
APPLICATIONS OF FORMAL SIMULATION LANGUAGES

IN THE CONTROL AND MONITORING SUBSYSTEM

OF SPACE STATION FREEDOM

Final Report

NASA/ASEE Summer Faculty Fellowship Program -1990

Johnson Space Center 5 a
A Q f
*

Prepared By:

Academic Rank:

University & Department

NASA/JSC

Directorate:

Division:

Branch:

JSC Colleague

Date Submitted

Contract Number

R. C. Lacovara, Ph.D.

Assistant Professor

Stevens Institute of Technology

Dept. of Electrical Engineering

and Computer Science

Engineering

Tracking and Communications

Communications Performance

and Integration

James C. Dallas

August 17,1990

NGT-44-005-803

12-1



1. Abstract

The notions, benefits, and drawbacks of numeric simulation are introduced.
Two formal simulation languages, Simscript and Modsim are introduced. The capa-
bilities of each are discussed briefly, and then the two programs are compared.

The use of simulation in the process of design engineering for the Control
and Monitoring System for Space Station Freedom is discussed. The application
of the formal simulation languages to the CMS design is presented, and recommen-
dations are made as to their use.

12-2



2. Simulation and the Scope of this Paper
This paper discusses certain formal simulation techniques and tools, and

makes observations and recommendations on the use of these techniques in a

specific environment: the Control and Monitoring Subsystem (CMS) for Space
Station Freedom.

The concept of simulation and varieties of simulation are discussed brief-
ly. After that discussion, the application of simulation to the CMS is present-
ed. The formal languages are presented and compared. Lastly, some recommenda-

tions for the use of these tools are advanced.

2.1. Rationale for Simulation
Simulation is one of many methods of obtaining information about physical

or conceptual systems. The chief feature of simulation is that the information

is not obtained by methods of formal analysis. Instead, a model of the system
which includes the pertinent behavior is constructed and the model is exer-
cised. Possibly, the model is exercised using pseudo-random input conditions,
and the model may be exercised many times to smooth out variations in results

due to the pseudo-random inputs, or internal psuedo-random events.
(In this paper, the term "random" will be used to describe the behavior of

pseudo-random sequence generators. The differences and implications of this
choice, and the definition of pseudo-random are beyond the scope of this work.)

The chief advantage of simulation accrues from the chief feature. Simula-

tion is an interesting methodology precisely when (a) no formal analysis is

possible or (b) no physical system is available from which to make observa-

tions. Any number of reasons will occur to the reader which may cause case (b).
Case (a), the lack of formal analysis, occurs whenever the system to be studied

has no known system of equations which describe it, or when the complexity,

inherent non-linearities, pathologies, or plain old intractability of the sys-

tem make the search for analytical description impractical. A cold appraisal of

the world leads workers to conclude that case (a) is the rule, not the excep-

tion.

In brief, simulation is applied to problems for which formal analysis is

unavailable or for which no physical system is available for observation.

12-3



3. Categorization of Simulation
Simulations may be usefully categorized in several ways. The process domain

of a simulations refers to the description of time in which the system oper-
ates. Discrete time and continuous time descriptions will be familiar to most

electrical engineers.
The computational domain describes the facility used to model the system.

Although most facilities are digital computers, some analog computers are used

in simulations.
The simulation scheme refers to the method in which the simulation passes

time. This may be synchronously, in which the program advances time in small
quanta and determines what, if anything, should occur. Otherwise, the simula-

tion might be asynchronous, in which the program maintains a list of scheduled
events and proceeds directly from one scheduled event to another regardless of

the intervening time.

3.1. Process Domain
Process domain refers to the basic view of time taken by the simulation. A

natural view of the progression of time is that of continuous time. The time

variable may take on any value, and this is certainly the most common view of
processes such as ballistic bodies, electronic circuits and similar systems.
The other common description of the passage of time is discrete time, in which

the time as an independent variable takes on only specific values, usually of

the form
t = nT

where T is the smallest identifiable duration, and n is the actual independent

variable.
The difference between continuous and discrete time signals is more funda-

mental however. Continuous time systems are those which may be described by
differential equations, whereas discrete time systems are described by differ-

ence equations. Analytic solutions to continuous time systems are therefore the
solutions to ordinary and partial differential equations with boundary condi-

tions, usually facilitated by the use of Laplace transforms. Analytic solutions

for discrete time systems satisfy difference equations with forcing functions,

and a common technique is that of z-transforms.

12-4



Often it is convenient to model a naturally continuous system with a dis-
crete time model. This may entail a choice of T such that no significant events
occur in a period of time less than 2T. Unfortunately, it is not always clear
what constitutes a "significant event1, and further, other subtleties (such as
solution stability concerns) may intrude.

As a practical matter, most formal simulations are in fact discrete time.
Philosophical arguments aside, digital computers (the most common vehicle of
simulations) represent quantities discretely (in finite precision.)

3.2. Computational Domain
Calculations may be performed in many different ways. Mechanical and hydrau-

lic systems have been designed to perform logic and arithmetic. The only inter-
est here is in electronic methods.

3.2.1. Analog Computers
Analog "computers" are good examples of analog simulators. These devices

are actually arrays of operational amplifiers configured as summers, integra-
tors and differentiators. As a result, analog computers are well suited to the
solution of systems of linear differential equations. As an illustration, note
that voltage or current is made the analogue of some physical quantity, and
time is made the analogue of the independent variable, usually time. This is in
contrast to something like a phonograph recording, in which vertical mechanical
displacement of a grove is made the analogue of acoustic pressure, and linear
displacement along the groove is made the analogue of time.

Analog computers are most often set up on plugboards to represent a particu-
lar differential equation. An applicable forcing function is applied, and the
behavior of the system as a function of time is observed and scaled.

3.2.2. Digital Computers
Digital computers are the most common vehicle for calculation and simula-

tion. Inherently, these machines represent discrete variables, and are natural-
ly suited to represent systems which are characterized by difference equations.
Various strategies allow the system to represent continuous time systems with
acceptable results.

12-5



Digital "computers" could be constructed in the same manner as analog com-
puters. Collections of adders, subtracters and delays could be assembled to
exactly represent some particular difference equation. This is uncommon,
although such an arrangement might be one of the fastest methods of obtaining a
solution to a set of equations.

A slightly less hardware-intensive method is to use digital signal process-
ing chips to implement the difference equations. These single-chip computers
use specialized architectures and instruction sets to efficiently evaluate
difference equations.

The majority of computational applications are performed on general-purpose
computer architectures. This includes formal simulation languages.

3.3. Simulation Methodology
There are two primary simulation methods. These differ in the manner in

which simulated time is advanced. An important distinction is that simulation
time is unrelated to run time, or actual time. Simulation time is advanced
either by identical small quanta (synchronous simulation) or advanced from
event to event listed in a process list (asynchronous simulation.)

3.3.1. Synchronous Simulation
Synchronous simulations are used in systems which require interaction with

exterior hardware. Examples are systems which are interfaced to hardware or
certain recording systems. These systems have stringent timing requirements:
the simulation must be able to advance simulation time at least as fast as real
time.

Synchronous simulations are common even when there are no exterior require-
ments. This is not surprising, since synchronous simulations are often easier
to code than asynchronous simulations.

Coding a synchronous simulation proceeds as follows. Prior to coding, the
analyst determines the largest time slice which will suit the problem. An ini-
tial state of the problem is chosen. Then, for each element of the system, the
analyst computes (guesses?) the probability (formally, a transition probabili-
ty) that a particular element of the simulation changes state in during a time
slice.

12-6



Code is written which can store the state of the system during any particu-
lar time slice, and update the state during the next slice. This is done by
making a number of draws from a suitable probability distribution, and mapping
the results into the new state of the system.

This technique has the advantage of simplicity. If the code is hosted on a

sufficiently fast platform, the simulation is by default "real-time". (For
example, if the time quanta chosen is 0.1 second, and the program completes all

transition probability draws in less the 0.1 second, then the program is not a
rate limiting part of a larger system, hence is real-time.)

There are drawbacks to this arrangement. If real-time performance is re-

quired, and the code does not run fast enough, then there is little recourse
except a full re-write, or a port to a faster host. Further, a view of a pro-
cess from the level of the time slice makes is difficult to implement a
"process-wide" view of the system. Interactions between processes in the simula-
tion are not obvious, and not necessarily easy to implement.

For certain classes of problems, the synchronous approach is sparing of a
programmer's time, and may allow real-time operation in some cases. A discus-
sion and exposition of a non-trivial synchronous simulation is found in

[Lacovara 87].

3.3.2. Asynchronous Simulation
For more complex systems, or systems in which there is significant interac-

tion between parts of the system, synchronous simulations present non-trivial

coding problems. Further, the size of the time slice determines to a great

extent the rate at which the simulation runs. A choice of small time slices

will slow the system, and many slices may pass without any activity. Large time

slices will allow simulated time to pass faster, but large slices may not allow

sufficient fidelity in the simulated world.

Asynchronous simulation is an approach which resolves the time slice dilem-
ma. In an asynchronous simulation, the time of occurrence of an event is pre-

dicted by a draw from an appropriate distribution. The predicted event is then

placed as an event notice in a linked list of events, often called an event

list. After all predictions which can be made from the present state and simula-

tion time of the system have been make, simulation time is advanced to the

12-7



event notice closest in simulation time. Any changes needed to the state of the
system implied by the current event are made, any new event notices are posted
to the event list, and simulation time is advanced again.

The principal feature of asynchronous simulation is that simulation time
advances from event to event. No compute time is spent evaluating time slices
in which no events occur, and the 'View" of the simulation is at the process
level.

The advantages of asynchronous simulation are often great. A more intuitive
view of the system may be use to create, maintain, and interpret the simula-
tion. The simulation will permit interaction between its component processes.
The disadvantage, however, is that the creation and maintenance of event lists
and process notices are non-trivial, and certainly not advised for casual, even
if experienced, programmers.

The formal simulation tools discussed below have the great advantage that
the mechanics of the simulation, linked lists, queues, priority chains and so
on, are hidden from the programmer. With the use of these tools, powerful simu-
lation constructs are available to users who do not plan to spend their entire
career writing code.

4. Formal Languages: Simscript and Modsim
In this study, two formal asynchronous simulation tools produced by CACI

Products Company of La Jolla, California were used. These languages are Sim-
script and Modsim. They are entirely different approaches to the problem of
simulation, and have overlapping but not identical domains of applicability.

4.1. Simscript
Simscript (from simulation script) is an old (1962) hence mature product.

It imposes on the programmer a "View" of a system divided into processes. This
is not altogether artificial, as the Simscript model of a bank consists of
processes which represent a) customers, b) tellers, and c) customer arrival
generator.

Simscript maintains a complex internal system of queues, lists, and other
data structures. The maintenance of these structures is transparent to the
programmer for the most part. In the bank example, customer arrivals are

12-8



"generated" by introducing event notices of arrival in an event list. The bank

teller is represented by a teller "resource", a process which incorporates a
waiting queue and other flags to indicate teller status. When a customer ar-
rives at a teller, the Simscript system determines whether the teller is "busy"
with a previous customer. If busy, the customer is placed in a waiting queue
until the teller is free to process the customer.

Simscript manages the teller's waiting queue transparently. It checks the
teller's status flags and determines whether the customer may be served or must

wait. In addition to manipulation of these internal structures, Simscript moni-
tors selected parameters of the simulation automatically. Quantities such as

queue size, maximum, minimum, average and other statistics are accumulated

without explicit programmer intervention.
As a result of the internal features, a certain class of simulation may be

implemented in Simscript in an elegant and straightforward fashion. From a
descriptive point of view, Simscript is well suited to systems which involve
queuing theory: processes in which requests for service contend for limited

resources.
Simscript includes facilities for screen graphics. Pre-defined screen con-

structs include graphs, indicators and clocks. Moving icons may be designed and

animated by the simulation. These are relatively straightforward to use, and

seem to be quite useful. Some are quite impressive.

4.2. Modsim
Modsim is a relatively recent language product. It is syntactically based

on Modula 2, which is similar to Pascal. Basically, Modsim adds formal ob-

ject-oriented structures to Modula-2, and provides simulation capability by
providing a library of objects which can pass simulated time. Due to the Modula
2 underpinning, Modsim has considerable general purpose characteristics. It

would be perfectly feasible to use Modsim wherever Modula 2 or Pascal is em-

ployed.
A description of object-oriented programming is beyond the scope of this

paper. However, it is necessary to note that the pertinent features of

"objects" are these. Objects are data structures comprised of typed-fields, and
a list of procedures (called methods) which are the only procedures which act

12-9



on the data structure. The implications are these: objects may interact only
through a object's allowed methods. An object's external fields may be read by
other objects, its internal fields remain invisible. An object's fields may not
be modified directly, but only through the agency of its allowed methods. The
purpose of this strict control of access is to impose a discipline on the con-

struction of the program, and to provide a type of safety in the control of

actions performed on data structures.

Modsim extends the notions of object-oriented programming in the following

manner. Methods are available in two classes, "ASK" and 'TELL". An ASK method
corresponds to the original methods noted above. When invoked upon an object,
some action ensues in instantaneous simulation time. TELL methods, however, are
asynchronous: simulation time may elapse before the desired changes occur. This
is accomplished by the mechanism of an event-list. As in Simscript, the control

and maintenance of the event list for the asynchronous simulation aspects of

Modsim are implicit.
Modsim provides a complex and general programming environment.

(Translation: Modsim is powerful, difficult, and sometimes obscure.) It would
appear to be suitable for a very wide range of simulations. Like Simscript, it

contains provisions for complex screen graphics.

4.3. Comparison of Simscript and Modsim

Be advised that the author's programming experience is as follows: consider-

able expertise in assembly languages, Fortran, Pascal, and C, and operating

systems. The author has written numeric simulations on several systems, but is

new to Simscript, Modsim, and object-oriented programming.

It seems to be easier to write simulations in Simscript than Modsim. In

many ways, Simscript seems to bridge the conceptual gap between the system
under consideration and the programming model in a more direct fashion. Mod-

sim's object constructs however correspond to identifiable processes in the

real world. Modsim's power and complexity initially interfere with the process

of writing code: Modsim requires a substantial amount of "overhead" code to

just get started.
The author designed a simple multiplexer as a simulation example for both

Modsim and Simscript. The multiplexer accepts "data packets" about every 75

12-10



milliseconds. The packets face two servers. One is a high speed server, the
other is a low speed server. The multiplexer enforces the following service
discipline. If the queue size for the low speed server is twenty-five or fewer
packets, the incoming packet joins the low speed queue. Otherwise, the packet
joins the high speed queue. The simulation accumulates statistics on the sizes
of the queues, and the distribution of the time taken by every packet to tra-
verse the system.

The Simscript version of this code is about 40 lines. These 40 lines com-
pile into about 250K bytes for a Sun Sparcstation. The Modsim version is only
about 50% larger, but compiles into about 1M bytes for the same machine. Modifi-
cation of the server discipline is about the same difficulty in either lan-
guage. As features are added to either version, the Simscript object file grows
somewhat, but the Modsim does not seem to expand much at all. The simplest
interpretation of this behavior is that the Simscript object file is growing
proportionally to the additional lines of code. The Modsim compiler seems to be
able to perform one of the selling points of object-oriented programming: the
ability to reuse many parts of the code through inheritance and recursion.

Of course, the Modsim object starts out about four times the size of the
Simscript model, but this is not really serious on large machines.

Both Modsim and Simscript seem to utilize whatever processor power is avail-
able, as judged by a Sun performance meter.

The screen graphics package for Modsim is very similar to that of Sim-
script, but available in a more advanced version, and is therefore preferable.

Overall, Modsim seems to be a more general and versatile simulation system
than Simscript. It carries with it corresponding penalties is size and program-
mer learning curve. Simscript is almost as versatile, and seems to be a very
good choice if only one package is to be available to the general analyst work-
ing with small to medium sized systems. For very large projects, Modsim may be
a better choice, since in large systems the organizational advantages of ob-
ject-oriented programming will begin to be felt.

5. Simulation of Control and Monitoring Subsystem
The Control and Monitoring Subsystem (CMS) for Space Station Freedom is a

collection computers and busses which determine the configuration and operate

12-11



various hardware systems. Some tasks include health observation, fault diagno-
sis and recovery, and other system-wide tasks.

5.1. Functional Simulation
The process of design of this system includes several generations of simula-

tion of the CMS. However, these simulations are not operational, but function-

al. As an example, other applications on the Space Station communicate with the

CMS via a local area network. The present simulations of CMS accept these com-

mands, and provide a simulated response. This simulation system does not depend

heavily on stochastic processes. Instead, the simulation must "merely" accept
communication from exterior agencies and provide a sensible response. As a
result the current simulations are written primarily in ADA and C.

5.2. Use of Operational Simulations in the CMS
There are several areas in which operational simulations may be of use in

the CMS scheme. These are primarily incidental, but of some interest.

The current fault generation in the CMS simulator is manual. If there is no

automatic fault diagnosis and isolation, this is probably adequate. If automat-
ic detection, diagnosis, isolation, and correction are to be implemented, good
testing practice would dictate that the simulated flaws occur without warning

to the simulation operators.
Some aspects of the simulation are time-varying. Some require knowledge of

the state of other components of the simulation. Either simulation tool would

be of some use here. If complex time-dependent behavior was required, the tools

would have some advantages over C or ADA.

5.3. Disadvantages in the CMS Simulation Environment
Simscript and Modsim have common properties which do not fit well with

current simulation and software philosophy on Space Station. Neither tool resem-

bles ADA, is written in ADA, or is likely to be available in ADA in the foresee-

able future. An ADA ideology permeates the Space Station software engineering
efforts, possibly to the exclusion of other useful concepts and directions in

computer science.

A secondary item of dogma is object-oriented programming. Modsim fills this

12-12



bill nicely, and brings with it all of the overhead and performance penalties
built in to this paradigm. However, Simscript is not strictly object-oriented.
Simscript is modular, but it retains some characteristics from its early ori-
gins. (A new line is read from a disk file by the keywords "START NEW CARD".)
The disadvantages, quirks and structural awkwardness of either program are far
outweighed by the advantages they bring to simulation.

6. Recommendations
In the context of the current software requirements of EE7 and in support

of engineering efforts for Space Station Freedom, I offer the following recom-
mendations.

a) One civil service employee of the branch should learn Simscript or Mod-
sim well enough to write a small, but non-trivial simulation. This will
bring some experience in formal simulation tools into the branch. I suspect
that this will pay off rather sooner than later, as requirements and tasks
evolve.

b) A portion of the CMS demo which could use graphics output might be iden-
tified and coded in Modsim. Modsim has convenient and useful graphics capa-
bility, and it is possible that it could be the most efficient means of
generating many graphics displays.

c) Some demonstration of Simscript's or Modsim's capabilities should be
shown to staff involved in analysis tasks in other branches. These tools
are potentially most useful to people who write operational simulations or
perform formal analysis. They should know that the tools exist on-site.

7. Reference

Lacovara 87
R. C. Lacovara, Dissertation: Adapted Packet Speech Interpolation. Stevens

Institute of Technology, University Microfilm 88-17309 Issue 4907 DAI January
1989.

12-13




