUBROUTINE JSCHOOSE (DOMAIN)
 INCLUDE 'DTR$LIBRARY:DAB'
 CHARACTER*31 DOMAIN
 CHARACTER*2 ANSWER
 LOGICAL NO_DOMAIN/. TRUE./
 CALL DTR$COMMAND (DAB, 'FINISH :CMD;', DOMAIN)
 CALL DTR$DTR (DAB, DTR$OPT_CMD)
100 DO WHILE (NO_DOMAIN)
 150 TYPE 200
 200 FORMAT (' Do you wish to see Domain Names?'
 '/ Please respond with Y or N '/)
 300 ACCEPT 400, ANSWER
 400 FORMAT (A)
C Input Error-Trap
 IF (((ANSWER .NE. 'Y') .AND. (ANSWER .NE. 'y')) .AND.
 ((ANSWER .NE. 'N') .AND. (ANSWER .NE. 'n'))) THEN
 type *, 'Wrong entry, please hit RETURN and try again'
 accept 450, answer
 format (A)
 GO TO 150
 END IF
 IF ((ANSWER .EQ. 'Y') .OR. (ANSWER .EQ. 'y')) THEN
 CALL DTR$COMMAND (DAB, 'SHOW DOMAINS; ')
 END IF
C Select DTR Options
 1020 CALL DTR$DTR (DAB, DTR$OPT_CMD)
C Ask the user for the domain and ready it.

1030 TYPE 1040
1040 FORMAT (' Enter the name of the domain you'
1 ' want to use,'
2 ' or just enter R to return to'
3 ' the Main Menu:'
4 ' Domain Name = ',$)

1050 ACCEPT 1060,DOMAIN
1060 FORMAT (A)

 IF (DOMAIN .EQ. 'R') .OR. (DOMAIN .EQ. 'r')) THEN
 go to 9999
 END IF

 type *, ', 'Searching for Domain, Please stand by'

1070 CALL DTR$COMMAND (DAB, 'READY ICMD SHARED WRITE;',
1080 CALL DTR$DTR (DAB, DTR$M_OPT_CMD)

 C Check for an error in readying the domain; reprompt if any errors.

1090 IF (DAB$CONDITION .NE. %LOC(DTR$_SUCCESS)) THEN
1100 TYPE T100
1110 FORMAT (' Error: Try domain name again....')
 ELSE
 NO DOMAIN = .FALSE.
 END IF
 END DO

 NO_DOMAIN = .TRUE.
 CALL LIBSERASE PAGE(I,1)
 CALL DTR$COMMAND(DAB,'SHOW READY;') !Let's see ready domains
 CALL DTR$DTR (DAB,DTR$M_OPT_CMD)
 WRITE (6,1095)

1095 FORMAT ('/,,5x,'This is your readied domain, type RETURN to
1 1 proceed.')
2090 FORMAT (5,2090) ANSWER
 RETURN
9999 END

C**
C SUBROUTINE COUNTRY
C**

SUBROUTINE JSCNTRY (cntry, lcntry,Xcntry)

character*2 cntry
character*15 Xcntry
CHARACTER*15 CNTRIES (31)
integer Icntry

C Data definition for Country Codes Table

DATA CNTRIES/'Australia','Canada','China','Denmark',
1 'East Germany','Finland','France','Japan','Mexico',
2 'New Zealand','Norway','South Africa','Spain','Sweden',
3 'Switzerland','United Kingdom','U.S.A.','U.S.S.R.',
4 'West Germany','Italy','Belgium','Netherlands',
5 'Portugal','''
ELSE IF (CNTRY.EQ. '26') THEN
ICNTRY = 26
ELSE IF (CNTRY.EQ. '27') THEN
ICNTRY = 27
ELSE IF (CNTRY.EQ. '28') THEN
ICNTRY = 28
ELSE IF (CNTRY.EQ. '29') THEN
ICNTRY = 29
ELSE IF (CNTRY.EQ. '30') THEN
ICNTRY = 30
ELSE
ICNTRY = 31
END IF
Xcntry = cntries(icntry)
RETURN
END

C**
C *
C SUBROUTINE JSINMODUP
C *
C Program Name: JSINMODUP.FOR
C Date Written: September, 1986
C Designer/Programmeer, J. Springer, Fisk University, Nashville, TN
C Created: 11/26/86
C Revised: 6/21/88 - Added preset status code
C 8/2/88 - Put READY WRITE command at beginning, SET CONTROL=Y at end of routine
C 8/9/89 - Modified for 833 byte record structure
C This subroutine accesses the full screen display subroutine SCRNT to all either insertion or modification of records in the database. C and also for changing record numbers and duplicating rest of record. C**

SUBROUTINE JSINMOD (DOMAIN, IM)
 IM = 1 for insert, 2 for modify
 3 for duplicate with new record no.
C Include the DATATRIVE Access Block
INCLUDE 'DTRSLIBRARY:DAB'
INCLUDE 'IODRVCOM'
INCLUDE 'DATABUFF'
INCLUDE 'CONTROLY'
C Declarations, etc.
EXTERNAL DTR$_SHOWTEXT
EXTERNAL DTR$_ERROR
EXTERNAL SS$_NORMAL
CHARACTER*836 DATAREC
CHARACTER*31 DOMAIN
CHARACTER*1 XE
INTEGER*2 I
INTEGER*4 DTR_OPTIONS, RECMO, RECNMODUP
INTEGER*4 NUMRECS
INTEGER*4 PGLEN, PGWIDTH
INTEGER RET_STATUS
CHARACTER*9 OPS
CHARACTER*8 FILE
C Initialize arrays, etc.
DATA File /'DATAFILE'/
CALL INIT_ARRAYS (file)
CALL INIT_IODRIVER
MODIFY = 'Modify'
INSERT = 'Insert'
NORMAL = 'Normal'
FAILED = 'Failed'
COMPLETE = 'Complt'

C Select DTR$DTR Options:

DTR_OPTIONS =
1 DTR$M_OPT_CMD | Return on DTR$K_STL_CMD
2 + DTR$M_OPT_CONTROL_C | Enable Control C Handling
3 + DTR$K_UNQUOTED_LIT | Assumes a string is a literal

400 CALL LIB$ERASE_PAGE (I, I)

CALL DTR$COMMAND (DAB, 'READY !CMD SHARED WRITE;' ,DOMAIN)
CALL DTR$DTR(DAB, DTR$M_OPT_CMD)

C Include file to declare port2
INCLUDE '[NASA3.JSEXREC]JSPORT25.INC'
NUM RECS = 0 !Initialize to zero
IF (IM .EQ. 1) THEN
 OPS = 'Insert'
ELSE IF (IM .EQ. 2) THEN
 OPS = 'Modify'
ELSE
 OPS = 'Duplicate'
END IF

200 WRITE (6, 201), OPS
201 FORMAT (1X, 'Enter record number to ', (A), ' [use negative 1 value to exit]')
READ (5, 202) INDEX

202 FORMAT (A)
READ (INDEX, ' (I)') RECNO
IF (RECNO .LE. 0) GOTO 9999
IF (RECNO .GT. 0) GOTO 9999

C Clean up data buffers
DO 10500 I = 1, 836
10500 DATAREC(I: I) = ' '

10310 CALL DTR$COMMAND (DAB, 'FIND !CMD WITH FADB_NO = !CMD ;;', 1 DOMAIN, INDEX)

CALL DTR$DTR (DAB, DTR$M_OPT_CMD)

C Check for possible datatrieve errors
IF ((DAB$L_CONDITION .NE. %LOC(DTR$_SUCCESS)) .OR. 1 (DAB$L_CONDITION .EQ. %LOC(DTR$_ERROR))) THEN
 GO TO 90100
END IF

C Investigate the number of records found,
C if no records were found then return to try another Rse
10320 CALL DTR$COMMAND (DAB, 'STORE PT1 USING NUM = COUNT;')

 IF (DAB$STATE .EQ. DTR$STL_PGET) THEN
 CALL DTR$GET_PORT (DAB, NUM RECS)
 CALL DTR$DTR (DAB, DTR$M_OPT_CMD)
 END IF
 IF ((NUM RECS .EQ. 0) .AND. (IM .EQ. 1)) IDIR = 1
 IF ((NUM RECS .NE. 0) .AND. (IM .EQ. 1)) IDIR = 2
 IF ((NUM RECS .EQ. 0) .AND. (IM .EQ. 2)) IDIR = 3
 IF ((NUM RECS .NE. 0) .AND. (IM .EQ. 2)) IDIR = 4
 IF ((NUM RECS .EQ. 0) .AND. (IM .EQ. 3)) IDIR = 5
 IF ((NUM RECS .NE. 0) .AND. (IM .EQ. 3)) IDIR = 6
 GOTO (310, 320, 330, 340, 330, 340), IDIR

310 DATAREC(31:37) = INDEX !Enter index in data buffer
 DATAREC(114:123) = 'VECM T' !Initial Status code
 GOTO 1000 !Now goto screen entry routine

320 WRITE (6,321)
321 FORMAT (1X,'This record already exists. Duplicate record numbers are not allowed. Reenter if there was a typing error.')
 GOTO 200

330 WRITE (6,331)
331 FORMAT (1X, 'Record with this index number does not exist')
 GOTO 200

340 CONTINUE !Now pick up record to modify
 NUM RECS = 0 ! Reinitialize

10400 CALL DTR$COMMAND (DAB, 'PORT2 = CURRENT;')

C Check for possible datatrieve errors

 IF ((DAB$CONDITION .NE. %LOC(DTR$SUCCESS)) .OR.
 (DAB$CONDITION .EQ. %LOC(DTR$ERROR))) THEN
 CALL DTR$DTR (DAB, DTR$M_OPT_CMD)
 type *, 'DTR ERROR'
 type *, 'Just hit RTN to continue'
 accept 10405, answer
 END IF

11200 CALL DTR$GET_PORT (DAB, %REF(DATAREC))

C At this point we have a record to modify or duplicate

 IF (IM .EQ. 3) THEN
403 WRITE (6,490)
490 FORMAT (1X,'Enter new record number for duplicate. '/'
 ' (Negative value returns to menu)',/)
 READ (5,491) INDEXDUP
491 FORMAT (A)
 READ (INDEXDUP,'(I)') RECNODUP
 IF (RECNODUP .LE. 0) GOTO 9999
 type *,' '
 type *,'Searching for record, please stand by'
 END IF

10312 CALL DTR$COMMAND (DAB, 'FIND ICMD WITH FADB NO = ICMD;'
 1 DOMAIN, INDEXDUP)
CALL DTR$DTR (DAB, DTR$M_OPT_CMD)

C Check for possible retrieve errors

IF ((DAB$L CONDITION .NE. %LOC(DTR$ SUCCESS)) .OR.
 (DAB$L CONDITION .EQ. %LOC(DTR$ ERROR))) THEN
 GO TO 90100
END IF

C Investigate the number of records found,
C if any records were found, then cannot use given number
C call dtr$dr(DAB,DTR$M_OPT_CMD)

10322 CALL DTR$COMMAND (DAB,'STORE PT1 USING NUM = COUNT;')

IF (DAB$W_STATE .EQ. DTR$K STL PGET) THEN
 CALL DTR$GET PORT (DAB, NUM_RECS)
 CALL DTR$DTR(DAB, DTR$M_OPT_CMD)
 type *,' Numrecs',num_recs
END IF

IF (NUM_RECS .NE. 0) THEN
 WRITE (6,493)
493 FORMAT (1X,'The record number you want to use exists;
 1 /' duplicate record numbers are not allowed.')
 GOTO 403
END IF

IF (DAB$W_STATE .EQ. DTR$K NUM REC) THEN
 CALL DTR$COMMAND (DAB,'SHOW ALL')
 CALL DTR$DTR(DAB, DTR$M_OPT_CMD)
 CALL DTR$COMMAND (DAB,'FIND ICMD WITH RECNO = ICMD',
 1 DOMAIN, INDEX)
 CALL DTR$DTR(DAB, DTR$M_OPT_CMD)
 CALL DTR$COMMAND (DAB,'ERASE ALL')
 CALL DTR$DTR(DAB, DTR$M_OPT_CMD)

587 CALL DTR$COMMAND (DAB,'FOR PORT2 STORE ICMD USING NASAFILE REC = TEMPREC',DOMAIN)
 CALL DTR$PUT PORT (DAB,%REF(DATAREC))
 IF (DAB$W_STATE .EQ. DTR$K NUM MSG) THEN
 CALL DTR$DTR(DAB, DTR$M_OPT_CMD)
 ELSE
 CALL DTR$PORT.EOF(DAB)
 CALL DTR$DTR(DAB, DTR$M_OPT_CMD)
 END IF
GOTO 200
ELSE
 Succ = 'No Update'
END IF
ELSE

CALL HEAD_SET
WRITE(6,1001)
READ(5,1002)I
IF (I.EQ.1) THEN ! Yes--Save Data
CTRLY=. FALSE.
GOTO 585
ELSE IF (I.EQ.2) THEN ! Drop This Record
GOTO 200
ELSE IF (I.EQ.3) THEN ! Reedit Same Record
GOTO 580
ELSE
GOTO 590 ! Invalid Entry
END IF
END IF

1001 FORMAT(1H ,///,T30,'Control/Y Detected.',/, 2 T20,'Do You Wish To (1) Save The Data As Is,',/,
2 T36,'(2) Discard The Data,',/,
2 T32,'Or (3) Return To The Entry Screen.')
1002 FORMAT(Il)

C Below is the general error message handling routine
C Call the Terminal Server to handle messages at the end of the report
90000 CALL DTR$DTR (DAB, DTR$_OPT_CMD)

C If there was any error then prompt user to retry again
IF (((DAB$L_CONDITION .EQ. %LOC(DTR$_SUCCESS)) .AND.
1 (DAB$L_CONDITION .NE. %LOC(DTR$_ERROR))) THEN
GOTO 200
END IF

90100 TYPE 90105
90105 FORMAT (' There was a Datatrieve error,'
1 ' Do you wish to try again?'
2 ' Please respond with Y or N'/)
accept 90205,answer
90205 format (A)

C Input Error-Trap

IF ((((ANSWER .NE. 'Y') .AND. (ANSWER .NE. 'y')) .AND.
1 ((ANSWER .NE. 'N') .AND. (ANSWER .NE. 'n')))
1 type *,'Wrong entry, please hit RETURN and try again'
accept 90305,answer
90305 format (A)
GO TO 200
END IF

9999 ISTAT = LIB$SPAWN('SET CONTROL=Y')
RETURN
END !JSINMOD

C**
C
C SUBROUTINE DELETE
*
C
C Module Name: SBDELETE.FOR

C
C Date Written: August XX, 1985
C Designer/Programmer: Joseph K. Amanfu
C This subroutine enables only NASA users with special access
C privileges to delete records from the database
C
C

SUBROUTINE JSDELETE (DOMAIN)

C Include the DATATRIEVE Access Block

100 INCLUDE 'DTR$LIBRARY:DAB'

INTEGER*4 DTR_OPTIONS
INTEGER*4 NUM_RECS
INTEGER NUMBER
CHARACTER*31 DOMAIN
CHARACTER*3 PASSWD
CHARACTER*30 DSGKEY
CHARACTER*7 FADB
CHARACTER*2 ANSWER
CHARACTER*80 EXPRLINE

C Select DTR$DTR Options:

DTR_OPTIONS =
1 DTR_SM_OPT_CMD ! Return on DTR$K_STL_CMD
2 +DTR_SM_OPT_CONTROL C ! Enable Control C Handling
3 +DTR$K_UNQUOTED LIT ! Assumes a string is a literal

200 CALL LIB$ERASE_PAGE (1,1)
300 TYPE 400
400 FORMAT (T21,' NASA ALLOY DATABASE MANAGEMENT SYSTEM'
1 /' Deleting Records:'
2 /'------------------'
3 /' Please Enter your Password'/)

C The next library routine will suppress the display of the
C Password input on the screen

CALL LIB$SPAWN ('SET TERM/NOECHO')

500 ACCEPT 600,passwd
600 FORMAT (A3)

C Restore the Echo

CALL LIB$SPAWN ('SET TERM/ECHO')

700 IF ((passwd .EQ. 'del') .OR. (passwd .EQ. 'DEL')) THEN
 GO TO 800
ELSE
 type *,'
 TYPE *,'Sorry, Access Privilege Violation'
 TYPE *,'Hit RETURN to continue'
 ACCEPT 750,ANSWER
 750 format (a)
 RETURN
END IF

800 CALL DTR$COMMAND(DAB,'READY !CMD SHARED WRITE;',DOMAIN)
 CALL DTR$DTR (DAB, DTR_SM_OPT_CMD)

C Prompt user to select the record to be deleted
CCC 800 CALL LIB$ERASE_PAGE (1,1)

TYPE 1000

1000 FORMAT ('/" Enter the FADB NO of the record you'.
1 ' wish to delete,'.
3 '/" Then hit the RETURN key'/.
4 '/" [Enter M to return to main menu]'/)

ACCEPT 1020,FADB

1020 FORMAT (A7)

IF (FADB .EQ. 'M') GOTO 2300

 type *,', Searching for record, Please stand by'

C Pass this number to datatrice via DTR$COMMAND

1050 CALL DTR$COMMAND (DAB, 'FIND ICMD WITH FADB-NO = ICMD;',
1 1 DOMAIN,FADB)

C Check for Datatrieve errors

 CALL DTR$DTR (DAB, DTR$M_OPT_CMD)
 IF ((DAB$L_CONDITION .NE. %LOC(DTR$_SUCCESS)) .OR.
1 (DAB$L_CONDITION .EQ. %LOC(DTR$_ERROR))) THEN
 type *,', There was a datatrieve error'
 GO TO 2500
 END IF

C Make sure the record was found
C Investigate the number of records found,
C If no records were found then return to try another Res

1100 CALL DTR$COMMAND (DAB, 'STORE PT1 USING NUM = COUNT;')

 IF (DAB$W_STATE .EQ. DTR$K_STL_PGET) THEN
 CALL DTR$GET_PORT (DAB, NUM_RECS)
 CALL DTR$DTR (DAB, DTR$M_OPT_CMD)
 END IF

 IF (NUM_RECS .EQ. 0) THEN
 type *, ', That record was not found'
 type *, ', Please hit RETURN to try again'
 accept 1115, answer

1115 format (A)

 RETURN
 END IF

C We will come here only if record was found

 CALL DTR$DTR (DAB, 'SELECT;')

C List some fields for user confirmation

 CALL DTR$COMMAND (DAB, 'FOR CURRENT PRINT FADB_NO,
1 1 DESIG, US_EQV;')
 CALL DTR$DTR (DAB, DTR$M_OPT_CMD)
 IF ((DAB$L_CONDITION .NE. %LOC(DTR$_SUCCESS)) .OR.
1 (DAB$L_CONDITION .EQ. %LOC(DTR$_ERROR))) THEN
 type *, ', There was a datatrieve error'
 GO TO 2500
 END IF

C Ask for user confirmation before erasing !!! DANGER !!!
2130 TYPE 2135
2135 FORMAT (/'Are you sure you want to delete the above record(s)?'
1 /'Please respond with Y or N'/)

ACCEPT 2140, ANSWER
2140 FORMAT (A)

C Input Error-Trap
C
IF (((ANSWER .NE. 'Y') .AND. (ANSWER .NE. 'y')) .AND.
1 ((ANSWER .NE. 'N') .AND. (ANSWER .NE. 'n'))) THEN
 type *, 'Wrong entry, please hit RETURN and try again'
 accept 2145, answer
2145 FORMAT (A)
 GO TO 2130
END IF

IF ((ANSWER .EQ. 'N') .OR. (ANSWER .EQ. 'n')) THEN
 GO TO 2300
END IF

2290 CALL DTR$COMMAND (DAB, 'ERASE ALL;')
2300 CALL DTR$COMMAND (DAB, 'RELEASE ALL;')
2400 CALL DTR$DTR (DAB, DTR$M_OPT_CMD)
2500 TYPE 2600
2600 FORMAT (/'Hit the RETURN key to continue')
accept 2700, ANSWER
2700 FORMAT (A)
 CALL DTR$COMMAND (DAB, 'READY ICMD SHARED;', DOMAIN)
8888 RETURN
9999 END

C
C SUBROUTINE REPORT
C
C Program Name: SUBREPORT.FOR
C Date Written: August XX, 1985
C Designer/Programmer: Joseph K. Amanfu, Fisk University, Nashville
C
C This subroutine enables the user to perform various searches on the database and generate an unlimited number and types of reports. The reports may be displayed on the video screen or output on a printer.
C
C Revised: J. Springer, 1986-87
C Last revision: 10/1/87 to use 762 character record (NASAFILE_REC4)
C Please see the On-Line Help notes for available searches
C Revised: J. Springer, July 1989
C Changed to use NASAFILE_REC5, with 830 characters
C
C***

SUBROUTINE JSREPORT (DOMAIN)
C Include the DATATRIEVE Access Block
INCLUDE 'DTR$LIBRARY:DAB'

C Declarations, etc.
EXTERNAL DTR$ SHOWTEXT
EXTERNAL DTR$ ERROR
EXTERNAL SS$ NORMAL
LOGICAL*1 FINISH / .FALSE. /
LOGICAL*1 OPENPORT / .FALSE. / ! Tells if port is open
CHARACTER*80 REPHEADER
CHARACTER*255 dtr_command
CHARACTER*80 EXPRLINE
CHARACTER*80 SHOWFLDS(62)
CHARACTER*80 PRTFLDS
CHARACTER*30 DSGKEY
CHARACTER*30 DSGKEY1
CHARACTER*30 DSGKEY2
CHARACTER*2 ANSWER
CHARACTER*2 CHOICE
CHARACTER*4 UNITY
CHARACTER*20 FILENAME
CHARACTER*7 RECKEY
CHARACTER*7 Xfadb
CHARACTER*30 Xdesig
CHARACTER*25 Xequiv
CHARACTER*27 Xequiv2
CHARACTER*2 ANSWER
CHARACTER*4 XcountryX,CNTRYX
CHARACTER*15 Xcntry
CHARACTER*1 dummy
CHARACTER*9 reckeyx
CHARACTER*9 minalx
CHARACTER*9 maxalx
CHARACTER*9 minsix
CHARACTER*9 maxsix
CHARACTER*9 minfex
CHARACTER*9 maxfex
CHARACTER*9 mincux
CHARACTER*9 maxcux
CHARACTER*9 minmnx
CHARACTER*9 maxmnx
CHARACTER*9 minmgx
CHARACTER*9 maxmgx
CHARACTER*9 minnx
CHARACTER*9 maxnx
CHARACTER*9 MINVx
CHARACTER*9 MAXVx
CHARACTER*9 mintix
CHARACTER*9 maxtix
CHARACTER*9 minzrx
CHARACTER*9 maxzrx
CHARACTER*9 mincrx
CHARACTER*9 maxcrx
CHARACTER*9 minnix
CHARACTER*9 maxnix
CHARACTER*9 minpbx
CHARACTER*9 maxpbx
CHARACTER*9 minex
CHARACTER*9 maxex
CHARACTER*2 CNTRY
CHARACTER*1 CCNTRL
INTEGER*2 ICNTRY
INTEGER*4 DTROPTIONS
INTEGER*4 NUMRECS
INTEGER*4 PGLEN, PGWIDE
INTEGER RET_STATUS
INTEGER RECPRTE
INTEGER IPAGE
INTEGER PRT,COUNT

C FULLREC is the space defined to receive the record from
C the Datatrileve buffer

INCLUDE '[NASA3.JSEXREC]FULLREC5.INC'

C test common
COMMON/DATAREC/FULLREC !Holds full datarecord
COMMON/COUNTRY/XCNTRY
COMMON/KOUNTS/IPAGE,RECPRT,CCNTRL,COUNT

C Select DTR$DTR Options:

DTR OPTIONS =
1 DTR$M_OPT_CMD ! Return on DTR$ STL CMD
2 + DTR$M_OPT_CONTROL C ! Enable Control C Handling
3 + DTR$M_UNQUOTED_LIT ! Assumes a string is a literal

C Select report options

100 CALL LIB$ERASE_PAGE (1,1)

200 TYPE 250
250 FORMAT (T21,' NASA ALLOY DATABASE MANAGEMENT SYSTEM'
1 //' Report Generation Features:'
2 //' ---------------------------------------'
3 //T8,' 1 = Produce Standard Reports'
4 //T8,' 2 = Build your own reports'
5 //T8,' H = Display help information'
6 //T8,' M = Return to the Main Menu'
7 //T8,' Select option 1 or 2, then hit the RETURN key'/)

300 ACCEPT 350,CHOICE
350 FORMAT (A)

C Input Error-Trap

 IF (((CHOICE .NE. '1') .AND. (CHOICE .NE. '2')) .AND.
1 (((CHOICE .NE. 'H') .AND. (CHOICE .NE. 'h'))) .AND.
1 (((CHOICE .NE. 'M') .AND. (CHOICE .NE. 'm'))) THEN
 type *, 'Wrong entry, please hit RETURN and try again'
 accept 360,answer
 format (A)
 GO TO 100
 END IF

 IF ((CHOICE .EQ. 'H') .OR. (CHOICE .EQ. 'h')) THEN
 CALL LIB$ERASE_PAGE (1,1)
 CALL LIB$SPAWN ('rephelp')
 GO TO 100
 ELSE IF (CHOICE .EQ. '2') THEN
 GO TO 80000
 ELSE IF ((CHOICE .EQ. 'M') .OR. (CHOICE .EQ. 'm')) THEN
 RETURN
 END IF

C **
C
This section for standard reports

Note: To any one attempting to modify the programs;

Please leave the continuation characters as is on
format number 550; they represent the search numbers
on the NASA job specification

C **

400 CALL LIB$ERASE_PAGE (1,1)
CALL DTR$COMMAND (DAB, 'RELEASE ALL;')
CALL DTR$DTR (DAB,DTR$OPT_CMD)
IF (OPENPORT) THEN
CALL DTR$COMMAND (DAB, 'FINISH PORT2;')
CALL DTR$DTR (DAB,DTR$OPT_CMD)
OPENPORT = .FALSE.
ENDIF

C Include port2 definition commands

INCLUDE '[NASA3.JSEXREC]JSORT25.INC'
OPENPORT = .TRUE.

500 TYPE 550
550 FORMAT (T21,' NASA ALLOY DATABASE MANAGEMENT SYSTEM'
 1 // ' Producing Standard Reports:
 2 // -----------------------------
 e // 1 = For one country, find all designations'
 e ' and U.S. equivalents'
 b // 2 = For one foreign alloy, find all similar'
 b ' foreign alloys'
 i // 3 = Print the whole database'
 a // 4 = For one foreign alloy, find all similar'
 a ' U.S. alloys'
 f // 5 = For one U.S. alloy, find similar foreign alloys'
 f ' from one country'
 g // 6 = For one U.S. alloy, find similar foreign alloys'
 g ' from all countries'
 c // 7 = For a Range of foreign alloys, find all similar'
 c ' U.S. alloys'
 h // 8 = For a Range of U.S. alloys, find all similar'
 h ' foreign alloys'

K // ' H = Display Help Information'
L // ' P = Return to the previous Menu'
M // ' M = Return to the Main Menu'
N // ' Type the number corresponding to your choice,'
O // then hit the RETURN key')

600 ACCEPT 650,CHOICE
650 FORMAT (A)
IF ((CHOICE .EQ. 'H') .OR. (CHOICE .EQ. 'h')) THEN
CALL LIB$ERASE_PAGE (1,1)
CALL LIB$SPAWN('stdrephelp')
GO TO 400
ELSE IF (CHOICE .EQ. '1') THEN
GO TO 10000
ELSE IF (CHOICE .EQ. '2') THEN
GO TO 20000
ELSE IF (CHOICE .EQ. '3') THEN
GO TO 30000
ELSE IF (CHOICE .EQ. '4') THEN
GO TO 40000
ELSE IF (CHOICE .EQ. '5') THEN
GO TO 50000
ELSE IF (CHOICE .EQ. '6') THEN
GO TO 60000
ELSE IF (CHOICE .EQ. '7') THEN
GO TO 70000
ELSE IF (CHOICE .EQ. '8') THEN
GO TO 78000
ELSE IF (CHOICE .EQ. '8') THEN
GO TO 79000
ELSE IF (CHOICE .EQ. 'P') .OR. (CHOICE .EQ. 'p') .OR. (CHOICE .EQ. 'M') .OR. (CHOICE .EQ. 'm') THEN
RETURN
ELSE
IF ((CHOICE .EQ. 'P') .OR. (CHOICE .EQ. 'p')) THEN
GO TO 100
ELSE IF ((CHOICE .EQ. 'M') .OR. (CHOICE .EQ. 'm')) THEN
RETURN
ELSE
end if
CALL jsCNTRY (cntry,icntry,Xcntry)
IF (ICNTRY .EQ. 311) THEN
 type *,'
 type *, 'Country Code out of range, hit RETURN to try again'
 type *, 'Or type M, then hit RETURN to return to Main Menu'
 accept 10305, answer
 format (A)
 IF ((ANSWER .EQ. 'M') .OR. (ANSWER .EQ. 'm')) THEN
 RETURN
 ELSE
 GO TO 10000
END IF
END IF

CNTRYX = '...'/CNTRY//...'
10310 CALL DTR$COMMAND (DAB, 'FIND ICMD WITH COUNTRY = ICMD;',
 1 DOMAIN,CNTRYX)
 CALL DTRSDTR (DAB, DTRSM_OPT_CMD)

C Check for possible data retrieval errors
 IF ((DABSL_CONDITION .NE. %LOC(DTR$_SUCCESS)) .OR.
 1 (DABSL_CONDITION .EQ. %LOC(DTR$_ERROR))) THEN
 GO TO 90100
 END IF
C Investigate the number of records found,
C if no records were found then return to try another Rse
10320 CALL DTR$COMMAND (DAB, 'STORE PT1 USING NUM = COUNT;')

 IF (DAB$W STATE .EQ. DTR$K_STL PST) THEN
 CALL DTR$GET_PORT (DAB, NUM RECS)
 CALL DTRSDTR (DAB, DTR$OPT_CMD)
 END IF

 IF (NUM RECS .EQ. 0) THEN
 type *, 'No records found from that country'
 type *, 'Hit RETURN to try another country'
 accept 10325, answer
 format (A)
 GO TO 10000
 END IF

C Program will branch here only if RSE has been successful,
10330 TYPE 10335
10335 FORMAT ('Select one of the following options: then hit RETURN'
 1 '/ 1 = Print only standard fields'
 2 '/ 2 = Print all fields'
 3 '/ P = Do not print, just return to the previous menu')

ACCEPT 10337, CHOICE

10337 FORMAT (A)
 IF ((CHOICE .EQ. 'P') .OR. (CHOICE .EQ. 'p')) THEN
 CALL DTR$COMMAND (DAB, 'RELEASE ALL;')
 GO TO 10000
 END IF

 IF ((CHOICE .NE. '1') .AND. (CHOICE .NE. '2')) THEN
 type *, 'Wrong entry, hit RETURN to try again'
 accept 10339, answer
 format (A)
go to 10330
END IF

10400 CALL DTR$COMMAND (DAB, 'PORT2 = CURRENT;')

C Check for possible datatrieve errors
IF ((DAB$LCONDITION .NE. %LOC(DTR$_SUCCESS)) .OR.
 (DAB$CONDITION .EQ. %LOC(DTR$ERROR))) THEN
 CALL DTR$DTR (DAB, DTR$M_OPT_CMD)
 type *, 'DTR ERROR'
 type *, 'Just hit RTN to continue'
 accept 10405, answer
 format (A)
 RETURN
END IF

CALL JSSETUP (PRT, CHOICE)

11000 IF (DAB$W_STATE .NE. DTR$K_STL_PGET) THEN
 type *, '
 type *, 'The Report has been printed'
 type *, 'Hit the RETURN key to continue'
 accept 11005, answer
 format (A)
 CALL LIB$SPAWN ('SET TERM/WIDTH=80')
 GOTO 400
END IF

11200 CALL DTR$GET_PORT (DAB, %REF(FULLREC))
C Extract the country code from the fortran buffer to be used to
C pull out the country literal from the literal pool
 CNTRY = CONTRY
 CALL jsCNTRY (cntry, icntry, Xcntry)
C Print the detail line from the record buffer
 IF (CHOICE .EQ. '1') THEN
 CALL JSPRTFEW (prt)
 GOTO 11000
 END IF
IF (CHOICE .EQ. '2') THEN
 CALL JSPRFTALL (PRT, FINISH)
 IF (FINISH) THEN
 call lib$spawn ('set term/width=80')
 GOTO 400
 ELSE
 GOTO 11000
 END IF
END IF

C *** * * * * ***
C Standard Reports: Option 2
C For one foreign alloy, find all similar foreign alloys
C This is Search 1.b in the specifications
C *** * * * * ***

20000 CALL LIB$ERASE_PAGE (1,1)
TYPE 20005

20005 FORMAT (T21,' NASA ALLOY DATABASE MANAGEMENT SYSTEM'
1 // ' Producing Standard Reports: [2]'
2 ' -----------------------------'
3 // ' For one foreign alloy, find all similar foreign alloys'
4 // ' Choose one of the following criteria:'
5 // ' 1 = Select by matching U.S. Equivalents'
6 // ' 2 = Select by matching chemical composition'
7 // ' P = Return to the previous menu'
8 // ' M = Return to the Main Menu'
9 // ' H = Display Help Information'
A // ' Type the number corresponding to your choice'
B // ' then hit the RETURN key'/)

20010 ACCEPT 20015,CHOICE
20015 FORMAT (A)

IF ((CHOICE .EQ. 'H') .OR. (CHOICE .EQ. 'h')) THEN
CALL LIB$ERASE_PAGE (1,1)
CALL LIB$SPAWN ('stdrephelp')
GO TO 20000
ELSE IF (CHOICE .EQ. '1') THEN
GO TO 20100
ELSE IF (CHOICE .EQ. '2') THEN
GO TO 22000
ELSE IF ((CHOICE .EQ. 'P') .OR. (CHOICE .EQ. 'p')) THEN
GO TO 400
ELSE IF ((CHOICE .EQ. 'M') .OR. (CHOICE .EQ. 'm')) THEN
RETURN
ELSE
 type *,"Wrong entry, hit RETURN to try again"
accept 20017,answer
20017 format (A)
go to 20000
END IF

C ** * * * * **
C *
C Selecting by matching U.S. Equivalents
C *
C This is still Search 1.b in the specifications
C *
C The following procedure/logic is used:
C 1. Accept the foreign designation value
C 2. Search the database for all foreign alloys with that designation
C 3. From the above established collection, find the first record
C with an US_Equivalent value.
C 4. Release all the records
C 5. Search the whole data base for all foreign alloys that have
C the same US_Equivalent
C 6. Print/display the following information:
C *
C ** * * * * **
20100 CALL LIB$ERASE_PAGE (1,1)

TYPE 20105

20105 FORMAT ('T21,' NASA ALLOY DATABASE MANAGEMENT SYSTEM'
1 // Producing Standard Reports: [2]'
2 '/--'
3 '// For one foreign alloy, find all similar foreign alloys'
4 '/[Selecting by matching U.S. Equivalents]'
5 '// Please enter the foreign designation number'
6 'within double quotation marks'
7 '/ Then Hit the RETURN Key')/

C Step 1:

20110 ACCEPT 20115,DSGKEY
20115 FORMAT (A)
 type *,
 type *,'Searching for records, Please stand by'
 type *
 type *,'Search start time is shown below'
 call lib$spawn ('ti')
 type *

C Step 2: Establish a collection of all foreign alloys with the
C the given designation

20300 CALL DTR$COMMAND (DAB,'PORT2 = 'CMD WITH DESIG = 'CMD AND
1 COUNTRY NOT = "1"';',DOMAIN,DSGKEY)

20310 IF (DAB$W_STATE .NE. DTR$K_STL_PGET) THEN
 type *, 'No foreign records found with that designation'
 type *, 'Hit RETURN to try another designation'
 accept 20315,answer

20315 format (A)
 CALL DTR$COMMAND (DAB,'RELEASE ALL;')
 CALL DTR$DTR (DAB,DTR$M_OPT_CMD)
 IF (OPENPORT) THEN
 CALL DTR$COMMAND (DAB,'FINISH PORT2;')
 CALL DTR$DTR (DAB,DTR$M_OPT_CMD)
 OPENPORT = .FALSE.
 END IF
 END IF
 RETURN

C Step 3:
C Retrieve (GET) 1 record with an US_Equivalent value
C into the Buffer (FULLREC)

20600 CALL DTR$GET_PORT (DAB,%REF(FULLREC))
C Test for a non-blank US_Equivalent field
IF (EQUIV .EQ. ' ') THEN
 IF (DAB$W_STATE .NE. DTR$K_STL_PGET) THEN
 type *
 type *, 'All selected records have blank US_Equiv'
 type *, 'Hit RETURN to try another designation'
 accept 20605,answer

format (A)
CALL DTR$COMMAND (DAB, 'RELEASE ALL;')
IF (OPENPORT) THEN
 CALL DTR$COMMAND (DAB, 'FINISH PORT2;')
 CALL DTR$DTR (DAB, DTR$M_OPT_CMD)
 OPENPORT = .FALSE.
END IF
RETURN
else
 go to 20600
end if
END IF

C At this point we know that we have a non-blank US_Equivalent
C We shall store the following values for later use

Xfadb = fadb
Xdesig = desg
Xcountry = contry
Xequiv = equiv

C Step 4: Release all records from the current collection
C NOTE:
C This next routine extracts all the records from the
C collection to force the DABSW_STATE to change from
C DTR$ STL PGET

20640 IF (DABSW_STATE .EQ. DTR$ STL PGET) THEN
 CALL DTR$GET_PORT (DAB, %REF(FULLREC))
go to 20640
else
 CALL DTR$COMMAND (DAB, 'RELEASE ALL;')
 IF (OPENPORT) THEN
 CALL DTR$COMMAND (DAB, 'FINISH PORT2;')
 CALL DTR$DTR (DAB, DTR$M_OPT_CMD)
 END IF
end if

C Declare a PORT PORT2 again for Storing all records
INCLUDE '{[NASA3.JSEXREC]JSPORT25.INC}'
OPENPORT = .TRUE.

C Step 5: Search the whole data base for all foreign alloys that have
C the same US_Equivalent
C The next statement converts the character data Xequiv into
C a literal within double quotes by concatenation
C Datatrieve would not just accept the Xequiv as stored above

XEQUIV2 = '"'//XEQUIV//'"'

CALL DTR$COMMAND (DAB, 'find ICMD WITH US_EQV = ICMD and
1 country not = "17";', DOMAIN, Xequiv2)

CALL DTR$DTR (DAB, DTR$M_OPT_CMD)

20700 TYPE 20705
20705 FORMAT (/ ' Select one of the following options: then hit RETURN'
1 '/ ' 1 = Print only standard fields'
2 '/ ' 2 = Print all fields'
3 '/ ' P = Do not print, just return to the previous menu/')
ACCEPT 20715, CHOICE

20715 FORMAT (A)

IF ((CHOICE .EQ. 'P') .OR. (CHOICE .EQ. 'p')) THEN
 CALL DTR$COMMAND (DAB, 'RELEASE ALL;')
 CALL DTR$DTR (DAB, DTR$M_OPT_CMD)
END IF

IF ((CHOICE .NE. 'i') .AND. (CHOICE .NE. '2')) THEN
 type *, 'Wrong entry, hit RETURN to try again'
 accept 20725, answer
END IF

20725 FORMAT (A)
go to 20700

END

20730 CALL DTR$COMMAND (DAB, 'PORT2 = CURRENT;')
CALL DTR$DTR (DAB, DTR$M_OPT_CMD)

C Check for possible datatrieve errors

IF ((DAB$L_CONDITION .NE. %LOC(DTR$SUCCESS)) .OR. (DAB$L_CONDITION .EQ. %LOC(DTR$ERROR))) THEN
 CALL DTR$DTR (DAB, DTR$M_OPT_CMD)
type *, 'There was a fatal Datatrieve ERROR'
type *, 'Hit RETURN to go back to the Main Menu'
 accept 20735, answer

20735 FORMAT (A)
RETURN
END IF

C Choose between screen display and printed report
C NOTE: We need to do this little routine B4 entering into
C the record retrieval loop (based on DAB$W_STATE)

21010 TYPE 21015

21015 FORMAT (' Do you want to display the report on the screen'
1 'or print it to a temporary file for later use?'
2 '// Please respond with S or F:/')

accept 21025, answer

21025 FORMAT (A)

IF (((ANSWER .NE. 'S') .AND. (ANSWER .NE. 's')) .AND. ((ANSWER .NE. 'F') .AND. (ANSWER .NE. 'f'))) THEN
 type *, 'Wrong entry, please hit RETURN and try again'
 accept 21035, answer

21035 FORMAT (A)
go to 21010
END IF

IF ((ANSWER .EQ. 'F') .OR. (ANSWER .EQ. 'f')) THEN
 WRITE (*, 21045)

21045 FORMAT (' Your report will be stored in a temporary'
1 'data file e.g. PRTTEMP.DAT which'
2 '// you may browse with EDT or print on your'
3 'local printer i.e. PRINT PRTTEMP.DAT'
4 '// Choose and enter a name for your'
5 'temporary print file, e.g. PRTTEMP/')
ACCEPT 21055,FILENAME
FORM (A)
PRT = 3
OPEN (3,FILE=FILENAME,STATUS='NEW')
ELSE
PRT = 5
END IF
21060 CONTINUE
IF ((ANSWER .EQ. 'S') .OR. (ANSWER .EQ. 'a')) THEN
CALL LIB$SPAWN ('SET TERM/WIDTH'f32')
END IF
IPAGE = 0
RECPRT = 50

C Step 6: Retrieve (GET) 1 record at a time via PORT2 into
C the Buffer (FULLREC) and print with fortran

21100 IF (DAB$W_STATE .NE. DTR$K_STL_PGET) THEN
 type *, 'No foreign alloys match that US Equivalent'
 type *, 'Hit RETURN to try another designation'
accept 21205,answer
21205 format (A)
CALL DTR$COMMAND (DAB, 'RELEASE ALL;')
CALL DTRSDTR (DAB,DTR$M_OPT_CMD)
IF (OPENPORT) THEN
 CALL DTR$COMMAND (DAB, 'FINISH PORT2;')
 CALL DTR$DTR (DAB,DTR$M_OPT_CMD)
OPENPORT - .FALSE.
END IF
RETURN
END IF

21300 CALL DTR$GET_PORT (DAB, %REF(FULLREC))
C Extract the country code from the fortran buffer to be used to
C pull out the country literal from the literal pool
CNTRY = CONTRY
CALL jsCNTRY (cntry,icntry,Xcntry)

C Step 7: Print from the FORTRAN Buffer FULLREC

IF (CHOICE .EQ. '2') THEN
 go to 21400
END IF

C This section for printing the Abbreviated report

RECPRT = RECPRT+1
IF (RECPRT .GT. 50) THEN
RECPRT = 1
IPAGE = IPAGE+1
CALL LIB$ERASE_PAGE (1,1)
WRITE (PRT,21305) IPAGE,Xdesig,Xequiv
21305 FORMAT ('1NASA ALLOY DATABASE ABBREVIATED REPORT','
1 ' Page ',I4,';
2 /* List of foreign Alloys similar to foreign alloy'
3 ' with Designation: = ',A30,
4 /* and US Equivalent = ',A30,
5 /* [Similarity by matching US Equivalents]
6 /* Rec. No. Designation',20X,'US Equivalent',12X,
7 /* Temper',10X,'Country',9X,'Form'/)
END IF
WRITE (PRT,21315) FADB,DESG,EQUIV,TEMPR,XCNTRY,FORMNUM
21315 FORMAT (' ',A7,2X,A30,1X,A25,1X,A15,1X,A15,1X,A30)

IF (DAB$W_STATE .NE. DTR$STL_PGET) THEN
 type ' ', 'The report has been printed'
 type ' ', 'Hit RETURN to go back to the Main Menu'
 accept 21325,answer
21325 format (A)
 CALL DTR$COMMAND (DAB, 'RELEASE ALL;')
 CALL DTR$DTR (DAB,DTR$OPT_CMD)
IF (OPENPORT) THEN
 CALL DTR$COMMAND (DAB, 'FINISH PORT2;')
 CALL DTR$DTR (DAB,DTR$OPT_CMD)
END IF
CALL LIB$SPAWN ('SET TERM/WIDTH-80')
return
END IF
go to 21300

C This section for full report

21400 CALL LIB$ERASE_PAGE (1,1)

IPAGE = IPAGE+1
WRITE (PRT,21405) IPAGE,Xdesig,Xequiv
21405 FORMAT ('INASA ALLOY DATABASE FULL REPORT',
 1 ' Page ',I4,
 2 ' List of foreign Alloys similar to foreign alloy'
 3 ' with Designation = ',A30,
 4 ' and US Equivalent = ',A30,
 5 ' [Similarity by matching US_Equivalents]'/)

WRITE (PRT,21415) FADB,DESG,EQUIV,XCNTRY
21415 FORMAT (' Rec#: ',A7,' Designation: ',A30,' US_Equivalent: ',A25,
 1 'Country: ',A15/)

WRITE (PRT,21425) ALTYP,TEMPR,FORMNUM,ORIGIN
21425 FORMAT (' Type: ',A4,' Temper: ',A15,' Form: ',A30,
 1 ' Orig. Org: ',A10/)

WRITE (PRT,21435)
21435 FORMAT (' COMPOSITION: ')

WRITE (PRT,21445)
21445 FORMAT (' [Wt. %]',6X,'AI',6X,'SI',6X,'Fe',6X,'Cu',6X,'Mn',6X,
 1 'Hg',6X,'Zn',6X,'V ',6X,'Ti',6X,'Zr',6X,'Cr',6X,'Ni',6X,
 2 'Pb',6X,'Sn')

WRITE (PRT,21455) MINAL,MINSI,MINFE,MINCU,MINMN,MINMG,MINZN,
 1 MINV,MINTI,MINZR,MINCR,MINNI,MINPB,MINSN
21455 FORMAT (8X,'MIN: ',14(A7,1X)/)

WRITE (PRT,21465) MAXAL,MAXSI,MAXFE,MAXCU,MAXMN,MAXMG,MAXZN,
 1 MAXV,MAXTI,MAXZR,MAXCR,MAXNI,MAXPB,MAXSN
21465 FORMAT (8X,'MAX: ',14(A7,1X)/)

WRITE (PRT,21475) OTHER1,OTHER2,SPECS1
WRITE (PRT, 21485) MINO1, MINO2, SPECS2
21485 FORMAT (8X, 'MIN: ', A7, 6X, A7, 61X, '[2]', A30)
WRITE (PRT, 21495) MAXO1, MAXO2, SPECS2
21495 FORMAT (8X, 'MAX: ', A7, 6X, A7, 61X, '[3]', A30)
WRITE (PRT, 21505) SPECS4
21505 FORMAT (92X, [4]', A30)
WRITE (PRT, 21515) SPECS5
WRITE (PRT, 21525) SCCRTG
WRITE (PRT, 21535) MINYLD, MAXYLD, TYPYLD, YLUNIT
21535 FORMAT (' Yield Strength: ', 3(A3, 2X), A6)
WRITE (PRT, 21545) MINTNS, MAXTNS, TYPTNS, TNUNIT
21545 FORMAT (' Tensile Strength: ', 3(A3, 2X), A6, 10X, 'NOTES', A60)
IF ((ANSWER .EQ. 'F') .OR. (ANSWER .EQ. 'f')) THEN
 GO TO 21900
END IF
 type *, ', '
 write (prt, 21547)
21547 format (' Hit the RETURN key to continue printing, To stop',
 1 ' printing type S, then Hit the RETURN key: ', $)
accept 21550, answer
21550 format (A)
 if ((answer .eq. 'S') .OR. (answer .eq. 's')) then
 call libsspawn ('set term/width=80')
 return
 end if
21900 IF (DAB$W_STATE .NE. DTR$K_STL_PGET) THEN
 type *, 'The report has been printed'
 type *, 'Hit RETURN to go back to the Main Menu'
 accept 21905, answer
21905 format (A)
 CALL DTR$COMMAND (DAB, 'RELEASE ALL;')
 CALL DTRSDTR (DAB, DTR$M_OPT_CMD)
 IF (OPENPORT) THEN
 CALL DTR$COMMAND (DAB, 'FINISH PORT2;')
 CALL DTRSDTR (DAB, DTR$M_OPT_CMD)
 OPENPORT = .FALSE.
 END IF
 call libsspawn ('set term/width=80')
 return
END IF
 go to 21300

C --------------- * * * * * * ---------------
C Selecting by matching chemical composition
C
C This is still Search 1.b in the specifications
C
C The following procedure/logic will be used:
C
C 1. Accept the record number whose composition is to be matched
C 2. Establish a one record collection and
C 3. Retrieve (GET) that 1 record via PORT2 into the Buffer (FULLREC)
C 4. Release the current collection
C 5. Redeclare PORT2
C 6. Use the composition data of the record in the buffer
C to establish another collection
C 7. Retrieve (GET) 1 record at a time from the new collection via
C PORT2 into the Buffer (FULLREC) and
C 8. Print the information from the FORTRAN Buffer FULLREC
C
C **************************** *

22000 CALL DTR$COMMAND (DAB, 'RELEASE ALL;')
CALL DTR$DTR (DAB,DTR$OPT_CMD)
IF (OPENPORT) THEN
 CALL DTR$COMMAND (DAB, 'FINISH PORT2;')
 CALL DTR$DTR (DAB,DTR$OPT_CMD)
END IF
OPENPORT = .FALSE.
CALL DTR$COMMAND (DAB,'SHOW ALL')
CALL DTR$DTR (DAB,DTR$OPT_CMD)

C Include file of commands to declare port2
INCLUDE '[NASA3.JSEXREC].JSPORT25.INC'
OPENPORT = .TRUE.

22002 CALL LIB$ERASE_PAGE (1,1)

TYPE 22005
22005 FORMAT (/T21,' NASA ALLOY DATABASE MANAGEMENT SYSTEM'
1 '/ Producing Standard Reports: [2]'
2 '/ For one foreign alloy, find all similar foreign alloys'
3 '/ [Selecting by matching chemical composition]'
4 '/ Enter the record number whose chemical composition',
5 '/ is to be matched'
6 '/ Or, To return to the Main Menu, enter M'
7 '/ Then hit the RETURN key/)

C Step 1:
22040 ACCEPT 22045,RECKEY
22045 FORMAT (A)
IF ((RECKEY .EQ. 'M').OR. (RECKEY .EQ. 'm')) THEN RETURN
ENDIF
RECKEYX = '"'/reckey/"'
 TYPE *,'
 TYPE *,'Searching for the foreign record, Please stand by'
 TYPE *,'
C Step 2: Search the database for that foreign record
CALL DTR$PRINT_DAB(DAB)
22100 CALL DTR$COMMAND~(DAB, 'PORT2 = ICMD WITH FADB_NO = ICMD',
1DOMAIN,RECKEYX)
 TYPE *,'
 TYPE *,'DAB Dump after 22100; search for foreign record'
 TYPE *,'
 CALL DTR$PRINT_DAB (DAB)
 TYPE *,'"'
C Step 3:
C Retrieve (GET) that 1 record from PORT2 into the Buffer (FULLREC)

22200 IF (DAB$W_STATE .NE. DTR$K_STL_PGET) THEN
 type 'That foreign record was not found'
type '*,'Hit RETURN to try another record'
accept 22205,answer

22205 format (A)
CALL DTR$COMMAND (DAB, 'RELEASE ALL;')
CALL DTR$DTR (DAB,DTR$M_OPT_CMD)
IF (OPENPORT) THEN
 CALL DTR$COMMAND (DAB, 'FINISH PORT2;')
 CALL DTR$DTR (DAB,DTR$M_OPT_CMD)
END IF
GO TO 22000
END IF

22300 CALL DTR$GET_PORT (DAB, %REF(FULLREC))

C Save the fadb, designation, country_of_origin, and U.S._Equivalent
C for the heading

 Xfadb = fadb
 Xdesig = desig
 Xcountry = country
 Xequiv = equiv
 XcountryX = '"//'Xcountry//'''
 XEQUIV2 = '"//'XEQUIV//'''

C The following print statement is only a checkpoint

 write (5,22301) fadb,desig,XcountryX,minal,maxal,minsi,maxsi,
 minfe,maxfe,mincu,maxcu,minmn,maxmn,minmg,maxmg,accrtg,
 tempr,xequiv2,units,minyld,mintns,refl

22301 format (/''The following are checkpoint values'','
 /''Fadb = ','A7,' Desig = ','A30,' Country code = ','A4,'
 /''Min_A1 = ','A7,' Max_A1 = ','A7,' Min_Si = ','A7,' Max_Si = ','A7,' Min_Fe = ','A7,' Max_Fe = ','A7,' Min_Cu = ','A7,' Max_Cu = ','A7,' Min_Mn = ','A7,' Max_Mn = ','A7,' Min_Mg = ','A7,' Max_Mg = ','A7,' SCC_Rating = ','A4,' Temper = ','A15,' Equiv = ','A27,'
 /''Units = ','A,' Min_Yld = ','A3,' Min_Tns = ','A3,'
 /''Reference #1 = ','A3,'
 /''Just hit RETURN to continue'')

accept 22302,dummy
22302 format (A)

C Step 4:
C Release all records from the current collection

CALL DTR$COMMAND (DAB, 'RELEASE ALL;')
CALL DTR$DTR (DAB,DTR$M_OPT_CMD)
IF (OPENPORT) THEN
 CALL DTR$COMMAND (DAB, 'FINISH PORT2;')
 CALL DTR$DTR (DAB,DTR$M_OPT_CMD)
OPENPORT = .FALSE.
END IF

C Include file for commands declaring port2

INCLUDE '[NASA3.JSEXREC]JSPORT25.INC'
OPENPORT = .TRUE.
type *,''
type *,'DAB Dump after declare PORT2 B4 composition search'
type *,''
CALL DTR$PRINT_DAB (DAB)
type *,''

C Step 5:
C Use the composition data of the record in the buffer
C to search the database and find all U.S. alloys
C with the same composition

type *,''
type *,'Searching for records with equal composition - Stand by'

22323 CALL DTR$COMMAND (DAB, 'FIND Icmd WITH MIN-AL = Icmd AND
1 MAX-AL = Icmd AND MIN-SI = Icmd AND MAX-SI = Icmd
2 AND MIN-FE = Icmd AND MAX-FE = Icmd',
3 DOMAIN,MINAL,MAXAL,MINSI,MAXSI,MINFE,MAXFE)

CALL DTR$DTR (DAB, DTR$OPT_CMD)
type *,''
type *,'DAB Dump after the search for equal composition'
type *,''

CALL DTR$COMMAND (DAB, 'STORE PT1 USING NUM = COUNT;')

IF (DAB$W_STATE .EQ. DTR$K_STL_PGET) THEN
CALL DTR$GET_PORT (DAB, NUM RECS)
CALL DTR$DTR (DAB, DTR$OPT_CMD)
END IF

IF (NUM RECS .EQ. 0) THEN
 type *, 'No records found with the same composition'
 type *, 'Hit RETURN to select another record'
 accept 22325, answer
22325 format (A)
GO TO 22000
END IF

CALL DTR$COMMAND (DAB, 'PORT2 = CURRENT;')
type *, '

22330 TYPE 22335
22335 FORMAT (/ 'Select one of the following options: then hit RETURN'
1 '1 = Print only standard fields'
2 '2 = Print all fields'
3 'M = Do not print, just return to the Main Menu'/)

ACCEPT 22345, CHOICE
22345 FORMAT (A)
IF ((CHOICE .EQ. 'M') .OR. (CHOICE .EQ. 'm')) THEN
 CALL DTR$COMMAND (DAB, 'finish ALL;')
 call lib/$spawn ('set term/width=80')
 return
END IF
IF ((CHOICE .NE. '1') .AND. (CHOICE .NE. '2')) THEN
 type *, 'Wrong entry, hit RETURN to try again'
 accept 22355, answer
22355 format (A)
 GO TO 22330
END IF

C Choose between screen display and printed report

22360 TYPE 22365
22365 FORMAT (/ 'Do you want to display the report on the screen'
1 'or print it to a temporary file for later use?'
2 'Please respond with S or F:'/)
22375 format (A)
C Input Error-Traps
IF (((ANSWER .NE. 'S') .AND. (ANSWER .NE. 's')) .AND.
(ANSWER .NE. 'F') .AND. (ANSWER .NE. 'f')) THEN
 type *, 'Wrong entry, please hit RETURN and try again'
 accept 22385, answer
22385 format (A)
 GO TO 22360
END IF
IF (((ANSWER .EQ. 'F') .OR. (ANSWER .EQ. 'f'))) THEN
 WRITE (*, 22395)
22395 FORMAT (/ 'Your report will be stored in a temporary'
1 'data file e.g. PRTTEMP.DAT which'
2 'you may browse with EDT or print on your'
3 'local printer i.e. PRINT PRTTEMP.DAT'
4 'Choose and enter a name for your'
5 'temporary print file, e.g. PRTTEMP/')
ACCEPI 22405,FILENAME
FORMAP (A)
PRT = 3
OPEN (3,FILE=FILENAME,STATUS='NEW')
ELSE
PRT = 5
END IF

C Step 6:
C Retrieve (GET) 1 record at a time from PORT2 into
C the Buffer (FULLREC), and print from the buffer

22500 IF (DAB$W_STATE .NE. DTR$K_STL_GET) THEN
 type *, 'The record has been printed'
 type *, 'Hit the RETURN key to continue'
 accept 22505, answer
 CALL DTR$COMMAND (DAB, 'RELEASE ALL;')
 IF (OPENPORT) THEN
 CALL DTR$COMMAND (DAB, 'FINISH PORT2;')
 CALL DTR$DTR (DAB, DTR$M_OPT_CHD)
 OPENPORT = .FALSE.
 END IF
 go to 22000
END IF

22600 CALL DTR$GET_PORT (DAB, %REF(FULLREC))
C Print the detail line from the fortran buffer
IF (CHOICE .EQ. '2') THEN
 go to 22800
END IF

C This section for printing the Abbreviated report
RECPRT = RECPRT+1
IF (RECPRT .GT. 50) THEN
 RECPRT = 1
 IPAGE = IPAGE+1
 CALL LIBSERASE_PAGE (1,1)
 WRITE (PRT,22605) IPAGE, Xfadb, Xdesig, Xcentry, Xequiv
22605 FORMAT ('NASA ALLOY DATABASE ABBREVIATED REPORT',
 1 'Page ',I4,
 2 '// List of foreign Alloys with exactly the same',
 3 ' composition as the foreign alloy'
 4 ' of record number = ',A7, ' designation = ',A30,
 5 ' from country = ',A15, ' and of U.S. Equivalent = ',A25,
 6 '// Rec. No. Designation',20X,'US Equivalent',12X,
 7 'Temper',10X,'Country',9X,'Form'/)
END IF
WRITE (PRT,22715) FADB, DESG, EQUIV, TEMPR, XCNTRY, FORMNUM
22715 FORMAT ('A7,2X,A30,1X,A25,1X,A15,1X,A15,1X,A30)
GO TO 22500

C This section for full report
22800 CALL LIBSERASE_PAGE (1,1)
IPAGE = IPAGE+1
WRITE (PRT,22605) IPAGE, Xfadb, Xdesig, Xcentry, Xequiv
22805 FORMAT ('NASA ALLOY DATABASE FULL REPORT',
 1 'Page ',I4,
 2 '// List of foreign Alloys with exactly the same',
 3 ' composition as the foreign alloy'
 4 ' of record number = ',A7, ' designation = ',A30,
 5 ' from country = ',A15, ' and of U.S. Equivalent = ',A25/)
WRITE (PRT,22815) FADB,DESG,EQUIV,XCNTRY
22815 FORMAT (Rec#: 'A7', Designation: 'A30', US_Equivalent: 'A25,
1 'Country: 'A15/)

WRITE (PRT,22825) ALTYP,TEMPR,FORMNUM,ORIGIN
22825 FORMAT (' Type: 'A4, ' Temper: 'A15, ' Form: 'A30,
1 ' Orig. Org: 'A10/)

WRITE (PRT,22835) (' COMPOSITION:

WRITE (PRT,22845) (' [Wt.%]', 'Al', 'Si', 'Fe', 'Cu', 'Mn', 'Sn', 'Pb', 'Sn')

WRITE (PRT,22855) MINAL,MINSI,MINFE,MINCU,MINMN,MINMG,MINZN,
1 MI

WRITE (PRT,22865) MAXAL,MAXSI,MAXFE,MAXCU,MAXMN,MAXMG,MAXZN,
1 MAX

WRITE (PRT,22875) MINV,MINI,MINR,MINTI,MINPB,MINSN

WRITE (PRT,22885) MAXV,MAXI,MAXR,MAXTI,MAXPB,MAXSN

WRITE (PRT,22895) MAXO1,MAXO2,SPECS2

WRITE (PRT,22905) MINO1,MINO2,SPECS2

WRITE (PRT,22915) MAXO1,MAXO2,SPECS2

WRITE (PRT,22925) SCCRTG

WRITE (PRT,22935) (' Yield Strength: ',3(A3,2X),A6)

WRITE (PRT,22945) MINTNS,MAXTNS,TYPTNS,TNUNIT

WRITE (PRT,22955) (' Hit the RETURN key to continue printing, To stop',
1 ' printing type S, then Hit the RETURN key: ',$)

CALL DTR$COMMAND (DAB, °RELEASE ALL;')

IF (OPENPORT) THEN
 CALL DTR$COMMAND (DAB,'FINISH PORT2;')
 END IF

call lib$spawn ('set term/width=80')
return

END IF

CALL DTR$COMMAND (DAB, 'RECEIVE ALL;')
IF (OPENPORT) THEN
 CALL DTR$COMMAND (DAB,'FINISH PORT2;')
 CALL DTR$DTR (DAB,DTR$OPT_CMD)
 OPENPORT = .FALSE.
END IF
call lib$sspawn ('set term/width=80')
return
END IF
GO TO 22500

C **
C Option 3
C Print the whole database
C **

30000 Continue

C Step 1:

C PORT2 is declared in SBREPORT to hold any DTR collection

30100 CALL DTR$COMMAND (DAB, 'PORT2 = iCMD WITH
1 DESIGN NOT = "XXXXX";','DOMAIN)

C Check for possible datatrieve errors
IF ((DAB$CONDITION .NE. %LOC(DTR$ SUCCESS)) .OR.
1 (DAB$CONDITION .EQ. %LOC(DTR$ ERROR))) THEN
CALL DTR$DTR (DAB, DTR$OPT_CMD)
 type *,'DTR ERROR'
 type *,'Just hit RTN to continue'
 accept 30205,answer
 format (A)
 RETURN
END IF

C Step 2:

C The above command causes the DTR$K_STL_PGET stall point
C While at this DTR stall point, we will continue to use
C DTR$GET_PORT to copy one record at a time from the port
C into our Fortran record buffer FULLREC

CALL JSSETUP (PRT,2) !Set up to print all fields

C IF NEXT CONDITION IS TRUE THEN RESET DOMAIN B4 RETURN
30300 IF (DAB$W_STATE .NE. DTR$K_STL_PGET) THEN
 type *,' '
 type *,'- no more records to print'
 type *,'Just hit RTN to continue'
 accept 30405,answer
 format (A)
 CALL DTR$COMMAND (DAB, 'RELEASE ALL;')
 IF (OPENPORT) THEN
 CALL DTR$COMMAND (DAB, 'FINISH PORT2;')
 CALL DTR$DTR (DAB,DTR$OPT_CMD)
 OPENPORT = .FALSE.
 END IF
 RETURN
END IF

30500 CALL DTR$GET_PORT (DAB, %REF(FULLREC))
CNTRY = CONTRY
CALL jsCNTRY (cntry,icntry,Xcntry)

C Print initial heading
C32100 WRITE (PRT,32105)
C32105 FORMAT (T20,' NASA ALLOY DATABASE FULL REPORT'
C 1 /T20,' -----------------------------'
C 2 //T21,' Listing of the Whole Database'
C 2 /T21,' -----------------------------')

CALL JSPRTALL (PRT,FINISH)
IF (FINISH) THEN
 CALL LIB$SPAWN ('SET TERM/WIDTH=80')
 GOTO 400
ELSE
 GOTO 30300
END IF

C ********** END OF PRINT ALL RECORDS **********
C
C ********************** * * * * * *******************************
C Option 4
C For one foreign alloy, find all similar U.S. alloys
C This is Search 1a in the specifications
C ********************** * * * * * *******************************

40000 CALL LIB$ERASE_PAGE (1,1)
40002 TYPE 40005
40005 FORMAT (/T21,' NASA ALLOY DATABASE MANAGEMENT SYSTEM'
 1 // Producing Standard Reports:'
 2 // -----------------------------'
 3 // For one foreign alloy, find all similar U.S. alloys'
 4 // Select one of the following:'
 5 // 1 = Selecting by predetermined U.S. Equivalents'
 6 // 2 = Select by matching chemical composition'
 7 // P = Return to the previous menu'
 8 // M = Return to the Main Menu'
 9 // H = Display Help Information'
 A // Type the number corresponding to your choice'
 B // then hit the RETURN key')

40010 ACCEPT 40015,CHOICE
40015 FORMAT (A)

 IF (((CHOICE .EQ. 'H') .OR. (CHOICE .EQ. 'h')) THEN
 CALL LIB$ERASE_PAGE (1,1)
 CALL LIB$SPAWN('stdrephelp')
 GO TO 40000
 ELSE IF (CHOICE .EQ. '1') THEN
 GO TO 40100
 ELSE IF (CHOICE .EQ. '2') THEN
 GO TO 42000
 ELSE IF (((CHOICE .EQ. 'P') .OR. (CHOICE .EQ. 'p')) THEN
 GO TO 400
 ELSE IF (((CHOICE .EQ. 'M') .OR. (CHOICE .EQ. 'm')) THEN
 RETURN
 ELSE
 type *, 'Wrong entry, hit RETURN to try again'
 accept 40017,answer

 40017 format (A)
 go to 40000
END IF
This is still Search 1a in the specifications

Listing predetermined US Equivalents,
The following logic shall be used:
C 1. Accept the foreign designation value
C 2. Search the database for any (and all) non-U.S. records
C with that designation
C 3. Print/display the records
C

40100 CALL LIB$ERASE_PAGE (1,1)
40102 TYPE 40105
40105 FORMAT (/T21,' NASA ALLOY DATABASE MANAGEMENT SYSTEM'
 1 // Producing Standard Reports: [4]'
 2 '/ '-------------------------------'
 3 // For one foreign alloy, find all similar U.S. alloys'
 4 '/ [Selecting predetermined U.S. Equivalents]'
 5 '/ Enter Alloy Designation within double quotation marks'
 6 '/ Then hit the RETURN key/')

C Step 1:
40110 ACCEPT 40115,DSGKEY
40115 FORMAT (A)
 type *,,, Searching for records, Please stand by'

C Include file for declaring PORT2
 INCLUDE [NASA3.JSEXREC]JSPORT25.INC'
 OPENPORT = .TRUE.
C Search for foreign alloys with that designation
40120 CALL DTR$COMMAND (DAB, 'PORT2 = 1CMD WITH DESIG = 1CMD AND
 1 COUNTRY NOT = "17";',' DOMAIN,DSGKEY)

C Check for possible datatrieve errors
IF ((DAB$SL CONDITION .NE. %LOC(DTR$ SUCCESS)) .OR.
 1 (DAB$SL CONDITION .EQ. %LOC(DTR$_ERROR))) THEN
 CALL DTR$DTR (DAB, DTR$ OPT_CMD)
 type *,,'DTR ERROR'
 type *,,'Just hit RTN to continue'
 accept 40125,answer
40125 format (A)
RETURN
END IF

C Choose type of report
40200 TYPE 40205
40205 FORMAT (/ ' Select one of the following options: then hit RETURN'
 1 '/ 1 = Print only standard fields'
 2 '/ 2 = Print all fields'
 3 '/ P = Do not print, just return to the previous menu/')

ACCEPT 40215,CHOICE
40215 FORMAT (A)

IF ((CHOICE .EQ. 'P') .OR. (CHOICE .EQ. 'p')) THEN
 CALL DTR$COMMAND (DAB, 'RELEASE ALL;')
IF (OPENPORT) THEN
 CALL DTR$COMMAND (DAB, 'FINISH PORT2; ')
 CALL DTR$DTR (DAB, DTR$M_OPT_CMD)
OPENPORT = .FALSE.
END IF
GO TO 40000
END IF
IF ((CHOICE .NE. '1') .AND. (CHOICE .NE. '2')) THEN
 type *, 'Wrong entry, hit RETURN to try again'
 accept 40225, answer
END IF
GO TO 40200

C Choose between screen display and printed report
40300 TYPE 40305
40305 FORMAT (/,' Do you want to display the report on the screen'
 1 /' or print it to a temporary file for later use?'
 2 /' Please respond with S or F:'/)
accept 40315, answer
40315 FORMAT (A)

C Input Error-Trap
IF (((ANSWER .NE. 'S') .AND. (ANSWER .NE. 's')) .AND.
 ((ANSWER .NE. 'F') .AND. (ANSWER .NE. 'f'))) THEN
 type *, 'Wrong entry, please hit RETURN and try again'
 accept 40325, answer
END IF
40325 FORMAT (A)
GO TO 40300

IF ((ANSWER .EQ. 'F') .OR. (ANSWER .EQ. 'f')) THEN
 WRITE (*,40335)
 40335 FORMAT (/,' Your report will be stored in a temporary'
 1 ' data file e.g. PRTTEMP.DAT which'
 2 ' you may browse with EDT or print on your'
 3 ' local printer i.e. PRINT PRTTEMP.DAT'
 4 ' Please choose and enter a name for your'
 5 ' temporary print file, e.g. PRTTEMP'/)
 ACCEPT 40345, FILENAME
 40345 FORMAT (A)
 PRT = 3
 ELSE
 PRT = 5
END IF

40400 CALL LIB$ERASE_PAGE (1,1)
 IF ((ANSWER .EQ. 'S') .OR. (ANSWER .EQ. 's')) THEN
 CALL LIB$SPAWN ('SET TERM/WIDTH=132 ')
 END IF
 IPAGE = 0
 RECPR = 50

40500 IF (DAB$W_STATE .NE. DTR$K_STL_PGET) THEN
 type *, '
 type *, 'no records found - Just hit RTN to try again'
 accept 40505, answer
40505 FORMAT (A)
CALL DTR$COMMAND (DAB, 'RELEASE ALL;')
IF (OPENPORT) THEN
 CALL DTR$COMMAND (DAB, 'FINISH PORT2;')
 CALL DTR$DTR (DAB,DTR$M_OPT_CMD)
OPENPORT = .FALSE.
END IF
END IF

40510 CALL DTR$GET_PORT (DAB, %REF(FULLREC))
C Step 7: Print from the FORTRAN Buffer FULLREC
IF (CHOICE .EQ. '2') THEN
 go to 40700
ENDIF

C This section for printing the Abbreviated report
RECPRT = RECPRT+1
IF (RECPRT .GT. 50) THEN
 RECPRT = 1
 IPAGE = IPAGE+1
 CALL LIB$ERASE_PAGE (1,1)
 WRITE (PRT,40605) IPAGE,desg
40605 FORMAT ('INASA ALLOY DATABASE ABBREVIATED REPORT',
 1 'Page ',I4,
 2('// Foreign Alloys with Designation: = ',A30,
 3//' Listed with their corresponding pre-determined'
 4//' US Equivalents'
 5//' Rec. No. Designation',20X,'US_Equivalent',12X,
 6//' Temper',10X,'Country',gX,'Form'/)
ENDIF

WRITE (PRT,40615) FADB,DESG,EQUIV,TEMPR,XCNTRY,FORMNUM
40615 FORMAT (' ',A7,2X,A30,1X,A25,1X,A15,1X,A15,1X,12X)
IF (DAB$W_STATE .NE. DTR$K_STL_PGET) THEN
 type *,
 type *,'The report has been printed'
 type *,'Hit RETURN to go back to the Main Menu'
 accept 40625,answer
40625 format (A)
 CALL DTR$COMMAND (DAB, 'RELEASE ALL;')
 IF (OPENPORT) THEN
 CALL DTR$COMMAND (DAB, 'FINISH PORT2;')
 CALL DTR$DTR (DAB,DTR$M_OPT_CMD)
 OPENPORT = .FALSE.
 END IF
 CALL LIB$SPAWN ('SET TERM/WIDTH=80')
 return
END IF

C This section for full report
40700 CALL LIB$ERASE_PAGE (1,1)
 IPAGE = IPAGE+1
 WRITE (PRT,40705) IPAGE,desg
40705 FORMAT ('INASA ALLOY DATABASE ABBREVIATED REPORT',
 1 'Page ',I4,
 2('// Foreign Alloys with Designation: = ',A30,
 3//' Listed with their corresponding pre-determined'
 4//' US Equivalents'
 5//' Rec. No. Designation',20X,'US_Equivalent',12X,
 6//' Temper',10X,'Country',9X,'Form'/)
WRITE (PRT, 40715) FADB, DESG, EQUIV, XCNTRY

1 ' Country: ', A15/
WRITE (PRT, 40725) ALTYP, TEMPR, FORMNUM, ORIGIN

40725 FORMAT (' Type: ', A4, ' Temper: ', A15, ' Form: ', A30,
1 ' Orig. Org: ', A10/
WRITE (PRT, 40735)

40735 FORMAT (' COMPOSITION: ')
WRITE (PRT, 40745)

40745 FORMAT (' [Wt.%]', 6X, 'Al', 6X, 'Si', 6X, 'Fe', 6X, 'Cu', 6X, 'Mn', 6X,
1 ' Mg', 6X, 'Zn', 6X, 'V', 6X, 'Ti', 6X, 'Zr', 6X, 'Cr', 6X, 'Ni', 6X,
2 ' Pb', 6X, 'Sn')
WRITE (PRT, 40755) MINAL, MINSI, MINFE, MINCU, MINMN, MINMG, MINZN,
1 ' Ni', MINV, MINZI, MINZR, MINCR, MINNI, MINPB, MINSN

40755 FORMAT (6X, 'MIN: ', A7, 6X, A7, 6X, A7, 6X, A7, 6X, A7, 6X, A7, 6X)
WRITE (PRT, 40765) MAXAL, MAXSI, MAXFE, MAXCU, MAXMN, MAXMG, MAXZN,
1 ' Ni', MAXV, MAXZI, MAXZR, MAXCR, MAXNI, MAXPB, MAXSN

40765 FORMAT (8X, 'MAX: ', I4, A7, 6X, A7, 6X, A7, 6X, A7, 6X, A7, 6X, A7, 6X)
WRITE (PRT, 40775) OTHER1, OTHER2, SPECS1

WRITE (PRT, 40785) MINO1, MINO2, SPECS2

40785 FORMAT (8X, 'MIN: ', A7, 6X, A7, 6X, A7, 6X, A7, 6X, A7, 6X, A7, 6X,
1 ' Ni', A7, 6X, A7, 6X, A7, 6X, A7, 6X)
WRITE (PRT, 40795) MAXO1, MAXO2, SPECS2

40795 FORMAT (8X, 'MAX: ', A7, 6X, A7, 6X, A7, 6X, A7, 6X, A7, 6X, A7, 6X,
1 ' Ni', A7, 6X, A7, 6X, A7, 6X, A7, 6X)
WRITE (PRT, 40805) SPECS4

40805 FORMAT (92X, 'SPECS5')
WRITE (PRT, 40815) SPECS5

40815 FORMAT (92X, 'SPECS5')
WRITE (PRT, 40825) SCCRTG

WRITE (PRT, 40835) MINTNS, MAXTNS, TYPTNS, TUNIT

40835 FORMAT (' Yield Strength: ', 3(A3, 2X), A6)
WRITE (PRT, 40845) MINTNS, MAXTNS, TYPTNS, TUNIT

40845 FORMAT (' Tensile Strength: ', 3(A3, 2X), A6, 10X, 'NOTES: ', A60)
IF ((ANSWER .EQ. 'F') .OR. (ANSWER .EQ. 'f')) THEN
GO TO 40900
END IF

type *
write (prt, 40855)

40855 FORMAT (' Hit the RETURN key to continue printing, To stop',
1 ' printing type S, then Hit the RETURN key: ', S)
accept 40855, answer

40865 FORMAT (A)
if ((answer .EQ. 'S') .OR. (answer .EQ. 's')) then
call lib$spawn ('set term/width=80')
return
end if

40900 IF (DAB$W_STATE .NE. DTR$STL_PGET) THEN
type *,' The report has been printed'
type *,' Hit RETURN to go back to the Main Menu'
accept 40905, answer
format (A)
call DTR$COMMAND (DAB, 'RELEASE ALL;')
IF (OPENPORT) THEN
call DTR$COMMAND (DAB, 'FINISH PORT2;')
call DTR$DTR (DAB, DTR$OPT_CMD)
OPENPORT = .FALSE.
END IF
call lib$spawn ('set term/width=80')
return
C This is still Search la in the specifications
C Selecting by matching chemical composition,
C The following logic shall be used:
C
1. Accept the record number of the foreign alloy
2. Search the database for that foreign record
 and store this record in a fortran buffer
3. Release all collections
4. Search the whole database to find all U.S. alloys with
 exactly the same composition as that foreign alloy
 which is sitting in the fortran buffer

42000 CALL LIB$ERASE_PAGE (1,1)

CALL DTR$COMMAND (DAB, 'RELEASE ALL;')
IF (OPENPORT) THEN
 CALL DTR$COMMAND (DAB, 'FINISH PORT2;')
 CALL DTR$DTR (DAB,DTR$M_OPT_CMD)
 OPENPORT = .FALSE.
END IF

C Include file for declaring PORT2
INCLUDE '[NASA3.JSEXREC]JSport25.INC'
OPENPORT = .TRUE.

TYPE 42005

42005 FORMAT (/T21,' NASA ALLOY DATABASE MANAGEMENT SYSTEM'
1 // ' Producing Standard Reports: [4]'
2 // ' -----------------------'
3 // ' For one foreign alloy, find all similar U.S. alloys'
4 // ' [Selecting by matching chemical composition]'
5 // ' Enter the record number whose chemical composition',
6 // ' is to be matched'
7 // ' Or, To return to the Main Menu, enter M'
8 // ' Then hit the RETURN key/')

C Step 1:
ACCEPT 42015,RECKEY

42015 FORMAT (A)
IF (((RECKEY .EQ. 'M') .OR. (RECKEY .EQ. 'm'))) THEN
 RETURN
END IF
 type *,'
 type *,'Searching for the record, Please stand by'
C Step 2: Search the database for that foreign record

42025 CALL DTR$COMMAND (DAB, 'PORT2 = 1CMD WITH FADB_NO = 1CMD AND
 1 COUNTRY NOT = "17";','DOMAIN,RECKEY)

 type *,'
 type *,'DAB Dump after searching for the foreign recrd'
 type *,'
 CALL DTR$PRINT_DAB (DAB)
 type *,'

C Check for possible datatrieve errors

IF ((DAB$L_CONDITION .NE. %LOC(DTR$ SUCCESS)) .OR. (DAB$L_CONDITION .EQ. %LOC(DTR$ ERROR))) THEN
CALL DTR$DTR (DAB, DTR$OPT_CMD)
type *, 'Fatal Datatrieve ERROR'
type *, 'Hit RETURN to restart'
accept 42035, answer
42035 format (A)
RETURN END IF

C Step 3: Retrieve (GET) that 1 record from PORT2 into the Buffer (FULLREC)

42100 IF (DAB$W_STATE .NE. DTR$K_STL_PGET) THEN
 type *, 'That foreign record was not found'
type *, 'Hit RETURN to try another record'
accept 42105, answer
42105 format (A)
CALL DTR$COMMAND (DAB, 'RELEASE ALL;')
IF (OPENPORT) THEN
 CALL DTR$COMMAND (DAB, 'FINISH PORT2;')
 CALL DTR$DTR (DAB, DTR$OPT_CMD)
OPENPORT = .FALSE.
END IF
GO TO 42000
END IF

42200 CALL DTR$GET_PORT (DAB, %REF(FULLREC))

C Save the fadb, designation, country_of_origin, and U.S._Equivalent C for the heading
Xfadb = fadb
Xdesig = desg
Xcountry = contr
Xequiv = equiv

C Convert the character composition data into C literal data within double quotes by concatenation
minalx = ""/minal/"
maxalx = ""/maxal/"
minsix = ""/mins/"
maxsix = ""/maxs/"
minfex = ""/minfe/"
maxfex = ""/maxfe/"
mincux = ""/mincu/"
maxcux = ""/maxcu/"
minmnx = ""/minmn/"
maxmnx = ""/maxmn/"
minmgx = ""/minmg/"
maxmgx = ""/maxmg/"
minznx = ""/minzn/"
maxznx = ""/maxzn/"
MINVx = ""/MINV/"
MAXVx = ""/MAXV/"
mintix = ""/minti/"
maksi = ""/maxi/"
minzrx = ""/minzr/"
maxzrx = ""/maxzr/""
mincrx = "\"//mincr//\""
maxcrx = "\"//maxcr//\""
minnix = "\"//minni//\""
maxnix = "\"//maxni//\""
minpbx = "\"//minpb//\""
maxpbx = "\"//maxpb//\""
minsnx = "\"//minsn//\""
maxsnx = "\"//maxsn//\"

C Step 4:
C Release the current collection
C Note: Only one record was selected earlier and retrieved

CALL DTR$COMMAND (DAB, 'RELEASE ALL;')
IF (OPENPORT) THEN
 CALL DTR$COMMAND (DAB, 'FINISH PORT2;')
 CALL DTR$DTR (DAB,DTR$M_OPT_CMD)
 OPENPORT = .FALSE.
END IF

C Include file for declaring PORT2

INCLUDE '[NASA3.JSEXREC]JSport25.inc'
OPENPORT = .TRUE.

C Step 5:
C Use the composition data of the record in the buffer
C to search the database and find all U.S. alloys
C with the same composition

CALL DTR$COMMAND (DAB, 'FIND Icmd WITH COUNTRY NOT = "17"
 AND MIN-AL = Icmd AND MAX-AL = Icmd
 AND MIN-SI = Icmd AND MAX-SI = Icmd
 AND MIN-FE = Icmd AND MAX-FE = Icmd
 AND MIN-CU = Icmd AND MAX-CU = Icmd
 AND MIN-MN = Icmd AND MAX-MN = Icmd
 AND MIN-MG = Icmd AND MAX-MG = Icmd
 AND MIN-ZN = Icmd AND MAX-ZN = Icmd
 AND MIN-V = Icmd AND MAX-V = Icmd
 AND MIN-TI = Icmd AND MAX-TI = Icmd
 AND MIN-ZR = Icmd AND MAX-ZR = Icmd
 AND MIN-CR = Icmd AND MAX-CR = Icmd
 AND MIN-NI = Icmd AND MAX-NI = Icmd
 AND MIN-PB = Icmd AND MAX-PB = Icmd
 AND MIN-SN = Icmd AND MAX-SN = Icmd;', DOMAIN,

f
 MINALX,MAXALX,MINSIX,MAXSIX,MINFEX,MAPFX,
 MINCUX,MAXCUX,MINMNX,MAXMNX,MINMGX,MAXMGX,
 MINZNX,MAXZNX,MINVX,MAXV,MINTIX,MAXTIX,
 MINZRX,MAXZRX,MINCRX,MAXCRX,MINNIX,MAXNIX,
 MINPBX,MAXPBX,MINSNX,MAXSNX)

CALL DTR$PRINT_DAB (DAB)

C Investigate the number of records found,
C if no records were found then return to try another Rse
CALL DTR$COMMAND (DAB, 'STORE PT1 USING NUM = COUNT;')
IF (DAB$W STATE .EQ. DTR$SK STL_PGET) THEN
 CALL DTR$GET_PORT (DAB, NUM RECS)
 CALL DTR$DTR (DAB, DTR$OPT_CMD)
END IF

IF (NUM_RECS .EQ. 0) THEN
 type *,'No records found with the same composition'
 type *,'Hit RETURN to select another record'
 accept 42225,answer
 format (A)
 GO TO 42000
END IF

CALL DTR$COMMAND (DAB, 'PORT2 = CURRENT;')
 type *,''
 type *,'DAB Dump after record was found, and PORT2 = CURRENT'
 type *,''
 CALL DTR$PRINT_DAB (DAB)
 type *,''

42230 TYPE 42235
42235 FORMAT (/ 'Select one of the following options: then hit RETURN'
 1 // '/ 1 = Print only standard fields'
 2 // '/ 2 = Print all fields'
 3 // '/ M = Do not print, just return to the Main Menu'/)

ACCEPT 42245,CHOICE
42245 FORMAT (A)
 IF ((CHOICE .EQ. 'M') .OR. (CHOICE .EQ. 'm')) THEN
 CALL DTR$COMMAND (DAB, 'finish ALL;')
 call lib$spawn ('set term/width=80')
 return
 END IF
 IF ((CHOICE .NE. '1') .AND. (CHOICE .NE. '2')) THEN
 type *,'Wrong entry, hit RETURN to try again'
 accept 42247,answer
 format (A)
 go to 42230
 END IF

C Choose between screen display and printed report
42250 TYPE 42255
42255 FORMAT (/ 'Do you want to display the report on the screen'
 1 // '/ or print it to a temporary file for later use?'
 2 // '/ Please respond with S or F: '/)

accept 42257,answer
42257 format (A)
C Input Error-Trap

 IF (((ANSWER .NE. 'S') .AND. (ANSWER .NE. 's')) .AND.
 ((ANSWER .NE. 'F') .AND. (ANSWER .NE. 'f'))) THEN
 type *,'Wrong entry, please hit RETURN and try again'
 accept 42265,answer
 format (A)
 GO TO 42250
END IF

IF ((ANSWER .EQ. 'F') .OR. (ANSWER .EQ. 'f')) THEN
 WRITE (*,42275)
42275 FORMAT (/ 'Your report will be stored in a temporary'
 1 // '/ data file e.g. PRTTEMP.DAT which'
 2 // '/ you may browse with EDT or print on your'
 3 // '/ local printer i.e. PRINT PRTTEMP.DAT')
42285 // Choose and enter a name for your temporary print file, e.g. PRTTEMP
ACCEPT 42285,FILENAME
FORMAT (A)
PR = 3
ELSE
OPEN (3,FILE=FILENAME,STATUS='NEW')
PR = 5
END IF

C Step 6:
C Retrieve (GET) 1 record at a time from PORT2 into the Buffer (FULLREC), and print from the buffer

42300 IF (DAB$STATE .NE. DTR$STL_PGET) THEN
 type *,'The record has been printed'
 type *,'Hit the RETURN key to continue'
 accept 42305,answer
 format (A)
 CALL DTR$COMMAND (DAB, 'RELEASE ALL;')
 IF (OPENPORT) THEN
 CALL DTR$COMMAND (DAB, 'FINISH PORT2;')
 CALL DTRSDTR (DAB,DTR$OPT_CMD)
 OPENPORT = .FALSE.
END IF
 go to 42000
END IF

42310 CALL DTR$GET_PORT (DAB, %REF(FULLREC))
C Print the detail line from the fortran buffer
 IF (CHOICE .EQ. '2') THEN
 go to 42400
END IF
C This section for printing the Abbreviated report
 RECPR = RECPR+1
 IF (RECPR .GT. 50) THEN
 RECPR = 1
 IPAGE = IPAGE+1
 CALL LIB$ERASE_PAGE (1,1)
 WRITE (PRT,42315) IPAGE,Xfadb,Xdesig,Xcntry,Xequiv
 END IF
 WRITE (PRT,42325) FADB,DESG,EQUIV,TEMPR,XCNTRY,FORMNUM
42315 FORMAT ('1NASA ALLOY DATABASE ABBREVIATED REPORT,'
 ' Page ',I4,
 '// List of U.S. Alloys with exactly the same',
 ' composition as the foreign alloy',
 ' of record number = ',A7,' designation = ',A30,
 ' from country = ',A15,' and of U.S. Equivalent = ',A25,
 ' Rec. No. Designation',20X,'US Equivalent',12X,
 'Temper',10X,'Country',9X,'Form'/)
42325 FORMAT (',A7,2X,A30,1X,A25,1X,A15,1X,A15,1X,A15,1X,A30)
GO TO 42300

C This section for full report

42400 CALL LIB$ERASE_PAGE (1,1)
 IPAGE = IPAGE+1
WRITE (PRT,42405) IPAGE,XFADB,XDESIG,XCNTRY,XEQUIV
42405 FORMAT ('NASA ALLOY DATABASE FULL REPORT',
 1 ' Page ',I4,
 2 '// List of U.S. Alloys with exactly the same',
 3 ' composition as the foreign alloy',
 4 ' of record number = ',A7, ' designation = ',A30,
 5 ' from country = ',A15, ' and of U.S. Equivalent = ',A25/)

WRITE (PRT,42415) FADB,DESG,EQUIV,XCNTRY
42415 FORMAT (' Rec#: ',AT, ' Designation: ',A30, ' US_Equivalent: ',A25,
 1 ' Country: ',A15/)

WRITE (PRT,42425) ALTYP,TEMPR,FORMNUM,ORIGIN
42425 FORMAT (' Type: ',A4, ' Temper: ',A15, ' Form: ',A30,
 1 ' Orig. Org: ',A10/)

WRITE (PRT,42435)
42435 FORMAT (' COMPOSITION:

WRITE (PRT,42445)
42445 FORMAT ('[Wt.%]',6X,'AI',6X,'SI',6X,'Fe',6X,'Cu',6X,'Mn',6X,
 1 ' Mg',6X,'Zn',6X,'V',6X,'Ti',6X,'Zr',6X,'Cr',6X,'Ni',6X,
 2 ' Pb',6X,'Sn')

WRITE (PRT,42455) MINAL,MINSI,MINFE,MINCU,MINMN,MINMG,MINZN,
 1 MINV,MINTI,MINZR,MINCR,MINNI,MINPB,MINSN
42455 FORMAT (8X,'MIN: ',14(A7,1X))

WRITE (PRT,42465) MAXAL,MAXSI,MAXFE,MAXCU,MAXMN,MAXMG,MAXZN,
 1 MAXV,MAXTI,MAXZR,MAXCR,MAXNI,MAXPB,MAXSN
42465 FORMAT (8X,'MAX: ',14(A7,1X)/)

WRITE (PRT,42475) OTHER1,OTHER2,SPECS1
42475 FORMAT (13X,A10,2X,A10,42X,'Specifications:[1] ',A30)

WRITE (PRT,42485) MINO1,MINO2,SPECS2
42485 FORMAT (8X,'MIN: ',A7,6X,A7,61X,'[2] ',A30)

WRITE (PRT,42495) MAXO1,MAXO2,SPECS2
42495 FORMAT (8X,'MAX: ',A7,6X,A7,61X,'[3] ',A30)

WRITE (PRT,42505) SPECS4
42505 FORMAT (92X,'SPECS4

WRITE (PRT,42515) SPECS5
42515 FORMAT (92X,'SPECS5

WRITE (PRT,42525) SCCRTG
42525 FORMAT (19X,'MIN MAX TYP UNITS',11X,'SCC Rating: ',A4)

WRITE (PRT,42535) MINYLD,MAXYLD,TYPYLD,YUNIT
42535 FORMAT (' Yield Strength: ',A7,6X,A7,61X,YUNIT

WRITE (PRT,42545) MINTNS,MAXTNS,TYPTNS,TNUNIT
42545 FORMAT (' Tensile Strength: ',A7,6X,A7,61X,TNUNIT

IF ((ANSWER .EQ. 'F') .OR. (ANSWER .EQ. 'f')) THEN
 GO TO 42570
END IF
 type '*,
 write (prt,42555)
42555 format (' Hit the RETURN key to continue printing, To stop',
 1 ' printing type S, then Hit the RETURN key: ',$)

accept 42565,answer
42565 format (A)
 if ((answer .eq. 'S') .OR. (answer .eq. 's')) then
 call libSspawn ('set term/width-80')
 return
 end if
42570 IF (DAB$W_STATE .NE. DTR$K_STL_PGET) THEN
 type '",'The report has been printed'
 type '",'Hit RETURN to go back to the Main Menu'
 accept 42575,answer
42575 format (A)
 CALL DTR$COMMAND (DAB, 'RELEASE ALL;')
 IF (OPENPORT) THEN
 CALL DTR$COMMAND (DAB, 'FINISH PORT2;')
 CALL DTR$DTR (DAB, DTR$M_OPT_CMD)
 OPENPORT = .FALSE.
END IF
 call lib$spawn ('set term/width=80')
 return
END IF

GO TO 42300

C **************************** * * * ****************************
C * For one U.S. alloy, find all similar foreign alloys from *
C * one country: This is Search 1.f in the specifications *
C * The following logic is used:
C * 1. Accept the U.S. Designation as input *
C * 2. Accept the foreign country code as input [to search from] *
C * Just search for all foreign alloys from the given country *
C * with U.S. Equivalents equal to that U.S. alloy Designation *
C **************************** * * * ****************************

50000 CALL LIB$ERASE_PAGE (1,1)
50010 TYPE 50015
50015 format (/T21,'NASA ALLOY DATABASE MANAGEMENT SYSTEM'
 1 '// Producing Standard Reports: [5]'
 2 '------------'
 3 '// For one U.S. alloy, find all similar foreign'
 4 'alloys from one country'
 5 '// Enter the U.S. designation and foreign country code'
 6 '// 01=Australia 06=Finland 11=Norway'
 7 ' 16=United Kingdom'
 8 '// 02=Canada 07=France 12=South Africa'
 9 ' 17=U.S.A.'
 10 '// 03=China 08=Japan 13=Spain'
 11 ' 18=U.S.S.R.'
 12 '// 04=Denmark 09=Mexico 14=Sweden'
 13 ' 19=West Germany'
 14 '// 05=East Germany 10=New Zealand 15=Switzerland'
 15 ' 20=Italy'
 16 '// 21=Belgium 22=Netherlands 23=Portugal'
 17 ' 30=ISO'
 18 '// First, enter U.S. designation within double'
 19 ' quotation marks',
 20 ' and hit the RETURN key')
50020 accept 50025, DSGKEY
50025 format (A)
50035 FORMAT (/ Now, enter Country code from the table,'
1 / ' Then hit the RETURN key'
2 / ' Or, To return to the previous Menu, enter P'
3 / ' Then hit the RETURN key'/

ACCEPT 50045,CNTRY

50045 FORMAT (A2)

IF ((CNTRY(1:1) .EQ. 'P') .OR. (CNTRY(1:1) .EQ. 'p')) THEN
GO TO 400
END IF

C Extract country text from the country literals table

CALL jsCNTRY (cntry,icntry,Xcntry)
IF (ICNTRY .EQ. 31) THEN
 type *, ' '
 type *, 'Country Code out of range, hit RETURN to try again'
 type *, 'Or type M, then hit RETURN to return to Main Menu'
 accept 50055,answer
 format (A)
 IF ((ANSWER .EQ. 'M') .OR. (ANSWER .EQ. 'm')) THEN
 RETURN
 ELSE
 GO TO 50030
 END IF
END IF

C Check for possible datatrieve errors

IF ((DABSL CONDITION .NE. %LOC(DTR$ SUCCESS)) .OR.
1 (DABSL CONDITION .EQ. %LOC(DTR$ ERROR))) THEN
 CALL DTR$DTR (DAB, DTR$M_OPT_CMD)
 type *, 'There was a Fatal Datatrieve ERROR'
 type *, 'Hit RETURN to restart'
 accept 50065,answer

50065 format (A)
RETURN
END IF

C Investigate the number of records found,
C if no records were found then return to try another Rse

CALL DTR$COMMAND (DAB, 'STORE PT1 USING NUM = COUNT;')
IF (DABSW STATE .EQ. DTR$STL_PGET) THEN
 CALL DTR$GET PORT (DAB, NUM RECS)
 CALL DTR$DTR (DAB, DTR$M_OPT_CMD)
END IF

IF (NUM RECS .EQ. 0) THEN
 type *, 'No similar alloys found from that country'
 type *, 'Hit RETURN to try another country'
 accept 50075,answer

50075 format (A)
GO TO 50000
END IF
C Program will branch here only if RSE has been successful,

50100 TYPE 50105
50105 FORMAT (/ 'Select one of the following options: then hit RETURN'
1 ' 1 = Print only standard fields'
2 ' 2 = Print all fields'
3 ' P = Do not print, just return to the previous menu'/)

ACCEPT 50115,CHOICE

50115 FORMAT (A)
 IF ((CHOICE .EQ. 'P') .OR. (CHOICE .EQ. 'p')) THEN
 GO TO 400
 END IF
 IF ((CHOICE .NE. '1') .AND. (CHOICE .NE. '2')) THEN
 type *, 'Wrong entry, hit RETURN to try again'
 accept 50125,answer
 GO TO 50100
 END IF
 CALL DTR$COMMAND (DAB, 'PORT2 - CURRENT;')
 C Check for possible datatrieve errors
 IF ((DAB$L_CONDITION .NE. %LOC(DTR$_SUCCESS)) .OR.
 1 (DAB$L_CONDITION .EQ. %LOC(DTR$_ERROR))) THEN
 CALL DTR$DTR (DAB, DTR$OPT_CMD)
 type *, 'There was a Fatal Datatrieve ERROR'
 type *, 'Hit RETURN to restart'
 accept 50135,answer
 END IF
 RETURN

C Choose between screen display and printed report
50140 TYPE 50145
50145 FORMAT (/ 'Do you want to display the report on the screen'
1 ' or print it to a temporary file for later use?'
2 ' Please respond with S or F:'/

accept 50155,answer

50155 format (A)

C Input Error-Trap

1
 IF (((ANSWER .NE. 'S') .AND. (ANSWER .NE. 's')) .AND.
 1 ((ANSWER .NE. 'F') .AND. (ANSWER .NE. 'f'))) THEN
 type *, 'Wrong entry, please hit RETURN and try again'
 accept 50165,answer

50165 format (A)
 GO TO 50140

END IF

IF (((ANSWER .EQ. 'F') .OR. (ANSWER .EQ. 'f'))) THEN
 WRITE (*,10715)
10715 FORMAT('DUMMY FORMAT')
 ACCEPT 50175,FILENAME
50175 FORMAT (A)
 PRT = 3
 OPEN (3,FILE=FILENAME,STATUS='NEW')
 ELSE
 PRT = 5
 END IF
 CALL LIB$ERASE_PAGE (1,1)
 IF ((ANSWER .EQ. 'S') .OR. (ANSWER .EQ. 's')) THEN
 CALL LIB$SPAWN ('SET TERM/WIDTH=132')
END IF
IPAGE = 0
RECPRT = 50
50200 IF (DABSW_STATE .NE. DTR$K_STL_PGET) THEN
 type *,' The Report has been printed'
 type *,' Hit the RETURN key to continue'
 accept 50205, answer
50205 format (A)
 CALL DTR$COMMAND (DAB, 'RELEASE ALL;')
 IF (OPENPORT) THEN
 CALL DTR$COMMAND (DAB, 'FINISH PORT2;')
 CALL DTR$DTR (DAB, DTR$M_OPT_CMD)
 OPENPORT = .FALSE.
 END IF
 CALL LIB$SPAWN ('SET TERM/WIDTH-80')
RETURN
END IF
50210 CALL DTR$GET_PORT (DAB, %REF(FULLREC))

IF (CHOICE .EQ. '2') THEN
 go to 50300
end if

C This section for abbreviated report
RECPRT = RECPRT+1
IF (RECPRT .GT. 50) THEN
 RECPRT = 1
 IPAGE = IPAGE+1
 CALL LIB$ERASE_PAGE (1,1)
 WRITE (PRT, 50215) IPAGE, Xcntry, desg
50215 FORMAT ('NASA ALLOY DATABASE ABBREVIATED REPORT',
 1 ' Page ',I4,
 2 / ' List of Alloys from ',A15,' that are similar'
 3 to the U.S. alloy designation ',A30,
 4 / ' Rec. No. Designation',20X,'US Equivalent',12X,
 5 ' Temper',10X,'Country',9X,'Form'/)
END IF
WRITE (PRT, 50225) FADB, DESG, EQUIV, TEMP, XCNTRY, FORMNUM
50225 FORMAT (' Rec#: ',A7,' Designation: ',A30,' US Equivalent: ',A25,
 1 'Country: ',A15/
 WRITE (PRT, 50315) ALTYP, TEMP, FORMNUM, ORIGIN
50315 FORMAT (' Type: ',A4,' Temper: ',A15,' Form: ',A30,
 1 ' Orig. Org: ',A10/
 WRITE (PRT, 50335)
50335 FORMAT (' COMPOSITION: ')
WRITE (PRT, 50345)

WRITE (PRT, 50355) MINAL, MINSI, MINFE, MINCU, MINMN, MINMG, MINZN, 1 MINV, MINTI, MINZR, MINCR, MINNI, MINPB, MINSN

50355 FORMAT (8X, 'MIN: ', 14(A7, 1X))

WRITE (PRT, 50365) MAXAL, MAXSI, MAXFE, MAXCU, MAXMN, MAXMG, MAXZN, 1 MAXV, MAXTI, MAXZR, MAXCR, MAXNI, MAXPB, MAXSN

50365 FORMAT (8X, 'MAX: ', 14(A7, 1X))

WRITE (PRT, 50375) OTHER1, OTHER2, SPECS1

WRITE (PRT, 50385) MINO1, MINO2, SPECS2

WRITE (PRT, 50395) MAXO1, MAXO2, SPECS2

WRITE (PRT, 50405) SPECS4

50405 FORMAT (92X, '[4] ', A30)

WRITE (PRT, 50415) SPECS5

50415 FORMAT (92X, '[5] ', A30)

WRITE (PRT, 50425) SCCRTG

WRITE (PRT, 50435) MINYLD, MAXYLD, TYPYLD, YLUNIT

50435 FORMAT ('Yield Strength: ', 3(A3, 2X), A6)

WRITE (PRT, 50445) MINTNS, MAXTNS, TYPYLD, TNUNIT

50445 FORMAT ('Tensile Strength: ', 3(A3, 2X), A6, 10X, 'NOTES: ', A60)

IF ((ANSWER .EQ. 'F') .OR. (ANSWER .EQ. 'f')) THEN
 GO TO 50460
END IF

50460 GO TO 50200

C ******************** * * * * **********

C Option 6

C For one U.S. alloy, find all similar foreign alloys
C from all countries
C
C This is Search 1.g in the specifications
C
C The following logic is used:
C 1. Accept the U.S. Designation as input
C
C Just search for all foreign alloys with U.S. Equivalents
C equal to that U.S. alloy Designation
C
C ******************** * * * * **********

60000 CALL LIB$ERASE_PAGE (1,1)
TYPE 60015
60015 FORMAT (/T21,' NASA ALLOY DATABASE MANAGEMENT SYSTEM'
1 // Producing Standard Reports: [6]
2 //---'
3 // For one U.S. alloy, find all similar foreign'
4 ' alloys from all countries'
5 // Enter U.S. designation within double quotation marks'
6 // and hit the RETURN key'
7 // Or, To return to the previous Menu, enter P'
8 // Then hit the RETURN key')

ACCEPT 60025, DSGKEY
60025 FORMAT (A)

IF ((DSGKEY(1:1) .EQ. 'P') .OR. (DSGKEY(1:1) .EQ. 'p')) THEN
GO TO 400
END IF

type *, 'Searching for records, Please stand by'
CALL DTR$COMMAND (DAB, 'FIND ICMD WITH US_EQV = ICMD AND
1 COUNTRY NOT = "17";', DOMAIN, DSGKEY)
CALL DTR$DTR (DAB, DTR$OPT_CMD)

C Check for possible datatrieve errors
IF ((DAB$CONDITION .NE. %LOC(DTR$SUCCESS)) .OR.
1 (DAB$CONDITION .EQ. %LOC(DTR$ERROR))) THEN
CALL DTR$DTR (DAB, DTR$OPT_CMD)

C Investigate the number of records found,
C if no records were found then return to try another Rse

CALL DTR$COMMAND (DAB, 'STORE PTI USING NUM = COUNT;')
IF (DAB$W STATE .EQ. DTR$STL_PGET) THEN
CALL DTR$GET_PORT (DAB, NUM RECS)
CALL DTR$DTR (DAB, DTR$OPT_CMD)
END IF

IF (NUM_RECS .EQ. 0) THEN

C Program will branch here only if RSE has been successful,
60100 TYPE 60105
60105 FORMAT (/T21,' Select one of the following options: then hit RETURN'
1 // 1 = Print only standard fields'
2 // 2 = Print all fields'
3 // P = Do not print, just return to the previous menu')

ACCEPT 60115, CHOICE
60115 FORMAT (A)

IF ((CHOICE .EQ. 'P') .OR. (CHOICE .EQ. 'p')) THEN
GO TO 400
IF ((CHOICE .NE. '1') .AND. (CHOICE .NE. '2')) THEN
 type *, 'Wrong entry, hit RETURN to try again'
 accept 60125, answer
 format (A)
 go to 60100
END IF

CALL DTR$COMMAND (DAB, 'PORT2 = CURRENT;')

C Check for possible datatrieve errors
IF ((DAB$CONDITION .NE. %LOC(DTR$SUCCESS)) .OR.
 1 (DAB$CONDITION .EQ. %LOC(DTR$ERROR))) THEN
 CALL DTR$DTR (DAB, DTR$OPT CMD)
 type *, 'There was a Fatal Datatrieve ERROR'
 type *, 'Hit RETURN to restart'
 accept 60135, answer
 format (A)
 RETURN
END IF

C Choose between screen display and printed report

C Input Error-Trap
IF (((ANSWER .NE. 'S') .AND. (ANSWER .NE. 's')) .AND.
 (ANSWER .NE. 'F') .AND. (ANSWER .NE. 'f')) THEN
 type *, 'Wrong entry, please hit RETURN and try again'
 accept 60165, answer
 format (A)
END IF

IF ((ANSWER .EQ. 'S') .OR. (ANSWER .EQ. 's')) THEN
 CALL LIB$ERASE_PAGE (1, 1)
END IF

CALL LIB$SPAWN ('SET TERM/WIDTH-f32')

IF (DAB$STATE .NE. DTR$K_STL_PGET) THEN
 type *, 'The Report has been printed'
 type *, 'Hit the RETURN key to continue'
 accept 60205, answer
 format (A)
END IF

CALL DTR$COMMAND (DAB, 'RELEASE ALL;')

IF (OPENPORT) THEN
CALL DTR$COMAND (DAB, 'FINISH PORT2;')
CALL DTR$S淦 (DAB, DTR$M_OPT_CMD)
OPENPORT = .FALSE.
END IF
CALL LIm$SSPAMW ("SET TERM/ WIDTH-80")
RETURN
END IF

60210 CALL DTR$GET_PORT (DAB, %REF(FULLREC))

IF (CHOICE .EQ. '2') THEN
 go to 60300
end if

C This section for abbreviated report
RECPRT = RECPRT+1
IF (RECPRT .GT. 50) THEN
 RECPRT = 1
 IPAGE = IPAGE+1
 CALL LIBERASE PAGE (1,1)
 WRITE (PR,60215) IPAGE,dskey
 60215 FORMAT ('INASA ALLOY DATABASE ABBREVIATED REPORT',
 1 ' Page ',I4,
 2 ' List of all foreign Alloys that are similar'
 3 ' to the U.S. alloy designation ',A30
 4 ' Rec. No. Designation',20X,'US_Equivalent',12X,
 5 ' Temper',10X,'Country',9X,'Form'/)
 END IF

 WRITE (PR,60225) FADB,DESG,EQUIV,TEMPR,XCNTRY,FORMNUM
 60225 FORMAT (' ',A7,2X,A30,1X,A25,1X,A15,1X,A15,1X,A30)
 GO TO 60200

C This section for full report
60300 CALL LIB$ERASE PAGE (1,1)
 WRITE (PR,60305) IPAGE,dskey
 60305 FORMAT ('INASA ALLOY DATABASE FULL REPORT',
 1 ' Page ',I4,
 2 ' List of all foreign Alloys that are similar'
 3 ' to the U.S. alloy designation ',A30//)
 WRITE (PR,60315) FADB,DESG,EQUIV,XCNTRY
 60315 FORMAT (' Rec#: ',A7,' Designation: ',A30,' US_Equivalent: ',A25,
 1 'Country: ',A15/
 WRITE (PR,60325) ALTYP,TEMPR,FORMNUM,ORIGIN
 60325 FORMAT (' Type: ',A4,' Temper: ',A15,' Form: ',A30,
 1 ' Orig. Org: ',A10/
 WRITE (PR,60335)
 60335 FORMAT (' COMPOSITION: '
 WRITE (PR,60345)
 60345 FORMAT (' [Wt. %]',6X,'AI',6X,'Si',6X,'Fe',6X,'Cu',6X,'Mn',6X,
 1 'Mg',6X,'Zn',6X,'V',6X,'Ti',6X,'Zr',6X,'Cr',6X,'Ni',6X,
 1 'Pb',6X,'Sn')
 WRITE (PR,60355) MINAL,MINSI,MINFE,MINCU,MINMN,MINMG,MINZN,
 1 MINV,MINI,MINZR,MINCR,MINNI,MINPB,MINSN
 60355 FORMAT (8X,'MIN: ',I4(A7,1X))
 WRITE (PR,60365) MAXAL,MAXSI,MAXFE,MAXCU,MAXMN,MAXMG,MAXZN,
 1 MAXV,MAXI,MAXZR,MAXCR,MAXNI,MAXPB,MAXSN
 60365 FORMAT (8X,'MAX: ',I4(A7,1X)//)
 WRITE (PR,60375) OTHER1,OTHER2,SPECS1
 60375 FORMAT (13X,A10,2X,A10,42X,'Specification:',[1] ',A30)
WRITE (PRT,60385) MINO1,MINO2,SPECS2
WRITE (PRT,60395) MAXO1,MAXO2,SPECS2
60395 FORMAT (8X,'MAX: ',A7,6X,A7,61X,[3] ',A30)
WRITE (PRT,60405) SPECS4
60405 FORMAT (92X,[4] ',A30)
WRITE (PRT,60415) SPECS5
60415 FORMAT (92X,[5] ',A30)
WRITE (PRT,60425) SCCRTG
60425 FORMAT (19X,'MZN MAX TYP UNITS','SCC Rating: ',A4)
WRITE (PRT,60435) MINYLD,MAXYLD,TYPYLD,YLUNIT
60435 FORMAT('Yield Strength: ',3(A3,2X),A6)
WRITE (PRT,60445) MINTNS,MAXTNS,TYPTNS,TNUNIT
60445 FORMAT(' Tensile Strength: ',3(A3,2X),A6,10X,'NOTES: ',A60)
IF ((ANSWER .EQ. 'F'.OR. (ANSWER .EQ. 'f')) THEN
 GO TO 60460
END IF

60447 FORMAT ('Hit the RETURN key to continue printing, To stop',
1 ' printing type S, then Hit the RETURN key: ','$')
ACCEPT 60450,ANSWER
60450 FORMAT (A)
IF ((ANSWER .EQ. 'S'.OR. (ANSWER .EQ. 's'))) THEN
 CALL LIBS$PRINT('set term/width=80')
 RETURN
END IF
60460 GO TO 60200

C** * * * **
C Option 7
C For a range of foreign alloys, find all similar U.S. alloys
C
C This is Search 1.c in the specifications
C
C The following logic is used:
C 1. Accept the first and last of the foreign Designations
C as input
C
C Just search for all U.S. alloys with their designation
C lying within the specified range, then print
C
C** * * * **
TYPE *,'Enter the lower value of the foreign designation range'
ACCEPT 70025,DSGKEY1

70025 FORMAT (A)
IF ((DSGKEY1(1:1) .EQ. 'P') .OR. (DSGKEY1(1:1) .EQ. 'p')) THEN
 GO TO 400
END IF

TYPE *,'Enter the upper value of the foreign designation range'
ACCEPT 70027,DSGKEY2

70027 FORMAT (A)
type *,'Searching for records, Please stand by'
CALL DTR$COMMAND (DAB, 'FIND ICMD WITH COUNTRY = "17" AND 'ICMD AND ICMD;',DOMAIN,DSGKEY1,DSGKEY2)
CALL DTR$DTR (DAB, DTR$M_OPT_CMD)

C Check for possible datatrieve errors
IF ((DAB$CONDITION .NE. %LOC(DTR$_SUCCESS)) .OR.
1 (DAB$CONDITION .EQ. %LOC(DTR$_ERROR))) THEN
 CALL DTR$DTR (DAB, DTR$M_OPT_CMD)
 type *,'There was a Fatal Datatrieve ERROR'
 type *,'Hit RETURN to restart'
 accept 70035,answer
70035 format (A)
RETURN
END IF

C Investigate the number of records found,
C if no records were found then return to try another Rse
CALL DTR$COMMAND (DAB, 'STORE PT1 USING NUM = COUNT;')
IF (DAB$W_STATE .EQ. DTR$STL_PGET) THEN
 CALL DTR$GET_PORT (DAB, NUM_RECS)
 CALL DTR$DTR (DAB, DTR$M_OPT_CMD)
END IF
IF (NUM_RECS .EQ. 0) THEN
 type *,'No U.S. alloys found in that designation range'
 type *,'Hit RETURN to try another range'
 accept 70045,answer
70045 format (A)
GO TO 70000
END IF

C Program will branch here only if RSE has been successful,

70100 TYPE 70105
70105 FORMAT ('/ Select one of the following options: then hit RETURN'/
1 ' 1 = Print only standard fields'
2 '/ 2 = Print all fields'
3 ' 3 = Do not print, just return to the previous menu'/)
ACCEPT 70115,CHOICE

70115 FORMAT (A)
IF ((CHOICE .EQ. 'P') .OR. (CHOICE .EQ. 'p')) THEN
 GO TO 400
END IF
IF ((CHOICE .NE. '1') .AND. (CHOICE .NE. '2')) THEN
 type *,'Wrong entry, hit RETURN to try again'
 accept 70125,answer
70125 format (A)
go to 70100

END IF

CALL DTR$COMMAND (DAB, 'PORT2 = CURRENT;')

C Check for possible dattrieve errors

IF (((DAB$_L_CONDITION .NE. %LOC(DTR$_SUCCESS)) .OR.
1 (DAB$_L_CONDITION .EQ. %LOC(DTR$_ERROR))) THEN
 CALL DTRSDTR (DAB, DTR$_M_OPT_CMD)
 type *, 'There was a Fatal Dattrieve ERROR'
 type *, 'Hit RETURN to restart'
 accept 70135, answer
END IF

C Choose between screen display and printed report

70140 TYPE 70145
70145 FORMAT (/' Do you want to display the report on the screen'
1 /' or print it to a temporary file for later use?'
2 // 'Please respond with S or F://'

accept 70155, answer

C Input Error-Trap

IF (((ANSWER .NE. 'S') .AND. (ANSWER .NE. 's')) .AND.
1 ((ANSWER .NE. 'F') .AND. (ANSWER .NE. 'f'))) THEN
 type *, 'Wrong entry, please hit RETURN and try again'
 accept 70165, answer
END IF

IF ((ANSWER .EQ. 'F') .OR. (ANSWER .EQ. 'f')) THEN
 WRITE (*,10715)
 ACCEPT 70175, FILENAME

70175 FORMAT (A)
 PRT = 3
 OPEN (3, FILE=FILENAME, STATUS='NEW')
ELSE
 PRT = 5
END IF

CALL LIBERASE_PAGE (1,1)
IF (((ANSWER .EQ. 'S') .OR. (ANSWER .EQ. 's'))) THEN
 CALL LIBSPAWN ('SET TERM/WIDTH=132')
END IF
IPAGE = 0
RECPRT = 50

70200 IF (DABSW_STATE .NE. DTR$_K_STLPGET) THEN
 type *, '
The Report has been printed'
 type *, 'Hit the RETURN key to continue'
 accept 70205, answer
END IF

CALL DTR$COMMAND (DAB, 'RELEASE ALL;')
IF (OPENPORT) THEN
 CALL DTR$COMMAND (DAB, 'FINISH PORT2;')
 CALL DTRSDTR (DAB, DTR$_M_OPT_CMD)
 OPENPORT = .FALSE.
END IF
CALL LIBSPAWN ('SET TERM/WIDTH=80')
RETURN
END IF

70210 CALL DTR$GET_PORT (DAB, @REF(FULLREC))

C Extract the country code from the fortran buffer to be used to
C pull out the country literal from the literal pool
CNTRY = CONTRY
CALL JsCNTRY (cntry,icntry,Xcntry)
IF (CHOICE .EQ. 2) THEN
 go to 70300
end if

C This section for abbreviated report
RECPRT = RECPRT+1
IF (RECPRT .GT. 50) THEN
 RECPRT = 1
 IPAGE = IPAGE+1
 CALL LIB$ERASE_PAGE (1,1)
 WRITE (PRT,70215) IPAGE,dsgkey1,dsgkey2

70215 FORMAT ('NASA ALLOY DATABASE ABBREVIATED REPORT',
 1 ' ',Page ',I4,
 2 '/ List of all U.S. Alloys that are similar'
 3 ' to the foreign alloys in the range'
 4 ' ',A30,' =&< designation >= ',A30,
 5 ' Rec. No. Designation',20X,'US_Equivalent',12X,
 6 ' Temper',10X,'Country',9X,'Form'/)
END IF

WRITE (PRT,70225) FADB,DESG,EQUIV,TEMPR,XCNTRY,FORMNUM
70225 FORMAT (' ',A7,2X,A30,1X,A25,1X,A15,1X,A15,'/',A30)
GO TO 70200

C This section for full report
70300 CALL LIB$ERASE_PAGE (1,1)
 IPAGE = IPAGE+1
 WRITE (PRT,70305) IPAGE,dsgkey1,dsgkey2

70305 FORMAT ('NASA ALLOY DATABASE FULL REPORT',
 1 ' ',Page ',I4,
 2 '/ List of all U.S. Alloys that are similar'
 3 ' to the foreign alloys in the range'
 4 ' ',A30,' =&< designation >= ',A30/
END IF

WRITE (PRT,70315) FADB,DESG,EQUIV,XCNTRY
70315 FORMAT (' Rec#: ',A7,' Designation: ',A30,' US_Equivalent: ',A25,
 1 'Country: ',A15/
WRITE (PRT,70325) ALTYP,TEMPR,FORMNUM,ORIGIN
70325 FORMAT (' Type: ',A4,' Temper: ',A15,' Form: ',A30,
 1 'Orig. Org: ',A10/
WRITE (PRT,70335)
70335 FORMAT (' COMPOSITION:
 WRITE (PRT,70345)
70345 FORMAT (' [Wt.%]',6X,'AI',6X,'Si',6X,'Fe',6X,'Cu',6X,'Mn',6X,
 1 'Mg',6X,'Zn',6X,'V',6X,'Ti',6X,'Zr',6X,'Cr',6X,'Ni',6X,2
 'Pb',6X,'Sn')
WRITE (PRT,70355) MINAL,MINSI,MINFE,MINCU,MINMN,MINMG,MINZN,
1 MINV,MINTI,MINZR,MINCR,MINNI,MINPB,MINSN
70355 FORMAT (' MIN: ',14(A7,1X)/}
WRITE (PRT,70365) MAXAL,MAXSI,MAXFE,MAXCU,MAXMN,MAXMG,MAXZN,
1 MAXV,MAXTI,MAXZR,MAXCR,MAXNI,MAXPB,MAXSN
70365 FORMAT (' MAX: ',14(A7,1X)/)
WRITE (PRT,70375) OTHER1,OTHER2,SPECS1
70375 FORMAT (13X,A10,2X,A10,42X,'Specifications:[1] ',A30)
WRITE (PRT,70385) MINO1,MINO2,SPECS2
70385 FORMAT (8X,'MIN: ',A7,6X,A7,61X,'[2] ',A30)
WRITE (PRT,70395) MAXO1,MAXO2,SPECS2
70395 FORMAT (8X,'MAX: ',A7,6X,A7,61X,'[3] ',A30)
WRITE (PRT,70405) SPECS4
70405 FORMAT (92X,'
WRITE (PRT,70415) SPECS5
70415 FORMAT (92X,'
WRITE (PRT,70425) SCCRTG
70425 FORMAT (19X,'MIN MAX TYP UNITS',11X,'SCC Rating: ',A4)
WRITE (PRT,70435) MINYLD,MAXYLD,TYPYLD,YLUNIT
70435 FORMAT (' Yield Strength: ',3(A3,2X),A6)
WRITE (PRT,70445) MINTNS,MAXTNS,TYPTNS,TNUNIT
70445 FORMAT (' Tensile Strength: ',3(A3,2X),A6,10X,'NOTES: ',A60)

IF ((ANSWER .EQ. 'F') .OR. (ANSWER .EQ. 'f')) THEN
 GO TO 70460
END IF

format (' Hit the RETURN key to continue printing. To stop',
1 ' printing type S, then Hit the RETURN key: ',$)
accept 70450,answer

IF ((answer .eq. 'S') .OR. (answer .eq. 's')) then
 call lib$spawn ('set term/width=80')
return
end if

70460 GO TO 70200

C *** * * * ***
C Option 8
C For a range of foreign alloys, find all similar foreign alloys
C This is Search 1.d in the specifications
C NOTE; WE ARE HOLDING THIS SEARCH UNTIL FURTHER CLEARANCE
C IT SEEMS TO BE AMBIGUOUS OR REDUNDANT
C ***

C *** * * * ***
C Option 9
C For a range of U.S. alloys, find all similar foreign alloys
C This is Search 1.h in the specifications
C The following logic is used:
C 1. Accept the first and last of the U.S. Designations as input
C Just search for all foreign alloys with their U.S. equivalent
C lying within the specified range of designations, then print
C ***

79000 CALL LIB$ERASE_PAGE (1,1)
Producing Standard Reports: [9]

For a range of U.S. alloys, find all similar foreign alloys

Enter the range of U.S. designations, within double quotation marks

Or, To return to the previous Menu, enter P

Then hit the RETURN key

TYPE *,'Enter the lower value of the U.S. designation range'

ACCEPT 79025,DSGKEY1

IF ((DSGKEY1(1:1) .EQ. 'P') .OR. (DSGKEY1(1:1) .EQ. 'p')) THEN
 GO TO 400
END IF

TYPE *,'Enter the upper value of the foreign designation range'

ACCEPT 79027,DSGKEY2

CALL DTR$COMMAND (DAB, 'FIND I CMD WITH COUNTRY NOT = "17" AND 1 DESIG BT !CMD AND I CMD;',DOMAIN,DSGKEY1,DSGKEY2)

CALL DTR$DTR (DAB, DTR$OPT_CMD)

C Check for possible datatrieve errors

IF ((DAB$CONDITION .NE. %LOC(DTR$SUCCESS)) .OR. (DAB$CONDITION .EQ. %LOC(DTR$ERROR))) THEN
 CALL DTRSDTR (DAB, DTR$OPT_CMD)
 type *,'There was a Fatal Datatrieve ERROR'
 type *,'Hit RETURN to restart'
 accept 79035,answer
END IF

C Investigate the number of records found,
C if no records were found then return to try another Rse

CALL DTR$COMMAND (DAB, 'STORE PTI USING NUM = COUNT;')

IF (DAB$W STATE .EQ. DTR$STL_PGET) THEN
 CALL DTR$GET_PORT (DAB, NUM_RECS)
 CALL DTR$DTR (DAB, DTR$OPT_CMD)
END IF

IF (NUM_RECS .EQ. 0) THEN
 type *,'No foreign alloys found in that designation range'
 type *,'Hit RETURN to try another range'
 accept 79045,answer
END IF

RETURN
C Program will branch here only if RSE has been successful,

```
GO TO 79000
END IF
```

```
79100 TYPE 79105
79105 FORMAT (/ ' Select one of the following options: then hit RETURN'
1        '/: 1 = Print only standard fields'
2        '/: 2 = Print all fields'
3        '/: P = Do not print, just return to the previous menu')
```

```
ACCEPT 79115,CHOICE
79115 FORMAT (A)
    IF ((CHOICE .EQ. 'P') .OR. (CHOICE .EQ. 'p')) THEN
        GO TO 400
    END IF
    IF ((CHOICE .NE. '1') .AND. (CHOICE .NE. '2')) THEN
        type *, 'Wrong entry, hit RETURN to try again'
        accept 79125,answer
    ELSE
        CALL DTR$COMMAND (DAB, 'PORT2 = CURRENT;')
        C Check for possible datatrieve errors
        IF ((DAB$CONDITION .NE. %LOC(DTR$ SUCCESS)) .OR.
            (DAB$CONDITION .EQ. %LOC(DTR$_ERROR))) THEN
            CALL DTR$DTR (DAB, DTR$OPT CMD)
            type *, 'There was a Fatal Datatrieve ERROR'
            type *, 'Hit RETURN to restart'
            accept 79135,answer
        END IF
    END IF
    C Choose between screen display and printed report
    79140 TYPE 79145
    79145 FORMAT (/ ' Do you want to display the report on the screen'
        1        '/: or print it to a temporary file for later use?'
        2        '/: Please respond with S or F:/')
    accept 79155,answer
    79155 format (A)
    C Input Error-Trap
    1        IF ((ANSWER .NE. 'S') .AND. (ANSWER .NE. 's') .AND.
            (ANSWER .NE. 'F') .AND. (ANSWER .NE. 'f')) THEN
            type *, 'Wrong entry, please hit RETURN and try again'
            accept 79165,answer
        ELSE
            IF ((ANSWER .EQ. 'F') .OR. (ANSWER .EQ. 'f')) THEN
                WRITE (*,10715)
                ACCEPT 79175,FILENAME
                79175 FORMAT (A)
                PRT = 3
                OPEN (3,FILE=FILENAME,STATUS='NEW')
            ELSE
```

-109-
END IF
CALL LIB$ERASE_PAGE (1,1)
IF ((ANSWER .EQ. 'S') .OR. (ANSWER .EQ. 's')) THEN
 CALL LIB$SPAWN ('SET TERM/WIDTH=132')
END IF
IPAGE = 0
RECPRT = 50
79200 IF (DAB$W_STATE .NE. DTR$K_STL_PGET) THEN
 type '*', 'The Report has been printed'
 type '*', 'Hit the RETURN key to continue'
 accept 79205, answer
 format (A)
 CALL DTR$COMMAND (DAB, 'RELEASE ALL;')
 IF (OPENPORT) THEN
 CALL DTR$COMMAND (DAB, 'FINISH PORT2;')
 CALL DTR$DTR (DAB,DTR$M_OPT_CMD)
 OPENPORT = .FALSE.
 END IF
 CALL LIB$SPAWN ('SET TERM/WIDTH=80')
RETURN
END IF
79210 CALL DTR$GET_PORT (DAB, %REF(FULLREC))

C Extract the country code from the fortran buffer to be used to
C pull out the country literal from the literal pool
 CNTRY = CONTRY
 CALL jsCNTRY (cntry,icntry,Xcntry)
 IF (CHOICE .EQ. '2') THEN
 go to 79300
 end if

C This section for abbreviated report

 RECPRT = RECPRT+1
 IF (RECPRT .GT. 50) THEN
 RECPRT = 1
 IPAGE = IPAGE+1
 CALL LIB$ERASE_PAGE (1,1)
 WRITE (PRT,79215) IPAGE,dsgkey1,dsgkey2
79215 FORMAT ('1',' NASA ALLOY DATABASE ABBREVIATED REPORT',
 1 ' ', Page ',4,
 2 '/ List of all foreign Alloys that are similar'
 3 ' to the U.S. alloys in the range',
 4 '/ ',A30,' =< designation => ',A30,
 5 '/ Rec. No. Designation',20X,'US_Equivalent',12X,
 6 '/ Temper',10X,'Country',9X,'Form')/
END IF

 WRITE (PRT,79225) FADB,DESG,EQUIV,TEMPR,XCNTRY,FORMNUM
79225 FORMAT (' ',A7,2X,A30,1X,A25,1X,A15,1X,A15,1X,30)
GO TO 79200

C This section for full report

79300 CALL LIB$ERASE_PAGE (1,1)
IPAGE = IPAGE+1
WRITE (PRT,79305) IPAGE,dsgkey1,dsgkey2
79305 FORMAT ('INASA ALLOY DATABASE FULL REPORT',
1 ' Page ',I4,
2 ' List of all U.S. Alloys that are similar',
3 ' to the foreign alloys in the range',,
4 ' ',A30,' =< designation >= ',A30//)

WRITE (PRT,79315) FADB,DESG,EQUIV,XCNTRY
79315 FORMAT (' Rec#: ',A7,' Designation: ',A30,' US_Equivalent: ',A25,
1 ' Country: ',A15/)

WRITE (PRT,79325) ALTYP,TEMPR,FORMNUM,ORIGIN
79325 FORMAT (' Type: ',A4,' Temper: ',A15,' Form: ',A30,
1 ' Orig. Org: ',A10/)

WRITE (PRT,79335)
79335 FORMAT (' COMPOSITION:

WRITE (PRT,79345)
79345 FORMAT (' [Wt.%]',7X,'AI',6X,'Si',6X,'Fe',6X,'Cu',6X,'Mn',6X,
1 ' Mg',6X,'Zn',6X,'V','6X',,'Cr',6X,'Ni',6X,
2 ' Pb',6X,'Sn')

WRITE (PRT,79355) MINAL,MINSI,MINFE,MINCU,MINMN,MINMG,MINZN,
1 MINV,MINTI,MINTZR,MINCR,MINNI,MINPB,MINSN
79355 FORMAT (8X,'MIN: ',A7,6X,AT,61X,'

WRITE (PRT,79365) MAXAL,MAXSI,MAXFE,MAXCU,MAXMN,MAXMG,MAXZN,
1 MAXV,MAXTI,MAXZR,MAXCR,MAXNI,MAXPB,MAXSN
79365 FORMAT (8X,'MAX: ',I4(A7,1X)/)

WRITE (PRT,79375) OTHER1,OTHER2,SPECS1

WRITE (PRT,79385) MINO1,MINO2,SPECS2
79385 FORMAT (8X,'MIN: ',',A7,1X)

WRITE (PRT,79395) MAXO1,MAXO2,SPECS2
79395 FORMAT (8X,'MAX: ',',A7,1X)

WRITE (PRT,79405) SPECS4
79405 FORMAT (92X,'[4] ',A30)

WRITE (PRT,79415) SPECS5
79415 FORMAT (92X,'[5] ',A30)

WRITE (PRT,79425) SCCRTG
79425 FORMAT (19X,'MIN MAX TYP UNITS',I1X,'SCC Rating: ',',A4)

WRITE (PRT,79435) HINYL,MAXYL,TLYPYL,YLUNIT
79435 FORMAT (' Yield Strength: ',3(A3,2X),A6)

WRITE (PRT,79445) HINTN,MAXTN,TYPNTN,TNUNIT
79445 FORMAT (' Tensile Strength: ',3(A3,2X),A6,10X,'NOTES: ',',A60)

IF ((ANSWER .EQ. 'F').OR. (ANSWER .EQ. 'f')) THEN
END IF

END IF

WRITE (PRT,79447)
79447 format ('Hit the RETURN key to continue printing, To stop',
1 ' printing type S, then Hit the RETURN key: ',$)

accept 79450,answer
79450 format (A)
if ((answer .eq. 'S').OR. (answer .eq. 's')) then
call libspawn ('set term/width-80')
return
end if
79460 GO TO 79200
C Build an array with the output from a "SHOW FIELDS" Command
C When the user chooses a field name this array will be searched

80000 CALL LIB$ERASE_PAGE (1,1)
81000 TYPE 81005
81005 FORMAT (T21,' NASA ALLOY DATABASE MANAGEMENT SYSTEM'
1 ' /' Building your own reports:'
2 ' /' Do you wish to see the field names?'
3 ' /' Please respond with Y or N'
4 ' /' When the display begins you may hold the screen'
5 ' at any point'
6 ' /' Type CTRL-S to hold screen, and CTRL-Q to continue'/)

81100 ACCEPT 81105, ANSWER
81105 FORMAT (A)
C Input Error-Trap
81205 IF (((ANSWER .NE. 'Y') .AND. (ANSWER .NE. 'y')) .AND.
((ANSWER .NE. 'N') .AND. (ANSWER .NE. 'n'))) THEN
type *,'Wrong entry, please hit RETURN and try again'
accept 81205, ANSWER
81205 format (A)
END IF

IF ((ANSWER .EQ. 'N') .OR. (ANSWER .EQ. 'n')) THEN
GO TO 82810
END IF

82205 format ('/ Use abbreviated field names that are shown'
1 ' in parenthesis,'
2 ' where no parenthesized name is shown, use'
3 ' the field name shown'/)

82305 format (' Hit the RETURN key to show the fields names'/)

accept 82315, ANSWER
82315 format (A)

82400 CALL DTR$COMMAND (DAB,'SHOW FIELDS !CMD;',DOMAIN)
I = 0
DO WHILE ((DAB$W_STATE .EQ. DTR$K_STL-MSG) .AND.
(DAB$L_CONDITION .EQ. %LOC(DTR$_SHOWTEXT)))
I = I+1
SHOWFLDS(I) = MSG_BUFF(1:DAB$W_MSG_LEN)
CALL DTR$CONTINUE (DAB)
END DO

CALL DTR$DTR (DAB, DTR$M_OPT_CMD)
C Check for possible datatrieve errors
IF (DAB$W_STATE .EQ. DTR$K_STL_MSG) THEN
GO TO 90000
END IF

82500 TYPE 82505
82505 FORMAT (' Do you wish to see the field names again?
1 // ' Please respond with Y or N'
2 // ' Remember, when the display begins'
3 // ' you may hold the screen at any point'/
4 // ' Type CTRL-S to hold screen, and CTRL-Q to continue')

82600 ACCEPT 82605, ANSWER
82605 FORMAT (A)

C Input Error-Trap
IF (((ANSWER .NE. 'Y') .AND. (ANSWER .NE. 'y')) .AND.
 ((ANSWER .NE. 'N') .AND. (ANSWER .NE. 'n'))) THEN
 type *, 'Wrong entry, please hit RETURN and try again'
 accept 82705, answer
82705 FORMAT (A)
GO TO 82500
END IF

IF ((ANSWER .EQ. 'Y') .OR. (ANSWER .EQ. 'y')) THEN
GO TO 82400
END IF

C Erase the Screen and Prompt the user for an RSE - Record
C Selection Expression (Pass this expression to Datatrieve)
82810 CALL LIB$ERASE_PAGE (1,1)
82820 TYPE 82825
82825 FORMAT (T21,' NASA ALLOY DATABASE MANAGEMENT SYSTEM'
 1 // ' Building your own reports:'
 2 // '---------------------'
 3 // ' Please type a record selection expression in the'
 4 // ' following form, and hit RETURN:'
 5 // ' Field-Name1 = Value1 [AND Field_Name2 = Value2 ...]'
 6 // ' You may use any of the following operators -'
 7 // ' > or GT < or LT = or EQUAL BT or Between '
 8 // ' starting with '
 9 // ' CONT or containing'
A // ' Example 1: DESIG = 1050'
B // ' Example 2: DESIG = "A9105" AND COUNTRY = 17'
C // ' Example 3: DESIG = "A9105" AND MIN-SI GT 0.05'
D // ' Example 4: DESIG = 2210 AND MAX-TNS LT 123'
E // ' Example 5: fadb-no = 123'
F // ' Example 6: DESIG CONTAINING abcd ...
G // ' Example 7: DESIG starting with "A19" ...
H // ' To return to the Main Menu, just type R,'
I // ' To read HELP information, just type H,'
J // ' Then Hit the RETURN Key')

82830 READ 82835, EXPRLINE
82835 FORMAT (A)

IF ((EXPRLINE .EQ. 'R') .OR. (EXPRLINE .EQ. 'r')) THEN
RETURN
END IF

IF ((EXPRLINE .EQ. 'h') .OR. (EXPRLINE .EQ. 'H')) THEN
 CALL LIB$ERASE_PAGE (1,1)
 CALL LIB$SPAWN('bldownhelp')
GO TO 82810
END IF
type *,'Searching for record - please stand by'

82840 CALL DTRS$COMMAND (DAB, 'FIND CMD WITH CMD;',
1 DOMAIN, EXPRLINE)
CALL DTRS$DTR (DAB, DTRS$OPT_CMD)

C Check for possible datatrieve errors

IF ((DAB$L_CONDITION .NE. %LOC(DTRS_SUCCESS)) .OR.
1 (DAB$L_CONDITION .EQ. %LOC(DTRS_ERROR))) THEN
 GO TO 90100
END IF

C Investigate the number of records found,
C if no records were found then return to try another Rse

82900 CALL DTRS$COMMAND (DAB, 'STORE PT1 USING NUM = COUNT;')
IF (DAB$W_STATE .EQ. DTRS$STL_PGET) THEN
 CALL DTRS$GET_PORT (DAB, NUM_RECS)
 CALL DTRS$DTR (DAB, DTRS$OPT_CMD)
END IF

IF (NUM_RECS .EQ. 0) THEN
 type *,'Please hit RETURN to try another selection'
 accept 82905,answer
 GO TO 82810
END IF

C Program will branch here only if RSE has been successful,

83000 TYPE 83005
83005 FORMAT ('Select one of the following options:'
1 / 1 = Print all fields'
2 / 2 = Print only selected fields'
3 / 'Note: '
4 / ' Under option 2, - It is best to list'
5 / ' only a few fields at one time;'
6 / ' As the total size of all selected fields'
7 / ' approaches 130 characters'
8 / ' The report line will wrap around, making it'
9 / ' difficult to read')

83100 ACCEPT 83105,CHOICE
83105 FORMAT (A)

C Input Error-Trap

IF (((CHOICE .NE. '1') .AND. (CHOICE .NE. '2'))) THEN
 type *,'Wrong entry, please hit RETURN and try again'
 accept 83205,answer
83205 format (A)
 GO TO 83000
END IF

IF (CHOICE .EQ. '1') THEN
 GO TO 84400
END IF
C Print only selected fields:
C Prompt user for fields to show on report

83300 TYPE 83305
83305 FORMAT (/' Type all the fields you wish to show on the report'
1 /' in the order in which you wish to list them,'
2 // Separate the fields by commas'/)

83400 ACCEPT 83405,PRTFLDS
83405 FORMAT (A)

C Choose between screen display and printed report

83500 TYPE 83505
83505 FORMAT (/' Do you want to display the report on the screen'
1 /' or print it to a temporary file for later use?'
2 // Please respond with S or F'/)

83600 ACCEPT 83605,ANSWER
83605 FORMAT (A)

C Input Error-Trap

IF (((ANSWER .NE. 'S') .AND. (ANSWER .NE. 's')) .AND.
1 ((ANSWER .NE. 'F') .AND. (ANSWER .NE. 'f'))) THEN
type *, 'Wrong entry, please hit RETURN and try again'
accept 83705,answer
83705 format (A)
 GO TO 83500
END IF

IF ((ANSWER .EQ. 'F') .OR. (ANSWER .EQ. 'f')) THEN
GO TO 84200
END IF

C This section for screen display only

83800 CALL DTR$COMMAND (DAB, 'FOR CURRENT PRINT !CMD;'
1
 CALL DTR$DTR (DAB, DTR$OPT_CMD)

C Check for possible datatrieve errors

IF ((DAB$CONDITION .NE. %LOC(DTR$SUCCESS)) .OR.
1 (DAB$CONDITION .EQ. %LOC(DTR$ERROR))) THEN
GO TO 90100
END IF

83900 TYPE 83905
83905 FORMAT (' Do you now wish to print the same report?'
1 // Please respond with Y or N,'
2 // Then hit the RETURN key'/)

84000 ACCEPT 84005,ANSWER
84005 FORMAT (A)

C Input Error-Trap

IF (((ANSWER .NE. 'Y') .AND. (ANSWER .NE. 'y'))) .AND.
1
((ANSWER .NE. 'N') .AND. (ANSWER .NE. 'n')) THEN
 type *, 'Wrong entry, please hit RETURN and try again'
 accept 84105, answer
 format (A)
 GO TO 83900
END IF

IF ((ANSWER .EQ. 'N') .OR. (ANSWER .EQ. 'n')) THEN
 RETURN
END IF

C This section for Printed Report
C Pass the earlier RSE on to Datatrieve via DTR$COMMAND

84200 CALL DTR$COMMAND (DAB, 'REPORT CURRENT ON NASAREP.TXT; ')

C Check for possible datatrieve errors

 IF (DAB$W_STATE .EQ. DTR$K_STL.MSG) THEN
 GO TO 90000
 END IF

C Prompt user for a Report Title

84210 TYPE 84215
84215 FORMAT (//', Enter the report title enclosed in quotation marks'
 1 //', Separate lines with a slash '/'
 2 //', Example: "LIST OF FOREIGN ALLOYS WITH"/"DESIGNATION'
 3 ', = 1090'//)

84220 READ 84225, LGTH, REPHEADER
84225 FORMAT (Q, A)

C Now Set the Report Heading Based on the entry

84230 IF (LGTH .NE. 0) THEN
 CALL DTR$COMMAND (DAB, 'SET REPORT_NAME = !CMD;', REPHEADER)
END IF

C Check for Datatrieve Errors Again

 IF (DAB$W_STATE .EQ. DTR$K_STL.MSG) THEN
 GO TO 90000
 END IF

C Set additional Print Parameters

84240 CALL DTR$COMMAND (DAB, 'SET COLUMNS_PAGE = 132')

C Check for possible datatrieve errors

 IF (DAB$W_STATE .EQ. DTR$K_STL.MSG) THEN
 GO TO 90000
 END IF

C Pass the earlier print list to Datatrieve

84250 CALL DTR$COMMAND (DAB, 'PRINT !CMD;', PRTFLDS)

C Check for possible datatrieve errors

 IF (DAB$W_STATE .EQ. DTR$K_STL.MSG) THEN
 GO TO 90000
END IF

CALL DTR$COMMAND (DAB, 'END_REPORT;')
CALL DTR$DTR (DAB, DTR$M_OPT_CMD)

C Check for possible datatrieve errors
IF (DAB$STATE .EQ. DTR$K_STL_MSG} THEN
 GO TO 90000
END IF

CALL DTR$COMMAND (DAB, 'END REPORT;')
CALL DTR$DTR (DAB, DTR$M_OPT_CMD)

C Check for possible datatrieve errors
IF (DAB$STATE .EQ. DTR$K_STL_MSG) THEN
 GO TO 90000
END IF

format ('The report has been successfully generated'
 1 '// into your directory as NASAREP.TXT'
 2 '// You may browse it with EDT editor or'
 3 '// print it with "PRINT NASAREP.TXT"'
 4 '// Hit the RETURN key to continue')

accept 84285,answer
format (A)
GO TO 82810

C**
C Print All Fields - under Building your own reports
C**

C Choose between screen display and printed report

TYPE 84405
format ('Do you want to display the report on the screen'
 1 '// or print it to a temporary file for later use?'
 2 '// Please respond with S or F:')

accept 84415,answer
format (A)
GO TO 84400

ENDIF

ENDIF

WRITE (*,84435)
format ('Your report will be stored in a temporary'
 1 '// data file e.g. PRTTEMP.DAT which'
 2 '// you may browse with EDT or print on your'
 3 '// local printer i.e. PRINT PRTTEMP.DAT'
 4 '// Choose and enter a name for your'
 5 '// temporary print file, e.g. PRTTEMP')

accept 84445,FILENAME
format (A)
PRT = 3
OPEN (3,FILE=FILENAME,STATUS='NEW')
PRT = 5
END IF

C Step 1:
84500 CALL DTR$COMMAND (DAB, 'PORT2 = CURRENT;')
UNITY = 'Wt %'

C Check for possible datatrieve errors
IF ((DAB$CONDITION .NE. %LOC(DTR$ SUCCESS)) .OR.
1 (DAB$CONDITION .EQ. %LOC(DTR$_ERROR))) THEN
CALL DTR$DTR (DAB, DTR$M_OPT_CMD)
 type *,'DTR ERROR'
 type *,'Just hit RTN to continue'
accept 84515,answer
84515 format (A)
RETURN
END IF

C Step 2:
C The above command causes the DTR$K_STL_PGET stall point
C While at this DTR stall point, we will continue to use
C DTR$GET_PORT to copy one record at a time from the port
C into our Fortran record buffer FULLREC

C IF NEXT CONDITION IS TRUE THEN RESET DOMAIN B4 RETURN
84520 IF (DAB$W_STATE .NE. DTR$K_STL_PGET) THEN
 type *,'- no more records to print'
 type *,'Just hit RETURN to go back to the previous menu'
accept 84535,answer
84535 format (A)
CALL DTR$COMMAND (DAB, 'RELEASE ALL;')
IF (OPENPORT) THEN
 CALL DTR$COMMAND (DAB, 'FINISH PORT2;')
 CALL DTR$DTR (DAB,DTR$M_OPT_CMD)
END IF
RETURN
END IF

84540 CALL DTR$GET_PORT (DAB, %REF(FULLREC))

CNTRY = CONTRY
CALL jsCNTRY (cntry,icntry,Xcntry)

C Print the detail line from the record buffer
84600 CALL LIB$ERASE_PAGE (1,1)
84610 WRITE (PRT,84615)
84615 FORMAT (T20,'NASA ALLOY DATABASE FULL REPORT'
 1 /T20,'-----------------------------')
 WRITE (PRT,84625) UNS,FADB,DES,G,TEM,F$4,ALY
84625 FORMAT ('/' UNS No. = ',A6,31X,'FADB Ref. No. = ',A7,
 1 // Designation = ',A30,3X,'Temper = ',A15,
 2 // Form = ',A30,2X,'Alloy type = ',A20)
 WRITE (PRT,84635) STD,EQUIV,XCNTRY,ORIGIN
84635 FORMAT ('/' Standard No. = ',A10,11X,
'U.S. Equivalent = ',A25,
'Country of Origin = ',A15,2X,
'Originating Organization = ',A10}
WRITE (PRT,84645) SPECS1,SPECS2,SPECS3,SPECS4
84645 FORMAT ('// Specifications: '2A30/17X,2A30)
WRITE (PRT,84655) UNITY,MINAL,MAXAL,MINSI,MAXSI,
A B C D

84655 FORMAT (/,' Element','Minimum Maximum',4X,'Unit = ',A4)
4 // Al (Aluminum) ',6X,A7,6X,A7,3X,
5 'Si (Silicon) '5X,A7,4X,A7
6 // Fe (Iron) ',6X,A7,6X,A7,3X,
7 'Cu (Copper) '5X,A7,4X,A7
8 // Mn (Manganese) ',6X,A7,6X,A7,3X,
9 // Mg (Magnesium) ',5X,A7,4X,A7
A B C D

84665 FORMAT ('// Property','11X, 'Minimum Maximum','4X,
1 ' Typical Units'
2 // ',11X, '-------- '-------- ','4X,
3 '-------- '-------- '
4 // Yield Strength ',3(3X,A3,4X),A6
5 // Tensile Strength ',3(3X,A3,4X),A6
6 // SCC Rating ',3X,A4
7 // Data References ',3(2X,A3,2X),A6
8 // Notes: ',A60/)

C The remaining options are for Screen Reports only
C So if printing reports just go back from here
IF ((ANSWER .EQ. 'F') .OR. (ANSWER .EQ. 'f')) THEN
GO TO 84520
END IF

WRITE (*,84675)
84675 FORMAT ('// You may continue the report or return to'
1 ' the Main Menu from this point'
2 // Select one of the following: '
3 ' C = Continue; M = Return to the Main Menu')
84680 ACCEPT 84685,ANSWER
84685 FORMAT (A)
C Input Error-Trap

IF (((ANSWER .NE. 'M') .AND. (ANSWER .NE. 'm')) .AND.
 ((ANSWER .NE. 'C') .AND. (ANSWER .NE. 'c'))) THEN
 type *, 'Wrong entry, please hit RETURN and try again'
 accept 84695, answer

END IF

84695 format (A)
GO TO 84670

IF (((ANSWER .EQ. 'M') .OR. (ANSWER .EQ. 'm'))) THEN
 CALL DTR$COMMAND (DAB, 'RELEASE ALL;')
 IF (OPENPORT) THEN
 CALL DTR$COMMAND (DAB, 'FINISH PORT2;')
 CALL DTR$DTR (DAB, DTR$M_OPT_CMD)
 OPENPORT = .FALSE.
 END IF
 RETURN
END IF

84700 TYPE 84705
84705 FORMAT (/* Do you wish to see the same record again?: */
 ' Respond with Y or N' / ' When the display begins'
 ' you may hold the screen at any point'
 ' Type CTRL-S to hold screen, and CTRL-Q to continue')

ACCEPT 84715, ANSWER

84715 FORMAT (A)
C Input Error-Trap

IF (((ANSWER .NE. 'Y') .AND. (ANSWER .NE. 'y')) .AND.
 ((ANSWER .NE. 'N') .AND. (ANSWER .NE. 'n'))) THEN
 type *, 'Wrong entry, please hit RETURN and try again'
 accept 84725, answer

END IF

84725 format (A)
GO TO 84700

IF (((ANSWER .EQ. 'Y') .OR. (ANSWER .EQ. 'y'))) THEN
 GO TO 84600
ELSE
 GO TO 84520
END IF

C Below is the general error message handling routine
C Call the Terminal Server to handle messages at the end of the report
90000 CALL DTR$DTR (DAB, DTR$M_OPT_CMD)
C If there was any error then prompt user to retry again
IF ((DABL$L_CONDITION .EQ. %LOC(DTR$_Success)) .AND.
 (DABL$L_CONDITION .NE. %LOC(DTR$_Error))) THEN
 RETURN
END IF

90100 TYPE 90105
90105 FORMAT (' There was a Datatrieve error, ' / ' Do you wish to try again? ' / ' Please respond with Y or N'/)
accept 90205, answer

90205 format (A)
C Input Error-Trap

IF (((ANSWER .NE. 'Y') .AND. (ANSWER .NE. 'y')) .AND.
 ((ANSWER .NE. 'N') .AND. (ANSWER .NE. 'n'))) THEN
 type *, 'Wrong entry, please hit RETURN and try again'
 accept 90305, answer

END IF

90305 format (A)
GO TO 90100
END IF

IF ((ANSWER .EQ. 'Y') .OR. (ANSWER .EQ. 'y')) THEN
GO TO 100
END IF

90999 RETURN
END

C**
C SUBROUTINE PRINTFEW
C**
C Module Name: SBPRINTFEW.FOR
C Date Written: August XX, 1985
C Designer/Programmer: Joseph K. Amanfu, Fisk University, Nashville
C Modified by J. Springer 6/9/86
C
C**

SUBROUTINE JSPRTFEW (prt)
INTEGER RECPRT
INTEGER IPAGE
INTEGER PRT
CHARACTER*15 XCNTRY

C FULLREC is the space defined to receive the record from
C the Datatrieve buffer
INCLUDE '[NASA3.JSEXREC]FULLREC5.INC'

COMMON/DATAREC/FULLREC
COMMON/COUNTRY/XCNTRY
COMMON/KOUNTS/IPAGE,RECPRT
RECPRT = RECPRT+1
IF (RECPRT .GT. 50) THEN
 RECPRT = 1
 IPAGE = IPAGE+1
 CALL LIB$ERASE PAGE (1,1)
 WRITE (PRT,205) IPAGE, Xcntry
 205 FORMAT ('INASA ALLOY DATABASE ABBREVIATED REPORT',
 1 ' Page ',I4,
 2 ' List of Alloys from ',A15
 3 ' Rec. No. Designation',20X,'US Equivalent',12X,
 4 'Temper',10X,'Country',9X,'Form'/)
END IF
WRITE (PRT,1005) FADB,DESG,EQUIV,TEMPR,XCNTRY,FORMNUM
1005 FORMAT (' ',A7,2X,A30,1X,A25,1X,A15,1X,A15,1X,A15,1X,A30)
RETURN
END

C Declares FULLREC buffer and variable equivalences for database
C subroutines using this method to transfer data between subroutines
C or between Datatrieve and a subroutine.
J. Springer - 6/11/86
C
C Revised to match extended record with addition elements and altered
C miscellaneous field length.
C
C Revised to allow for increased tensile, yield, and SCC field widths.
Revised 9/25/87 to add US_TEMP_EQV, IRR_DESG, and READY fields.

Revised July 89 to match NASAREC5

CHARACTER*1 FULLREC (836)
(Note that the size of fullrec is 3 characters larger than the Datatrieve record size since the 8 character date field is converted to an 11 character string when output.)

CHARACTER*30 DESG
CHARACTER*7 FADB
CHARACTER*6 UNS
CHARACTER*30 FORMNUM
CHARACTER*15 TEMPR
CHARACTER*5 ALTP
character*20 ALCAT
CHARACTER*10 STATUS
CHARACTER*10 ORIGIN
CHARACTER*2 CONTRY
CHARACTER*20 EQUIV
CHARACTER*15 EQVTEMP
character*2 EQVRATE
CHARACTER*6 IRRDESG
character*20 ALTDESIG
CHARACTER*20 SPECS1
CHARACTER*20 SPECS2
CHARACTER*20 SPECS3
CHARACTER*20 SPECS4
CHARACTER*20 SPECS5
CHARACTER*1 UNITS
CHARACTER*7 MINAL
CHARACTER*7 MAXAL
CHARACTER*7 MINSI
CHARACTER*7 MAXSI
CHARACTER*7 MINFE
CHARACTER*7 MAXFE
CHARACTER*7 MINC
CHARACTER*7 MAXC
CHARACTER*7 MINCO
CHARACTER*7 MAXC
CHARACTER*7 MAXCO
CHARACTER*7 MINMO
CHARACTER*7 MAXMO
CHARACTER*7 MINW
CHARACTER*7 MAXW
CHARACTER*7 MINP
CHARACTER*7 MAXP
CHARACTER*7 MINS
CHARACTER*7 MAXS
CHARACTER*7 MINB
CHARACTER*7 MAXB
CHARACTER*7 MINBE
CHARACTER*7 MAXBE
CHARACTER*7 MINGA
CHARACTER*7 MAXGA
CHARACTER*10 OTHER1
CHARACTER*7 MINO1
CHARACTER*7 MAXO1
CHARACTER*10 OTHER2
CHARACTER*7 MINO2
CHARACTER*7 MAXO2
CHARACTER*10 OTHER3
CHARACTER*7 MINO3
CHARACTER*7 MAXO3
CHARACTER*4 MINYLD
CHARACTER*4 MAXYLD
CHARACTER*4 TYPYLD
CHARACTER*6 YLUNIT
CHARACTER*4 MNINTNS
CHARACTER*4 MAXINTNS
CHARACTER*4 TYINTNS
CHARACTER*6 TNUNIT
CHARACTER*2 ELONG
CHARACTER*6 ELTEST
CHARACTER*3 MINHARD
CHARACTER*3 MAXHARD
CHARACTER*3 TYPHARD
CHARACTER*5 HARDUNIT
CHARACTER*3 EQVREF
CHARACTER*3 REFR1
CHARACTER*3 REFR2
CHARACTER*60 ALNOTES
CHARACTER*1 READY
character*11 UPDATE
EQUIVALENCE (FULLREC(1), DESG)
EQUIVALENCE (FULLREC(31), FADB)
EQUIVALENCE (FULLREC(38), UNS)
EQUIVALENCE (FULLREC(44), FORMNUM)
EQUIVALENCE (FULLREC(74), TEMPR)
EQUIVALENCE (FULLREC(89), ALTYPER)
equivalence (fullrec(94), ALCAT)
EQUIVALENCE (FULLREC(114), STATUS)
EQUIVALENCE (FULLREC(124), ORIGIN)
EQUIVALENCE (FULLREC(134), CONTRY)
EQUIVALENCE (FULLREC(136), EQUIV)
EQUIVALENCE (FULLREC(156), EQVTEMP)
EQUIVALENCE (FULLREC(171), EQVRATE)
EQUIVALENCE (FULLREC(173), IRRDESIG)
EQUIVALENCE (FULLREC(179), ALTDESIG)
EQUIVALENCE (FULLREC(199), SPECS1)
EQUIVALENCE (FULLREC(219), SPECS2)
EQUIVALENCE (FULLREC(239), SPECS3)
EQUIVALENCE (FULLREC(259), SPECS4)
EQUIVALENCE (FULLREC(279), SPECS5)
EQUIVALENCE (FULLREC(299), UNITS)
EQUIVALENCE (FULLREC(300), MINAL)
EQUIVALENCE (FULLREC(307), MAXAL)
EQUIVALENCE (FULLREC(314), MINSI)
EQUIVALENCE (FULLREC(321), MAXSI)
EQUIVALENCE (FULLREC(328), MINFE)
EQUIVALENCE (FULLREC(335), MAXFE)
EQUIVALENCE (FULLREC(342), MINCU)
EQUIVALENCE (FULLREC(349), MAXCU)
EQUIVALENCE (FULLREC(356), MINMN)
EQUIVALENCE (FULLREC(363), MAXMN)
EQUIVALENCE (FULLREC(370), MINMG)
EQUIVALENCE (FULLREC(377), MAXMG)
EQUIVALENCE (FULLREC(384), MINZN)
EQUIVALENCE (FULLREC(391), MAXZN)
EQUIVALENCE (FULLREC(398), MINV)
EQUIVALENCE (FULLREC(405), MAXV)
EQUIVALENCE (FULLREC(412), MINTI)
EQUIVALENCE (FULLREC(419), MAXTI)
EQUIVALENCE (FULLREC(426), MINNR)
EQUIVALENCE (FULLREC(433), MAXNR)
EQUIVALENCE (FULLREC(440), MINCR)
EQUIVALENCE (FULLREC(447), MAXCR)
EQUIVALENCE (FULLREC(454), MINNI)
EQUIVALENCE (FULLREC(461), MAXNI)
EQUIVALENCE (FULLREC(468), MINPB)
EQUIVALENCE (FULLREC(475), MAXPB)
EQUIVALENCE (FULLREC(482), MINSN)
EQUIVALENCE (FULLREC(489), MAXSN)
EQUIVALENCE (FULLREC(496), MINC)
EQUIVALENCE (FULLREC(503), MAXC)
EQUIVALENCE (FULLREC(510), MINCO)
EQUIVALENCE (FULLREC(517), MAXCO)
EQUIVALENCE (FULLREC(524), MINMO)
EQUIVALENCE (FULLREC(531), MAXMO)
EQUIVALENCE (FULLREC(538), MINW)
EQUIVALENCE (FULLREC(545), MAXW)
EQUIVALENCE (FULLREC(552), MINP)
EQUIVALENCE (FULLREC(559), MAXP)
EQUIVALENCE (FULLREC(566), MINS)
EQUIVALENCE (FULLREC(573), MAXS)
EQUIVALENCE (FULLREC(580), MINB)
EQUIVALENCE (FULLREC(587), MAXB)
EQUIVALENCE (FULLREC(594), MINBE)
EQUIVALENCE (FULLREC(601), MAXBE)
EQUIVALENCE (FULLREC(608), MINGA)
EQUIVALENCE (FULLREC(615), MAXGA)
EQUIVALENCE (FULLREC(622), OTHER1)
EQUIVALENCE (FULLREC(632), MIN01)
EQUIVALENCE (FULLREC(639), MAX01)
EQUIVALENCE (FULLREC(646), OTHER2)
EQUIVALENCE (FULLREC(656), MIN02)
EQUIVALENCE (FULLREC(663), MAX02)
EQUIVALENCE (FULLREC(670), OTHER3)
EQUIVALENCE (FULLREC(680), MIN03)
EQUIVALENCE (FULLREC(687), MAX03)
EQUIVALENCE (FULLREC(694), MINYLD)
EQUIVALENCE (FULLREC(698), MAXYLD)
EQUIVALENCE (FULLREC(702), TYPYLD)
EQUIVALENCE (FULLREC(706), YLUNIT)
EQUIVALENCE (FULLREC(712), MINTNS)
EQUIVALENCE (FULLREC(716), MAXTNS)
EQUIVALENCE (FULLREC(720), TYPTNS)
EQUIVALENCE (FULLREC(724), TNUNIT)
EQUIVALENCE (FULLREC(730), ELONG)
EQUIVALENCE (FULLREC(732), ELTEST)
EQUIVALENCE (FULLREC(738), MINHARD)
EQUIVALENCE (FULLREC(741), MAXHARD)
EQUIVALENCE (FULLREC(744), TYPHARD)
EQUIVALENCE (FULLREC(747), HARDUNIT)
EQUIVALENCE (FULLREC(751), SCCRTG)
EQUIVALENCE (FULLREC(756), EQVREF)
EQUIVALENCE (FULLREC(759), REFR1)
EQUIVALENCE (FULLREC(762), REFR2)
EQUIVALENCE (FULLREC(765), ALNOTES)
EQUIVALENCE (FULLREC(825), READY)
EQUIVALENCE (FULLREC(826), UPDATE)

Declaration of PORT2 using PIC X(7) for composition limits and record structure for all character fields in the NASADOM4 domain. This new domain adds the fields EQV_TEMP for equivalent US temper values, IRRDESG for the AA Int. Registry Record numbers, READY, a one character field to indicate whether the record is valid for shipment to NASA, and composition fields for Be and Ga.

JS - 9/30/87

--

Changed temper fields to condition fields
JS - 5/4/88

--

Revised to match NASFILE_REC5, which includes new fields for alloy category, alternate designation, etc. JS - July 89

CALL DTR$COMMAND (DAB, 'DECLARE PORT PORT2 USING ')
CALL DTR$COMMAND (DAB, '01 TEMPREC. ')
CALL DTR$COMMAND (DAB, '05 DESIG PIC X(30). ')
CALL DTR$COMMAND (DAB, '05 FADB NO PIC X(7). ')
CALL DTR$COMMAND (DAB, '05 UNS NO PIC X(6). ')
CALL DTR$COMMAND (DAB, '05 FORM PIC X(30). ')
CALL DTR$COMMAND (DAB, '05 CONDITION PIC X(15). ')
CALL DTR$COMMAND (DAB, '05 ALCTYPE PIC X(5). ')
CALL DTR$COMMAND (DAB, '05 ALCAT PIC X(20). ')
CALL DTR$COMMAND (DAB, '05 STATUS PIC X(10). ')
CALL DTR$COMMAND (DAB, '05 ORIGORG PIC X(10). ')
CALL DTR$COMMAND (DAB, '05 COUNTRY PIC X(2). ')
CALL DTR$COMMAND (DAB, '05 US_EQV PIC X(20). ')
CALL DTR$COMMAND (DAB, '05 EQVCOND PIC X(15). ')
CALL DTR$COMMAND (DAB, '05 EQRATE PIC X(2). ')
CALL DTR$COMMAND (DAB, '05 IRR_DESIG PIC X(6). ')
CALL DTR$COMMAND (DAB, '05 ALTDESIG PIC X(20). ')
CALL DTR$COMMAND (DAB, '05 SPEC1 PIC X(20). ')
CALL DTR$COMMAND (DAB, '05 SPEC2 PIC X(20). ')
CALL DTR$COMMAND (DAB, '05 SPEC3 PIC X(20). ')
CALL DTR$COMMAND (DAB, '05 SPEC4 PIC X(20). ')
CALL DTR$COMMAND (DAB, '05 SPEC5 PIC X(20). ')
CALL DTR$COMMAND (DAB, '05 COMPO. ')
CALL DTR$COMMAND (DAB, '10 WT ATNO PIC X(1). ')
CALL DTR$COMMAND (DAB, '10 MIN-AL PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MAX-AL PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MIN-SI PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MAX-SI PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MIN-PE PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MAX-PE PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MIN-CU PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MAX-CU PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MIN-MN PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MAX-MN PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MIN-MG PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MAX-MG PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MIN-ZN PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MAX-ZN PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MIN-V PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MAX-V PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MIN-TI PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MAX-TI PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MIN-ZR PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MAX-ZR PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MIN-CR PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MAX-CR PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MIN-NI PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MAX-NI PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MIN-PB PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MAX-PB PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MIN-SN PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MAX-SN PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MIN-C PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MAX-C PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MIN-CO PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MAX-CO PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MIN-MO PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MAX-MO PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MIN-W PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MAX-W PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MIN-P PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MAX-P PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MIN-S PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MAX-S PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MIN-B PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MAX-B PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MIN-BE PIC X(7). ')
CALL DTR$COMMAND (DAB, '10 MAX-BE PIC X(7). ')

CALL DTR$COMMAND (DAB, '10 MIN-GA PIC X(7).')
CALL DTR$COMMAND (DAB, '10 MAX-GA PIC X(7).')
CALL DTR$COMMAND (DAB, '10 OTHER1 PIC X(10).')
CALL DTR$COMMAND (DAB, '10 MIN-O1 PIC X(7).')
CALL DTR$COMMAND (DAB, '10 MAX-O1 PIC X(7).')
CALL DTR$COMMAND (DAB, '10 OTHER2 PIC X(10).')
CALL DTR$COMMAND (DAB, '10 MIN-O2 PIC X(7).')
CALL DTR$COMMAND (DAB, '10 MAX-O2 PIC X(7).')
CALL DTR$COMMAND (DAB, '10 OTHER3 PIC X(10).')
CALL DTR$COMMAND (DAB, '10 MIN-O3 PIC X(7).')
CALL DTR$COMMAND (DAB, '10 MAX-O3 PIC X(7).')
CALL DTR$COMMAND (DAB, '05 MIN_YLD PIC X(4).')
CALL DTR$COMMAND (DAB, '05 MAX_YLD PIC X(4).')
CALL DTR$COMMAND (DAB, '05 OTHER4 PIC X(10).')
CALL DTR$COMMAND (DAB, '05 MIN_YLD PIC X(4).')
CALL DTR$COMMAND (DAB, '05 MAX_YLD PIC X(4).')
CALL DTR$COMMAND (DAB, '05 TYP_YLD PIC X(4).')
CALL DTR$COMMAND (DAB, '05 TYP_YLD PIC X(4).')
CALL DTR$COMMAND (DAB, '05 YL UNIT PIC X(6).')
CALL DTR$COMMAND (DAB, '05 TYP_TNS PIC X(4).')
CALL DTR$COMMAND (DAB, '05 MIN_TNS PIC X(4).')
CALL DTR$COMMAND (DAB, '05 MAX_TNS PIC X(4).')
CALL DTR$COMMAND (DAB, '05 TYP_TNS PIC X(4).')
CALL DTR$COMMAND (DAB, '05 MIN TNS PIC X(4).')
CALL DTR$COMMAND (DAB, '05 MAX TNS PIC X(4).')
CALL DTR$COMMAND (DAB, '05 TYP_TNS PIC X(4).')
CALL DTR$COMMAND (DAB, '05 TN UNIT PIC X(6).')
CALL DTR$COMMAND (DAB, '05 ELONGATION PIC X(2).')
CALL DTR$COMMAND (DAB, '05 ELTEST PIC X(6).')
CALL DTR$COMMAND (DAB, '05 MIN_HARD PIC X(3).')
CALL DTR$COMMAND (DAB, '05 MAX_HARD PIC X(3).')
CALL DTR$COMMAND (DAB, '05 TYP_HARD PIC X(3).')
CALL DTR$COMMAND (DAB, '05 HARD UNIT PIC X(4).')
CALL DTR$COMMAND (DAB, '05 SCC_RTG PIC X(5).')
CALL DTR$COMMAND (DAB, '05 DATA_REFERENCES. ')
CALL DTR$COMMAND (DAB, '10 EQVREF PIC X(3).')
CALL DTR$COMMAND (DAB, '10 REF1 PIC X(3).')
CALL DTR$COMMAND (DAB, '10 REF2 PIC X(3).')
CALL DTR$COMMAND (DAB, '05 NOTES PIC X(60).')
CALL DTR$COMMAND (DAB, '05 READY CODE PIC X(1).')
CALL DTR$COMMAND (DAB, '05 UPDATED PIC X(11).')
CALL DTR$DTR (DAB, DTR$OPT_CMD)
SUBROUTINE SCRNENTR
INCLUDE 'DATABUFF'
INCLUDE 'IODRVCOM'
INCLUDE 'CONTROLY'
REAL*4 Z
INTEGER*2 S,PAGE_NUM,J,BLINK,INVERSE,
ERR_PAGE,ERR_I,LONG
INTEGER*4 STAT,KZ
CHARACTER*1 ENTER,CHARACTER,BAK,CR,ESC,BEL,DELIMIT,A
CHARACTER*2 Keypad,Numeric
CHARACTER*8 G,H,IX
CHARACTER*11 SCRLBL
CHARACTER*20 X,BLANKS

DIMENSION G(10),IX(10)

! Define Test Characters
PARAMETER (ENTER=CHAR(255), ! Enter Key In Keypad Mode
BAK=CHAR(8), ! Backspace
CR=CHAR(13), ! Carriage Return
ESC=CHAR(27), ! Escape
BEL=CHAR(7), ! Bell
DELIMIT=CHAR(127)) ! Largest Allowable Character

! Key Board Control
PARAMETER (Keypad=CHAR(27)//CHAR(61), ! Sets Keypad Mode
Numeric=CHAR(27)//CHAR(62)) ! Returns To Numeric

! Display attributes
PARAMETER (BLINK=4, ! Blink
INVERSE=2) ! Inverse Video

DATA SCRLBL /'Page x Of x'/

! Formats For Numeric Editing
DATA G(1)/'(BNF1.0)'/,
G(2)/'(BNF2.0)'/,
G(3)/'(BNF3.0)'/,
G(4)/'(BNF4.0)'/,
G(5)/'(BNF5.0)'/,
G(6)/'(BNF6.0)'/,
G(7)/'(BNF7.0)'/,
G(8)/'(BNF8.0)'/

DATA IX(1)/'(BNI1)'/,
IX(2)/'(BNI2)'/,
IX(3)/'(BNI3)'/,
IX(4)/'(BNI4)'/,
IX(5)/'(BNI5)'/,
IX(6)/'(BNI6)'/,
IX(7)/'(BNI7)'/

DATA BLANKS /

SCRLBL(11:11)=CHAR(MAX_PAGE+47)
STAT=LIB$PUT_LINE(Keypad) ! Put Terminal In Keypad Mode
 Unpack Input Buffer
 DO 100 I=1,MAX_PAGE
 DO 100 J=1,LIMITS(I,3)
 K=VAR(I,J)
 LABEL(K)=FULLREC(START(K):START(K)+LEN(K)-1)

ERR_PAGE=2
ERR_I=0
CHARACTER=' '

! Display Header--Page One
STAT=LIB$ERASE_PAGE(1,1)
STAT=LIB$PUT_SCREEN(Flag,1,1,2)
DO 120 I=LIMITS(1,1),LIMITS(1,2)
IF (ATTRIB(I).EQ.INVERSE) THEN
 STAT=LIB$PUT_SCREEN(LABEL(I)(1:LEN(I)),ROW(I),COL(I),2)
ELSE IF (ATTRIB(I).EQ.BLINK) THEN
 STAT=LIB$PUT_SCREEN(LABEL(I)(1:LEN(I)),ROW(I),COL(I),6)
ELSE
 STAT=LIB$PUT_SCREEN(LABEL(I)(1:LEN(I)),ROW(I),COL(I),0)
END IF
120 CONTINUE

! Main Loop--Begin On Page 2 And Cycle Through Until ENTER Key
140 PAGE_NUM=ERR_PAGE
DO 500 WHILE (CHARACTER.NE.ENTER)
150 STAT=LIB$ERASE_PAGE(HEADLINE,1)

! Display Prompts And Labels, This Page
SCRLBL(6:6)=CHAR(PAGE_NUM+47)
STAT=LIB$PUT_SCREEN(SCRLBL,2,1)

DO 200 I=LIMITS(PAGE_NUM,1),LIMITS(PAGE_NUM,2)
IF (ATTRIB(I).EQ.2) THEN
 STAT=LIB$PUT_SCREEN(LABEL(I)(1:LEN(I)),ROW(I),COL(I),2)
ELSE IF (ATTRIB(I).EQ.6) THEN
 STAT=LIB$PUT_SCREEN(LABEL(I)(1:LEN(I)),ROW(I),COL(I),6)
ELSE
 STAT=LIB$PUT_SCREEN(LABEL(I)(1:LEN(I)),ROW(I),COL(I),0)
END IF
200 CONTINUE

! Cycle Through Variables On Current Page
IF (LIMITS(PAGE_NUM,3).EQ.0) THEN
 GOTO 405
END IF

DO 400 I=1,LIMITS(PAGE_NUM,3)
IF (ERR_I.NE.0) THEN
I=ERR_1
ERR_1=0
END IF
220 K=VAR(PAGE_NUM,I)
!
Treat Current Variable Character By Character.
230 DO 300 S=0,LEN(K)-1
!
Put Current Value Of Variable To Screen
IF (ATTRIB(K).EQ.2) THEN
 STAT=LIB$PUT_SCREEN(LABEL(K)(1:LEN(K)),ROW(K),COL(K),2)
ELSE IF (ATTRIB(K).EQ.6) THEN
 STAT=LIB$PUT_SCREEN(LABEL(K)(1:LEN(K)),ROW(K),COL(K),6)
ELSE
 STAT=LIB$PUT_SCREEN(LABEL(K)(1:LEN(K)),ROW(K),COL(K),0)
END IF
250 STAT=LIB$SET_CURSOR(ROW(K),COL(K)+S)
CALL READER ! Get Next Keystroke
 IF (CTRLY) THEN ! Exit On CTRL/Y
 GOTO 9000
 END IF
 CHARACTER=INPUT(1:1)
 J=IOSTAT BLOCK(4)
 IF (CHARACTER.EQ.BAK) THEN ! Backspace
 CHARACTER=''
 IF (S.GT.0) THEN
 S=S-I
 END IF
 ELSE
 IF (CHARACTER.EQ.CR) THEN
 GOTO 310
 ELSE IF (CHARACTER.EQ.ESC) THEN ! Escape Sequences
 IF (INPUT(J:J).EQ.'C') THEN
 IF (S.EQ.LEN(K)-I) THEN
 S=0
 ELSE
 S=S+I
 END IF
 GOTO 250
 ELSE IF (INPUT(J:J).EQ.'D') THEN ! Left Arrow-Backspace
 IF (S.EQ.0) THEN
 S=LEN(K)-1
 ELSE
 S=S-1
 END IF
 GOTO 250
 ELSE IF ((INPUT(J:J).GE.'p').AND. (INPUT(J:J).LE.'y')) THEN ! Convert Key Pad
 CHARACTER=CHAR(ICHAR(INPUT(J:J))-64)
 ELSE IF (INPUT(J:J).EQ.'n') THEN
 CHARACTER='.'
 ! Carriage Return-Next variable
 GOTO 310
 ELSE IF (CHARACTER.EQ.ESC) THEN ! Escape Sequences
 IF (INPUT(J:J).EQ.'C') THEN ! Right Arrow-Skip A Space
 IF (S.EQ.LEN(K)-1) THEN
 S=0
 ELSE
 S=S+1
 END IF
 GOTO 250
 ELSE IF (INPUT(J:J).EQ.'D') THEN ! Left Arrow-Backspace
 IF (S.EQ.0) THEN
 S=LEN(K)-1
 ELSE
 S=S-1
 END IF
 GOTO 250
 ELSE IF ((INPUT(J:J).GE.'p').AND. (INPUT(J:J).LE.'y')) THEN ! Convert Key Pad
 CHARACTER=CHAR(ICHAR(INPUT(J:J))-64)
 ELSE IF (INPUT(J:J).EQ.'n') THEN
 CHARACTER='.'
ELSE IF ((INPUT(J:J).EQ.'M').OR.
 ((INPUT(J:J).GE.'P') .AND.
 (INPUT(J:J).LE.'S'))) THEN
 GOTO 310
ELSE
 STAT=LIB$PUT_SCREEN(BEL)
 GOTO 250
END IF
END IF

Test Character Format And Insert In Variable

300 IF (((ALPHA(K).EQ.'N').AND.
 (CHARACTER.GE.'0').AND.
 (CHARACTER.LE.'9'))
 .OR.((ALPHA(K).EQ.'N').AND.
 (CHARACTER.EQ.'.'))
 .OR.((ALPHA(K).NE.'N').AND.
 (CHARACTER.GE.' ').AND.(CHARACTER.LE.DELIMIT))) THEN
 LABEL(K)(S+I:S+I)=CHARACTER
ELSE
 STAT=LIB$PUT_SCREEN(BEL)
 GOTO 250
END IF
END DO

Edit Single Variable Here

310 IOS=0
J=LEN(K)
IF (ALPHA(K).EQ.'N') THEN ! Is This Variable Numeric?
 Zero Supress, Right Justify, Blank Fill Numerics
 READ(LABEL(K)(1:J),G(J),IOSTAT=IOS,ERR=390) Z
 IF (Z.EQ.0) THEN
 WRITE(LABEL(K),G(J+I),IOSTAT=IOS,ERR=390) Z
 ELSE
 H=G(J+1)
 IF (Z.LT.1.0) THEN
 S=J-1-S
 ELSE
 S=LOG10(Z)
 S=J-1-S
 END IF
 H(7:7)=CHAR(S+48)
 WRITE(LABEL(K),H,IOSTAT=IOS,ERR=390) Z
 END IF
 IF (LABEL(K)(J:J).EQ.'.') THEN
 X=BLANKS(1:J)
 X(2:J)=LABEL(K)(1:J-1)
 LABEL(K)(1:J)=X(1:J)
 END IF
ELSE IF (ALPHA(K).EQ.'I') THEN
 READ(LABEL(K)(1:J),IX(J),IOSTAT=IOS,ERR=390) KZ
 WRITE(LABEL(K),IX(J),IOSTAT=IOS,ERR=390) KZ
Z=KZ
END IF
IF (ALPHA(K).NE.'A') THEN
 IF (MAX(K).NE.BLANKS(1:7)) THEN
 IF (Z.GT.XMAX(K)) THEN
 IOS=1
 GOTO 390 ! Exit If gt Than Max
 END IF
 END IF
 IF (MIN(K).NE.BLANKS(1:7)) THEN
 IF (Z.LT.XMIN(K)) THEN
 IOS=1
 GOTO 390 ! Exit If lt Than Min
 END IF
 END IF
END IF
!
Check For TLU (Table Look Up) To Verify Coded Fields
IF ((TLU(K).NE.0).AND.(FILES_OPEN(TLU(K)-90))) THEN
 CALL TABLE_LOOK_UP(TLU(K),IOS,X,LONG,LABEL(K),LEN(K))
 STAT=LIB$PUT_SCREEN(X(1:LONG),ROW(K),COL(K)+LEN(K)+1)
END IF
!
End Error Checking For This Field
!
Check To See If Errors Have Occurred
390 IF (IOS.NE.0) THEN
 ATTRIB(K)=BLINK+INVERSE
ELSE
 ATTRIB(K)=INVERSE
END IF
!
Put Variable To Screen
IF (ATTRIB(K).EQ.2) THEN
 STAT=LIB$PUT_SCREEN(LABEL(K)(1:LEN(K)),ROW(K),COL(K),2)
ELSE IF (ATTRIB(K).EQ.6) THEN
 STAT=LIB$PUT_SCREEN(LABEL(K)(1:LEN(K)),ROW(K),COL(K),6)
 STAT=LIB$PUT_SCREEN(BEL)
ELSE
 STAT=LIB$PUT_SCREEN(LABEL(K)(1:LEN(K)),ROW(K),COL(K),0)
END IF
IF (IOS.NE.0) THEN
 GOTO 230
END IF
!
Analyze Escape Sequences
IF (CHARACTER.EQ.ESC) THEN
 J=IOSTAT_BLOCK(4)
 IF (INPUT(J:J).EQ.'R') THEN ! PF4-Previous Variable
 IF (I.EQ.1) THEN
-133-

I=LIMITS(PAGE_NUM,3)
ELSE
 I=I-1
END IF
GOTO 220

ELSE IF (INPUT(J:J).EQ.'S') THEN ! PF3-Skip To Next Variable
 IF (I.EQ.LIMITS(PAGE_NUM,3)) THEN
 I=1
 ELSE
 I=I+1
 END IF
 GOTO 220

ELSE IF (INPUT(J:J).EQ.'Q') THEN ! PF2-Next Page
 IF (PAGE_NUM.EQ.MAX_PAGE) THEN
 PAGE_NUM=2
 ELSE
 PAGE_NUM=PAGE_NUM+I
 END IF
 GOTO 410

ELSE IF (INPUT(J:J).EQ.'P') THEN ! PF1-Previous Page
 IF (PAGE_NUM.EQ.2) THEN
 PAGE_NUM=MAX_PAGE
 ELSE
 PAGE_NUM=PAGE_NUM-I
 END IF
 GOTO 410

ELSE IF (INPUT(J:J).EQ.'M') THEN ! Enter Key-Done
 CHARACTER=ENTER
 GOTO 500
END IF
END IF
END DO ! End Of Loop For All Variables, This Page

400 END DO ! End Of Loop, All Pages
405 IF (PAGE_NUM.GE.MAX_PAGE) THEN
 PAGE_NUM=2
ELSE
 PAGE_NUM=PAGE_NUM+1
END IF
410 CONTINUE

CHARACTER=' ' ! Reset Control For Main Loop

DO 800 I=2,MAX_PAGE
DO 800 J=I,LIMITS(I,3)
K=VAR(I,J)
 IF (RECNUM(K).NE.0) THEN
 IF (COMPR(K).EQ.'LT') THEN
 IOS=I
 ELSE
 IOS=LABEL(RECNUM(K))
 END IF
 END IF
END DO
END IF
ELSE IF (COMPR(K).EQ.'LE') THEN
 IF (LABEL(K).GT.LABEL(RECNUM(K))) THEN
 IOS=1
 END IF
ELSE IF (COMPR(K).EQ.'GE') THEN
 IF (LABEL(K).LT.LABEL(RECNUM(K))) THEN
 IOS=1
 END IF
ELSE IF (COMPR(K).EQ.'GT') THEN
 IF (LABEL(K).LE.LABEL(RECNUM(K))) THEN
 IOS=1
 END IF
ENDIF
ENDIF
IF (IOS.EQ.1) THEN
 IOS=0
 ERR_PAGE=I
 ERR_I=J
 STAT=LIB$PUT_SCREEN(BELL)
 ATTRIB(K)=BLINK+INVERSE
 GOTO 140
ELSE
 ATTRIB(K)=INVERSE
END IF
END IF
800 CONTINUE

! Reconstruct Data Buffer--FULLREC In /databuff/
 IF (CTRLY) THEN
 GOTO 9000
 ELSE
 DO 1000 I=1,MAX_PAGE
 DO 1000 J=I,LIMITS(I,3)
 K=VAR(I,J)
 1000 FULLREC(START(K):START(K)+LEN(K)-1)=LABEL(K)
 END IF

! Exit Subroutine
9000 Succ=NORMAL
 STAT=LIB$PUT_LINE(Numeric) ! Put Terminal In Numeric Mode
 DO 9100 I=1,MAX_PAGE
 DO 9100 J=1,LIMITS(I,3)
 K=VAR(I,J)
 9100 ATTRIB(K)=INVERSE
 IOS=0
RETURN
END

C Include file CONTROLY.FOR
Code to deal with control-Y break

LOGICAL*4 CTRLY
INTEGER*4 CTRLY_MASK, OLD_MASK
COMMON /controly/ CTRLY, CTRLY_MASK, OLD_MASK

Include file for subroutine CTRLY_AST

SUBROUTINE CTRLY_AST

INCLUDE 'CONTROLY'
CTRLY=.TRUE.
RETURN
END

Include file for subroutine INIT_IODRIVER

SUBROUTINE INIT_IODRIVER(FILESPEC)

IF (CODE.EQ.0) THEN
 CODE=IO$READVBLK ! Read Logical Block
 CODE=IO$M_NOECHO ! Do Not Echo
 CODE=IO$M_TRMNOECHO ! Do Not Echo Terminators
 CODE=IO$M_ESCAPE ! Allow All ASCII Escape Sequences
 CODE=IO$M_CVTLOW ! Convert To All Upper Case
 CODE=IO$M_NOFILTER ! No Screen Editing

 P_FOUR='
 DO 100 I=1,16
 P_FOUR(I:I)=CHAR(255)
 CONTINUE
END IF

STATUS=SYS$ASSIGN('SYS$INPUT', IN_CHAN,)
IF(STATUS.NE.SS$_NORMAL) CALL LIB$SIGNAL(%VAL(STATUS))
RETURN
END

SUBROUTINE READER (CHAR_OUT)

IMPLICIT INTEGER*4 (S)
INCLUDE '($IODEF)'
INCLUDE 'IODRVCOM'
INTEGER*4 IN_BUF_SIZE
PARAMETER (IN_BUF_SIZE=I0)

STATUS=SYS$QIOW(,
 2 $VAL(IN_CHAN),
 2 $VAL(CODE),
SUBROUTINE Q_AST_CTRLY

EXTERNAL CTRLY_AST
INTEGER*4 STATUS4, SYSSASSIGN, LIB$DISABLE, SYSSQIOW
INCLUDE 'IODRVCOM'
INCLUDE '($IODEF)'
INCLUDE 'CONTROLY'

IF (CODE_AST.EQ.0) THEN
 CODE_AST=IO$SETMODE.OR.IO$M_CTRLYAST
 CTRLY_MASK='02000000'X
END IF

! Get A Channel For CTRL/Y Interrupt

STATUS4=SYS$ASSIGN('SYS$INPUT', IN_CHAN_AST,)
IF (STATUS4.NE.1) CALL LIB$SIGNAL(%VAL(STATUS4))

! Disable CTRL/Y Interrupts At DCL Level

STATUS4=LIB$DISABLE_CTRL(CTRLY_MASK, OLD_MASK)
IF (STATUS4.NE.1) CALL LIB$SIGNAL(%VAL(STATUS4))

! Queue An AST To Handle CTRL/Y Interrupts

STATUS4=SYSSQIOW(, %VAL(IN_CHAN_AST),
 %VAL(CODE_AST),
 IOSB_AST,
 CTRLY_AST, ! Queues This AST Until CTRL/Y
 ,)

IF (STATUS4.NE.1) CALL LIB$SIGNAL(%VAL(STATUS4))
IF (IOSB_AST.NE.1) CALL LIB$SIGNAL(%VAL(IOSB_AST))
CTRLY=.FALSE.
RETURN
END
SUBROUTINE DQ_AST_CTRLY

INTEGER*4 STATUS4,SYS$QIOW,LIB$DISABLE

INCLUDE 'IODRVCOM'
INCLUDE 'CONTROLY'

! De-Queue An AST To Handle CTRL/Y Interrupts

STATUS4=SYS$QIOW(
 2 $VAL(IN_CHAN_AST),
 2 $VAL(CODE_AST),
 2 IOSB_AST,
 2 '','','
 2 $VAL(0), ! Disable All AST's This Channel
 2 '','','
)

! Check Status Of IO Request

IF (STATUS4.NE.1) CALL LIB$SIGNAL($VAL(STATUS4))
IF (IOSB_AST.NE.1) CALL LIB$SIGNAL($VAL(IOSB_AST))

! Enable CTRL/Y Interrupts At DCL Level

STATUS4=LIB$DISABLE_CTRL(OLD_MASK,CTRLY_MASK)
IF(STATUS4.NE.1) CALL LIB$SIGNAL($VAL(STATUS4))

CTRLY=.FALSE.
RETURN
END

Include file for INIT ARRAYS subroutine

SUBROUTINE INIT ARRAYS(Filespec)
INCLUDE 'DATABUFF'

CHARACTER*(*) Filespec
CHARACTER*30 DLABEL,BLANK20
CHARACTER*7 DNAME,DMAX,DMIN,DFIELD,BLANK7
CHARACTER*1 DALPHA
CHARACTER*2 DCOMPR
INTEGER*2 DSTART,
 2 DLEN,
 2 DPAGE,
 2 DROW,
 2 DCOL,
 2 DTLU,
 2 DRECNUM,
 2 INVERSE,NORM,PAGE_NUM
PARAMETER (BLANK20='
 BLANK7=' ',
 INVERSE=2,
 NORM=0)

DATA DLABEL(1) '/NASA Alloys Data Base/',
 DLEN(1) /21/,
 DPAGE(1) /1/,
 DROW(1) /1/,
 DCOL(1) /30/,
 DLABEL(2) '/Page-Row-Column:/',
 DLEN(2) /16/,
 DPAGE(2) /1/,
 DROW(2) /1/,
 DCOL(2) /58/,
 DLABEL(3) '/Description Maintenance/',
 DLEN(3) /23/,
 DPAGE(3) /1/,
 DROW(3) /1/,
 DCOL(3) /75/

DATA DLABEL(5) '/Screen Label:/',
 DLEN(5) /13/,
 DPAGE(5) /2/,
 DROW(5) /4/,
 DCOL(5) /10/,
 DNAME(6) '/LABEL/',
 DSTART(6) /1/,
 DLEN(6) /30/,
 DPAGE(6) /2/,
 DROW(6) /4/,
 DCOL(6) /24/,
 DALPHA(6) '/A/',
 DLABEL(7) '/Field Name:/',
 DLEN(7) /11/,
 DPAGE(7) /2/,
 DROW(7) /4/,
 DCOL(7) /55/,
 DNAME(8) '/NAME/',
 DSTART(8) /31/,
 DLEN(8) /7/,
 DPAGE(8) /2/,
DATA DLABEL(9) /'Start Position:'/,
 DLEN(9) /15/,
 DPAGE(9) /2/,
 DROW(9) /6/,
 DCOL(9) /10/,
 DNAME(10) /'START'/,
 DSTART(10) /38/,
 DLEN(10) /3/,
 DPAGE(10) /2/,
 DROW(10) /6/,
 DCOL(10) /26/,
 DALPHA(10) /'I'/,
 DMAX(10) /'656.'/,
 DMIN(10) /'0.'/
DATA DLABEL(11) /'Field Length:'/,
 DLEN(11) /13/,
 DPAGE(11) /2/,
 DROW(11) /6/,
 DCOL(11) /32/,
 DNAME(12) /'LEN'/,
 DSTART(12) /41/,
 DLEN(12) /3/,
 DPAGE(12) /2/,
 DROW(12) /6/,
 DCOL(12) /46/,
 DALPHA(12) /'I'/,
 DMAX(12) /'30.'/,
 DMIN(12) /'1.'/,
DATA DLABEL(13) /'Screen Page:'/,
 DLEN(13) /12/,
 DPAGE(13) /2/,
 DROW(13) /8/,
 DCOL(13) /10/,
 DNAME(14) /'PAGE'/,
 DSTART(14) /44/,
 DLEN(14) /1/,
 DPAGE(14) /2/,
 DROW(14) /8/,
 DCOL(14) /23/,
 DALPHA(14) /'I'/,
 DMAX(14) /'9'/,
 DMIN(14) /'1'/
DATA DLABEL(15) /'Row:'/,
 DLEN(15) /4/,
 DPAGE(15) /2/,
 DROW(15) /8/,
 DCOL(15) /26/,
 DNAME(16) /'ROW'/,
 DSTART(16) /45/,
DATA DLEN(16) /2/,
2 DPAGE(16) /2/,
2 DROW(16) /8/,
2 DCOL(16) /31/,
2 DALPHA(16) /'I'/,
2 DMAX(16) /' 24.'/,
2 DMIN(16) /' 1.'/,
2 DLABEL(17) /'Column:'/,
2 DLEN(17) /7/,
2 DPAGE(17) /2/,
2 DROW(17) /8/,
2 DCOL(17) /36/,
2 DNAME(18) /'COL'/,
2 DSTART(18) /47/,
2 DLEN(18) /3/,
2 DPAGE(18) /2/,
2 DROW(18) /8/,
2 DCOL(18) /44/,
2 DALPHA(18) /'I'/,
2 DMAX(18) /' 80.'/,
2 DMIN(18) /' 1.'/
DATA DLABEL(19) /'Alpha/Numeric/Integer:'/,
2 DLEN(19) /22/,
2 DPAGE(19) /2/,
2 DROW(19) /8/,
2 DCOL(19) /49/,
2 DNAME(20) /'ALPHA'/,
2 DSTART(20) /50/,
2 DLEN(20) /1/,
2 DPAGE(20) /2/,
2 DROW(20) /8/,
2 DCOL(20) /72/,
2 DALPHA(20) /'A'/
DATA DLABEL(21) /'Maximum Value:'/,
2 DLEN(21) /14/,
2 DPAGE(21) /2/,
2 DROW(21) /10/,
2 DCOL(21) /10/,
2 DNAME(22) /'MAX'/,
2 DSTART(22) /51/,
2 DLEN(22) /7/,
2 DPAGE(22) /2/,
2 DROW(22) /10/,
2 DCOL(22) /25/,
2 DALPHA(22) /'A'/
DATA DLABEL(23) /'Minimum Value:'/,
2 DLEN(23) /14/,
2 DPAGE(23) /2/,
2 DROW(23) /10/,
2 DCOL(23) /34/,
2 DNAME(24) /'MIN'/,
2 DSTART(24) /58/,
DATA DLABEL(24) /'This Field Must Be'/,
DATA DLABEL(26) /'COMPR'/,
DATA DLABEL(28) /'FIELD'/,
DATA DLABEL(30) /'I'/,
DATA DLABEL(31) /'Enter D To Delete:'/,
STAT=LIB$ERASE_PAGE
WRITE(6,90)
I=1
IF (Filespec.EQ.'FILESPEC') THEN
 SPECUNIT=89
 LRECL=128
 DO 100 WHILE (DPAGE(I).NE.0)
 LABEL(I)=DLABEL(I)
 NAME(I)=DNAME(I)
 START(I)=DSTART(I)
 LEN(I)=DLEN(I)
 PAGE(I)=DPAGE(I)
 ROW(I)=DROW(I)
 COL(I)=DCOL(I)
 ALPHA(I)=DALPHA(I)
 MAX(I)=DMAX(I)
 MIN(I)=DMIN(I)
 FIELD(I)=DFIELD(I)
 COMPR(I)=DCOMPR(I)
 TLU(I)=DTLU(I)
 I=I+1
100 END DO
110 DO 10 J=I,300
 PAGE(J)=0
 START(J)=0
 END DO
 ELSE IF (Filespec.EQ.'DATAFILE') THEN
 SPECUNIT=88
 LRECL=656
 OPEN(UNIT=90,FILE='FILESPEC',STATUS='OLD',
 ORGANIZATION='INDEXED',ACCESS='KEYED',
 IOSTAT=IOS)
 IF (IOS.EQ.0) THEN
 DO WHILE (IOS.EQ.0)
 READ (UNIT=90,IOSTAT=IOS) FULLREC(1:128)
 END IF
 IF (IOS.EQ.0) THEN
 READ(FULLREC,500)LABEL(I),NAME(I),START(I),LEN(I),
 PAGE(I),ROW(I),COL(I),ALPHA(I),MAX(I),MIN(I),
 FIELD(I),COMPR(I),TLU(I)
 I=I+1
 END IF
 END DO
 CLOSE(UNIT=90,IOSTAT=IOS)
 DO 120 J=I,300
 PAGE(J)=0
 START(J)=0
 XMIN(J)=0
 XMAX(J)=0
 END DO
 END IF
 END IF

 DO 130 I=1,10
 ! Mark All TLU Files Closed
 CLOSE(UNIT=I+90,STATUS='KEEP',IOSTAT=IOS,ERR=125)
 125 WRITE(6,129)I
 130 FILES_OPEN(I)=.FALSE.
 LIMITS(1,1)=1
 L=0
 PAGE_NUM=1
 I=1
 DO 300 WHILE (PAGE(I).NE.0)
 IF (PAGE(I).NE.PAGE_NUM) THEN
 LIMITS(PAGE_NUM,2)=I-1
 LIMITS(PAGE_NUM,3)=L
 L=0
 PAGE_NUM=PAGE(I)
 LIMITS(PAGE_NUM,1)=I
 END IF
 IF (START(I).NE.0) THEN
 ! Variable Field
 L=L+1
 VAR(PAGE_NUM,L)=I
 ATTRIB(I)=INVERSE
IF (ALPHA(I) .NE. 'A') THEN ! Convert MAX, MIN To NumericUpDown
 IF (MIN(I) .NE. ' ') THEN READ (MIN(I), 310, ERR=280) S ! Numeric For NumericUpDown
 XMIN(I) = S
 ELSE XMIN(I) = -99999999 END IF
 IF (MAX(I) .NE. ' ') THEN READ (MAX(I), 310, ERR=290) S
 XMAX(I) = S
 ELSE XMAX(I) = 99999999 END IF
 END IF
END IF

IF (TLU(I) .NE. 0) THEN ! Check For Table Look Up
 IF (((TLU(I) .LE. 100).AND.(TLU(I) .GE. 91)) THEN
 IF (.NOT.FILES_OPEN(TLU(I) - 90)) THEN
 OPEN (UNIT=TLU(I), STATUS='OLD', DISP='KEEP',
 ORGANIZATION='INDEXED', ACCESS='KEYED',
 READONLY, SHARED, IOSTAT=IOS)
 IF (IOS.EQ.0) THEN FILES_OPEN(TLU(I) - 90) = .TRUE.
 ELSE WRITE(6, 285) TLU(I), NAME(I)
 END IF
 ELSE WRITE(6, 286) TLU(I), NAME(I)
 END IF
 ELSE WRITE(6, 287) TLU(I), NAME(I)
 END IF
ELSE WRITE(6, 287) TLU(I), NAME(I)
END IF
ELSE ATTRIB(I) = NORM ! Display (Prompt) Field
END IF

290 I = I + 1
300 END DO

LIMITS(PAGE_NUM, 2) = I - 1
LIMITS(PAGE_NUM, 3) = L
MAX_PAGE = PAGE_NUM
HEADLINE = ROW(LIMITS(1, 2)) + 1

! Set Up Cross Reference Array For Internal Comparisons
DO 400 I = 2, MAX_PAGE
 DO 400 J = 1, LIMITS(I, 3)
 K = VAR(I, J)
 IF (FIELD(K) .NE. ' ') THEN
 DO 380 L = 2, MAX_PAGE
 DO 380 M = 1, LIMITS(L, 3)
 N = VAR(L, M)
 IF (FIELD(K) .EQ. NAME(N)) THEN

RECNUM(K)=N
GOTO 400
END IF
380 CONTINUE
END IF
400 CONTINUE
!
End Of Subroutine
RETURN
90 FORMAT(1H ,///,T10,'Verifying And Opening Data Files.')
129 FORMAT(1H ,T10,'File FORO',I2,' Closed.')
285 FORMAT(1H ,T10,'File FORO',I2,' Opened To Verify Variable ',
 2 A8)
286 FORMAT(1H ,T4,'** * Warning! File FORO',I2,
 2 'Also Used To Verify Variable ',A8)
287 FORMAT(1H ,T4,'** * Warning! Invalid File Number ',I2,
 2 'For Validation Of Variable ',A8,
 2 '. Validation Bypassed.')
310 FORMAT(BNF7.0)
END

C Include file for subroutine HEAD_SET

SUBROUTINE HEAD_SET
CHARACTER*9 Date_buff

CALL DATE(Date_buff)

STAT=LIB$ERASE_PAGE(I,I)
STAT=LIB$SET_CURSOR(I,1)
WRITE (6,100)Date_buff
100 FORMAT(1H ,T20,'N A S A Alloys Data Base',T70,A9)
RETURN
END

C Include file defining FULLREC character array.

CHARACTER*1000 FULLREC
CHARACTER*30 LABEL
CHARACTER*20 FILE_ERROR,Succ
CHARACTER*7 NAME,MAX,MIN,FIELD
CHARACTER*1 ALPHA
CHARACTER*2 COMPR
CHARACTER*6 Flag,MODIFY,INSERT,NORMAL,COMPLETE,FAILED
LOGICAL*1 FILES_OPEN(10)
INTEGER*2 START,
REAL*4 XMAX, XMIN

DIMENSION LABEL(300), NAME(300), START(300), LEN(300), PAGE(300),
2
ROW(300), COL(300), ALPHA(300), MAX(300), MIN(300),
2
FIELD(300), COMPR(300), TLU(300), RECNUM(300),
2
XMAX(300), XMIN(300)

DIMENSION VAR(9,100), LIMITS(9,3), ATTRIB(300)

COMMON /databuff/ FULLREC, LABEL, NAME, START, LEN, PAGE, MAX_PAGE,
2
ROW, COL, ALPHA, MAX, MIN, ATTRIB, XMAX, XMIN,
2
FIELD, COMPR, TLU, RECNUM, LIMITS, VAR, HEADLINE,
2
Succ, Flag, MODIFY, INSERT, NORMAL, COMPLETE,
2
FAILED, SPECUNIT, FILE_ERROR, LRECL,
2
FILES_OPEN