
The Process Group Approach
to Reliable Distributed Computing

Kenneth P. Birman*

TR 91-1216

July 1991

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*The author is in the Department of Computer Science, Cornell University, and was
supported under DARPNNASA grant NAG-2-593, and by grants from IBM, Hewlett
Packard, Siemens, GTE and Hitachi.

The Process Group Approach to Reliable Distributed Computing *

Kenneth E Birman

July 3, 1991

Abstract

The difficulty of developing reliable distributed software is an impediment to applying distributed

computing technology in many settings. Experience with the Isis system suggests that a structured

approach based on virtually synchronous process groups yields systems which are substantially easier to

develop, fault-tolerant, and self-managing. This paper reviews six years of research on ISLS, describing

the model, the types of applications to which Isis has been applied, and some of the reasoning that

underlies a recent effort to redesign and reimplement Isis as a much smaller, lightweight system.

1 Introduction

As distributed computing systems have become prevalent, the development of reliable distributed software

has emerged as a major challenge. Even in non-distributed systems, reliability is a complex property,

spanning issues such as correctness, fault-tolerance, self-management, real-time responsiveness, protection

and security. Distributed systems take these issues further: a distributed system consists of multiple

processes that must cooperate, hence one must be concerned not just with the behavior of individual

components, but also with their joint behavior in the context of the overall application.

One might expect confidence in the correctness of a distributed system to follow easily from the correctness

of its constituents, but this is not always the case. The mechanisms used to structure a distributed system

and to implement communication between components play a vital role in determining how a system

will behave. We argue that contemporary distributed operating systems have placed excessive emphasis

on communication performance, overlooking the need for tools to support the development of complex

systems. Further, communication primitives often give generally reliable behavior, but exhibit weak or

iU-defmed semantics when uncommon events such as failures or system configuration changes occur. The

"The author is in the Department of Computer Science, Comell University, and was supported under DARPA/NASA grant

NAG-2-593, and by grants from IBM, HP, Siemens, GTE and Hitachi.

Sl0at saatu 8_O

IBM 5_ B
18M _500 8

OEC _0 9

133-I/4

132.1/8

I_-t14

96-3/8

Figure 1: Broker's trading system

resulting building blocks are useful in developing fast distributed software, but unsuitable where reliability

is important.

This paper reviews six years of research on the Isis system, which provides a tools in support of reliable

distributed computing. The basic idea is that the development of reliable distributed software can be

simplified using process groups and group programming tools. Our goal in this paper is not to present new

material, but rather to motivate the approach taken in Isis, to survey the system, and to discuss experience

with some real applications.

It will be helpful to consider these issues in a more concrete context. Contemporary brokerage and trading

systems are highly distributed. It is not uncommon for brokers to cooperate by coordinating trading

activities across multiple markets. Trading strategies rely heavily on accurate pricing and market volatility

data, dynamically changing databases giving the firm's holdings in various equities, news and analysis data,

and elaborate financial and economic models based on relationships between the prices of sets of financial

instntments. A distributed system in support of this application must serve multiple communities: the firm

as a whole, where reliability and security are key considerations; the brokers, who depend on speed and

the ability to customize the trading environment; and the system administrators, who seek uniformity, ease

of monitoring and control. Notice that these goals compete: support for customization of the interface

increases the flexibility of the system, but could make it harder to administer and less reliable. A theme of

the paper will be that one overcomes this intrinsic problem by standardizing the methods used to "glue the

system together", and by endowing the corresponding mechanisms with predictable, fault-tolerant behavior.

Figure 1 shows a possible interface to a trading system. The display is centered around the current position

of the account being traded, showing purchases and sales as they occur. A broker typically authorizes

2

purchasesor salesof sharesin a stock,specifyinglimits on thepriceandthenumberof shares.These
instructionsarecommunicatedto thetradingfloor,whereagentsof thebrokerageor banktradeasmany
sharesaspossible,remainingwithin thisauthorizedwindow. In thisdiscussion,wedon't considerthe
issuesraisedby verificationof the limits,althoughin manysystemsonewouldneedto confirmthatthe
accounthasadequatefundstocoverthetradeandthatthebrokerhasauthorizationto tradetheaccount.

Thedisplayin thefigureis composedof multiplesmallwidgets, of the sort one might find in a genera/

purpose graphical toolkit. Each should be thought of as having some set of input ports, which the broker

binds to information sources, and some number of output ports, which can be used as inputs to other

widgets. For example, the broker has introduced an analysis relevant to the stocks being traded (shaded

circle), named its output, and used it as input to the central graph. The figure names these communication

channels using standard file-system pathnames. However, communication channels would not be treated

like files: programs that monitor a channel must react rapidly to each new event that occurs, and it would

not be useful to store the detailed pricing of a stock on an event-by-event basis.

A stock like IBM may be traded in multiple exchanges, such as New York and Tokyo. When this occurs, a

broker will potentially need simultaneous access to multiple markets. Although such a broker would prefer

to treat the trading system as a seamless whole, the physical architecture of any large system is hierarchical,

consisting of local area networks interconnected by wide-area communication lines. These will have very

different performance characteristics than local-area lines, and will generally be less reliable. Thus, a

Wall Street broker who monitors the market in Japan and uses this to control trades in Zurich depends

upon a sophisticated distributed communication infrastructure. With regard to reliability, the broker will

need assurances that all the programs which should see a piece of information will do so, and that if an

error arises, the system will automatically correct it (or will notify the broker). In a wide-area trading

application, large numbers of system components ('both hardware and software) will be involved in solving

these problems, and many would need to be monitored and restarted automatically if a failure occurs.

The central display of Figure 1 illustrates a further point. As noted earlier, the trader has plotted a computed

index of technology stocks against the price of IBM. It is important that brokers and bankers be able to

introduce these sorts of analysis services without engaging in sophisticated programming. It should be

possible to share the output of such services with colleagues - whether down the hall or in Zurich. The

system must be flexible enough to accommodate the introduction or modification of services at runtime,

and still maintain its reliability guarantees.

The reliability of introduced services may be as critical as that of the base services built into the overall

system. In Figure 2, the computational widget is "shadowed" by additional copies, to indicate that it has

been made fault-tolerant (i.e. it would remain available even if the broker's workstation failed). A broker

is unlikely to be a sophisticated programmer, so fault-tolerance would have to be introduced by the system

itself. This involves replicating or checkpointing the basic computation, placing the replicas on processors

S_t S_'N BtO

tgM _0 6

IBM 1500 9
t6M 1000 0

DEC 66o B

w I

PT_

t33-1t4
132-1/0
134-I/4

<J6_'8

Figure 2: Making an analytic service fault-tolerant

that fail independently from the broker's workstation, and automatically activating a backup if the primary

fails.

The requirements seen above are common in modem trading environments. However, they are not unique

to the application. It is easy to rephrase this example in terms of the issues confronted by a team of

seismologists cooperating to interpret the results of a seismic survey, a doctor reviewing the status of

patients in a hospital from a workstation at home, a design group collaborating to develop a new product,

or application programs cooperating in a factory-floor process control setting. To build applications for the

networked environments of the future, a technology is needed that will make it possible to solve these sorts

of distributed computing problems as easily as we build graphical interfaces today.

A central premise of the Isis project, shared with several other efforts [LL86,CD90,Pet87,KTHB89], is

that support for programming with groups of cooperating programs is the key to solving problems such

as the ones seen above. For example, underlying a fault-tolerant data analysis service will be a group of

programs that jointly provide continuous service, adapting transparently to failures and recoveries. The

publication/subscription style of interaction involves an implicit use of process groups: here, the group has a

dynamically varying set of publishers and subscribers. Although the processes publishing to or subscribing

to a topic do not cooperate explicitly, the reliability of the overall application may well depend on the

reliability of group communication. It is easy to see how problems could arise if two brokers monitoring

the same stock saw different pricing information, or if a doctor and nurse were presented with inconsistent

patient status information.

Process groups of various kinds arise throughout the broker's application: in fault-tolerant management

of the resources available in the network, distributing quotes and other forms of system data, detecting

4

failuresandreconfiguringtomaintain availability, building the directory servers needed to track down other

servers, and replicating databases containing trading and system status information. Yet, outside of a small

set of research systems, current distributed computing environments have provided little support for group

communication patterns and programming. These issues have been left to the application programmer,

and application programmers have been largely unable to respond to the challenge. As a consequence,

contemporary distributed computing environments have prevented users from realizing the potential of the

distributed computing infrastructure on which their applications run.

The remainder of the paper is organized into three parts. The first focuses on group programming, defining

the problems that need to be solved more carefully and discussing the algorithmic issues underlying their

solutions. This leads into the Isis computational model, called virtual synchrony. The next part of the

paper discusses how ISis is presented to users: not the specific interfaces, but the basic tools from which

ISiS users construct applications. The last part reviews some of the applications that have been built over

ISIS. The paper concludes with a brief discussion of future directions for the project.

2 Process groups

Two styles of group usage are seen in the broker's application, and in most Isis applications:

• Anonymous groups: Anonymous groups arise when an application publishes data under some

"topic," to which other processes subscribe. For an application to operate automatically and reliably,

anonymous groups should provide certain properties. Informally,

1. It should be possible to send messages to the group using a group address. The high-level

programmer should not be involved in expanding the group address into a list of destinations.

2. Messages should be delivered exactly once. The application programmer should not need to

worry about message loss or duplication.

3. Messages should be delivered in order. As we will see below, there are several ways to interpret

this requirement. At a minimum, one would expect that messages be delivered in the order they

were published.

4. It should be possible to maintain the history events seen by the group. This is subtle, because

programs might join the group when it has been operational for a while, and a new subscriber

will often need accurate historical background. If n messages are posted and the first message

seen by the subscriber is message rni, one would expect messages m l... m,_ 1 to be in the history

and messages mi ...m, to all be delivered to the new process.

Of course,one can imagine applications that wouldn't require all of these properties, but each is

important in many settings.

Coordinated action by sets of programs: Sets of programs might cooperate explicitly for a number of

reasons: fault-tolerance, load sharing, parallel database searches, replication of data, sharing a secret,

and so forth. The resulting explicit groups share the communications requirements of an anonymous

group, but have additional needs stemming from the use of group membership information in the

application. For example, a fault-tolerant service might have a primary member that takes some

action and an ordered set of backups that take over, one by one, if the current primary fails. Here,

membership changes (failure of the primary) trigger actions by group members. Unless the same

changes are seen in the same order by all members, situations could arise in which there are no

primaries, or several. Similarly, a parallel database search might be done by dividing the database

into n parts, where n is the number of group members; each member would do I/_z'th of the work.

The members need consistent views of the group membership to perform such a search correctly.

At a glance, one might think that global correctness of a distributed system would follow from the local

correctness of its components. That is, given a process group composed of correct processes, one might

expect the service implemented by the group to also be correct. However, this overlooks the need to

synchronize the actions taken by the group members. If the group maintains replicated data, partitions a

database using dynamically varying criteria, or uses the composition of the group as an input to the algorithm

executed by the components, it will be necessary to synchronize events that change these attributes of the

group.

One thus sees that a number of more more technical problems must be considered in developing software

based on distributed process groups:

• Support for group communication, including addressing, failure atomicity, and message delivery

ordering.

• Use of group membership as an input. It should be possible to use the group membership or changes

in membership as input to a distributed algorithm (one run concurrently by multiple group members).

• Synchronization. To obtain globally correct behavior from group applications, it is necessary

to synchronize the order in which actions are taken, particularly when group members will act

independently on the basis of dynamically changing, shared information.

6

3 Building distributed services using message passing

This section explores solutions to these problems that use the sorts of tools provided by conventional

(non-transactional) distributed operating systems.

3.1 Conventional message passing technologies

Most contemporary operating systems offer three classes of communication services [Tan88]:

Unreliable datagrams: These facilities automatically discard corrupted messages, but do little

additional processing. As seen by a user, most messages will get through, but under some conditions

messages might be lost in transmission, duplicated, or delivered out of order.

Remote procedure call: In this approach, communication is presented as a procedure invocation that

returns a result. RPC is a relatively reliable service, but when a failure does occur, the sender is unable

to distinguish between four possible cases: the destination may have failed before or after receiving

the request, or the network may have prevented or delayed delivery of the request or the reply.

Reliable data streams: Here, communication is performed over channels that provide flow control

and reliable, sequenced message delivery. Because of pipelining, data streams outperform RPC when

an application sends large volumes of data. However, if a stream breaks, the situation is the same as

for a failed RPC.

3.2 Building groups over conventional technologies

How might one solve the group communication problems identified in Sec. 2 using these sorts of

technologies? Obviously, this is possible: after all, lsts does so, and many distributed systems solve at least

some of them. However, it is not straightforward.

Group addressing

Consider first the problem of mapping a group address to a membership list, in an application where the

membership could change dynamically due to processes joining the group or leaving. The obvious way to

approach this problem involves a membership service. Such a service maintains a map from group names to

membership lists. Ignoring server fault-tolerance issues, one could implement this with a simple program

that supports remotely callable procedures to register a new group or group member, obtain the membership

of agroup,andperhapsto forwardamessageto thegroup.A processcouldthentransmitamessageeither
by forwardingit via thenamingservice,or by lookingup themembershipinformation,cachingit, and
transmittingmessagesdirectly.Inthelattercase,onewouldalsoneedamechanismforinvalidatingcached
addressinginformationwhenthegroupmembershipchanges(thisisnotatrivialproblem,buttheneedfor
brevityprecludesdiscussingit in detail).Thefirstapproachwill performbetterforone-timeinteractions;
thesecondwouldbepreferableinanapplicationthatsendsastreamof messagestothegroup.

Message delivery ordering

Although either approach to the group addressing problem would get messages to the members of a group,

important issues have been overlooked. Several such issues concern the order in which messages are

delivered.

Consider Figure 3-a. Messages ml and m2 are sent concurrendy and happen to be seen in different orders

by servers sl and s3. In many applications, st and s3 would behave in an uncoordinated or inconsistent

manner if this occurred. For example, one program might see the market volatility fall and then rise, while

another sees it rise and then fall. Market volatility is a parameter to many financial computations, and such

a sequence could easily leave the servers in inconsistent states.

A designer would have to anticipate possible inconsistent message ordering, and either design the application

to tolerate such mixups, or explicitly prevent them from occurring, perhaps by delaying the processing of

ml and m3 within the server until an ordering has been established. The real danger is that the designer will

overlook the whole issue - after all, two simultaneous messages to the server that arrive in different orders

may seem like an improbable scenario - yielding an application that usually is correct, but may exhibit

abnormal behavior under periods of particularly heavy load.

Unfortunately, this is only one of several delivery ordering problems illustrated in the figure. Consider the

situation when s3 receives message m3. Message m3 was sent by sl after receiving me, and might even

refer to or depend upon ml. For example, ml might authorize a certain broker to trade a particular IBM

account, and ra3 could be a trade that the broker has initiated on behalf of that account. Our execution is

such that s3 has not yet received ml when m3 is delivered. Perhaps ml was discarded by the operating

system due to a lack of buffering space. It will be retransmitted, but only after a brief delay during which

m3 might be received.

Why might this matter? Imagine that *3 is displaying buy/sell orders on the trading floor, s3 will consider

m3 invalid, since it will not be able to confirm that the trade was authorized. An application with this

problem might fail to carry out valid trading requests. Again, although the problem is solvable, the question

is whether the application designer will have anticipated the problem and programmed a correct mechanism

S_

c, c2

I' I

(AI

S_ S_

:+:.,.,:+:,:,,,

M5

S, S 2

Figure 3: Message ordering problems

to compensate when it occurs. The solution involves tagging messages with enough context information to

recognize when they arrive out of order, and to delay such messages appropriately.

Message rn4 exhibits an additional ordering problem. Here, sl believes that the service contains three

members at the time m4 arrives. Suppose that m4 triggers a database search, and that process .__,searches

the i/n'th part of the database. Process sl will search the first third. However, process .s2 receives rn4 after

observing the failure of s3, so it will search the second half. One sixth of the database will not have been

searched, and the two responses will be inconsistent.

Thus, we see a whole range of ordering issues. Each is solvable, but in each case non-trivial application-level

code would be required. Unfortunately, as seen in the subsections that follow, other issues raised in the

figure are much harder to solve.

State transfer

Figure 3-b illustrates a slightly different problem. Here, we wish to transfer the "state" of the service to a

new member, perhaps a program that has restarted after a failure (having lost prior state), or a server that

has been added to redistribute load. Intuitively, the state of the server will be a data structure reflecting the

data managed by the service, as modified by the updates that were done prior to when the new member

joined the group. However, in the execution shown, a message has been sent to the server concurrent

with the membership change. A consequence is that the new member, s3, receives a state that does not

reflect message m3. This would leave s3 inconsistent with sl and .s2. Solving this problem involves a

Round 1

Round 2

Round 3

Sl S2

m
$3

I)

OK to deliver message

Acknowledge, no other action

OK to garbage collect

Figure 4: Three-round reliable multicast

complex synchronization algorithm (we won't present it here), and would be beyond the ability of a typical

distributed applications programmer.

Fault tolerance

So far, our discussion has ignored failures. Failure raises many issues; here, we consider just one. Suppose

that the sender of a message were to crash after some, but not all, destinations receive it. The destinations

that do have a copy will need to complete the transmission. The protocol used should achieve exactly once

delivery of each message, with bounded space overhead (the recipients must be able to garbage collect any

information generated while the protocol is running).

Protocols to solve this problem can be complex, but a fairly simple solution can be based on Skeen's

non-blocking three-phase atomic commit protocol [Ske82]. The protocol uses a three round sequence of

Rr_'s to the destinations, as illustrated in Figure 4. During the first round, the sender sends the message

to the destinations, which acknowledge receipt. Although the destinations can deliver the message at this

point, they need to keep a copy: should the sender fail during the first round, the destination processes

that have received copies will need to finish the protocol on its behalf. If no failure occurs, the sender

tells all destinations that the first round has finished. They acknowledge this message and make a note that

the sender is entering the third round, but take no other action. During the third round, each destination

discards all information about the message - it deletes the saved copy of the message and any other data it

was maintaining.

10

To handlefailures,assumefirstthatthedestinationshaveawayto detect the failure of the sender. When

a failure occurs, a process that has received a first or second round message can terminate the protocol.

The basic idea is to have some member of the destination set take over the round that the sender was

running when it failed; processes that have already received messages in that round detect the duplicates

and respond to them as they responded after the original reception. The protocol is straightforward, and we

leave the details to the interested reader.

Unfortunately, failure detection is not trivial. Many systems use timeout as a failure detection scheme, but

such an approach would not be correct in the protocol sketched above. Suppose that process p starts sending

first-round messages to processes sl...s,, but is delayed after sending the message to sl. Upon receiving

this message, sl will begin to monitor p, and eventually a timeout will occur. Process st will now take over

and run the protocol to completion, i.e. all the processes will receive and execute the message and forget

completely about the interaction. Now, consider the situation ifp was experiencing a transient problem that

corrects itself. It will resume transmission by sending messages to s2...s,. None of these destinations will

recognize that these messages are duplicates, so each will accept the message a second time!

One way to solve this problem would be for each recipient to save some information after delivering a

message, for use in recognizing duplicates. But, a trading system may generate 1000 messages per second.

If 16 bytes were retained for each message, a process might consume a megabyte of storage every minute.

A better approach is to substitute a reliable failure agreement mechanism for the failure-detection timer.

Such a protocol is described in [RB91]; among other functions, it filters messages to prevent a faulty process

from interacting with operationa/processes without first executing a recovery protocol.

As noted at the start of this subsection, this is a relatively simple fault-tolerant multicast I protocol. In

particular, this protocol fails to obtain any form of pipelined or asynchronous data flow when invoked many

times in succession, and the use of RPC limits the degree of communication concurrency during each round

(it would be better to send all the messages at once, and to collect the replies in parallel). Much better

multicast protocols have been described in the literature, but improved performance often comes at the cost

of increased complexity. Moreover, process group programming raises additional fault-tolerance issues,

such as the fault-tolerance of the group addressing mechanism. None of these problems are intractable, but

they result in a complex collection of mechanisms that must all work in concert.

ZIn this paper we use the term multicast to refer to sending a single message to the members of a process group. The term

broadcast is more common in the literature, but is sometimes confused with the hardware broadcast capabilities of devices like

ethemet. While a multicast might make use of hardware broadcast to reduce the number of messages used in the protocol, this would

simply represent one possible implementation sn'ategy, and for some situations, alternative approaches, such as an implementation

over point-to-point messages, might perform better.

11

Summary of issues

The above discussion pointed to some of the potential pitfalls that confront a programmer who might

undertake to solve the problem over a conventional operating system, such as UNIX: (1) group address

expansion, (2) delivery ordering for concurrent messages, (3) delivery ordering for sequences of related

messages, (4) state transfer, and (5) failure atomicity. This list is not exhaustive: we have overlooked

questions involving real-time delivery guarantees, and persistent databases and files. However, our work on

ISiS treats process group issues under the assumption that any real-time deadlines are weak, and although

ISiS includes mechanisms for managing persistent data, they are optional. The list does cover the major

issues that arise in this more restrictive domain [BC90]

At the start of this section, we asserted that modem operating systems lack the tools needed to develop

group-based software. A basic premise of the Isis project is that, although all of these problems can be

solved, the complexity associated with working out the solutions and integrating them in a single system

will be unmanageable for non-expert programmers. The only practical approach is to solve these problems

in the distributed computing environment itself, or even the operating system. This permits the system

to be engineered in a way that will give good, predictable performance and that takes full advantage of

hardware and operating systems features. Furthermore, providing process groups as an underlying tool

permits the programmer to concentrate on the problem at hand, as in the case of support for building

graphical interfaces. If the implementation of process groups is left to the application designer, non-experts

are unlikely to use the approach. The simple brokerage application of the introduction would be extremely

difficult to build using the tools provided by a conventional operating system.

4 Virtual synchrony

ISIS simplifies process-group programming, and solves the issues raised in the preceding section, using a

method motivated by database concurrency control. We will present the approach in two stages. First, we

discuss an execution model called close synchrony. This model is then relaxed to arrive at the virtually

synchronous model that Isis implements. The relationship between our work and database serializability

will be discussed in Sec. 7.

ISlS encourages programmers to assume a closely synchronized style of d istri buted execution [BJ89,Sch 88],

in which one event happens at a time. Here, the term "event" is used loosely, connoting not just a single

message, but rather any single event that multiple members of a group might observe. More precisely:

• The execution of a process consists of a sequence of events, which may be internal computation,

message transmissions, message deliveries, and changes to the membership of groups which it creates

or joins.

12

S_ S2 S_ S, S2
C_ C2

M_ $3

M2 M_

TiE '--_

m' CRA3H

r

(A) (S)

Figure 5: Closely synchronous execution

• A global execution of the system consists of a set of process executions. At the global level, one can

talk about messages sent as multicasts to process groups.

• Any two processes that observe the same global event (i.e. by receiving messages from the same

multicast, or by participating in the same group) see the corresponding local events in the same order.

A multicast to a process group is delivered to its full membership, interpreted at the time when the

delivery will be scheduled by the system. Here, we assume that senders specify a process group

destination using an address that is expanded by the multicast protocol to comprise the actual set of

destination processes.

Close synchrony represents a powerful guarantee. In fact, as seen in Fig. 5, it eliminates all the problems

identified in the preceding section:

(i)Group address expansion: In a closely synchronous execution, the membership of a process group is

fixed at the logical instant when a multicast is delivered. A system implementing closely synchronous

group address expansion would need to synchronize communication events with group membership

changes. For example, Isis delays membership changes until "prior" multicasts have all been

delivered to their destinations, and delays new multicasts until after any pending membership change

has completed. This scheduling is invisible to the application programmer, although it sometimes

introduces slight delays in communication.

(2) Delivery ordering for concurrent messages: In a closely synchronous execution, concurrently issued

multicasts would be treated as distinct events. They would therefore be seen in the same order by any

13

TIME

butter

(3)

(4)

(5)

Figure 6: Asynchronous pipelining

destinations that they have in common. In practice, this means that a system supporting the model

would transmit messages using a protocol that picks a delivery order and enforces it.

Delivery ordering for sequences of related messages: In Figure 5a, process sl sent message m3

after receiving ml. We could say that send(ml) happens before send(m3). Processes executing in

a closely synchronous world will never see anything to contradict the happens before relation. In

practical terms, a system will need to add enough extra information to m3 so that it can be delayed

on reception if ml has not yet been received.

State transfer: State transfer occurs at a well defined instant in time in the model. If a group member

checkpoints the group state at the instant when a new member is added, or sends something based on

the state to the new member, the state will be well defined and complete.

Failure atomicity: The close synchrony model implicitly provides failure atomicity, by treating a

multicast as a single logical event. Systems supporting close synchrony would have to implement

multicast using a fault-tolerant protocols.

Unfortunately, although closely synchronous execution simplities distributed application design, it would

be too costly to employ in a practical setting. The most serious problem originates in the coupling between

the sending of a message and delivery. According to the first rule, a multicast to a group address will be

delivered to the full membership of a process group, interpreted at the time of delivery. Even if a process

doesn't need responses from the destinations of a multicast, the model will block the sender of a multicast

until the deliveries take place, so that the initiation and delivery of the multicast can be presented as a

single, indivisible event.

14

In distributedsystems,highperformancecomesfromasynchronous interactions: patterns of execution

in which the sender of a message is permitted to continue executing without waiting for delivery. An

asynchronous approach treats the communications system like a bounded buffer, blocking the sender only

when the rate of data generation exceeds the rate of consumption, or when the sender needs to wait for a

reply or some other input (Figure 6). The advantage of this approach is that the latency (delay) between the

sender and the destination does not affect the data transmission rate - the system operates in a pipelined

manner, permitting both the sender and destination to remain continuously active. A closely synchronous

execution would preclude such pipelining, delaying the execution of the process that sends a message until

its delivery.

When we built Isis, we wanted to benefit from close synchrony, but we didn't want to pay this price.

Consequently, the system implements an approximation to close synchrony. The idea is that for each

application, events are synchronized only to the degree that the application is sensitive to event ordering. In

some situations, this approach will be identical to close synchronization: for example, when the group state

is transferred to a new member. Here, it is important that the state seen by the new member correspond to

the one seen by the old members at the logical instant of the join. Messages prior to the join must be flushed

through, and the sequence of events seen by each process rigidly controlled. But, in other situations, it may

be possible to deliver messages in different orders at different processes, without the application noticing.

This permits a more asynchronous execution. Intuition into the idea can be obtained by considering

how database systems implement serializability using two-phase locking: data servers sometimes process

requests "out of order", but the resulting execution is indistinguishable from a serial one [BHG87].

Order sensitivity in distributed systems.

To better understand the ways that a process group can be sensitive to event orderings, we consider a simple

example. Suppose that we wish to develop a service to manage the trading history for a set of stocks. A set

of tickerplants 2 monitor the prices of futures contracts for soybeans, pork-bellies, and other commodities.

Each significant price change causes a multicast by the tickerplant to the database server, which appends

the new event to a list indexed by stock name. A query interface allows programs to obtain the previous _

quotes for a specified commodity.

One can imagine two styles of tickerplant. In the first, pork-belly quotes might originate in any of several

ticket'plants, hence two different quotes (perhaps, one for Tokyo and one for New York) could be multicast

concurrently by two different processes. In a second plausible design, only one tickerplant would actively

multicast quotes for a given future at a time. Other tickerplants might buffer recent quotes to enable

recovery from the failure of the primary server, but would never multicast them unless the primary fails.

2A tickerplant is a program or device that receives telemetry input directly from a stock exchange or some similar source.

15

Now,supposethata keycorrectnessconstrainton thesystemis thatthedatabaseserversbehavelike a
single,highly reliableservice.In particular,regardlessof whichprocesshandlesa query,theoutcome
shouldbethesame.Closesynchronywouldyieldsuchaservice.

How sensitive are the servers to event ordering in this example? Using the first tickerplant protocol, one

needs a multicast primitive capable of delivering concurrent messages in the same order at all overlapping

destinations. This is normally called an atomic delivery ordering, and corresponds to an Isis primitive

called ABCAST.

The second style of system has a simpler ordering requirement. Here, as long as the primary tickerplant for

a given commodity is not changed, it suffices to deliver messages in the order they were sent: messages

sent concurrently concern different commodity. Since the query interface only returns data for a single

commodity at a time, the order in which updates are done for different commodity is not seen by users. 3

The ordering requirement here is first in, first out (FIFO).

Now, suppose that "primaryness" could change dynamically, in response to a failure or to balance load.

For example, perhaps one tickerplant is handling both soybeans and pork-bellies in a heated market, while

another is monitoring a slow day in petroleum products. The latency on reporting quotes could be reduced

by sharing the load more evenly. However, even during the reconfiguration, it remains important to deliver

messages in the order they were sent, and this ordering might span multiple processes. If tickerplant t 1 sends

quote qt, and then sends a message to tickerplant t2 telling it to take over, and tickerplant t2 might send

quote (/2 (figure 7). Logically, q2 follows ql, but the delivery order is seen along a thread of computation

that spans multiple processes, whereas a FIFO order would normally be concerned only with the order in

which messages are sent by a specific process.

Lamport [Lam78] calls the relationship between events in a thread of computation such as this a causal

ordering, and would say that the transmission of ql causally precedes that of q2 because these two events

are related by a chain of message transmissions and receptions. We can write this as aend(ell)_.send(q2).

Causal ordering is partial (concurrent events are not causally related), and is always consistent with the

actual wall-clock times that events occur. A sufficient ordering property for the second style of system

is that if send(ql)--*send(q2) then rcv(ql) occurs before rcv(q2) at any destinations shared by both

multicasts. This is called a causal delivery ordering, and is available in Isis through a multicast primitive

called CBCAST. Notice that CBCAST is weaker than ABCAST, because it permits messages that were sent

concurrently to be delivered to overlapping destinations in different orders. 4

SOn¢ could change the query interface so this would not be true. For example, suppose that two brokers in the same firm use a

financial model that relates port-belly prices to soybean prices. One broker trades pork and bean futures in Chicago while another

trades matching lots of pork-beUies and soybeans in Tokyo. To ensure that the market analysis programs these brokers run makes

consistent recommendations, they should operate on consistent data streams, and hence the ABC.ASTordering would be needed.

_l'he statement that CBCAST is "weaker" than ABCAST may seem imprecise: as we have stated the problem, the two protocols

simply provide different forms of ordering. However, the Isis version of ABCAST actually extends the partial CBC^ST ordering into

16

St S

Figure 7: Causal ordering

Efficient recovery from a surge of activity in the pork-bellies pit may not seem like a compelling reason to

employ causal multicast. However, the same communication pattern also arises in a more common setting:

a process group that manages replicated (or cohently cached) data. Processes that update such data typically

obtain a lock or mutual exclusion, then issue a stream of asynchronous updates, and then release the lock.

By using CBCAST for this communication, an efficient, pipelined data flow is achieved. A process will only

block if it requests a lock that it was not the last process to hold, or when communication buffering capacity

is exceeded [JB89,BJ89].

The distinction between causal and total event orderings (CBCAST and ABCAST) has parallels in other

settings. Although Isis was the first distributed system to enforce a causal delivery ordering as part of

a communication subsystem [Bir85], Lamport's had shown much earlier that the causal ordering is the

fundamental form of time in a distributed setting. His insight was motivated by the physical theory of

information and time [Lam78]. Moreover, close synchrony is related to Lamport's state machine approach

to developing distributed software [Sch86]. Work on parallel processor architectures has yielded a memory

update model called weak consistency [DSB86,TH90], which uses a similar principle to increase parallelism

in the cache of a parallel processor. And, a causal correcmess property has been used in work on lazy

update in shared memory multiprocessors [ABHN91] and distributed database systems [JB89,LLS901. A

more detailed discussion of this issue appears in [Sch88,BJ89].

a total one: it is a causal atomic multicast primitive.

17

4.1 Chosing the right multicast primitive

One might wonder how a virtually synchronous system could make use of CBCAST. Recall that the basic

approach encourages developers to specify a system in terms of a closely synchronous execution, which

entails using ABCAST for all communication. Fortunately, Isis users rarely code directly in terms of process

groups and group multicast. Instead, they generally make heavy use of the higher-level software tools

available with the system. If these tools execute asynchronously most applications will, too.

The Isis toolkit has been designed to use CBCAST wherever possible. This enables a pipelined style of

execution in which messages are emitted by a sender that need not delay after each send request. Thus,

in addition to scheduling the delivery of messages to conform to the virtual synchrony model, Isis plays

the role of a producer-consumer buffering system. In our experimental work, CBCAST is between twice

as fast and twenty-five times faster than ABCAST, depending on the degree to which the application is

successful in pipelining communication; the actual data transmission rates are as good as for UNIX or TCP

streams [BSS91]. Slower speeds are seen in applications that require responses from the servers on each

message, as in a database query, while higher performance is seen in applications that publish data streams,

like the analysis and tickerplant components of the brokerage system.

4.2 Summary of benefits due to virtual synchrony

The need for brevity precludes a more detailed discussion of virtual synchrony, or how it is used in

developing distributed algorithms within ISLS. However, it may be useful to summarize the benefits of the

approach:

• The ability to develop code using a simplified, closely synchronous execution model.

• A meaningful notion of group state and state transfer, both when groups manage replicated data, and

when a dynamicaUy changing rule is used to partition computation among group members.

• Efficient, pilmlined communication.

• Treatment of communication, process group membership changes and failures through a single,

event-oriented execution model.

Although other approaches offer some of the same properties, the virtual synchrony model is unusual

in combining them within a single framework. Our experience solving problems using Isis leaves us

convinced that these issues are encountered in even the simplest distributed applications.

18

PeerGroup Client-ServerGroup DiffusionGroup HierarchicalGroup

5 The application interface

Figure 8: Styles of groups

The Isis application interface is concerned with presenting higher-level mechanisms for forming and

managing process groups and implementing group-based software. This section illustrates the general

approach by discussing the styles of process group supported by the system and giving a simple example

of a distributed database application.

5.1 Styles of groups

The efficiency of a distributed system is limited by the information available to the protocols employed for

communication. This issue arose as an consideration in developing the Isis process group interface, where

a tradeoff had to be made between simplicity of the interface and the availability of accurate information

about group membership for use in multicast address expansion. As a consequence, the application interface

introduces four styles of process groups that differ in how the processes involve typically interact with the

group, illustrated in Fig. 8 (anonymous groups are not distinguished from explicit groups at this level of the

system).

P_rgmups

A peer group is composed of a set of members that cooperate closely for some purpose. Fault-tolerance

and load-sharing are dominant considerations in these groups, which are typically small and are limited to

19

atmost64members.Peergroupssupportthefull rangeof Isisfacilities,andalsoimplementaparticularly
efficientcommunicationprotocol.A processjoinsa peergroupusingthepg_join systemcall,which
createsthegroupif it isnotalreadyactive,andaddstheprocessto thegroupotherwise.Optionsexistfor
logging/checkpointingthestateof thegroupandreloadingtheloggedstateeachtimethegroupis restarted,
for transferringdata(state)fromtheactivemembersof a groupto ajoiningmember,for checkingthe
permissionsof thenewmember.

Client-server groups

In client-server groups, a potentially large number of clients interacts with a peer group of servers. Requests

may be multicast or issued as RPC's to a favored server, after an initial setup. Servers either respond

using point-to-point messages or use multicast to reply atomically to the client while also sending copies to

one-another. The latter approach is useful for fault-tolerance: if a primary server fails, multicast atomicity

implies that a backup server will receive a copy if (and only if) the client did. A backup server will then

know which requests were pending.

The clients of a group can only multicast to it and received replies; they have no direct way to monitor

message passing within the group, or to learn the addresses of other clients. Isls supports two classes of

clients. A one-time user of a group can interact with it by looking up its group address, via the system

name server, and sending a message. Such an ad-hoc interaction employs a slightly inefficient protocol,

but since the cost of the whole sequence would still be measured in the tens of milliseconds, this may not

be a concern if the client will not interact with the group again. On the other hand, some client programs

interact repeatedly with a group. In such applications, it is desirable to reduce the cost of client-group

communication to a minimum. Accordingly, ISlS also supports an interface with which the client can

connect to the group for an extended period, called pg_client. The effect is to improve performance: a

client registered through pg_elieng obtains performance close to that seen between the members. There

is no limit to the number of clients that a group can support.

Diffusion groups

A special case of client-server communication arises in the diffusion group, which supports diffusion

multicasts. Here, a single message is sent by a server both to the full set of clients (those registered via

pg_cliont), as w.ell as to the other members of the service. This pattern of communication is used by

applications to publish information for a varying set of subscribers. In current Isis applications, diffusion

groups are the only situations in which a typical multicast has a large number of destinations, and hence

where ISlS would obtain a significant speedup from hardware multicast.

20

• Process groups: create, delete, join (transferring state).

• Group multicast: CBCAST, ABCAST, collecting 0, 1 QUORUM or ALL replies (0 replies gives an

asynchronous multicast).

• Synchronization: Locking, with symbolic strings to represent locks. Token passing.

• Replicated data: Implemented by broadcasting updates to group having copies. Transfer values

to processes that join using state transfer facility. Dynamic system reconfiguration using replicated

configuration data. Checkpoint/update logging, spooling for state recovery after failure.

Monitoring facilities: Watch a process or site, trigger actions after failures and recoveries. Monitor

changes to process group membership, site failures, etc.

Distributed execution facilities: Redundant computation (all take same action). Subdivided among

multiple servers. Coordinator-cohort (primary/backup).

Automated recovery: When site recovers, program automatically restarted. If first to recover, state

loaded from logs (or initialized by software). Else, atomically join active process group and transfer

state.

WAN communication: Reliable long-haul message passing and file transfer facility.

Figure 9: ISIS tools at process group level

Hierarchical groups

The last group structure supported by ISlS is the hierarchical group. In large applications, it is important

to localize interactions within smaller clusters of components. This leads to an approach in which a

conceptually large group is implemented as a collection of subgroups. In client-server applications with

hierarchical server groups, the client is bound, transparently, to a subgroup that accepts requests on its

behalf. A root subgroup performs this mapping and can change it dynamically. Group data is partitioned

so that only one subgroup holds the primary copy of any data item, with others either directing operations

to the appropriate subgroup or maintaining cached copies. Multicast to the full set of group members is

supported, but is rarely needed in this architecture.

21

5.2 The toolkit interface

As noted earlier, the performance of a distributed system is often limited by the degree of pipelining

(asynchronous communication) achieved. The development of asynchronous solutions to distributed

problems can be tricky, and many Isis users would employ less efficient solutions rather than risk errors.

For this reason, the toolkit includes asynchronous implementations of the more important distributed

programming paradigms. These include a synchronization tool that supports a form of locking (based

on distributed tokens), a replication tool for managing replicated data (even the updates are performed

completely without blocking), a tool for fault-tolerant performance of requests using a primary-backup

programming style, and so forth (a partial list appears in Figure 9). Using these tools, and following

programming examples in the IslS manual, even non-experts have been successful in developing fault-

tolerant, highly asynchronous distributed software.

Figures 10 and 11 show a complete, fault-tolerant database server for maintaining a mapping from names

(ascii strings) to salaries (integers). The example is in standard C, although Isis is also callable from

C++, FORTRAN, and Common Lisp, and interfaces to Ada and Modula-3 are now under development.

The server initializes lSlS and declares the procedures that will handle update and inquiry requests. The

isi s-mainloop dispatches incoming messages to these procedures as needed (other styles of main loop

are also supported). Notice the formatted-I/O style of message generation and scanning. Isis does not

actually send data in ascii format, of course, but the interface mimics the usual UNIX formatted 1/O interface

because most Isis users are comfortable with this approach.

The "state transfer" routines are concerned with sending the current contents of the database to a server that

has just been started and is joining the group. In this situation, ISlS arbitrarily selects an existing server to

do a state transfer, invoking its state sending procedure. Each call that this procedure makes to xfer_out

will cause to an invocation of rcv_state on the receiving side; in our example, the latter simply passes

the message to the update procedure (the same message format is used by send_state and update). Of

course, there are many variants on this basic scheme; for example, it is possible to indicate to the system that

only certain servers should be allowed to handle state transfer requests, to refuse to allow certain processes

to join, and so forth.

The client program should be largely self-explanatory. At startup, it does a pg_lookup to find the server.

Subsequently, calls to its query and update pmc#.xlures are mapped into messages to the server. The BCAST

calls are mapped to the appropriate default for the group - ABCAST in this case.

The database server of Figure 10 uses a redundant style of execution in which the client broadcasts each

request and will receive multiple, identical replies from all copies. In practice, the client will wait tbr the

first reply, ignoring the others. Such an approach provides the fastest possible reaction to a failure, but has

the disadvantage of consuming n times the resources of a fault-intolerant solution, where, is the size of

22

#include "_sis.h"

#define UPDATE

#define QUERY

main()

(

isis inlt (0) ;

isis entry(UPDATE, update, "update") ;

isis entry(QUERY, query, "query") ;

pg_3o_n("/demos/salaries", PG_XFER, send_state, rcv_state, 0) ;

isis__mainloop (0) ;

update(mp)

register message *mp;

{

char name[32];

int salary;

msg_get(mp, "%s,%d", name, &salary);

set_salary(name, salary);

)

query(mp)

register message *mp;

(

char name[32];

int salary;

msg_get(mp, "%s,%d", name);

salary = get_salary(name);

reply(mp, "%d", salary);

)

send state()

(

struct sdb entry *sp;

for(sp = sdb_head; sp != sdb_tail; sp = sp->s_next)

xfer out ("%s, %d", sp->s name, sp->s_salary);

)

rcv state (mp)

register message *mp;

(

update (mp) ;

l

Figure 10: A simple database server

23

#include "isis.h"

#define UPDATE

#define QUERY

address *server;

main()

{

isis init(0);
m

server = pg_lookup("/demos/salaries");

l

update(name, salary)

char *name;

(

bcast (server, UPDATE, "%s, %d", name, salary, 0) ;

!

get_s a i a ry (name)

char *name;

!

int salary;

bcast(server, QUERY, "%s", name, i, "%d", &salary);

return(salary);

}

Figure 11" A simple database client

24

Figure12:Architectureof brokeragesystem

theprocessgroup. An alternativewouldhavebeento subdividethesearchsothateachserverperforms
1/n'th of the work. Here, the client would combine responses from all the servers, repeating the request if

a server fails instead of replying (this is readily detected in Isls).

6 Who uses Isis, and how?

The example of the previous section reveals the general nature of the ISlS interface, but may leave the reader

with little sense of the broader picture. This section briefly reviews some substantial Isis applications,

looking at the roles that Isis plays in real-world situations.

6.1 Brokerage

A number of ISiS users are concemed with financial computing systems such as the one cited in the

introduction. Figure 12 illustrates such a system. The architecture is a client-server one, in which the

services filter and analyze streams of data. Fault-tolerance here refers to two very different aspects of the

application. First, financial systems must rapidly restart failed components and reorganize themselves so

that service will not be interrupted by software or hardware failures. Second, there are specific system

functions that require fault-tolerance at the level of files or database, such as a guarantee that after rebooting

a file or database manager will be able to restore the data it manages into a consistent form at low cost. Isis

was designed to address the first sort of problem, but includes several tools for solving the latter one.

25

Generally,theapproachtakenis to representkeyservicesusingprocessgroups,replicatingservicestate
informationso thatevenif one serverprocessfails theothercan respondto requestson its behalf.

Duringperiodswhenn service programs are operational, one can often exploit the redundancy to improve

response time; thus, rather than asking how much such an application must pay for fault-tolerance, more

appropriate questions concern the level of replication at which the overhead begins to outweigh the benefits

of concurrency, and the minimum acceptable performance assuming k component failures. Fault-tolerance

is something of a side-effect of the replication approach.

A second attribute of financial computing is use of a subscription/publication style of computing. The basic

ISiS communication primitives do not spool messages for future replay, hence an application running over

the system, the NEWS facility, has been developed to support this functionality.

A final attribute of brokerage systems is that they require a dynamically varying collection of services. A

firm may work with dozens or hundreds of financial models, predicting market behavior for the financial

instruments being traded under varying market conditions. Only a small subset of these services will be

needed at any time. Thus, systems of this sort generally consist of a processor pool on which services

can be started as necessary, and this creates a need to support an automatic remote execution and load

balancing mechanism. The heterogeneity of typical networks complicates this problem, by introducing a

pattern matching aspect (i.e., certain programs may be subject to licensing restrictions, or require special

processors, or may simply have been compiled for some specific hardware configuration). This problem is

solved using the ISis network resource manager, an application described later in this section.

6.2 NMRD example

Several Isis applications combine local area and wide-area networking functions. A good example of

this arises in the Nuclear Monitoring Research and Development System, or NMRD, being developed by

Science Applications International Corporation. 5 NMRD includes several knowledge-based applications

which collect, analyze and archive seismic data from a geographically dispersed network of seismic sensors,

and a rich set of tools for selecting and analyzing data in the archive to address seismological issues. The

system is extensively automated with rule-based AI techniques.

A typical NMRD application is the Intelligent Monitoring System (IMS), which detects, locates and classifies

seismic events occurring in Eurasia. IMS is structured like a wheel. A central "hub" in Washington, DC

performs most of the automated data interpretation functions, and a set of "spokes" connects this hub to

free-standing LANs, where data acquisition, signal processing, and archiving is done. The spokes comprise

the WAN communication network, and consist of long-distance TCPchannels.

5DARPA Con_'_:t No. MDA972-88-C-0024

26

Thebandwidthof thespokesis low,henceit is impossibleto transferthebulkof theseismicdatacollected

bythesystemto thehub.Accordingly,remotesystemsselectandcharacterizedatasegmentswhichmay
containsignalsof interest.Theysendthesedescriptionsto thehub,whichmayrequestafull copyof some
segmentof thesignal,or initiatearemotesignalanalysisoperation.In eithercase,theresultwill be in
theformof afile thatmustbetransferredtothehub.Becausethesystemisautomated,thefault-tolerance
of theseoperationsiscriticalto correctness.IMSwouldmalfunctionif a requesteddatasegmentorsignal
analysisoperationwasneverreceivedat thehub. This imposesfauh-tolerancerequirementswithin the
LANsystemsrunningonthehub,onremoteLANs,andontheWANcommunicationsubsystem.

Thestepsinvolvedin a rawdatatransferareillustrativeof thesystemarchitectureusedto addressthese
needs.First, theIsis "long-haul"utility is invokedby an IMS program that needs data from a remote

node. This IMS program will be implemented as a process group for reasons of fault-tolerance, using a

primary/backup approach. The request sent to the long-haul utility takes the form of a message addressed

to a process group (identified symbolically), and giving the remote network or networks to which it should

be delivered. The long-haul facility, also built as a fault-tolerant process group, operates by opening a line

to the remote network, or spooling the message if the remote LAN is temporarily unreachable. Using an

acknowledgement protocol, the facility provides exactly-once, error-free transmission over the long-haul

link (even if the link must be closed and reopened during the session, or if the processes handling the link

fail). Remotely, the facility locates the process group to which the message was addressed, spooling the

message or starting the desired service if necessary. Finally, the message is delivered. If the message

contains a reference to a file, the long-haul system automatically transfers the file, too.

Thus, although Isls process groups and group communication do not transparently span wide-area

communication links, Isis can be an effective tool for developing software that does have this structure.

The benefit seen by the developers of IMS was not that ISIS offered a trivial solution to their wide-area

problem, but rather that it offered robust tools with which a highly automated piece of software could be

constructed. Because IMS is normally operated without supervision, this was an important consideration in

system design.

6.3 Graphics example

ISIS has been popular with a community of scientific computing and simulation users, typified by the

Cornell Program of Computer Graphics. This group has developed a number of computationally intensive

graphics applications, of which a rendering technique called radiosity is typical [Gre91]. In broad terms,

the approach involves precomputing a mathematical model of a scene to be rendered. The scene can

then be illuminated and rendered from various perspectives at much lower cost than if each rendering was

done independently. Such techniques play important roles in solid modeling, cooperative design, real-time

animation and virtual reality applications.

27

The Comell grouphasusedISlSfor severalyears. Manyof the algorithmsfor this applicationare
"embarrassinglyparallel." Theyconsistof longcomputationalstepsthatcanbeexecutedcompletely
independently,with theresultsbeingcombinedperiodically.Someof theseapplicationsexecutefordays
orweeksonsubstantialnumbersof thefastestworkstationsnowavailable.Isisiswellsuitedtocontrolling

suchacomputation.Becausethecalculationsexecuteforextendedperiodsof time,theprimaryemphasis
is oncontrolof thecollectionof machinesbeingused,anddynamicreconfigurationof theapplicationas
availabilityof processorsvariesduringtheday. Communicationis notabottleneck,hencetheoverhead
introducedby Isis is not viewedasa concern.Of course,theexperiencein developingthesesortsof
applicationsis not uniformlypositive:for caseswherethejob stepis muchshorter,thespeedof Isis
communication(presumably,anysortof communication)becomesa limiting factor,henceonlycertain
algorithmsandproblemscanmakeeffectiveuseof the approach. Nonetheless, the community of Isis users

includes a large number of scientific computing and simulation users, all using this style of computing and

benefiting from the excellent cost/performance ratio seen in networks of inexpensive workstations. The

same approach is used in some ISls-based utility software, such as the "parallel make" program, which is a

version of the traditional UNIX make utility, modified to perform steps in parallel whenever possible.

6.4 Major Isis-based utilities

In the above subsection, we alluded to some of the fault-tolerant utilities that have been built over ISLS.

There are currently five such systems:

• NEWS: This application supports a collection of communication topics to which users can subscribe

(obtaining a replay of recent postings) or post messages. Topics are identified with file-system style

names, and it is possible to post to topics on a remote network using a "mail address" notation;

thus, a Swiss brokerage firm might post some quotes to "]GENEVA]QUOTES/IBM@NEW-YORK". The

application creates a process group for each topic, monitoring each such group to maintain a history

of messages posted to it for replay to new subscribers, using a state transfer when a new member

joins.

• NMGR: This program manages batch-style jobs and performs load sharing in a distributed setting.

This involves monitoring candidate machines, which are collected into a processor pool, and then

scheduling jobs on the pool. A pattern matching mechanism is used to optimize job placement. When

employed to manage critical system services (as opposed to running batch-style jobs), the program

monitors each service and automatically restarts failed components. ParaUelmake, mentioned above,

is an example of a distributed application program that uses NMGR for job placement.

• DECEIT: This system [SBM89] provides fault-tolerant NFS-compatible file storage. Files are

replicated for both to increase performance (by supporting parallel reads on different replicas) and

28

fault-tolerance;the levelof replicationis varieddependingon thestyleof accessdetectedby the
systematruntime.Afterafailednoderecovers,anyfilesit managedareautomaticallybroughtupto
date.Theapproachconcealsfile replicationfromtheuser,whoseesanNFS-compatibletile-system
interface.

• META/LOMITA: META is an extensive system for building fault-tolerant reactive control applica-

tions [MCWB91]. It consists of a layer for instrumenting a distributed application or environment,

by defining sensors and actuators. A sensor is any typed value that can be polled or monitored by

the system; an actuator is any entity capable of taking an action on request. Built-in sensors include

the load on a machine, the status of software and hardware components of the system, and the set of

users on each machine. An unlimited collection of user-defined sensors and actuators can be added.

The "raw" sensors and actuators of the lowest layer are mapped to abstract sensors by an intermcdiate

layer, which also supports a simple database-style interface and a triggering facility. This layer

supports an entity-relation data model and conceals many of the details of the physical sensors, such

as polling frequency and fault-tolerance. The interface supports a simple trigger language, which

will initiate a pre-specified action when a specified condition is detected.

Running over META is a distributed language for specifying control actions in high-level terms, called

LOMITA. LOMITA code is normally imbedded into conventional C or C++ software. At runtime, the

control statements are expanded into a distributed finite state machine triggered by events that can bc

sensed local to a sensor or system component; a process group is used to perform the state transition

More detail on the approach can be found in [Woo91].

• SPOOLER/LONG-HAUL FACILITY: This subsystem is responsible for wide-area communication [MB90]

and for saving messages to groups that are only active periodically. It conceals link failures and

presents an exactly-once communication interface.

6.5 General remarks

We believe that the simplicity of straightforward applications such as the replicated database server, together

with our success in building much more sophisticated applications, supports a basic philosophy: that the

functionality of a distributed application can profitably be separated from the distributed protocols and

algorithms employed in support of it. If a simple service corresponds to a simple realization, application

developers can safely undertake more complex services and algorithms. As seen above, Isis users have

constructed elaborate distributed systems, with very positive results. The complexity traditionally associated

with distributed computing is overcome using the virtual synchrony model.

This point is not surprising: database applications are greatly simplified by the availability of database

tools (and the serializability model), and window-oriented graphics applications by tools such as Motif, the

29

popularX-windowstoolkit. Embeddingthecomplexaspectof distributedcomputingintoa specialized
layermayseemtheobviousway to handlethisproblem. Nonetheless,themainwhrustof distributed
computingenvironmentsin thelate1980'shasbeenonissuesofperformance,supportforremoteprocedure
call,andtechniquesformakingnetworkingastransparentaspossible.Theseareimportantissues,butthey
offerlittlehelpto theuserconcernedwithdistributedconsistencyandfault-tolerance.

7 Isisand other technologies

Our discussion has overlooked the sorts of real-time issues that arise in the Advanced Automation System,

a next-generation air-traffic control system being developed by IBM for the FAA [CD90,CASD86], which

also uses a process-group based computing model. Similarly, one might wonder how the Isis execution

model compares with transactional database execution models. These are both complex issues, and it would

be difficult to do justice to them without a lengthy digression.

Briefly, the AAS technology differs from Isis in providing strong real-time guarantees. The real-time

characteristics of the current ISiS protocols have not been analyzed and no guarantees are provided. On

the other hand, the AAS system has weaker consistency properties than ISLS. For example, AAS application

software can have inconsistent views of replicated data, due to transient faults that corrupt a process.

Further, such a fault may not prevent the corrupted process from initiating new muiticasts. Thus, ,,,AS

application software must be designed to tolerate certain types of inconsistencies which would not arise

using the Isis virtual synchrony model. Integration of the two approaches represents as an open problem.

The relationship between Isis and transactional systems represents a potential source of confusion. The

problem originates in the similarity between the virtual synchrony model and a transactional serializability

model [BHG87]. In fact, the basic building blocks of the Isis system (process groups and group multicast)

have no direct counterparts in database systems. The converse is also the case: Isis offers no special

support for transactional begin, read, write, commit/abort, concurrency control or rollback mechanisms.

Thus, although the theory and protocols used in ISlS draw upon work from the database community, it

would be inappropriate to view Isis as a form of database system.

8 Rethinking Isis for modern operating systems

After six years of experience with the current version of Isis, we find that the system has grown large and

complicated. Meanwhile, improved insight into protocol design [BSS91], together with the emergence of

reconfigurable operating systems, have convinced us to attempt to build a simpler, more scalable, and faster

version of ISIS. On a high performance workstation over an ethernet (but not exploiting hardware broadcast),

30

ISIS currently performs about 350 CBCAST's per second from one sender to 4 destinations, or about 1000

per second to a single destination. We feel that numbers like 25,000 per second and 100,000 could be

achieved through an approach that makes use of the powerful memory management and lightweight tasking

mechanisms available under operating systems like Mach [ABG ÷ 86] and Chorus [RAA ÷ 881.6

At a more fundamental level, we have been studying distributed consistency using formal mathematical

tools. Results in these area include the group-based failure detection protocol and the lightweight suite of

reliable multicast protocols used to implement CBCAST and ABCAST [RB91 ,BSS91,Ste91]. In the future, we

plan to look at security issues.

9 Conclusions

This paper suggested that the next generation of distributed computing systems will require support for

process groups and group programming. Arriving at appropriate semantics for a process group mechanism

is a difficult problem, and implementing those semantics fault-tolerantly would exceed the abilities of the

average distributed applications designer. A fundamental choice is implied: either the operating system

must implement these mechanisms or the reliability and performance of group-structured applications is

unlikely to be acceptable.

The Isis system provides tools for programming with process groups. A review of research on the system

leads us to the following conclusions:

• A mechanism for achieving and maintaining distributed consistency is needed to construct reliable

large-scale systems from collections of components. It is appealing to present such a mechanism in

terms of process groups.

• Process groups should embody strong semantics for group membership, communication, and synchro-

nization. A simple and powerful model can be based on closely synchronized distributed execution,

but high performance requires a more asynchronous style of execution in which communication

is heavily pipelined. The virtual synchrony approach combines these benefits, using a closely

synchronous execution model, but deriving a substantial performance benefit when message ordering

can safely be relaxed.

• Efficient protocols have been developed for supporting virtual synchrony. These are more complex

than the sorts of protocols that have been common in the distributed computing and intemetworking

community, but the complexity seems to be unavoidable.

_l'his assumes that it will be possible to send 1000packetspersecond, and that pipeliningwill permiteach packetto carry 25 to

100 small, asynchronousmessages. The former figureis conservative, and the latter corresponds to a levels of piggybacking seen

in Isis today.

31

Processgroupprogrammingoffers the potential to ignite a new wave of advances in distributed computing,

and applications that reply on distributed computing. Using current technologies, it is impractical for typical

developers to implement high reliability software, self-managing distributed systems, to employ replicated

data or simple coarse-grained parallelism, or to develop software that reconfigures automatically after a

failure or recovery. Consequendy, although current networks embody tremendously powerful computing

resources, the programmers who develop software for these environments are severely constrained by a

deficient software infrastructure. The experience we have had with the Isis system suggests that these

obstacles can be overcome, resulting in a distributed programming environment that greatly simplifies the

task confronted by the distributed applications programmers.

10 Acknowledgements

The Isis effotx would not have been possible without extensive contributions by many past and present

members of the project, users of the system, and researchers in the field of distributed computing. Although

it is not practical to list all of these individuals here, Tommy Joseph, Ken Kane and Frank Schmuck

played major roles in the initial system design, while the protocols used in the current version of Isis

emerged from research by the author, Andre Schiper and Pat Stephenson. Messac Makpangou and Micah

Beck developed the long-haul facility, Alex Siegel the Deceit file system, Tim Clark the network resource

manager, and Keith Marzullo, Mark Wood and Robert Cooper developed Meta and Lomita. In addition to

these researchers, Holger Herzog, Brad Glade, Barry Gleeson, Guemey Hunt, Mike Reiter, Aleta Ricciardi,

and Robbert Van Renesse are all involved in the current system redesign.

The author gratefully acknowledges the help of Mauren Robinson, who prepared the figures for this paper.

Robert Cooper, Bradford Glade, Barry Gleeson, Jacob Levy, Stefan Sharkansky, Fred Schneider, and Pat

Stephenson all made valuable comments on earlier drafts, resulting in significant improvements in the

presentation.

References

[ABG + 86] Mike Accetta, Robert Baron, David Golub, Richard Rashid, Avadis Tevanian, and Michael

Young. Mach: A new kernel foundation for unix development. Technical report, School

of Computer Science, Carnegie Mellon University, Pittsburgh, PA, August 1986. Also in

Proceedings of the Summer 1986 USENIX Conference, pp. 93 -112, July 1986.

[ABHN91] Mustaque Ahamad, James Bums, PhiUip Hutto, and Gil Neiher. Causal memory. Technical

report, College of Computing, Georgia Institute of Technology, Atlanta, GA, July 1991.

32

[BC90]

[BHG87]

[Bir85]

[BJ89]

[BSS91]

[CASD86]

[CD90]

[DSB86]

[Gre91]

[JB891

[KTHB89]

[Lam78]

Ken Birman and Robert Cooper. The ISIS project: Real expericnce with a fauh tolerant

programming system. European SIGOPS Workshop, September 1990. To appear in Oper-

ating Systems Review, April 1991; also available as Comell Univcrs,ty Computcr Science

Department Technical Report TR90-1138.

Philip A. Bemstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control and

Recovery in Database Systems. Addison-Wesley, 1987.

Kenneth P. Birman. Replication and availability in the ISIS system. In Proceedings of the Tenth

ACM Symposium on Operating Systems Principles, pages 79-86, Orcas Island, Washington,

December 1985. ACM SIGOPS.

Ken Birman and Tommy Joseph. Exploiting replication in distributed systems. In Sape

Mullender, editor, Distributed Systems, pages 319-368, New York, 1989. ACM Press,

Addison-Wesley.

Kenneth Birman, Andre Schiper, and Patrick Stephenson. Lightweight causal and atomic

group multicast. ACM Transactions on Computer Systems, 9(3), August 1991.

Flaviu Cristian, Houtan Aghili, H. Ray Strong, and Danny Dolev. Atomic broadcast: From

simple message diffusion to Byzantine agreement. Technical Report RJ5244, IBM Research

Laboratory, San Jose, Califomia, July 1986. An earlier version appcared in the 1985

Proceedings of the International Symposium on Fault-Tolerant Computing.

Flaviu Cristian and Robert Dancey. Fault-tolerance in the advanced automation system.

Technical Report RJ7424, IBM Research Laboratory, San Jose, California, April 1990.

M. Dubois, C. Scheurich, and E Briggs. Memory access buffering in multiprocessors. In

Proceedings of the 13th Annual International Symposium on Computer Architecture, pages

434-442, June 1986.

Donald Greenberg. Computers and architecture. Scientific American, 264(2):104-109,

February 1991.

Thomas Joseph and Kenneth Birman. Low cost management of replicated data in fault-tolerant

distributed systems. ACM Transactions on Computer Systems, 4(1):54-70, February 1989.

M. Frans Kaashoek, Andrew S. Tanenbaum, Susan Flynn Hummel, and Henri E. Bal. An

efficient reliable broadcast protocol. Operating Systems Review, 23(4):5-19, October 1989.

Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Communi-

cations of the ACM, 21 (7):558-565, July 1978.

33

[LL86]

ILLS90]

[MB90]

[MCWB91]

[Pet87]

[RAA+88]

[RB91]

[SBM891

[Sch861

[Sch88]

[Ske821

[Ste91]

[Tan88]

[TH90]

Barbara Liskov and Rivka Ladin. Highly-available distributed services and fault-tolerant

distributed garbage collection. In Proceedings of the Fifth ACM Symposium on Principles of

Distributed Computing, pages 29-39, Calgary, Alberta, August 1986. ACM SIGOPS-SIGACT.

RJvka Ladin, Barbara Liskov, and Liuba Shrira. Lazy replication: Exploling the _mantics of

distributed services. In Proceedings of the Tenth ACM Symposium on Principles of Distributed

Computing, pages 43-58, Qeubec City, Quebec, August 1990. ACM SIGOPS-SIGACT.

Messac Makpangou and Kenneth Birman. Designing application software in wide area

network settings. Technical Report 90-1165, Department of Computer Science, Cornell

University, 1990.

Keith Marzullo, Robert Cooper, Mark Wood, and Kenneth Birman. Tools for distributed

application management. IEEE Computer, August 1991.

Larry Peterson. Preserving context information in an ipc abstraction. In Sixth Symposium on

Reliability in Distributed Software and Database Systems, pages 22-31. IEEE, March 1987.

M. Rozier, V. Abrossimov, M. Armand, E Hermann, C. Kaiser, S. Langlois, P. Leonard, and

W. Neuhauser. The chorus distributed system. Computer Systems, pages 299-328, Fall 1988.

Aleta Ricciardi and Kenneth Birman. Using process groups to implement failure detection in

asynchronous environments. In Proceedings of the Eleventh ACM Symposium on Princtples

of Distributed Computing, Montreal, Quebec, August 1991. ACM SIGOPS-SIGACT.

Alex Siegel, Kenneth Birman, and Keith Marzullo. Deceit: A flexible distributed file system.

Technical Report 89-1042, Department of Computer Science, Cornell University, 1989.

Fred B. Schneider. The state machine approach: a tutorial. Technical Report TR 86-800,

Department of Computer Science, Comell University, December 1986. Revised June 1987.

Frank Schmuck. The use of Efficient Broadcast Primitives in Asynchronous Distributed

Systems. PhD thesis, Comell University, 1988.

Dale Skeen. Crash recovery in a distributed database system. PhD thesis, University of

California at Berkeley, Department of EECS, June 1982.

Pat Stephenson. Fast Causal Multicast. PhD thesis, Comell University, February 1991.

Andrew Tanenbaum. Computer Networks. Prentice Hall, second edition, 1988.

Josep Torrellas and John Hennessey. Estimating the performance advantages of relaxing

consistency in a shared memory multiprocessor. Technical Report CSL-TN-90-365, Computer

Systems Laboratory, Stanford University, February 1990.

34

[Woo91] MarkWood.Constructing reliable reactive systems. PhD thesis, Comcli University, Depart-

ment of Computer Science, December 1991.

35

